
Spatial Unit Roots

Ulrich K. Müller and Mark W. Watson

Department of Economics

Princeton University

This Draft: March 2023

Abstract

This paper proposes a model for, and investigates the consequences of, strong spa-

tial dependence in economic variables. Our approach and �ndings echo those of the

corresponding �unit root� time series literature: We suggest a model for spatial I(1)

processes, and establish a functional central limit theorem that justi�es a large sam-

ple Gaussian process approximation for such processes. We further generalize the I(1)

model to a spatial �local-to-unity�model that exhibits weak mean reversion. We char-

acterize the large sample behavior of regression inference with spatial I(1) variables,

and establish that spurious regression is as much a problem with spatial I(1) data as it

is with time series I(1) data. We develop asymptotically valid spatial unit root tests,

stationarity tests, and inference methods for the local-to-unity parameter. Finally, we

consider strategies for valid inference in regressions with persistent (I(1) or local-to-

unity) spatial data, such as spatial analogues of �rst-di¤erencing transformations.
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1 Introduction

Serial correlation complicates inference in time series regressions. When the serial correlation

in the regressors and regression errors is weak, that is I(0), inference can proceed as with

i.i.d. sampling after using HAC/HAR standard errors that incorporate adjustments for serial

correlation. However, when the serial correlation is strong, that is I(1), HAC/HAR inference

fails and OLS produces �spurious regressions�(Granger and Newbold (1974)) with estimators

and test statistics behaving in non-standard ways (Phillips (1986)). Panel (a) of Figure 1

illustrates this well-known phenomenon: the realization of two independent random walks

of length n = 250 are strongly correlated in sample, with a corresponding Newey and West

(1987) t-statistic that is highly signi�cant.

Variables measured over points in space exhibit correlation patterns that in many ways are

analogous to serial correlation in time series, and this correlation also complicates inference in

spatial regressions. There is a reasonably well-developed literature on HAC/HAR corrections

that are required in spatial regressions with weakly dependent stationary regressors and er-

rors.1 However, much less is known about the implications of strong spatial correlation despite

evidence suggesting its presence in many empirical applications in economics (Kelly (2019,

2020)). Panel (b) of Figure 1 illustrates the issue: the realization of two independent spatial

�unit root�processes with values for each of the n = 722 commuter zones in the 48 contiguous

U.S. states are strongly correlated in sample, and a t-statistic that is clustered by U.S. states

is highly signi�cant. This raises several questions. What is a natural spatial analogue of an

I(1) time series process, such as the process in Figure 1 (b)? Do such processes systemati-

cally induce spuriously signi�cant regression coe¢ cients? How can one test for I(1) spatial

persistence? And �nally, is there a spatial analogue to the ��rst-di¤erencing�transformation

in time series that eliminates I(1) persistence? This paper takes up these questions.

Throughout the paper we use spatial data and regressions from Chetty, Hendren, Kline,

and Saez (2014) to illustrate the issues and methods. These authors construct an index of

intergenerational mobility for commuting zones in the United States, and study its relationship

to other socioeconomic factors using bivariate regressions with standard errors clustered by

U.S. states. As an example, Figure 1 (c) plots their mobility index along with the teenage

labor force participation rate. The apparent similarity of these data with the simulated data

1Conley (1999) is a leading example of spatial HAC inference. See Müller and Watson (2022a, 2022b) for
a discussion of the post-Conley literature and new suggestions for inference in regression models with weak
spatial dependence.
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Figure 1: Strongly Dependent Data in Time and Space
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of panel (b) suggests that the issues considered in this paper are of empirical relevance.

Much of our analysis parallels the analysis of persistent time series, but there is a notable

di¤erence worth highlighting at the outset. Time series analysis typically studies observations,

say yt, observed at equidistant points in time, t = 1; 2; 3; ::: where t indexes months, quarters,

years, etc. Economic variables observed in space are not so neatly arranged. For example,

geographical data may be collected at potentially arbitrary locations sl within a given region

S such as a U.S. state, and each state has its own unique shape. For the analysis to be useful
in a wide range of spatial applications, we posit a model that assigns values to all locations

that may potentially be observed. Thus, for the general problem with d spatial dimensions,

we begin with a stochastic process Y (s) over s 2 Rd, where d = 2 in the geography example.
When d = 1, s could index time, so this is a time series model where Y (s) is a continuous

time process and where the sample data correspond to realizations of yl = Y (sl) observed at

potentially irregularly spaced points sl 2 R. More abstractly, as discussed in Conley (1999),
�locations�might index an economic characteristic and the �economic distance�between two

locations measures the dissimilarity of the characteristic.

We thus follow the geostatistical tradition of positing a continuous parameter model of

spatial variation, rather than modelling spatial dependence by spatial autoregressive (SAR)

models of Cli¤ and Ord (1974) and Anselin (1988).2 SARs are simultaneous equation models,

typically estimated by GMM/QMLE methods. There is a small literature on unit roots and

spurious regression in SAR models, initiated by Fingleton (1999) and summarized in Rossi

and Lieberman (2023). SAR models require a spatial weight (or proximity) matrix, which

is usually normalized so that its rows sum to unity (Ord (1975)). Under this normalization,

the unit root SAR model is not well de�ned. Lee and Yu (2009, 2013) study asymptotic

properties of the row normalized SAR model with a SAR coe¢ cient that converges to unity.

They �nd that this model does not induce spurious regression e¤ects of the type encountered

in time series: OLS coe¢ cients remain asymptotically normal, the regression R2 converges

in probability to zero, and t-statistics do not diverge. These results are markedly di¤erent

from our �ndings based on a continuous parameter model Y (�) of a spatial I(1) process.
More in line with our �ndings Fingleton (1999) generates data from a version of the SAR

model that is well-de�ned with a unit SAR coe¢ cient and presents Monte Carlo results

suggesting spurious regression phenomena. Using a related model, Rossi and Lieberman

2See Gelfand, Diggle, Guttorp, and Fuentes (2010) and Schabenberger and Gotway (2005) for useful
overviews.
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(2023) derive non-standard large-sample distributions for the estimated SAR coe¢ cient for

particular speci�cations of the SAR weight matrix, and suggest that model-speci�c non-

standard results will hold more generally.

With this background in place, the roadmap of the paper is a follows. Section 2 provides

our de�nition of a spatial I(1) process. In time series models (d = 1 in our notation), the

canonical I(1) process is a Wiener process. Lévy-Brownian motion is a useful generaliza-

tion of the Wiener process for d > 1, and Section 2 begins by reviewing its properties. In

standard time series models, more general I(1) processes can be constructed by replacing

the white noise increments of a random walk with a weakly correlated stationary series. For

example, stationary ARMA(p; q) noise yields a ARIMA(p; 1; q) process. Section 2 similarly

de�nes the spatial I(1) process by replacing the white noise innovations in the moving average

representation of Lévy-Brownian motion with a weakly dependent stationary spatial process.

An important insight from time series analysis is that the large sample distributions of

functions of I(1) processes can be approximated by the distributions of corresponding func-

tions of Wiener processes. The functional central limit theorem (FCLT) is the key driver

of such approximations, and it provides the basis for large-sample inference using statistics

constructed from realizations of I(1) processes. Section 2 provides a FCLT that is applicable

to spatial I(1) processes. We also show how to appropriately generalize the I(1) model to

a spatial �local-to-unity�process and provide a corresponding FCLT result about its large

sample behavior.

Armed with the tools from Section 2, Section 3 studies regressions involving spatial I(1)

variables, speci�cally models where the regressors and dependent variable are independent

I(1) processes. The section shows that many of the key results from the spurious time series

regression (cf., Phillips (1986)) carry over to the spatial case. For example, OLS regression

coe¢ cients and the regression R2 are not consistent, but have limiting distributions that can

be represented by functions of Lévy-Brownian motion. Regression F-statistics� we study

HAC and clustered versions in addition to the classical homoskedasticity-only test statistics

considered in Phillips (1986)� diverge to in�nity. The bottom line is that researchers should

be wary of spurious regressions using spatial data, just as they are using time series data.

In standard time series models, strong persistence also leads to non-standard sampling

distributions for estimated autoregressions, such as those suggested by Dickey and Fuller

(1979) to test the null hypothesis of a unit root. Section 4 studies a spatial analogue of such

autoregressions. In particular, we de�ne an �isotropic di¤erencing�transformation that, for
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each location sl, computes the weighted averages of Y (s`)� Y (sl) over neighboring locations
s`. Regressions of such isotropic di¤erences on Y (sl) are roughly analogous to a time series

regression of �yt on yt�1.

Section 5 takes up the problem of conducting inference about the degree of spatial per-

sistence in a scalar variable. In particular, we construct spatial analogues of the time series

�low-frequency�unit root and stationary tests of Müller and Watson (2008). In addition, we

suggest a con�dence interval for the mean reversion parameter in the spatial local-to-unity

model, analogous to the time series work by Stock (1991). We also consider versions of these

tests that can be applied to residuals of one spatial variable on another, yielding spatial

analogues of the residual-based cointegration tests in Engle and Granger (1987).

First-di¤erencing an I(1) time series yields an I(0) process, so spurious time series regres-

sions can be avoided by taking �rst di¤erences of I(1) variables. An analogous transformation

for spatial I(1) processes are the isotropic di¤erences introduced in Section 4. Section 6 pro-

vides Monte Carlo evidence that regressions using isotropic di¤erences do not su¤er from

spurious regression problems, and that valid inference can be conducted using the spatial-

correlation robust methods developed in Müller and Watson (2022a, 2022b). But there are

other intuitively plausible methods that may eliminate or mitigate problems associated with

I(1) variables in a spatial regression. These other methods include (i) low-pass and high-pass

spectral regressions, (ii) regressions that incorporate small-area �xed e¤ects, (iii) pooling

estimates constructed from data in non-overlapping regions, and (iv) employing a GLS trans-

formation based on Lévy-Brownian motion. Section 6 compares the coverage and length of

feasible con�dence intervals from versions of these methods. We �nd the GLS transformation

to be particularly e¤ective.

Section 7 o¤ers some concluding remarks. The appendix contains all proofs.

2 Spatial I(1) Processes and Their Limits

This section is divided into �ve subsections. The �rst subsection de�nes some notation for the

environment under study. The second reviews Lévy-Brownian motion, a spatial generalization

of the Wiener process. The third subsection provides the de�nition of a spatial I(1) process,

and the fourth provides a corresponding functional central limit theorem. The �nal subsection

presents a spatial generalization of the time-series local-to-unity model.
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2.1 Set-up and Notation

As described in the introduction, our analysis requires three ingredients. The �rst is the

spatial sampling region under consideration, denoted by S. The second are the locations,
sl 2 S that are observed. The third is the stochastic process, Y , that is de�ned on S. Taken
together, these three ingredients describe the observations

yl = Y (sl) for l = 1; :::; n: (1)

We introduce conditions and notation regarding the sampling region and the observed loca-

tions in this subsection. The following two subsections discuss the stochastic process Y .

We utilize a large-sample framework and assume that the locations sl, l = 1; : : : ; n are

non-stochastic (or, equivalently, they are independent of all other random elements), unless

stated otherwise. The locations are allowed to depend on n in a double-array fashion, but

we do not make this dependence explicit in the notation. We assume the following regularity

condition.3

Condition 1. (a) The locations sl are elements of Sn = �nS0 = fs : ��1n s 2 S0g for some
�xed and compact set S0 � Rd and deterministic non-decreasing positive real sequence �n.
(b) The empirical cumulative distribution function Gn of f��1n slgnl=1 � S0 converges to G,

Gn(s)! G(s) for all s 2 S0, with G an absolutely continuous distribution with support equal

to S0.

A familiar example helps clarify the sampling framework: consider a regularly spaced

time series process observed at time periods l = 1; :::; n, so that sl = l. In this example,

the sampling region can be represented as Sn = [0; n], with a domain increasing at the rate
�n = n. Thus, ��1n sl = l=n and S0 = [0; 1]. The empirical distribution of the locations

is Gn(s) = n�1 bsnc ! s for s 2 [0; 1], so that G is the uniform distribution. Condition 1

extends this familiar example to a general spatial setting with a general prototypical sampling

region S0 � Rd that grows an arbitrary rate �n.
3This coincides with Lahiri�s (2003) large-sample framework, except that he replaces Condition 1 with an

assumption that the locations are i.i.d. draws from the distribution G.
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2.2 Lévy-Brownian Motion

Consider the usual time series I(1) process yt =
Pt

s=1 us, t = 1; : : : ; n, where ut is mean

zero, covariance stationary and weakly dependent (that is, ut is I(0)). A standard time series

FCLT implies that n�1=2yb�nc ) !W (�), where W is a standard Wiener process on the unit

interval [0; 1]. For this reason, Wiener processes play a key role in the asymptotic analysis of

inference involving I(1) time series. Moreover, if n�1=2yt = !W (t=n) holds exactly, then yt
is a Gaussian random walk. Thus, Wiener processes represent the canonical I(1) time series

model, and the FCLT shows that other I(1) processes behave similarly to this canonical model

in a well-de�ned sense.

With this in mind, we begin by de�ning the generalization of the Wiener process to the

spatial case. In the following subsection we discuss more general spatial I(1) processes.

An attractive generalization of the Wiener process to the spatial case is Lévy-Brownian

motion L(s), s 2 Rd (Lévy (1948)), which will play a corresponding important role in our
analysis of I(1) spatial variables. Lévy-Brownian motion is a zero-mean Gaussian process

with domain Rd and covariance function

E[L(s)L(r)] = 1
2
(jsj+ jrj � js� rj) (2)

with jxj =
p
x0x for x 2 Rd, so in particular, Var(L(s)) = jsj and Var(L(s)� L(r)) = js� rj.

When d = 1 and s; r � 0, the covariance function (2) simpli�es to E[L(s)L(r)] = min(s; r),
the covariance function of a Wiener process, so Lévy-Brownian motion reduces to a Wiener

process. More generally, for any d, the process obtained along a line in Rd, Wa;b(s) = L(a +

bs)� L(a), a; b 2 Rd, jbj = 1, s 2 R is a Wiener process. Thus, L is a natural embedding of
the canonical time series model of strong persistence to the spatial case. Notice that Lévy-

Brownian motion is isotropic, that is, Var(L(s)� L(r)) depends on s; r only through js� rj.
Thus, Lévy-Brownian motion is invariant to rotations of the spatial axes, L(Os) � L(s), for

any d � d rotation matrix O. Moreover, like the Wiener process, Lévy-Brownian motion is

self-similar, that is, L(a�) � a1=2L(�) for any scalar a > 0.
The left panel of Figure 2 plots a realization of L on the sampling region representing the

48 contiguous U.S. States.4 The right panel shows a realization of another generalization of

the Wiener process to d > 1, the Brownian sheet
R
Rd 1[0 � r � s]dW (r), s � 0, where the

inequality 0 � r � s is to be understood element by element. The Brownian sheet is not

4See Section S.1 in the supplemenatary appendix for details on the generation of Figures 2-4.
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Figure 2: Sample Realizations of Stochastic Processes for d = 2

isotropic, as is clearly visible in the sample realizations in the �gure. Because of this, we

�nd Lévy-Brownian motion a more appealing generalization of the Wiener process for most

applications and therefore use yl = L(sl) as the canonical unit root process for d > 1.

Two Representations of Lévy-Brownian motion

We will utilize two representations for Lévy-Brownian motion, the Karhunen�Loève ex-

pansion and a spatial �moving average�representation. We discuss these in turn.

By Mercer�s Theorem, the covariance kernel (2) evaluated at s; r 2 S0 can be represented
as

E[L(s)L(r)] =
1X
j=1

�j'j(s)'j(r) (3)

where (�j; 'j) are eigenvalue/eigenfunction pairs with �j � �j+1 � 0 and 'j : S0 7! R
satisfying

R
'i(s)'j(s)dG(s) = 1[i = j]. This spectral decomposition of the covariance kernel

leads to a corresponding Karhunen�Loève expansion of L as the in�nite sum

L(s) =
1X
j=1

�
1=2
j 'j(s)�j, �j � iidN (0; 1) (4)

where the right-hand side converges uniformly on S0 with probability one (cf. Theorem 3.1.2

of Adler and Taylor (2007)). This result generalizes the corresponding observation in Phillips

(1998) about representations of the Wiener process in terms of stochastically weighted aver-

ages of deterministic series. Figure 3 plots some of the eigenfunctions 'j for S0 the contiguous

8



Figure 3: Eigenfunctions for Uniform Distribution on Continental U.S.

U.S. and G the uniform distribution.

The spatial moving average representation represents Lévy-Brownian motion as a weighted

average of spatial white noise. Recall that a Wiener process can trivially be written as an

integral over white noise, W (s) =
R s
0
dW (r). This can be generalized for Lévy-Brownian

motion for all d � 1: from Lindstrøm (1993)

L(s) =

Z
h(r; s)dW (r) =

( R s
0
dW (r) for d = 1

�d
R
Rd(js� rj(1�d)=2 � jrj(1�d)=2)dW (r) for d > 1

(5)

where �d > 0 is a scalar chosen so that Var(L(s)) = 1 when jsj = 1.

