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Abstract
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private interests in climate externalities: In a dynamic common agency model, the
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The mechanism shows how subsidies to socially harmful actions turn to externality

prices and special interests can implement energy transition faster than socially

optimal.
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1 Introduction

Can special interests representing corporate profits internalize such grand externalities

as climate change? While the common concern is that “firms [are] spending millions

lobbying to block climate change policies”,1 evidence points to a more nuanced picture

where diverse interests lead to some firms lobbying for and others against climate policies

(Kim, Urpelainen, & Yang, 2014). In fact, it is not uncommon that firms spending

millions to undermine policies turn later to policy advocates. Private interests are pushing

for policies that are socially beneficial but, clearly, privately costly.2

While arguments for broader than profit objectives for firms are not in short supply

(e.g., Hart & Zingales, 2017), it is not obvious how social objectives can turn to market

value. Yet, policy-makers concerned with externalities may become a source of market

value to firms that end up “internalizing” externalities. Evidence informs us that share-

holders value “investments in influence” (Hill, Kelly, Lockhart, & Van Ness, 2013) and

that, more specifically, returns to lobbying in the energy sector can be very high (Kang,

2016) — there is no a priori reason to rule out lobbying returns arising from the social

desirability of the private activity as a source of market value for firms.

To explain why, when, and how private and social interests become aligned, we develop

a dynamic common agency model with two main elements. First, the agent making policy

decisions today is representative in all aspects but income: Special interests distort the

income of the agent in office but otherwise the decision-maker internalizes all current and

future market and non-market impacts of policies, as the agent experiences these herself

as the future representative agent with normal income.

Second, principals from industries compete to influence the agent’s decisions but, at

the same time, rents in production cannot be competed away. Sunk past investment in

power plants can lead to rent protection as free-entry investments in a declining industry

is not possible (Baldwin & Robert-Nicoud, 2007). Simultaneously, new rents are created,

e.g., for renewable energy sources located in the best sites. The energy sector is famous

for its leverage in policy making, and rent destruction and creation seem likely drivers of

the influence.3

1Guardian, 26/09/2019.
2It is common for energy giants to announce bold stroke plans to reduce dependence on fossil fuels and

use more renewable energy. One often-cited case is Duke Energy:“Duke Leaves Coal Group Over Anti-

Climate Bill Stance”. BusinessGreen, 3 September 2009. See also https://www.c2es.org/our-work/belc/,

and https://www.euractiv.com/topics/magritte-group/
3See Kalkuhl, Steckel, and Edenhofer (2020) for a quantitative illustration of the quantitative rele-

2



We find dynamics that is new to menu auctions (Bernheim & Whinston, 1986) and

the common agency applications: The principals’ interests in the agent’s actions changes

endogenously on the equilibrium path, giving rise to “private interest in social objec-

tives”. In applied terms, subsidies to socially harmful production (i.e., fossil fuels) turn

to externality taxes together with subsidies to green solutions as the relative returns from

influencing these policies evolve with agent’s wealth. It is thus the growth of income to-

gether with externalities that drive the decline of fossils and demand for renewables as a

pollution-free solution.

The income-driven change in the private interests feeds back to drive the respective

rise and fall of clean and dirty industries. This two-way dynamics is the main result of

the paper, contrasting the one-way explanations for policy persistence; that is, why is it

that policies protecting industries tend to persist without a clear efficiency justification

(Brainard & Verdier, 1997; Coate & Morris, 1999; Baldwin & Robert-Nicoud, 2007;

Kerr, Lincoln, & Mishra, 2014). The novelty of our mechanism arises purely from the

dynamics of stakes that industries have in the economy. A declining industry, all else

equal, captures an increasing share of the total value added as net rents (market rents

minus contributions), until the industry collapses. Towards the end, the industry does

not care about the future stakes in the economy and will thus distort more. In our specific

application, a balancing act comes from the growing renewable energy industry that has

a reason to look forward. In fact, in our quantitative illustration, by focusing on the

green rents, the industry ends up buying a faster than socially optimal implementation

of climate policies.

With no intention to explain cross-country variation in policies, we note however that

the sum of total global fossil-fuel subsidies was at least three times larger than the renew-

able energy subsidies in 2014, low or middle income countries handing relatively greater

subsidies to fossil fuels (IEA, 2016). According to Coady et al. (2015) subsidies are a

staggering 13-18 % of GDP in a set of major emerging economies but the advanced coun-

try average is about 2.5 %. In addition to direct producer and consumer subsidies, lower

income regions tend to leave out the externality costs arising from energy consumption to

a greater extent, suggesting that income levels are associated with willingness to include

externality payments in taxes.

Our climate-specific contribution is to extend the work-horse climate-economy model

by Golosov, Hassler, Krusell, and Tsyvinski (2014) to cover the dynamics of special-

interest influence. By restricting attention to a parametric class for preferences and

vance of land-use related rents in comparison to fossil-fuel rents.
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technologies, this model has proven extremely useful in analytical works seeking to main-

tain the fundamentals of comprehensive climate-economy models.4 We focus on Markov

Perfect Equilibria, following Bergemann and Välimäki (2003)5, and identify a new class

of Markov strategies, called homogeneous strategies, that preserve the structure essen-

tial for the applied work building on Golosov et al. (2014). We can prove the existence

and uniqueness of the homogeneous MPE, and can sharply characterize how measures of

rents, income, and climate impacts shape the policy implementation. For example, it is

not necessary to solve equilibrium strategies explicitly to predict the share of value-added

taken by industries over time.

Conceptually, this paper differs from the core of applied common agency papers in

that we have a joint inclusion of (i) non-transferable utility between the agent and prin-

cipal (as in Dixit, Grossman, and Helpman (1997)) and (ii) a political relationship that is

dynamic. These properties produce the endogenously changing private interest in exter-

nalities which we have not seen in the literature, including those with environmental focus

(Aidt, 1998; Damania, 2001; Fredriksson & Svensson, 2003; Fredriksson, Vollebergh, &

Dijkgraaf, 2004).

2 The allocation problem

There are two energy types, fossil fuel i = D (dirty) and renewables i = C (clean).

Time is discrete and extends to infinity, t ∈ {..., 0, 1, 2, ..}. Let

ht = {..., ED,t−3, ED,t−2, ED,t−1}

be the history of fossil-fuel use at time t, assumed to impact the aggregate gross output

through the total factor productivity in the economy:

Ω(ht)Ft(ED,t, EC,t, Lt) (1)

where Ft(ED,t, EC,t, Lt) is a constant-returns-to-scale output function depending on en-

ergy inputs and labor, Lt, which is supplied exogenously, and

Ω(ht) = exp(−
∑∞

n=1
θnED,t−n), (2)

4These include: the long delay between emissions and impacts (Gerlagh & Liski, 2017); the role of

income in externality pricing; learning of climate impacts (Traeger, 2015; Gerlagh & Liski, 2016).
5However, the dynamic extension provided by these authors applies only to the transferable utility

case.
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where the sequence of weights (θn)n≥1 is taken as given. The “impulse-response” from

the history can be micro-founded, which we illustrate shortly (Gerlagh & Liski, 2017);

this link between past input choices and current total factor productivity (TFP) is main

dynamic feature of the model. By this assumption, climate change is at the heart of the

production technology (as in Golosov et al., 2014), although direct utility losses could be

equally relevant.6

The aggregate net output, gross output minus energy production costs, is

Yt = Ω(ht)
(
Ltft(

∑
iEi,t

Lt

)−
∑
i

ci(Ei,t)
)

(3)

where ci,t = Ω(ht)ci is the cost function for energy production in sector i, and for conve-

nience of notation we use
∑

i for
∑

i=D,C . We note that, although the gross output has

constant returns to scale, the net output Yt fails to do so as long as the energy cost is

strictly convex, which is assumed throughout this paper. The rents in the energy sector

will arise from this property.

We assume a representative consumer at each t, enjoying consumption utility U(Ct) =

ln(Ct) at t. The consumer cares about the welfare of consumer t+1, giving it weight 0 <

β < 1, which, for a sequence of consumption (Cn)n≥t, leads to a dynastic representation

of welfare

Wt = ln(Ct) + βWt+1 (4)

where Wt is the value of the consumption program. The consumer’s budget constraint is

simply Ct = Yt.

The socially optimal allocation maximizes the welfare of the representative consumer

over time where the welfare is defined through a sequence of consumption utilities, (Ut)
∞
t=0.

The next lemma describes the dependence of the social optimum on history ht.

