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Abstract

We show that the supply of U.S. life annuities is constrained by interest rate risk.

We identify this effect using annuity prices offered by life insurers from 1989 to

2019 and exogenous variations in contract-level regulatory capital requirements.

The cost of interest rate risk management—conditional on the effect of adverse

selection—accounts for about half of annuity markups, or 8 percentage points.

The contribution of interest rate risk to annuity markups sharply increased after

the Global Financial Crisis, suggesting new retirees’ opportunities to transfer their

longevity risk are unlikely to improve in a persistently low interest rate environment.
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Introduction

The fundamental risk for retirement is uncertain longevity. Life annuities offer a

unique risk transfer solution to retirees wishing to shed the risk of outliving their financial

wealth (Yaari 1965; Mitchell et al. 1999; Davidoff et al. 2005). By purchasing a life

annuity, retirees transfer their idiosyncratic longevity risk to a life insurer by surrendering

some of their wealth in exchange for a stream of payments while they are alive. However,

falling long-term interest rates from the late 1980s have eroded the profitability of the life

annuity business (Foley-Fisher et al. 2023). A natural question is, how will historically low

interest rates affect new retirees’ opportunities to manage their longevity risk? Answering

this question is crucial for policymakers, as the provision of social insurance depends

on the conditions in private insurance markets (Cutler and Gruber 1996; Golosov and

Tsyvinski 2007). Examining how interest rate risk affects the supply of annuities requires

identifying the sources of market inefficiencies that influence longevity insurance markets.

We develop an algorithm for life annuity valuation that decomposes the contributions

of demand- and supply-side frictions in life annuity markups observed from 1989 to 2019.

The small vertical boxplots in Figure 1 represent the distribution of actual monthly

payments offered by US life insurers to a 65-year-old male purchasing a $100,000 single

premium immediate annuity (SPIA). This is the price that all individuals at retirement

age in the US face when choosing how to structure their retirement income, regardless

of their wealth accumulation methods such as, bank deposits, mutual funds, employer-

sponsored defined contribution plans, deferred fixed annuities, or variable annuities.1

The monthly income offered on new life annuity contracts is positively correlated with

the average yield on investment-grade corporate bonds of comparable duration, which is

represented by the dotted line below the vertical boxplots.

The short-dashed and solid lines above the boxplots represent the monthly payments

implied by the annuity contract’s actuarial value calculated using general population

mortality and annuitant mortality, respectively. The gap between these two lines is a

measure of the industry’s average adverse selection pricing. This well-known source of

demand-side inefficiency stems from life insurers’ inability to observe the mortality risk of

the individuals seeking longevity insurance, leading to adverse selection (Eichenbaum and

1See Appendix A for more details. Note that the price of a life annuity is inversely related to the
monthly income it generates.
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Figure 1: Life annuity income and investment-grade corporate bond yields This
figure plots the insurer distribution (boxplots) of actual monthly dollar income for a nominal $100,000
SPIA offered to a 65-year-old male between 1989 and 2019—it is inversely related to the annuity price.
The dotted line below the boxplots represents the 10-year High Quality Market (HQM) corporate bond
zero-coupon yield calculated by the U.S. Treasury. The solid and short-dashed lines above the boxplots
represent the monthly income implied by the actuarial values of this SPIA using the annuitant and
general population mortality estimates, respectively.

Peled 1987; Finkelstein and Poterba 2004). The difference between the actual monthly

payment offered (represented by the boxplots) and the solid line is the adverse selection-

adjusted annuity price markup (henceforth, AS-adjusted markup). This portion of the

overall annuity markup cannot be explained by differences in survival rates in the annu-

itant pool and the general population. The average AS-adjusted markup for a $100,000

SPIA offered to a 65-year-old male is substantial and ranges from 10 to 16 percent in
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present value term during the 1989–2019 period.2

In this paper, we study the effect of interest rate risk on life annuity markups. We show

that the cost of managing the interest rate risk associated with selling life annuities ac-

counts for around half of the AS-adjusted markup, or 8 percentage points. In other words,

besides the well-known cost of adverse selection, the supply of private longevity insurance

is constrained by life insurers’ own vulnerability to uninsurable aggregate shocks.3 This

supply-side inefficiency that arises from capital market frictions affects life insurers’ prod-

uct design and capital structure decisions. Additionally, we show that the contribution of

interest rate risk to the AS-adjusted markup sharply increased after the Global Financial

Crisis (GFC), in the aftermath of unprecedented actions by central banks around the

world that accelerated the decrease of long-term interest rates.

Our findings are important for three reasons. The first reason is that adverse selec-

tion alone cannot account for the relatively high annuity markups observed in the data.

This is a robust finding in the adverse selection literature, as shown by Brown (2001)

and Finkelstein and Poterba (2004), among others, and is visually confirmed by Fig-

ure 1. This finding led past researchers to conclude that the AS-adjusted markup reflects

mostly “administrative costs”—a catchall term broadly defined as marketing costs, cor-

porate overhead, income taxes, contingency reserves, and profits (Mitchell et al. 1999).

Our analysis demonstrates that annuity markets are distorted not only by asymmetric

information, which is common in insurance markets, but also frictions in capital markets.

The second reason, which is related to the first, is that our results have significant impli-

cations for reforms in retirement systems, especially reforms relying on private markets

to provide retirement income. Our paper shows that the supply of private life annuities

is constrained by interest rate risk. Therefore, reform proposals that do not take this

supply-side inefficiency into account may not be welfare maximizing. The third reason is

that our results show that the profitability of the entire financial sector, including insurers

2Our life annuity valuation framework resembles those of Koijen and Yogo (2015) and Poterba and
Solomon (2021). The main difference is the choice of discount rate to value the annuity payment stream.
Koijen and Yogo (2015) assume life insurers’ discount their annuity liabilities at the same rate as the US
Treasury, whereas Poterba and Solomon (2021) consider money worth calculations from the perspective
of prospective annuity shoppers. We differ from these studies by valuing new annuity cash flows from the
perspective of the owner of a limited liability life insurer contributing capital to support the issuance of
illiquid fixed-rate liabilities. In practice, this difference means that our AS-adjusted markup is close to
the baseline estimate of Poterba and Solomon (2021) and higher than Koijen and Yogo (2015). Section 3.1
discusses this important issue in detail.

3Cutler (1996) makes a similar point by focusing on long-term care insurance without identifying the
source of aggregate risk.
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and banks, can be threatened by large interest rate shocks. For instance, US life insur-

ers struggled to cope with whole-life policy surrenders when the Federal Reserve under

Chairman Volcker fought inflation in the late 1970s and early 1980s (National Association

of Insurance Commissioners 2013; Brunetti et al. 2023), and US regional banks experi-

enced depositor runs when the Federal Reserve under Chairman Powell rapidly raised

rates to fight inflation in 2022. Our paper is a step toward understanding how financial

intermediaries’ vulnerability to interest rate shocks affects the broader economy.

To understand the effects of interest rate risk management on annuity markups and

derive testable hypotheses, we provide a model of annuity pricing with adverse selection

and interest rate risk. In the model, limited liability life insurers invest their total annuity

premiums—i.e., the total lump sums given by individuals to a life insurer in exchange

for life-contingent monthly payments—in corporate bonds issued by nonfinancial firms.

Markets are incomplete, so only fixed-rate bonds—i.e., non-contingent debt securities—

are traded. Interest rate risk arises because there is aggregate uncertainty over future

interest rates. When the supply of long-term corporate bonds is efficient, we show that

life insurers optimally manage interest rate risk by investing in a unique portfolio of

corporate bonds with varying maturities that perfectly matches the duration of their

annuity liabilities. Insurers’ capital structure is unique and features zero net worth—i.e.,

the present value of insurers’ assets equals the present value of their annuity liabilities. In

this case, the annuity price reflects only the cost of adverse selection. When the long-term

bond supply is inefficient and the return on long-term bonds is relatively low, life insurers

can no longer perfectly match the duration of their annuity liabilities with corporate

bonds.4 In this case, we show that insurers can close the negative duration gap between

their assets and annuity liabilities by adding a positive level of net worth to their capital

structure. Net worth equalizes the duration of insurers’ corporate bond holdings and

total liabilities (annuity liabilities plus net worth), which acts as precautionary savings

to avoid insolvency under low realizations of interest rates. We show that if insurers are

competitive—even imperfectly so—the cost of managing interest rate risk with net worth

is passed on to annuitants in the form of a positive AS-adjusted markup.

Our model offers three important insights to identify the effect of interest rate risk

4A large finance literature investigates the frictions causing the supply of long-term corporate bonds
to be inefficient (Bolton and Scharfstein 1990, 1996; Hart and Moore 1994, 1998; Huang et al. 2019).
We follow this literature and endogenize the long-term corporate bond supply using the framework of
Greenwood et al. (2010).
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on annuity prices. First, the model establishes the causal channel through which changes

in long-term corporate bond returns affect the relative cost of hedging interest rate risk

with net worth. Second, the model establishes a direct link between life insurer annuity

markups, which are observable at a high frequency, and their net worth, which is typ-

ically unobservable. Third, the model demonstrates that the cost of interest rate risk

management is a function of insurers’ investment and capital structure decisions, which

means that the asset and liability sides of insurers’ balance sheets are endogenous.

We identify the effect of interest rate risk management on annuity markups using

annuity prices offered by U.S. life insurers from 1989 to 2019. Identifying this effect is

difficult because demand- and supply-side frictions jointly determine annuity markups.

Moreover, life insurers are obviously exposed to interest rate risk in several ways–through

different product offerings, their risk-management objectives, and their regulatory en-

vironment. We overcome this identification challenge by studying the pricing of life

annuities on the margin—as real-life insurers do—and by exploiting the interaction of

shocks to contract-level regulatory capital requirements and shocks to long-term corpo-

rate bond market conditions. The contract-level regulatory capital requirement shocks

create exogenous variations in the relative cost of supplying annuity contracts with dif-

ferent durations. Under the null hypothesis of costless risk management, changes in the

long-term corporate bond spread have no effect on markups, as insurers can always hedge

the interest rate risk with bonds. Under the alternative hypothesis, changes in long-term

bond spreads have a disproportionate effect on the annuity markup of contracts with rel-

atively high reserve requirements. The reason is that changes in long-term bond spreads

disproportionately change the relative cost of hedging the annuity duration with net

worth for these contracts.

We find that insurers raise their AS-adjusted markups when the relative cost of offering

annuities increases as a result of an exogenous increase in the annuity contract-level

regulatory reserve requirement, because insurers must create larger reserves backed by

more bonds for their annuity contracts. However, this effect is substantially smaller when

the return on long-term bonds exogenously increases, as the relative cost of hedging

interest rate risk with long-term corporate bonds decreases when long-term corporate

bond spreads increase, lowering their reliance on net worth. This difference-in-differences

type of result identifies the effect of interest rate risk management on markups without
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relying on strong assumptions about unobserved changes in annuity demand. In addition,

by exploiting the difference between five-year term certain annuity markups and life

annuity markups offered by the same insurer at the same time, we find that the cost of

interest rate risk management could account for almost all of the AS-adjusted markup

after factoring in the operating expenses reported by the industry.

Our model features a nontrivial feedback mechanism between interest rate risk man-

agement and adverse selection. The cost of managing interest rate risk exacerbates the

adverse selection problem by raising annuity prices. This development, in turn, deterio-

rates the annuitant pool and extends the duration of annuity liabilities, further increasing

the cost of managing interest rate risk. We provide empirical evidence of this feedback

by examining pricing differences in life annuities with different term guarantees. Adverse

selection is more pronounced in contracts with period certain guarantees, as prospective

buyers perceive a higher mortality risk during the guarantee term. Consistent with this

prediction, we find that an exogenous increase in the contract-level regulatory reserve

requirements ratio leads to a disproportionate increase in the adverse selection pricing of

contracts with longer guarantee terms. This result highlights the effect of the interaction

of frictions in insurance and capital markets on insurance pricing.

Lastly, we confirm our baseline empirical findings with a third set of empirical tests

that exploit the heterogeneity in insurers’ interest rate derivatives positions. Although

not as widely used in the industry due to regulatory frictions, large and sophisticated

life insurers can manage their balance sheets’ negative duration gap by adding positive

duration with interest rate swaps. We construct a novel data set on the universe of in-

dividual contract-level interest rate swap derivatives data between the end of 2009 and

2015. These data allow us to calculate the aggregate net duration each insurer in our

sample adds to its balance sheet using interest rate swaps at any point in time.5 Focus-

ing on the cross-sectional variation of insurers’ interest rate swap portfolios, we find that

life insurers that are relatively more adversely affected by an unexpected change in the

shape of the yield curve (due to their ex ante interest rate derivative positions) dispro-

portionately increase their AS-adjusted markups. This identification strategy exploits

the unusual zero-lower-bound period from 2009 to 2015, during which all the movements

in the yield curve came from fluctuations in the long end of the curve. Then, focusing

5This approach is different from using aggregate swap gross notional amounts, which is not informa-
tive about the direction and size of the hedge.
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on the within-insurer variation in interest rate swap portfolios, we use a quantile fixed-

effect regression to show that the least competitive insurers who are the most beneficially

affected by interest rate shocks (due to their hedging programs) cut their AS-adjusted

markups the most—i.e., price their annuities more competitively.

Related literature

Our paper contributes to several strands of literature. First, we bridge the gap between

the economic literature on adverse selection in insurance markets—e.g., Einav and Finkel-

stein (2011)—and the finance literature on risk management of financial institutions—e.g.,

Froot and Stein (1998). The former tends to focus on frictions that affect supply and

demand in insurance markets while typically abstracting from frictions affecting insurers’

capital market decisions. The latter tends to focus on frictions affecting supply and de-

mand in capital markets while typically abstracting from frictions in insurance markets.

We propose a novel theory of life annuity pricing based on optimal risk management and

adverse selection.6 Our theory emphasizes the nontrivial interaction between frictions in

insurance and capital markets.

Second, we contribute to the growing literature identifying the effect of supply-side

frictions in insurance markets. Previous research has identified the general effects of finan-

cial constraints on insurer product design, capital structure, and investment decisions—

e.g., Koijen and Yogo (2015), Knox and Sørensen (2020), and Ge (2022). We differ from

these papers by identifying the specific source of financial frictions—interest rate risk—

that affects the supply of longevity insurance. Moreover, we show that supply-side and

demand-side frictions are typically not orthogonal, as annuity markups depend on the

interaction of frictions on insurance and capital markets. Earlier contributions studying

the effect of interest rate risk on insurers’ capital structure and investment decisions in-

clude Foley-Fisher et al. (2016) and Domanski et al. (2017). In contrast to these studies,

insurers in our model price their life annuities by choosing a capital structure and an asset

portfolio that are consistent with interest rate risk hedging and adverse selection. This

specification also contrasts with recent studies following the seminal work of Koijen and

6Importantly, the life annuities we study in this paper allow wealth decumulation during retire-
ment. They should not be confused with deferred annuities, which include variable annuities and are
tax-deferred savings vehicles that individuals can use to accumulate wealth before retirement—see, for
example, Ellul et al. (2021) and Koijen and Yogo (2022).
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Yogo (2015) that abstract from insurers’ endogenous capital structure, their asset pur-

chasing decisions, and the interaction of both capital structure and purchasing decisions

with adverse selection.7 Other, more distant studies seek to measure life insurers’ resid-

ual exposure to interest rate risk—e.g., Hartley et al. (2016), Ozdagli and Wang (2019),

Sen (2021), Huber (2022), and Brunetti et al. (2023)—that is, insurers’ ex post exposure

to interest rates after implementing their interest rate risk hedging strategies. Brunetti

et al. (2023) find that, consistent with our model’s prediction, life insurers are hedged

most of the time using high-frequency insurer stock price data. Our focus is different, as

we study the effect of life insurers’ ex ante interest rate hedging strategy on life annuity

prices.

Third, our paper contributes to the literature studying pension reforms. The life

annuities we study in this paper are the real-world counterpart to the unique financial

contracts modeled in a large class of life-cycle models following the tradition of Yaari

(1965) and Blanchard (1985). Most studies do not find that publicly provided annu-

ities, such as Social Security, lead to significant welfare gains—e.g., Hong and Rı́os-Rull

(2007) and Hosseini (2015). In these models, social insurance tends to crowd out private

insurance markets, because policymakers do not have an advantage over life insurers in

assessing individuals’ longevity risk. However, this policy conclusion largely results from

the assumption that life insurers operate in frictionless capital markets where they can

costlessly hedge interest rate risk. In contrast, we identify the cost of hedging interest

rate risk as a key financial friction shaping the private supply of longevity insurance.

1 Selling and managing life annuities

In this section, we provide some background about the U.S. life annuity market. New

retirees can manage the risk of outliving their financial wealth by purchasing a life annuity

from a life insurer either directly or through their employer’s pension plan. Individuals

purchasing a life annuity contract transfer their idiosyncratic longevity risk to the life

insurer by surrendering some of their wealth in exchange for a stream of payments while

7Recent work by Giambona et al. (2021) studies the effect of interest rate risk management on
insurance pricing. Consistent with our study of interest rate swaps, they find that insurers that use
relatively more derivatives, measured by higher derivative gross notional amounts, tend to post more
competitive prices. That said, the authors focus on posted prices rather than price markups and abstract
from insurers’ capital structure decisions and adverse selection.
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they are alive.

1.1 The U.S. life annuity market

Our paper focuses on the pricing of life annuities that allow retirees to decumulate

wealth during retirement and are a type of immediate annuity. Roughly half of the U.S.

life insurance industry’s $600 billion aggregate income in 2018 came from annuity premi-

ums. The other half is roughly split between life and health insurance premiums.8 Total

annuity income includes premiums and considerations related to both deferred annuities,

which are pre-retirement savings vehicles, and life annuities, which allow retirees to an-

nuitize their accumulated wealth. For this reason, estimating the size of the U.S. life

annuity market is difficult, as it is not possible to precisely separate life annuity sales

from deferred fixed annuity premiums and considerations in regulatory filings.

Nevertheless, we provide two novel estimates of the size of the U.S. life annuity markets

using individual regulatory filings of insurers—see Appendix A for more details. First,

using insurer-level data on the number of general account annuity contracts and account

balances reported in the 2018 National Association of Insurance Commissioners (NAIC)

statutory filings of over 800 life insurers, we estimate that Americans annuitize about

$625 billion of their wealth with life insurers. This amount corresponds to approximately

$12,700 per person aged 65 and above. Second, using the same data, we calculate that

in 2018, the U.S. life insurance industry’s total payments to annuitants were about 3.5

percent of the total payments made by the U.S. Social Security Administration. These

two estimates are consistent with the view in the literature that the market for life

annuities in the U.S. is relatively small (Mitchell et al. 1999).

1.2 The life annuity business model

Life insurers’ overall business model consists of earning a spread between the returns

on their assets and the returns they owe to their policyholders, which is known in the

industry as the net investment spread. Life annuities are fixed-rate liabilities that are

illiquid, as they are not transferable from one individual to another. Consequently, life

insurers tend to invest their annuity premiums primarily in fixed-income securities in

8See the American Council of Life Insurers’ 2018 Life Insurers Fact Book, https://www.acli.com/
posting/rp18-007.
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an effort to match their asset and liability cash flows. The illiquidity of life insurance

liabilities allows insurers to invest premiums in relatively illiquid fixed-income assets, such

as corporate bonds, asset-backed securities, and real estate loans. This approach offers

a competitive return to policyholders and compensates them for bearing the insurance

contract’s illiquidity.

