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Abstract

Participants in an experimental market choose to enter private value trades manually and/or

algorithmically. Each algorithm or trading robot makes or takes liquidity based on the trader’s

current marginal valuation modulo a spread chosen by the trader. We evaluate experimental

outcomes against both competitive equilibrium and equilibrium of the strategic game if all

participants choose robots. Data from six laboratory experimental sessions support many of

the theoretical findings. Most traders deploy an algorithm whenever available (the average

trader deploys a robot in 82% of the rounds, and only 4% of subjects never deploy a robot), and

learn to use them with experience. Compared to rounds with only manual trading, algorithms

improve allocative efficiency. Realized gains from trade increase from 55% to 84% . While the

allocative efficiency increases across the board, those who benefit most are the traders who

perform poorly in manual trading. Our results highlight how algorithm choice can affect relative

outcomes and market observables.
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I. INTRODUCTION

Trades in today’s financial markets are overwhelmingly consummated by trading algorithms. The

Economist reports that as of the end of 2019 “90% of equity-futures trades and 80% of cash-equity

trades are executed by algorithms without any human input.” In spite of the widespread adoption of

these trading tools, open questions remain: do algorithms improve aggregate outcomes in financial

markets or simply redistribute gains from trade to their users? How does the combination of manual

and algorithmic trading affect allocations and prices?

To investigate these questions, we run a series of experiments in which participants can design

and implement trading robots. We use a trading environment similar to a simple financial market

in which agents compete to consummate gains from trade. In our experiments, agents have linear

induced demand in an asset and trade in a continuous double auction also known as a limit order

book. Gains from trade arise as all the agents are trying to diversify their portfolios – there is

no private information.1 To assist them in their trades, agents can engage robots. There are two

types of robots, those that supply or make liquidity, i.e., post prices, and those that demand or take

liquidity, i.e, lift posted prices. Once deployed, these robots calculate their agent’s instantaneous

valuation for the asset and submit orders that are centered around the valuation plus or minus a

spread selected by the agent. By design, only one robot can be deployed, and once deployed a robot

cannot be terminated.2 In sum, the traders in our setup can choose the role (maker or taker) and

the spread of each deployed algorithm. Importantly, the traders can also trade manually even if

they have chosen to deploy a robot.

There are three notable features of our experiments. First, all trades are private value trades and

thus transaction prices should reflect these private motives for trade. Second, by design, our robots

can only improve a user’s welfare. In particular, agents using robots can never “make mistakes” that

lead to losses, nor do the agents have to engage in complicated updating. Finally, starting with

Smith (1962), the literature has found that the continuous double auction (CDA)— in particular,

the shared information feature of the open book— leads to equilibrium in human-only experimental

markets.
1For a theoretical treatment of Algorithmic Market-Makers using Q-learning algorithm in an environment of adverse

selection, see Colliard et al. (2022)
2Multiple algorithm deployment and pausing, stopping, and redeploying new algorithms is technically possible. The

choice of simplicity is for tractability, both theoretical and statistical.
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We have two natural benchmarks to evaluate outcomes: social efficiency and strategic equilib-

rium with only deployed robots. These benchmarks allow us to evaluate the effect of additional

manual trading. In the socially efficient outcome, all gains from trade are exhausted. Given the

symmetry we impose on payoffs, this means that all agents should end up with the same portfolio.

We can measure how close agents are to this benchmark individually and collectively. Of course, as

our agents are strategic, each is trying to appropriate more of the gains from trade. This is done

through robot and spread choice, which deters some of the gains from trade. Conditional on robot

choices, we can calculate these strategic outcomes.

In a framework with an equal number of buyers and sellers and no manual trading we char-

acterize the equilibrium choice of robot and spread, efficiency losses, and price deviations from

a model of rational manual trading. There is an equilibrium in which (i) one side of the market

(buyers or sellers) chooses the role of takers and sets the spread to the minimal available spread;

(ii) the other side of the market chooses maker robots and sets the spread as high as possible; (iii)

the gains from trade depend on the spreads, and the distribution of gains is highly dependent on

robot parameter choices.

We report the results from six experimental sessions where we find that when not provided

access to robots, humans realize 55% of the theoretical gains from trade available in the market.

When given access to robots, 96% of traders use them at least once, with the fraction of participants

deploying robots varying between 2/3 to 1 in any given round (with an average of 82%). In spite

of robot use, manual trading remains popular: The fraction of participants who trade manually

alongside a robot ranges from 0% to 87.5%, and manual volume as a percentage of trading volume

ranges from 17.4% to 60.2%.

Based on survey responses, we document that participants who understood the robots were

more likely to deploy them. Conditional on deploying a robot, the participants do so mostly within

20 seconds of the start of round. As predicted by the theory, the chosen robots are equally split

between makers and takers but the participants do not appear to be able to solve the coordination

problem that equilibrium choice of robots presents. The participant’s choice of robot type is sticky,

for both types of robots, across rounds. As predicted by theory, maker algorithms are set with higher

spreads than taker algorithms. Most importantly, the realized gains from trade increase from 55%

in manual to 84% in rounds where robots were available.
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Those who benefit most from the robots are the traders that perform the worst in manual trading.

We identify traders with different trading skill by ranking them based on manual rounds. In our

experiment, the worst tercile of manual traders increases their relative performance from 5% to

74% of maximal gains when using robots and as a result, those who do best in manual trading

decrease their relative performance from 108% to 98%. This follows from the fact that the robots

provide utility improvements, they are easy to understand, and relieve the user from the cognitive

burden associated with monitoring the market and trading. (Whether humans understand, trust,

and deploy robots is part of a large literature on human-robot interaction (HRI).)

More surprising are the cross-sectional implications of robot use. Good manual traders deploy

robots more effectively and so continue their superior performance in the rounds where robots

are available. However, there is an offsetting effect: The overall gains from trade, or the “size of

the pie,” increases and so even though the skilled manual traders improve performance with robot

usage, their relative performance decreases. Part of the reason these good traders are profitable is

that they are more likely to sell at higher prices and buy at lower ones. Thus, transaction prices do

not necessarily reflect traders’ ordered marginal valuations but also their strategic skill.

It is natural to examine the overall and cross-sectional effectiveness of algorithms in an ex-

perimental setting. This topic is difficult to address theoretically with Bayesian expected utility

maximizers, which are effectively modelled as perfect algorithms. Gode and Sunder (1993), an

early study using algorithms, showed that (naive) centralized price competition and continuous

trading, both features of the CDA, converge to competitive equilibrium. In the context of multiple

assets, Asparouhova et al. (2020a) identifies boundedly-rational individual bidding rules that have

been theoretically shown and experimentally verified to lead to equilibrium in CDA markets. We

use both Gode and Sunder (1993) and Asparouhova et al. (2020a) as the motivation for our study.

The algorithms that we create are in the spirit of Gode and Sunder (1993), called zero-intelligence

(ZI) traders.3 They are augmented in that traders choose a spread. The spread parameter creates

individual bid and ask reservation prices, where the bid (ask) price is equal to the marginal valuation

of the asset minus (plus) half the spread. After simplifying the bidding rule in Asparouhova et al.

(2020a), the resulting algorithms—our Mean-Variance Optimizer, or MVO robots—constitute a

natural extension of the ZI robots of Gode and Sunder (1993) to the CAPM-driven design.

3The original ZI traders were deployed in a standard demand-supply setup, as in Smith (1962), where each trader is
only a buyer or a seller. Each buyer (seller) robot sends a limit offer to the market to buy (sell) at the marginal price
minus/plus a random amount.
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The study of algorithm participation in financial markets has focused on the effect of algorithms

(often high frequency traders (HFT)) on welfare, fairness (do some parties benefit disproportionately

at the expense of others?), and price stability.4 In contrast to this work, our algorithms work on

behalf of the humans who deploys them.

A subset of the literature considers hybrid experiments in which humans participate alongside

(experimenter-controlled) algorithms to see which “win,” how human behavior is affected by the

presence of algorithms or their specific type, and how efficiency changes as a consequence. By 2006,

engineers at IBM had found a robot that led them to proclaim that “The Trader Is Dead, Long Live

The Trader” (Das et al., 2001; Dence et al., 2006). Little after, the human trader was resuscitated

by studies pointing out that the success of rigid algorithm rules and speed is highly dependent on

market parameters (Gjerstad, 2007; Shachat et al., 2020) and that earnings to traders deploying

trading algorithms have not been abnormal on average (Kissell and Malamut, 2005). In the context

of financial markets, Grossklags and Schmidt (2006) and Farjam and Kirchkamp (2015) show that

when human traders know or think that robots are present, allocations are more efficient than when

humans are alone. However, when humans are not aware of the presence of robots, the hybrid

market is less efficient (Farjam and Kirchkamp, 2015).