Lemma 1 Utility and welfare in the social optimal allocation satisfy

USO
t (ht) = U

SO

t −
∑∞

n=1
θnED,t−n

W SO
t (ht) = W

SO

t −
∑∞

n=1

∑∞

i=0
βiθn+iED,t−n

where the first terms on the right-hand side denote a value sequence (U
SO

t ,W
SO

t ) that is

dependent on current and future technology but independent of history ht, and the second

terms depend on history through the weights θn given by the climate-economy description.

6This formalization, together with the time-structure of impacts, can replicate the outcomes of the

detailed climate-economy model outputs quite well; see van den Bijgaart, Gerlagh, and Liski (2016).
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The result thus separates the utility and welfare sequences into those arising from

exogenous growth sources (i.e., technology) and those that capture the burden of past

emissions. To see how the result arises and what it means, consider planner at t choosing

the optimal energy mix, when both energy sectors i = D,C are active, to satisfy:

U ′(Yt)
∂Yt
∂Ei,t

= −β∂Wt+1

∂Ei,t

. (5)

The right-hand side is the social cost of the energy use Ei,t which for clean energy i = C

is zero but, for i = D, Lemma 1 implies:

−∂Wt+1

∂ED,t

=
∑∞

i=1
βi−1θi ≡ Θ.

The social cost is thus a constant but it can still capture a rich time-structure of impacts,

attributable to the delays and interactions in the climate system. Gerlagh and Liski (2017,

Theorem 1), develop damage time structure (θn)n>0 based on a system of carbon and

heat reservoirs in the climate system where flows between reservoirs are linear in stocks

(Joos et al., 2013). Our quantitative analysis builds on this representation to calibrate

the social costs.

The left-hand side of (5) is the utility-weighted marginal value of energy use today.

Given the log utility, we may rewrite for dirty energy

∂Yt
∂ED,t

= βΘYt,

giving the monetary externality price that the planner would like to implement on the

use of ED,t. As in Golosov et al. (2017) and Gerlagh and Liski (2018a, 2018b), the

externality price depends on the income level, capturing the idea that the willingness to

pay for pollution reductions depends on income.

To explicate the mechanisms that we want to capture and quantify by this formaliza-

tion, an illustration might help. Consider

Ft(ED,t, EC,t, Lt) = At

(
AD,tED,t + AC,tEC,t

)γt
L1−γt
t and ci(Ei,t) = δi,tE

1+σ
σ

i,t

for i = D,C where output function Ft allows flexible changes in productivity drivers

(At, AD,t, AE,t) and also in factor shares γt. Energy cost assumes constant elasticity

form at time t, with σ > 0, and time-dependent cost shifter δi,t. Appropriate choices

for the time-changing parameters allow avoiding unrealistically deep early reductions of

emissions, if such are incentivized by policies; parameter choices can approximate the

energy sector capital adjustment delays (Hassler et al., 2012). Fossil energy is formalized
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as a reproducible good, but this assumption is not critical as long as the economy does

not find it optimal to consume all fossil-fuel resources, due to climate damages (see also

Golosov et al., 2014). Energy production is subject to diminishing returns, resulting in,

for example, land rents in renewable energy production (Fischer and Newell, 2008).

In social optimum, the above functional forms imply

1

Ft −
∑

i ci,t
×

(
γtAD,t

Ft∑
iEi,t︸ ︷︷ ︸

marg prod of energy
in gross output

− 1 + σ

σ

ci(Ei,t)

Ei,t︸ ︷︷ ︸
marg prod costs of fuel

)
= I(i)βΘ

where indicator I(i) = 1 is iff i = D (the future social cost arises only for the dirty energy).

The current marginal utility-weighted gain from increasing Ei,t is balanced against the

future welfare loss. Because climate change is a TFP shock in our formulation, Ω(ht)

impacts income level multiplicatively but the marginal utility of that income inversely

and so drops out from the planner’s trade-off at any given t. Still, the history impacts the

welfare level which will importantly shape the contributions made by the interest groups

in the common agency game analyzed just below. Given the parametric class, the optimal

energy mix sequence (Ei,t)
∞
t=0 for i = D,C can be found through a sequence of choices

solving the trade-off just outlined, defining period-by-period the history-independent part

of the utility U
SO

t .

2.1 Competitive equilibrium.

Given an allocation sequence (ED,t, EC,t), we can interpret it as an equilibrium out-

come in which the agent’s policy instruments are taxes τt = (τD,t, τC,t) which, as in-

struments applied at the industry level, are perhaps more natural than energy output

quotas. Decentralization also gives a microstructure for rents and links them to the policy

distortions below.

Final goods. Taking unit taxes τD,t and τC,t (subsidies if negative) as given for now,

consider a final good sector, where the representative firm has access to the production

technology and decides on the use of the two energy inputs, with profits

ΠY,t = Ω(ht)Ltft(
ED,t + EC,t

Lt

)−
∑
i

(τi,t + µi,t)Ei,t − wtLt (6)

where µi,t is the market price of the specific energy type, wt is the market wage, and Lt

denotes labor input. Since Ltft(·) is a constant-returns-to-scale technology, final-goods

sector competitive profits are zero, ΠY,t = 0.
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In the competitive equilibrium, energy prices plus taxes equal marginal product of

energy,

Ω(ht)f
′
t(et) = τi,t + µi,t, (7)

and wages equal marginal productivity of labour,

wt = Ω(ht)[ft(et)− f ′
t(et)et], (8)

where et =
∑

iEi,t/Lt is energy intensity.

Energy supply. In the energy sectors i = D,C, profits from energy input choices in

period t are

Πi,t = µi,tEi,t − Ωtci,t(Ei,t) (9)

where cost ci,t(Ei,t) is assumed to define constant-elasticity energy supply,

σ =
∂Ei,t

∂µi,t

µi,t

Ei,t

> 0, (10)

which allows us to work with tractable expressions for rents. We have no prior if it is

sector i = D or i = C that should have larger σ, and so we settle on symmetric σ for the

sectors; with symmetric σ, other parameters that are potentially time-varying can still

differ between the sectors. Rents and costs make up constant fractions of the value of

the resource-specific energy output:

Πi,t =
1

σ + 1
µi,tEi,t (11)

Ωtci,t =
σ

σ + 1
µi,tEi,t. (12)

Households Households consume the aggregate net output, gross output of the final

goods sector minus energy production costs. Its value equals factor compensations plus

taxes and rents in the energy sector,

Yt = Ω(ht)
(
Ltft(

∑
iEi,t

Lt

)−
∑
i

ci(Ei,t)
)

(13)

= wtLt +
∑
i

Πi,t + Γt (14)

= Ct (15)

where Γt =
∑

i τi,tEi,t denotes taxes collected, ci,t = Ω(ht)ci.
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The Ramsey rule for households sets the discount factor for future values through the

marginal rate of substitution between period t and t+ 1:

rt+1 ≡
∂Wt/∂Ct

∂Wt/∂Ct+1

=
Yt+1

βYt
. (16)

This defines the implicit gross return in the economy, Rt+1 ≡ 1
rt+1

. In the market inter-

pretation of the allocation, the price of consumption can be recovered from consumers

trading payoffs with different maturities (see, for example, Cochrane 2000).

As our baseline economy does not feature capital and firms maximize profits within

periods, we do not need the discount factor for the equilibrium definition. Yet when firms

engage in strategic lobbying they will assess the implications of current actions on the

net present value of their assets. We come back to the discount factor below.

But first, we can define the competitive equilibrium, for given tax policies.

Definition 1 Given policies τt = (τD,t, τC,t), for t = 1, 2, ... , competitive equilibrium at t

is an allocation (Yt, Ct, ED,t, EC,t), supported by prices (µD,t, µC,t, wt), with output defined

through (1) − (2), where firms maximize profits (ΠD,t,ΠC,t), with (7) − (8), (11) − (12),

holding, and households consume output, (13)-(15).

Given the convex production set, we immediately see:

Proposition 1 Given a policy sequence (τt)
∞
t=0, the competitive equilibrium is recursively

dynamic, uniquely determined by history and current policies. Competitive equilibrium

allocations Y ∗
t = Y ∗

t (τt, ht) and E
∗
i,t = E∗

i,t(τt, ht) for output/consumption and energy uses

recursively solve the program (t = 1, 2, ...)

max
ED,t,EC,t

Yt − τD,tED,t − τC,tEC,t (17)

subject to the production constraints (1) and (2).