U.S. life insurers have been the largest institutional investor in corporate bonds issued

by U.S. corporations since the 1930s. At the end of 2017, U.S. life insurers held about

$2.1 trillion of corporate bonds in their general account, which is about half of their gen-

eral account assets and roughly one-third of the total corporate bond amount outstanding

in the U.S. (ACLI 2018).9 By comparison, the rest of life insurers’ general account as-

sets include 8 percent in U.S. government securities and 14 percent in mortgage-backed

securities, including those backed by the U.S. government.10

1.3 Life insurers’ interest rate risk management

The duration of life insurers’ assets is typically less than the duration of their insurance

liabilities because the maturity of corporate debt is typically much shorter than the dura-

tion of annuity liabilities. For example, corporate bonds in the U.S. have a median initial

maturity of about 5 years. Over 90 percent have an initial maturity that is 10 years or

less, and, among those bonds, only a minority pay a fixed rate and are noncallable.11 This

maturity structure contrasts with the duration of a life annuity, which is approximately 10

years when offered to a 65-year-old individual. Note that the duration of a fixed-income

instrument is less than or equal to its maturity. Moreover, long-duration U.S. govern-

ment securities are unattractive to life insurers because they carry a substantial liquidity

premium, as discussed in studies such as Krishnamurthy and Vissing-Jorgensen (2012)

9General account assets back life insurers’ insurance liabilities.
10The life insurance industry’s relatively low holdings of U.S. government securities, which have rel-

atively lower yields, reflect their substantial liquidity premium. This liquidity premium means that
investing annuity considerations in U.S. government securities is unprofitable because life insurers must
compensate annuity contract holders for the illiquidity they bear when signing up for a life annuity.
Moreover, backing long-term insurance liabilities with government securities creates additional prob-
lems for life insurers during times of overall market stress, as the market value of government securities
typically moves in the opposite direction of the market value of the insurer’s liabilities (Bailey 1862).
Moreover, Foley-Fisher et al. (2022) show that a large fraction of the relatively small Treasury holdings
of U.S. life insurers is used in connection with derivatives and securities financing transactions.

11There is a large literature attempting to explain this phenomenon–for example, through the lens of
contracting frictions, as in Bolton and Scharfstein (1990, 1996), Hart and Moore (1994), Hart and Moore
(1998), Barclay and Smith Jr (1995), Huang et al. (2019), and Greenwood et al. (2010).
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and van Binsbergen et al. (2021). This liquidity premium means that it is not profitable

for private life insurers to fund long-term illiquid liabilities, such as fixed annuities, with

highly liquid long-term bonds, such as U.S. Treasury securities.

To put these numbers in perspective, assume there are 3.5 million new 65-year-old

individuals in the U.S. in a given year—roughly the average between 2000 and 2019. For

simplicity, assume further that wealth is annuitized only by new 65-year-old individu-

als. Our previous calculation suggests that a cohort of 65-year-old individuals annuitizes

about $45 billion in wealth with life insurers in a given year—i.e., $12,700 dollars per 3.5

million individuals. Using data on the universe of corporate bond issuance, Appendix A

shows that this amount is about 15 percent larger than the average amount of fixed-rate,

noncallable corporate bonds with maturity over 10 years issued by U.S. firms over the

same period. This calculation implies that, although the life annuity market is small, it

is larger than the total supply of fixed-rate long-term corporate bonds in the U.S., which

has the largest corporate bond market in the world.

The negative duration gap between insurers’ assets and their insurance liabilities

means that life insurers are exposed to interest rate risk. A decrease in interest rates

increases the present value of a life insurer’s fixed-rate liabilities faster than the present

value of its fixed-income assets, which could lead to insolvency. Moreover, the financial

condition of life insurers generally deteriorates when interest rates stay low, because

periods of low interest rates are typically associated with lower bond coupon rates. These

lower coupon rates depress insurers’ net investment spread on new business. They also

force insurers to reinvest the cash flow from maturing bonds into bonds paying lower

coupon rates, which further depresses their net investment spread since the returns they

promised policyholders are fixed—this possibility is known as reinvestment risk. Because

the prospect of insolvency is incompatible with the sale of life annuities, interest risk

management (henceforth, IRM) is at the heart of modern insurers’ annuity business

model.

Life insurers primarily manage interest rate risk by maintaining a suitable level of net

worth, which is also referred to as surplus in the industry.12 Net worth acts as precaution-

ary savings and helps cushion the effect of interest rate changes that disproportionately

12To a lesser extent, larger and more sophisticated life insurers use derivatives in conjunction with
net worth to hedge interest rate risk (Berends et al. 2015), which we analyze in Section 7.
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affect the value of life insurers’ insurance liabilities.13 However, this approach is costly

because the primary source of life insurer capital is accumulated retained earnings, which

is directly related to insurers’ net investment spread. Therefore, the cost of building

and preserving net worth is reflected in annuity prices. That said, the effect of IRM on

annuity pricing is typically absent from economic models with life annuities that assume

frictionless financial markets—e.g., Yaari (1965), Davidoff et al. (2005), and Hosseini

(2015). We formalize the relationship between the cost of IRM and annuity prices in the

next section.

2 Pricing with adverse selection and interest rate risk

In this section, we present an annuity pricing model with adverse selection and interest

rate risk. We introduce two frictions, which are absent from the adverse selection litera-

ture. The first friction lies in the bond market. Due to market incompleteness, insurers

are limited to investing in fixed rate—i.e., noncontingent—corporate bonds of varying

maturities to hedge interest rate risk. However, corporate bond issuers are financially

constrained, resulting in an inefficiently low supply of long-term corporate bonds. This

friction implies that life insurers are exposed to interest rate risk because the duration of

their insurance liabilities is longer than the duration of their assets, which could lead to

insolvency. The second friction is that life insurers operate under limited liability: The

owners of a life insurer are not liable for losses beyond the value of their assets. Together,

these financial frictions mean that insurers may fail to honor annuity payments if they

become insolvent along certain interest rate paths.

The model offers three main insights. First, it characterizes the effect of long-term

corporate bond returns on the tradeoff between hedging interest rate risk with capital

structure (i.e., net worth) and hedging such risk with the asset portfolio (i.e., long-term

bond holdings). Second, the model provides a link between life insurers’ unobservable

capital structure and their observable annuity pricing decisions. Third, the model endoge-

nizes the assets and liabilities sides of insurers’ balance sheets, highlighting the challenges

in identifying the sources of inefficiencies within the annuity market. Proofs for this sec-

tion’s results can be found in Appendix D.

13Net worth is not to be confused with what the industry calls reserves, which are the value of
insurance liabilities.
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2.1 Economic environment

We consider a three-period model with heterogeneous retirees, competitive life insurers

offering life annuities, and a representative nonfinancial firm issuing corporate bonds.

The economy is populated by a continuum of new retirees with homogeneous wealth and

lasts for three periods: t = 0, 1, 2. Each individual survives from period to period with

probability α, which is drawn at the beginning of t = 0 from cumulative distribution

function G (α) with support [α, α] ⊂ [0, 1] and probability density function g (α). The

survival probability α is an individual’s private information. Every individual is deceased

at the end of t = 2.

Life insurers offer life annuities to individuals at t = 0. An annuity contract provides

one unit of consumption in each period the contract holder is alive in exchange for a

single investment q in t = 0.14 With this normalization, the annuity premium q can be

interpreted as the annuity price. The market is competitive, and insurers compete on

prices.15

Nonfinancial firms issue one- and two-period zero-coupon corporate bonds. The one-

period corporate bond return follows an exogenous process: One unit of the one-period

bond returns R1 ≥ 1 in t = 1 and R2 in t = 2, where R2 ∈
[
1, R

]
is a shock realized

in t = 1. We refer to the two-period corporate bond as the long-term bond. The long-

term bond return is determined endogenously and denoted by Rl. Closely following the

modeling approach of Greenwood et al. (2010), we constrain the supply of long-term

bonds because nonfinancial firms face refinancing risk. These firms target a long-term

bond supply of T to hedge against rising interest rates. In Appendix E, we show that if

T is at a specific threshold value, the bond market is unconstrained, and 1
Rl

= 1
R1
E
(

1
R2

)
.

That is, corporate bond pricing is consistent with the expectations hypothesis. Note

that the long-term corporate bond is not risk free because of the interest rate shock R2.

Conversely, if T is below the threshold value, then the bond market is constrained, and

1
Rl
> 1

R1
E
(

1
R2

)
. In this case, the long-term bond return is inefficiently low. Even in a

14We assume that insurers offer a single contract to individuals, consistent with actual practices of
offering the same SPIA contract based on age and gender without further screening.

15Unlike variable annuities for which life insurers compete over prices and product characteristics
(Koijen and Yogo 2022), fixed annuities are standardized products. In Appendix F.2, we consider an
extension of our benchmark environment with monopolistic competition, and in Section 3, we argue
that assumptions about the market structure are not critical for identification. In Appendix C, we
provide evidence of competitive fixed annuity markets by calculating a Herfindahl-Hirschman Index for
the industry.
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constrained bond market, we focus on the empirically relevant case where T is such that

Rl ≥ R1.16 For the rest of our analysis, we focus on the constrained bond market case.

We do not make explicit assumptions about the individuals’ consumption and invest-

ment decisions. Instead, we require that the annuity demand a (α, q) of individuals with

survival probability α satisfies Assumption 1.

Assumption 1 The individual annuity demand a (α, q) satisfies the following: (i) a (α, q)

is differentiable in α and q, with ∂a
∂α

> 0 and −∞ < ∂a
∂q
< 0; (ii) there exists α ∈ (α, α)

such that a (α, q) > 0 when q = α
R1

(1 + α); and (iii) a (α, q) = 0 for all α and q if there

is a positive probability that the insurer is insolvent in period t ≥ 1, and a (α, q) ≥ 0

otherwise.

The first condition of Assumption 1 follows from the adverse selection literature:

Individuals with higher survival risk invest more of their wealth in annuities. The first

condition also requires annuity demand to decrease with annuity price. The second condi-

tion requires strictly positive annuity demand even when insurers break even on contracts

offered to individuals with the highest survival probability and under the lowest interest

rate realization (R2 = 1). This requirement ensures the existence of a market for annu-

ities and a well-defined equilibrium price. The third condition requires annuity demand

to be zero for insurers at risk of insolvency. This assumption allows a sharper analysis

of interest rate risk on annuity markups. A stark interpretation of the third condition

is that annuity contracts are worthless if there is a positive probability the insurer may

not fulfill its obligations, as individuals may be unwilling to trade off longevity risk for

insurer default risk. Alternatively, this assumption may reflect unmodeled regulatory

or credit rating agency requirements for insurers to hold a minimum level of capital to

prevent insolvency. Finally, note that a (α, q) represents annuity demand at t = 0, so it

implicitly depends on the returns of other assets at that time, {Rl, R1,E (R2)}, but not

on the realized value of R2.17

We now turn to life insurers’ decisions and introduce their investments and balance

sheet equations. We normalize life insurers’ preexisting balance sheet (assets and total

16If Rl < R1, then the long-term bond is too expensive, and it is more economical for insurers to
manage interest rate risk with only one-period bonds.

17Specifically, our reduced-form demand assumption implies a negative relationship between interest
rates, R1 and E (R2) , and annuity sales. That is, individuals buy fewer annuities when interest rates (or
spreads) are low, which is a movement along the demand curve rather than a shift in the demand curve.
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liabilities) to zero in t = 0 and focus our analysis on the contribution of new annuity

business to their balance sheet.18 In t = 0, an insurer invests its total annuity premiums,

which are the total lump sums received from individuals signing up for an annuity, in a

portfolio of corporate bonds (b1, l2) : b1 + l2 = q
∫ α
α
a (α, q) g (α) dα, where bt and l2 denote

investments in one-period and long-term bonds, respectively. The insurer’s balance sheet

at t = 0 is given by

b1 + l2 =

∫ α

α

α

R1

[
1 + αE

(
1

R2

)]
a (α, q) g (α) dα +NW0, (1)

where the first term on the right-hand side of equation (1) is the present value of the

insurer’s annuity liability and NWt is the insurer’s net worth in t. Note that there is no

residual risk in insurers after they have implemented the optimal interest rate risk hedging

strategy in our simple model. This feature of the model means that investors in insurers

do not demand additional compensation to bear the insurer’s residual risk.19 Therefore,

insurers’ cost of capital (i.e., its discount rate) is aligned with the one-period bond rate.20

Evidently, real-world insurers do have residual risk since they are rated around A, which

is reflected in their cost of capital. A formal treatment of residual risk would considerably

increase the complexity of the model without changing its main insights. Nevertheless,

our empirical analysis is fully consistent with the presence of insurers’ residual risk, and

we discuss how we bring the model to the data in Section 3.

After the one-period bond return R2 is realized at the beginning of t = 1, the insurer’s

balance sheet becomes b2 (R2) = 1
R2

∫ α
α
α2a (α, q) g (α) dα + NW1 (R2) . This means that

an insurer finances the purchase of one-period bonds b2 using the proceeds from its initial

bond holdings (b1, l2) net of the annuity payments made to the surviving individuals in

t = 1: b2 (R2) = R1b1 + Rll2
R2
−
∫ α
α
αa (α, q) g (α) dα.

These equations show that an insurer is at risk of becoming insolvent in t = 1 if

the present value of its liabilities exceeds the present value of its assets for certain R2

realizations. Due to limited liability, insolvent insurers are not liable for losses exceeding

18This normalization is valid with perfect price competition. As will be clear in Section 2.3, a life
insurer with a higher level of net worth at t = 0 could, in principle, cut its annuity price. However,
financing the greater t = 0 net worth necessarily implies posting uncompetitive prices in previous periods,
which is not an equilibrium. That said, we investigate this issue by exploiting insurer hedging strategy
heterogeneity in Section 7.

19Investors in insurers are either the policyholders, in the case of a mutual insurance company, or
shareholders, in the case of a stock insurance company.

20See, for example, Allen (1993).
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the value of their assets and, therefore, can default on some or all of their promised annuity

payments. Under Assumption 1, individuals avoid purchasing annuities from insurers

with a nonzero insolvency probability. Therefore, limited liability, together with our

assumption on annuity demand, means that life insurers have an incentive to effectively

manage interest rate risk to remain solvent. Figure 2 summarizes the timing of the model.

Figure 2: Model timeline. The top and bottom sections outline the sequence of events for
insurers and annuitants, respectively, with black text for decisions and red text for random shocks.

Insurers

Annuitants
of type α

t = 0

Post price q;
Choose asset portfolio

+ capital structure

Purchase
annuity a (α, q)

t = 1

Interest rate shock
R2 realized;

Rebalance portfolio

Survive with
probability α

t = 2

Survive with
probability α

2.2 Optimal interest rate risk management strategy

The optimal IRM strategy ensures the present values of an insurer’s assets and total

liabilities—i.e., annuity liabilities plus net worth—change at the same rate after the

interest rate shock R2 is realized. Theorem 1 characterizes the unique optimal IRM

strategy for a given annuity price q, which we examine in the next subsection, and long-

term bond return Rl.
21

Theorem 1 The unique optimal IRM strategy requires a higher level of net worth when

the bond market is constrained. Specifically, for a given annuity price q and long-term

bond return Rl, the unique optimal IRM strategy requires an asset allocation and a cap-

ital structure satisfying the following: (i) Asset portfolio: l2 = 1
Rl

∫ α
α
α2a (α, q) g (α) dα,

b1 = 1
R1

∫ α
α
αa (α, q) g (α) dα, and b2 (R2) = 1

R2

∫ α
α
α2a (α, q) g (α) dα, and (ii) Capital

structure:

NW0 =


∫ α
α
α2
[

1
Rl
− 1

R1
E
(

1
R2

)]
a (α, q) g (α) dα if 1

Rl
> 1

R1
E
(

1
R2

)
0 if 1

Rl
= 1

R1
E
(

1
R2

) ,
and NW1 (R2) = 0 for all R2.

21The optimal IRM strategy is unique in a perfectly competitive annuity market. In Appendix F.2,
we show that insurers with market power also manage interest rate risk with an asset portfolio and a
capital structure satisfying Theorem 1 at a minimum.
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The main insight of Theorem 1 is that the long-term bond return determines insurers’

relative cost of hedging interest rate risk with net worth. Insurers can close the duration

gap between their assets and annuity liabilities by (1) increasing their net worth, as

net worth has a lower duration than annuity liabilities; (2) increasing their long-term

bond investment; or (3) some combination of the two. Theorem 1 shows that insurers

prefer hedging the interest rate risk by investing premiums in long-term bonds. To

understand this result, note that when the long-term bond return is high relative to

the one-period bond return—i.e., the bond market is unconstrained—insurers manage

interest rate risk by investing in an optimal portfolio of one-period and long-term bonds,

without relying on net worth. This optimal bond portfolio replicates the features of

state-contingent bonds in an incomplete market.22 Note further that, contrary to the

law of demand, insurers’ bond demand is inversely related to bond returns, as hedging

the annuity duration requires more bonds when bond returns are low. Therefore, when

the long-term bond return is sufficiently low relative to the one-period bond return—i.e.,

the bond market is constrained—it becomes cost effective to hedge interest rate risk with

relatively more net worth. However, the substitution is imperfect, and insurers never

exclusively hedge interest rate risk with net worth when long-term bonds are available.23

2.3 Equilibrium annuity pricing

The equilibrium annuity price is determined by Bertrand competition. Competitive

life insurers implementing the optimal IRM strategy of Theorem 1 set their annuity price

so that total annuity premiums in t = 0 are equal to the optimal total bond demand

b1 + l2, ensuring zero profits. Theoretical details of annuity pricing can be found in

Appendix D.

Figure 3 provides a graphical illustration of equilibrium annuity pricing with adverse

selection and interest rate risk. We drew Figure 3 in a way that emphasizes the differences

between our approach and the textbook model of adverse selection (Einav and Finkelstein

22This result echoes the analysis of Angeletos (2002) showing that a rich enough non-state contingent
bond maturity structure can replicate the allocation obtained with a full set of state contingent securities
if certain conditions are met.

23In Appendix F.1, we extend the model to include long-term zero-coupon “government bonds.” The
return on the long-term government bond is lower than the return on the long-term corporate bond
because of a liquidity premium or convenience yield. We show that Theorem 1 also applies in this case
and insurers do not use long-term government bonds for IRM, which is consistent with the low share of
government securities in life insurers’ asset portfolios, mentioned in Section 1.2.
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2011). The vertical axis represents annuity price q and the horizontal axis represents the

quantity of annuities sold. The competitive equilibrium price q∗, is determined by the

intersection of the downward-sloping aggregate demand curve A (q) and insurers’ average

bond demand curve B (q) /A (q), which represents the amount of bonds of all maturities

insurers demand per unit of annuity sold.

Figure 3: Equilibrium annuity price in two different bond markets. Panels (a) and
(b) depict the equilibrium annuity price in unconstrained and constrained bond markets, respectively,
as functions of quantity.
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(a) Unconstrained bond market
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NW0
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(b) Constrained bond market

When the bond market is unconstrained, competitive insurers hedge interest rate risk

by investing in an optimal corporate bond portfolio. Equation (1) and Figure 3a show that

the average bond demand curve B (q) /A (q) is equal to the average cost curve C (q) /A (q).

The average cost curve represents the cost per unit of annuity sold and is downward

sloping due to adverse selection. Therefore, the equilibrium annuity price q∗ is equal

to the risk-adjusted actuarially fair price qAF when the bond market is unconstrained,

which corresponds to the equilibrium price in the textbook model of Einav and Finkelstein

(2011).24

When the bond market is constrained, Theorem 1 shows that insurers increase their

net worth NW0 to hedge the interest rate risk. Equation (1) and Figure 3b show that,

in this case, the average bond demand curve B(q)/A(q) exceeds the average cost curve

C(q)/A(q) by the average net worth NW0/A(q) at the equilibrium price q∗. This set-up

24Unlike in Einav and Finkelstein (2011), an insurer’s asset portfolio and its capital structure matter
in our model, even when the bond market is unconstrained. Insurers’ capital structure is irrelevant in
the textbook model because financial markets are efficient. Due to limited liability, the Modigliani-Miller
theorem does not hold in our environment (Modigliani and Miller 1958). Limited liability implies that
insurers must credibly show to annuity shoppers that they are managing risk, which pins down a unique
ex ante capital structure even when the bond market is unconstrained.
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means that insurers finance their net worth by charging a strictly positive AS-adjusted

markup (q∗ − qAF > 0). The following equilibrium relationship links optimal net worth,

which is generally unobservable, to annuity price markups, which are observable at a high

frequency:

NW0 =
(
q∗ − qAF

) ∫ α

α

a (α, q∗) g (α) dα. (2)

This relationship shows how total revenue generated by the AS-adjusted markup finances

the optimal net worth, which is depicted by the shaded area in Figure 3b.

To understand the channel though which IRM affects annuity markups, we examine

how the equilibrium annuity price changes in response to a marginal change in the long-

term bond return. Let ψ = 1
Rl
− 1

R1
E
(

1
R2

)
, so the bond market is more constrained when

ψ increases. To proceed, we make an additional assumption about annuity demand.