2.3 Spatial I(1) Processes

The commuter-zone data plotted in panel (b) of Figure 1 are realizations of Lévy-Brownian

motion evaluated at the zone centers, while the data plotted in panel (c) are variables from

9



Chetty, Hendren, Kline, and Saez (2014). To the naked eye, the long-range spatial correlation

patterns in these �gures are similar, suggesting that Lévy-Brownian motion may be a rea-

sonable model for low-frequency correlation in economic and demographic spatial data. That

said, the higher-frequency/short-range correlation patterns look di¤erent. In this section, we

propose a generalization of Lévy-Brownian motion that inherits its long-range properties but

allows for more �exible short-range correlation patterns. Following the notation used in time

series, we call these (spatial) I(1) processes.

In the standard time series case, I(1) processes are de�ned as partial sums of a weakly

dependent I(0) process, say ut, so that yt =
Pt

s=1 us. Because spatial locations typically do

not fall on a regular lattice, this de�nition does not naturally generalize. Instead, we take

advantage of the moving average representation (5) and replace the white noise innovations

dW (r) by a weakly dependent random �eld B:

We thus de�ne a spatial I(1) process on Sn via

Y (s) =

Z
h(r; s)B(r)dr: (6)

Note that if B is isotropic, then so is Y .

In general, B does not need to be Gaussian or isotropic, but we impose the following

regularity condition.

Condition 2. The mean-zero random �eld B with domain Rd is covariance stationary with
E[B(s)B(r)] = �B(s� r) and

R
Rd �B(s)ds <1, and B is such that for some m > 2d, Cm > 0

and any square integrable function f : Rd 7! R,

E

"�Z
Rd
f(r)B(r)dr

�2m#
� Cm

�Z
Rd
f(r)2dr

�m
:

Lemma 1.8.4 of Ivanov and Leonenko (1989) implies that Condition 2 holds for a wide

range of covariance stationary mixing random �elds B.

Note that
R
Rd jh(r; s)jdr does not exist for d > 1, so Y in (6) is not de�ned pathwise for

every realization of B. However,
R
Rd h(r; s)

2dr < 1, so under appropriate weak dependence
conditions on B, the integral that de�nes Y can be shown to converge in a mean square sense.

In particular, we have the following result.

Lemma 1. Under Condition 2, for all d � 1, Y (�) exists on Sn � Rd for all n and has
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Figure 4: Sample Realizations of Y with Di¤erent Underlying B

Notes: B1 and B2 are zero mean Gaussian processes with spectral densities f1(!) / 1=(j!j2+1002)3=2
and f2(!) / (j!j2+502)3=2=(j!j2+2002)3 for ! 2 R2, respectively, where the width of the contiguous
U.S. is normalized to unity.

continuous sample paths with probability one.

Figure 4 plots realization from two such Y processes with B equal to two di¤erent isotropic

Gaussian processes. These realizations were generated using the same underlying normal

variables as the Lévy-Brownian motion plotted in Figure 2. As demonstrated in Figure 4,

di¤erent B processes can induce quite di¤erent local behavior of Y , but with the same long-

range behavior as Lévy-Brownian motion, a result formalized in the next subsection.

2.4 A Functional Central Limit Theorem

In the standard time series case, a functional central limit theorem (FCLT) yields n�1=2yb�nc =

n�1=2
Pb�nc

t=1 ut ) !W (�) for a covariance stationary and weakly dependent time series ut, where
!2 =

P1
k=�1 E[utut�k] is the so-called long-run variance of ut. We now develop a similar result

for the spatial I(1) process Y (�) in (6).
The classic time series FCLT involves two rescalings: one that maps time into the unit

interval, and one that shrinks the scale of yt to compensate for its increasing variance. For

the spatial I(1) process in (6) we similarly de�ne the process Y 0
n (�) on S0 via

Y 0
n (r) = ��1=2n Y (�nr), r 2 S0: (7)
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We make the following assumption about the process B.

Condition 3. For some positive sequence �n ! 1, let Rn = [��n; �n]d � Rd, and let
fn : Rd 7! R be any sequence of functions such that lim supn!1 supr2Rn

�d=2n jfn(r)j <1 and

Var[
R
Rn
fn(r)B(r)dr]! �20. Then

R
Rn
fn(r)B(r)dr ) N (0; �20).

The central limit theorems in Section 1.7 of Ivanov and Leonenko (1989) provide primitive

mixing and moment conditions on B that imply Condition 3.

Theorem 2. Suppose Conditions 2 and 3 hold. If �n !1, then Y 0
n (�)) !L(�) on S0, where

!2 =
R
Rd �B(r)dr.

Remark 2.1. Under Condition 1, the rate �n governs the degree of �in�ll�versus �out�ll�
sampling. To see this, note that Sn = �nS0 implies that the volume of Sn is vol(Sn) =
�dn vol(S0) so the average number of observations per unit of volume is proportional to n=�dn.
If �n is constant this corresponds to pure in�ll sampling of the �xed sampling domain. The

assumption that �n ! 1 rules out pure in�ll sampling. In contrast, when �n / n1=d,

the average number of observations per unit of volume is unchanged as n grows and this

corresponds to pure out�ll sampling. Finally, when �n !1 with �n = o(n�1=d), the sampling

domain is increasing as is the average number of observations per unit of volume, which yields

a mix of in�ll and out�ll sampling. The theorem requires �n ! 1 and thus requires some

degree of out�ll sampling. Recall that for the standard time series example in Section 2.1,

S0 = [0; 1], �n = n, and Sn = [0; n], so �n ! 1 corresponds to the usual large-n increasing

domain requirement.

Remark 2.2. In practice, Theorem 2 can be used to argue that the distribution of a functional
 (Y 0

n ) is well approximated by the distribution of  (!L). Note, however, that this requires

 to be su¢ ciently continuous for the continuous mapping theorem to be applicable. For

instance, recall that for yt a mean-zero zero I(1) time series, a FCLT implies that n�1=2yb�nc )
!W (�), yet yt � yt�1 = ut does not in general converge to a Gaussian variable. The same

holds for our generalization to spatial I(1) processes: For example, the distance between two

typical neighboring locations ��1n sl, �
�1
n s` 2 S0 is O(n�1=d). For d > 1, the di¤erence in the

value of Y 0
n (�) evaluated at two such neighboring points s and s+ n�1=da, a 2 Rd is given by

Y 0
n (s+ n�1=da)� Y 0

n (s) = ��1=2n

Z
Rd
(h(r; �n(s+ n�1=da))� h(r; �ns))B(r)dr
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= ��1=2n

Z
Rd
(j�nn�1=da� rj(1�d)=2 � jrj(1�d)=2)B(�ns+ r)dr: (8)

Even under pure out�ll sampling, �nn�1=d does not diverge. The weighting of B(�ns + r)

in (8) thus puts most of its (square integrable) weight on small values r, and the (suitably

scaled) di¤erence Y 0
n (s + n�1=da) � Y 0

n (s) = ��1=2n (Y (�ns + �nn
�1=da) � Y (�ns)) does not

become Gaussian as n!1, just as in the time series case.

Remark 2.3. It is well known that suitably scaled partial sums over rectangles of random
variables de�ned on a lattice converge to a Brownian Sheet under suitable mixing and moment

conditions; see, for instance, Deo (1975). In contrast, we are not aware of previous results

about convergence to Lévy-Brownian motion.

2.5 Spatial Local-to-Unity Processes

A large time series literature, initiated by Chan and Wei (1987) and Phillips (1987), concerns

a generalization of the I(1) model to the weakly mean reverting local-to-unity model. In this

model, the time series yt satis�es n�1=2(yb�nc � y1) ) !(Jc(�) � Jc(0)), with Jc a stationary

Ornstein-Uhlenbeck (OU) process with covariance kernel E[Jc(s)Jc(r)] = exp[�cjs� rj]=(2c),
c > 0. Taking the limit of this covariance kernel shows that Jc(�) � Jc(0) converges to a

Wiener process as c ! 0 (see Elliott (1999)). We now generalize the spatial I(1) process

de�ned above to an analogous local-to-unity spatial model.

In particular, for d > 1, de�ne Jc on Rd as the stationary and isotropic Gaussian process
with covariance function E[Jc(s)Jc(r)] = exp[�cjs�rj]=(2c), c > 0. This is a special case of the
Matérn class of covariance functions, with a spectral density proportional to (j!j2+c2)�(d+1)=2,
! 2 Rd. As in the d = 1 model, Jc(�) � Jc(0) converges to L(�) as c ! 0 for any integer d.

Also, along any line Jc(a+ bs), a; b 2 Rd, jbj = 1, s 2 R is a standard OU process.
From equation of (3.2.8) of Matérn (1986), Jc has the moving average representation

Jc(s) =

Z
Rd
hc(r; s)dW (r) (9)

with hc(r; s) = �c;djs � rj(1�d)=4K(1�d)=4(cjs � rj) for a suitable choice of constant, where K�

is the modi�ed Bessel function of the second kind, d � 1.5 We proceed as in the spatial I(1)
5For d = 1, the usual one-sided (causal) representation for a stationary OU process is Jc(s) =R s

�1 e�c(s�r)dW (r). Equation (9) is an alternative two-sided (non-causal) representation when d = 1.
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model (6) and replace the white noise term by the weakly dependent random �eld B,

Yc(s) =

Z
Rd
hc(r; s)B(r)dr,

and de�ne the spatial local-to-unity process on Sn as the sequence of processes Yc=�n. In this
de�nition, the parameter c=�n is a drifting sequence, generalizing the corresponding local-to-

unity time series device. The rate of this drift is such that the overall degree of mean reversion

of

Y 0
n;c(r) = ��1=2n Yc=�n(�nr), r 2 S0 (10)

over the �xed set S0 converges as n!1.
The appendix shows that under Condition 2, Yc=�n exists on Sn for all n. Furthermore,

under the conditions of Theorem 2, Y 0
n;c in (10) satis�es

Y 0
n;c(�)) !Jc(�): (11)

3 Spurious Regressions with Spatial I(1) Variables

As a �rst application of the results in Section 2, consider the regression model

yl = �+ x0l� + ul (12)

for l = 1; :::; n, where (yl; xl) = (Y (sl); X(sl)) 2 Rp+1 follow p + 1 independent spatial I(1)

processes. The FCLT in Theorem 2 allows for a straightforward spatial extension of the classic

spurious time-series regression results in Phillips (1986).

Let ~yl = yl � n�1
Pn

`=1 y` denote the demeaned value of yl and similarly for xl. Let

s~y~y = n�1
Pn

l=1 ~y
2
l , S~x~x = n�1

Pn
l=1 ~xl~x

0
l and S~x~y = n�1

Pn
l=1 ~xl~yl. The OLS estimator is

�̂ = S�1~x~x S~x~y, the regression R
2 = S 0~x~yS

�1
~x~x S~x~y=s~y~y, the OLS estimator for the variance of ul is

s2u =
n

n�p�1(s~y~y�S
0
~x~yS

�1
~x~x S~x~y), and the classical (non-spatial-correlation robust, homoskedastic)

F-statistic for testing H0 : H� = 0, where H is a non-stochastic matrix with rank(H) = m �
p, is FHom = n

m
�̂
0
H 0(H 0S�1~x~xH)

�1H�̂=s2u.
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Suppose (yl; xl) = (Y (sl); X(sl)) follow spatial I(1) processes with"
Y 0
n (�)
X0
n(�)

#
=

"
��1=2n Y (�n�)
��1=2n X(�n�)

#
)
"
Y 0(�)
X0(�)

#
(13)

on S0, where [Y 0(�); X0(�)0] are p+ 1 independent and arbitrarily scaled Lévy-Brownian mo-
tions. Let ~Y (�) = Y 0(�) �

R
Y 0(r)dG(r) denote the demeaned version of Y 0 using spatial-

weighted average demeaning, and de�ne ~X analogously.

Theorem 3. Under Condition 1 and (13)
(i) ��1n s~y~y ) �~y~y =

R
~Y 2(r)dG(r), ��1n S~x~x ) �~x~x =

R
~X(r) ~X(r)0dG(r) and ��1n S~x~y )

�~x~y =
R
~X(r) ~Y (r)dG(r),

(ii) �̂ ) ��1~x~x�~x~y,

(iii) R2 ) �0~x~y�
�1
~x~x�~x~y=�~y~y,

(iv) ��1n s2u ) �~y~y � �0~x~y��1~x~x�~x~y,
(v) n�1FHom ) m�1�0~x~y�

�1
~x~xH

0(H��1~x~xH
0)�1H��1~x~x�~x~y=(�~y~y � �0~x~y��1~x~x�~x~y):

Remark 3.1. In the one-dimensional case with d = 1, S0 the unit interval and G the uniform
distribution, these results coincide with the spurious time-series regression limits derived in

Phillips (1986). In the general spatial case, the limits are seen to depend on the spatial

distribution of locations G and its support S0. Section 6 provides numerical results for the
behavior of R2 for a range of spatial designs with d = 2.

Remark 3.2. An implication of part (v) of Theorem 3 is that the classical F-test statistic

diverges to in�nity so that P(FHom > cv)! 1 for any cv � 0.

A more relevant question in practice is whether the spurious signi�cance of the F-statistic

also generalizes to heteroskedasticity and HAC-corrected standard errors. We now establish

that it does. In particular, consider the class of correlation-robust-HAC F-statistics

FHAC =
n

m
�̂
0
H 0(HS�1~x~x 
̂nS

�1
~x~xH

0)�1H�̂ (14)

where 
̂n is a kernel-based estimator of Var
�
n�1=2

Pn
l=1 ~xlul

�
of the form


̂n = n�1
nX

l;`=1

� (bn(sl � s`)) ele
0
` (15)
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with el = ~xl(~yl� ~x0l�̂), bn a bandwidth (that may depend both on fslg and the data f(yl; xl)g)
with ��1n b�1n = op(1) and � : Rd 7! R a kernel weighting function satisfying

sup
r
j�(r)j = �� <1; lim

�!1
sup
jaj=1

j�(�a)j = 0. (16)

The assumption of ��1n b�1n = op(1) ensures that in large samples, 
̂n in (15) puts negligible

weight on pairs of locations with ��1n jsl � s`j > ", for all positive ". Since ��1n sl 2 S0 with
S0 compact, this is necessary for a kernel estimator to be consistent under weak spatial
dependence. These conditions are satis�ed, for instance, for the spatial correlation robust

estimator suggested in Conley (1999). As long as all locations are distinct, heteroskedasticity

robust standard errors correspond to �(r) = 1[r = 0], which also satis�es (16).

Alternatively, researchers sometimes employ clustered standard errors over larger regions

to account for spatial dependence. The corresponding F clust statistic has the same form as

FHAC in (14) with 
̂n replaced by


̂clustn = n�1
nCX
j=1

0@X
l2Cj

el

1A0@X
l2Cj

el

1A0

where the partitions Cj of f1; 2; : : : ; ng indicate membership in cluster j = 1; : : : ; nC . With
jCjj the number of observations in cluster j, we assume max1�j�nC jCjj=n! 0 as n!1. As
discussed in Hansen and Lee (2019), page 270, this is necessary for the consistency of cluster

robust inference under weak dependence.

The following result shows that inference using FHAC or F clust does not avoid spurious

signi�cance with independent spatial I(1) variables.

Theorem 4. Under Condition 1, (13) and (16), P(FHAC > cv)! 1 and P(F clust > cv)! 1

for any cv � 0:

Remark 3.3. In contrast to spatial HAC inference, �xed-b type spatial HAR inference

(Bester, Conley, Hansen, and Vogelsang (2016), Sun and Kim (2012)) does not lead to diverg-

ing F -statistics, and the spatial correlation robust inference derived in Müller and Watson

(2022a) explicitly accommodates some degree of �strong�persistence of the type exhibited

by the spatial local-to-unity model for large enough c. See Section 6 below for corresponding

numerical results.
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Remark 3.4. Theorems 3 and 4 also hold for local-to-unity processes, that is, if [Y 0(�); X0(�)]
in (13) are p+1 independent processes of the type (9), with arbitrary and potentially di¤erent

mean-reversion parameters c. This is because the asymptotics that yield convergence to Jc(�)
are �pure in�ll� relative to the degree of mean reversion, and pure in�ll asymptotics are

known to potentially lead to inconsistent parameter estimators (cf. Zhang and Zimmerman

(2005) for references and further discussion). In contrast, no degree of �out�ll�(or increasing

domain) asymptotics can remedy the spurious regression e¤ect in the I(1) model, again just

as in the time series case.

Remark 3.5. It follows from the Karhunen�Loève representation of L in (4) and the

FCLT result in Theorem 2 that the coe¢ cients of a regressions of ��1=2n yl on the eigen-

functions ['1(�
�1
n sl); : : : ; 'p(�

�1
n sl)] converge to independent N (0; !2�j) random variables.

This generalizes the �understanding spurious regressions� result in Theorem 3.1 (a) of

Phillips (1998) to the spatial case. More generally, the coe¢ cients of a regression of

��1=2n yl on smooth deterministic functions of ��1n sl, say  (��1n sl) 2 Rp, converge to�R
 (r) (r)0dG(r)

��1
!
R
 (r)L(r)dG(r) and are asymptotically signi�cant as measured by

a corresponding FHom, FHAC or F clust statistic. Kelly (2019) observes such a phenomenon

empirically in a number of applications with spatial data.

4 Isotropic Di¤erences Regression

A natural approach to learning about the spatial dependence in a univariate data set is via re-

gression analysis. In the standard time series case, this corresponds to autoregressions, where

the current value is regressed on past values. For strongly dependent data, this is typically

implemented using Dickey and Fuller (1979) regressions, where the dependent variable is the

�rst di¤erence of the series, and the regressor its lagged value.