3 The policy game

Policy maker. The policy maker is in office for one period and shares the preferences

of the representative consumer but has a different income due to contributions from

the energy sector. Let Tt =
∑

i Ti,t be the aggregate transfer from the industries. The

consumption of the policy maker is Gt = Yt + ζTt, where 0 < ζ < 1 is the multiplier

transforming each contributed euro to an aggregate income equivalent, in the eyes of the
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policy maker. Alternatively, ζ can measure the broadness of polity, or the size of the

policy making population with whom transfer revenues are to be shared, or the cost-

wedge between transfer donor and recipient. In Bernheim and Whinston (1986), second

application, ζ would be economic influence.

The welfare of the decision maker in power in period t is then

ln
(
Yt + ζTt

)
+ βWt+1 (18)

where the policy maker’s post-office welfare coincides with that of the representative

consumer. That is, he becomes a citizen or, in the dynastic interpretation, cares about

the welfare of the children who are not policy makers, while understanding the equilibrium

choices of those in power in the future. The equilibrium mechanism we are interested in

is fundamentally of general-equilibrium nature and therefore income is transferable but

not utility (as in Dixit et al. (1997)). By accepting transfers today the policy maker has

to compromise future welfare gains from efficiency, so the policy game is dynamic (as in

Bergemann and Välimäki (2003)).

Organized special interest. We assume that there are Ki > 1 firms in each sector

i = D,C. For an implementation of the policy game outcome in competitive markets, we

assume that Ki is large and, for convenience of exposition, we assume a representative

firm in each energy sector i = C,D. However, equilibrium outcome of the policy game

will maximize the value of grand coalition of firms (to be explicitly defined), and this

property will be independent of whether firms are small, heterogenous, or perhaps active

in both sectors.

The representative firm in each energy sector i = C,D offers a transfer menu Ti,t to the

policy maker, depending on the policies implemented; we frequently use the aggregate

transfer, Tt =
∑

i Ti,t, in the analysis. The policy maker decides on the energy mix

Et = (ED,t, EC,t); these can be implement through taxes and subsidies in the decentralized

economy.

The organized special intrest is willing to offer transfers since energy production

commands rents that are strictly increasing in both sectors if respective Ei,t increases

above the socially optimal energy use. As in Hillman (1982), we think of rents that

arise from specific factors rather than from non-competitive profits (as, for example, in

the Stigler-Petzman model of regulation). Write Πi,t(Et, ht) for the reduced rents that

depend on the current energy mix and history and, for the moment, take the rent function
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as given; its microfoundations will be given in the Section on the decentralized economy.7

For any given (Πi,n, Ti,n)n≥t, the net present value profits for each firm type i = D,C is

Vi,t = Πi,t − Ti,t +Rt+1Vi,t+1 (19)

where the discount factor Rt+1 is determined by the Ramsey rule (16). The principals are

sophisticated, that is, a firm offering a transfer to the agent in power, foresees how the

current actions influence the future values through the equilibrium strategies. Climate

change, through productivity impacts on the aggregate economy, will also affect future

rents and thus the value of the firm; this general equilibrium feature is part of our policy

game.

Strategies. In each period t starting with history ht, the timing is the following:

1. Industries i = D,C offer reward schedules Ti,t = Ti,t(Et, ht);

2. The policy maker selects the energy mix, Et = (ED,t, EC,t).

For given transfer schedules, the policy gives Ei,t for industry i; it can be thought of as

an output quota. Equivalently, when the policy is to use a sector-wide tax (or subsidy)

on Ei,t, firms cannot lobby for firm-by-firm taxes.

The conduct of policies may come from the past, for example, “noblesse oblige”

may be important for those in power, but we focus on Markov strategies in this paper.

They condition on history only because ht impacts the economy through productivity

Ω(ht), not because of strategic links to past actions. Formally, strategies are reward

functions
(
Ti,n(En, hn)

)
n≥t

and policy selections
(
En(Tn(·), hn)

)
n≥t

, following Bergemann

and Välimäki (2003). The first step towards the definition of Markov perfect equilibrium

is the agent’s best response:

Definition 2 For E∗
t (·) to be a best response of the policy maker, then for all ht and

schedules Tt(·), policy E∗
t (Tt(·), ht) is a solution to

max
Et

{
ln
(
Yt(Et, ht) + ζTt(Et, ht)

)
+ βW ∗

t+1(ht+1)
}
,

where ht+1 is the continuation state induced by (Et, ht).

7We write Et for the pair (ED,t, EC,t).
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In choosing the reward function, any given principal is constrained by the agent’s

option to ignore that particular principal, and this is essential in determining how much

surplus must be left to the agent (as in Bernheim and Whinston (1986) and later appli-

cations). Principals in an industry lobby for a policy that affects all firms in the industry

similarly, so a firm could consider not contributing and enjoying the industry-wide ben-

efits from other firms’ rewards to the agent. But if the agent stops paying attention to

one firm in industry i, it does so for all firms in that industry and there will be no policy

distortion (policies are not tailored firm by firm). This makes each principal pivotal in

equilibrium, helping the principals in the industry to solve their coordination problem.

The policy-maker cannot extract more surplus than achievable from following today’s

efficient actions, with the future continuation play given by equilibrium strategies. This

one-shot deviation gives welfare, that we denote by W ∗∗
t , setting a lower bound to the

equilibrium welfare, denoted as W ∗
t . Thus, in equilibrium, the policy maker is indifferent

between the outcome with no transfers and one-shot optimal policies, and the equilibrium

outcome: the firms do not have to leave any excess surplus to the policy maker above

the uncompensated benchmark. Expanding, the indifference W ∗
t = W ∗∗

t implies

ln(Y ∗
t + ζT ∗

t ) + βW ∗
t+1(h

∗
t+1) = lnY ∗∗

t + βW ∗
t+1(h

∗∗
t+1) (20)

where Y ∗∗
t and h∗∗t+1 are current output and the continuation state induced by (E∗∗

t , h
∗
t )

that implement the one-period social optimal deviation from the equilibrium.

The reward schedules that achieve these strong implications for the agent must be

optimal for each principal:

Definition 3 An optimal reward function T ∗
i,t(E

∗
t , ht) maximizes profits for all ht. It

solves

max
T̂i,t(·)

Πi,t(·)− T̂i,t(Êt, ht) + R̂t+1V
∗
i,t+1(ĥt+1).

where Êt = E∗
t (T̂t, ht) is the best response to T̂t(·), and (ĥt+1, r̂t+1) is the continuation

state induced by (Êt, ht).

The concept of a truthful equilibrium requires that changes in the principal’s profits

are locally fully transferred to the agent. A local condition for a truthful equilibrium

transfer schedule is that

Ti,t(Et, ht) = Πi,t(Et, ht) +Rt+1V
∗
i,t+1(ht+1)− V ∗

i,t(ht). (21)

where V ∗
i,t denotes the equilibrium value of the firm. From (21), the Markov assumption

thus means that the net payoff Vi,t(ht) becomes locally independent of transfers: changes
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in policies and transfers at any given t have offsetting impacts in flow net profits so that

firm’s total level of profits remains constant.

Definition 4 (truthful Markov Perfect Equilibrium): Reward strategies
(
T ∗
i,n(En, hn)

)
n≥t

and policy selections
(
E∗

n(Tn(·), hn)
)
n≥t

constitute a Markov Perfect Equilibrium (MPE),

supported by value functions W ∗
t (ht), V

∗
i,t(ht), if they satisfy Definitions 2-3. A truthful

MPE also satisfies (21).

Our agent does not have a quasi-linear utility, as is typical in common agency games (also

in Bergemann and Välimäki (2003)). However, as shown in the proof of the Theorem

below, Definition 3 still implies the stated indifference between the equilibrium action

and one-shot efficiency for the agent; see also Dixit et al. (1997) for the static case with

non-transferable utility.

The set of Markov equilibria can still be large without further refinements. We want

to focus on a class of strategies that embeds the first-best choices so that we are not

making a strategic commitment to stay away from efficiency. More explicitly, recall that

(interior) first-best solves

U ′(Yt)
∂Yt
∂Ei,t

= β
∂Wt+1

∂Ei,t

where the left-hand side measures the intensity of current climate policy in utils, and the

right-hand side measures the future externality, also in welfare units. In social optimum,

the right-hand side is independent of history, as we saw in Lemma 1. We define a class

of Markov Perfect equilibria that copy this property. The formal definition characterizes

the reward function; the implied equilibrium properties are then derived in subsequent

sections.