In real markets, the complexity of the markets populated by algorithms “has created a new class

of finance professionals known as “power users,” who are highly trained experts with domain-specific

technical knowledge of algorithmic trading.” (Kirilenko and Lo, 2013, p. 67) Our work pertains

to this category, where humans control robots. To the best of our knowledge, Asparouhova et al.

(2020b) and Aldrich and López Vargas (2020) are the only other studies examining this form of

human-robot interaction. Bao et al. (2021) provide a recent and comprehensive review of the

literature.

Asparouhova et al. (2020b) studies the results from the engagement of algorithms (trading

robots) in a financial markets experiment where participants have access to a set of robots imple-

4Das et al. (2001) find that human traders underperform algorithms by about 20% in trading surplus. Gjerstad (2007)
studies how different market structures and paces of submitting bids and offers influence the trading performance of
humans and algorithms in a CDA market with induced values (Smith (1962)). In this study, impatient algorithmic traders’
profitability seems to be lower compared to the patient ones. Shachat et al. (2020) study balanced, unbalanced and
noncompetitive markets with “fast” and “slow” ZIP robots. The authors confirm the result of Das et al. (2001) that
algorithms outperform human traders in the “fast” treatment in a balanced market. In all other conditions, contrary to
the result of Das et al. (2001), the authors report that human traders outperform “fast” algorithmic traders. For the
various results on the effect of robots on convergence to equilibrium, among others, see Shachat et al. (2020), Furse et al.
(2012), and De Luca et al. (2011)
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menting user-specified bidding strategies—participants specify the type of orders (market or limit),

the side (buy or sell), and the price their robots should submit to markets. As the robots in this work

trade in the seminal Smith et al. (1988) framework, individual and collective benefits from trade

are not well defined (barring knowledge of participant risk aversion). This stands in opposition to

our setup, where individual and collective welfare are clearly defined. This enables us to provide

our participants with goal oriented robots while still allowing for the emergence of inefficiencies. As

expected, our results differ from those in Asparouhova et al. (2020b), as we find a positive effect of

robot usage on efficiency, improving the performance of all participants, not only those who trade

manually.

Aldrich and López Vargas (2020) allows humans to set a role and a costly speed for their robots

in the context of two differently-organized markets—a CDA and a frequent batch auction (FBA)

market. The roles of robots in their setting are that of market maker or sniper, a form of opportunistic

liquidity-taker who preys on speed differences and the rules of the CDA. They find that humans

choose different robots in the CDA than in the FBA, optimally reacting to the incentives provided

both by the market type and the consequent characteristics of other robotic traders. While we differ

from this work in our research question—theirs is a question of market design—we share with this

study the prisoner’s dilemma-like robot choice game in the CDA. Instead of costly speed, we use

robot spread as a strategy that increases individual performance and decreases efficiency. Unlike in

Aldrich and López Vargas (2020), we find significantly less inefficiency than expected, as participant

choices cut short of the predicted “spread” arms race.5

The remainder of the article is organized as follows. In Section II. we present the basic structure

of the market, preferences, and algorithms that are used in our experiment. We analyze the

experimental results in Section III. A brief conclusion follows in Section IV. Details of the theoretical

framework, survey questions, and additional results are presented in the Appendix.

II. FRAMEWORK

In our environment mean variance robots seek gains from trade within a fixed time period.

5A recent and important literature on algorithmic advice has focused on human trust in algorithms. Our experiment is
not designed to address the question of robotic advisor trust and adoption. For recent experimental contributions to this
literature, see Ben-David and Sade (2021) and Greiner et al. (2022).
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Utility gains from trade: All gains from trade come from portfolio diversification. There are two

risky assets, A and B, each characterized by an expected return and standard deviation, denoted

(µi ,σi), i = A, B with covariance σAB. For notational compactness, we sometimes denote µ as the

vector of expected returns, while Σ is the variance covariance matrix. Traders have mean variance

preferences with common risk aversion parameter γ. All agents are endowed with the same amount

of B, (eB), and cash, (c), but differ in their initial endowments of asset A. Trade is in asset A.

Let x(t) j = (x j
A(t), x j

B(t))
T and c j(t) denote agent j’s position in the risky assets and cash at

time t. Then their expected utility at time t is

U j
t (x(t)

j , c j(t)) = c j(t) +µx j(t)−
γ

2
(x j(t))TΣx j(t) (1)

Agents maximize the difference between the expected utility of their final (after trading) endowment

and their initial endowment or U j
T − U j

0.

Throughout our analysis we consider two benchmarks. First, social efficiency and second, the

equilibrium of a strategic trading game.

Social Efficiency: The agents are ex ante identical, and for 2N agents, their aggregate expected

utility is

Ω =
2N
∑

j=1

U j
T − U j

0 (2)

The maximal or socially efficient outcome is generated by a set of feasible allocations of asset A,

x1(T ), . . . x2N (T ) that maximizes Ω subject to the resource constraint
∑2N

j=1 e j
A.

Given that the only source of heterogeneity is the initial endowment of asset A, it is immediate that

in the socially efficient outcome, each participant receives an identical allocation of x∗A =
∑2N

j=1
e j

A
2N .

This allocation implies a collective valuation of asset A or, in other words, a price. To see this,

suppose that agent j at time t has acquired ∆ units of asset A. Given their initial endowment of e j
A,

the current valuation for an additional unit of asset A is

ρ j(e j
A+∆) = µ− γ

�

σ2
A

�

e j
A+∆
�

+σABeB

�

. (3)
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This is the amount that any agent would be willing to pay for an additional unit of A. We formalize

this discussion in the following lemma.

Lemma 1 In a two asset economy with 2N mean variance agents with a common risk aversion

parameter and endowments of cash and asset B,

i. in the socially efficient allocation each agent holds x∗A =
∑2N

j=1
e j

A
2N .

ii. at the socially efficient allocation the price is ρ(x∗A).

The socially efficient allocation and attendant social welfare represent the maximal welfare

that can be obtained in this environment and are an important benchmark which is not necessarily

reached through trade.

A. TRADING GAME

The market for stock A is open for a finite length of time, T . There is no short selling or borrowing.

Trade is organized as an open electronic limit order book. A limit order to buy (bid) or sell (ask),

specifies a quantity and a price that the trader is willing to buy/sell. A non-marketable limit order

is one that does not match any of orders in the book and, thus, sits in the book until matched or

cancelled. By contrast, marketable limit orders specify a price that matches a preexisting order and,

thus, immediately executes. If the quantity exceeds that of the preexisting order, a large marketable

order is partially executed, and the remainder accumulates in the book.

Orders are submitted either manually or by deployed robots. A manual trader chooses whether

to submit a marketable or non-marketable limit order, the quantity, and the price. Similarly, the

decision of agent j deploying a robot is a pair (r,δ), where r ∈ {M , T} is the robot role and δ ≥ 0

is the spread.

Definition 1 A robot

i. is a maker or makes liquidity if it posts liquidity that rests on the limit order book,

ii. is a taker or takes liquidity if it executes against previously posted liquidity.
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The price at which a robot makes or takes is determined by the spread chosen by agent j, δ j . The

spread is fixed throughout each realization of the market (i.e. a round experimentally). The spread

is centered around agent j’s current valuation for the asset (as specified in Equation 3). Specifically,

the algorithm calculates an agent’s expected utility and marginal valuation of the asset.

A maker robot posts personalized, single quantity, offers and bids:

a j(x) = ρ j(x) +
δ j

2
(4)

b j(x) = ρ j(x)−
δ j

2
. (5)

Such bids and offers are adjusted (i.e., cancelled and resubmitted) after any change to an agent’s

portfolio. By contrast, a taker robot only submits a single quantity order if it can execute immediately.

Specifically, suppose there is a posted price p, then for a taker robot

if p











≥ ρ j(x) + δ
j

2 sells

≤ ρ j(x)− δ
j

2 buys.
(6)

If the taker fails to consummate the trade it submits a cancel order immediately. The robots

submit single quantity orders every two seconds when conditions are satisfied.

As the only motive for trade in this economy is private hedging, any trade consummated by a

robot increases the agent’s expected utility.

B. MARKET OUTCOMES WITH ROBOTS

To build intuition for the role that robots play, we present market outcomes for two traders and

discuss the 2N person version in the appendix. First notice, if there are two traders with different

endowments of asset A, then if ei
A > e j

A, agent i is the natural seller of A in the economy. Going

forward, we refer to this trader as the supplier of asset A, denoted S, while the other agent is a

demander, denoted D.