The spatial case is interestingly di¤erent, since for d > 1, there is no natural ordering of

the locations. Instead, one may consider regressions that are �isotropic�in the sense that all

directions are treated symmetrically. In particular, consider the transformation

y�l =
1

n

X
`6=l

�b(�
�1
n js` � slj)(y` � yl) (17)

for some bounded weighting function �b : R 7! R with �b(x) = �0(x=b) for b > 0 and

�0(x) = 0 for jxj > 1. We call this transformation �isotropic di¤erencing,�as (17) averages
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over all di¤erences that are within a ball of radius �nb around sl, so it is invariant to rotations

of the data. The normalization by ��1n exactly counteracts the growth in the sampling region

Sn, so this is a spatial version of a ��xed-b�(cf. Kiefer and Vogelsang (2005)) kernel, and the
larger the bandwidth b, the more averaging is being employed.

Consider a regression of y�l on yl� this roughly corresponds to the time series regression of

�yt on yt�1, except that the di¤erence is computed symmetrically and over a positive fraction

of the sample size. In order to avoid border e¤ects, we only consider locations in the regression

of y�l on yl where �
�1
n sl is at least a distance b of the boundary @S0 of S0. Technically, let

Ib = fs 2 S0 : d(s; @S0) � bg be the corresponding interior of S0.

Theorem 5. Let 
̂ be the coe¢ cient of an OLS regression of y�l in (17) on yl for all l such
that ��1n sl 2 Ib. Suppose yl is a spatial local-to-unity process satisfying (11), Ib has positive
volume, �0 has a �nite number of discontinuity points and Condition 1 holds. Then


̂ )
R
Ib Jc(s)

R
�b(jr � sj)(Jc(r)� Jc(s))dG(r)dG(s)R

Ib Jc(s)
2dG(s)

: (18)

Remark 4.1. Due to the long-range nature of the di¤erences (17) with b �xed, the long-run
variance !2 cancels in the limiting expression for 
̂. Thus, one could use 
̂ to learn about

the degree of mean reversion c, analogous to the suggestion in Stock (1991) for the standard

time series case. In order to simulate corresponding critical values, one could replace G by

the empirical distribution Gn in the r.h.s. of (18), which is asymptotically justi�ed (see the

proof of Theorem 5).

Remark 4.2. If a constant is included in the regression, then the same result holds with Jc
replaced by ~Jc with ~Jc(s) = Jc(s) �

R
Ib Jc(r)dG(r). Also, for a spatial I(1) process yl, (18)

holds with Jc replaced by L:

Remark 4.3. If the isotropic di¤erences are computed with weights that are normalized to
sum to one, y�l =

P
`6=l �b(�

�1
n jsl � s`j)(yl � y`)=

P
`6=l �b(�

�1
n jsl � s`j), then (18) holds with

�b(jr � sj) replaced by �b(jr � sj)=
R
�b(ju� sj)dG(u).

By a change of variables, the numerator in (18) may be rewritten as

bd
Z
Ib
Jc(s)

Z
jrj�1

�0(jrj)(Jc(s+ br)� Jc(s))g(s+ br)drdG(s) (19)
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where g is the density of the distribution G. As the bandwidth b shrinks, (19) becomes smaller

for two reasons: the leading terms bd shrinks and for each r, the variance of Jc(s+ br)�Jc(s)
shrinks. This suggests that the numerator in (18) has little variability as b! 0. The following

result formalizes this intuition and establishes the limiting constant.

Theorem 6. Suppose the density g of G admits three bounded derivatives on S0. Then under
the assumptions of Theorem 5, as b! 0,

b�d�1
Z
Ib
Jc(s)

Z
�b(jr � sj)(Jc(r)� Jc(s))dG(r)dG(s)

p! �1
2

Z
jrj�1

jrj�0(jrj)dr �
Z
g(s)2ds:

(20)

Furthermore, (20) continues to hold with Jc(s) replaced by Jc(s)� m̂ for any random variable

m̂ with E[m̂2] <1, and also for Jc replaced by L.

Remark 4.4. For intuition about the limit in Theorem 6, consider a time series random

walk yt =
Pt

s=1 "t with "t � iid(0; 1). As is well known, n�1
Pn�1

t=2 �yt+1yt )
R 1
0
W (s)dW (s).

Also, n�1
Pn�1

t=2 (yt�1 � yt)yt = n�1
Pn�1

t=2 (��yt)(yt�1 + �yt) )
R 1
0
W (s)dW (s) � 1. Thus,

n�1
Pn�1

t=2 (�yt+1+(yt�1�yt))yt
p! �1. Treating the forward and backward di¤erence as each

receiving unit weight for a total of 2, this result accords with (20). Symmetric time series

autoregressive estimators of this type are studied in Pantula, Gonzalez-Farias, and Fuller

(1994) and Fuller (1996); see, for instance, Theorems 10.1.7 and 10.1.8 in the latter.

Remark 4.5. As b ! 0, the denominator in (18) converges to
R
Jc(s)

2dG(s). Suppose we

pick a weight function �0 such that
R
jrj�1 jrj�0(jrj)dr �

R
g(s)2ds = 1. Taking b! 0 limits after

n ! 1 limits yields a limiting distribution of �b�d�1
̂ equal to 1
2
=
R
Jc(s)

2dG(s): Because

the distribution of 1
2
=
R
Jc(s)

2dG(s) depends on the value c, this suggests that �b�d�1
̂ may
be used to estimate the degree of mean reversion c of the local-to-unity spatial process yl.

This is analogous to using n(1� �̂), with �̂ the estimator of the largest autoregressive root in
the standard time series case. The limiting distribution of �b�d�1
̂ never takes on negative
values, again mirroring the corresponding results for the symmetric autoregressive time series

estimator �̂ of Pantula, Gonzalez-Farias, and Fuller (1994) and Fuller (1996).
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5 Inference for Spatial Persistence

This section develops inference methods for the degree of spatial persistence.6 As discussed

in the last section, regressions can be used for this purpose. An alternative, non-regression

based approach to learn about time series persistence is developed in Müller and Watson

(2008). That approach is based on the properties of q suitably chosen weighted averages, and

generalizes fairly directly to the spatial setting studied here.

The intuition is as follows: The Karhunen�Loève expansion (4) implies that eigenfunction

weighted averages of a Lévy-Brownian motion recover independent normal variates with a

variance that is proportional to the eigenvalues. Focussing on the q eigenfunctions corre-

sponding to the largest eigenvalues yields a set of independent normal random variables with

sharply decaying variance. In contrast, when the data are i.i.d. Gaussian random variables,

these weighted averages are i.i.d. normal random variables because of the orthogonality of the

eigenfunctions. This di¤erence in behavior may be used to empirically distinguish between

these two canonical cases. What is more, the FCLT result in Theorem 2 and the CLT in

Lahiri (2003) implies that these tests are also asymptotically valid under more general forms

of spatial I(0) and I(1) processes. The remainder of this section expands on this intuition to

develop tests for the degree of spatial persistence.

5.1 Local Alternatives and Rescaling of Locations

In a standard time series unit root test, autoregressive local alternatives are of the local-

to-unity type, that is, the alternative autoregressive parameter is a sequence that converges

to unity. This device ensures that asymptotic power is non-trivial. For a spatial unit root

process with Y 0
n (�) ) !L(�) on S0, the same holds true: the natural local alternative is a

local-to-unity process satisfying Y 0
n (�) ) !Jc(�) as introduced in Section 2.5. Since yl =

�1=2n Y 0
n (�

�1
n sl), the canonical alternative is thus of the form yl = �1=2n Jc(�

�1
n sl). By self-

similiarity, f�1=2n Jc(�
�1
n sl)gnl=1 � fJc=�n(sl)gnl=1. Instead of characterizing the alternatives in

terms of the drifting sequence c=�n, it is more convenient to instead rescale the locations: Let

s0l = ��1n sl, where we suppress the dependence on n for notational convenience. The canonical

unit root testing problem then simply becomes testing yl = �1=2n L(s0l ) versus yl = �1=2n Jc(s
0
l ).

6Other approaches to testing for the presence of spatial correlation, such as Moran�s (1950) I statistic
or Geary�s (1954) c, require the speci�cation of a spatial weight matrix and test the null hypothesis of zero
spatial correlation.
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The representation proposed in the preceding paragraph depends on the scale factor �n.

The inference methods developed in this section are designed to be invariant to the choice of

�n. Notice that the choice of �n a¤ects the representations in two ways. The �rst is a simple

scaling of yl by �
1=2
n . We eliminate this e¤ect by focussing on scale-invariant tests. The second

e¤ect is more subtle: the value of c and the scale of S0 are not separately identi�ed: doubling
S0 and the s0l �s and halving c yields the same distribution for fJc(s0l )gnl=1 � fJc=2(2s0l )gnl=1.
Thus, c must be interpreted relative to the scale of S0. All of our choices for c below are
(implicitly) self-normalizing in that sense. Thus, while the scale factor �n is useful for the

asymptotic analysis, its value makes no di¤erence in practice and all tests developed below

are invariant to using the scaled locations fs0l gnl=1 or the original locations fslgnl=1.

5.2 Dimension Reduction by Weighted Averages

Let Yn = (y1; : : : ; yn)
0 and let �n;L be the n � n covariance matrix of Yn induced by Lévy-

Brownian motion yl = L(s0l ). We are interested in tests that are invariant to translation shifts

Yn ! Yn + a1, where 1 is a vector of ones. We therefore seek weighted averages of Yn that

sum to zero. Let M = In � 1(101)�110, and let Rn be the n � q matrix of eigenvectors of

M�n;LM corresponding to the q largest eigenvalues, where Rn satis�es n�1R0
nRn = Iq. If

Yn � (0;�n;L), the columns of Rn extract the q linear combinations ofMYn with the largest

variance. Let Zn = R0
nMYn = R

0
nYn, a q�1 random vector, denote the associated weighted

averages of the data, where the �nal equality holds because R0
n1 = 0. As in Müller and

Watson (2008), we treat Zn as the e¤ective observation, that is, we seek to conduct inference

about the persistence properties of Yn with a test that is a function of Zn only.

Di¤erent models for persistence in Yn imply di¤erent values for Var(Zn) = 
n. Consider

�rst the generic problem of testing H0 : 
 = 
0 versus Ha : 
 = 
a when Zn � N (0;
).
A standard calculation shows that the most powerful level � scale invariant test rejects for

large values of
Z0n


�1
0 Zn

Z0n

�1
a Zn

(21)

with a critical value that equals the 1 � � quantile of (21) under the null distribution Zn �
N (0;
0).

Inference of this type depends on q, the number of weighted averages used in the construc-

tion of Zn. The choice of q faces a classic e¢ ciency vs. robustness trade-o¤: large q increases

power, but at the expense of exploiting implications of the speci�c models of persistence over
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many weighted averages. In practice, a moderate value of q, say a number around 10-20,

as in Müller and Watson (2008), yields a reasonable compromise: it is large enough to yield

informative inference and yet does not overly stretch the asymptotic approximations of the

FCLT in Theorem 2. We leave a more principled argument that endogenously determines q

(potentially along the lines of Dou (2019) and Müller and Watson (2022a)) to future research,

and set q = 15 in our numerical analysis.

When considering large sample approximations based on the FCLT, it is useful to have a

result about the large sample properties of the eigenvectorsRn. Intuitively, these eigenvectors

should become close to the eigenfunctions of the covariance kernel of demeaned Lévy-Brownian

motion (2) given by

�k(r; s) = k(r; s)�
Z
k(u; s)dG(u)�

Z
k(r; u)dG(u) +

Z Z
k(u; t)dG(u)dG(t)

where k(r; s) = 1
2
(jsj + jrj � js � rj). Let the spectral decomposition of �k(r; s) be �k(s; r) =P1

i=1 ��i�'i(s)�'i(r); where
R
�'i(s)�'j(s)dG(s) = 1[i = j], ��i � ��i+1 � 0 and the eigenfunctions

�'i satisfy
R
�k(�; s)�'i(s)dG(s) = ��i�'i(�). The sample analogue of �k(r; s) is

k̂n(r; s) = k(r; s)� n�1
nX
l=1

k(s0l ; s)� n�1
nX
`=1

k(r; s0`) + n�2
nX
l=1

nX
`=1

k(s0l ; s
0
`)

and the n � n matrix K̂n with l; ` element equal to k̂n(s0l ; s
0
`) satis�es K̂n = M�n;LM. Let

(ri; �̂i) with ri = (ri;1; : : : ; ri;n)0 be the eigenvector-eigenvalue pairs of n�1K̂n with �̂1 � �̂2 �
: : : � �̂n and n�1r0iri = 1. For all i with �̂i > 0 de�ne the S0 7! R functions

'̂i(�) = n�1�̂�1i

nX
l=1

ri;lk̂n(�; s0l ): (22)

Lemma 6 of Müller and Watson (2022a), building of the work of Rosasco, Belkin, and Vito

(2010), shows that if the locations s0l are i.i.d. with distribution G and ��1 > ��2 > : : : > ��q,

then (�̂i; '̂i) converge to (��i; �'i), i = 1; : : : ; q, and the lemma also provides corresponding

convergence rates. The following result does away with the i.i.d. assumption on the generation

of the locations s0l , but rather assumes that the non-stochastic sequence of locations fs0l gnl=1
has an empirical distributionGn that converges toG, as in Condition 1. This assumption holds

for almost all realizations of fs0l gni=1 if s0l � G is i.i.d. by the Glivenko-Cantelli Theorem, so in
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this sense, the following result is more general, albeit at the cost of not providing convergence

rates.

Lemma 7. Suppose ��1 > ��2 > : : : > ��q > ��q+1 and Condition 1 holds. Then for any q � 1,
sups2S0;1�i�q j'̂i(s)� �'(s)j ! 0 and max1�i�q j�̂i � ��ij ! 0.

5.3 Tests of the I(1) Null Hypothesis

With this background in place, consider the problem of testing the I(1) null hypothesis

against the local-to-unity alternative. The canonical forms of these models are yl = L(s0l )

and yl = Jc(s
0
l ). This yields Yn � N (0;�n;L) and Yn � N (0;�n(c)), respectively, with the

l; ` element of �n(c) equal to exp[�cjs0l � s0` j]=(2c). Thus, optimal tests in this problem are

of the form (21) with 
0 = 
n;L= R
0
n�n;LRn and 
a = 
n(ca) = R0

n�n(ca)Rn for some

ca > 0. This yields the test statistic

LFURn =
Z0n


�1
n;LZn

Z0n

�1
n (ca)Zn

; (23)

where the notation emphasizes that this is the spatial analogue of the time series low-frequency

unit root test (LFUR) from Müller and Watson (2008). In the Gaussian AR(1) time series

model with parameter �, the null is � = 1 and the alternative is � = 1� ca=n. To determine a
value of ca that ensures good power for a wide range of values of c, we follow King (1987) and

choose ca such that a 5% level test has 50% power. This choice of ca makes the test invariant

to the scale factor �n, as previewed in Section 5.1.

By construction, this test is valid under the canonical H0 model Yn � N (0;�L;n).

But by the FCLT in Theorem 2, Lemma 7 and the continuous mapping theorem (CMT),

��1=2n n�1Zn ) N (0; !2 diag(��1; : : : ; ��q)) for the entire class of I(1) processes that satisfy the
conditions of Theorem 2, as well as for the canonical model with !2 = 1. Since the test (21) is

scale invariant, the scale parameters ��1=2n n�1 and !2 vanish, and the critical value computed

from the canonical model converges to the asymptotically correct critical value for generic

I(1) processes.

5.4 Tests of the I(0) Null Hypothesis

Now consider a corresponding spatial stationarity test based on Zn. Here we seek a test

of the null hypothesis that yl exhibits weak spatial correlation. This requires a de�nition of

23



�weak�correlation. One useful gauge for the strength of correlation is whether HAR-inference

remains valid. Müller and Watson (2022a) derive HAR inference that remains valid in the

�n(c) model for (all large enough) values of c that induce an average pairwise correlation

between yl and y`,

��(c) =
1

n(n� 1)
X
l 6=`

exp[�cjs0l � s0` j], (24)

of no more than 0.03. Denote the corresponding cut-o¤ value of c by c0:03, that is, ��(c0:03) =

0:03. The canonical version of the testing problem then becomes H0 : 
 = 
n(c), c � c0:03

against Ha : 
 = 
n(c)+ g
2
a
n;L, ga > 0. This form of alternative, a sum of a stationary and

I(1) process, also motivates the time series stationary tests in Nyblom (1989), Kwiatkowski,

Phillips, Schmidt, and Shin (1992), etc. The larger the scale ga of the Lévy-Brownian motion

under the alternative, the easier it is to discriminate the two hypotheses, so ga can again be

chosen using the 50% power rule. The stationarity testing problem is complicated by the

presence of the additional nuisance parameter c that indexes the covariance matrix 
n(c)

in both the null and alternative. Here numerical experimentation revealed that in many

con�gurations of locations, picking c = c0:001 under both H0 and Ha works well in the sense

of generating a test statistic (21) that has a 95% quantile that is fairly constant as a function

of c � c0:03. Thus, the stationary test rejects if

LFSTn =
Z0n
n(c0:001)

�1Zn
Z0n[
n(c0:001) + g2a
n;L]

�1Zn
(25)

exceeds the critical value cvLFSTn , where the critical value is chosen to insure the correct size

of the test for all values of c � c0:03. More precisely, cvLFSTn solves supc�c0:03 P(LFSTn �
cvLFSTn ) = �, where � is the size of the test and the probability is computed under Zn �
N (0;
n(c)). We label the statistic �LFST�because it is the spatial generalization of the

low-frequency stationarity test proposed in Müller and Watson (2008).