Definition 5 A Markov Perfect Equilibrium (Def 4) is called linearly homogeneous in

total factor productivity Ω(hn), if reward strategies can be written in intensive form:

T ∗
n(En, hn) = Ω(hn)T

∗
n(

En

Ω(hn)
).

Homogenous transfers are proportional to TFP, Tt ∼ Ω(ht). Intuitively, for any two

histories ht, h
′
t, such transfers compensate the agent for the income difference between the

one-shot social optimal policy and the equilibrium, while this difference in income scales

with TFP. Later, we will see that the equilibrium tax, denoted by τi,t, implementing a

homogeneous MPE is also proportional to TFP, τi,t ∼ Ω(ht).
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3.1 Equilibrium

Above we formally define the MPE equilibrium and its properties. Before we further

establish its properties, we provide some intuitive graphs to present the mechanisms at

work. The following graphs detail the incentives, based on parameters derived in the

quantitative exercise, Section 4. Both graphs show fossil fuel and carbon-free energy use

on the x- and y-axis, respectively, measured in CO2 equivalents. Iso-Welfare lines are

colored blue (4), with the dot representing the social optimum. The fossil fuel interests

are colored red-brown. Profits for the fossil fuel sector increases with increasing fossil

fuel use, that is, to the right. The vertical red-brown lines represents constant profits.

When the fossil fuel sector transfers part of its rents to the policy maker, fossil fuel profits

increase and overall welfare decreases. The red-brown dot marks the allocation where, for

the planner, marginal social costs of subsidizing fossil fuels (shifting along the iso-welfare

lines) equals marginal gains from transfers (shifting along the profits line). Similarly, the

green dot presents the allocation when only the carbon-free energy producers transfer

part of their rents to the policy maker. When both fossil fuel and carbon-free energy

producers pay transfers, we arrive at the equilibrium presented through the black dot.

Note that there are 3 equivalent routes to describe the equilibrium. The first avenue

starts with the planner who receives transfers from the fossil fuel industry, and in response

moves the allocation from the blue to the red-brown dot. The red-brown ellipse represents

indifference allocations for the policy maker, given the transfer schedule from the fossil

fuels sector. The carbon-free energy supplier then offers a transfer schedule to increases

the use of carbon-free energy, and in response the planner moves the allocation from the

red-brown dot to the black dot. The second route starts with the planner considering

the carbon-free transfers, moving the allocation from the blue to the green dot, so that

the green ellipse represents the indifference allocations for the policy maker, given the

transfers from the carbon-free sector. Then the fossil-fuel energy supplier pays a transfer

to increase the use of fossil fuels, moving from the green to the black dot. The third

avenue considers the route where the planner immediately takes into consideration both

transfers, with the black line the iso-profit line for the joint energy sector. Note that

for all three routes the reward strategies are the same truthful transfer functions, unique

up to a constant, and all routes result in the same equilibrium allocation. Interestingly,

the right panel shows a case where the fossil fuel industry sees a declining output in the

MPE compared to the social optimum without transfers, and yet the fossil fuel sector

pays a positive transfer to prevent the allocation from moving to the equilibrium where
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Figure 1: Both panels show iso-interest lines for benevolent planner (blue), for fossil

fuel industry (red), for renewable energy industry (green), for both industries jointly

(black), in all cases ellipses present iso-welfare for the planner inclusive transfers (18),

while straight lines present iso-profits for the industry. Dots present planner’s maxima;

the black dot denotes the MPE equilibrium. See main text for further clarification.

the renewables sector cuts out an even larger share of the fossil fuels (green dot). As

the chart shows, also for this context, the same equilibrium allocation (black dot) results

independently of whether the two energy sectors offer their reward separately, either

synchronously or sequentially, or jointly.

Homogeneity as such puts a sharply characterizable structure on equilibrium payoffs, even

without truthfulness. We document first the implications of homogeneity, and then build

on these and truthfulness to obtain existence, uniqueness, and the full characterization

of the MPE. A property of any homogeneous MPE is that the utility and welfare have a

similar representation as in the first best:

Lemma 2 In any homogeneous MPE, utility and welfare must satisfy

UMPE
t (ht) = U

MPE

t −
∑∞

n=1
θnED,t−n

WMPE
t (ht) = W

MPE

t −
∑∞

n=1

∑∞

i=0
βiθn+iED,t−n

where the first terms on the right-hand side denote a value sequence (U
MPE

t ,W
MPE

t ) that
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is independent of history ht, and the second terms depend on history through the weights

θn given by the climate-economy description.

In such an equilibrium the agent chooses Ei,t > 0 so that

U ′(Gt)
( ∂Yt
∂Ei,t

+
∂Tt
∂Ei,t

)
= β

∂WMPE
t+1

∂Ei,t

where the left-hand side is independent of ht because the marginal utility of income

depends inversely in Ω(ht) and both income and transfers vary proportionally in it.

Thus, due to homogeneity of transfers, changes in marginal utilities cancel out the income

effect coming from historical actions, exactly as in the first best outcome. In addition,

the welfare cost of marginal emissions is the same in any homogeneous MPE as in the

first-best,
∂WMPE

t+1

∂ED,t

=
∑∞

i=1
βi−1θi = Θ.

It follows that the policy maker chooses precisely the first-best policy if no transfers

are made, Tt = 0. Now, we observe that, in equilibrium, the policy maker solves the

trade-off between the utility gain of marginally increasing income Gt and future social

cos of emissions at each t, needing to know only the time-changing fundamentals such

as sector-specific productivities and labor supply. Then, the equilibrium trade-off fixes

the time-sequence of the energy mix, (En)
∞
n=t, and thereby also output before multipli-

cation by TFP: (Yt/Ω(ht))
∞
n=t = (Fn −

∑
i∈D,C ci,n)

∞
n=t. This way the total output can be

decomposed into time-dependent parts detailed above, and the history-dependent part

Ω(ht). The same decomposition carries over to rents Πt because, by being total factor

productivity, Ω(ht) has uniform multiplicative impact on productivities across sectors of

the economy. From these observations, we obtain:

Lemma 3 In any homogeneous MPE, rents at t are proportional to TFP, Πt ∼ Ω(ht),

and the total value of firms is

Vt = Πt − Tt + βΞt+1Yt, (22)

where βΞt+1 =
∑∞

n=1 β
nξt+n and sequence ξt is independent of history.

Sequence ξt captures the periodic net rents Πt − Tt as fraction of the total output. It

may seem surprising that, in expression (22), the future firm value βΞt+1Yt is impacted

only by the current climate change through Ω(ht) but not by future climate change.

However, in equilibrium, future discount factors (Rn)n>t capture the future productivities
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and, thereby, precisely adjust to offset the impact of lower productivity on the firm values.

This strong property depends on the parametric class but the main point is that firms pay

attention to the total output: maximizing the industry value is equivalent to maximizing

the weighted sum of the current rent, net of contributions, and output.

We supplement homogeneity of strategies by the requirement that principals’ strate-

gies are truthful, and then transfers from (21) can be written as

Tt(Et, ht) = Πt(Et, ht) + βΞt+1Yt(Et, ht)− V ∗
t (ht), (23)

which states that transfers increase with profits and gross output, while the last term

V ∗
t (ht) is a constant the value of which equals cumulative rents in Markov equilibrium.

With this the policy maker’s problem, as presented in Definition 2, can re-expressed to

obtain the main tool for the policy analysis:

Theorem 1 The truthful homogeneous equilibrium is unique, recursively defined through

output and energy use functions Y ∗
t (ht) and E∗

i,t(ht) and ht+1 = (ED,t, ht), solving the

dynamic program:

max
ED,t,EC,t

U
(
(1 + ζβΞt+1)Yt(Et, ht) + ζ

∑
i∈C,D

(
Πi,t(Et, ht)− V ∗

i,t(ht)
))

+ βW ∗
t+1(ED,t, ht)

(24)

The proof in the Appendix shows that the equilibrium exists, using a fixed-point

argument. In a subtle way (24) is not a straight planning program since policies simul-

taneously generate the agent’s welfare function and the firms’ values; V ∗
i,t(ht) is from the

planner’s perspective a constant, and could be written as V ∗
i,t(ht) = v∗i,tΩ(ht) for a given

sequence of weights v∗i,t. The equilibrium path solves (24) and simultaneously generates

consistent values for V ∗
i,t.