Assumption 2 For any annuity price q, individuals with higher longevity risk are less

responsive to annuity price changes: ∂2a(α,q)
∂q∂α

≥ 0.

In addition to requiring that individuals with high α—i.e., high longevity risk—buy

more annuities (Assumption 1), Assumption 2 requires that these individuals are not

overly sensitive to price. Theorem 2 demonstrates that when Assumption 2 holds, the

AS-adjusted markup is higher when the bond market is more constrained. Importantly,

it implies that the average optimal net worth NW0 (q) /A (q) increases with q. Thus,

if insurers need higher average net worth for IRM, they must finance it by raising the

annuity price.

Theorem 2 The AS-adjusted markup q∗ − qAF is higher when the bond market is more

constrained: ∂q∗

∂ψ
− ∂qAF

∂ψ
> 0. Furthermore, when the bond market is unconstrained, the

AS-adjusted markup is zero: q∗ = qAF .

In general, our model shows that the effect of frictions in capital markets and in

annuity markets is not orthogonal, because the average survival probability of the annu-

itant pool increases when insurers charge higher annuity prices to hedge the interest rate

risk. We postpone a more in-depth analysis of this interaction to Section 6. The model

underscores the challenges in identifying the sources of market inefficiencies influencing

annuity prices, as net worth is jointly determined by the average cost curve C (q) /A (q)

and average bond demand curve B (q) /A (q). In the next section, we discuss how we
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measure annuity markups in the data and how we can identify the IRM channel using

exogenous shifters of the average cost curve C (q) /A (q) and average bond demand curve

B (q) /A (q).

3 Identification of the IRM channel

Testing for the interest rate risk channel requires identifying the effect of changes

in long-term bond market conditions on AS-adjusted markups. The main identification

challenge is threefold. First, it is not possible to directly measure the duration gap

between U.S. insurers’ assets and insurance liabilities.25 The reason is that the actual

discount rate used by life insurers to value their insurance liabilities is not observable and

insurance liabilities are not reported at the contract level in statutory filings. Therefore, it

is also not possible to observe life insurers’ actual net worth position at a high frequency

nor the allocation of net worth to support the issuance of different types of insurance

liabilities. Second, different types of supply-side frictions may lead to observationally

equivalent annuity markups.26 Third, demand- and supply-side frictions are likely to

have nontrivial interactions. In Section 6, we show theoretically and empirically that

adverse selection in annuity markets depends on the severity of frictions in the corporate

bond market, since a higher level of net worth exacerbates adverse selection by increasing

annuity prices.

We overcome this identification challenge by exploiting long-term corporate bond mar-

ket shocks that differentially affect the relative cost of hedging interest rate risk with net

worth of different annuity contracts offered by the same insurer. Specifically, we identify

the IRM channel by comparing the changes in AS-adjusted markup, q∗−qAF , for annuity

contracts offered by the same insurer resulting from an exogenous increase in contract-

level relative cost when long-term corporate bond market conditions are favorable with

the changes when long-term corporate bond market conditions are relatively less favor-

able. In the remainder of this section, we discuss how we measure q∗ − qAF , and the two

sources of variation that exogenously shock insurers’ relative cost of hedging.

25For this reason, most of the literature seeking to estimate life insurers’ interest rate risk has proposed
an indirect measure of life insurers’ duration gap. For example, Hartley et al. (2016) and Ozdagli and
Wang (2019) propose an indirect measure of the duration gap based on insurers’ stock prices.

26For example, Appendix F.2 shows that annuity markups could also be the outcome of monopolistic
competition.
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3.1 Life annuity price markups measurement

Life insurers reprice their annuities frequently in response to changes in market conditions—

they are especially attentive to changes in the long end of the yield curve. Our model

focuses on the marginal pricing decision of a life insurer since we normalize the t = 0

balance sheet to zero. Using this interpretation, a life insurer creates a new block of busi-

ness at date t, which is added to its existing block of insurance liabilities. Therefore, the

first step in our identification strategy is to evaluate insurers’ marginal pricing decisions

conditional on bond market conditions.

Two inputs are needed to price new insurance liabilities. We discuss our choices for

these two inputs in detail later, as they have important implications for annuity valuation

(Poterba and Solomon 2021). The first input in valuing annuity cash flows is a discount

rate. We follow our theory and industry practices closely and value new annuity cash flows

from the perspective of the owner of a life insurer operating under limited liability. As

discussed in Section 1, annuity contracts are illiquid fixed-rate liabilities, and life insurers

invest their annuity considerations primarily in relatively illiquid fixed-income securities

in an effort to match their asset and liability cash flows and offer a competitive return to

annuitants. Therefore, our choice of cash flow discount rate needs to be consistent with

the yield at which the marginal investor in this insurer is willing to commit capital to

support the issuance of illiquid long-term fixed-rate liabilities backed by illiquid assets.27

Almost all life insurers offering annuities in the U.S. have an Insurance Financial Strength

(IFS) rating around A.28 This rating means that life insurers are not riskless firms and

investors demand additional compensation to bear residual risk. The compensation for

27Note that the discount rate of an annuity shopper is likely very different from the discount rate of
the owner of a life insurer. An annuity shopper seeking a safe longevity insurance contract may perceive
an annuity contract to be relatively “safe” because of the existence, for example, of a state insurance
guarantee fund. Consequently, the payoff structure of a limited liability life insurer’s owner and that
of the annuity contract holders are vastly different in the event the life insurer is placed in receivership
by its state insurance regulator. Using a default-free discount rate to value annuity contracts may be
appropriate for the latter, but not for the former.

28Most U.S. life insurers have an IFS rating from a credit rating agency. For example, Moody’s states
that “Moody’s Insurance Financial Strength Ratings are opinions of the ability of insurance companies
to repay punctually senior policyholder claims and obligations.” Life insurers may also have long-term
senior and junior unsecured credit ratings that determine their cost of issuing senior and junior debt,
respectively. Moody’s uses a comparable scale for all its long-term ratings: “Moody’s rating symbols for
Insurance Financial Strength Ratings are identical to those used to indicate the credit quality of long-
term obligations. These rating gradations provide investors with a system for measuring an insurance
company’s ability to meet its senior policyholder claims and obligations.” Because insurance obligations
in the general account of a life insurer are senior to all debt claims from that insurer, an insurer IFS is
typically higher than its long-term senior debt rating (if it has one).
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bearing the insurer’s residual risk is reflected in the insurer’s cost of capital—i.e., its

discount rate. Therefore, the discount rate of an average insurer’s marginal investor

should be close to the duration-matched yield on A-rated illiquid debt securities.

We proxy for the unobserved discount rate of the marginal life insurer investor using

the zero-coupon High Quality Market (HQM) yield curve produced by the U.S. Trea-

sury.29 The HQM yield curve is calculated daily using AAA-, AA-, and A-rated U.S.

corporate bonds and is heavily weighted toward A-rated bonds, consistent with their

large market share.30 Consistent with our choice of discount rate, Huber (2022) finds

that insurers’ implied average annuity discount rate tracks closely the HQM yield curve

on a duration-matched basis.

The second input to valuing annuity cash flows is an assumption about individuals’

mortality. Virtually none of the fixed annuities sold by U.S. life insurers are underwritten,

which means they require no medical exam and their terms depend only on the date of

birth and gender of the individual. We use three different types of mortality assumptions.

We use a “general” population period mortality table produced by the U.S. Internal

Revenue Service that is updated annually with the mortality experience of the entire

U.S. general population.31

We also use two different versions of the Individual Annuitant Mortality (IAM) table

produced by the Society of Actuaries (SOA) in collaboration with the NAIC. The first

version of the IAM table is the “basic” one, which is estimated by the SOA from the

actual mortality experience of a large pool of annuitants from multiple insurers over a

long period. Before the 2012 edition, the basic IAM table is static and used in conjunction

with a fixed generational improvement factor (Scale G) to adjust for the population’s

natural mortality improvement. In 2015, the industry transitioned to a generational

(dynamic) mortality table, and we carefully analyzed individual state legislation to follow

its staggered implementation during 2015–16. In addition to the basic IAM table, the

SOA produces a “loaded” IAM table, which adds a loading factor to the basic IAM

29The HQM yield curve data are available at https://www.treasury.gov/resource-center/

economic-policy/corp-bond-yield/Pages/Corp-Yield-Bond-Curve-Papers.aspx.
30For example, the sample of bonds used to calculate the HQM yield curve on August 31, 2011,

includes 12 commercial papers, 42 AAA bonds, 299 AA bonds, and 1,345 A bonds. For more information,
see https://www.treasury.gov/resource-center/economic-policy/corp-bond-yield/Documents/
ycp_oct2011.pdf.

31The general population mortality tables are available at https://www.irs.gov/

retirement-plans/actuarial-tables.
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table mortality estimate. The loaded table is used by state insurance regulators to set

regulatory reserves. See Appendix G for more details about mortality assumptions.

A majority of insurers surveyed by the SOA use the “basic” annuitant mortality table

with the Scale G factor to price their annuities.32 That said, very large insurers with

a large annuitant pool may modify these estimates to reflect the mortality experience

of their own pool of annuitants. Nevertheless, all insurers must use the loaded IAM to

calculate their regulatory annuity reserves, and therefore their own mortality assumptions

cannot deviate too much from the IAM table.33

The actuarial value of a life annuity contract with an M -year guaranteed term per

dollar using mortality assumption k ∈ {General,Basic,Loaded} is defined as

V k
t (n, S,M, r) =

M∑
m=1

1

Rt(m, r)m︸ ︷︷ ︸
M-year term certain annuity

+

Nk
S−n∑

m=M+1

Πm−1
l=0 p

k
S,n+l

Rt(m, r)m︸ ︷︷ ︸
Life annuity from year M + 1

,

where M ≥ 0 is the number of years the life annuity pays a guaranteed fixed income,

pkS,n is the one-year survival probability for an individual of gender S at age n from

the k-th mortality table, Nk
S is the maximum attainable age for this gender in the k-

th mortality table, and 1/Rt(m, r)
m is the reference discount factor for the period m

cash flow evaluated at time t using the HQM yield curve (r = HQM) or the regulatory

reference rate (r = NAIC), which we will explain later.

Let Pt(n, S,M) be the normalized price of an M -year guaranteed life annuity offered

to an individual of gender S and age n at date t. We decompose the total annuity

price markup into an insurer-contract-level AS-adjusted markup and an industry-contract

32See the Report of the Society of Actuaries Mortality Improvement (Annuity) Survey
Subcommittee, April 2012, available at https://www.soa.org/files/research/exp-study/

research-mort-annuity-survey-report.pdf.
33This unobserved heterogeneity in mortality assumptions could contribute to cross-sectional variation

in markups. As will be clear later, this heterogeneity is not a threat to identification in our within-insurer-
contract analysis and is orthogonal to our explanatory variables in our cross-sectional analysis.
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average measure of adverse selection pricing (AS pricing):

Pt(n, S,M)− VGeneral
t (n, S,M, r) =

(
Pt(n, S,M)− V Basic

t (n, S,M, r)
)

︸ ︷︷ ︸
Adverse selection adjusted markup

+
(
V Basic
t (n, S,M, r)− VGeneral

t (n, S,M, r)
)

︸ ︷︷ ︸
Average adverse selection pricing

,

where r is the HQM yield curve. It follows that the insurer-contract-level variable

Pt(n, S,M)− V Basic
t (n, S,M, r) is the counterpart of the AS-adjusted markup q∗ − qAF

in our model.

Figure 1, which we discussed in the introduction, plots the distribution of actual

monthly payments offered to a 65-year-old male for a $100,000 SPIA from a sample of

U.S. life insurers against the monthly payments implied by the different actuarial values.

3.2 Contract-level variation in regulatory reserve requirements

The first source of exogenous variation comes from the effects of changes in corporate

bond conditions on the regulatory reserves that insurers are required to set aside for each

dollar of annuity they sell. As noted by Koijen and Yogo (2015), exogenous time-series

variation in reserve requirements across contract maturities arises because regulatory

reserves are calculated using a single regulatory interest rate that resets infrequently.

This source of exogenous variation is useful to identify the general effect of financial

frictions because it acts as a shifter of insurers’ average cost curve (Koijen and Yogo

2015).

Before 2018, state insurance regulations required that insurers calculate their annuity

reserves—i.e., the value of their insurance liabilities—using a single reference interest rate

defined as “the average over a period of twelve (12) months, ending on June 30 of the

calendar year of issue or year of purchase, of the monthly average of the composite yield

on seasoned corporate bonds, as published by Moody’s Investors Service, Inc.”34 The

Moody’s composite yield on seasoned corporate bonds is a weighted average yield on

all investment-grade corporate bonds rated between Baa and Aaa with maturity of at

least 20 years. Starting in 2018, state insurance regulators adopted a new but related

34https://content.naic.org/sites/default/files/inline-files/committees_ex_pbr_

implementation_tf_related_820.doc
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methodology, which we discuss in Appendix G.

By construction, the regulatory reference interest rate is close to the 12-month average

of the longer end of the HQM yield curve that we use as a proxy for insurers’ discount

rate. When the actual yield curve is upward sloping, the actuarial value of a life annuity

calculated using the average of the long end of the yield curve is mechanically smaller than

the corresponding actuarial value calculated using the entire yield curve. This difference

is greater for life annuities with shorter expected maturities—i.e., those sold to older

individuals. Moreover, the difference between regulatory reserves and insurer reserves

fluctuates exogenously over time across annuity contracts with different maturities. The

reason is that the regulatory interest rate resets infrequently—once a year before 2018

and once a quarter from that year onward—whereas the yield curve used by insurers to

price their insurance liabilities changes daily.

Figure 4: Exogenous variation in annuity contract–level regulatory reserve
ratio. This figure plots the regulatory reserve ratio for an SPIA sold to a 65-year-old male (top
line) and 70-year-old male (bottom line). The shaded area between the two lines varies exogenously
because the regulatory discount rate used to calculate the regulatory reserve ratio is the same for all
SPIA maturities and resets infrequently. The partially overlapping green and blue areas represent the
regulatory ratio for states that adopted the 2012 mortality table in 2015 and 2016, respectively.

Figure 4 illustrates this source of exogenous variation by plotting the reserve dollars

an insurer needs to set aside for each dollar of annuity sold on day t to 65- and 70-year-old

males only—in our empirical analysis, we use the full set of price quotes for male and

female individuals aged between 50 and 90 years with 5-year intervals. We denote the

regulatory interest rate by r = NAIC and use it in the calculation of V k
t (n, S,M, r). We

calculate the regulatory reserve ratio as V Loaded
t (n, S,M, r=NAIC)/V Basic

t (n, S,M, r=

HQM). A ratio above 1 indicates that the reserve requirement is binding, as the insurer
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must create a reserve that is greater than the insurance liability warranted by the insurer’s

yield curve–based actuarial calculation. Conversely, a ratio below 1 indicates that the

reserve requirement is nonbinding because the required reserve is below the insurer’s own

actuarial calculation. The distance between the two lines—depicted by the colored shaded

area—measures the relative cost of each contract. The reserve ratio fluctuates around 1,

confirming that the regulatory discount rate and the insurer’s discount rate are aligned

on average. Notice how this distance exogenously fluctuates over time because the flat

regulatory interest rate resets infrequently. Figure 4 also depicts additional sources of

variation arising from not only U.S. states’ staggered adoption of new regulatory mortality

assumptions between 2015 and 2016, but also the 2018 adoption of the new methodology

to calculate the regulatory reference interest rate. These developments are represented

by the partially overlapping green and blue shaded areas, which indicate the variation in

relative reserve requirements for early and late adoption states, respectively.

3.3 Variation in long-term investment-grade bond yield spreads

The second source of exogenous variation comes from the variation in long-term

investment-grade bond yield spreads relative to insurers’ cost of funding. Life insurers’

solvency depends on their net worth, which is a stock variable. Life insurers’ profitability

derives from the spread between the returns they earn on their asset portfolio and the

returns they owe their policyholders, which is known as the net investment spread and is

a flow variable. The two concepts are intimately related because life insurers finance net

worth with retained earnings, which depend on their net investment spread.

When life insurers cannot perfectly match their assets’ and insurance liabilities’ dura-

tions, changes in interest rates affect insurers’ net worth and profitability. For example,

an unexpected decline in interest rates depresses insurers’ net worth by increasing the

present value of insurance liabilities faster than the present value of the assets backing

the insurance liabilities. If the decline in interest rates persists or interest rates remain

low, life insurers’ net worth deteriorates further, as low interest rates are typically asso-

ciated with lower coupon rates. Therefore, persistently low interest rates force insurers

to reinvest the proceeds from their maturing bonds into new bonds paying lower coupon

rates, which further depresses their overall net investment spread.

Our empirical analysis of annuity markups focuses on new business pricing—that is,
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we focus on flow variables. The equilibrium relationship between marginal net worth

and the AS-adjusted markup is summarized by equation (2) in our model (Section 2).

From Theorem 1, the long-term bond return determines insurers’ relative cost of hedging

interest rate risk with net worth. However, this relative cost is irrelevant for insurers if

they can perfectly match the duration of their annuity liabilities with bonds. Therefore,

changes in long-term bond returns have an effect on the AS-adjusted markup only when

the bond market is constrained. In this case, changes in long-term bond returns affect the

relative cost of hedging interest rate risk with net worth, which is reflected in markups.

We measure shocks to long-term corporate bond returns using exogenous variation in

the spread between the yield on Moody’s Baa-rated and Moody’s Aaa-rated corporate

bonds with at least 20 years of maturity. Note that this is the yield spread on long-

duration investment grade bonds, not the yield on the bonds themselves. Note further

that the yield on Aaa-rated corporate bonds with at least 20 years of maturity is a quasi-

risk-free benchmark for this spread. Under state insurance regulations, corporate bonds

rated above Moody’s Baa are designated as NAIC 1 and uniformly attract the lowest

statutory risk-based capital charge in our sample period. Therefore, life insurers benefit

from widening long-term investment-grade bond spreads relative to their cost of funding

when the supply of long-term bonds is inefficient because it corresponds to higher coupon

rates for a given bond rating, maturity, and risk-based capital charge. Therefore, changes

in long-term investment-grade bond spreads relative to insurers’ cost of funding act as

exogenous shifters to the relative cost of hedging interest rate risk with the long-term

bonds.

Figure 5 illustrates this exogenous variation by plotting the Baa–Aaa spread for sea-

soned corporate bonds and the spread between the 10-year HQM yield and the 10-year

U.S. Treasury yield in percentage points. The 10-year HQM yield spread is our proxy for

insurers’ average cost of funding, because life annuities offered to a 65-year-old have an

initial duration of about 10 years and we use the HQM yield curve as insurers’ discount

rate. Life insurers can generate more yield per dollar of annuity sold when the Baa–Aaa

spread increases more than the 10-year HQM yield spread, which decreases the relative

cost of hedging interest rate risk with long-term bonds.
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Figure 5: Long-duration investment-grade bond spreads and insurers’ cost of
funding. The dashed line represents the spread between the yield on Moody’s Baa-rated and Moody’s
Aaa-rated corporate bonds that have at least 20 years of maturity. The solid line is a proxy for insurers’
average cost of funding, calculated as the spread between the 10-year HQM yield and the 10-year U.S.
Treasury spread in percentage points. Life insurers can generate more yield per dollar of annuity sold
when the long-duration Baa–Aaa spread increases more than the 10-year HQM yield spread.

3.4 Empirical test of the IRM channel

We now discuss our empirical test of the IRM channel. Under the null hypothesis

of costless IRM, the effect of an increase in the reserve requirement is not affected by

changes in the long-term investment-grade bond spread. Under the alternative hypothesis

of costly IRM, the effect of an increase in the relative reserve requirement on markups is

offset by an increase in the long-duration bond yield spread, which is unique to the IRM

channel. Therefore, the reserve requirement shocks allow us to identify the general effect

of financial frictions, while the long-term bond spread shocks allow us to tease out the

effect of the costly IRM friction among competing supply-side alternatives.