By the same arguments applied to the LFURn test, this stationarity test remains valid

in large samples under the general local-to-unity model (10) with c � c0:03. A more subtle

question asks whether it also remains valid under generic weak dependence, de�ned as yl =

B(sl) = B(�ns
0
l ), with �n ! 1 and B a weakly dependent random �eld as in Section 2.

The CLT in Lahiri (2003) shows that under such generic weak dependence (and under the

assumption that s0l � G is i.i.d.), a suitably scaled version of Zn becomes Gaussian, but not

necessarily with covariance matrix proportional to Iq. In the spatial case, the e¤ect of weak
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dependence on the covariance of smoothly weighted averages is generically more subtle than a

multiplication by the scalar long-run standard deviation. Still, the LFSTn test remains valid,

since for every n, its critical value is chosen to be valid for all c � c0:03, so it is also valid under

all sequences of cn ! 1, including those that induce the di¤erent possible limits identi�ed
by Lahiri�s (2003) CLT. This result is summarized in the following theorem.

Theorem 8. If yl = B(�ns
0
l ) and �n !1 with �dn=n! a 2 [0;1), then under the assump-

tions of Lahiri�s CLT in his Theorem 3.2, lim supn!1 P(LFSTn � cvLFSTn ) � �.

Remark 5.1. Suppose the p� 1 vector xl is spatially cointegrated of order one with cointe-
grating vector �0, that is, �

0
0xl � I(0), but �0xl � I(1) for all � that are not proportional to

�0. An asymptotic level 1 � � con�dence set for �0 can then be formed by collecting those

values of b for which the level-� LFSTn test does not reject the I(0) null hypothesis when

applied to the series b0xl. This is the spatial analogue of Wright�s (2000) idea for inference

about the cointegrating vector in time series; also see Müller and Watson (2013).

5.5 Con�dence Sets for the Local-To-Unity Parameter

A closely related problem is the construction of a con�dence set for c, the parameter in the

spatial local-to-unity model. As usual, a 100(1 � �)% con�dence set is given by the values

of c0 for which a family of �-level tests of H0 : c = c0 does not reject. What is more, if

this family of tests is optimal against the alternative that c is drawn from some probability

distribution �, the classic result in Pratt (1961) implies that the resulting con�dence interval

has the smallest �-weighted expected length.

An easily interpretable transformation of the parameter c is given by the half-life h1=2(c) =

ln 2=c, that is, the distance � at which the correlation exp[�c�] is equal to 1=2. With �
such that the implied weighting of h1=2 is uniform on [0;�max] with �max = maxl;` js0l � s0` j,
the average length minimizing scale-invariant con�dence interval collects the values of h1=2;0
for which the test based onR �max

0
det(
n(ln 2=h))

�1=2(Z0n
n(ln 2=h)
�1Zn)

�q=2dh

(Z0n
n(ln 2=h1=2;0)
�1Zn)�q=2

(26)

does not exceed the 1�� quantile of (26) under Zn � N (0;
n(ln 2=h1=2;0)). The large sample
validity of this con�dence set for h1=2;0 > 0 in the general local-to-unity model (10) follows

from the same arguments as the large sample validity of the LFURn test discussed above.
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We note that the half-life as a fraction of the maximum distance, h=�max, is invariant to the

scaling factor �n, so it is the same using the scaled or unscaled locations.

5.6 Residual Based Tests

Consider inference about the persistence properties of the disturbance ul in a linear regression

yl = x0l� + ul (where xl may include a constant). The above results are then not directly

applicable, since with � unknown, ul is unobserved.

There is an easy solution to this problem if un = (u1; : : : ; un)
0 is independent of

Xn = (x1; : : : ; xn)
0. Namely, one can simply base inference on weighted averages of Yn

with weights that they are orthogonal to Xn. Let RX
n be the n� q matrix of the eigenvectors

ofMX�n;LMX corresponding to the largest q eigenvalues, whereMX = In�Xn(X
0
nXn)

�1X0
n

and n�1RX0
n R

X
n = Iq. Then by construction, RX0

n Xn = 0, so that ZXn = RX0
n Yn = RX0

n un.

With un independent of Xn, one can simply condition on the realization of Xn, and apply

the above tests with ZXn in place of Zn.

In order to invoke the asymptotic arguments above in such an approach, one needs to

generalize the eigenfunction convergence of Lemma 7; see Lemma S.2 in the appendix.

More substantively, the assumption that un is independent of the entire set of regressorsXn

is strong. Without that assumption, there is statistical dependence between the eigenvectors

RX
n and un, invalidating an analysis that conditions on R

X
n . But for large sample validity,

it su¢ ces to assume asymptotic independence between Xn and un in the sense that with

(ul; xl) = (U(sl); X(sl)), "
U0n(�)
X0
n(�)

#
=

"
��1=2n U(�n�)
��1=2n X(�n�)

#
)
"
U0(�)
X0(�)

#
(27)

on S0 with X0 independent of U0. See Theorem S.3 in the appendix.

This result has a particularly noteworthy implication for the test of the null hypothesis of

no cointegration among the p + 1 variables (xl; yl), that is, for the spatial analogue of Engle

and Granger�s (1987) residual based test of cointegration (see Phillips and Ouliaris (1990)

for its asymptotic distribution). Here the assumption is that under the null hypothesis,

(x0l; yl) = �1=2n (X0
n(s

0
l )
0; Y 0

n (s
0
l )) with (X

0
n(�)0; Y 0

n (�))0 ) �LX;Y (�), where LX;Y is a vector of
p+ 1 independent Lévy-Brownian Motions, and � is an arbitrary full rank (p+ 1)� (p+ 1)
matrix. Noting that OLX;Y � LX;Y for any (p+ 1)� (p+ 1) rotation matrix O, it is without
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loss of generality to assume that � is lower triangular. Letting � be equal to the �rst p

elements in the last row of � then yields that U0n(�) = Y 0
n (�)�X0

n(�)0� satis�es (27) with U0 a
scalar Lévy-Brownian motion independent of the p dimensional Lévy-Brownian motion X0.

To implement such a level � test of the null hypothesis of no spatial cointegration in

practice, one computes the LFURn statistic (23) using ZXn in place of Zn, 
0 = R
X0
n �l;nR

X
n

and 
1 = RX0
n �n(ca)R

X
n , and compares it to 1 � � quantile of the statistic under Yn �

N (0;�n;L).

5.7 Spatial Correlation in the Chetty et al. (2014) Data

Chetty, Hendren, Kline, and Saez (2014) use administrative records on the incomes of more

than 40 million children and parents to study intergenerational income mobility in the United

States. They construct an index of mobility for each of the commuter zones in the United

States and investigate the relationship between mobility and other factors by regressing their

mobility index on variables such as racial segregation, school quality and so forth. They �nd

large and statistically signi�cant correlations between their absolute mobility index and many

socioeconomic indicators. One might suspect that the variables used in their regressions are

strongly spatially correlated, and in light of the spurious regression results of Section 3, this

questions the validity of their inference results. This issue is taken up in Table 1.7

The �rst three columns in the table apply the tests outlined in this section to gauge the

spatial correlation in the variables used by Chetty, Hendren, Kline, and Saez (2014) for the

contiguous 48 states, which contain 722 of the 741 commuting zones used by Chetty et al.

The results indicate that there is substantial spatial correlation across the United States in

the socioeconomic variables. The I(1) null is rejected for only a handful of the variables, the

I(0) null is rejected for most, and the con�dence intervals for the implied value of the half-life,

h1=2, while wide, suggest a high degree of spatial persistence. The remaining columns of the

table investigate the robustness of the Chetty, Hendren, Kline, and Saez (2014) conclusions

to this spatial correlation. We discuss these columns after introducing additional analysis in

the next section.
7The variables are chosen from Figure VIII in Chetty, Hendren, Kline, and Saez (2014). The data are

taken from their comprehensive replication materials.
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6 Regressions with Transformed Spatial Variables

To avoid spurious regression e¤ects using I(1) time series data, researchers routinely estimate

regressions using �rst di¤erences of the original variables and rely on HAC/HAR inference

methods to account for any remaining I(0) autocorrelation. The best approach for regressions

involving spatial I(1) variables is not so obvious, and in this section we explore a number

of possibilities. Using simulated data, we assess the coverage and length properties of the

corresponding con�dence intervals.

6.1 Simulation Design

We are interested in inference about �1, the �rst element of �, in the linear regression (12),

maintaining throughout that Yn is independent of Xn = (x1; : : : ; xn)
0. The simulated data

sets have n = 400 observations and di¤er both in their distribution of locations fslg and the
distribution of (Yn;Xn). Spatial locations are drawn from the 48-U.S. States design used in

Müller and Watson (2022a, 2022b). Speci�cally, for each of the 48 contiguous U.S. states, we

draw 2 sets of 400 locations at random uniformly within the boundaries of the state. Con-

ditional on each of these 96 location set draws, we consider seven distributions for (Yn;Xn);

for p = 1 and p = 5. In each of those, the p + 1 columns of (Yn;Xn) are independent and

identically distributed. The seven distributions for yl, which are also used to generate each

of the p elements of xl, are:

� DGP1: yl = L(sl), Lévy-Brownian motion;

� DGP2: Yl = Y (sl) with Y � I(1) as in (6) with B = Jc and c = c0:01, so the average

pairwise correlation of fB(sl)gnl=1 is �� = 0:01;

� DGP3: yl � I(1) with B = Jc and c = c0:03;

� DGP4: yl � I(1) with B a Gaussian process with Matérn covariance function equal to

E[B(s)B(r)] = (1+c�+(c�)2=3) exp(�c�) for � = js�rj and c such that the average
pairwise correlation of fB(sl)gnl=1 is � = 0:03,

� DGP5: yl = Jc(sl) with c = c0:03;

� DGP6: yl = Jc(sl) with c = c0:50;
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� DGP7: yl =
R
R2 1[0 � r � sl]dW (r), so dependence is induced by a Brownian sheet.

DGP1-DGP4 feature I(1) processes constructed from di¤erent I(0) building blocks: white

noise in DGP1; weakly correlated (�� = 0:01 and �� = 0:03) local-to-unity processes in DGP2

and DGP3; and an alternative Matérn process in DGP4. DGP5 and DGP6 exhibit less than

I(1) persistence, much less so in DGP5, and are included to examine the potential e¤ects of

�over-di¤erencing�on inference. The �nal design, DGP7, generates highly persistent data,

but is outside the class of I(1) models introduced in Section 2.

6.2 Data Transformations

We consider inference based on six estimators for �1.

Levels Regression: This is OLS applied to the �levels� regression (12). When variables

are I(1), this is the spurious regression studied in Section 3.

The next four estimators are OLS estimators using transformed versions the variables.

Denote an individual transformed data point (y�l ; x
�
l ), and stack these in the vector Y

�
n and

matrix X�
n. In all methods, we use the same transformation for the p+ 1 variables in (yl; xl),

and then run a linear regression of Y�
n on X

�
n. This regression omits a constant, since all

transformations involve a demeaning step.

Isotropic Di¤erences: This is transformation (17) which we apply for bandwidths

b = 0:03; 0:06; : : : ; 0:15; where the locations fs0l g = f��1n slg are scale normalized so that
maxl;` js0l � s0` j = 1:
Cluster Fixed E¤ects: We partition the sampling region Sn intom regionsRi, i = 1; : : : ;m

by applying the k-means algorithm to the locations fslg400l=1. This is meant to mimic counties
partitioning a state, or states partitioning the U.S., and so forth. We then compute deviations

from region means

y�l = yl �
Pm

i=1 1[sl 2 Ri]
P

`6=l 1[s` 2 Ri]y`Pm
i=1 1[sl 2 Ri]

P
`6=l 1[s` 2 Ri]

:

Including �xed e¤ects for each region induces this transformation for all variables in a regres-

sion. This is implemented for m = 30; 60; 120; 240:

LBM-GLS: First di¤erences in a regular time series are a GLS transformation under the

canonical random walk model of I(1) persistence. Recall from the last section that �n;L is

the n � n covariance matrix of Yn induced by a Lévy-Brownian motion, the canonical I(1)
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Figure 5: Transformed Strongly Dependent Data
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model of spatial persistence. With Yn � N (�1;�n;L),

Y�
n = (M�n;LM)

�1=2Yn � N (0;M) (28)

where (M�n;LM)
�1=2 is the Moore-Penrose generalized inverse of (M�n;LM)

1=2. This GLS

transformation converts Yn into a set of demeaned i.i.d. random variables Y�
n. In a more

general I(1) model, this is no longer true, but given the FCLT in Theorem 2, it is plausible

that this LBM-GLS transformation induces enough stationarity for spatial HAR inference to

be reliable. Figure 5 illustrates the GLS transformations for the data in Figure 1.

Remark 6.1. The LBM-GLS estimator of � is closely related to the OLS estimator obtained
after controlling for a smooth spline function, say �(s), in the regression.8 To see this, write

the stacked regression as Yn = Xn� + � + e, where Yn is n � 1, Xn is n � p, � is p �
1, � is n � 1 with �l = �(sl), and e is a vector of errors. Estimation of � subject to a

smoothness constraint on �(�) can be accomplished by solving the penalized least squares
problem min�;�[(Yn �Xn� � �)0(Yn �Xn� � �) + ��1�0V�1�] for an appropriately chosen

matrix V that captures the smoothness properties of �(�). The solution to the problem yields
the estimator �̂ = [X0

n(I+�
�1V)�1Xn]

�1[X0
n(I+�

�1V)�1Yn], which is recognized as the GLS

estimator using the error covariance matrix I+ ��1V. The location-invariant GLS estimator

uses (MYn;MXn) in place of (Yn;Xn). The use of �n;L for V imposes a Lévy-Brownian

motion smoothness prior of �; this is a spatial generalization of the Wiener process smoothing

prior that yields a quadratic smoothing spline when d = 1. For our designs, we found that

inference using this estimator and spatial HAR standard errors performed best using � = 0,

which coincides with the LBM-GLS method

Low-pass Eigenvector Transformation: Recall that the q � 1 vector Zn in the previous
section was de�ned as Zn = R0

nYn, where Rn collects the eigenvectors of M�n;LM corre-

sponding to the q < n largest eigenvalues �̂n. By construction, if Yn � N (�1;�n;L), then

Y�
n = diag(�̂n)

�1=2Zn � N (0; n�1Iq): (29)

Here Y�
n is q � 1, rather than n � 1, as in the previous transformations. Note that setting

8Kelly (2022) proposes a spline-augmented OLS estimator for inference in spatial regressions and presents
simulation evidence showing that it improves size control compared to using spatial HAC standard errors and
OLS with untransformed regressors. This remark reiterates well-known results on the relationship between
smoothing splines, Bayes smoothness priors, and maximum likelihood estimators (cf. Engle and Watson
(1988)).
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q = n � 1 amounts to the LBM-GLS transformation (28). The potential advantage of using
a smaller, �xed q is that the CMT and the FCLT imply that the (suitably scaled) Y�

n in

(29) has an asymptotic N (0; !2Iq) distribution in the general I(1) model. Thus, classical
Gaussian small sample inference in the regression of Y�

n on X
�
n is asymptotically justi�ed

with this transformation in the general I(1) model. This approach is analogous to what is

suggested by Müller and Watson (2017) for persistent time series. We implement this with

q = 10; 20; 50:

High-pass Eigenvector Transformation: An alternative to using the �rst q principal com-

ponents in Zn is to use the remaining n�1� q principal components, say Y�
n =

~R0
nYn, where

~Rn collects the eigenvectors ofM�n;LM corresponding to the n� 1� q smallest eigenvalues.
The rationale for this approach is that eliminating the �rst q principal components purges the

data of the large-variance components associated with spatial I(1) persistence. Alternatively,

in the context of Remark 6.1, the resulting regression controls for smooth spatial function

spanned by the columns of Rn. We implement this with q = 5; 10; 20; 50; 100.