From the Theorem, in each sector, the equilibrium energy use Ei,t > 0 solves

U ′(Gt)
(
(1 + ζβΞt+1)

∂Y ∗
t

∂E∗
i,t

+ ζ
∂Πi,t

∂Ei,t

)
+
∂W ∗

t+1

∂Ei,t

= 0 (25)

where the weights on the income of the representative consumer, Y ∗
t , and periodic profits

are now explicit. The trade-off of the policy maker is the same as discussed above but re-

expressed. Income Gt can be tied to the policy actions explicitly by using the indifference

in (20): the equilibrium compensation to the agent depends on the current action relative

to the alternative, that is, one-shot efficient action. Let Yt be output in the equilibrium

we consider, and let Y S
t (hSt ) be equilibrium output for some alternative policy rule or
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scenario S, which depends on the scenario-specific history. It is convenient to write

Y
S

t (ht), or shorthand Y
S

t , if that alternative scenario or policy has the same history

as the equilibrium under consideration. This enables us to write the policy maker’s

compensation required for distorting policies away from the efficient ones.

Lemma 4 In any homogeneous MPE, the policy maker at period t is exactly compensated

for the social costs of the one-shot increase in emissions:

gtYt ≡ Gt = Yt + ζTt = Y
SO

t exp(βΘ(E∗
D,t − E∗∗

D,t)). (26)

where sequence gt is independent of history, Y
SO

t is the socially optimal output given

history ht.

The beauty of the Lemma is that it allows us to obtain the income of the policy

maker at any given history: both the equilibrium and deviation energy uses (E∗
D,t and

E∗∗
D,t, resp.) are time-dependent only, defining the “inflation factor gt” to be applied to

obtain the over-consumption of the decision maker. Now, given log utility, and the link

between the aggregate Yt and Gt, we can express the policy maker’s basic trade-off in

(25) as:

(1 + ζβΞt+1)
∂Y ∗

t

∂E∗
i,t

+ ζ
∂Π∗

i,t

∂E∗
i,t

= I(i)βΘgtY
∗
t (27)

where we used indicator I(i = D) = 1. The trade-off of the agent is now presented

in money-metric terms; indeed, we want to interpret the equilibrium allocation through

prices on energy use (the next Section). Anticipating this interpretation, the left side

implicitly defines the price that the consumers should pay for energy, and the second

term includes the price that producers receive for energy by sector. On the right, there

is the marginal social cost of emissions in money. But first we pull out the implications

of the above trade-off:

Proposition 2 The unique truthful homogeneous MPE policies E∗
t = (E∗

D,t, E
∗
C,t) > 0

satisfy:

∂Y ∗
t

∂E∗
C,t

= − ζ

1 + ζβΞt+1

∂ΠC,t

∂EC,t

(28)

∂Y ∗
t

∂E∗
D,t

=
1

1 + ζβΞt+1

(
βΘgtY

∗
t − ζ

∂ΠD,t

∂ED,t

)
. (29)
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For the clean energy, from (28) it follows

∂Y ∗
t

∂E∗
C,t

= Ω(ht)
(
f ′
t(
∑
i

Ei,t)− c′C,t(EC)
)
< 0

so the policy maker chooses to overuse clean energy as long as the industry rents have

some weight. This outcome can be obtained by subsidizing clean energy. However, for

dirty energy, the policy maker may choose a tax (∂Yt/∂ED,t > 0) or subsidy (∂Yt/∂ED,t <

0), depending on if the income-dependent externality cost dominates the industry rents

of the right-hand side of (29).

3.2 Equilibrium taxes and subsidies

Policy game We can now establish the outcome equivalence of the dynamic agency

game where the agent chooses the energy quantities directly (Theorem 1) and the game

where the agent uses energy unit prices τ = (τD,t, τC,t) as instruments. By Proposition

1, efficient allocation E∗
i,t(ht) can be implemented period-by-period as a competitive

decentralized outcome (the second welfare theorem). However, since the allocation arises

as an outcome of a game, one must also demonstrate that the Markov strategies of the

game can be equivalently written terms of prices while maintaining the homogeneity and

truthfulness properties. Formally, we can repeat the steps above to define the Markov

strategies
(
Ti,n(τn, hn)

)
n≥t

and
(
τn(Tn(·), hn)

)
. The main difference is that taxes, not

only reward schedules, are proportional to history-dependent Ω(ht), τi,t ∼ Ω(ht). The

history-invariance of energy is consistent with the linearly homogeneous taxes. With

these equivalences between prices and quantities as policy instruments, we can rewrite

the policy maker’s trade-off (27):

(1 + ζβΞt+1)(τi,t + µi,t) + (ζ
1

σ
− (1 + ζβΞt+1))µi,t = I(i)βΘgtYt

where we substituted µi,t energy price for the marginal costs of energy production and

used energy market demand (7). The policies are now expressed as prices and with

explicit links to rents, as captured by σ:

Proposition 3 The unique truthful homogeneous MPE tax policies τ ∗t = (τ ∗D,t, τ
∗
C,t) sat-

isfy:

τ ∗C,t = − ζ

1 + ζβΞt+1

1

σ
µC,t, (30)

τ ∗D,t =
gt

1 + ζβΞt+1

βΘY ∗
t − ζ

1 + ζβΞt+1

1

σ
µD,t. (31)
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The equilibrium subsidy on green energy has three determinants, in eq. (30): (i)

Ricardian rents (µC/σ), (ii) weight on current rents (ζ), and (iii) weight on future rents

(ζβΞt+1). The rent-dependent distortions follow for resources with inelastic supply (low

σ), generating large (competitive) Ricardian rents that receive a weight in policy making,

independent on climate externalities. As σ → ∞, constant returns to scale prevail in

the energy sectors of the economy and rents get dissipated by competition. Weight ζ

on current rent is a given parameter but future rents arise endogenously in equilibrium

depending, for example, on how the energy sectors develop over time: large future shares

of output as rents, captured by βΞt+1, reduce the subsidy today and thus losses in the

future. Promise of future rents is a stake of the future economy that disciplines distortions

today.

The same determinants enter the equilibrium tax on dirty energy, the last term in eq.

(31). Considering again elastically supplied energy resources (σ → ∞), we know that

the rent distortion vanishes also for dirty energy taxes. But then we must have

τ ∗D,t → βΘY ∗
t ,

the socially optimal tax on the polluting energy. At first, this may seem surprising given

that rents do not directly appear in the first term of eq. (31). However, if there are

no current rents, also the future rents disappear and thus firms have no future values

βΞt+1 → 0, and the policy maker’s consumption becomes representative gt = 1. Off this

limit, interestingly, the stand-alone impact of income tends to increase the tax on fossil

fuel as the policy maker is wealthier than the representative consumer, gt > 1, and thus

values the environment more.

4 Quantitative analysis

4.1 Climate parameters

The quantitative model has two sectors, denoted by i =∈ D,C, and 60 periods of

each 5 years, starting with the period labeled ’2015’ for the period [2013-2017]. The

damages time structure θi is based on a system of carbon reservoirs where flows between

reservoirs are linear in stocks. The atmospheric CO2 content is described through a

series of exponential CO2 decay functions. Damages follow temperature, which slowly

converges to its equilibrium level for given atmospheric CO2 described through a series of

exponential temperature-adjustment functions; a higher atmospheric CO2 content leads
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to slowly increasing damages. The reduced form (Gerlagh and Liski 2017, Theorem 1),

is given by a ’multi-box’ representation,

θi =
∑

i

∑
k
ajbkπεk

(1− ηj)
i − (1− εk)

i

εk − ηj
, (32)

where ηj are the atmospheric depreciation rates, εk are the temperature adjustment

speeds, aj and bk are the shares of the relevant processes, and π is the long-run emissions-

damages sensitivity. We take an annual parametric form from van den Bijgaart et al.

2016, Table 6 and 7, for the median carbon model, a = (0.220, 0.279, 0.278, 0.222), η =

(0, 0.0035, 0.0507, 0.2892), and temperature models, b = (0.2218, 0.3306, 0.4476), ε =

(0.9787, 0.1980, 0.0036), π = 0.0167. These parameters indicate that 22 per cent of

emissions remain in the atmosphere ’forever’, while the same share very quickly transits

to other carbon reservoirs (at about 30% per year). Also, about 22% of temperature

adjustment is virtually immediate, while almost half of temperature adjustment only

happens after more than a century. For our model with 5-year periods, we average

annual damages within periods.