The empirical test consists of estimating the effect of a change in bond market con-

ditions on the AS-adjusted markup using a type of difference-in-differences approach. In

our setting, the change in the long-term investment-grade bond spread is the “treatment”

that differentially affects annuity contracts from the same insurer with exogenously vary-

ing contract-level relative reserve requirements. The first difference is between annuity

contracts j offered by insurer i with relatively high reserve requirements and annuity

contracts −j offered by the same insurer i with relatively low reserve requirements. The

contract-level reserve requirement shocks create a within-insurer random assignment of

annuity contract relative cost that varies from one period to the next. The second dif-
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ference is between periods in which the long-term investment-grade bond spread is high

and periods in which it is low.

Lastly, note that the variation in the long-term investment-grade bond spread is ex-

ogenous in the sense that neither the annuity shopper nor the insurer affects it and both

are affected by it. We are not assuming that annuity demand is orthogonal to long-

term bond yield spread. Our identifying assumption is that the effect of an (unobserved)

change in annuity demand due to a change in long-term bond market conditions on the

AS-adjusted markup is similar across the different annuity contracts. Under this assump-

tion, the double difference nets out the potential effects of changes in annuity demand

associated with changes in corporate bond market conditions. While this identifying as-

sumption is not directly testable, we provide supportive evidence that it is valid using

term annuity markups that do not depend on an individual’s age or gender.

4 Data and variable definitions

We focus our analysis on SPIAs without term certain guarantees and with 10- and 20-

year term certain guarantees. SPIAs with term certain guarantees ensure a payment to

a beneficiary during the term period, regardless of the annuitant’s survival. Our sample

includes quotes from 99 life insurers, with about 20 life insurers per reporting date. Price

quotes are typically reported for male and female individuals aged between 50 and 90

years with 5-year intervals. Annuity prices are collected from the 1989–2019 issues of

the Annuity Shopper Buyer’s Guide.35 Table 1 reports the summary statistics for the

variables used in our analysis.

Our main dependent variableAnnuity markupijt is the normalized AS-adjusted markup

for product j sold by insurer i at date t. It is defined as

Annuity markupijt =
Pijt(n, S,M)

V Basic
jt (n, S,M, r = HQM)

− 1 .

The AS-adjusted markup is, on average, just under 16 percent and consistently above 10

percent during our sample period. The variable Reserve Ratiojt is the ratio of reserve

35Koijen and Yogo (2015) use a smaller sample of the same data, extending from 1989 to 2011.
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Table 1: Summary statistics

Variables Obs. Mean St. Dev. Pctl(25) Median Pctl(75)

Number of insurers by period 19.9 6.19 16 19 23.2
Number of contracts by period 634 374 294 686 914
Life annuity contract (binary):

Life only 40,790 0.40
10-year guarantee 40,790 0.33
20-year guarantee 40,790 0.27
55 years old 40,790 0.11
60 years old 40,790 0.14
65 years old 40,790 0.15
70 years old 40,790 0.15
75 years old 40,790 0.14
80 years old 40,790 0.10
85 years old 40,790 0.09
90 years old 40,790 0.03
Male 40,790 0.50
Female 40,790 0.50

Annuity markupijt (%) 40,790 15.84 4.76 12.71 15.43 18.44
Reserve Ratiojt 40,790 1.01 0.06 0.97 1.01 1.05
10Y-3MTreasury spread t 40,790 1.69 1.08 0.80 1.73 2.54
Baa-Aaa spread t 40,790 0.95 0.33 0.74 0.90 1.04
10 HQM spread t 40,790 1.46 0.57 1.12 1.35 1.72
Log total assetsit (from 2001) 29,462 2.69 1.58 1.76 2.84 3.78
Leverage ratioit (from 2001) 29,462 10.58 5.28 6.98 10.08 13.57
Net swap durationit (from 2009 to 2015) 9,149 0.09 0.16 0.002 0.01 0.11

dollars insurers need to set aside for each dollar of annuity j sold on day t. It is defined as

Reserve Ratiojt =
V Loaded
jt (n, S,M, r = NAIC)

V Basic
jt (n, S,M, r = HQM)

.

We also obtain time-varying insurer characteristics data from NAIC statutory filings

for 2001–19 from S&P Global Market Intelligence. We measure insurer size as the log

of insurers’ general account assets and leverage as the ratio between insurers’ general

account assets and general account liabilities minus statutory accounting surplus.

We obtain Moody’s seasoned Aaa and Baa corporate bond yields, the 10-year Trea-

sury constant-maturity rate, and 10-year Treasury constant-maturity rate minus 3-month

Treasury constant-maturity rate from the St. Louis Fed’s FRED database. We proxy

for insurers’ cost of funding by calculating the spread between the 10-year HQM yield,

and the 10-year Treasury constant-maturity yield. For all of our regressions, we retain

the last set of prices observed in a quarter. Our final data set contains 40,790 insurer-

contract-quarter observations, with an average of 634 insurer-contract observations per

reporting period. We discuss the Net swap duration it variable in Section 7.
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5 Main empirical analysis and results

Regression (3) below implements our empirical test of the IRM channel in a linear

regression framework:

Annuity markupijt =β1Baa-Aaa spreadt + β2Reserve Ratiojt (3)

+ β3Reserve Ratiojt ×Baa-Aaa spreadt

+ β410HQM spreadt + β510HQM spreadt ×Baa-Aaa spreadt

+ z′itγ1 +Baa-Aaa spreadt × z′itγ2

+ αi1 + αj2 + εijt.

The unit of observation is an individual annuity contract j offered by insurer i at date

t. The sample of observations extends from 1989 to 2019. We focus on within-insurer

variation, and regression (3) includes insurer fixed effects αi1 to absorb the effects of

potentially unobserved fixed insurer characteristics—e.g., differences in state regulations

and insurer ratings—that may directly affect life insurers’ pricing behavior.

The first difference in regression (3) is between annuity contracts j offered by insurer i

with relatively high reserve requirements, measured by the variable Reserve Ratiojt, and

annuity contracts −j with relatively low reserve requirements. The contract-level reserve

requirement shocks create a within-insurer random assignment of annuity contract rela-

tive cost that varies over time. As we explained in Section 3, this variable helps identify

the effect of supply-side frictions by exogenously shifting the annuity supply cost while

holding annuity demand fixed (Koijen and Yogo 2015). Regression (3) also includes a con-

tract age-gender-guarantee fixed effect αj2 to absorb the effect of unobserved fixed demand

characteristics that may influence annuity pricing. The second difference in regression (3)

is between periods with relatively high and low Baa-Aaa spreadt, respectively. The vari-

able Baa-Aaa spreadt is an aggregate shock that differently affects annuity contracts with

exogenously varying relative reserve requirements. As we explained in Section 3, this vari-

able allows us to identify the type of supply-side friction among plausible alternatives by

studying its effect as a function of changes in Reserve Ratiojt.

Under the null hypothesis of costless IRM, the effect of an increase in the relative

reserve requirement is not a function of changes in bond market conditions. Under
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the alternative hypothesis, the increase in AS-adjusted markup is lower when the long-

duration investment-grade bond spread is higher, which is unique to the IRM channel.

The coefficient β3 is the difference-in-differences estimator that allows us to test the null

hypothesis. It is negative under the alternative hypothesis because the cost of IRM is

lower when Baa-Aaa spreadt is relatively high.

The main control variable in regression (3) is the average insurer’s cost of funding

that we proxy with the variable 10HQM spreadt. Regression (3) allows for an inter-

action between 10HQM spreadt and Baa-Aaa spreadt, because the two variables are

correlated and a change in insurer funding conditions could potentially differently affect

markups in times of high and low Baa-Aaa spreadt. The vector z′it contains quarterly

insurers’ general account assets (logged) and leverage, defined as general account assets

to policyholders’ surplus, which are available only in a subset of our sample starting at

the beginning of 2000. We use these additional controls in our robustness tests and also

allow for an interaction with Baa-Aaa spreadt.

To estimate the effect of IRM on the annuity markup, we analyze the effect of an in-

crease in the contract-level reserve requirement on annuities’ AS-adjusted markup, condi-

tional on the cost of funding. This effect is captured by the term β2 +β3Baa-Aaa spreadt,

and its estimated value should be evaluated at different points within theBaa-Aaa spreadt

distribution. According to our model, the effect of an exogenous increase in the relative

reserve requirement is smaller during periods with favorable bond market conditions.

5.1 Baseline results

Table 2 summarizes our main results. Column 1 reports our baseline results using the

full sample and insurer-clustered robust standard errors throughout. Using the coefficient

estimates in Column 1 to evaluate the estimated value of β2 +β3Baa-Aaa spreadt, we find

that, conditional on insurers’ average cost of funding, a one standard deviation increase

in Reserve Ratiojt (0.056) raises the AS-adjusted markup by almost 1 full percentage

point (0.87) when Baa-Aaa spreadt is at its median level (0.9). Importantly, we estimate

that the effect of a one standard deviation increase in Reserve Ratiojt on the AS-adjusted

markup is about 43 percent lower in periods when Baa-Aaa spreadt is in the third quartile

of its distribution relative to periods when Baa-Aaa spreadt is in the first quartile of its
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distribution.36

Table 2: The effect of investment-grade corporate bond yield spread on life
annuity markups. The unit of observation is a life insurer-product-quarter. The sample of observa-
tion extends from 1989 to 2019. The dependent variable Annuity markupijt is the AS-adjusted markup
for life annuity j sold by insurer i at date t. Column 1 reports insurer-clustered robust standard errors in
parentheses, while Columns 2 and 3 report two-way insurer- and date-clustered robust standard errors
in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

Dependent variable: Annuity markupijt
(1) (2) (3) (4) (5)

Reserve Ratiojt 41.98∗∗∗ 41.98∗∗∗ 33.76∗∗∗ 41.01∗∗∗ 32.70∗∗∗

(5.98) (9.95) (10.85) (9.87) (10.81)
Reserve Ratiojt × Baa-Aaa spread t -29.18∗∗∗ -29.18∗∗∗ -22.53∗∗ -28.90∗∗∗ -22.05∗∗

(5.23) (9.75) (10.95) (9.71) (10.92)
Baa-Aaa spread t 25.61∗∗∗ 25.61∗∗∗ 17.83∗ 25.29∗∗∗ 17.40∗

(5.07) (8.71) (9.74) (8.64) (9.68)
10 HQM spread t 1.64∗∗∗ 1.64∗ 2.06∗ 1.50∗ 1.98∗

(0.52) (0.85) (1.06) (0.87) (1.06)
10 HQM spread t × Baa-Aaa spread t 1.09∗∗∗ 1.09∗ 0.98 1.13∗∗ 0.98

(0.22) (0.55) (0.66) (0.55) (0.66)
Log total assets it -0.21 -0.18

(0.69) (0.67)
Log total assets it × Baa-Aaa spread t 0.50∗ 0.49∗

(0.25) (0.25)
Leverage ratioit 0.02 0.01

(0.06) (0.05)
Leverage ratioit × Baa-Aaa spread t -0.04 -0.04

(0.05) (0.05)
Fixed effects:

Contract characteristics (j) Y Y Y N N
Insurer (i) Y Y Y N N
Insurer (i) × Contract characteristics (j) N N N Y Y

SE Clustering Insurer Insurer/Date Insurer/Date Insurer/Date Insurer/Date
Observations 40,790 40,790 29,462 40,790 29,462
Adjusted R2 0.54 0.54 0.57 0.62 0.64

This baseline result shows that insurers decrease their AS-adjusted markup when

the cost of IRM decreases on the margin. That is, conditional on an insurer’s cost of

funding, a widening in Baa–Aaa spread for long-duration corporate bonds corresponds to

higher-yielding investment opportunities for new annuity money and, therefore, a lower

AS-adjusted markup.37 This result is consistent with the IRM strategy of life insurers

in a constrained bond market. The result is also consistent with recent work by Ozdagli

and Wang (2019), who find that when interest rates decline, life insurers rebalance their

portfolios toward higher-yielding bonds by increasing the duration, rather than the credit

risk, of their portfolios.38

36This difference is statistically significant at less than the 1 percent level.
37Although we do not observe actual annuity sales on a per-contract basis, Figure 7 in Appendix A

shows that aggregate fixed annuity sales sharply increase whenever the Baa-Aaa yield spread increases.
This effect is apparent during the 2008–09 financial crisis, at the height of the European debt crisis in
2012–13, and around the 2014–16 oil shock.

38Ozdagli and Wang (2019) do not analyze the effects of IRM on life insurers’ product pricing. Rather,
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5.2 Robustness tests

The rest of Table 2 investigates the robustness of the baseline results to potential

threats to identification. In Column 2, we investigate the robustness of our inference

by reporting two-way insurer- and date-clustered robust standard errors that allow for

arbitrary types of within-insurer correlation as well as contemporaneous correlation of

the errors across different insurer clusters. Although onerous in terms of degrees of free-

dom, allowing for cross-insurer cluster correlation could be important, given that insurers

reprice their annuity products in response to aggregate bond market shocks. Consistent

with this prior, Column 2 shows that the two-way clustered robust standard errors are

almost twice as large as those reported in Column 1. Nevertheless, our difference-in-

differences coefficient estimate remains significant at below the 1 percent significance

level.39

In Column 3, we investigate the robustness of our baseline results to potential time-

varying heterogeneity in insurer characteristics. We estimate regression (3) on a subset

of the sample starting in 2000, as we have access to additional time-varying insurer-

level financial controls that are available. We focus on two insurer controls: insurer

size, measured as the log of the insurer’s general account assets, and insurer leverage,

measured as the ratio of the insurer’s general account assets to liabilities minus statutory

surplus; statutory surplus is correlated to our definition of net worth in the model in

Section 2. Although we observe these financial variables only from 2001 onward, the

coefficient estimates in Column 3 obtained on this reduced sample are very similar to

those obtained on the full sample in Column 1.40

In Columns 4 and 5, we investigate the robustness of our baseline results to potentially

unobserved insurer-contract heterogeneity. This situation could happen if, for example,

the variation in insurers’ business mix affects the pricing sensitivity of different annuity

contracts to investment-grade spread and reserve requirement shock when pricing their life

annuities, or if customers have preferences for certain insurers’ offerings beyond contract

characteristics and pricing. We control for heterogeneity at the insurer-contract level

the authors focus on the effect of changes in an indirect measure of life insurers’ duration gap on life
insurers’ bond holdings.

39We also investigate the robustness of our inference to different clustering assumptions by calculating
block bootstrap standard errors and wild bootstrap standard errors and find no evidence of bias. The
results are available on request.

40In Appendix J, we show that our baseline results are not driven by the variations in the 2007–09
period by estimating regression (3) in the pre- and post-crisis periods.
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by adding a contract × insurer fixed effect to regression (3). This specification requires

estimating a large number of fixed-effect parameters relative to our baseline specification.

Nevertheless, we obtain nearly exactly the same results as in Column 1. The effect of a one

standard deviation increase in Reserve Ratiojt on the AS-adjusted markup is about 44

percent lower in periods when Baa-Aaa spreadt is in the third quartile of its distribution

relative to periods when Baa-Aaa spreadt is in the first quartile of its distribution.

In Appendix I, we investigate yet another potential threat to identification arising

from an age-specific correlation between bond market conditions and annuity demand.

That is, although our regression test can cope with correlation between (unobservable)

annuity demand and bond market conditions, one of our identifying assumptions is that

this correlation is constant across customer age and gender. Our estimated effect could be

biased if, for example, young and old annuity shoppers’ annuity demand heterogeneously

changes as bond market conditions change. This identifying assumption is not directly

testable, as we do not observe the contract-level quantity of annuities sold—only posted

prices. Nevertheless, we can gauge the likelihood of this bias by estimating a version of

regression (3) using term certain annuities markups. The pricing of term certain annuities

is not age or gender dependent, as an insurer makes fixed regular payments for a fixed

number of years irrespective of the contract holder’s gender or survival. Therefore, it is

very unlikely that there is an age-specific correlation between bond market conditions

and term annuity demand. We find that an exogenous increase in the relative reserve

requirement has a relatively higher effect on the markup of term annuities with shorter

maturities and that this effect is smaller in periods when the Baa-Aaa spreadt is larger

for lower-duration term certain annuities. Therefore, an age-specific correlation between

bond market conditions and annuity demand is unlikely to bias our baseline results.

5.3 Measuring the contribution of IRM in life annuity markups

We conclude this section by estimating the contribution of IRM to the life annuity

AS-adjusted markup. Although formally estimating the effect of IRM on markups with

a structural model is outside the scope of this paper, we can nevertheless obtain a rough

estimate using the markup on 5-year term certain annuities offered by the same insurer

at the same time as a benchmark. As previously explained, 5-year term certain annuities

are not affected by adverse selection, as the insurer makes fixed regular payments for
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5 years irrespective of the contract holder’s survival. Moreover, life insurers can easily

match the duration and illiquidity profile of 5-year term annuities, as roughly half of

corporate bonds issued have an initial maturity ranging from 5 to 10 years. Therefore,

we expect the 5-year term annuity markup to largely reflect insurers’ expenses associated

with issuing these types of liabilities. Indeed, we find that this markup is around zero

after netting the industry-reported 3 to 5 percent issuance and maintenance expense

in 2019. Assuming the expenses associated with issuing 5-year term annuities are not

greater than those associated with issuing a life annuity and that competition for each

product is similar—but not necessarily perfectly competitive—the insurer-level difference

between the life annuity’s AS-adjusted markup and the 5-year term annuity markup is

an upper bound estimate of the cost of IRM.41

Figure 6: Contribution of IRM cost in the AS-adjusted markup for an SPIA offered to
a 65-year-old male

Figure 6 plots the distribution of this markup difference, calculated for each date

and for each insurer offering both contracts simultaneously. The shaded region indicates

the 2008–09 recession. Figure 6 shows that the cost of IRM accounts for at most 50

to 70 percent of the AS-adjusted markup, or about 8 to 11 percent of the life annuity’s

actuarial value. This estimate suggests that if insurers’ business expenses are indeed

around 3 to 5 percent, IRM could account for almost all of the average AS-adjusted

markup. Figure 6 also shows that the share of IRM in markup significantly increased

41This is a rough estimate in the sense that there could be material differences in market structure
across the two products that could bias this calculation. For example, 5-year term annuities are an
imperfect substitute for bank certificates of deposits, while life insurers do not face competition from
banks for their life annuity offerings. That said, Figure 10 in Appendix C shows that average competition
for the entire fixed annuity market is high.
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after the GFC and that its cross-sectional variance decreased significantly. These two

observations are consistent with the adverse effect of lower long-term rates and spread

compression on the life annuity business model and the increase in competition in the

annuity market space (Foley-Fisher et al. 2023).

6 Feedback between IRM and adverse selection

This section extends the analysis of the model presented in Section 2 to emphasize

the nontrivial interaction between shocks from the corporate bond market and adverse

selection in the annuity market. Additionally, we conduct further empirical tests of this

feedback mechanism.

It is well known that higher annuity prices are associated with more severe adverse

selection (Rothschild and Stiglitz 1976). This effect is also present in our model. The

unique feature of our model is the enforcement between adverse selection and the cost of

managing interest rate risk. As the pool of annuitants deteriorates with higher annuity

prices, the overall duration of the annuity liability lengthens. The latter requires insurers

to raise their markups, leading to a further deterioration of the annuitant pool.

We focus on the case when the long-term bond supply is constrained (R1/Rl >

E (1/R2)) so that the optimal net worth at t = 0 is strictly positive. We let z = R1/Rl,

where a higher z means a more constrained bond market. Using the model, we can

decompose the effect of a change in z on the equilibrium annuity price q∗ into a risk

management effect and an adverse selection effect by implicitly differentiating insurers’

zero-profit condition (see Appendix D) as follows:

∂q∗

∂z
=

1
R1

∫ α
α
α2a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα︸ ︷︷ ︸

Risk management effect

+
∂q∗

∂z

∫ α
α
e (α, q∗)

[
1−

α
R1

(1+αz)

q∗

]
a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα︸ ︷︷ ︸

Adverse selection effect

, (4)

where e (α, q∗) = −∂a(α,q∗)
∂q∗

q∗

a(α,q∗)
is the price elasticity of annuity demand. Since each

component is normalized by the total amount of annuity supplied, ∂q∗

∂z
represents the

average marginal effect of IRM on the annuity price.