Ibragimov-Müller: In addition, we consider the approach suggested in Ibragimov and

Müller (2010). They suggest dealing with weak spatial dependence by runningm independent

regressions of yl on xl and a constant in each regionRi, i = 1; : : : ;m; for some reasonably small

m. Let �̂i = (�̂i;1; : : : ; �̂i;p)
0 be the corresponding coe¢ cients. The m estimators �̂i;j are then

treated as independent and Gaussian information about �j, so inference is conducted using

a corresponding t-statistic with a Student-t critical value with m� 1 degrees of freedom. We
form the m regions by applying the k-means algorithm to the locations fslg400l=1, and consider
m = 10; 20; 50:

These estimators of �1 are used in conjunction with three types of standard errors: We

present results using heteroskedasticity robust standard errors for the LBM-GLS. For the

cluster �xed e¤ects estimator, we also consider clustered standard errors. Finally, for all but

the last two methods, we use spatial HAR standard errors and critical values suggested by

Müller and Watson (2022b). Their so-called C-SCPC method is calibrated to control size

under spatial dependence with an average pairwise correlation of no more than 0.03 (and,

by �conditioning�on the regressor, it is by construction more conservative than the method

developed in Müller and Watson (2022a)).
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Table 2: Rejection Frequency for Nominal 5% Tests (median over 96 spatial designs)
Method Lévy-BM I(1)c0:01 I(1)c0:03 I(1)Matérn Jc0:03 Jc0:50 Br. Sheet

(a) k = 1
OLS (C-SCPC) 0.23 0.24 0.27 0.25 0.04 0.14 0.25
Isotropic di¤erence (C-SCPC) 0.04 0.05 0.07 0.06 0.03 0.04 0.04
Cluster �xed e¤ects (Cluster) 0.08 0.24 0.35 0.30 0.07 0.07 0.13
Cluster �xed e¤ects (C-SCPC) 0.05 0.08 0.12 0.10 0.04 0.05 0.08
LBM-GLS 0.05 0.26 0.39 0.38 0.06 0.05 0.23
LBM-GLS (C-SCPC) 0.03 0.05 0.07 0.06 0.03 0.03 0.09
Low-pass Eigenvector 0.05 0.05 0.05 0.05 0.08 0.05 0.13
High-pass Eigenvector 0.05 0.07 0.08 0.10 0.05 0.05 0.10
Ibragimov-Müller 0.08 0.13 0.15 0.13 0.05 0.07 0.16

Addendum: Avg. R2 0.14 0.18 0.21 0.19 0.01 0.09 0.14
(b) k = 5

OLS (C-SCPC) 0.20 0.20 0.23 0.20 0.04 0.14 0.23
Isotropic di¤erence (C-SCPC) 0.04 0.05 0.07 0.06 0.03 0.04 0.05
Cluster �xed e¤ects (Cluster) 0.08 0.24 0.35 0.31 0.07 0.08 0.14
Cluster �xed e¤ects (C-SCPC) 0.05 0.08 0.11 0.09 0.05 0.05 0.08
LBM-GLS 0.05 0.26 0.39 0.38 0.06 0.05 0.23
LBM-GLS (C-SCPC) 0.03 0.05 0.07 0.06 0.03 0.03 0.09
Low-pass Eigenvector 0.05 0.05 0.05 0.05 0.08 0.05 0.10
High-pass Eigenvector 0.05 0.07 0.08 0.09 0.05 0.05 0.10
Ibragimov-Müller 0.05 0.06 0.08 0.07 0.05 0.05 0.07

Addendum: Avg. R2 0.43 0.56 0.64 0.59 0.05 0.31 0.44

6.3 Simulation Results

The experiments involve 96 di¤erent spatial designs and six di¤erent estimators, �ve of which

are implemented for several values of a bandwidth or related parameters (b for isotropic

di¤erencing, m for clustered �xed e¤ect and Ibragimov-Müller and q for the eigenvector

transforms). A detailed summary of the results is provided in the Supplementary Material.

Here we present the key conclusions in two tables.

Table 2 summarizes the null rejection frequency of nominal 5% level tests for each method.

It reports median rejection frequencies across the 96 spatial designs and, where a method

depends on a parameter, chooses the parameter that yields the rejection frequency closest to

the nominal value of 0.05, thus providing a lower bound on the method�s size distortion.

Table 3 summarizes the expected length of the resulting (non-size corrected) 95% con�-

dence intervals. It leaves out the methods that exhibit large size distortions in Table 2.

There are two key takeaways from the tables. First, isotropic di¤erences and LBM-GLS

implemented with HAR standard errors have reasonably good size properties in all designs,
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Table 3: Expected Length of Nominal 95% Con�dence Intervals (median across the 96 spatial
designs)
Method Lévy-BM I(1)c0:01 I(1)c0:03 I(1)Matérn Jc0:03 Jc0:50 Br. Sheet

(a) k = 1
Isotropic di¤erence (C-SCPC) 0.53 0.70 0.73 0.73 0.44 0.52 0.54
Cluster �xed e¤ects (C-SCPC) 0.55 0.81 0.91 0.88 0.43 0.39 0.50
LBM-GLS (C-SCPC) 0.25 0.42 0.54 0.55 0.26 0.26 0.33
Low-pass Eigenvector 1.51 1.51 1.51 1.51 0.57 0.57 1.51
High-pass Eigenvector 0.33 0.43 0.45 0.50 0.42 0.33 0.41
Ibragimov-Müller 0.42 0.87 1.00 0.96 0.37 0.41 0.43

(b) k = 5
Isotropic di¤erence (C-SCPC) 0.51 0.69 0.77 0.78 0.43 0.51 0.51
Cluster �xed e¤ects (C-SCPC) 0.44 0.79 0.90 0.88 0.43 0.42 0.48
LBM-GLS (C-SCPC) 0.26 0.42 0.54 0.55 0.27 0.26 0.33
Low-pass Eigenvector 2.30 2.30 2.30 2.30 0.60 0.60 2.30
High-pass Eigenvector 0.33 0.43 0.45 0.50 0.41 0.33 0.40
Ibragimov-Müller 0.46 0.65 0.67 0.78 0.36 0.48 0.49

as does the low-pass eigenvector transformation. Second, LBM-GLS (with HAR standard

errors) produces con�dence intervals with the smallest average length. These results, along

with the observation that LBM-GLS does not require the choice of a bandwidth or other

parameter, suggests that it dominates the other methods considered here.

Remark 6.2. The �nal rows in Table 2 show the average value of the R2 in the levels-

regression (12). (This is the median value across the 96 spatial designs.) These R2 values

are large for the I(1) models, consistent with the implications of Theorem 3, and for the

local-to-unity model with c = c0:50, consistent with the discussion in Remark 3.4.

6.4 Regressions in Chetty et al. (2014)

We now return to Table 1. As noted in Section 5.7 the �rst three columns of the table suggest

substantial spatial correlation in many of the variables. The �nal columns summarize results

from the regression of the Absolute Mobility Index (the �rst variable in the table) onto each

of the other variables. These regressions were reported in Figure VII of Chetty et al. (2014).9

The �rst set of results are for regressions using the levels of the variables, and the second set

uses the LBM-GLS transformed variables.

We highlight three results from the table. First, the residuals from the levels regressions

9The results in Table 1 di¤er slightly from the results in Chetty et al. because Table 1 only uses data from
the 48 contiguous U.S. states.
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are highly spatially correlated: the I(1) null is not rejected at the 10% level for any of the

regressions. Second, the LBM-GLS estimates of � and R2 tend to be smaller in magnitude

than the levels-regression estimates. Third, the LBM-GLS C-CSPC con�dence intervals are

narrower than in the levels regression and, based on the experiments reported earlier, pro-

vide approximately valid inference for the correlation between each variable and the mobility

index. Our reading of these results is that the substantive conclusions made in Chetty et

al. (2014) about the correlation of the various socioeconomic factors with intergenerational

income mobility largely continue to hold after accounting for the strong spatial correlation in

the variables.

7 Concluding Remarks

Applied researchers are well aware of the pitfalls of conducting inference with persistent time

series data. Variables are routinely tested for the presence of a unit root, and often di¤erenced

to avoid spurious regression e¤ects.

This paper demonstrates that inference with highly persistent spatial data is equally

fraught: HAC corrections for spatial dependence fail in the presence of strong correlations,

leading to spurious signi�cance between independent spatial variables. We have provided

tools to detect such strong spatial persistence, akin to time series unit root and stationarity

tests.

We have also suggested ways of restoring valid inference by suitably transforming the

spatial variables, combined with spatial HAR corrections to accommodate any residual

weak correlations. The theory here is less complete, however: For the most promising of

these transformations� the FGLS approach using the canonical spatial unit root model as a

baseline� we do not yet have a good theoretical understanding of its properties, and future

research is required to establish conditions under which this approach yields valid inference.
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A Proofs

Proof of Lemma 1: By the Corollary on page 48 of Adler (2010), the result holds if for some
m > 2d, E

�
(Y (s)� Y (r))2m

�
� Cjs� rjm for some C. Let m > 2d and apply Condition 2 to obtain

E[(Y (s)� Y (r))2m] � Cm

�Z
Rd
(h(u; s)� h(u; r))2du

�m
= CmE[(L(s)� L(r))2]m

= Cmjs� rjm

where the second equality follows from the representation (5) of L.

For the corresponding result about spatial local-to-unity processes, we similarly have with Yc(s) =R
Rd hc(r; s)B(r)dr

E[(Yc(s)� Yc(r))2m] � Cm

�Z
Rd
(hc(u; s)� hc(u; r))2du

�m
= CmE[(Jc(s)� Jc(r))2]m (30)

where the last equality follows from the representation (9) of Jc, and

E[(Jc(s)� Jc(r))2] =
2� 2 exp(�cjs� rj)

2c
� js� rj:

�

Proof of Theorem 2: Consider �rst the claim for the convergence for the LTU process (10).

FromZ
Rd
hc(r; 0)

2dr = (2c)�1 = �d
Z
Rd
hc(�r; 0)

2dr = �(1+d)=2
�2c;d
�2�c;d

Z
Rd
h�c(r; 0)

2dr = �(1+d)=2
�2c;d
�2�c;d

(2c�)�1

for all � > 0 it follows that ��c;d = �(d�1)=4�c;d. Thus, the LTU process can be written as

Y 0n (s) = ��d=2n

Z
Rd
hc(�

�1
n r; s)B(r)dr, s 2 S0: (31)

We show convergence of �nite dimensional distributions and tightness of the process Y 0n . The

latter follows by Theorem 23.7 of Kallenberg (2021) from (30) and

E[Y 0c (0)2] � C2�
�d
n

Z
Rd
hc(�

�1
n r; s)2dr =C2

Z
Rd
hc(r; s)

2dr = C2(2c)
�1
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where the inequality invokes Condition 2. For the former, consider for t1; : : : ; tp 2 S0, the p � 1
vector (Y 0n (t1); : : : ; Y

0
n (tp)). By the Cramér-Wold device, it su¢ ces to establish the convergence

Xn =
Pp
j=1 vjY

0
n (tj) )

Pp
j=1 vj!Jc(tj) for (v1; : : : ; vp) 2 Rp: Let fv(r) =

Pp
j=1 vjhc(r; tj), so that

from (9),
Pp
j=1 vjJc(tj) � N (0;

R
Rd fv(r)

2dr) and from (31)

Xn = ��d=2n

Z
Rd
fv(�

�1
n r)B(r)dr:

For " > 0, de�ne f"v (r) = fv(r)1[jrj < 1="]
Qp
j=1 1[jtj � rj > "] and let

X"
n = ��d=2n

Z
Rd
f"v (�

�1
n r)B(r)dr:

From Condition 2 we �nd

E[(X"
n �Xn)2] = ��dn E

"�Z
Rd
(fv(�

�1
n r)� f"v (��1n r))B(r)dr

�2#

� C2�
�d
n

Z
Rd
(fv(�

�1
n r)� f"v (��1n r))2dr

= C2

Z
Rd
(fv(r)� f"v (r))2dr:

Since
R
Rd(fv(r) � f"v (r))

2dr � 2
R
Rd fv(r)

2dr < 1, and f"v (r) � fv(r) for all r, it follows from the

dominated convergence theorem that this quantity can be made arbitrarily small by picking " small

enough.

Furthermore

E[(X"
n)
2] = ��dn

Z
Rd

Z
Rd
f"v (�

�1
n r)f"v (�

�1
n s)�B(s� r)drds

=

Z
Rd
�B(s)

Z
Rd
f"v (r)f

"
v (r + �

�1
n s)drds

!
Z
Rd
�B(s)ds

Z
Rd
f"v (r)

2dr

by dominated convergence, since by Cauchy-Schwarz, j
R
Rd f

"
v (r)f

"
v (r+�

�1
n s)drj �

R
Rd f

"
v (r)

2dr <1
and

R
Rd j�B(s)jds <1.

Finally, note that f"v is bounded and f
"
v (�

�1
n r) = 0 for jrj > �n=". Thus, using Condition 3,

X"
n ) N

�
0;

Z
Rd
�B(s)ds

Z
Rd
f"v (r)

2dr

�
:

The result for the LTU process (10) now follows since mean square convergence implies convergence
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in distribution, and " > 0 was arbitrary.

For the convergence in Theorem 2, note that from (7), Y 0n (s) = �
�d=2
n

R
Rd h(�

�1
n r; s)B(r)dr, and

Y 0n (0) = 0, so the result follows from the same steps. �

Proof of Theorem 3: The results follow straightforwardly from the CMT if we can show

that ��1=2n n�1
Pn
l=1 yl )

R
Y 0(s)dG(s), ��1=2n n�1

Pn
l=1 xl )

R
X0(s)dG(s), ��1n n�1

Pn
l=1 xlyl )R

X0(s)Y 0(s)dG(s) and ��1n n�1
Pn
l=1 xlx

0
l )

R
X0(s)X0(s)0dG(s).

Consider the convergence ��1n n�1
Pn
l=1 xlyl )

R
X0(s)Y 0(s)dG(s). By the Skorohod almost

sure representation theorem (see, for instance, Theorem 11.7.2 of Dudley (2002)), there exist random

elements (Y �n (�); X�
n(�)) such that sups2S0 j(Y �n (s) � Y �(s); X�

n(s) � X�(s))j a:s:! 0, (Y �(�); X�(�)) �
(Y 0(�); X0(�)) and (Y 0n (�); X0

n(�)) � (Y �n (�); X�
n(�)) for n = 1; 2; : : : : Thus it su¢ ces to show the claim

for
R
X�
n(s)Y

�
n (s)dGn(s) = n�1

Pn
l=1X

�
n(sl)Y

�
n (sl) � n�1

Pn
l=1X

0
n(sl)Y

0
n (sl) = ��1n n�1

Pn
l=1 xlyl.

We have����Z (X�
n(s)Y

�
n (s)�X�(s)Y �(s))dGn(s)

���� � sup
s2S0

j(Y �n (s)� Y �(s); X�
n(s)�X�(s))j a:s:! 0

so it su¢ ces to show the claim for
R
X�(s)Y �(s)dGn(s). Now almost all realizations of the

Rp 7! R function s 7! X�(s)Y �(s) on S0 are continuous and bounded. For any such realization,R
X�(s)Y �(s)dGn(s) !

R
X�(s)Y �(s)dG(s) by the de�nition of convergence in distribution. ThusR

X�(s)Y �(s)dGn(s)
a:s:!

R
X�(s)Y �(s)dG(s). But almost sure convergence implies convergence in

distribution, so the desired result follows. The argument for the other terms is analogous. �

The following Lemma is used in the proof of Theorem 4.

Lemma 9. Let B�(r) = fs : js� rj � �g � Rd be a ball of radius � with center r: Under Condition
1, for any � > 0, lim supn!1 supr2S0 Gn(B�(r)) � supr2S0 G(B�(r)), where Gn(A) and G(A) are
the measures that are assigned to the Borel set A � Rd by the distributions Gn and G, respectively.

Proof. Suppose otherwise. Then there exists " > 0 and a sequence rn such that

lim sup
n!1

sup
r2S0

Gn(B�(r)) = lim
n!1

Gn(B�(rn)) � sup
r2S0

G(B�(r)) + ":

Since G is a continuous distribution, there exists �0 > � such that supr2S0 G(B�0(r)) �
supr2S0 G(B�(r)) + "=2. Since S0 is compact, rn ! r0 along some subsequence. Along that subse-

quence, for all n large enough so that jrn � r0j < �0 � �, we have

Gn(B�(rn)) � Gn(B�0(r0))! G(B�0(r0)) � sup
r2S0

G(B�(r)) + "=2

yielding the desired contradiction.
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Proof of Theorem 4: From Theorem 3 and the CMT, H�̂ ) H��1~x~x�~x~y with the r.h.s.

non-zero with probability one. Thus H�̂ = Op(1) (and not H�̂ = op(1)). The result hence fol-

lows if we can show that jjS�1~x~x 
̂nS
�1
~x~x jj = op(n) (since this implies that the smallest eigenvalue of

n(HS�1~x~x 
̂nS
�1
~x~xH

0)�1 diverges).

Since ��1n S~x~x ) �~x~x and �~x~x is full rank with probability one, it su¢ ces to show that

n�1��2n jj
̂njj
p! 0.

Let ~Y 0n (�) = Y 0n (�) �
R
Y 0n (s)dGn(s), ~X

0
n(�) = ~X0

n(�) �
R
X0
n(s)dGn(s) and e0n(�) = ( ~Y 0n (�) �

�̂ ~X0
n(�)) ~X0

n(�), so that el = �ne
0
n(�

�1
n sl). By (13), Theorem 3 and the CMT, e0n(�)) e0(�) = ( ~Y (�)�

~X(�)0��1~x~x�~x~y) ~X(�), so that supl je0n(sl)j ) sups2S0 je0(s)j, and therefore ��1n supl�n jelj = Op(1).

Consider �rst the HAC estimator. We have

��2n n�2








nX

l;`=1

�(bn(sl � s`))ele0`







 � ��2n (sup
l�n

jelj)2 � n�2
nX

l;`=1

j�(bn(sl � s`))j

and with b0n = �nbn and s0l= ��1n sl

nX
l;`=1

j�(bn(sl � s`))j =
nX

l;`=1

j�(b0n(s0l � s0`))j

� ��

nX
l;`=1

1[js0l � s0` j � (b0n)�1=2] +
nX

l;`=1

1[js0l � s0` j > (b0n)�1=2]j�(b0n(s0l � s0`))j:

Now

n�2
nX

l;`=1

1[js0l � s0` j > (b0n)�1=2]j�(b0n(s0l � s0`))j � sup
jaj�
p
b0n

j�(a)j p! 0

by (16) and 1=b0n = op(1). Furthermore, since G is continuous, for every " > 0, there exists a � > 0

such that supr2S0 G(B�(r)) � " in the notation of Lemma 9. Note that

n�2
nX

l;`=1

1[js0l � s0` j � (b0n)�1=2] � sup
r2S0

Gn(B(b0n)�1=2(r))

� sup
r2S0

Gn(B�(r)) + P((b0n)�1=2 > �).