As outlined above, the decision of each agent is a pair (r,δ), where r ∈ {M , T} is the robot type

and δ ≥ 0 is the spread. First, suppose that spreads for both are constrained to be zero and thus

robots post or are willing to accept posted prices at their valuations. Given the endowments, the
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traders’ valuations of the asset are ranked so that ρS < ρD. Thus, the prices at which trade occurs

depends on the robot choice. Specifically, if the supplier has chosen to be a maker, they will post

prices at their valuation, which slowly decreases after successive trade rounds. If the demander

has chosen to be a taker, trade will occur at the supplier’s valuation. Conversely, if the buyer is

the maker and the seller is a taker, trade will occur at the buyer’s valuation. If both choose to be

takers no trade will occur, and if both choose to be makers there is an equal chance of trade at either

trader’s valuation.6 Clearly, given the expected gains to trade, agents have an incentive to choose

different roles.

Lemma 2 Suppose there are two traders with different endowments facing a fixed spread of δ ≥ 0,

then in all pure strategy equilibria, one trader chooses to be a maker while the other chooses to be a

taker.

Strategic play ensures that traders will choose trade enhancing roles. However, even if one

trader supplies liquidity and one demands liquidity (i.e, one is maker and one is a taker) not all

gains from trade may be consummated. This is because spread choice affects how the gains from

trade are split. Ceteris paribus, the larger the spread choice that an agent makes, the more of the

gains from trade that they appropriate. However, larger spread choices may deter trade.

Figure 1 illustrates valuations as a function of quantity traded and how the valuations are

distorted because of the spreads. Maximum individually rational trade occurs under the socially

efficient outcome which exhausts all gains from trade. In this outcome, both traders hold the same

final portfolio, and so the total quantity traded is 1
2

�

eS
A + eD

A

�

. By contrast, if both agents submit a

spread, then there is less trade, and the last traded unit is x∗
�

δS ,δD
�

= eS−eD

2 −
δS+δD

4γσ2
A

.

We measure social welfare loss relative to the socially efficient outcome.

Lemma 3 Efficiency loss Γ in the two-player MVO agent-choice game for exogenous spreads {δS ,δD} is

Γ =
1
16

�

δS +δD
�2

γσ2
A

.

6This is an assumption of our theoretical framework, but we also verify it with simulations. With only two traders, the
frequencies of trade at either trader’s valuation, are very close to 1/2. With 2N > 2, there is a higher probability that the
side of the market setting the first price, also set it later in the round. In the appendix, where we treat this case, we state
where the assumption is necessary.
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Figure 1: Two-person Spreads and Efficiency Loss. The thick lines represent marginal values as a
function of units bought by the buyer (pink) and sold by the seller (blue). The distance
between the pink and blue line as they intersect the vertical axis, is the gains from
trade. The thin lines are cum spread demand and supply. The intersection of thin lines
determines quantity and last trading price, and the gray shaded triangle represents the
dead weight loss with respect to the zero-spread benchmark (socially efficient).
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Proposition 1 (Two traders, role and spread choice.) When traders choose both their role and

their spread, there are two pure strategy equilibria with the following characteristics

1. The taker sets a spread equal to zero.

2. The maker sets a spread equal to ∆ = γσ2
A

�

eS − eD
�

, the difference between the buyer and the

seller’s initial marginal values for Stock A.

3. The traded quantity is half the zero-spread (efficient) quantity.

4. The last trading price is biased away from the zero-spread price in the maker’s advantage.
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5. The efficiency loss in equilibrium equals Γ ∗ = 1
16γσ

2
A

�

eS
A − eD

A

�2
.

6. The maker obtains twice as large a payoff as the taker.

Proposition 1 tells us that the game that arises when traders can set both the role and the

spread of their MVO agents is akin to a prisoner’s dilemma. As in the prisoner’s dilemma, driven by

individual rationality, the dead-weight loss in equilibrium is large. Agents’ competition to obtain a

larger share of the trade surplus in this game leads to a reduction of the available surplus.

C. EXPERIMENTAL SESSIONS

Each session lasted approximately three hours; half of which was devoted to instruction and practice,

and half to for-pay rounds and the exit survey. The timing of a session is displayed in Figure 2 below.

Figure 2: Timeline of an Experimental Session

Round
 3

Algo Trading 
Possible

General 
Instructions

+
Instructions for 
Manual Trading 

Practice
Manual
Trading

Rounds 
1 & 2

Manual Trading 
Only

Instructions
for

Algorithmic
 Trading

Practice
Algorithmic

Trading

Exit 
Survey

+
Receipts
Emailed

Round
 10

Algo Trading 
Possible

...

Subjects participated online with cameras on for the entire duration. Instructions, trading aids,

and the trade interface were available over the web, and were shared through interactive video.

Trading Rounds. Ten trading rounds are relevant for participant payoff. In two of these rounds

(R1 and R2), participants only trade manually, without the help of robots. We call these manual

rounds. In the eight remaining rounds (R3 to R10), participants can deploy algorithms to trade on

their behalf, while still being able to trade manually. We call these algo-possible rounds. Initial asset

and cash holdings as well as the payoff obtained in each round are independent of choices made in

other rounds.

Endowments in Trading Rounds. In each round, all participants are endowed with equal units

of Stock B and cash. Participants differ in their initial holdings of Stock A, thus ensuring that no

participant is fully diversified and mutual gains from trade exist. Two endowment types differing

only in the number of units of Stock A, coexist in each round. We call these endowments type I and
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type II and denote them eI and eI I , respectively. Approximately half the participants are allocated

each endowment type.7 Cash endowments always equal 150 ECU (Experimental Currency Units),

but risky asset endowments eI and eI I vary across rounds. Table 1 presents the five endowment

setups used in one session.

Table 1: Endowment setups across experimental rounds

Setup Number 1 2 3 4 5

Rounds All practice rounds; R1,
R2 (manual)

R3, R4 R5, R6 R7, R8 R9, R10

Stock B (both types) 160 80 122 122 52

Stock A type I 0 225 240 20 20
Stock A type II 160 5 4 224 224

Between-Rounds Feedback. At the end of each round, participants are told their payoff for the

round (after conversion to USD). Between algo-possible rounds participants also receive feedback

on the algorithms deployed the previous round. Specifically, participants are told the number of

maker and taker algorithms deployed by “odd-numbered” (type I) and “even-numbered” (type II)

participants.

Instructions, Practice, and Aids. Instructions are provided as a slide show (https://shorturl.

at/ijB69) containing several videos to enhance replicability. The experiment has two practice

rounds: one for manual and one for algo-possible rounds. Each practice round consists of a first,

guided part (explained in instructions) and a second, free trading part. Practice rounds do not count

for the final payoff. At all times, participants can use two round-specific tools called Valuation Tool

and Performance Tool (Figure 3) to aid with trade choices. The Valuation Tool displays the marginal

value of Stock A (given the mean-variance utility used for payoff) as a function of holdings. The

Performance Tool displays (gross) payoff as a function of units of Stock A, under the assumption

that cash holdings remain constant at 150 ECU. The tools are interactive and display the coordinate

values as the cursor moves over the plotted curve.

7In recruiting participants for the experiment, we aimed to have equal numbers of type I and II participants, for which
an even number of volunteers is needed. When an odd number of participants shows up to the session or remains after
instructions and practice, types differ in their number. In the sessions reported here, they differ by at most 1.
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Figure 3: The Performance and Valuation Tools.

(a) Performance Tool: By positioning the cursor on the
graph at the holdings of Stock A, participants are
provided the gross payoff (GP) of their position.
To compute the (net) payoff, the change in cash
needs to be added to the GP.

(b) Valuation Tool: By positioning the cursor on the
graph at the current holdings of Stock A, partic-
ipants are provided with the marginal valuation
of the next unit of the stock.

Final Participant Payoff. Participant payoffs for the session consist of three parts: the show-up fee

of USD 5, a lump-sum payoff of USD 15 for participation in the practice rounds, and a variable part

that is normalized to an average across participants of USD 30. This means that average participant

payoff is USD 50 for three hours of participation. The variable part of payoff equals participant

payoff for two randomly-chosen rounds. The payoff in a given round equals the difference between

the mean-variance utility of the final and the initial holdings of risky assets and cash (as in Equation

1). Risk aversion is set to γ = 0.006. The payoff in ECU is next converted to USD with an exchange

rate that ensures the average per-round payoff across participants is USD 15. Within the variable

payoff, while the mean was USD 30, payoffs were bell-shaped distributed around the mean, with

the lowest equal to USD 0, and the highest equal to USD 120.

Exit Survey. At the end of an experimental session, participants answer a questionnaire (see

Appendix), choose a payment method, and receive payment.8

8Payment methods were (1) electronic visa card, emailed immediately to the participant, or (2) cash, paid in person
in the laboratory after the session.
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D. EXPERIMENTAL ROUND

Securities. Participants are endowed with two risky assets and cash. One asset, Stock A, can be

traded, while the other, Stock B, cannot. Expected payoffs (µ) and variance-covariance matrix (Σ)

for the risky assets Stock A and Stock B are:

µ =





1

1



 , Σ =





2/3 −1/3

−1/3 2/3



 .