An increase in the cost of IRM leads to a higher equilibrium annuity price because

insurers must use the annuity markup to finance a greater level of average net worth
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at t = 0. Given the optimal net worth in Theorem 1, the risk-management effect is

the change in average net worth NW0 (q) /A (q) in response to a marginal change in the

long-term bond return Rl for a fixed annuity price. Intuitively, similar to Theorem 2,

a more constrained bond market requires a higher average net worth for IRM, which

necessitates a higher equilibrium annuity price. A rise in IRM cost can amplify the effect

of adverse selection in the annuity market because the average survival probability of

individuals purchasing annuities increases with annuity price. The adverse selection effect

in equation (4) is primarily determined by the price elasticity of annuity demand e (α, q∗).

When demand is more elastic for individuals with lower survival probability α, the adverse

selection effect is more severe since the insurer loses more high-risk individuals than low-

risk individuals when prices increase. This development worsens the adverse selection

problem and potentially triggers a death spiral.42 This theoretical result establishes a

nontrivial link between the supply- and demand-side frictions, connected by the IRM

channel.

6.1 Regression results

We look for evidence of the interaction between IRM and adverse selection by ex-

ploiting pricing differences in insurers’ life annuities with different types of period certain

guarantees. Specifically, individuals choosing a life annuity with a 10- or 20-year period

certain guarantee think they are at a higher risk of dying within the next 10 or 20 years

(Finkelstein and Poterba 2004, 2006). For these contracts, we follow Section 5 and mea-

sure adverse selection pricing as the difference between the total annuity markup and the

AS-adjusted markup:

AS pricingijt =
Pijt(n, S,M)

VGeneral
jt (n, S,M, r = HQM)

− Pijt(n, S,M)

V Basic
jt (n, S,M, r = HQM)

.

We then test the hypothesis that the average adverse selection pricing, AS pricingijt, of

life annuity contracts with longer guarantee periods increases relatively more when regu-

42To see how a death spiral can occur, first note that, among annuity purchasers, there exists a α̃
such that q∗ < α

R1
(1 + αz) for any α > α̃ and q∗ > α

R1
(1 + αz) for any α < α̃. Due to competition,

insurers make a profit off of mortality types α < α̃ and incur a loss from types with α > α̃. If demand is
more elastic for agents with low α, then insurers lose more of these agents than high-α agents from an
increase in annuity price, causing the insurer to raise prices further to compensate for the more severe
adverse selection, potentially triggering a death spiral.
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latory reserve requirements increase in a difference-in-differences framework. In this test,

the first difference is between annuity contracts j offered by insurer i with a long guar-

antee period and annuity contracts −j offered by the same insurer i without a guarantee

period. The second difference is between periods in which reserve requirements are more

binding and periods in which reserve requirements are less binding. We implement our

test in a linear regression framework as follows:

AS pricingijt =β310yr guarantee period+ β420yr guarantee period

+ β510yr guarantee period×Reserve Ratiojt

+ β620yr guarantee period×Reserve Ratiojt

+ β7Reserve Ratiojt +Reserve Ratiojt × z′itγ1 + z′itγ2

+ αi1 + αj2 + εijt, (5)

where 10yr guarantee period and 20yr guarantee period are binary variables indicating

the guarantee period length. As with our main specification in Section 5, we focus on

within-insurer variation using insurer fixed effects. We condition our results on the vector

of controls z′it, which includes Baa-Aaa spreadt and the average cost of funding of the

insurer, proxied with 10HQM spreadt in our baseline specification. As before, we allow

an interaction between the variables in z′it and the treatment variable, which in this case

is the contract-level reserve requirement ratio, Reserve Ratiojt. As a robustness test, we

include insurer-level time-varying financial variables, such as insurer log asset size and

leverage, in z′it. The coefficients β5 and β6 on the interaction terms are measured relative

to the effect on life annuities without a guarantee period, which is the third type of life

annuity contract in our sample and is omitted from this regression.

Table 3 summarizes the results of regression (5). We report two-way insurer- and

date-clustered robust standard errors. The coefficients in Column 1 show that an exoge-

nous increase in relative reserve requirements disproportionately increases the AS pricing

in life annuities with 10- and 20-year guarantees relative to life annuities without guar-

antees. For example, a one standard deviation increase in the reserve ratio decreases the

AS pricing of life annuities without a guarantee period by 1.07 percentage point. In con-

trast, the AS pricing of life annuities with 10- and 20-year guarantees increases by 0.33

percentage point and 0.42 percentage point, respectively, in response to the same shock.

40



The results in Column 2 are broadly similar when the same specification is estimated on

a shorter sample period with time-varying insurer-level financial controls. These results

show that changes in corporate bond market conditions have a direct effect on adverse

selection in annuity markets. The reason is that individuals choosing life annuities with

period certain guarantees think they are at a higher risk of dying within a few years after

signing up for a life annuity contract, which is reflected, at least partially, in annuity

prices.

Table 3: The effect of corporate bond market shocks on adverse selection The
unit of observation is a life insurer-product-quarter. The dependent variable AS pricingijt is the differ-
ence between the markup computed using the general population mortality table and the corresponding
markup computed using the annuitant pool mortality table for annuity j sold by insurer i in year t.
Two-way insurer- and date-clustered robust standard errors are reported in parentheses in Columns 1
and 2, respectively. *** p < 0.01; ** p < 0.05; * p < 0.1.

Dependent variable AS pricing ijt
(1) (2)

Reserve Ratiojt -19.26∗∗∗ -21.10∗∗∗

(3.26) (4.22)
10yr Guarantee -29.97∗∗∗ -27.74∗∗∗

(3.43) (3.77)
10yr Guarantee×Reserve Ratiojt 25.25∗∗∗ 23.15∗∗∗

(3.35) (3.75)
20yr Guarantee -34.83∗∗∗ -34.33∗∗∗

(3.69) (4.45)
20yr Guarantee×Reserve Ratiojt 26.83∗∗∗ 26.49∗∗∗

(3.59) (4.43)
Baa-Aaa spread t -4.67 -0.14

(4.60) (4.08)
Baa-Aaa spread t ×Reserve Ratiojt 5.14 0.76

(4.56) (4.02)
10 HQM spread t 1.16 -2.31

(3.20) (2.80)
10 HQM spread t ×Reserve Ratiojt -1.89 1.46

(3.15) (2.75)
Leverage ratioit 0.44∗∗

(0.19)
Leverage ratioit ×Reserve Ratiojt -0.43∗∗

(0.18)
Log total assets it -2.24∗∗∗

(0.74)
Log total assets it ×Reserve Ratiojt 2.75∗∗∗

(0.70)
Insurer FE Y Y
Observations 40,790 29,462
Adjusted R2 0.70 0.68
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7 Further evidence from interest rate derivatives

We emphasized the creation and preservation of net worth as life insurers’ primary

tools to hedge interest rate risk. That is, life insurers build net worth physically by

investing their annuity premiums in a bond portfolio whose present value exceeds the

present value of the annuity liabilities at origination. Although not as widely used in

the industry, large and sophisticated life insurers also incorporate interest rate swaps

into their interest rate risk hedging programs. These sophisticated life insurers can add

positive duration synthetically to their balance sheet by entering into a long-term fixed-

for-float interest rate swap with a counterparty—usually a commercial bank. That said,

the regulatory treatment of derivatives means that this is a costly alternative.43

Issuing a fixed-for-float interest rate swap is economically equivalent to financing a

relatively long-duration fixed-maturity bond with short-term floating-rate debt and, thus,

is a form of leverage. The duration of a fixed-for-float swap contract is the difference be-

tween the (hypothetical) underlying fixed-rate instrument—e.g., a U.S. Treasury bond—

and the duration of the floating-rate liability that finances the fixed-rate instrument—

e.g., three-month LIBOR (prior to January 2022). The present value of a swap is zero

at inception and becomes either positive (an asset) or negative (a liability) depending on

the movements in the reference rates. For example, the present value of an interest rate

swap with positive duration becomes positive after a decrease in the term premium and

no change in the short rate. The increase in asset present value due to the change in

swap valuation is mechanically matched by an increase in net worth, thereby providing

downside protection against interest rate risk.

In this section, we exploit the heterogeneity in large and sophisticated life insurers’ ex

ante exposure to interest rate risk arising from interest rate swaps to study their reaction

to interest rate shocks. We construct a proxy for the aggregate net duration added by

each life insurer’s interest rate swap portfolio using individual swap contract-level data.

We then measure how different hedging programs perform facing the same sequence of

aggregate interest rate shocks and trace out the effect on annuity prices. For example, an

insurer adding relatively more positive net duration with swaps ex ante is relatively more

hedged against a flattening yield curve that is driven by decreasing term premiums ex

43In Appendix G, we discuss in greater detail the mechanics of interest rate swaps in the context of life
insurer interest rate risk hedging, how swaps work, and the frictions in the U.S. life insurance industry
leading to their relatively low use.
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post, and vice versa. Although insurers’ swap position is an ex ante endogenous variable,

variations in the shape of the yield curve act as an exogenous shock to insurers’ net worth

ex post via their effect on the swap portfolio value.

We focus on the period of the zero lower bound from 2009 to 2015, during which all the

variation in the yield curve is driven by movements in the term premium.44 Therefore,

we can compare the AS-adjusted markups of insurers that are beneficially, or at least

less adversely, affected by changes in the term premium ex post because of their ex

ante hedging program with the AS-adjusted markups of insurers that are more adversely

affected by the interest rate shock.

7.1 Interest rate swaps data

We use position-level interest rate swap data to calculate a novel estimate of the

net duration added by swaps as a fraction of an insurer’s general account assets.45 Our

position-level swap data come from Schedule DB in the NAIC statutory filing obtained

from A.M. Best. Schedule DB provides detailed information on insurers’ derivative con-

tracts, including a description of each contract’s terms and notional amount. We carefully

parsed the text of more than 82,000 individual contract-year observations from 44 U.S.

life insurers from 2009 to 2015 and extracted the receiving leg, notional amount, and

residual maturity of each contract. The life insurers in our sample have, on average,

1,416 open interest rate swap contracts at year’s, end with a standard deviation of 978.

The average notional amount of a swap contract is $45 million, with a standard deviation

of $83 million.

We first calculate the quarter-end individual swap position using each contract’s resid-

ual maturity. At every quarter-end, we normalize an individual swap contract’s duration

using the duration of a reference 10-year fixed-for-float swap contract and multiply this

ratio by the original contract’s notional amount. This number is an estimate of the dollar

amount of duration contributed by an individual swap contract, which can be positive

or negative. We then sum over an insurer’s entire swap portfolio to obtain the aggregate

dollar amount of duration added by the swaps. Finally, we divide this number by the

44Outside of the zero-lower-bound period, the value of an insurer’s swap portfolio may respond dif-
ferently to whether a steepening of the yield curve is driven by lower short rates or higher long rates,
which would greatly complicate the analysis.

45See Appendix G for details about our swap data construction.
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insurer’s total general account assets to obtain an estimate of the amount of net duration

added by swaps expressed as a fraction of the insurer’s asset portfolio. We denote this

variable by Net swap durationit and report its summary statistics in Table 1. A value

of zero indicates that the insurer is not adding positive or negative duration using swaps.

A value of 0.5 indicates that the insurer is adding net positive duration that is 50 percent

of its size.

7.2 Cross-sectional regression results

We begin by implementing a cross-sectional test. The test consists of regressing the

AS-adjusted markup on the interaction ofNet swap durationit and 10Y -3M Treasury spreadt

and a date fixed effect αt3 using the following framework:

Annuity markupijt =β1Net swap durationit + β2Net swap durationit × 10Y -3M Treasury spreadt

+ z′itγ1 + 10Y -3M Treasury spreadt × z′itγ2

+ αi1 + αj2 + αt3 + εijt. (6)

Regression (7) also includes an insurer fixed effects αi1, a product fixed effects αj2 and a

vector of quarterly contract and insurer controls, z′it. The control vector z′it contains the

contract-level reserve requirement ratio, Reserve Ratiojt—which, as we know from our

earlier analysis, significantly affects annuity markups—as well as logged asset size and

leverage. We continue to allow for an interaction between each of the control variables and

the yield curve shock 10Y -3M Treasury spreadt and report two-way insurer- and date-

clustered robust standard errors as our benchmark. That said, we obtain very similar

standard errors using insurer-clustered robust standard errors.

The coefficient estimate on the main interaction term in Column 1 of Table 4 sug-

gests that an insurer with a median-level Net swap durationit decreases its AS-adjusted

markup by about 0.033 percentage point in response to an unexpected flattening of the

yield curve—a one standard deviation decrease in 10Y -3M Treasury spreadt. The rela-

tively small economic magnitude of this average effect is consistent with the observation

that the median Net swap durationit is close to zero. However, this effect is almost 12

times larger for insurers in the top quartile of the Net swap durationit distribution rela-

tive to those in the bottom quartile of the distribution. That is, insurers adding relatively
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Table 4: Cross-sectional evidence of the risk-management channel The unit of
observation is an insurer-product-quarter. The sample of observations extends from 2009 to 2015, which
covers the period of the zero lower bound. The dependent variable, Annuity markupijt, is the AS-
adjusted markup for product j sold by insurer i in year t. Column 1 is a fixed-effect regression, with
two-way insurer- and date-clustered robust standard errors reported in parentheses. Columns 2 to 4
are quantile fixed-effect regressions implemented using the penalized fixed-effect estimation method pro-
posed by Koenker (2004). Each column contains the estimated coefficients for a particular quantile (τ).
The intercept coefficient estimates for each quantile are omitted for legibility. Clustered bootstrapped
standard errors with 2,999 replications are implemented using the generalized bootstrap of Chatterjee
and Bose (2005), with unit exponential weights sampled for insurer-contract observations and reported
in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

Dependent variable (1) (2) (3) (4)
Quantiles

Annuity markupijt τ = 0.25 τ = 0.5 τ = 0.75

Net swap duration it× 5.04∗∗ 6.78*** 4.62*** 3.94***
10Y-3M Treasury spread t (2.32) (0.56) (0.35) (0.35)

Net swap duration it -8.85 -14.98*** -9.34*** -8.46***
(5.97) (1.59) (1.09) (1.03)

10Y-3M Treasury spread t 7.79* 9.34*** 7.96**
(3.07) (2.81) (2.61)

Reserve Ratiojt 58.64∗∗∗ 39.64*** 53.39****** 62.31***
(17.14) (8.52) (7.1) (6.18)

Reserve Ratiojt× -12.95∗∗∗ -9.86** -12.88*** -14.75***
10Y-3M Treasury spread t (4.34) (3.4) (2.94) (2.6)

Baa-Aaa spread t -13.54*** -16.27*** -11.97***
(2.39) (2.13) (2.08)

Baa-Aaa spread t× 6.06*** 6.92*** 4.32***
10Y-3M Treasury spread t (1.02) (0.94) (0.87)

10 HQM spread t 10.16*** 11.9*** 5.77***
(1.5) (1.32) (1.35)

10 HQM spread t× -3.66*** -4.07*** -0.88
10Y-3M Treasury spread t (0.65) (0.61) (0.6)

Leverage ratioit 0.02 -0.39*** -0.23*** -0.04
(0.35) (0.09) (0.07) (0.07)

Leverage ratioit× 0.01 0.1** 0.04 -0.05
10Y-3M Treasury spread t (0.14) (0.03) (0.03) (0.03)

Log total assets it -2.72 0.58 -0.59* -1.56***
(1.70) (0.32) (0.26) (0.25)

Log total assets it× 0.66 -0.02 0.5*** 0.92***
10Y-3M Treasury spread t (0.57) (0.13) (0.11) (0.11)

Fixed effects:
Product char. (j) Y Y
Insurer (i) Y Y
Date (t) Y N

Observations 9,149 9,149
Adjusted R2 0.67 χ2

1-test 26.31***

more positive duration with swaps decrease their AS-adjusted markup by almost one-third

of 1 percentage point—1.7 percent of the average AS-adjusted markup—in response to a

flattening yield curve.
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7.3 Quantile fixed-effect regression results

Columns 2 to 4 of Table 4 delve deeper by estimating a quantile regression with in-

surer fixed effects. This specification exploits within-insurer variation to investigate how

a flattening yield curve affects insurers at different points of the markup distribution

with different interest rate swap portfolios. We estimate the conditional quantile func-

tions QAnnuity markupijt(τ |x′ijt) of the response of the t-th observation on the j-th annuity

contract offered by the i-th insurer’s Annuity markupijt, given by

QAnnuity markupijt(τ |x′ijt) =β1(τ)Net swap durationit + β2(τ)10Y -3M Treasury spreadt

+ β3(τ)10Y -3M Treasury spreadt ×Net swap durationit

+ αi1 + αj2 + 10Y -3M Treasury spreadt × z′itγ(τ) , (7)

where τ ∈ {0.25, 0.5, 0.75} are three quartiles of interest, the vector x′ijt contains all the

covariates, and z′itγ(τ ) is a vector of contract-, insurer-, and time-varying controls. In

addition to the contract-level reserve requirement ratio, insurer-level logged asset size,

and leverage, the control vector z′ijt also includes time-varying long-term investment-

grade spreads, Baa-Aaa spreadt, and the insurer funding-cost proxy, 10HQM spreadt.

We continue to allow for an interaction between our control variables and the yield curve

shock 10Y -3M Treasury spreadt. Finally, αi1 and αj2 are the insurer and contract fixed

effects, respectively.

The estimated coefficients of interest are β̂2(τ) + β̂3(τ) × Net swap durationit, re-

ported in Columns 2 to 4 of Table 4. The bottom row of Column 4 reports the value

of a Wald test statistic rejecting the null hypothesis that the 25th and 75th percentile

coefficients on the interaction term are equal at below the 1 percent significance level.

The estimated coefficient values suggest insurers with a better hedge against a flattening

yield curve (a value of Net swap durationit in the top quartile of the distribution) cut

their markups by about 4 percent, on average, after a one standard deviation decrease

in 10Y -3M Treasury spreadt. In contrast, insurers with a Net swap durationit in the

bottom quartile of the distribution do not significantly cut their markups in response to

a flattening yield curve. Moreover, the counterfactual decrease in AS-adjusted markup

in response to a flattening of the yield curve (i.e., a one standard deviation decrease in

10Y -3M Treasury spreadt) is about 22 percent larger for an insurer moving from the

46



bottom to the top of the AS-adjusted markup distribution. This result suggests that

insurers post more competitive annuity prices when they experience a relatively positive,

or at least less adverse, net worth shock.

8 Conclusion

In this paper, we showed that a large share of the notoriously high life annuity price

markups can be explained by the cost of managing interest rate risk. We proposed a

novel theory of annuity pricing that reflects frictions in both the insurance and capital

markets. A key insight of the theory is that the cost of interest rate risk management is

a function of insurers’ investment and capital structure decisions. This fact means that

it is generally not possible to analyze the effect of capital market frictions on annuity

prices without also taking into account the effect of frictions in insurance markets, and

vice versa. We identified the IRM channel by using annuity markup data covering a

30-year period and by exploiting long-term corporate bond market shocks and the U.S.

insurance regulatory framework. We found that interest rate risk significantly constrains

the supply of life annuities. A corollary is that the best time to sign up for a life annuity

is during periods of overall financial market stress, as annuity prices tend to be lower

when long-term investment-grade bond spreads are higher!

Our results have important implications for the macroeconomic literature studying

insurance markets. For example, a robust result in the literature studying the welfare

effects of social insurance programs using life-cycle models is that social insurance crowds

out private insurance—e.g., Cutler and Gruber (1996) and Hosseini (2015). This result

holds even when there are informational asymmetries in insurance and labor markets, as

private contracts can be designed to mitigate this friction (Golosov and Tsyvinski 2007).

However, this policy conclusion is largely the outcome of assuming that life insurers

operate in frictionless capital markets. Under this assumption, life insurers costlessly

hedge interest rate risk. Contrary to the premise in these studies, we showed that the

supply of private life annuities is constrained by interest rate risk, which is the outcome of

a nontrivial interaction between frictions in insurance and capital markets. Another area

of interest involves questions surrounding the shrinking U.S. long-term care insurance

market—e.g., Ameriks et al. (2018) and Braun et al. (2019). Long-term care insurance
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is another type of long-duration insurance product that exposes insurers to interest rate

risk, in addition to uncertainties about future health-care and demographic costs. Here,

too, studying the effect of interest rate risk management could shed some light. We leave

these important questions to future research.
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A Sizing up the U.S. life annuity market

In this appendix, we estimate the size of the private life annuity market and benchmark

it against the amount of long-term fixed-rate bonds issued by U.S. corporations.