4.2 Technology and Preferences Calibration

We assume a pure time preference of 2 per cent per year, β = exp(−5 · .02), elasticity
of supply by the fossil fuel and renewable energy sector of σ = 1. We assume a myopic

industry’s strategy, Ξt = 0, and a thirty per cent distortion in the policy maker’s objective

(24), ζ = 0.30. As we will see in the results, this amounts to an energy subsidy distortion

of about 2 to 3 percent of GDP. We define the ’energy subsidy’ as the second part of (31)

and all of (30), multiplied by energy use, and divided by output. This is a conservative

estimation compared to Coady et al. (2015), who report an estimated energy subsidy

valued above five percent of GDP.8

We target 4 variables, Population, GDP, emissions, the energy price for the Business

as Usual scenario,

Labour supply is set equal to population. It follows a logistic growth curve,

Lt+1 = Lt(1 + ψn− ψnLt/L)

8(Coady, Parry, Sears, & Shang, 2015) define pre-tax energy subsidies, defined relative to the situation

of no energy taxes. This measure is useful for our RSE scenario. They also define post-tax energy

subsidies, which compares actual taxes to Pigouvian levels. This measure is useful for our Markov-

Perfect Equilibrium.
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which tracks the historic 1950-2014 trend, with L2000 = 6.13 [bn], L2010 = 6.92, n = 5

denotes the number of years per period, ψ = 0.0282 [/yr] is the unconstrained population

growth rate, and L = 11.9 [bn] is the long-term convergent population level.

We assume Cobb-Douglas production for the consumer good and for energy:

Ft(ED,t, EC,t, Lt) = At

(
ED,t + EC,t

)γt
L1−γt
t , (33)

Ei,t = Xi,tc
σ

σ+1

i,t . (34)

We calibrate the parameters to fit data on population, output, emissions, the share of

clean energy, for the years 2000, 2005, 2010. We use bars on top of variables to refer to

target variables. We target GDP in the year 2010 at Y t = 63 [tn EUR2015/yr], and per

capita GDP increasing by 1.62 per cent per year for the remaining of the century:

Y 2000 = 0.043n

Y 2010 = 0.063n

Y t+1 = (1.0162)n
Lt+1

Lt

Y t

Emissions are targeted in 2010 at ED,t = 31.5 [GtCO2/yr], and after 2010, per capita

emissions rise with a half per cent per year (between the historic average 1970-2010 that

is close to zero, and the average over 2000-2010 that is 1 per cent per year). Indeed,

Jackson et al. (2016) show a substantial drop in the growth of fossil fuel related CO2

emissions over the period 2010-2015.

ED,2000 = 0.0239n

ED,2010 = 0.0315n

ED,t+1 = (1.005)n
Lt+1

Lt

ED,t

We assume clean energy to make up 10% in 2000, increasing its share following a logistic

growth curve

EC,2000 = 0.1ED,2000

EC,t+1 = (1.01)n
ED,t+1

ED,t

EC,t

The price of energy for the final goods sector (including taxes) is targeted at νt = µt +

τt = 0.050 [EUR2015/tCO2] and assumed stable. The MPE equilibrium conditions

are inverted, so that the 3 target variables (GDP, emissions, energy price) determine

dynamically the parameters At, Xt, and γt.
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Par Description Value Reference and Targets

constant parameters

β Altruism 0.90 discount rate (2%/yr) (Golosov et al., 2014)

Θ damage response 0.0548 NPV of long-run climate damages

σ Elasticity of energy supply 1.0 energy rents

ζ reward efficiency 0.4 distortionary taxes 1.2 per cent

State variables and dynamic parameters 2020

L Population 7.84 World population

γ Energy share 0.0282 long-run fertility (f∞ = 0.95)

A TFP 0.0537 GDP at 373 tn eper period

dynamic parameters

Â TFP growth 1.21 long-run economic growth (1.5%/yr)

Table 1: Parameters

4.3 Results

We run three scenarios. First we calculate the Markov-Perfect Equilibrium, which we

consider the baseline on which we calibrate all parameters. It is a strong assumption that

the planner fully includes future climate damages in its objective function. Our baseline

is potentially too optimistic about future emissions and climate change. The aim of the

illustration is to present the potential implications of interest groups for climate policy

and a relatively simple baseline assumption is helpful for that purpose. The other two

scenarios are counterfactuals for reference: the Social Optimum and a scenario with zero

taxes, τi,t = 0, that is, also no subsidies.

Table 1 below summarizes parameters and initial value used to calibrate our model

and carry out the simulations presented in the next section.

The model is calibrated on the years 2000, 2005, 2010, 2015, 2020, for GDP, emissions

from fossil fuels, share of renewables in primary energy, and population. GDP is taken

from World Bank (converted to constant 2015 euros), the other data are from World

in data. To estimate the energy share in output, we use a constant fuel price at 50

e/tCO2eq, where we measure both fuels in (prevented) CO2 equivalents. To extrapolate

the parameters to the future, we assume logistic population growth leveling at 11.9 billion,

TFP growth of 1.6 per cent per year. The share of clean energy grows from 7.8 per cent in

2000 to 13.5 in 2020, and we extrapolate this to continue at 3 per cent per year, following

a logistic growth curve.

We report carbon taxes τD,t, renewable taxes (which are negative, thus subsidies),
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τC,t for the first two scenarios. We report the energy subsidy distortion as share of GDP

for the MPE scenario only. We report emissions ED,t for all three scenarios. We use the

color black for the MPE, blue for the SO, consistent with the contour plots Fig 1. We

use purple for the zero-tax scenario.
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Figure 2: Taxes on energy sources

The first figure shows taxes. The Social Optimum has no tax nor subsidy for renew-

ables, and a carbon tax slightly above 20 Euro/tCO2, in 2020, rising to 80 e/tCO2 in

2080. After emissions reach zero, carbon taxes follow the price of energy, so that the

price for fossil fuels is zero. Though a price of 80 e/tonCO2 might seem low for full

decarbonization, notice that the price in the EU-ETS currently is at that level, while

allowances remain valid throughout the ETS including when net supply of allowances is

expected to reach zero around 2040. That is, the current EU-ETS is the best market

estimate available for the long-term carbon tax that will choke demand for fossil fuels.

In the baseline equilibrium, fuel owners reward the planner for subsidizing fuels. We

find subsidies for renewables above 20 e/tonCO2, throughout the century. For fossil

fuels, the lobby succeeds to induce subsidies initially. Thus, our BAU scenario describes

the tendency of regulators to implement climate policy mainly through subsidies on

renewables, possibly complemented by reduced subsidies for fossil fuels. Based on our

parameters by 2020 fossil fuel subsidies turn into carbon taxes, well below the social costs

of carbon, though.

The gap between the social cost of carbon and the carbon tax is a measure for the

post-tax fossil fuel subsidy, as defined by Coady et al. (2015). We present the value of

the gap, relative to GDP, in the next figure. In the MPE scenario, the fossil fuel post-tax
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Figure 3: Implicit subsidies for energy sources, relative to GDP

subsidy amounts to about 1 per cent of GDP, a conservative result compared to the 6 per

cent presented by Coady et al. (2015). We also see a robust increase in the total volume

of renewables subsidies, overtaking the fossil fuel post-tax subsidies before 2050. The

overall level of distortionary subsidies as share of GDP shows a U-curve, a consequence

of transition costs with higher overall energy prices during the phase out of fossil fuels.
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Figure 4: Energy-related emissions

Finally, the next figure presents the implications of fuel interests through policies on

emissions. Fossil fuel subsidies push up emissions considerably; initially, the baseline

equilibrium remains above the zero-tax scenario. Due to fuel interests, policies before

2020 increased emissions compared to a neutral policy without fuel taxes. Removing
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energy subsidies would reduce emissions substantially, and bringing carbon taxes to the

social optimum reduces emissions by about 20 per cent, consistent with the estimate

by Coady et al. (2015). The outcomes suggest that, in 2020, we are close to the point

where the effects on emissions of renewable subsidies offset those of fossil fuel subsidies:

emissions are the same in the MPE as in the zero-tax scenario. In the future, fossil fuel

taxes start to bite, and removing all taxes and subsidies on both fossil fuels and renewables

will increase emissions. Remarkably, after 2060 the effect of energy subsidies, relative to

the Social Optimum, reverses. The subsidies for renewables exceed the implicit subsidies

for fossil fuels, and emissions in the MPE fall below those in the Social Optimum.

5 Discussion

[add discussion]
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A Appendix: Proofs

Below we provide proofs for the first lemmas and theorem. The remaining lemmas and

propositions follow from arguments provided in main text.