Interface for Trade and Algorithm Deployment. The trading mechanism is part of online software

called Flex-E-Markets, which provides a software as a service (SaaS) platform to organize and

manage multiple, simultaneous online marketplaces (see https://adhocmarkets.com). The

left panel of Figure 4 shows the interface for submitting manual orders alongside the open book

displaying all currently available limit orders and past trades of Stock A. Orders and trades are

displayed anonymously and without reference to their manual or algorithmic origin. The right panel

of Figure 4 closes up on the algorithm deployment tool, which is integrated in the lower left part of

the trading interface whenever algorithm deployment is allowed.

Figure 4: User interface in Flex-E-Markets

Explanations: In Flex-E-Markets, participants observe the open book of buy (blue) and sell (red) orders,
submit/cancel orders, and trade with each other. When available, algorithms can be deployed via a menu
placed underneath the “Place Buy Order” button, enlarged for clarity on the right. Before starting an algorithm,
it is possible to set its role (maker/taker) with a drop-down menu, and its spread with a slider.
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Information on submitted orders and trades, algorithm connection to the trading platform

(algorithm deployment time), and algorithm parameters, is collected directly from the trading

platform, Flex-E-Markets. Each submitted order is identified (to us, the experimenters) as coming

from a human (identified by their trader ID) or a specific algorithm type (identified by the parameters

of the algorithm deployed and also by the deploying trader’s ID).

E. ALGORITHMS

In the algo-possible rounds, participants can deploy Mean-Variance Optimizing (MVO) algorithmic

robots. As outlined in Subsection A., as the MVO robot trades, the robot recomputes the marginal

(mean-variance) utility of Stock A given current holdings of both stocks and uses this as a reservation

price for trades. The parameters we used were µA = 1 as the expected dividend of Stock A and

of Stock B, σ2
A = 2/3 as the variance of Stock A dividends, and σAB = −1/3 as the covariance of

Stock A and Stock B dividends. With this, the valuation is

ρJ
t =
�

1+
0.006

3
eB

�

−
�

0.012
3

�

x j
A(t),

a linear function of the holdings at t of Stock A.

Participants in an algo-possible round choose whether to deploy an algorithm or not, and if

they do deploy one, they can choose the spread, the role, and the time of deployment. Following

Equations 4 and 6, spreads were chosen from δ ∈ [0.02,0.5].

It is important to stress that the algorithms in our experiment are not independent economic

agents, since they do not have endowments of their own. Instead, they participate in markets only if

a human participant deploys them, and all their actions affect the payoff of this human participant.

Once deployed, an algorithm cannot be stopped or changed, but manual trades can be submitted

alongside it.

III. EXPERIMENTAL RESULTS

We ran six online experimental sessions. Participants were recruited from two pools: University of

Utah students registered on the Utah Laboratory of Experimental Economics and Finance (ULEEF)
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sign-up system (SONA), and members of the Discord group Beermoney India, subsequently registered

on the ULEEF system.9 Number of participants of each endowment type, market portfolios and

equilibrium prices for each endowment setup in each experimental session, are all reported in Table

2.

Table 2: Participants, Market Portfolio, and Equilibrium Price per Session.

Session
1 2 3 4, 5, 6

Participants with endowment type I 4 6 5 7
Participants with endowment type II 5 6 4 7

Total Participants 9 12 9 14

Mkt. portfolio (ēA, ēB);
Equilibrium price p∗

Setup 1
(88.9,160) (80,160) (71.1,160) (80, 160)

0.96 1 1.04 1

Setup 2
(102.8,80) (115,80) (127.2,80) (115, 80)

0.75 0.7 0.65 0.7

Setup 3
(108.9,122) (122, 122) (135.1,122) (122, 122)

0.81 0.76 0.7 0.76

Setup 4
(133.3,122) (122, 122) (110.7,122) (122, 122)

0.71 0.76 0.8 0.76

Setup 5
(133.3,52) (122,52) (110.7,52) (122, 52)

0.57 0.62 0.66 0.62

To implement our benchmarks, we use the parameters indicated in Table 2. Specifically, to

evaluate aggregate outcomes and the performance of an individual trader, we compare volume,

prices, efficiency, and individual realized payoffs to predictions under the socially efficient outcome.

The experiment was not preregistered. Instead, all sessions were run via a script that automati-

cally started and stopped rounds, effectively preventing deviations from a preset design.10

9The subject pool used to be restricted to enrolled University of Utah students but was opened up during the Covid-19
pandemic. We only discovered on the spot—thanks to the exit survey—that participants of our fourth session were not
University of Utah students. As a reaction, we asked for additional information from these participants and created
a formalized connection to the Discord group that allowed us to conduct another session with participants only from
Discord and a session with mixed University of Utah and Discord participants. Most, but not all participants from Discord,
resided in India at the time of the experiment.

10The script can be viewed at the link https://shorturl.at/AHOXY
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Figure 5: Round final prices vs. competitive equilibrium prices.

Explanations: Average price of the last 20 trades of each round vis-à-vis socially-optimal price. Black lines
show Nash equilibrium prices (algorithms only), where the natural buyers (lower line) or the natural sellers
(upper line) deploy maker algorithms.

A. AGGREGATE OUTCOMES: PRICING, VOLUME, AND EFFICIENCY

We compare aggregate outcomes in manual and algo-possible rounds to each other and to the

socially-optimal outcome. We start by looking at prices, which we measure as the average price of

the last twenty trades in a round.11

Figure 5 summarizes the behavior of final prices. The gray, 45-degree line, indicates equality

between socially-optimal prices and the price observed in the experiment. The black lines indicate

the window of Nash equilibrium predicted prices (depending on what side adopts the maker role).

Figure 6 presents the average difference between the maximal and minimal price within each

decile of trading times within a round. This difference proxies for bid-ask spread and the ten bins

11By construction, MVO algorithms start a round trading at prices far from the socially-optimal price. Past experiments
suggest this is the case also with human traders. Therefore, to compare to the social optimum, we focus on the end of
each round.
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proxy for its evolution over time. It is evident that spreads are larger in the robot-able rounds and

they remain larger through time within rounds. This is consistent with the theoretical prediction of

the robot-only game. Should everyone deploy a robot and not trade manually, prices follow marginal

valuations of market makers modulo a spread. While in equilibrium, there is perfect coordination

and all makers are on one side of the market (buyers or sellers), traders in the experiment do not

perfectly coordinate and so prices bounce between the marginal valuations (modulo a spread) of

buyers and sellers. Such following of marginal valuations bounce is not expected in the manual

rounds and the prediction would be that the bid-ask spread in such rounds is lower than what would

be predicted in the model of algorithms only. The data and the corresponding analysis confirm the

predictions.

Both in manual and algo-possible rounds, the distance from socially-optimal prices is small but

significant. As reported in Table 3, this distance is significantly larger in manual than in algo-possible

rounds, despite bid-ask spreads being larger in the latter.

Figure 6: Price Spread Over Time Intervals
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Explanations: This figure presents the bar plot of the average proxies for bid-ask spread using binned data
in each trading round. For each bin, we group all transaction prices by deciles in the order in which they are
executed and compute the Bid-Ask Proxy as the maximum transaction price minus the mininum transaction
price within the corresponding decile. Then we plot the average Bid-Ask Proxy over time-intervals across
session rounds for manual rounds and robot rounds separately.

We measure trade volume as the sum of all trades by participants in a round. We use the ratio of

this volume to the trade volume needed for all participants to arrive at socially optimal allocations,

to compare to this benchmark. We cannot reject the null hypothesis that trade volume in a round

equals socially-optimal volume, neither for manual nor algo-possible rounds (Wilcoxon paired test

with p-value 0.22 on the full sample, 0.15 for manual, and 0.19 for algo-possible rounds). We can
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Table 3: Aggregate outcomes. Difference between manual and algo-possible rounds.

Manual Robot Diff t-stat

Price abs. difference (in cents) 8.923 4.845 4.078 1.927
Volume ratio 95.570% 94.547% 1.023% 0.080
Efficiency 55.649% 84.053% -28.404% -6.109

No. obs 12 48

Explanations: Aggregate indicators price, volume, and trade surplus, with respect to the social optimum.
For price we use the absolute difference, for volume and trade surplus we use a ratio.

also not reject the null hypothesis that trade volume is equal in manual and algo-possible rounds

(Table 3).12

The possibility of measuring efficiency of outcomes is one of the advantages of our experimental

setup. For each set of parameters used and number of participants of each endowment type, we

know what the trade surplus is at the social optimum given the induced utility. We can compare the

sum of utility gains of all participants in a round to the total surplus using a ratio that is only equal

to 100% if all gains from trade are reaped. Whereas full efficiency is never reached, the maximal

ratio in a round is of 98.24%. As reported in Table 3, the difference in efficiency between manual

and algo-possible rounds is large and significant.