A.1 Pre- and post- retirement annuity contracts

Our paper focuses on life annuities that allow retirees to decumulate wealth during

retirement. They should not be confused with deferred annuities, which include vari-

able annuities (VAs) and are tax-deferred savings vehicles that individuals can use to

accumulate wealth before retirement. That said, life annuities and deferred annuities are

sometimes discussed together in the context of the different phases of an annuity contract

in advertising materials, which can be confusing.46 In this subsection, we explain this

important distinction, the relationship between life annuities and VAs, and provide two

novel estimates of the size of the U.S. life annuity market.

Individuals in the U.S. can save for retirement with deferred annuities, which are, once

again, different from the life annuities we focus on in this paper. There are two broad

types of deferred annuities: deferred fixed annuities and (deferred) VAs. Deferred fixed

annuities offer a guaranteed rate of return over a set time with tax deferrals, whereas

VAs, as their name suggests, have a rate of return that varies with the return on the

stock, bond, and money market funds underlying the VA contracts. Although VAs do

not offer a guaranteed return, pre-Global Financial Crisis life insurers offered different

types of guaranteed minimum benefits in an effort to compete and differentiate their

VAs.47 Therefore, VAs are essentially a mutual fund with an insurance wrapper. The

VA assets are segregated from insurers balance sheet and remain the exclusive property

of the VA contract holders. The only connection between VA contracts and the balance

46See Black, K., Jr., Skipper, H. D. Black, K., III (2015) for a detailed discussion of the various types
of annuities.

47For example, some of the more aggressive insurers offered VA policies with both guaranteed minimum
death benefits and guaranteed minimum income benefits riders that protect policyholders against equity
market downturn in case of death or annuitization.
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sheet of life insurers is through the value of the insurance riders offered with the VAs.

These complex guaranteed minimum benefits exposed life insurers to significant equity

market risk and caused enormous stress to their balance sheet when the stock market

crashed in 2008 (Ellul et al. 2021; Koijen and Yogo 2022), so aggressive market-based

minimum guarantees are no longer offered.

At the end of the deferred fixed annuity or VA contract period and after reaching 59.5

years of age, contract holders have the option of receiving their accumulated wealth as

a lump sum, a term annuity, or a life annuity. This disbursement is sometimes referred

to as an annuity “payout phase.” Section 1035 of the U.S. tax code allows individuals

to exchange an existing VA contract for a new annuity contract without paying any tax

on the income and investment gains in their current VA account. Therefore, the price of

life annuities that we study in this paper is the price that all individuals at retirement

age in the U.S. face when choosing how to structure their retirement income, regardless

of whether they accumulated wealth through bank deposits, mutual funds, employer-

sponsored defined contribution plans, deferred fixed annuities, or VAs.

B Size of the U.S. life annuity market

We provide two estimates of the size of the U.S. life annuity market using company-

level data on the number of annuity contracts and account balances reported in the

National Association of Insurance Commissioners (NAIC) 2018 statutory filings of over

800 life insurers. For each insurance company, we extracted the amount of annual life-

contingent income payable to individual and group annuities reported in the “Exhibit of

Number of Policies, Contracts, Certificates, Income Payable and Account Values in Force

for Supplementary Contracts, Annuities, Accident & Health and Other Policies.”

First, we calculate that individuals in the U.S. accumulated about $2.5 trillion in

the form of deferred fixed annuities. This dollar value corresponds to roughly $42,500

per American aged 50 to 65 years. By contrast, a back-of-the-envelope calculation using

the aggregate payment from life insurers to life annuity contract holders, assuming a 6

percent average yield, suggests that Americans annuitize only about $625 billion of their

wealth with life insurers, or approximately $12,700 per person aged 65 and above. This

first estimate suggests that new retirees annuitize a relatively small share of their wealth
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with a life insurer. Second, using the same data, we calculate that the U.S. life insurance

industry’s total payments to annuitants is about 3.5 percent of the total payments made

by the U.S. Social Security Administration in 2018.48

Figures 7 and 8 plot the time series of income and payout for the U.S. life insurance

industry and the U.S. Social Security Administration, respectively.

Figure 7: U.S. life insurers’ income from fixed annuity sales and Social Secu-
rity income

Figure 8: U.S. life insurers’ payout on fixed annuity and Social Security payout

48The Social Security payout data are available here: https://www.ssa.gov/data.
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To put these numbers in perspective, assume that there are 3.5 million new 65-year-old

individuals in the U.S. in a given year—roughly the average between 2001 and 2019. Our

previous calculation suggests that a representative cohort annuitizes almost $45 billion

in wealth with life insurers in a given year—i.e., $12,700 per 3.5 million new 65-year-old

individuals.

Next, we show that the average amount of annuitized wealth is greater than the

total supply of long-term fixed-rate corporate bonds. We use data from Mergent FISD,

which cover the universe of corporate bond issuance by U.S. corporations. This database

provides information on over hundreds of bond characteristics, including coupon types,

call features, ratings, and maturity. We focus on investment-grade bonds and exclude

callable bonds. Callable bonds are not useful to life insurers issuing life annuities, because

the issuer usually calls the bond when interest rates fall, which is precisely when insurers

need long-term bonds the most.

Figure 9: Annual wealth annuitization with life insurers and fixed-rate corporate bond
issuance

Figure 9 benchmarks the average amount of annuitized wealth against the amount of

fixed-rate corporate bonds broken down by initial maturity above and below 10 years.

The black dashed line represents the aforementioned $45 billion in average annuitized
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wealth. Taking an average of the blue bars over the sample period shows that the average

annual amount of annuitized wealth is about 15 percent larger than the total amount of

fixed-rate, noncallable corporate bonds with maturity over 10 years issued by U.S. firms

over the same period. This estimate reveals that the private life annuity market is larger

than the long-term fixed-rate bond market in the U.S. This finding is striking, as the

U.S. has the largest corporate bond market in the world and, therefore, U.S. life insurers

compete for these long-term bonds with other long-term investors, such as pension funds

and sovereign wealth funds in and out of the U.S.

C Competition in the fixed annuity markets

This appendix presents some evidence of competition in the fixed annuity market-

place. Fixed annuities are standardized products that are not underwritten, and insurers

compete over prices around tight margins. The following quote from Athene’s president

Bill Wheeler during the 2019:Q2 earnings call provides anecdotal evidence that the U.S.

fixed annuity market is competitive:

[I]f you think about the spectrum of companies and how they price new busi-

ness, we probably are in the [...] top decile in terms of how quickly we reprice.

And I suppose that has a lot to do with how we are compensated because we

are not compensated on volumes. We’re compensated on margin, okay? So

that’s really important. So there’s no interest in trying to keep old pricing

out there and try to get some more sales before you’re finally forced to move

it. [...] So being a first mover is good for margins and good for return on

capital. It’s not so good necessarily for the competitive environment because

you tend to be the price leader downwards, or could be upwards too. But

they’re—they’re downwards in this environment.

We investigate the issue of competition more formally by calculating a Herfindahl-

Hirschman Index (HHI) for the industry. Figure 10 calculates the HHI using insurer-level

data on fixed annuity premiums and considerations extracted from about 800 NAIC

statutory filings. Our tedious collection of statutory filings starts in 2003. The solid

line represents the HHI and shows that the U.S. fixed annuity market concentration is

consistently below 8 percent. Figure 10 confirms industry commentaries that the fixed
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Figure 10: Fixed annuity market Herfindahl-Hirschman Index

annuity market is very competitive and justifies using perfect competition as a benchmark

for our theoretical analysis.

Moreover, in addition to starting from an already high level, competition has only

intensified further in the aftermath of the 2008–09 GFC. This effect is consistent with

the decrease in the cross-sectional variance of markups we noted in Section 5. Foley-

Fisher et al. (2023) explain that this increase in competition coincides with the arrival

of private equity (PE) firms in the industry. The PE-backed insurers purchased large

blocks of legacy annuity business and found innovative ways to invest in relatively more

illiquid assets without significantly increasing their regulatory risk-based capital charges.

By adding more illiquidity to their asset side without incurring a significant increase in

risk-based capital charges, these PE-backed insurers, such as Athene, can offer a higher

yield on their new annuity liability, thereby lowering prices.

D Main theoretical results and proofs for Section 2

In this appendix, we first prove Theorem 1 in Appendix D.1. Then we provide the

details for equilibrium annuity pricing and prove Theorem 2 in Appendix D.2. Finally,

we derive equation (4) in Appendix D.3.
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D.1 Optimal IRM strategy

Proof of Theorem 1: By Assumption 1, insurers must show that they will remain

solvent in order to sell annuities. Thus, limited liability insurers must engage in interest

risk management (IRM) so that NW1 (R2) ≥ 0 for any R2. Specifically, competitive

insurers finance just enough net worth so that NW1 (1) = 0 and NW1 (R2) ≥ 0 for

R2 > 1. As a result, from the balance sheet equation at t = 1,

b2 (R2) =
1

R2

∫ α

α

α2a (α, q) g (α) dα +NW1 (R2) , (8)

we get b2 (1) =
∫ α
α
α2a (α, q) g (α) dα. Hence, by the insurer’s budget constraint in t = 1,

b2 (R2) = R1b1 +
Rll2
R2

−
∫ α

α

αa (α, q) g (α) dα, (9)

we obtain the following demand for one-period bonds b1 (l2) as a function of long-term

corporate bonds:

b1 (l2) =
1

R1

[∫ α

α

α (1 + α) a (α, q) g (α) dα−Rll2

]
. (10)

Substituting the demand b1 (l2) into (1) yields

NW0 +

(
Rl

R1

− 1

)
l2 =

∫ α

α

α2

R1

[
1− E

(
1

R2

)]
a (α, q) g (α) dα. (11)

As a result, when the bond market is constrained, insurers prefer to hold a positive level

of net worth to manage interest rate risk, because the yield on long-term bonds is low.

To determine the optimal composition of net worth and long-term bonds, consider the

following three cases: (i) NW1 (R2) = 0 for all R2, (ii) NW0 = 0, and (iii) NW0 > 0 with

NW1 (R2) > 0 for some R2.

For case (i), we have b2 (R2) =
∫ α
α

α2

R2
a (α, q) g (α) dα when NW1 (R2) = 0 for all R2

from (8). By (9) and (10), we get

l2 =

∫ α

α

α2

Rl

a (α, q) g (α) dα and b1 =

∫ α

α

α

R1

a (α, q) g (α) dα.
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Therefore, when the bond market is constrained, equation (11) yields

NW0 =

∫ α

α

α2

[
1

Rl

− 1

R1

E
(

1

R2

)]
a (α, q) g (α) dα > 0,

and NW0 = 0 when the bond market is unconstrained due to limited liability.

For case (ii), when NW0 = 0, equation (11) gives us

l2 =
1− E

(
1
R2

)
Rl −R1

∫ α

α

α2a (α, q) g (α) dα.

Therefore, by (8), (9), and (10),

NW1 (R2) =

(
1− 1

R2

)∫ α

α

α2

1−
Rl

(
1− E

(
1
R2

))
Rl −R1

 a (α, q) g (α) dα,

which is strictly negative when 1
Rl
> 1

R1
E
(

1
R2

)
. Therefore, NW0 = 0 is not optimal when

the bond market is constrained.

For case (iii), if NW1

(
R̃2

)
> 0 for some R̃2 > 1, then

R1b1 +
Rll2

R̃2

>

∫ α

α

α

(
1 +

α

R̃2

)
a (α, q) g (α) dα

by (8) and (9). Consider a new asset allocation
(
b̃1, l̃2

)
=
(
b1 − ε, l2 + R1

Rl
ε
)
, so that

NW1 (1) = 0 under the new allocation and R1b̃1 + Rl l̃2
R̃2

= R1b1 + Rll2
R̃2
− R1

(
1− 1

R̃2

)
ε.

Hence, for sufficiently small ε, NW1

(
R̃2

)
> 0. However, b̃1 + l̃2 = b1 + l2 −

(
1− R1

Rl

)
ε,

so by the budget constraint in t = 0,

b1 + l2 = q

∫ α

α

a (α, q) g (α) dα, (12)

the insurer can lower the annuity price under the new asset portfolio since Rl ≥ R1.

Therefore, case (iii) is inconsistent with a competitive annuity market.

Finally, we show that the optimal IRM is unique in a competitive equilibrium. Let

{b1, l2, b2 (R2) , NW0, NW1 (R2)} denote the optimal asset portfolio and capital structure

for a given annuity price q. Notice that b1 is uniquely pinned down by (12), NW0 is

uniquely pinned down by (1), NW1 (R2) is uniquely pinned down by (8), and b2 (R2) is

8



uniquely pinned down by (9). Therefore, to show uniqueness, it is sufficient to show that

at the optimum, l2 =
∫ α
α

α2

Rl
a (α, q) g (α) dα. Taking the original annuity price q as given,

first suppose an insurer deviates and chooses l̂2 = l2 − ε, where ε ∈ (0, l2] . Then, by

(12), the new short-term bond demand at t = 0 is b̂1 = b1 + ε. This implies that the new

short-term bond demand at t = 1 is b̂2 (R2) = b2 (R2) + R1

R2

(
R2 − Rl

R1

)
ε by (9). Hence, by

(8), the new net worth at t = 1 is ˆNW 1 (R2) = R1

R2

(
R2 − Rl

R1

)
ε. If returns are such that

ˆNW 1 (1) < 0, then the new allocation is not optimal since insurers can become insolvent.

If returns are such that ˆNW 1 (R2) ≥ 0 for all R2, then NW1 is strictly positive for large

R2. This allocation is also not optimal since the insurer can perform IRM with less net

worth and charge a lower price. Also, by the same argument as before, the insurer can

become insolvent if it deviates and chooses l̂2 = l2 + ε, where ε > 0. Hence, it is optimal

for l2 =
∫ α
α

α2

Rl
a (α, q) g (α) dα. This outcome proves uniqueness.

D.2 Life annuity pricing

Here, we provide some details on the Bertrand equilibrium in our environment in three

separate sections. First, we show that competitive insurers implement the optimal IRM

strategy of Theorem 1 in a Bertrand equilibrium. Second, we characterize the equilibrium

annuity price in an unconstrained bond market setting. Finally, we prove Theorem 2.

D.2.1 Properties of Bertrand competition

In our setting, life insurers compete over prices, à la Bertrand. Lemma 1 characterizes

the basic properties of the Bertrand equilibrium of our model.

Lemma 1 Under Bertrand competition, no insurer earns strictly positive profit, and at

least two insurers implement the optimal IRM strategy.

Proof The first part of Lemma 1 follows from a standard Bertrand competition argument.

To see why the equilibrium features at least two insurers managing interest rate risk,

suppose that instead no insurers manage interest rate risk according to the strategy in

Theorem 1. In this case, an insurer can earn strictly positive profit by choosing a price

q and implementing the hedging strategy in Theorem 1, which is a contradiction.
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D.2.2 Pricing with adverse selection in an unconstrained bond market

To see how adverse selection contributes to the annuity price markup, consider first

the case when the bond market is unconstrained. By Theorem 1, competitive insur-

ers optimally choose zero net worth. Therefore, equations (12) and (1) show that the

equilibrium annuity price in an unconstrained bond market is given by

qAF
∫ α

α

a
(
α, qAF

)
g (α) dα =

1

R1

∫ α

α

α

[
1 + αE

(
1

R2

)]
a
(
α, qAF

)
g (α) dα, (13)

where qAF is the risk-adjusted actuarially fair price. The price qAF accounts for adverse

selection in the annuity market when the bond market is unconstrained.

Next, consider a complete-information economy with an unconstrained bond mar-

ket. Let qCI (α) denote the equilibrium price in an economy where insurers can ob-

serve individual survival types α. The full information actuarially fair price is given by

qCI (α) = α
R1

[
1 + αE

(
1
R2

)]
. Proposition 1 establishes the classic adverse selection result

that the risk-adjusted actuarially fair price qAF is higher than the average full-information

actuarially fair price.

Proposition 1 qAF >
∫ α
α
qCI (α) g (α) dα.

Proof Rewrite

qAF
∫ α

α

a
(
α, qAF

)
g (α) dα =

1

R1

∫ α

α

α

[
1 + αE

(
1

R2

)]
a
(
α, qAF

)
g (α) dα.

as ∫ α

α

[
qAF − qCI (α)

]
a
(
α, qAF

)
g (α) dα = 0.

There exists α∗ ∈ (α, α) such that a
(
α∗, qAF

)
> 0, and qAF > qCI (α) for any α < α∗

and qAF < qCI (α) for any α > α∗. This specification yields

0 =

∫ α∗

α

[
qAF − qCI (α)

]
a
(
α, qAF

)
g (α) dα +

∫ α

α∗

[
qAF − qCI (α)

]
a
(
α, qAF

)
g (α) dα

< a
(
α∗, qAF

) ∫ α

α

[
qAF − qCI (α)

]
g (α) dα.

The result follows as a
(
α∗, qAF

)
> 0.

10



D.2.3 Pricing with adverse selection in a constrained bond market

To see how IRM affects the annuity markup, first note that with ψ = 1
Rl
− 1

R1
E
(

1
R2

)
,

the bond market is constrained when ψ > 0 and unconstrained when ψ = 0. Next,

insurers’ profit Π (q, ψ) is given by the difference between their annuity sales revenue and

total bond demand:

q

∫ α

α

a (α, q) g (α) dα−
∫ α

α

α

R1

[
1 + αE

(
1

R2

)]
a (α, q) g (α) dα−ψ

∫ α

α

α2a (α, q) g (α) dα,

where total bond demand is given by Theorem 1. Let q∗ be the equilibrium annuity

price—the lowest positive annuity price such that Π (q∗, ψ) = 0. Notice that given the

equilibrium annuity price q∗, the risk-adjusted actuarially fair price is defined by the

average annuity liability at q∗ :

qAF (q∗) =

1
R1

∫ α
α
α
[
1 + αE

(
1
R2

)]
a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα

.

This definition means that the risk-adjusted actuarially fair price is evaluated using the

pool of annuitants purchasing annuities at the equilibrium price q∗. To streamline no-

tation, we write the risk-adjusted actuarially fair price as qAF with the implicit under-

standing that it depends on the equilibrium price q∗.

Finally, to prove Theorem 2 (AS-adjusted markup increases with ψ), we use the fol-

lowing lemma, which places an upper bound on the change in the risk-adjusted actuarially

fair price qAF with respect to the equilibrium annuity price q∗.

Lemma 2 If Assumption 2 holds, then ∂qAF

∂q∗
< 1 for any ψ > 0.

Proof First, note that at the equilibrium price q∗, ∂Π(q∗,ψ)
∂q∗

≥ 0. The reason is that if

∂Π(q∗,ψ)
∂q∗

< 0, then insurers can lower the price to capture the entire market and earn

strictly higher profit, which is a contradiction. Because the equilibrium annuity price is

q∗ =

∫ α
α

α
R1

[
1 + αE

(
1
R2

)]
a (α, q∗) g (α) dα + ψ

∫ α
α
α2a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα

,
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and ∂Π(q∗,ψ)
∂q∗

≥ 0, it follows that

∫ α

α

a (α, q∗) g (α) dα (14)

+

∫ α

α

α

R1

[
1 + αE

(
1

R2

)][ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα

+ ψ

∫ α

α

α2

[ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα ≥ 0.

Next, we show that Assumption 2 implies that the last term in inequality (14) is

strictly negative when ψ > 0. Since ∂a(α,q)
∂q

is finite (Assumption 1), Assumption 2 implies

that cov
(
α2, ∂a(α,q)

∂q

)
≥ 0 for any q (Schmidt 2014). Therefore, we have

cov (α2, a (α, q))∫ α
α
a (α, q) g (α) dα

>
cov

(
α2,−∂a(α,q)

∂q

)
∫ α
α
−∂a(α,q)

∂q
g (α) dα

=⇒
∫ α
α
α2a (α, q) g (α) dα∫ α
α
a (α, q) g (α) dα

>

∫ α
α
α2
(
−∂a(α,q)

∂q

)
g (α) dα∫ α

α
−∂a(α,q)

∂q
g (α) dα

.