Since by assumption, 1=b0n = op(1), we have P((b0n)�1=2 > �)! 0, and by Lemma 9,

lim supn!1 supr2S0 Gn(B�(r)) � ". But " > 0 was arbitrary, and the result follows.
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For the cluster estimator, we similarly have

��2n n�2








nCX
j=1

0@ nX
l2Cj

el

1A0@ nX
l2Cj

el

1A0





 � ��2n (sup
l�n

jelj)2 � n�2
nCX
j=1

jCj j2

and max1�j�nC jCj j=n ! 0 implies n�2
PnC
j=1 jCj j2 ! 0, as shown in equation (4) of Hansen and

Lee (2019). �
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Supplementary Appendix to

Spatial Unit Roots

by Ulrich K. Müller and Mark W. Watson

This appendix provides supplemental material. Section S.1 provides details on the tech-

nique used to generate Figures 2 and 4. Section S.2 contains proofs of all formal results in

Sections 4-5. Section

S.1 Generation of Figures 2-4

For the left panel of Figure 2 and Figure 4, we approximate the non-stationary processes by stationary

ones with a very small degree of mean reversion. In particular, with f0(!) = 1, let ~fi(!) = fi(!)=(c
2+

j!j2)3=2 with c = 0:1 for the three processes Yi, i = 0; 1; 2 of Figures 2 and 4. These spectral densities
are isotropic, so the covariance functions satisfy E[Yi(r)Yi(s)] = �i(jr � sj) with

�i(x) =

Z 1

0
J0(!x)fi(!)d!

where J0 is the Bessel function function of the �rst kind with zero parameter (cf. equation (1.2.6) in

Ivanov and Leonenko (1989)). We approximate �i(�) numerically on the interval [0; 1], and then use
Stein�s (2002) technique to generate the �gures via the fast Fourier transform on a grid of 700� 700
points.

The eigenfunctions of Figure 3 are approximated via (22) using 1000 locations fs0l g1000l=1 drawn

at random within the contiguous U.S.

S.2 Proofs of Results from Sections 4 and 5

Proof of Theorem 5: Clearly,


̂ =

R
Ib
R
Y 0n (s)�b(js� rj)(Y 0n (r)� Y 0n (s))dGn(r)dGn(s)R

Ib Y
0
n (s)

2dGn(s)
(S.1)

and proceeding as in the proof of Theorem 3 shows that it su¢ ces to show the claim with Y 0n (s)

replaced by Y �(s) = !Jc(s) in (S.1). Denote the resulting expression by 
̂�, we have


̂� =
E [1[Sn 2 Ib]Y �(Sn)�b(jSn �Rnj)(Y �(Rn)� Y �(Sn))jY �]

E [1[Sn 2 Ib]Y �(Sn)2jY �]

1



a:s:! E [1[S 2 Ib]Y �(S)�b(jS �Rj)(Y �(R)� Y �(S))jY �]
E [1[S 2 Ib]Y �(S)2jY �]

=

R
Ib
R
Jc(s)�b(js� rj)(Jc(r)� Jc(s))dG(r)dG(s)R

Ib Jc(s)
2dG(s)

where (Sn; Rn) is a sequence of R2d random variables with distribution Gn�Gn converging to (S;R)
with distribution G � G, and the convergence follows, since for almost all realizations of Y �, the

R2d 7! R function (s; r) 7! 1[s 2 Ib]Y �(s)�b(js � rj)(Y �(r) � Y �(s)) and the Rd 7! R function

s 7! 1[s 2 Ib]Y �(s)2 is bounded with a discontinuity set of Lebesgue measure zero. �

Proof of Theorem 6: We �rst show the result for L in place of Jc. In the proof, C denotes a

su¢ ciently large constant, not necessarily the same in each instance it is used.

As a �rst step, we show that replacing L(s) by L(s) � m̂ induces a op(1) di¤erence, where the

convergences throughout the proof are with respect to b ! 0. By Cauchy-Schwarz, the second

moment of the di¤erence is bounded above by

E

"�
b�d�1m̂

Z
Ib

Z
�b(js� rj)(L(r)� L(s))dG(r)dG(s)

�2#

� E[m̂2]E

"�
b�d�1

Z
Ib

Z
�b(js� rj)(L(r)� L(s))dG(r)dG(s)

�2#
:

Consider �rst d = 1. The support S0 of G then consists of a countable number of disjoint intervals,

and it su¢ ces to show that the integral over each of those intervals is op(1). Take one such interval

[l; u] � R. We haveZ u�b

l+b

Z u

l
�b(js� rj)(L(r)� L(s))dG(r)dG(s) =

Z u

l
hb(r)L(r)dG(r)

with hb(r) =
R u
l (1[l + b � s � u � b]�b(js � rj) � 1[l + b � r � u � b]�b(js � rj))dG(s). By

inspection, for all small enough b, hb(r) = 0 for r 2 [l + 2b; u � 2b], supr2[l;u] jhb(r)j � Cb,R l+2b
l hb(r)dr =

R u
u�2b hb(r)dr = 0, so that

R l+2b
l hb(r)g(r)dr = b

R 2
0 hb(br)g(l + br)dr =O(b

3) from

a �rst order Taylor expansion of g(�) around g(l), and similarly,
R u
u�2b hb(r)dG(r) = O(b3). Thus

E

"�Z u

l
hb(r)L(r)dG(r)

�2#
=

Z u

l

Z u

l
hb(r)hb(s)min(r; s)dG(r)dG(s)

=

Z l+2b

l

Z l+2b

l
hb(r)hb(s)(min(r; s)� l)dG(r)dG(s)

+

Z u

u�2b

Z u

u�2b
hb(r)hb(s)(min(r; s)� u)dG(r)dG(s) +O(b6)

2



= O(b5)

so the desired result follows.

For d > 1,

D2
b = E

"�
b�d�1

Z
Ib

Z
�b(js� rj)(L(r)� L(s))dG(r)dG(s)

�2#

= E

"�
b�1

Z
Ib

Z
�0(jrj)(L(s+ br)� L(s))g(s+ br)drdG(s)

�2#

=

Z
Ib

Z
Ib

Z Z
b�2�0(jrj)�0(juj)�b(s; r; t; u)g(s+ br)g(t+ bu)dr � du � dG(s)dG(t)

with

2�b(s; r; t; u) = 2E[(L(s+ br)� L(s))(L(t+ bu)� L(t))]
= jbr + s� tj+ jbu+ s� tj � jbr + bu+ s� tj � js� tj:

Now split the integral over dG(s) and dG(t) into a piece R0b = fs; t : s; t 2 Ib, js� tj < 2bg� Ib�Ib
and R1b = (Ib � Ib)nR0b . For the integral over R0b , note that for js� tj < 2b, j�b(s; r; t; u)j < Cb. At

the same time, the area of integration for R0b is of order bd. So with g and �0 bounded, the integral
over R0b is of order bd�1 ! 0, and makes a vanishing contribution to D2

b .

For any !; v 2 Rd and x 2 R such that ! + xv 6= 0, we have

@

@x
j! + xvj =

(! + xv)0v

j! + xvj
@2

@x2
j! + xvj = �((! + xv)

0v)2

j! + xvj3 +
v0v

j! + xvj
@3

@x3
j! + xvj = 3

((! + xv)0v)3

j! + xvj5 � 3((! + xv)
0v)v0v

j! + xvj3 :

For the integral over R1b where js�tj � 2b, apply a second order Taylor expansion to �b(s; r; t; u)g(s+
br)g(t+ bu) around b = 0. Since �0(s; r; t; u) = @�b(s; r; t; u)=@bjb=0 = 0, we �nd

�b(s; r; t; u)g(s+ br)g(t+ bu) =
1
2b
2g(s)g(t)

�
(s� t)0r(s� t)0u

js� tj3 � r0u

js� tj

�
+

b3

js� tj2	b(s; r; t; u)

where here and below 	b denote uniformly bounded functions, that is,

3



supb>0;s;t2Ib;juj�1;jrj�1 j	b(s; r; t; u)j <1. By symmetry, for all js� tj > 2bZ Z
�0(jrj)�0(juj)

�
(s� t)0r(s� t)0u

js� tj3 � r0u

js� tj

�
dudr = 0:

Furthermore,Z
Ib

Z
Ib
min

�
b3

js� tj2 ;
1
2b

�
dG(s)dG(t) � C

Z
jsj<C

min

�
b3

jsj2 ; b
�
ds

= C

Z C

0
xd�1min

�
b3

x2
; b

�
dx = O(b3 log(b)) (S.2)

so D2
b ! 0.

Given this �rst result, it is without loss of generality to assume that S0 does not contain the
origin. Let Qb =b�1

R
Ib
R
�0(jrj)(L(s+ br)�L(s))g(s+ br)drdG(s). We will show that Qb converges

in mean square. We have

E [Qb] = 1
2b
�1
Z
Ib

Z
�0(jrj)(js+ brj � jsj � bjrj)g(s+ br)drdG(s):

By a �st order Taylor expansion, for jsj � 2b,

(js+ brj � jsj � bjrj)g(s+ br) = bg(s)

�
s0r

jsj � jrj
�
+ b2	b(s; r)

and E [Qb]! �1
2

R
jrj�0(jrj)dr�

R
g(s)2ds follows from

R
(s0r)�0(jrj)dr = 0.

Note that for (X1; X2; X3; X4) mean-zero multivariate normal with covariances �ij = E[XiXj ],
E[(X1X2 � �12)(X3X4 � �34)] = �14�23 + �13�24. We have

�0b(s; t) = 2E[L(s)L(t)] = jsj+ jtj � js+ tj
�1b(s; r; t) = 2E[(L(s+ br)� L(s))L(t)] = jbr + sj � jsj+ js� tj � jbr + s� tj
�1b(t; u; s) = 2E[(L(t+ bu)� L(t))L(s)]:

Thus,

4Var[Qb] = 4E
h
(Qb � E [Qb])2

i
=

Z
Ib

Z
Ib

Z Z
b�2�0(jrj)�0(juj)[�0b(s; t)�b(s; r; t; u)g(s+ br)g(t+ bu)

+ �1b(s; r; t)�
1
b(t; u; s)g(s+ br)g(t+ bu)]dr � du � dG(s)dG(t)

4



Split the integral again into integrals over R0b and R1b . For the integral over R0b , note that for
js� tj < 2b, j�0b(s; t)�b(s; r; t; u)j < Cb2 and j�1b(s; r; t)�1b(t; u; s)j < Cb2 uniformly. At the same time,

the area of integration for R0b is of order bd, so the integral over R0b is of order bd ! 0, and makes a

vanishing contribution to Var[Qb].

For the integral over R1b , the term involving �0b(s; t)�b(s; r; t; u) is negligible as shown above,

since sups;t2Ib �
0
b(s; t) < 1: For the remaining term, apply a second order Taylor expansion to

�1b(s; r; t)�
1
b(t; u; s)g(s+ br)g(t+ bu)

�1b(s; r; t)�
1
b(t; u; s)g(s+ br)g(t+ bu)

= 1
2b
2g(s)g(t)

�
s0r

jsj �
(s� t)0r
js� tj

��
t0u

jtj �
(t� s)0u
js� tj

�
+

b3

js� tj2	
1
b(s; r; t; u)

since �10(s; r; t) = �10(t; u; s) = 0. By symmetry, for all js� tj > 2b,Z
�0(jrj)

�
s0r

jsj �
(s� t)0r
js� tj

�
dr = 0

so using (S.2) we conclude Var[Qb]! 0:

Finally, the result for Jc follows, since the measure of (Jc � Jc(0)) is absolutely continuous with
respect to the measure of L, and Jc(0) has �nite second moment. �

Lemma 7 is a special case of the following more general result applied with p = 1 and  (s) = 1.

We will use the following notation: let k : S0 � S0 7! R be a continuous positive de�nite kernel

(not necessarily equal to the covariance kernel of Lévy-Brownian Motion), and let �n be the n� n

matrix with l; `th element equal to k(s0l ; s
0
`). Let L2G be the Hilbert space of function S0 7! R

with inner product hf1; f2i =
R
f1(s)f2(s)dG(s). De�ne Lk : L2G 7! L2G as the linear operator

Lk(f)(s) =
R
f(r)k(r; s)dG(r), and Lk;n =

R
f(r)k(r; s)dGn(r):

Lemma S.1. Suppose the p�1 vector xl is such that xl =  (s0l ) for l = 1; : : : ; n for some continuous

function  : S0 7! Rp, and
R
 (s) (s)0dGn(s) = Hn ! H for some positive de�nite matrix H. Let

M andMn be the projection operatorsMn(f)(s) = f(s)�
R
 (r)0f(r)dGn(r)H�1

n  (s) andM(f)(s) =

f(s)�
R
 (r)0f(r)dG(r)H�1 (s). Let k̂n, and �k be the kernels corresponding to the linear operators

MnLk;nMn and MLkM , respectively, so that the (l; `) element ofMX�n;LMX is given by k̂n(s0l ; s
0
`):

Let �k(s; r) =
P1
i=1 ��i�'i(s)�'i(r) with

R
�'i(s)�'j(s)dG(s) = 1[i = j], ��i � ��i+1 � 0 be the spectral

decomposition of �k. De�ne '̂i(�) = n�1�̂�1i
Pn
l=1 ri;lk̂n(�; s0l ), where (�̂i; (ri;1; : : : ; ri;n)0) is the ith

eigenvalue/eigenvector pair of MX�nMX . If ��1 > ��2 > : : : > ��q > ��q+1 and Condition 1 holds,

then for any q � 1, sups2S0;1�i�q j'̂i(s)� �'i(s)j ! 0 and max1�i�q j�̂i � ��ij ! 0.

Proof. The proof follows from the same arguments as the proof of Lemma 6 in Müller and Wat-

son (2022a). The two di¤erences are (i) the generalization of the demeaning by the more general
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projection of  ; and (ii) the replacement of the i.i.d. assumption for s0l by Gn ) G.

Set k0(s; r) = �k(s; r) +  (s)0H�1 (r) and de�ne the associated operators L(f)(s) =R
f(r)k0(r; s)dG(r), Ln(f)(s) =

R
f(r)k0(r; s)dGn(r), �L = MLM , �Ln = MLnM and L̂n =

MnLnMn. Note that �L = MLkM and L̂n = MnLk;nMn. Let H � L2G be the Reproducing

Kernel Hilbert Space of functions f : S0 7! R with kernel k0 and inner product h�; �iH satis-

fying hf; k0(�; r)iH = f(r) and associated norm jjf jjH. By Theorem 2.16 in Saitoh and Sawano

(2016), H contains all functions of the form a0 for a 2 Rp, so supjaj=1 jja0 jjH < 1. Now pro-

ceed as in the proof of Lemma 6 of Müller and Watson (2022a) to argue that supr2S0 jf(r)j �p
sups2S0 k0(s; s) � jjf jjH, and

jjMf jjH = jjf �
Z
 (r)0f(r)dG(r)H�1 jjH � jjf jjH + sup

r2S0
jf(r)j � sup

r2S0
jH�1 (r)j � sup

jaj=1
jja0 jjH

so M : H 7! H is a bounded operator. By the same argument, so is Mn.

From hf; k0(�; r)iH = f(r), we further obtainZ
 (r)f(r)(dGn(r)� dG(r)) =

�
f;

Z
 (r)k0(�; r)(dGn(r)� dG(r))

�
H

(S.3)

and for each component  i of  , i = 1; : : : ; p,



Z  i(r)k0(�; r)(dGn(r)� dG(r))




2
H

(S.4)

=

Z Z
 i(s)k0(s; r) i(r)(dGn(s)� dG(s))(dGn(r)� dG(r))

= E[ i(Sn)k0(Sn; Rn) i(Rn)�  i(Sn)k0(S;Rn) i(R)
� i(S)k0(Sn; R) i(Rn) +  i(S)k0(S;R) i(R)]

! 0

where (Sn; Rn) is a sequence of R2d random variables with distribution Gn � Gn converging to

(S;R) with distribution G �G. The convergence then follows since the R2d 7! R function (s; r) 7!
 i(s)k0(s; r) i(r) is continuous and bounded. Thus, by (S.3), (S.4) and Cauchy-Schwarz,

sup
jjf jjH�1

����Z  (r)f(r)(dGn(r)� dG(r))
����! 0:

From H�1
n ! H�1 and j

R
 (r)f(r)dGn(r)j � supr2S0 jf(r)j � supr2S0 j (r)j �

supr2S0 j (r)j
p
sups2S k0(s; s) � jjf jjH, we conclude that with �n(f) = H�1

n

R
 (r)f(r)dGn(r) �
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H�1 R  (r)f(r)dG(r), supjjf jjH�1 j�n(f)j ! 0. Thus

sup
jjf jjH�1

jj(Mn �M)f jjH =


�n(f)0 

H � sup

jjf jjH�1
j�n(f)j � sup

jaj=1
jja0 jjH ! 0:

The only remaining piece of the proof is to show that jjLn � Ljj2HS ! 0 under the assumption

of Gn ) G, where for any Hilbert-Schmidt operator A : H 7! H, jjAjj2HS =
P
j�1hAej ; AejiH for

an orthonormal base ej . One choice for ej are the eigenfunctions scaled by the square root of the

eigenvalues of the spectral decomposition of k0, so that k0(r; s) =
P1
j=1 ej(r)ej(s); see the discussion

in the proof of Lemma 6 in Müller and Watson (2022a). We �nd

jjLn � Ljj2HS =
X
j�1

�Z
ej(s)k0(s; �)(dGn(s)� dG(s));

Z
ej(s)k0(s; �)(dGn(s)� dG(s))

�
H

=

Z Z 0@X
j�1

ej(s)ej(r)

1A k0(s; r)(dGn(s)� dG(s))(dGn(r)� dG(r))

=

Z Z
k0(s; r)

2(dGn(r)� dG(r))(dGn(r)� dG(r))

= E[k0(Sn; Rn)2 � k0(S;Rn)2 � k0(Sn; R)2 + k0(S;R)2]! 0

where the change of the order of integration and summation is justi�ed by Fubini�s Theorem, and the

convergence follows, since the R2d 7! R function (s; r) 7! k0(s; r)
2 is bounded and continuous.