Efficiency depends crucially on all participants’ (equal) final holdings of Stock A. There is thus a

close link between trade volume and efficiency, apparently broken in the results above: no difference

in volume, but a large difference in efficiency between manual and algo-possible rounds. To reconcile

these results, we turn briefly to the type of trading taking place in either type of rounds. We define a

participant in a round to be a speculator if they both buy and sell Stock A. The fraction of speculators

is significantly larger in manual than in algo-possible rounds (t-test statistic of 3.78). Thus, while

trade volume is large because of speculation, final holdings of Stock A in manual rounds remain

dispersed, significantly more so than in algo-possible rounds (Brown-Forsythe test with p-value less

than 0.001).

Result 1: Prices, Volume, and Efficiency. Final prices and trade volume in all experimental

rounds are close to the social optimum. Between manual and algo-possible rounds, final price is

12If, instead of round-wide volume, we use the volume traded by each participant and its ratio to per capita volume to
achieve the social optimum, we find that volume is significantly smaller than predicted. There is, however, no significant
difference between manual and algo-possible rounds.
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closer to the social optimal in the latter, and volume is indistinguishable. Algo-possible rounds come

close to full efficiency (84%), significantly more than manual rounds.

We now turn to individual trader behavior and performance in manual and algo-possible rounds.

B. ALGORITHM DEPLOYMENT

We first examine participant behavior in algo-possible rounds and ask to what extent they delegated

trading to algorithms, and possibly why. Figure 7 shows the distribution of the number of rounds in

which a participant deploys an algorithm. Most participants deploy algorithms whenever available

(eight rounds), and in all rounds of all sessions, a majority of participants of both endowment types

deploys algorithms: the fraction of participants deploying algorithms in any given round ranges

from 2/3 to 1.

Result 2: Algorithm Deployment, Trade Volume, and Delay Across Rounds. A majority of

participants deploy algorithms in all rounds, and most deploy them within twenty seconds after the

round’s start. The number of algorithms deployed does not significantly change across rounds. The

percentage of trade performed by algorithms decreases in later rounds.

Figure 7: Histogram of Algorithm Deployment Frequency.

Explanations: Number of participants who deployed robots in N of the 8 algo-possible rounds, N = 0, 1, ..., 8.

The percentage of participants deploying a robot who also perform manual trades in a given

round ranges from 0% to 87.5%, and manual volume as a percentage of total traded volume in
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Table 4: Algorithmic Trade Percentage and Deployment Delay Regressions.

Robot Volume (Percentage) Deployment Delay
(1) (2) (3) (4)

tech 0.012 0.038∗ 5.816 6.514∗

(0.550) (2.060) (1.824) (2.048)
understand 0.061∗∗ 0.043∗ -7.432∗

(2.881) (2.252) (-2.227)
understand robot -5.329∗∗∗

(-3.358)
algopref 0.195∗∗∗ 0.064∗∗∗ -13.455∗∗∗ -12.077∗∗∗

(8.751) (3.157) (-3.788) (-3.403)
makerpref 0.059∗∗∗ 0.065∗∗∗ 0.981 0.290

(3.615) (4.975) (0.432) (0.128)
spreadpref 0.020 0.034∗∗∗ 2.508 3.392∗

(1.640) (3.431) (1.429) (1.918)
Constant -0.292 -0.066∗ 62.864∗∗ 56.237∗∗

(-1.945) (-0.526) (2.866) (2.901)

Adjusted R2 0.170 0.143 0.059 0.071

Sample All
Robot
deploying

Robot
deploying

Robot
deploying

N 569 498 498 498

Explanations: Explanatory variables are indicators constructed with exit survey responses. Only algo-possible
rounds are included in all regressions, and the robot deploying sample includes only participants who deploy
an algorithm. All regressions include session fixed effects.

a round ranges from 17.4% to 60.2%. On average, both the number of participants deploying

robots who also perform manual trades and the percentage of total volume that is manually traded,

increase in later rounds (a linear Round effect is significant at the 1% level).

Between participant differences in reliance on algorithms for trading, significantly correlate

with exit survey responses. We group the survey responses in five indicators of technological affinity

(tech), understanding of the determinants of each participant’s own payoff (understand), the belief

that algorithm deployment increases payoff (algopref), the belief that deploying a maker increases

payoff (makerpref), and the belief that a high spread increases payoff (spreadpref)—see the Appendix

for a detailed explanation. As can be seen in Table 4, we find that understanding, algopref and

makerpref positively correlate with algorithmic trading volume in general. When considering all

participants the variables positively correlate with the combined choice of deploying an algorithm

and of limiting manual trades. When we limit the analysis to only participants who deploy a robot,
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the variables correlate with the choice to limit manual trades, i.e., to delegate most of the the trades

to the robot. In this latter subset, tech also correlates positively with algorithmic volume.

Result 3: Between-Participant Differences in Algorithm Use. Participants who perform a higher

percentage of trades via their algorithmic robot and who deploy algorithms earlier in a round,

report better understanding of algorithm deployment and a belief that algorithms increase their

performance. They do not score higher than other participants on technological affinity questions.

C. CHOICE OF ALGORITHM PARAMETERS

We want to know what roles and spreads participants assign to their algorithms and what factors,

if any, affect these choices. We want to test whether equilibrium predictions such as high maker

spread and the sorting into roles by endowment type, arise in later experimental rounds.

C.1. Choice of Role

Result 4: Algorithm Role Choice. On average, an equal number of participants chooses the role

of maker or taker. Participant role choice is reactive to past experience as role choice is sticky and

high spreads increase the likelihood of being a maker in the future.

Figure 8 shows the percentage of all participants of each endowment type that deploys an

algorithm (solid lines) with the role of maker (bars) in each round. Type I endowment is displayed

on the bottom, and type II endowment is displayed on the top of each figure. As previously

mentioned, a majority of participants deploys an algorithm in all algo-possible rounds. There is, on

average, no preference for role: the median fraction of makers across rounds is 54.2% and the mean

maker fraction is 55.2% (significantly larger than taker fraction at the 1% level). While the figures

suggest the choice of role becomes polarized across endowment types in later rounds, statistical

tests do not corroborate this suggestion.

In later rounds—starting with round 4— 60% of participants who choose the role of taker

chose the same role in the preceding round, and only 40% were either makers or did not deploy an

algorithm. Analogously, twice as many makers (2/3) were a maker in the preceding round than a

taker or no algorithm. Significance and robustness of these results to the inclusion of other variables
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Figure 8: Maker Algorithm Deployment Per Round.

Explanations: The figures display percentages of all participants of each endowment type. Endowment type
I is on the bottom part, and endowment type II is on the top part of each figure. Lines display percentages
deploying an algorithm, and bars percentages (of all participants) deploying a maker algorithm.

are displayed in Table 11 in the Appendix. The regression reported in this table also shows that the

algorithm environment (algorithms deployed by other participants in previous rounds) have only a

mild effect on participants’ odds of switching role.

C.2. Choice of Spread

Figure 9, panel (a), shows a histogram of spreads of maker (pink) and taker (blue) algorithms set

by each participant in each round. Across all sessions and rounds, the median and mean spread

set by makers (mean of 0.174 ECU) is significantly larger than the median and mean spread of

takers (mean of 0.154 ECU). Panel (b) shows how the average effect of role on spread is driven

by experience, where experience is defined as the number of rounds during which a participant

has deployed an algorithm with the same role. Inexperienced participants deploying a maker or a

taker pick the same spread. With experience, maker spread increases and taker spread decreases,

creating significant wedge between the two.
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Figure 9: Spreads of Maker and Taker Algorithms.

(a) Histogram of spreads in all rounds. (b) Spread as a function of experience.

Table 12 in the Appendix corroborates that role has a significant effect on spread, while the

effect of experience is not significant. It also shows a correlation between performance and spread,

as participants chosing high spreads tend to outperform in any given round.

Result 5: Spread Choice. Participants deploying maker algorithms set higher spreads than

participants deploying takers. The difference increases with participant experience in the role.

D. INDIVIDUAL PERFORMANCE, DISTRIBUTION, AND EFFICIENCY

We now turn to understanding performance and the effect of algorithm deployment and parameter

choices on individual and collective performance. As we do so, we analyze data from both manual

and algo-possible rounds.

D.1. Algorithm deployment, performance, efficiency, and equality

We measure individual performance in each round as each individual’s payoff as a proportion of

the theoretically possible gain and call this benchmark-performance ratio. A performance ratio of 0

indicates that none of the theoretically possible gains from trade corresponding to an individual

are realized. A ratio of 1 indicates that 100% of the theoretical gains from trade are realized.

Performance ratios may be larger than 1 or smaller than 0, since theoretically possible gains from

trade are computed at equilibrium prices and the experimental markets take a while to equilibrate,
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Figure 10: Individual Average Performance Ratio by Round.