The first of those two inequalities comes from the fact that cov
(
α2,−∂a(α,q)

∂q

)
= −cov

(
α2, ∂a(α,q)

∂q

)
,

and Assumption 1 implies cov (α2, a (α, q)) > 0 (Schmidt 2014). The second inequality

uses the definition of covariance. By rearranging the terms of the second inequality, we

find that the last term in inequality (14) is strictly negative if ψ > 0.

Therefore, we have

∫ α

α

α

R1

[
1 + αE

(
1

R2

)][ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα

> −
∫ α

α

a (α, q∗) g (α) dα. (15)

By the definition of qAF and dividing both sides of inequality (15) by
∫ α
α
a (α, q∗) g (α) dα,

we obtain 1− ∂qAF

∂q∗
> 0 when ψ > 0.

The actuarially fair price qAF is determined by the equilibrium price q∗, which means

that if qAF increases quickly as q∗ rises, the AS-adjusted markup could decrease. Lemma 2

proves that this situation cannot occur. Therefore, we can now prove Theorem 2.

12



Proof of Theorem 2: First, we show that there exists a q∗ = min {q|Π (q, ψ) = 0} for

any ψ. By Assumption 1, when q = α
R1

(1 + α) , then Π (q, ψ) > 0. Also, when q = 0, then

Π (q, ψ) < 0. Since Π (q, ψ) is continuous in q, the intermediate value theorem implies

that there exists q such that Π (q, ψ) = 0. Therefore, the set {q|Π (q, ψ) = 0} is non-

empty. Also, {q|Π (q, ψ) = 0} is closed, because {0} is closed and Π is continuous in q so

Π−1 ({0} , ψ) is closed. Furthermore, {q|Π (q, ψ) = 0} is bounded below by zero. Hence,

a minimum for {q|Π (q, ψ) = 0} exists.

When ψ = 0, then NW0 = 0 by Theorem 1. Hence, by the definition of qAF and q∗,

we have q∗ = qAF when ψ = 0.

Next, we show that q∗ increases as ψ > 0 increases. Through implicit differentiation,

∂q∗

∂ψ
=

∫ α
α
α2a (α, q∗) g (α) dα

∂Π(q∗,ψ)
∂q∗

.

Immediately, notice the numerator is weakly positive. Suppose the denominator, ∂Π(q∗,ψ)
∂q∗

,

is strictly negative. This situation would imply that an insurer can deviate by lowering

the price to capture the entire market and earn strictly positive profit. However, this

implication contradicts the fact that q∗ = min {q|Π (q, ψ) = 0}. Hence, we have ∂q∗

∂ψ
> 0

when ψ > 0.

Finally, for ψ > 0, we show that q∗ − qAF increases with ψ. Notice that ∂q∗

∂ψ
− ∂qAF

∂ψ
=

∂q∗

∂ψ

(
1− ∂qAF

∂q∗

)
. When ψ > 0, we have ∂q∗

∂ψ
> 0 and 1 > ∂qAF

∂q∗
by Lemma 2, which yields

∂q∗

∂ψ
− ∂qAF

∂ψ
> 0.

D.3 Feedback between IRM and adverse selection

Here, we derive equation (4). With z = R1

Rl
, insurers’ profit can be rewritten as

Π (q, ψ) = q

∫ α

α

a (α, q) g (α) dα−
∫ α

α

α

R1

(1 + αz) a (α, q) g (α) dα.

Implicitly differentiating insurers’ zero-profit condition Π (q∗, z) = 0 yields

∂q∗

∂z
=

1
R1

∫ α
α
α2a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα

+
∂q∗

∂z

∫ α
α
e (α, q∗)

[
1−

α
R1

(1+αz)

q∗

]
a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα

,

13



which gives us equation (4). By Theorem 1, when the bond market is constrained, the

optimal amount of net worth at t = 0 is a strictly increasing function of z for any given

price q:

NW0 (z) =
1

R1

∫ α

α

α2

[
z − E

(
1

R2

)]
a (α, q) g (α) dα.

Thus, it follows that the risk-management effect is the additional amount of average net

worth needed for IRM under a fixed annuity price.

E Endogenous corporate bond supply for Section 2

This section presents a simple approach to model the corporate long-term bond supply.

This section shows how the equilibrium long-term bond return, together with insurers

bond demand, is determined and provides a bound on an exogenous parameter that

delivers a constrained bond market.

We adopt the model of corporate bond issuers of Greenwood et al. (2010). Corporate

bond issuers have an optimal capital structure that involves issuing a target T of long-

term bonds l2. A deviation from the target incurs a quadratic cost of 1
2

(l2 − T )2 . These

costs could reflect firms’ exposure to interest rate risk that arises from refinancing risk.

For example, firms may be financing long-term projects with relatively shorter-maturity

debt. These firms may be targeting an amount of long-term bonds to hedge interest rate

rises, and straying from this target in either direction is costly. As in Greenwood et al.

(2010), we can interpret the quadratic cost function as a reduced-form way to model the

firms’ tightening financial constraints when it deviates from its optimal long-term bond

supply T.

Taking the return Rl as given, we specify that the representative firm’s objective is

to solve the following optimization problem:

min
l2
Rll2 +

1

2
(l2 − T )2 .

Continuing the interest risk management interpretation of the firm’s quadratic cost, we

note that a firm is minimizing the interest rate cost and the cost of being exposed to
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interest rate risk. The solution to the firm’s problem yields the long-term bond supply:

l2 (Rl) = T −Rl,

which is inversely related to the bond return.

The equilibrium return R∗l is determined by the market-clearing condition for the

long-term bond—bond supply and bond demand are equated. For simplicity, we assume

that only life insurers purchase long-term corporate bonds.49 Then, by the long-term

bond demand given in Theorem 1, the market-clearing condition for the long-term bond

is

R∗l
2 − TR∗l + L = 0,

where L =
∫ α
α
α2a (α, q) g (α) dα is the annuity liability in t = 2.

Lemma 3 For any given L, (i) if T < 2
√
L, then long-term corporate bonds are not

traded in the economy; (ii) if 2
√
L ≤ T < R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
, then ψ > 0; and, (iii) if

T = R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
, then ψ = 0.

Proof By the market-clearing condition,

R∗l =
T ±
√
T 2 − 4L

2
.

Therefore, if T < 2
√
L, then there are no long-term corporate bonds in the economy.

Next, we focus on the case with T ≥ 2
√
L. Note that the solution R∗l = T−

√
T 2−4L
2

is

not plausible, because higher bond supply or higher T would induce lower Rl. Therefore,

the equilibrium long-term bond return is

R∗l =
T +
√
T 2 − 4L

2
.

As a result, by definition, a bond market is constrained if Rl <
R1

E
(

1
R2

) . As a result, given

the equilibrium bond return R∗l , we have 1
Rl
> 1

R1
E
(

1
R2

)
when T < R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
,

and 1
Rl

= 1
R1
E
(

1
R2

)
when T = R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
.

49We can enrich the model by considering long-term bond demand from agents and arbitrageurs
without changing the main message of this section.
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Finally, we need to check that the bounds are valid, i.e., 2
√
L ≤ R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
.

It is easy to verify that for any positive value of 1
R1
E
(

1
R2

)
, it is always the case that

2
√
L ≤ R1

E
(

1
R2

) + L
R1
E
(

1
R2

)
, and it holds with equality only when 1

R1
E
(

1
R2

)
= 1√

L
. This

verification completes the proof.

Lemma 3 provides the conditions for when the bond market would be constrained.

Intuitively, when the targeted bond supply T of the corporate bond issuers is sufficiently

low (relative to future annuity liability L), then the bond market would be constrained.

Furthermore, our analysis is focused on a constrained bond market with Rl ≥ R1, so the

relevant bounds of T for our analysis is

[
max

{
2
√
T ,

L+R2
1

R1

}
, R1

E
(

1
R2

) + L
R1
E
(

1
R2

))
.

F Extensions to the benchmark model in Section 2

We evaluate the robustness of our theoretical results through two extensions. First, we

examine an environment with unlimited long-term government bond supply and demon-

strate that our Section 2 results still hold if long-term government bond returns are lower

than those of corporate bonds. This result is consistent with government bonds compos-

ing a small fraction of life insurers’ assets—see Foley-Fisher et al. (2022) for an estimate.

Lastly, we consider a monopolistic competition scenario, showing that life insurers con-

tinue to adjust their markups in response to interest rate risk management costs, even

outside a perfectly competitive setting.

F.1 Unlimited long-term government bonds

In the paper, we showed how insurers have to accumulate a positive net worth to

hedge against the interest rate risk when the corporate bond market is constrained. In

this appendix, we consider a model with an unlimited supply of long-term government

bonds. We find that unless the long-term government bond provides a higher return than

the long-term corporate bond, insurers still require a positive net worth, and competitive

annuity prices would be strictly higher than the risk-adjusted actuarially fair price when

the corporate bond market is constrained.

In addition to the economic environment of Section 2, there is an unlimited supply of

zero-coupon long-term government bonds g2. One unit of government bond purchased at
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t = 0 returns Rg at t = 2. For simplicity, we assume that Rg is exogenously determined.

At t = 0, an insurer invests its annuity considerations in a portfolio of corporate bonds

and long-term government bonds:

b1 + l2 + g2 = q

∫ α

α

a (α, q) g (α) dα. (16)

The insurer’s balance sheet at t = 0 is given by

b1 + l2 + g2 =

∫ α

α

α

R1

[
1 + αE

(
1

R2

)]
a (α, q) g (α) dα +NW0. (17)

At t = 1, the aggregate shock R2 is realized, and insurers’ balance sheet becomes

b2 (R2) =
1

R2

∫ α

α

α2a (α, q) g (α) dα +NW1 (R2) , (18)

where

b2 (R2) = R1b1 +
Rll2
R2

+
Rgg2

R2

−
∫ α

α

αa (α, q) g (α) dα. (19)

The following proposition shows how insurers construct their asset portfolio and capital

structure to manage interest rate risk when government bonds are available.

Proposition 2 For a given annuity price q, the unique optimal IRM strategy when Rg >

Rl requires an asset allocation and a capital structure that satisfies the following: (i)

Asset portfolio: b1 = 1
R1

∫ α
α
αa (α, q) g (α) dα, l2 = 0, g2 = 1

Rg

∫ α
α
α2a (α, q) g (α) dα, and

b2 (R2) =
∫ α
α

α2

R2
a (α, q) g (α) dα, and (ii) Capital structure:

NW0 =


∫ α
α
α2
[

1
Rg
− 1

R1
E
(

1
R2

)]
a (α, q) g (α) dα if 1

Rg
> 1

R1
E
(

1
R2

)
0 if 1

Rg
= 1

R1
E
(

1
R2

) ,
and NW1 (R2) = 0 for all R2.

When Rg ≤ Rl, the optimal IRM has g2 = 0 and requires the same asset portfolio and

capital structure as in the environment without government bonds.

Proof Competitive insurers finance just enough net worth so that NW1 (R2) = 0 when

R2 = 1 andNW1 (R2) ≥ 0 whenR2 > 1.As a result, from (18), b2 (1) =
∫ α
α
α2a (α, q) g (α) dα.

Hence, by equation (19), we obtain the following demand for one-period bonds b1 (l2, g2)
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as a function of long-term corporate and government bonds:

b1 (l2, g2) =
1

R1

[∫ α

α

α (1 + α) a (α, q) g (α) dα−Rll2 −Rgg2

]
.

Substituting the demand b1 (l2, g2) into (17) yields

NW0 +

(
Rg

R1

− 1

)
g2 +

(
Rl

R1

− 1

)
l2 =

∫ α

α

α2

R1

[
1− E

(
1

R2

)]
a (α, q) g (α) dα. (20)

By (20), the long-term government bond and the long-term corporate bond are perfect

substitutes. Therefore, competitive insurers purchase the bond with the highest returns to

minimize net worth. When Rl ≥ Rg, insurers purchase only corporate bonds, and the re-

sult from Theorem 1 applies. When Rg > Rl, insurers replace long-term corporate bonds

with long-term government bonds, and the result follows from the proof for Theorem 1.

Proposition 2 shows how insurers use long-term government bonds to manage interest

rate risk. Long-term government bonds and long-term corporate bonds of the same

maturity are perfect substitutes. Competitive insurers seek to minimize the cost of IRM.

Therefore, when the yield on long-term government bonds is too low (Rg ≤ Rl), their

availability has no effect on insurers’ IRM problem. That is, the cost of managing the

interest rate risk with net worth is lower than the cost of managing the interest rate risk

with low-yielding long-term government bonds. When the yield on long-term government

bonds is higher (Rg > Rl), insurers replace all of their long-term corporate bond demand

and some of their net worth at t = 0 with long-term government bond holdings to perform

IRM. However, net worth and long-term government bonds are not perfect substitutes

when the yield on the government bonds is such that 1
Rg

> 1
R1
E
(

1
R2

)
. In this case, net

worth at t = 0 remains positive.

Typically, the returns from the long-term government bond are less than those from

the long-term corporate bond: Rg < Rl. The lower government bond yield could reflect,

for example, a convenience yield due to the government bond’s high liquidity and safe-

haven status. U.S. Treasury bonds have a convenience yield because investors value their

liquidity and safety and are willing to accept lower yields to hold them over alterna-

tive investments that offer the same cash flows (Krishnamurthy and Vissing-Jorgensen

2012). Therefore, Proposition 2 is consistent with the relatively low share of government
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securities in life insurers’ asset portfolio, as noted in Section 1.2.

By Proposition 2, it is almost immediate that the competitive annuity price remains

above the risk-adjusted actuarially fair price when the bond market is constrained, which

(in the presence of long-term government bonds) is redefined as ψg = min
{

1
Rl
, 1
Rg

}
−

1
R1
E
(

1
R2

)
> 0. Similarly, analogous to Theorem 2, the AS-adjusted markup is strictly

positive when the bond market is constrained (ψg > 0).

Proposition 3 When there is an unlimited supply of long-term government bonds with

return Rg, the AS-adjusted markup q∗ − qAF is higher when the bond market is more

constrained (ψg is higher): ∂q∗

∂ψg
− ∂qAF

∂ψg
> 0. Furthermore, when the bond market is un-

constrained (ψg = 0), the AS-adjusted markup is zero: q∗ = qAF .

Proof The result follows from the proof of Theorem 2.

F.2 Monopolistic competition

In this section, we explore how life insurers’ IRM is affected by market competition.

To model imperfect competition, we consider a market with two insurers: {X, Y }. Each

insurer is matched with a continuum of individuals of measure 1 with identical survival

probability distributions. An insurer can lower its annuity price to capture a portion of

its competitor’s market: If Insurer X sets price qX , then Insurer Y can seize γ (qX − qY )

of individuals that were matched with Insurer X by setting qY < qX . For simplicity, the

additional individuals that an insurer captures when it lowers its price are independent

of the individual’s type. Under this assumption about market structure, insurers are mo-

nopolists when γ = 0, and the model approaches our baseline specification with Bertrand

competition as γ increases.

We restrict our attention to symmetric Nash equilibria in which both life insurers

charge the same price q∗. Crucially, prices are affected by how insurers manage the interest

rate risk. Although insurers with market power accumulate net worth in the form of

monopoly profit, the net worth from exercising market power may prove to be inadequate

for IRM. Therefore, insurers with market power must have an asset portfolio and capital

structure that are at least consistent with Theorem 1. Specifically, the demand for one-

period and long-term bonds and the net worth in each period have to be weakly greater

than the amounts specified in Theorem 1. As a result, the cost of selling an annuity is
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determined by the expected present value of the insurance liabilities and the insurers’

optimal net worth position.

Suppose Insurer X deviates by setting a price q̂ while Insurer Y sets the equilibrium

price q∗. Following Appendix 6, we can redefine the degree of bond market constraint as

z = R1

Rl
, so that z is positively related to ψ. Our analysis will focus on the case with a

constrained bond market, so z > E
(

1
R2

)
. Insurer X chooses q̂ to maximize profit:

[1 + γ (q∗ − q̂)]
∫ α

α

[
q̂ − α

R1

(1 + αz)

]
a (α, q̂) g (α) dα.

To solve for q̂, we take the first-order condition of the profit maximization problem and use

the fact that q̂ = q∗ at the optimum in a symmetric Nash equilibrium.50 This operation

yields the following equilibrium condition for q∗:

∫ α

α

a (α, q∗) g (α) dα +

∫ α

α

[
q∗ − α

R1

(1 + αz)

]
∂a (α, q∗)

∂q∗
g (α) dα

− γ
∫ α

α

[
q∗ − α

R1

(1 + αz)

]
a (α, q∗) g (α) dα = 0.

Using the aforementioned equilibrium condition, Theorem 3, presented next, characterizes

the relationship between the annuity market structure γ and the AS-adjusted markup.

Theorem 3 In a market with monopolistic competition, the AS-adjusted markup in-

creases as the bond market becomes more constrained for z > E
(

1
R2

)
: ∂q∗

∂z
− ∂qAF

∂z
> 0, and

it decreases as the annuity market becomes more competitive (higher γ): ∂q∗

∂γ
− ∂qAF

∂γ
< 0.

Proof Rewrite the first-order condition as W (q∗, z, γ) = 0, where

W (q∗, z, γ) =

∫ α

α

a (α, q∗) g (α) dα +

∫ α

α

[
q∗ − α

R1

(1 + αz)

]
∂a (α, q∗)

∂q∗
g (α) dα

− γ
∫ α

α

[
q∗ − α

R1

(1 + αz)

]
a (α, q∗) g (α) dα.

Note that ∂W
∂q∗

< 0 from the second-order condition, and ∂W
∂γ

< 0, and ∂W
∂z

> 0 for

z > E
(

1
R2

)
. From implicit differentiation, ∂q∗

∂z
= − ∂W

∂z / ∂W
∂q∗

> 0, and ∂q∗

∂γ
= −

∂W
∂γ / ∂W

∂q∗
< 0.

50A sufficient condition for the second-order condition to hold is to assume that∫ α
α

[
q − α

R1
(1 + αz)

]
a (α, q) g (α) dα is strictly concave. This assumption is equivalent to requir-

ing that a unique optimum exists when insurers are monopolists.
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Next, to see that Lemma 2 holds in this environment, first notice that the insurer’s

profit is strictly positive at the equilibrium when insurers have market power:

∫ α

α

[
q∗ − α

R1

(1 + αz)

]
a (α, q∗) g (α) dα > 0,

which also implies that

q∗ >

∫ α
α

α
R1

(1 + αz) a (α, q∗) g (α) dα∫ α
α
a (α, q∗) g (α) dα

. (21)

Therefore, by the first-order condition and the fact that γ ≥ 0, it must be the case that

∫ α

α

a (α, q∗) g (α) dα +

∫ α

α

[
q∗ − α

R1

(1 + αz)

]
∂a (α, q∗)

∂q∗
g (α) dα ≥ 0,

where the preceding inequality holds with equality when γ = 0. Using the definitions of

z = R1

Rl
and ψ = 1

Rl
− 1

R1
E
(

1
R2

)
, we can rewrite that inequality as

∫ α

α

a (α, q∗) g (α) dα + q∗
∫ α

α

∂a (α, q∗)

∂q∗
g (α) dα

−
∫ α

α

α

R1

[
1 + αE

(
1

R2

)]
∂a (α, q∗)

∂q∗
g (α) dα− ψ

∫ α

α

α2∂a (α, q∗)

∂q∗
g (α) dα ≥ 0,

where ψ > 0. Since
∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα < 0, we can replace q∗ in the foregoing inequality

with ∫ α
α

α
R1

[
1 + αE

(
1
R2

)]
a (α, q∗) g (α) dα + ψ

∫ α
α
α2a (α, q∗) g (α) dα∫ α

α
a (α, q∗) g (α) dα

,

which is strictly smaller than q∗ by (21) and yields

∫ α

α

a (α, q∗) g (α) dα (22)

+

∫ α

α

α

R1

[
1 + αE

(
1

R2

)][ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα

+ ψ

∫ α

α

α2

[ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα > 0.

Notice (22) resembles inequality (14) from the proof of Lemma 2, but with a strict
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inequality. Following the proof of Lemma 2, ∂qAF

∂q∗
< 1 when ψ > 0 if Assumption 2 holds.