A.1 Proof of Lemma 1

The lemma separates the utility and welfare sequences into exogenous growth sources,

for example technology, from those that capture the burden of past emissions. We can

prove the lemma by solving the full welfare program, but a more insightful proof uses an

induction argument.

Proof. Assume that the lemma is valid for all future periods t+1, t+2, t+3, .... Then we

show that the lemma also holds for t. The social optimummaximizes ln(Yt)+βWt+1(ht+1).
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We substitute (1) for Yt and (2) for Ω(ht), this gives

ln(Yt) = −
∑∞

n=1
θnED,t−n + ln(Ltft(

ED,t + EC,t

Lt

)−
∑

i=D,C
ci(Ei,t)).

By backwards induction, for the next period, there is a value W
SO

t+1, so that

βWt+1(ht+1) = βW
SO

t+1 − β
∑∞

n=1

∑∞

i=0
βiθn+iED,t+1−n.

It follows that

Wt = ln(Ltft(
ED,t + EC,t

Lt

)−
∑

i=D,C
ci(Ei,t))−

∑∞

n=1
θnED,t−n

+ βW
SO

t+1 − β
∑∞

n=1

∑∞

i=0
βiθn+iED,t+1−n. (A.1)

We can separate past emissions ED,t for past t and solve for the social optimum ESO
i,t ,

independent of history, as the allocation that maximizes

ln(Ltft(
ED,t + EC,t

Lt

)−
∑

i=D,C
ci(Ei,t))−

∑∞

i=0
βi+1θ1+iED,t (A.2)

and we can subsequently construct the current period utility and value function:

U
SO

t = ln(Ltft(
ESO

D,t + ESO
C,t

Lt

)−
∑
i

ci(E
SO
i,t ))

W
SO

t = USO
t −

∑∞

i=0
βi+1θ1+iE

SO
D,t + βW

SO

t+1

Q.E.D

A.2 Proof of Lemma 2

Proof. The proof is conditional on existence, and goes by an induction argument

as for the social optimum. The induction hypothesis is that the lemma is valid for all

future periods t + 1, t + 2, ..... For two arbitrary histories, h̃t and ĥt. Both output Yt(.)

and transfers Tt(.) in Definition 2 are proportional to Ω(ht) (see (3) for output and Def 5

for transfers), so that (after taking logs), the best response E∗
t is independent of history:

EMPE
i,t ≡ Ẽi,t = Êi,t. From this observation, it immediately follows that output, transfers,
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taxes, and consumption of the policy maker all scale with TFP:

Ỹt

Ω(h̃t)
=

Ŷt

Ω(ĥt)
,

T̃t

Ω(h̃t)
=

T̂t

Ω(ĥt)
,

G̃t

Ω(h̃t)
=

Ĝt

Ω(ĥt)
,

τ̃i,t

Ω(h̃t)
=

τ̂i,t

Ω(ĥt)
.

It then follows that

U
MPE

t ≡ Ũt +
∑∞

n=1
θnẼD,t−n = Ût +

∑∞

n=1
θnÊD,t−n

is also well-defined, independent of history (the second terms on the right-hand side are

the logs of Ω(ht)). Finally, we can then construct

W
MPE

t = Ũt −
∑∞

i=0
βi+1θ1+iE

MPE
D,t + βW

MPE

t+1 .

Q.E.D.

A.3 Proof of Lemma 3

Proof. Consider net profits

Πt − Tt = ξtYt (A.3)

For the previous lemma we establised that output and transfers are proportional to TFP,

Yt ∼ Ω(ht), Tt ∼ Ω(ht). Also, total energy cost Ω(ht)
∑

i ci,t(Ei,t) is proportional to TFP.

Then, from (11)-(12), we have that gross profits scale as well: Πt ∼ Ω(ht). Thus, fraction

ξt of Yt, left as net rents for firms, is free of history. Using the definition of equilibrium

discount factor Rt+1 from (16), we obtain

Rt+1

(
Πt+1 − Tt+1

)
= βξt+1Yt

Rt+1Vt+1 = Yt

∞∑
n=1

βnξt+n

where the second equation just sums over the future horizon. Q.E.D.
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A.4 Proof of Theorem 1

Proof. We first establish uniqueness and existence of a solution to the objective

function (24). We need to show that there is a (unique) optimal control E∗
t with consistent

Ξt and V
∗
i,t. We rewrite it as period-by-period optimization

max
ED,t,EC,t

ln
(
(1 + ζβΞt+1)Yt(ED,t, EC,t) + ζ

(
Πt(ED,t, EC,t)− V t

))
− βΘED,t

where we separate period choices by cutting the link between past emissions and current

history, setting ht = 0, and we replaced the equilibrium firm valuation V ∗
t by an arbitrary

exogenous sequence V t. The period-by-period optimization takes as given the vector of

rent shares and values (Ξ1, V 1,Ξ2, V 2, ...) and produces a sequence of energy use, Et,

output Yt, rents Πt, and rent values Vt and shares ξt,Ξt. That is, it defines a mapping of

the vector (Ξ1, V 1,Ξ2, V 2, ...) onto (Ξ1, V1,Ξ2, V2, ...). If we substitute these values back

into the optimization, we can employ Brouwer’s fixed-point.

We now ensure the mapping is defined on a compact domain. We set the domain

through Ξt ∈ [0, 1/(1 − β)], and 0 ≤ V t ≤ max{Yt}/(1 − β), meaning that we ensure

a strictly positive value within the log-operator. It is then immediate that a solution

exists and that it satisfies the boundary constraints assumed. Furthermore, the objective

function is concave, the production set strictly convex, so that the solution is unique.

Further, to apply Brouwer’s fixed point theorem, we must remain within a finite

number of periods. Thus, we restrict the mapping from (Ξ1, V1,Ξ2, V2, ...) to itself to the

time window t = 1, ...tmax, leaving the vector beyond that period, i.e. (Ξt, V t)t beyond

that period window, as exogenous to the mapping. For any finite period length, t =

1, ...tmax, the above procedure constructs a continuous mapping of a compact space onto

itself. Thus, by Brouwer’s theorem, there is a fixed point. Furthermore, the dependence

of Ξ1 and V 1 on choices beyond tmax decreases exponentially by factor β with increasing

tmax. Thus, by increasing tmax, the fixed point converges to some Ξ∗
1, V

∗
1. We repeat the

same procedure for next periods, and thus construct the complete sequence (Ξ∗
t , V

∗
t ).

Finally, we note that the values for Ei,t and the ratios Πt/Yt and Tt/Yt are invariant

with respect to history, thus extend beyond the condition ht = 0, so that the equilibrium

conditions of our fixed point also hold for arbitrary ht. That is, we can keep the fixed point

values for Ei,t, and construct the equilibrium ht by forward shooting ht+1 = (ht, ED,t).

Now that we have constructed a candidate equilibrium allocation, we prove that it is

the MPE equilibrium. Definition 2 is satisfied by the truthfulness property, included

in the above construction, as that keeps the common agent (policy maker) indifferent
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between the equilibrium allocation and the one-shot social optimal deviation. Definition

3 is slightly more subtle. It demands the reward schedule to be optimal for the principal.

Locally, the condition is guaranteed by the truthfulness condition. But, specifically, it

also requires the individual principal not to gain from a full drop out of the reward

scheme. In a standard menu auction model with multiple symmetric principals, the

condition is typically satisfied by a truthful reward schedule. Conceptually, if one small

principal (energy firm) deviates and does not pay its contribution to the reward, the

common agent (policy maker) falls back to the reference (one-shot social optimum). As

profits in the menu auction equilibrium minus reward payments are strictly above profits

in the reference allocation, no principal has an incentive to shirk. In terms of our model,

let us rewrite (21) the reward schedule as

Ti,t = max{0,Πi,t − Πi,t} (A.4)

where Πi,t is the principal agent’s net profit in equilibrium. If Πi,t > Π∗∗
i,t, then principals

from sector i prefer the equilibrium above the reference one-shot-first-best allocation ∗∗.
In an economy with heterogeneous principals, the condition is not obviously met for all

principals. For example, in Fig 5b we see lower profits for the fossil fuel industry in

the MPE equilibrium as compared to the one-shot first best. Each fossil fuel principle

would like to withdraw from the reward scheme if such would let the equilibrium collapse

back to one-shot first best. Below we will show that, even in such context, the MPE

equilibrium is supported because the fossil fuel owners understand that if they withdraw,

the equilibrium moves to the alternative equilibrium, denoted by superscript ∗C, where
only renewable energy owners offer a reward function. Each fossil fuel owner prefers the

MPE equilibrium ∗ above ∗C, and thus will not shirk. We now make this analysis more

precise.