Explanations: In both figures, participants are ranked according to their average performance ratio in manual
rounds. Bars are color coded by the frequency of algorithm usage in algo-possible rounds.

resulting in a sizeable portion of the trades being conducted at off-equilibrium prices. Off equilibrium

prices, some participants may exploit others, thus generating performance ratios outside the [0,1]

range. For reference we present the performance measures in Table 5 below.13

The upper panel of Figure 10 illustrates the payoffs of all participants in the manual trading

round in decreasing order. The lower panel displays the payoffs of the same participants in the

robotic rounds. While the best performing participants in manual rounds also do very well in algo-

possible rounds, the worse-performing participants in manual rounds are not the worse-performing

in algo-possible rounds. Importantly, fewer individuals are exploited on average (across all rounds)

in algo-possible than in manual rounds, as fewer participants have negative average performance

13The round payoff was normalized to USD 15 per the Institutional Review Board requirements for one of the cites
where we performed our experiments. Thus, if one would like to compare the average amount actually paid to participants
for each round, this amount does not change and is always equal to USD 15. However, we claim it is a meaningful exercise
to compute the pre-normalization average payoff and compare this amount across the manual and robotic trading rounds.
The participants cannot know the overall gains from trade that are being realized in each round, thus the only objective
they have is to do as well as they can for themselves. We think we can confidently conjecture that the results would be
unchanged if a normalization did not take place (but then the study would be in violation of the local university’s rules of
engagement).
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ratios. Below we formalize the following conjectures stemming from the figure. (i) those who

perform worse in the manual rounds are those who benefit the most from the robots; and (ii) the

inequality between participants decreases in robotic rounds.

Table 5: Performance Ratio Results

Robot - Manual

Manual Robot Diff t-stat Nobs

Low 0.05 0.74 0.69 8.12 25
Medium 0.54 0.81 0.28 3.75 25
High 1.08 0.98 -0.10 -1.29 22
Overall (individual paired) 0.55 0.84 0.30 4.92 72

Explanations: The performance ratio (realized utility gain divided by the equilibrium utility gain) across
three groups (low, medium, and high) based on subjects’ manual trading performance. The t-stat is from a
paired t-test.

Overall, as Table 5 shows, the performance increases by 0.3. Thus, when trading manually,

participants utilize slightly more than half of the possible gains from trade on average, while

when they utilize algorithms, this percentage increases to 84%, for a relative increase of 53% in

algorithmic vs. manual rounds. The above measures are also those for the efficiency of the market,

an average of 100% would indicate that the markets have exhausted all possible gains from trade.

Who benefits the most from the increase of individual performance that is enjoyed in the robotic

rounds? To investigate this, we split participants in three groups, Low, Medium and High, based

on their performance ratio in the manual trading rounds. Participants classified in the group Low,

fall in the bottom third tercile, when ranked based on their performance ratio in the two manual

rounds. Groups High and Medium correspond to the first and the second terciles. As the table shows,

the disparity between groups in terms of performance ratio is large (and statistically significant).

Keeping the classification from manual rounds, we compute the corresponding average performance

ratios for the three groups in the rounds that allow algo trading. The largest improvement is of

the Low group, followed by the Medium and then the High. Both the the Low and the Medium

groups enjoy economically and statistically significant improvements, while the slight decline in

performance of the High group is not significant.

Notice, the High group has a performance ratio in excess of 100%, i.e, these traders realize

more than their equilibrium gains from trade. This is possible due to some of them assuming
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market-making roles and in addition to the gains in utility, realizing gains from the spread in

market-making. Also, note that in algorithmic rounds, such possibilities disappear, but still, the

highly skilled traders make all of the possible gains from trade.

Table 6 presents the formal test of the notion that the total (bigger) pie in the robotic sessions is

one that is more evenly split between the three groups of participants. For each session one group,

we collect the share of payoffs distributed to each group (note here that normalizations play no

role, or minimal role at best). The difference of the proportion of total payoffs between manual and

robotic rounds is computed for each session and group. This difference is the largest for the Low

group, followed by the Medium, and lastly by the High.14. This comes to show, one more time, that

the usage of the robots significantly decreases the inequality of payoffs among participants based

on manual trading skills.

Table 6: Proportion of Performance Gains

Share of Pie

Manual Robot Diff (Robot - Manual)

Low 0.0241 0.2940 0.270
Medium 0.3115 0.3203 0.009
High 0.6645 0.3857 -0.279

Wilcoxon Signed Rank Test, H0 p-value

Diff(low) = Diff (Medium) 0.03
Diff(Medium) = Diff (High) 0.03

Explanations: This table describes how the utility gains are split among three groups defined based on
manual performance. Each number is computed as π j/

∑

j π j , where π stands for the performance ratio and
j = low, medium, high.

Result 6: Private and Social Gains from Algorithm Availability. The availability of algorithms

(algo-possible rounds) increases individual performance across the board. It also increases efficiency

and decreases inequality. Increased volume of trade by algorithms improves individual performance

of algorithm-deploying participants, and decreases inequality, but has no effect on efficiency.

14We use Wilcoxon signed rank test to establish the statistical significance
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D.2. Algorithm parameters, trading behavior, and performance

Table 7 presents the spread choices of the deployed maker and taker robots across the three manual

trading skill level groups. The theoretical model predicts that makers post maximal spread, while

takers should have minimal spreads. The null that the spreads are equal is rejected only in the

high-skilled group. The skilled traders have the lowest spreads among both maker and taker robots.

Off-equilibrium best response in the game of choosing spreads would dictate slight undercutting of

spreads, and we hypothesize that these spread choices of the high-skilled traders contribute to their

better performance.

Table 7: Spread Choice across Manual Performance Groups

Taker −Maker

Maker Taker Diff t-stat

Low 0.1709 0.1706 0.000 0.04
Medium 0.1862 0.1650 -0.021 -1.14
High 0.1623 0.1193 -0.043 -3.18
Overall 0.1745 0.1484 -0.026 -2.56

Explanations: This table describes how makers and takers make spread choices across three groups defined
based on manual performance (Low, Medium, High) and the whole sample (Overall).

Table 8 shows how algorithm parameter choices affect the performance ratio. As can be seen in

Table 8, the performance ratio is significantly larger for participants who deploy taker algorithms,

execute a high volume of trades with their algorithms, and set large spreads. Theory shows that

maker algorithms perform at least as well as takers because in equilibrium such algorithms are

deployed with very large spreads. Our results reflect the prior observation that maker spreads are

significantly, but not largely different from taker spreads. A such, we are far from the equilibrium-

predicted spread gap (and its consequent negative effect on efficiency).
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Table 8: Performance Regression.

(1) (2) (3) (4) (5)
Performance

Taker 0.258∗∗∗ 0.335∗∗∗ 0.280∗∗∗ 0.041
(4.65) (3.54) (5.20) (0.27)

taker×spread -0.639 0.864∗∗

(-1.41) (2.34)
Spread 1.059∗∗∗ 0.866∗∗∗

(3.41) (3.89)
Robot Volume 0.003∗∗∗ 0.004∗∗∗ 0.006∗∗∗

(3.10) (4.52) (4.53)
hybrid -0.019 0.050

(-0.30) (0.88)
Human Volume 0.002∗∗ 0.002∗∗

(2.33) (2.16)
maker×spread 1.521∗∗∗

(4.83)
maker -0.415∗∗

(-2.40)
Constant 0.743∗∗∗ 0.600∗∗∗ 0.665∗∗∗ 0.258∗∗∗ 0.342∗∗∗

(21.20) (9.03) (9.41) (2.61) (3.10)

Adj. R2 -0.008 0.016 -0.020 0.069 0.077
N 573 573 573 573 573
Round FE Yes Yes Yes Yes Yes

Explanations: hybrid indicates the participants used both algorithms and manual trades. Human Volume
measure the trading volume executed by manual trades. Robot Volume measures the trading volume executed
by algorithms. taker is an indicator for deploying taker-type algorithm.
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We cannot rule out the possibility that our top performers rely on manual trades that complement

algorithmic trades to enhance their performance. As can be seen in table 9, there is no significant

difference in the total volume and the fraction of this trade that is performed by algorithms, between

the three performance groups. There is, however, a significant difference in the fraction of all

robotic trade being performed by a taker robot, with the High performance type using takers

significantly more. Thanks to this usage and accurate manual trading, this type generally trades at

more convenient prices. Figure 11 displays the empirical cumulative distribution functions of buy

and sell prices across the three types. It is immediately evident that the High type’s sale prices first

order stochastically dominate those of the other groups. It is less obvious that their buy prices are

stochastically dominated by the other types. A regression, reported in Table 13 in the Appendix,

shows that this type’s buy prices are indeed smaller than for other types, while sell prices are higher.

Table 9: Algo-possible Rounds’ Volume by Performance Type.