Finally, notice that ∂q∗

∂z
− ∂qAF

∂z
= ∂q∗

∂z

(
1− ∂qAF

∂q∗

)
. When the bond market is con-

strained, ∂q∗

∂z
> 0 and Lemma 2 applies, so the AS-adjusted markup increases as z in-

creases: ∂q∗

∂z
− ∂qAF

∂z
= ∂q∗

∂z

(
1− ∂qAF

∂q∗

)
> 0. Next, note that ∂q∗

∂γ
− ∂qAF

∂γ
= ∂q∗

∂γ

(
1− ∂qAF

∂q∗

)
.

When ψ > 0, Lemma 2 applies and since ∂q∗

∂γ
< 0, we have ∂q∗

∂γ
− ∂qAF

∂γ
= ∂q∗

∂γ

(
1− ∂qAF

∂q∗

)
<

0. And NW0 = 0 when ψ = 0, so inequality (22) becomes

∫ α

α

a (α, q∗) g (α) dα

+

∫ α

α

α

R1

[
1 + αE

(
1

R2

)][ ∫ α
α

∂a(α,q∗)
∂q∗

g (α) dα∫ α
α
a (α, q∗) g (α) dα

a (α, q∗)− ∂a (α, q∗)

∂q∗

]
g (α) dα > 0.

By the definition of qAF and dividing both sides of the aforementioned inequality by the

demand
∫ α
α
a (α, q∗) g (α) dα, we obtain 1− ∂qAF

∂q∗
> 0 when ψ ≤ 0. Therefore, for any ψ,

the AS-adjusted markup decreases as γ increases: ∂q∗

∂γ
− ∂qAF

∂γ
= ∂q∗

∂γ

(
1− ∂qAF

∂q∗

)
< 0.

Theorem 3 shows that the AS-adjusted markup can increase because of IRM or market

power. Insurers increase their AS-adjusted markup either to finance the net worth needed

for IRM or to limit the quantity sold in the market and exercise market power. In essence,

Theorem 3 implies that monopolistic competition in an unconstrained bond market—

ψ = 0 or z = E
(

1
R2

)
—can generate an AS-adjusted markup that is observationally

equivalent to that generated by a constrained bond market. Furthermore, Theorem 3

shows that for any given market structure γ, the AS-adjusted markup is strictly positive

when the bond market is constrained—E
(

1
R2

)
< z. This fact implies that even insurers

with varying degrees of market power raise their annuity prices to manage the interest

rate risk. In the main text, we explain how our difference-in-differences strategy can cope

with different types of annuity market structure.

G Additional details about variable construction

This appendix contains details about the regulatory interest rate, mortality tables,

and our measure of interest rate swap duration.
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G.1 Regulatory interest rate to discount annuity liabilities

Before 2018, state insurance regulations required that insurers calculate their annuity

reserves—i.e., their insurance liabilities—using a single reference interest rate calculated

as “the average over a period of twelve (12) months, ending on June 30 of the calen-

dar year of issue or year of purchase, of the monthly average of the composite yield

on seasoned corporate bonds, as published by Moody’s Investors Service, Inc.”51 The

Moody’s composite yield on seasoned corporate bonds is a weighted average yield on all

investment-grade corporate bonds rated between Baa and Aaa with maturity of at least

20 years.

In 2018, state insurance regulators adopted a new methodology to calculate the single

reference interest rate used in regulatory reserve regulations. With the new methodology,

the reference interest rate is the sum of a weighted average U.S. Treasury yield plus a

credit spread and an expected default cost. The spread over the reference Treasury rate

is calculated by the NAIC using the public bond portion of an average U.S. life insurer’s

asset portfolio. The new reference interest rate varies by type of annuity contract guar-

antee period and is reset once a quarter (for retail annuity contracts). For example, the

reference rate for a single premium immediate annuity issued on March 2, 2018, without

a guarantee period to a 68-year-old was 3.25 percent, which is about 75 basis points

(0.75 percentage point) higher than the reference Treasury rate used in the reference rate

calculation.52 By comparison, Moody’s seasoned Aaa and Baa corporate bond yields on

the same day are 3.9 percent and 4.58 percent, respectively.

G.2 Mortality assumption

The Society of Actuaries (SOA) mortality tables are available at https://mort.

soa.org. There are two important differences between the “basic” and the “loaded”

annuitant mortality tables. First, the loaded table adds a flat 10 percent loading on the

estimated survival probabilities, which requires insurers to hold more reserves per dollar

of annuity sold. Second, statutory regulations did not require insurers to apply the SOA

generational mortality improvement factor to the static loaded mortality table for their

51https://www.naic.org/store/free/MDL-820.pdf
52For more details, see https://www.soa.org/globalassets/assets/library/newsletters/

financial-reporter/2018/june/fr-2018-iss113-hance-gordon-conrad.pdf.
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reserve calculations before 2015, when the 2012 Individual Annuitant Mortality Table was

adopted in most states. As a consequence, regulatory reserves before the adoption of the

generational table in 2015–2016 became less conservative over time, as the population

mortality naturally improved. This phenomenon led the NAIC to update the loaded

table in 2000 to essentially “reset” the loading factor. For all our calculations using

the “basic” mortality tables before the adoption of the 2012 SOA generational table, we

follow industry practice and apply the SOA generational factor (G2 scale) to adjust the

mortality estimate from the static basic table to the year of observation.

Roughly half of the states required insurers to use the 2012 Individual Annuitant

Mortality Table in 2015 and the other half in 2016. We carefully parse each state insurance

regulator’s website to identify the year at which a new mortality table is implemented

for the purpose of regulatory reserve calculations based on the NAIC standard valuation

model law 820-1.

H Hedging interest rate risk with interest rate swaps

In our stylized model, insurers would be indifferent between managing interest rate

risk with net worth or with interest rate swaps absent any additional frictions. To see

this finding, consider a straightforward extension of the model. At t = 0, insurers have

the option to purchase a fixed-for-float swap from some (unmodeled) counterparty at

price ps. The insurer would pay the one-period interest rate and receive the two-period

interest rate. The price of the swap is a spread over the one-period bond rate, which is

determined in equilibrium in the swap market. The present value of the swap at inception

at t = 0 is 0. If the interest rate realization at t = 1 is low, then the present value of

the fixed-for-float swap becomes positive (the swaps become an asset), thereby offsetting

the disproportionate increase in the present value of the annuity liabilities. Therefore,

insurers in this model extension can hedge the interest rate risk with fixed-for-float swaps,

and the cost of the derivative position would be passed on to annuity consumers through

the annuity markup.

24



H.1 Statutory accounting treatment of swaps

In practice, however, there are a number of frictions making interest risk management

with swaps relatively unpopular in the U.S. life insurance industry As a consequence of

these frictions, only the largest and sophisticated life insurers include interest rate swaps

in their hedging programs.

One reason is that state insurance regulations require each open swap position to

be tied to a specific asset of liabilities to be treated under hedge-effective accounting.

If the insurer cannot continuously prove to its regulator the hedge effectiveness of the

swap, then the swap needs to be carried at fair value. Therefore, an insurer “fixing” the

duration of its balance sheet with swaps will carry swaps at fair value. Although this

distinction is irrelevant in our simple model, it matters for actual insurers in the U.S. for

at least two reasons.

First, recurring fair value measurement requires an insurer to invest in information

and control systems to assess relevant economic conditions and estimate fair values of

swaps quarterly. This assessment is required to provide the regulator with a detailed

report about the hedge effectiveness of each swap. This is unlike statutory accounting for

assets and liabilities that are not marked to market and whose value evolves according

to predetermined amortized cost measurement. Only the largest, most sophisticated

insurers in the U.S. have this back-office technology to monitor their swap value.

Second, swaps increase the insurer cash flow and risk-based capital variability. The

fair value of a swap becomes either an asset or a liability, depending on the term of the

contract and the change in interest rate. Collateral must be posted with (received from)

the counterparty when the fair value of the swap exceeds a predetermined threshold,

as it increases credit risk. For example, if interest rate were to increase a lot rapidly,

then insurers that entered into fixed-for-float swaps to close their negative duration gap

would have to post collateral with their counterparty, typically a bank. Insurers typically

post Treasury securities or a cash equivalent as collateral, but the question, of course, is

how the insurer will finance the collateral. Moreover, the change in the swap fair value

changes the insurer risk-based capital charge. As the fair value of the swap increases, so

does the capital charge that is related to the time-varying rating of the swap counterparty.

Therefore, the insurer needs to finance more capital to maintain its regulatory capital

level.
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H.2 Measuring the net duration added by interest rate swaps

We proxy for the duration of each individual swap contract by assuming that the

duration of the hypothetical zero-coupon fixed-rate bond is 0.75 × the residual ma-

turity of the contract and that the interest rate reset on the floating leg of the swap

occurs every three months. The factor 0.75 is a commonly used rule of thumb when

the actual swap curve is unavailable. Although it is quite crude, this assumption is rea-

sonable to study the variation in average swap duration across insurers in our setting.

Moreover, assuming that the interest rate reset on the floating leg of the swap occurs

every three months is consistent with the widely used three-month LIBOR benchmark

among life insurers. It follows that the duration of a fixed-for-float swap is given by

Swap durationReceive Fixed
it = 0.75 × Contract residual maturity − 1/4 × 1/2. Sim-

ilarly, we calculate the swap duration of individual float-for-fixed swap contracts as

Swap durationReceive Float
it = −0.75× Contract residual maturity + 1/4× 1/2.

We then multiply each individual swap contract duration by its respective notional

amount and divide this number by the duration of a reference 10-year fixed-for-float

swap contract, which is calculated as 0.75×10−1/4×1/2. Taking the average over each

individual life insurer’s swap portfolio in each year yields how much the insurer buys of

the reference 10-year fixed-for-float swap. Finally, we divide by insurers’ total general

account assets to obtain the amount of duration added by swaps as a fraction of insurers’

asset portfolio. This ratio is a measure of life insurers’ interest rate risk management. A

value of zero indicates that the insurer is not adding positive or negative duration to its

portfolio using swaps.

I Evidence from term annuity markups

As a robustness test, we implement our main regression test using data on term

annuities markups. Term annuities pay the policyholder a stream of income for a fixed

period. Unlike bank certificate of deposits, the principal payment (or premium) in a

term annuity is fully amortized during the contract. Moreover, unlike life annuities, term

annuities do not pay a mortality-contingent stream of cash flows, and their price does

not depend on the customer’s age or gender. Therefore, the markup of term annuities

is not affected by adverse selection, and the demand for term annuities is unlikely to be
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systematically driven by age or gender.

The unit of observation for this test is a term annuity contract j offered by insurer

i at date t. The sample of observation extends from 1989:Q1 to 2019:Q4. We estimate

Equation (23) as follows:

TermAnnuity markupijt =

+β1Reserve Ratiojt + β210HQM spreadt + z′itγ1 + β3Baa-Aaa spreadt

+ (β4Reserve Ratiojt + β510HQM spreadt + z′itγ2)×Baa-Aaa spreadt

+
∑
k 6=5yr

1{Term=k} × { (23)

β1,kReserve Ratiojt + β2,k10HQM spreadt + z′itγ1,k + β3,kBaa-Aaa spreadt

+ (β4,kReserve Ratiojt + β5,k10HQM spreadt + z′itγ2,k)×Baa-Aaa spreadt}

+αi + εijt.

Equation (23) uses Term = 5yr as the benchmark effect. The variable 1{Term=k} takes

the value 1 if the maturity of the term annuity is equal to k ∈ {10yr, 15yr, 20yr, 25yr, 30yr}.

Equation (23) includes an insurer fixed effect αi to absorb the effects of potentially un-

observed fixed insurer characteristics—e.g., differences in state regulations and insurer

ratings—that may directly affect life insurers’ pricing behavior. We allow for an interac-

tion between all the control variables and the aggregate shock variable Baa-Aaa spreadt.

In our reduced sample starting in 2000:Q1, we include the vector z′it containing insurer-

level time-varying asset size and leverage. As in the main text, we report insurer-clustered

robust standard errors throughout as our baseline and two-way insurer- and date-clustered

robust standard errors as a robustness test.

Table 5 reports the regression results, omitting the many interactions with control vari-

ables for legibility. We are interested in estimating the effect of a change in the contract-

level reserve requirement on this contract’s markup during times of relatively wide and

tight Baa-Aaa spreadt conditional on insurers’ cost of funding, 10HQM spreadt. For

our benchmark case with five-year term annuities, the effect is estimated by β̂1 + β̂4 ×

QBaa-Aaa spreadt(p), where QBaa-Aaa spreadt(p) is the p-th percentile of Baa-Aaa spreadt.

The effect for the other annuity maturities adds the relevant coefficients on the interac-

tion terms with the binary variable 1{Term=k}. We evaluate the estimated effect using
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the first, second, and third quartiles of the distribution of Baa-Aaa spreadt, as we are

interested in evaluating how the effect varies across periods in which the long-duration

investment-grade spread is relatively tight, neutral, and wide, respectively.

Table 5: The effect of long-duration investment-grade corporate bond yield
spread on term annuity markups. The unit of observation is a life insurer-product-quarter.
The sample of observation extends from 1989:Q1 to 2019:Q4. The dependent variable Term annuity
markupijt is term annuity markups for product j sold by insurer i in quarter t. The baseline coefficients
are estimated for the five-year term annuity contract. The intercept coefficients and the full set of
interacted controls are not reported for legibility. Insurer-clustered standard errors are reported in
parentheses in Columns 1 and 3, and two-way insurer- and date-clustered standard errors are reported
in parentheses in Columns 2 and 4. *** p < 0.01; ** p < 0.05; * p < 0.1.

Dependent variable Term annuity markupijt (1) (2) (3) (4)

Reserve Ratioijt 106.21∗∗∗ 106.21∗∗∗ 133.60∗∗∗ 133.60∗∗∗

(14.24) (18.21) (44.85) (46.87)
Reserve Ratioijt × 10yr maturity -59.44∗∗∗ -59.44∗∗∗ -81.66∗∗ -81.66∗∗

(13.43) (20.40) (32.19) (33.67)
Reserve Ratioijt × 15yr maturity -84.44∗∗∗ -84.44∗∗∗ -113.54∗∗ -113.54∗∗

(20.53) (24.50) (44.15) (49.89)
Reserve Ratioijt × 20yr maturity -92.34∗∗∗ -92.34∗∗∗ -122.43∗∗ -122.43∗∗

(25.62) (30.62) (52.60) (58.00)
Reserve Ratioijt × 25yr maturity -110.06∗∗∗ -110.06∗∗∗ -131.92∗∗ -131.92∗∗

(30.29) (34.21) (62.16) (63.49)
Reserve Ratioijt × 30yr maturity -129.89∗∗∗ -129.89∗∗∗ -145.19∗∗ -145.19∗∗

(34.50) (36.36) (66.59) (66.75)
Reserve Ratioijt × Baa-Aaa spread t -78.12∗∗∗ -78.12∗∗∗ -112.76∗∗∗ -112.76∗∗∗

(15.21) (22.02) (38.54) (40.01)
Reserve Ratioijt × Baa-Aaa spread t × 10yr maturity 58.60∗∗∗ 58.60∗∗ 80.45∗∗∗ 80.45∗∗

(16.51) (24.63) (28.59) (29.73)
Reserve Ratioijt × Baa-Aaa spread t × 15yr maturity 74.11∗∗∗ 74.11∗∗∗ 111.59∗∗∗ 111.59∗∗

(21.54) (27.31) (39.56) (46.28)
Reserve Ratioijt × Baa-Aaa spread t × 20yr maturity 82.36∗∗∗ 82.36∗∗ 121.02∗∗ 121.02∗∗

(26.17) (33.97) (47.83) (54.98)
Reserve Ratioijt × Baa-Aaa spread t × 25yr maturity 99.78∗∗∗ 99.78∗∗∗ 130.17∗∗ 130.17∗∗

(30.10) (37.20) (57.76) (60.24)
Reserve Ratioijt × Baa-Aaa spread t × 30yr maturity 118.32∗∗∗ 118.32∗∗∗ 144.37∗∗ 144.37∗∗

(34.51) (38.91) (62.80) (63.93)

SE clustering Insurer Insurer & Date Insurer Insurer & Date
Fixed effects Insurer Insurer Insurer Insurer
Quarterly log asset and leverage controls N N Y Y
Observations 4,576 4,576 3,026 3,026
Adjusted R2 0.60 0.60 0.65 0.65
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Table 6 summarizes the estimated economic magnitudes for each term annuity con-

tract using the three quartiles of the Baa-Aaa spreadt variable. The last two columns

of Table 5 report the p-value of a one-sided statistical test of the null hypotheses that

the first-quartile economic effect is lower than or equal to the third-quartile effect using

insurer-clustered and the more conservative two-way insurer- and date-clustered robust

standard errors, respectively.

The main takeaway from Table 6 is that when Baa-Aaa spreadt is at its median

level, an exogenous increase in the reserve requirement has a relatively lower effect on the

markup of term annuities with longer-maturity. The reason is that, as we explained in the

main text, the early part of the yield curve has less weight in the present value calculation

of longer-maturity term annuities. However, this effect is smaller in periods when the

Baa-Aaa spreadt is larger for lower-duration annuities, such as 5-year and 10-year term

annuities.

Table 6: The effect of investment-grade corporate bond yield spread on term
annuity markups. This table summarizes the economic effect of a one standard deviation increase in
Reserve Ratioijt on Annuity markupijt for different levels of Baa-Aaa spread t and different term annuity
maturities.

Baa-Aaa spread t quartiles p-values p-values
Annuity term 1st 2nd 3rd Insurer-clustered SEs Insurer- and date-clustered SEs

5yr 2.081 1.328 0.375 0.002 0.002
10yr 1.204 0.988 0.715 0.037 0.053
15yr 0.852 0.844 0.835 0.466 0.482
20yr 0.78 0.835 0.905 0.326 0.394
25yr 0.671 0.787 0.934 0.262 0.303
30yr 0.567 0.778 1.045 0.163 0.19

J Baseline empirical results excluding the 2007–09

financial crisis

In this appendix, we show that our findings are not driven by variations in the 2007–

09 period. Table 7 reproduces our main result on samples before and after the 2007–09

financial crisis, respectively. The results in Table 7 are broadly consistent with the results

in Table 2. For example, focusing on Column 2, we note that the coefficient estimate on

the interaction term suggests that, conditional on insurers’ average cost of funding, a one
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standard deviation increase in Reserve Ratiojt (0.051) raises the AS-adjusted markup

by 1.45 percentage point when Baa-Aaa spreadt is at its median level (0.8). This effect

is about 25 percent lower in periods when Baa-Aaa spreadt is in the third quartile of

its distribution relative to periods when Baa-Aaa spreadt is in the first quartile of its

distribution.

Table 7: The effect of investment-grade corporate bond yield spread on life
annuity markups — Robustness excluding the 2007–09 financial crisis. The unit
of observation is a life insurer-product-quarter. The sample of observation extends from 1989 to 2006 in
Columns 1 and 2 and from 2010 to 2019 in Columns 3 and 4. The dependent variable Annuity markupijt
is the AS-adjusted markup for life annuity j sold by insurer i at date t. Columns 1 and 3 report
insurer-clustered robust standard errors in parentheses, and Columns 2 and 4 report two-way insurer
and date-clustered robust standard errors in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

Dependent variable Annuity markupijt
(1) (2) (3) (4)

Baa-Aaa spread t ×Reserve Ratiojt -35.73∗∗∗ -35.73∗∗ 27.37∗∗∗ 27.37∗

(8.92) (13.59) (6.08) (14.42)
Reserve Ratiojt 56.91∗∗∗ 56.91∗∗∗ -10.67 -10.67

(7.93) (12.20) (6.55) (13.36)
Baa-Aaa spread t 40.11∗∗∗ 40.11∗∗ -28.79∗∗∗ -28.79∗

(9.12) (15.08) (6.91) (15.41)
10 HQM spread t 4.90∗∗∗ 4.90∗ 8.83∗∗∗ 8.83∗∗

(1.69) (2.47) (1.87) (4.04)
Baa-Aaa spread t ×10 HQM spread t -5.17∗∗∗ -5.17 -1.83 -1.83

(1.79) (3.10) (1.58) (3.09)
SE clustering Insurer Insurer/Date Insurer Insurer/Date
Observations 16,767 16,767 21,502 21,502
Adjusted R2 0.57 0.57 0.61 0.61
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