Lemma S.2. Assume the conditions of Lemma S.1 hold. Suppose ~xl =  n(s
0
l ), where the

continuous functions  n : S0 7! Rp are such that sups2S0 j n(s) �  (s)j ! 0, for some

continuous function  . De�ne the the projection operator ~Mn : L2G 7! L2G as ~Mn(f)(s) =

f(s) �
R
 n(r)

0f(r)dGn(r)H�1
n  n(s), and let ~kn be the kernel corresponding to the linear operator

~MnLk;n ~Mn, so that the (l; `) element of M ~X�nM ~X is given by ~kn(s0l ; s
0
`). Let (~�i; (~ri;1; : : : ; ~ri;n)

0)

be the ith eigenvalue/eigenvector pair of M ~X�nM ~X , and de�ne ~'i(�) = n�1~��1i
Pn
l=1 ~ri;l

~kn(�; s0l ).
Then sups2S0;1�i�q j~'i(s)� �'i(s)j ! 0 and max1�i�q j~�i � ��ij ! 0.

Proof. From standard arguments, we obtain
R
 n(s) n(s)

0dGn(s)! H and
R
 (s) n(s)

0dGn(s)!
H. Thus, jjM ~X �MX jj ! 0, and by a direct calculation, sups;r2S0 j~kn(r; s) � k̂n(r; s)j ! 0; and

sups;r2S0 jk̂n(r; s)� �k(r; s)j ! 0 and thus sups;r2S0 j~kn(r; s)� �k(r; s)j ! 0. Furthermore, proceeding

as in the proof of Lemma S.1 shows that jj�njj converges to ��1, the largest eigenvalue of the integral
operator with kernel �k, so jj�njj = O(1). Thus also jjM ~X�nM ~X �MX�nMX jj ! 0, and from

Weyl�s inequality, max1�i�q j~�i � �̂ij ! 0. Since also max1�i�q j�̂i � ��ij ! 0 from Lemma S.1, we

can conclude that

sup
s2S0

j(~��1i � �̂�1i )n
�1

nX
l=1

ri;lk̂n(s; s
0
l )j � j~��1i � �̂�1i j � sup

s2S0
j'̂i(s)j � sup

s;r2S0
jk̂n(r; s)j ! 0
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where the inequality uses ri;l = '̂i(s
0
l ), and the convergence follows from the above results and

sups2S0 j'̂i(s)j ! sups2S0 j'i(s)j <1 from Lemma S.1. Also,

sup
s2S0

jn�1
nX
l=1

ri;l(~kn(s; s
0
l )� k̂n(s; s0l ))j � sup

s2S0
j'̂i(s)j � sup

r;s2S0
j~kn(r; s)� k̂(r; s)j ! 0:

Finally, since max1�i�q j~�i���ij ! 0 and ��1 > ��2 > : : : > ��q > ��q+1, we can apply Corollary 1 of Yu,

Wang and Samworth (2015) and conclude that n�1
Pn
l=1(~ri;l � ri;l)2 ! 0 for i = 1; : : : ; q. Applying

Cauchy-Schwarz then yields

sup
s2S0

jn�1
nX
l=1

(~ri;l � ri;l)~kn(s; s0l )j2 � n�1
nX
l=1

(~ri;l � ri;l)2 � sup
s2S0

n�1
nX
l=1

~kn(s; s
0
l )
2 ! 0

where the convergence follows from n�1
Pn
l=1
~kn(s; s

0
l )
2 � 2 supr;s2S0 j�k(r; s)j2+2 sups;r2S0 j~kn(r; s)�

�k(r; s)j2 = O(1):

Theorem S.3. Suppose yl = x0l� + ul, (x
0
l; ul) = �

1=2
n (X0

n(s
0
l )
0; U0n(s

0
l )) 2 Rp �R with (X0

n(�); U0n(�))
satisfying (27), but X0 is not necessarily independent of U0. Let RXn be the n� p matrix of q eigen-
vectors of MX�LMX corresponding to the largest eigenvalues. Suppose for almost every realization

of X0; the largest q + 1 eigenvalues of the kernel kX0 : S0 � S0 7! R corresponding to the linear

operator MX0LkMX0 with MX0(f)(s) = f(s) � X0(s)
�R
X0(r)X0(r)0dG(r)

��1 R
X0(r)0f(r)dG(r)

are distinct. If also Condition 1 holds, then

��1=2n RX0n Yn ) !

Z
'X0(s)U0(s)dG(s) (S.5)

where 'X0(�) are the q eigenfunctions of kX0 corresponding to the largest eigenvalues.

Furthermore, let ~U0n be independent of (X
0
n; U

0
n), and suppose ~U

0
n satis�es ~U

0
n(�) ) ~U0(�) with

~U0 � U0. Let cvn(X0
n) be the 1� � quantile of the conditional distribution of �(RX0n ~Un) given RXn

for some continuous function � : Rq 7! R satisfying �(ax) = �(x) for all a 6= 0 and x 2 Rq. Suppose
that (i) X0 is independent of U0, (ii) for almost all realizations of X0 the conditional distribution

of �(
R
'X0(s)U0(s)dG(s)) is continuous. Then P(�(RX0n Yn) > cvn(X0

n))! �.

Proof. We will show that (�(RX0n Yn); cvn(X
0
n)) ) (�(

R
'X(s)U

0(s)dG(s)); q�1��(X
0)) with

q�1��(X
0) the 1 � � quantile of �(

R
'X(s)U

0(s)dG(s)) conditional on X0. The result then follows

from the CMT applied to 1[�(RX0n Yn) > cvn(X
0
n)], and taking expectations.

Apply the almost sure representation theorem to argue that there exists a probability space

(
0;F0; P0) and associated random processes X�; U� and X�
n; U

�
n, n � 1 such that (X�

n; U
�
n) �

(X0
n; U

0
n), (X

�; U�) � (X0; U0) and sups2S0 jX�
n(s) � X�(s)j a:s:! 0, sups2S0 jU�n(s) � U�(s)j a:s:! 0.

Using the same arguments as in the proof of Theorem 3, and a realization by realization application
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of Lemma S.2, then yields

��1=2n RX
�0

n Y�
n
a:s:! !

Z
'X�(s)U�(s)dG(s) � !

Z
'X�(s)U0(s)dG(s) (S.6)

where (RX
�

n ;Y�
n) are de�ned analogously to (R

X
n ;Yn) on (
0;F0; P0), and (R

X�
n ;Y�

n) � (RXn ;Yn)
by construction, so (S.5) holds.

The further result now follows if we can show that also cvn(X�
n)

a:s:! q�1��(X
�), since almost sure

convergence implies convergence in distribution. To that end, note there exists a separate probability

space (
1;F1; P1) with associated sequences of random process ~U� and ~U�n and such that ~U
�
n � ~U0n,

~U� � ~U0 � U0 and sups2S0 j ~U�n(s)� ~U�(s)j
a:s:! 0. Form the product space (
0�
1;F0
F1; P0�P1),

so that on this new space, (X�; fX�
ng1n=1) is independent of ( ~U�; f ~U�ng1n=1) by construction. Use the

same arguments as for (S.6) obtain that for P0-almost all !0 2 
0 and P1-almost all !1 2 
1, in
obvious notation,

��1=2n RX
�0

n
~U�
n !

Z
'X�(s) ~U�(s)dG(s)

jointly with (S.6). But almost sure convergence implies convergence in distribution, and ~U� � U0,

so for P0-almost all !0 2 
0, the distribution of �
�1=2
n RX

�0
n

~U�
n induced by P1 converges to the

conditional distribution of
R
'X�(s)U0(s)dG(s) given X�. Since � is continuous and the condi-

tional distribution is assumed continuous, this implies that for all such !0, cvn(X0
n)

a:s:! q�1��(X
�).

Thus (�(RX0n Yn); cvn(X
0
n)) � (�(RX

�0
n Y�

n); cvn(X
�
n))

a:s:! (�(
R
'X�(s)U�(s)dG(s)); q

�
1��(X

�)) �
(�(
R
'X0(s)U0(s)dG(s)); q

�
1��(X

0)), and the result follows, because almost sure convergence im-

plies convergence in distribution.

In applications, the theorem justi�es use of a critical value for the test statistic �(RX0n Yn) that

is equal to the 1� � quantile of �(RX0n ~Un) conditional on RXn , for some (pseudo-) random variable

draws of ~ul = ~Un(s
0
l ) that induce the same limiting process as the actual regression errors ul. Since

� is assumed scale invariant, the scaling of ~ul is immaterial in this construction.

Proof of Theorem 8:
By Lemmas 3 and 12 in Müller and Watson (2022a), we have

�d=2n n�1Zn ) N
�
0; a�B(0)

Z
�'(s)�'(s)0dG(s) + !2

Z
�'(s)�'(s)0g(s)dG(s)

�
(S.7)

where �' = (�'1; : : : ; �'q), !
2 =

R
Rd �B(s)ds and g is the density of the distributionG. Since the LFSTn

statistic is scale invariant, its limiting distribution under (S.7) only depends on the properties of B

through the ratio � = a�B(0)=!
2 2 [0;1). We need to show that lim infn!1 cvLFSTn is at least as

large as the 1 � � quantile, say cvLFST� , of the (continuous) asymptotic distribution of LFSTn for

this value of �:
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Note that for B = Jc, �B(0)=!2 = Kdc
1+d for some Kd > 0. For a > 0, let c� be such

Kdc
1+d
� = �=a, and let c� = 1 otherwise. For all n su¢ ciently large so that �nc� � c0:03, cvLFSTn is

such that the LFSTn test controls size under B = Jc� . But since B = Jc� satis�es the assumptions

of Lahiri (2003), this model induces the same limit (S.7), so its 1� a quantile converges to cvLFST� ,

and the result follows. �

S.3 Detailed Monte Carlo Results

The following tables summarize the distributions of the null rejection probability and average length

of con�dence intervals for each method and DGP across the 96 spatial designs described in Section

6.

Entries show the median across spatial locations and the values in parentheses are 5th and 95th

percentiles.
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Method: OLS (C-SCPC) 
 

Null Rejection Probability: k = 1  
DGP   
Levy-BM 0.227 (0.202,0.267) 
I(1) c=0.01 0.243 (0.217,0.276) 
I(1) c=0.03 0.271 (0.243,0.312) 
I(1) Matern 0.249 (0.227,0.284) 
J c=0.03 0.035 (0.032,0.040) 
J c = 0.50 0.145 (0.131,0.168) 
Br. Sheet 0.254 (0.218,0.302) 

 
Null Rejection Probability: k = 5  

DGP   
Levy-BM 0.196 (0.183,0.213) 
I(1) c=0.01 0.198 (0.185,0.211) 
I(1) c=0.03 0.225 (0.210,0.243) 
I(1) Matern 0.202 (0.189,0.218) 
J c=0.03 0.038 (0.033,0.042) 
J c = 0.50 0.145 (0.132,0.156) 
Br. Sheet 0.233 (0.205,0.259) 

 
Average Length: k = 1  

DGP   
Levy-BM 1.133 (1.071,1.204) 
I(1) c=0.01 1.338 (1.262,1.437) 
I(1) c=0.03 1.419 (1.346,1.495) 
I(1) Matern 1.385 (1.325,1.453) 
J c=0.03 0.497 (0.488,0.507) 
J c = 0.50 1.030 (0.995,1.095) 
Br. Sheet 1.071 (1.003,1.146) 

 
Average Length: k = 5  

DGP   
Levy-BM 0.854 (0.828,0.884) 
I(1) c=0.01 1.101 (1.060,1.141) 
I(1) c=0.03 1.181 (1.130,1.244) 
I(1) Matern 1.168 (1.101,1.219) 
J c=0.03 0.484 (0.478,0.489) 
J c = 0.50 0.833 (0.807,0.869) 
Br. Sheet 0.801 (0.750,0.858) 
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Method: Isotropic difference (C-SCPC) 
 
Null Rejection Probability: k = 1  

DGP  b =0.030 b =0.060 b =0.090 b =0.120 b =0.150 
Levy-BM 0.020 (0.016,0.024) 0.022 (0.017,0.027) 0.028 (0.023,0.035) 0.034 (0.027,0.044) 0.040 (0.033,0.055) 
I(1) c=0.01 0.056 (0.046,0.065) 0.045 (0.041,0.051) 0.045 (0.039,0.056) 0.049 (0.042,0.065) 0.056 (0.045,0.074) 
I(1) c=0.03 0.097 (0.080,0.112) 0.079 (0.069,0.089) 0.071 (0.062,0.083) 0.072 (0.060,0.093) 0.076 (0.063,0.105) 
I(1) Matern 0.079 (0.067,0.089) 0.065 (0.057,0.073) 0.059 (0.054,0.065) 0.060 (0.053,0.073) 0.065 (0.056,0.086) 
J c=0.03 0.019 (0.015,0.024) 0.021 (0.017,0.026) 0.026 (0.021,0.031) 0.029 (0.024,0.035) 0.033 (0.027,0.038) 
J c = 0.50 0.020 (0.016,0.024) 0.022 (0.018,0.028) 0.027 (0.022,0.034) 0.033 (0.026,0.045) 0.038 (0.031,0.055) 
Br. Sheet 0.042 (0.033,0.066) 0.067 (0.050,0.117) 0.092 (0.071,0.153) 0.109 (0.086,0.175) 0.120 (0.096,0.185) 

 
Null Rejection Probability: k = 5  

DGP  b =0.030 b =0.060 b =0.090 b =0.120 b =0.150 
Levy-BM 0.023 (0.019,0.028) 0.024 (0.020,0.030) 0.029 (0.025,0.038) 0.035 (0.029,0.049) 0.042 (0.032,0.058) 
I(1) c=0.01 0.059 (0.050,0.069) 0.047 (0.042,0.052) 0.045 (0.039,0.053) 0.048 (0.042,0.064) 0.053 (0.045,0.076) 
I(1) c=0.03 0.096 (0.082,0.105) 0.077 (0.069,0.088) 0.068 (0.062,0.075) 0.067 (0.060,0.081) 0.071 (0.062,0.092) 
I(1) Matern 0.080 (0.069,0.089) 0.064 (0.057,0.072) 0.058 (0.051,0.065) 0.058 (0.050,0.071) 0.063 (0.053,0.081) 
J c=0.03 0.022 (0.017,0.025) 0.023 (0.019,0.028) 0.026 (0.022,0.032) 0.030 (0.025,0.037) 0.032 (0.028,0.040) 
J c = 0.50 0.022 (0.019,0.026) 0.024 (0.019,0.028) 0.028 (0.023,0.036) 0.033 (0.028,0.045) 0.039 (0.032,0.056) 
Br. Sheet 0.047 (0.037,0.079) 0.072 (0.055,0.131) 0.090 (0.072,0.162) 0.108 (0.086,0.175) 0.120 (0.097,0.182) 

 
Average Length: k = 1  

DGP  b =0.030 b =0.060 b =0.090 b =0.120 b =0.150 
Levy-BM 0.465 (0.410,0.533) 0.415 (0.384,0.454) 0.428 (0.400,0.483) 0.473 (0.433,0.563) 0.531 (0.475,0.625) 
I(1) c=0.01 0.705 (0.640,0.783) 0.636 (0.588,0.686) 0.644 (0.599,0.720) 0.701 (0.634,0.809) 0.762 (0.690,0.893) 
I(1) c=0.03 0.824 (0.772,0.932) 0.736 (0.683,0.822) 0.729 (0.680,0.791) 0.770 (0.712,0.858) 0.838 (0.770,0.947) 
I(1) Matern 0.843 (0.779,0.928) 0.746 (0.699,0.837) 0.733 (0.689,0.803) 0.764 (0.723,0.868) 0.819 (0.766,0.958) 
J c=0.03 0.465 (0.405,0.517) 0.403 (0.377,0.435) 0.404 (0.374,0.436) 0.418 (0.389,0.463) 0.436 (0.405,0.483) 
J c = 0.50 0.462 (0.417,0.541) 0.411 (0.382,0.441) 0.426 (0.399,0.472) 0.467 (0.431,0.552) 0.518 (0.473,0.620) 
Br. Sheet 0.536 (0.478,0.595) 0.498 (0.468,0.543) 0.517 (0.486,0.569) 0.542 (0.510,0.610) 0.575 (0.543,0.661) 