Total∗ Robot Taker Nobs

Low 0.933 0.690 0.290 25
Medium 0.993 0.666 0.312 25
High 0.953 0.728 0.487 22

T-statistic of difference between groups

Low v. Medium -0.578 0.251 -0.287
Low v. High -0.210 -0.435 -2.472
Medium v. High 0.399 -0.209 -2.006

Explanations: Total volume is given as a fraction of the socially-optimal trading volume. Robot volume is
given as a fraction of total volume, and Taker volume is given as a fraction of all robotic volume.
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Figure 11: Trading Prices by Performance Type.

Explanations: Performance types are created on the basis of performance in manual rounds only. Displayed
buy (upper figure) and sell (lower figure) prices are for algo-possible rounds only.
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IV. CONCLUSION

The effect of automation on individual financial market performance is both important and difficult

to observe. In this work we use experimental market to investigate how agents program and use

simple robots. On the one hand, robots relieve agents from the burden of computing their optimal

trading strategy throughout the trading session which benefits poor traders. However, those that

understand robots can deploy them or also engage in manual trading to better effect.

Overall, our work highlights that while in theory there is no difference between a Bayesian

decision maker and a perfect algorithm, in the experimental markets we have analyzed there are

differences. The choice of robots affected not only the size of the gains from trade and how they

are split among the traders, but also the prices generated by the market. Indeed, even though

allocations may be close to efficient, prices can deviate significantly because of how the gains from

trade are split through robot and spread choice. In real markets we do not observe valuations, but

rather infer them from price. It is useful to know the extent to which prices and trading volume

differ because of algorithms both relative to efficient benchmarks and manual trading.

Finally, we note that all our agents had the same choice of robots, but this still generated

heterogeneity in chosen spreads and aggressiveness (role choice). In real markets, participants

have access to many different algorithms which could exacerbate the cross-sectional effects of

robot-choice.
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EXIT SURVEY QUESTIONS, ANSWERS, AND CONSTRUCTED VARIABLES

After participating in all experimental rounds, and before payment, participants participated in an

exit survey administered on using Qualtrics, and containing the following questions:

1. What was your trader ID? (M#)

2. Please indicate your age.

3. What is your gender?

4. If you are a student, please tell us your major.

5. To what extent do you agree/disagree with the following statements?

(a) I find technology useful in my daily life.

(b) Using technology helps me accomplish things more quickly.

(c) Using technology increases my productivity.

(d) Learning how to use technology is easy for me.

Five-level Likert scale ranging from strongly disagree (1) to neither agree nor disagree

(3), to strongly agree.

6. To what extent were each of the following aspects of the experiment clear to you?

(a) How to use the interface to place orders and trade manually

(b) How to use the interface to deploy an algorithm

(c) How your payoff was calculated from your holdings in a given round

(d) How your overall payoff for the experiment was determined

(e) How your valuation for Stock A changed as you traded

(f) How algorithms determined the trades they tried to make on your behalf

Five-level Likert scale ranging from I don’t know (0), and not at all clear (1) to to very

clear (5).

7. To what extent do you believe the following choices were good or bad for your payoff in a

given round?

36



(a) Launching an algorithm

(b) Trading manually alongside an algorithm

(c) Trading manually only

(d) Conditional on launching an algorithm, choosing it to be a maker

(e) Conditional on launching an algorithm, choosing it to be a taker

(f) Setting a high spread when you launched a maker algorithm

(g) Setting a high spread when you launched a taker algorithm

Six-level Likert scale ranging from I don’t know (0) and very bad (1) to very good

(includes irrelevant (3)).

8. Do you believe the choice of algorithm type (maker or taker) by other participants affected

your payoff? Three levels of answer: Yes, No, and I don’t know

9. Do you believe the choice of spread set on the algorithms deployed by other participants

affected your payoff? Three levels of answer: Yes, No, and I don’t know

10. What feedback, if any, would you like to provide to the experimental team?

Answers to survey questions, tabulated in Table 10, were used to create several indicators, as

follows:

• Tech: Sum of answers to survey questions 5(a) to 5(d). Questions 5(a) to 5(c) correspond

to the Performance Expectancy questions on technology adoption taken from Ben-David and

Sade (2021), in turn based on Venkatesh et al. (2012). Question 5(d) corresponds to the first

of their Effort Expectancy questions on technology adoption.

• Understand Basic: Sum of answers to question 6(a) and 6(b). An indicator of basic under-

standing of the trading interface.

• Understand: Sum of answers to questions 6(a) to 6(f). An indicator of understanding of all

aspects useful for trading.

• Understand robot: Sum of answers to questions 6(b) and 6(f). An indicator of understanding

of the usage and functioning of algorithms.
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Table 10: Frequency of Survey Responses.

Question 5

Possible Responses (a) (b) (c) (d)

Strongly disagree 1 1 1 1
Somewhat disagree 2 3 3 1
Neither agree nor disagree 2 1 5 5
Somewhat agree 11 13 26 30
Strongly agree 56 54 37 35
Total 72 72 72 72

Question 6

Possible Responses (a) (b) (c) (d) (e) (f)

Not at all clear 0 1 6 0 0 2
A little clear 8 11 20 11 14 16
Clear 33 27 21 29 31 31
Very clear 30 30 23 29 24 21
I don’t know 1 2 2 3 3 2
Total 72 71 72 72 72 72

Question 7

Possible Responses (a) (b) (c) (d) ( e) (f) (g)

Very bad 1 3 6 0 2 1 2
Bad 10 6 14 7 8 14 14
Irrelevant 6 5 5 8 7 9 9
Good 34 23 26 25 32 24 24
Very good 21 34 18 28 18 19 16
I don’t know 0 1 3 4 5 5 7
Total 72 72 72 72 72 72 72

Possible Responses Question 8 Question 9

I Don’t Know 2 6
No 5 9
Yes 65 57
Total 72 72

• Algopref : The answer to question 7(a) plus 5 minus the answer to question 7(b), plus 5

minus the answer to question 7(c). Answers “I don’t know” to any of the questions have

a contribution of 0 to the indicator. An indicator of participant belief that launching an

algorithm is more beneficial for performance than manual trading.

• Makerpref : The answer to question 7(d) plus 5 minus the answer to question 7(e). Answers

“I don’t know” to either question have a contribution of 0 to the indicator. An indicator of
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participant belief that launching a maker algorithm is more beneficial for performance than a

taker algorithm.

• Spreadpref : Sum of answers to questions 7(f) and 7(g). An indicator of participant belief that

setting a high spread is beneficial for performance.
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PROOFS

Proof of Lemma 1 Follows immediately from arguments in the text.

Proof of Lemma 2

The triangle whose area determines the efficiency loss has a base equal to (δS +δD)/2 and a

height equal to the difference between the zero-spread trade quantity, (eS
A − eD

A )/2, and the actual

trade quantity, x∗. The result follows.

Proof of Lemma 2

Follows from arguments in the text.

Proof of Proposition 1

From the proof of Proposition 2 when spread choice is endogenous, it is optimal to choose to be

a taker when the other player is a maker.

1. Assume the buyer is a maker and the seller, a taker, wants to optimally set their spread, δS.

They do so buy maximizing their payoff, given below.

ΠS(δS ,δD, T, M) =
�

ρDA(0)−ρSA(0)
2

−
δS +δD

4

�

x∗ +
δS

2
x∗

=
�

γσA(eS − eD)
2

+
δS −δD

4

�

x∗

=
�

γσA(eS − eD)
2

+
δS −δD

4

��

eS − eD

2
−
δS +δD

4γσA

�

.

The above concave function of δS has a zero derivative if and only if δS = 0.

2. We find the optimal spread of the maker (buyer, in our case) given that the seller sets a spread

of zero. When facing a taker, the maker can only reap the spread from each transacted unit,

leading to a payoff

ΠD(0,δD, T, M) =
δD

2
x∗ =

δD

2

�

eSA− eDA

2
−
δD

4γσ2
A

�

.
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With this, the first order condition for optimality, yields

∂ΠD (δD; ·)
∂ δD

= 0⇔
δD

2
x∗ =

δD

2

�

eSA− eDA

2
−
δD

4γσ2
A

�

⇐⇒

δD(δS) = γσ
2
A(eSA− eDA) = ρDA(0)−ρSA(0).

Notably, this spread size means that at the onset (first traded unit), the maker absorbs half

the trade surplus, and this fraction becomes even larger at ensuing units.

3. The traded quantity is found by replacing the maker’s spread in the expression for x∗ derived

before. This immediately gives (eSA−eDA)
4 , which is half the quantity when spreads of both

traders are zero (efficient outcome).

4. We replace the traded quantity in the expression for the buyer’s bid function or the seller’s ask

function to obtain the price of the last traded unit

p∗ = µA− γ
h

σ2
A

eSA+ eDA

2
+σABeB

i

− γσ2
AeDA = p∗0−spread − γσ

2
AeDA

In our proofs we have taken the buyer to be the maker and we have found the last trade price

to be lower than the last trade price with zero spreads. Thus, the bias is in favor of the maker.