Let us differentiate between 4 candidate equilibria: the MPE equilibrium denoted

by ∗, the one-shot social optimal deviation, denoted by superscript ∗∗, the one-shot

deviation where only the fossil fuel owners pay a reward schedule, denoted by superscript

∗D, and the one-shot deviation where only the renewable energy firms pay a reward

schedule, ∗C. See Fig 5 for an illustration based on the quantitative model. Note that

the reward schedule satisfies T ∗D
C,t = T ∗C

D,t = T ∗∗
C,t = T ∗∗

D,t = 0.

We now prove stability of ∗ by showing that no principal agent can gain from shirking

moving the allocation to one of the other 3 candidate equilibria. The MPE allocation *
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constructed above maximizes

ln(Yt(ED,t, EC,t) + ζ
∑
i

(
Πi,t(ED,t, EC,t)− Πi,t

)
− βΘED,t (A.5)

while setting the pair Πi,t such that their sum satisfies

ln(Yt(E
∗∗
D,t, E

∗∗
C,t))− βΘE∗∗

D,t =

ln(Yt(E
∗
D,t, E

∗
C,t) + ζ

∑
i

(
Πi,t(E

∗
D,t, E

∗
C,t)− Πi,t

)
− βΘE∗

D,t. (A.6)

As the MPE constructed includes profits in the objective, we have Π∗
D,t +Π∗

C,t > ΠD,t +

ΠC,t > Π∗∗
D,t + Π∗∗

C,t. First consider the symmetric case that Π∗
D,t > Π∗∗

D,t and Π∗
C,t >

Π∗∗
C,t. As both fuels are substitutes, we have Π∗∗

C,t > Π∗D
C,t and Π∗∗

D,t > Π∗C
D,t, that is

Π∗
D,t > Π∗∗

D,t > Π∗C
D,t and Π∗

C,t > Π∗∗
C,t > Π∗D

C,t. We can thus choose ΠD,t,ΠC,t to satisfy

Π∗D
D,t > Π∗

D,t > ΠD,t > Π∗∗
D,t > Π∗C

D,t and Π∗C
C,t > Π∗

C,t > ΠC,t > Π∗∗
C,t > Π∗D

C,t. This is

the constellation drawn in Fig 5a. It immediately implies that the fossil fuel principals

cannot gain from shirking as their MPE net profits exceed profits in the alternative to

which the allocation can collapse: ∗C and ∗∗. Similarly, renewable principals have no

incentive to shirk, as their alternatives also have lower profits compared to their net profit

in equilibrium. Thus, the MPE is stable. The Fig visualizes the concept through arrows:

an arrow from allocation A to B means that no principal gains from collapsing back from

B to A.

Next consider the asymmetric case, without loss of generality, that Π∗∗
D,t > Π∗

D,t and

Π∗
C,t > Π∗∗

C,t, as shown in Fig 5b. Because of substitutability, as above, the conditions are

extended to Π∗∗
D,t > Π∗

D,t > Π∗C
D,t and Π∗

C,t > Π∗∗
C,t > Π∗D

C,t. We now construct ΠC,t such

that, while ∗C maximizes

ln(Yt(ED,t, EC,t) + ζ(ΠC,t(EC,t, EC,t)− ΠC,t))− βΘED,t, (A.7)

the optimum satisfies

ln(Yt(E
∗∗
D,t, E

∗∗
C,t))− βΘE∗∗

D,t =

ln(Yt(E
∗C
D,t, E

∗C
C,t) + ζ(ΠC,t(E

∗C
D,t, E

∗C
C,t)− ΠC,t)− βΘE∗C

D,t. (A.8)

and (A.6) still holds determining ΠD,t. It follows that ∗C is downwards stable: no

individual renewable energy has an incentive to shirk as (by construction) Π∗C
C,t > ΠC,t >

Π∗∗
C,t. Given transfers by only the clean energy firms, the policy maker is indifferent

between ** and *C, both strictly preferred to *, thus ΠD,t < Π∗
D,t. With transfers by the
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Figure 5: Both panels based on calibrated parameters. They show the MPE equilbria

∗ (black), with alternative candidates ∗C (green), ∗D (brown-read), ∗∗ (blue) for 2020

and 2060, respectively. The green line marks allocations for which TC,t(Et) = 0, while

the red line marks TD,t(Et) = 0, as in (A.4). Transfers for each sector are positive right

of (above) the lines and zero left of (below) the lines. Gray dashed lines present constant

rewards:
∑

i Ti,t. An arrow from ** to *C shows that no individual renewable principal

has an incentive to deviate from the reward function. The arrow from ∗C to ∗ shows that

no individual fossil fuel principal has an incentive to deviate from the reward function.

The red crossed arrow shows that in *D each fossil fuel principal can deviate so that it

collapses to ∗∗.
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dirty energy firms, allocation * is equally valued by the policy maker, thus Π∗C
D,t < ΠD,t.

That is, the dirty firms will have to make a strict positive contribution to make the policy

maker indifferent between * and **; the reward TD,t moves the equilibrium from ∗C to

∗, we have Π∗
D,t > ΠD,t > Π∗C

D,t. It follows that if a fossil fuel firm has no incentive to

shirk in the MPE equilibrium ∗ because it knows that the equilibrium will collapse to ∗C
which has strictly lower profits for fossil fuels. On the other hand, as ΠC,t > Π∗∗

C,t > Π∗D
C,t,

in equilibrium ∗ also no renewable firm has an incentive to shirk as any alternative will

also strictly reduce profits. Thus, the MPE ∗ is stable.

B Appendix: Quantitative model

The model is simulated using python, an open source language. The code is freely

available. We calculated the scenarios using two formats, with FOCs included, and with-

out FOCs. Results are the identical which suggests consistency of the algebra derivations

in the paper.

Social Optimum We set tL = 30 periods of 5 years each. Welfare is given by

W =

tL∑
t=tF

βt ln(Ct)− βtL
∑tL

n=1

∑∞

i=0
βiθn+iED,t−n (B.1)

Zero Taxes The scenario with zero taxes

[still working on the fine-tuning of the procedure to calculate scenarios and calibra-

tion.] We can calculate the MPE equilibrium as follows. For given V i,t,Ξt, we can solve

the program based on equations: (33, Yt), (12, ci,t), (11,Πi,t), (??, µi,t).

maxWt = ln
(
(1 + ζβΞt+1)Yt + ζ

∑
i

(
Πi,t − V i,t

))
+ βWt+1 (B.2)

subject to

Yt = Ltf(et)−
∑
j

ci,t (B.3)

ci,t =
σ

σ + 1
µi,tEi,t (B.4)

Πi,t =
1

σ + 1
µi,tEi,t (B.5)

Ei,t = χi,tµ
σ
i,t (B.6)
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using Ei,t as control variables, and where we substitute

ft(et) = Ate
γt
t (B.7)

et =
ED,t + EC,t

Lt

(B.8)

We can pull out taxes and wages that support the allocation through (7, Ei,t), (8, wt).

That is, we can add these FOCs and they should not change the allocation:

µi,t = max{0,Ω(ht)f ′
t(et)− τi,t} (B.9)

wt = Ω(ht)[ft(et)− f ′
t(et)et] (B.10)

But, the above program can only be solved after we have the values for V i,t,Ξt. We can

calculate these parameters iteratively, over a loop, or we can solve the equilibrium using

the explicit tax conditions. That is, we add the equations (31, τD,t), (30, τC,t), (26, gt, Tt),

(22, 22,Ξt). We note that the solution to the full set of equations should be independent

of the objective function.

τD,t =
1

1 + ζβΞt+1

gtβΘYt −
1

1 + ζβΞt+1

1

σ
µD,t (B.11)

τC,t = − ζ

1 + ζβΞt+1

1

σ
µC,t (B.12)

gt = exp(βΘ(ED,t − ESO
D,t)) (B.13)

gt = 1 + ζ
Tt
Yt

(B.14)

Ξt =
∞∑
n=0

βnΠt+n − Tt+n

Yt+n

(B.15)

where we need an a priori calculation for ESO
D,t. We test the model by first solving the

full set of equations. Then we calculate∑
i

V i,t = ΞtYt (B.16)

and we can, as a check, solve the first adjusted welfare program above without the FOCs,

to see whether it replicates the allocation.
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