5. The efficiency loss in equilibrium is found by replacing the equilibrium spreads (0 and δ∗D) in

the expression of Lemma 1. This yields

EL∗ =
1

16
γσ2

A (eSA− eDA)
2 =

1
16
(ρDA−ρSA)2

γσA

The last part of point 5 requires that we find optimal spreads if both players are makers. This

is obtained from payoff maximization with each player having equal odds of being the price

setter. This is

ΠD(δS ,δD, M , M) =
1
2

�

ρDA(0)−ρSA(0)
2

−
δS +δD

4

�

x∗ +
δD

2
x∗

=
1
2

�

γσ2
A(eSA− eDA)

2
+

3δD −δS

4

��

eS − eD

2
−
δS +δD

4γσ2
A

�

,
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and the first-order condition gives:

∂ΠD(δD; ·)
∂ δD

= 0 ⇐⇒
1
2

�

eSA− eDA

2
−
δS

4γσ2
A

�

=
3δD

8γσ2
A

⇐⇒

δD(δS) =
2γσ2

A(eSA− eDA)

3
−
δS

3
.

By symmetry, δS(δD) =
2γσA(eS−eD)

3 − δD
3 and, thus, optimal buyer and seller spreads are equal

and equal to δD = δS =
1
2(ρDA−ρSA). This is half as large a spread as in the maker-taker

case. However, as this spread is set by both traders while in the maker-taker case the taker

sets a zero spread, the efficiency loss is the same as in equilibrium.

6. To obtain the maker’s payoff we replace the equilibrium spread and traded units in the maker

buyer’s payoff function:

ΠD

�

0,δ∗D, T, M
�

=
δ∗D
2

x∗ =
γσ2

A

8
(eSA− eDA)

2 ,

To obtain the seller’s payoff, we notice it equals the size of the triangle with base equal to half

the initial surplus (at x = 0) and height the total traded units in equilibrium, x∗ = eSA−eDA
4 .

This yields

ΠS

�

0,δ∗D, T, M
�

=
1
2

�

eSA− eDA

4
×
γσ2

A (eSA− eDA)

2

�

=
γσ2

A (eSA− eDA)
2

16
.

Thus, in equilibrium, the maker obtains twice as large a payoff than the taker.
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2N-PERSON ALGORITHM SELECTION GAME

Consider a replica economy, with N players of each of the two endowment types introduced in

the 2-person game above. Thus, there are N players with eSA initial units of Stock A and an equal

number of players with eDA initial units of A. The intuition and, to some extent, formal results of

the 2-player game carry over to this more complex setting, as shown in the propositions below.

Proposition 2 (2N traders, role and spread choice.) When traders choose both their role and their

spread, the following actions of players constitute two equilibria of the game:

1. One side of the market (buyers or sellers) is all taker robots and all takers set a spread equal to

zero.

2. The other side of the market is all maker robots where the spreads are decreasing as follows

δN−r =
2N − r + 1

2

2N − r + 1
δN−r+1,

for r = 1, ..., N − 1 and δi denotes the spread of trader i, i = 1, .., N − 1. For ease of notation,

traders have been numbered in increasing order of their equilibrium spreads. Also, the largest

spread, δN , equals

δN = ∆ = γσ
2
A (eSA− eDA) .

3. As N → ∞, gains from undercutting other makers’ spreads to increase the number of traded

units become infinitesimal, effectively equating the game to the 2-person game. As a result, like in

the 2-person game, all makers set δi = ∆, the traded quantity is half the zero-spread (efficient)

quantity, and the makers obtain twice as large a payoff as the takers.

The asymmetry present in the equilibrium described in Proposition 3, stems from a mixture of

robot and market mechanism (CDA) characteristics, that is relevant also for commercial markets

and algorithms therein. However, it is unappealing as a model to test in the reduced time of

an experimental session: participants not only must coordinate in their choice of role (across

endowment types), but also in their choice of ranked spreads when makers. The game can be

simplified by restricting participant choices of spread, which is what we do in the experiment.

Recalling that ∆ = γσ2
A (eSA− eDA) is the gain from trade when no trade has yet occurred, let
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the individual choice of spread be constrained above by δ̄ ∈ [1
2∆, 5

8∆]. The equilibria of this

constrained game are characterized in the following proposition.

Proposition 3 (2N traders, role and constrained spread choice.) When traders choose both their

role and their spread but spread is constrained to be δi < δ̄, with δ̄ ∈ [1
2∆, 5

8∆], two equilibria exist

where the traders adopt different roles. The equilibria have the following characteristics:

1. One side of the market is all taker robots and all takers set a spread equal to zero.

2. The other side of the market is all maker robots where they all choose

δi = δ̄
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ADDITIONAL RESULTS

ALGORITHM ROLE AND SPREAD CHOICE

Table 11: Logistic Model of Choice of Algorithm Role.

(1) (2) (3)
taker maker switch

Perf Ratiot−1 0.033 0.075 -0.896∗∗∗

(0.19) (0.43) (-4.65)
takert−1 1.511∗∗∗ -0.902∗∗∗

(7.17) (-4.35)
Robot Volumet−1 0.007∗∗ 0.006∗∗ -0.001

(2.32) (2.13) (-0.48)
Human Volumet−1 -0.000 -0.005∗∗ -0.004∗∗

(-0.20) (-2.27) (-1.96)
Spreadt−1 -1.391 2.500∗∗∗ 1.904∗∗

(-1.58) (2.95) (2.26)
Type II 0.163 -0.399∗∗ -0.324

(0.79) (-1.97) (-1.59)
samemakerst−1 0.130 -0.068 -0.134∗

(1.57) (-0.84) (-1.67)
othermakerst−1 0.104 -0.038 0.031

(1.32) (-0.51) (0.41)
Constant -2.049∗∗∗ 0.032 0.661∗

(-4.85) (0.08) (1.78)

Pseudo. Rsq. 0.103 0.081 0.059
N 499 499 499

Explanations: Dependent variables are dummies equal to 1 when a participant chooses role “taker” for their
deployed algorithm (column 1), or the role “maker” (column 2), or switches roles between the previous and
the current round (column 3).

Table 12 investigates if other factors besides algorithm role affect spread choice. First, while

makers set higher spreads, the added effect of experience illustrated in Figure 9 is not significant

(coefficient of serial maker). Further, the only environmental element that significantly affects

chosen spreads is past average spread, showing a form of inertia or arms race in spread setting.

Importantly, participants setting a high spread tend to outperform the median participant (column

(1), variable Outperform).
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Table 12: Choice of Spread (independent of the type of robot chosen).

(1) (2)
Spread Spread

serial makert 0.007 0.013
(0.29) (0.76)

makert 0.059∗∗∗

(4.82)
Robot Volumet -0.000

(-0.44)
Outperformt 0.028∗∗∗

(2.70)
Average Spreadt−1 0.581∗∗∗

(9.49)
Outperformt−1 0.005

(0.54)
makert−1 0.003

(0.27)
Constant 0.105∗∗∗ 0.056∗∗∗

(9.19) (6.43)

Adj. Rsq. 0.109 0.378
N 573 499
Round FE Yes Yes

Explanations: Dependent variable in both columns is the bid-ask spread participants choose for their
algorithms. serial maker indicates when a participant has deployed a maker in five or more preceding rounds.
Outperform indicates whether the participant’s performance is above the median level in a given round.
Average spread is the average of all participants’ spreads in a given round.

TRADE PRICES BY PERFORMANCE TYPE

Table 13 displays regression results showing that participants of the High performance type sell

at significantly higher prices and buy at significantly lower prices than participants of either the

Medium or Low type.

46



Table 13: Buy and Sell Prices (in US$ cents) by Performance Type.

(1) (2) (3) (4)
Buy Price Sell Price Buy Price Sell Price

Constant 73.89 70.34 74.81 70.76
(210.84) (197.86) (213.41) (202.19)

Performance Type Low -0.92 -0.42
(-3.39) (-1.60)

Performance Type Medium 0.92 0.42
(3.39) (1.60)

Performance Type High -3.72 6.51 -4.64 6.09
(-13.48) (23.48) (-17.23) (22.31)

Adj. R2 0.112 0.123 0.112 0.123
N 28011 28011 28011 28011
Round FE Yes Yes Yes Yes

Explanations: Regression of Buy price (Columns (1) and (3)) and Sell price (Columns (2) and (4)) as a
function of performance type. We control for Round fixed effects, as socially-optimal prices vary from round
to round. Columns (1) and (2) have as reference the prices of the Low type. Columns (3) and (4) have as
reference the Medium type. That way, the significantly more convenient prices of the High type are revealed
with respect to either other type.
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