 
Average Length: k = 5  

DGP  b =0.030 b =0.060 b =0.090 b =0.120 b =0.150 
Levy-BM 0.449 (0.405,0.502) 0.402 (0.376,0.435) 0.425 (0.394,0.472) 0.468 (0.427,0.534) 0.514 (0.471,0.600) 
I(1) c=0.01 0.661 (0.607,0.711) 0.606 (0.570,0.656) 0.633 (0.591,0.706) 0.691 (0.641,0.797) 0.756 (0.703,0.868) 
I(1) c=0.03 0.779 (0.716,0.817) 0.705 (0.658,0.745) 0.717 (0.676,0.785) 0.774 (0.723,0.885) 0.844 (0.775,0.965) 
I(1) Matern 0.786 (0.738,0.859) 0.721 (0.684,0.772) 0.728 (0.690,0.785) 0.777 (0.728,0.868) 0.839 (0.778,0.942) 
J c=0.03 0.456 (0.408,0.506) 0.393 (0.372,0.425) 0.397 (0.374,0.429) 0.415 (0.387,0.450) 0.433 (0.403,0.471) 
J c = 0.50 0.449 (0.408,0.495) 0.403 (0.377,0.430) 0.422 (0.391,0.476) 0.464 (0.430,0.542) 0.512 (0.471,0.605) 
Br. Sheet 0.506 (0.464,0.562) 0.480 (0.452,0.517) 0.498 (0.464,0.535) 0.527 (0.489,0.576) 0.557 (0.519,0.624) 
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Method: Cluster fixed-effects (clustered standard error) 
 

Null Rejection Probability: k = 1  
DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.168 (0.155,0.178) 0.139 (0.130,0.148) 0.105 (0.098,0.111) 0.076 (0.072,0.082) 
I(1) c=0.01 0.263 (0.239,0.277) 0.281 (0.263,0.296) 0.285 (0.261,0.310) 0.238 (0.217,0.257) 
I(1) c=0.03 0.350 (0.331,0.367) 0.390 (0.363,0.412) 0.412 (0.391,0.435) 0.369 (0.336,0.391) 
I(1) Matern 0.305 (0.284,0.322) 0.339 (0.318,0.360) 0.364 (0.337,0.390) 0.326 (0.296,0.347) 
J c=0.03 0.092 (0.086,0.097) 0.080 (0.076,0.085) 0.070 (0.066,0.075) 0.066 (0.061,0.070) 
J c = 0.50 0.140 (0.132,0.149) 0.117 (0.109,0.124) 0.093 (0.087,0.100) 0.075 (0.070,0.081) 
Br. Sheet 0.282 (0.243,0.339) 0.258 (0.219,0.310) 0.213 (0.185,0.262) 0.133 (0.116,0.162) 

 
Null Rejection Probability: k = 5  

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.175 (0.164,0.185) 0.142 (0.130,0.151) 0.109 (0.101,0.116) 0.083 (0.078,0.088) 
I(1) c=0.01 0.271 (0.255,0.287) 0.283 (0.265,0.297) 0.284 (0.268,0.298) 0.243 (0.230,0.265) 
I(1) c=0.03 0.348 (0.326,0.366) 0.378 (0.356,0.399) 0.398 (0.374,0.414) 0.356 (0.338,0.375) 
I(1) Matern 0.311 (0.288,0.328) 0.338 (0.315,0.355) 0.363 (0.339,0.378) 0.327 (0.306,0.342) 
J c=0.03 0.097 (0.092,0.104) 0.084 (0.079,0.090) 0.074 (0.071,0.079) 0.072 (0.068,0.076) 
J c = 0.50 0.149 (0.142,0.160) 0.123 (0.115,0.133) 0.098 (0.092,0.105) 0.079 (0.074,0.084) 
Br. Sheet 0.295 (0.256,0.340) 0.266 (0.231,0.312) 0.221 (0.188,0.285) 0.141 (0.124,0.178) 

 
 
Average Length: k = 1  

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.353 (0.342,0.364) 0.307 (0.299,0.317) 0.294 (0.288,0.301) 0.355 (0.347,0.364) 
I(1) c=0.01 0.474 (0.458,0.495) 0.412 (0.396,0.431) 0.382 (0.365,0.408) 0.442 (0.420,0.474) 
I(1) c=0.03 0.501 (0.480,0.520) 0.424 (0.406,0.448) 0.389 (0.363,0.410) 0.441 (0.415,0.469) 
I(1) Matern 0.497 (0.481,0.515) 0.430 (0.407,0.453) 0.392 (0.369,0.414) 0.450 (0.422,0.478) 
J c=0.03 0.275 (0.271,0.280) 0.264 (0.260,0.269) 0.272 (0.267,0.276) 0.342 (0.337,0.348) 
J c = 0.50 0.343 (0.335,0.352) 0.302 (0.295,0.312) 0.291 (0.287,0.297) 0.354 (0.347,0.361) 
Br. Sheet 0.376 (0.358,0.402) 0.329 (0.312,0.351) 0.314 (0.303,0.328) 0.380 (0.361,0.398) 

 
Average Length: k = 5 

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.334 (0.327,0.344) 0.297 (0.289,0.307) 0.288 (0.283,0.295) 0.349 (0.343,0.356) 
I(1) c=0.01 0.448 (0.438,0.463) 0.395 (0.386,0.411) 0.371 (0.358,0.383) 0.424 (0.407,0.444) 
I(1) c=0.03 0.476 (0.463,0.492) 0.411 (0.399,0.426) 0.382 (0.369,0.395) 0.431 (0.412,0.450) 
I(1) Matern 0.475 (0.463,0.491) 0.414 (0.400,0.429) 0.384 (0.366,0.398) 0.433 (0.413,0.454) 
J c=0.03 0.269 (0.264,0.274) 0.260 (0.255,0.265) 0.269 (0.264,0.273) 0.338 (0.333,0.344) 
J c = 0.50 0.327 (0.320,0.336) 0.293 (0.287,0.300) 0.286 (0.282,0.292) 0.347 (0.342,0.352) 
Br. Sheet 0.347 (0.337,0.362) 0.313 (0.303,0.326) 0.305 (0.294,0.316) 0.370 (0.355,0.381) 
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Method: Cluster fixed-effects (C-SCPC) 
 

Null Rejection Probability: k = 1  
DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.053 (0.045,0.062) 0.056 (0.044,0.073) 0.056 (0.046,0.065) 0.047 (0.040,0.061) 
I(1) c=0.01 0.084 (0.076,0.094) 0.097 (0.080,0.129) 0.112 (0.091,0.132) 0.102 (0.081,0.133) 
I(1) c=0.03 0.122 (0.112,0.134) 0.132 (0.116,0.175) 0.157 (0.134,0.183) 0.150 (0.126,0.173) 
I(1) Matern 0.098 (0.089,0.112) 0.114 (0.097,0.149) 0.134 (0.118,0.166) 0.127 (0.107,0.150) 
J c=0.03 0.030 (0.026,0.035) 0.034 (0.029,0.044) 0.041 (0.034,0.049) 0.042 (0.035,0.049) 
J c = 0.50 0.043 (0.039,0.051) 0.048 (0.039,0.064) 0.050 (0.041,0.062) 0.046 (0.040,0.059) 
Br. Sheet 0.104 (0.082,0.145) 0.106 (0.080,0.150) 0.105 (0.081,0.150) 0.076 (0.058,0.103) 

 
Null Rejection Probability: k = 5  

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.053 (0.048,0.061) 0.056 (0.046,0.073) 0.060 (0.048,0.076) 0.051 (0.041,0.063) 
I(1) c=0.01 0.080 (0.073,0.090) 0.098 (0.078,0.139) 0.122 (0.104,0.147) 0.116 (0.097,0.136) 
I(1) c=0.03 0.107 (0.096,0.118) 0.129 (0.107,0.178) 0.177 (0.153,0.202) 0.165 (0.146,0.188) 
I(1) Matern 0.090 (0.081,0.103) 0.102 (0.088,0.157) 0.149 (0.129,0.179) 0.144 (0.130,0.163) 
J c=0.03 0.030 (0.026,0.035) 0.036 (0.030,0.047) 0.043 (0.034,0.054) 0.046 (0.040,0.058) 
J c = 0.50 0.044 (0.038,0.051) 0.050 (0.039,0.067) 0.055 (0.047,0.067) 0.050 (0.042,0.059) 
Br. Sheet 0.106 (0.090,0.145) 0.115 (0.085,0.163) 0.109 (0.086,0.152) 0.083 (0.064,0.114) 

 
Average Length: k = 1  

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.550 (0.530,0.572) 0.447 (0.420,0.468) 0.393 (0.373,0.411) 0.453 (0.431,0.471) 
I(1) c=0.01 0.809 (0.774,0.841) 0.697 (0.648,0.744) 0.627 (0.588,0.664) 0.683 (0.632,0.723) 
I(1) c=0.03 0.907 (0.876,0.942) 0.813 (0.745,0.854) 0.737 (0.683,0.775) 0.773 (0.721,0.820) 
I(1) Matern 0.878 (0.848,0.916) 0.773 (0.712,0.822) 0.708 (0.647,0.747) 0.763 (0.716,0.806) 
J c=0.03 0.405 (0.392,0.418) 0.370 (0.348,0.382) 0.352 (0.337,0.365) 0.433 (0.409,0.458) 
J c = 0.50 0.527 (0.510,0.546) 0.433 (0.411,0.451) 0.386 (0.368,0.401) 0.449 (0.424,0.466) 
Br. Sheet 0.620 (0.576,0.675) 0.514 (0.476,0.559) 0.455 (0.419,0.485) 0.502 (0.454,0.532) 

 
Average Length: k = 5  

DGP  m = 30 m = 60 m = 120 m = 240 
Levy-BM 0.530 (0.513,0.548) 0.433 (0.410,0.455) 0.379 (0.363,0.397) 0.444 (0.424,0.467) 
I(1) c=0.01 0.795 (0.765,0.820) 0.680 (0.595,0.722) 0.586 (0.552,0.615) 0.626 (0.596,0.672) 
I(1) c=0.03 0.901 (0.872,0.922) 0.778 (0.687,0.824) 0.659 (0.622,0.692) 0.702 (0.651,0.741) 
I(1) Matern 0.878 (0.842,0.906) 0.780 (0.661,0.814) 0.655 (0.618,0.685) 0.699 (0.665,0.731) 
J c=0.03 0.401 (0.390,0.412) 0.363 (0.344,0.378) 0.346 (0.330,0.362) 0.427 (0.404,0.444) 
J c = 0.50 0.513 (0.500,0.527) 0.420 (0.394,0.445) 0.375 (0.356,0.390) 0.439 (0.421,0.459) 
Br. Sheet 0.583 (0.556,0.619) 0.493 (0.454,0.532) 0.435 (0.408,0.461) 0.483 (0.450,0.516)
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Method: LBM-GLS 
 

Null Rejection Probability: k = 1  
DGP   
Levy-BM 0.053 (0.049,0.057) 
I(1) c=0.01 0.256 (0.244,0.267) 
I(1) c=0.03 0.392 (0.374,0.412) 
I(1) Matern 0.379 (0.359,0.396) 
J c=0.03 0.058 (0.055,0.062) 
J c = 0.50 0.053 (0.050,0.056) 
Br. Sheet 0.234 (0.204,0.298) 

 
Null Rejection Probability: k = 5  

DGP   
Levy-BM 0.054 (0.051,0.058) 
I(1) c=0.01 0.257 (0.243,0.268) 
I(1) c=0.03 0.392 (0.377,0.408) 
I(1) Matern 0.380 (0.363,0.400) 
J c=0.03 0.060 (0.056,0.063) 
J c = 0.50 0.054 (0.051,0.057) 
Br. Sheet 0.234 (0.206,0.300) 

 
Average Length: k = 1  

DGP   
Levy-BM 0.195 (0.195,0.195) 
I(1) c=0.01 0.212 (0.209,0.215) 
I(1) c=0.03 0.224 (0.219,0.231) 
I(1) Matern 0.222 (0.215,0.229) 
J c=0.03 0.196 (0.195,0.196) 
J c = 0.50 0.195 (0.195,0.196) 
Br. Sheet 0.208 (0.199,0.213) 

 
Average Length: k = 5  

DGP   
Levy-BM 0.195 (0.195,0.195) 
I(1) c=0.01 0.212 (0.208,0.214) 
I(1) c=0.03 0.224 (0.218,0.229) 
I(1) Matern 0.223 (0.218,0.228) 
J c=0.03 0.196 (0.195,0.196) 
J c = 0.50 0.195 (0.195,0.195) 
Br. Sheet 0.208 (0.199,0.212) 
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Method: LBM-GLS (C-SCPC) 
 

Null Rejection Probability: k = 1  
DGP   
Levy-BM 0.030 (0.027,0.035) 
I(1) c=0.01 0.049 (0.043,0.055) 
I(1) c=0.03 0.069 (0.060,0.076) 
I(1) Matern 0.059 (0.051,0.066) 
J c=0.03 0.029 (0.025,0.033) 
J c = 0.50 0.030 (0.027,0.035) 
Br. Sheet 0.088 (0.072,0.125) 

 
Null Rejection Probability: k = 5  

DGP   
Levy-BM 0.031 (0.027,0.035) 
I(1) c=0.01 0.050 (0.043,0.056) 
I(1) c=0.03 0.069 (0.061,0.078) 
I(1) Matern 0.059 (0.052,0.067) 
J c=0.03 0.029 (0.025,0.033) 
J c = 0.50 0.030 (0.027,0.034) 
Br. Sheet 0.085 (0.072,0.132) 

 
Average Length: k = 1  

DGP   
Levy-BM 0.254 (0.251,0.257) 
I(1) c=0.01 0.419 (0.408,0.430) 
I(1) c=0.03 0.541 (0.524,0.559) 
I(1) Matern 0.545 (0.523,0.562) 
J c=0.03 0.264 (0.260,0.266) 
J c = 0.50 0.255 (0.252,0.258) 
Br. Sheet 0.333 (0.319,0.349) 

 
Average Length: k = 5  

DGP   
Levy-BM 0.256 (0.253,0.258) 
I(1) c=0.01 0.419 (0.408,0.430) 
I(1) c=0.03 0.536 (0.517,0.553) 
I(1) Matern 0.547 (0.528,0.565) 
J c=0.03 0.266 (0.262,0.268) 
J c = 0.50 0.257 (0.253,0.259) 
Br. Sheet 0.335 (0.320,0.347) 
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Method: Low-pass eigenvector 
 
Null Rejection Probability: k = 1  

DGP  q = 10 q = 20 q = 50 
Levy-BM 0.050 (0.046,0.054) 0.050 (0.047,0.054) 0.050 (0.046,0.053) 
I(1) c=0.01 0.051 (0.047,0.054) 0.052 (0.049,0.056) 0.064 (0.060,0.068) 
I(1) c=0.03 0.053 (0.050,0.057) 0.063 (0.058,0.067) 0.105 (0.099,0.110) 
I(1) Matern 0.051 (0.047,0.055) 0.055 (0.052,0.059) 0.082 (0.077,0.087) 
J c=0.03 0.100 (0.093,0.107) 0.094 (0.088,0.099) 0.078 (0.074,0.083) 
J c = 0.50 0.056 (0.052,0.060) 0.054 (0.050,0.059) 0.052 (0.048,0.055) 
Br. Sheet 0.128 (0.095,0.171) 0.160 (0.120,0.209) 0.210 (0.170,0.272) 

 
Null Rejection Probability: k = 5  

DGP  q = 10 q = 20 q = 50 
Levy-BM 0.050 (0.046,0.054) 0.050 (0.046,0.054) 0.050 (0.048,0.054) 
I(1) c=0.01 0.050 (0.047,0.054) 0.051 (0.048,0.056) 0.062 (0.059,0.066) 
I(1) c=0.03 0.052 (0.048,0.055) 0.060 (0.057,0.063) 0.101 (0.096,0.107) 
I(1) Matern 0.050 (0.046,0.053) 0.054 (0.050,0.058) 0.080 (0.074,0.085) 
J c=0.03 0.095 (0.089,0.100) 0.095 (0.088,0.099) 0.079 (0.075,0.083) 
J c = 0.50 0.054 (0.050,0.057) 0.054 (0.050,0.057) 0.052 (0.048,0.055) 
Br. Sheet 0.104 (0.080,0.135) 0.147 (0.119,0.180) 0.201 (0.168,0.243) 

 
Average Length: k = 1  

DGP  q = 10 q = 20 q = 50 
Levy-BM 1.507 (1.499,1.515) 0.960 (0.957,0.963) 0.574 (0.573,0.575) 
I(1) c=0.01 1.508 (1.500,1.515) 0.960 (0.956,0.964) 0.574 (0.573,0.575) 
I(1) c=0.03 1.507 (1.500,1.516) 0.960 (0.957,0.964) 0.574 (0.573,0.576) 
I(1) Matern 1.508 (1.499,1.518) 0.961 (0.956,0.964) 0.574 (0.572,0.576) 
J c=0.03 1.509 (1.496,1.517) 0.960 (0.956,0.964) 0.574 (0.573,0.576) 
J c = 0.50 1.508 (1.499,1.513) 0.960 (0.957,0.963) 0.574 (0.573,0.575) 
Br. Sheet 1.507 (1.498,1.518) 0.959 (0.956,0.967) 0.574 (0.572,0.576) 

 
Average Length: k = 5  

DGP  q = 10 q = 20 q = 50 
Levy-BM 2.299 (2.279,2.317) 1.101 (1.095,1.106) 0.601 (0.599,0.602) 
I(1) c=0.01 2.297 (2.280,2.313) 1.100 (1.096,1.105) 0.600 (0.599,0.602) 
I(1) c=0.03 2.297 (2.276,2.317) 1.100 (1.095,1.105) 0.600 (0.599,0.602) 
I(1) Matern 2.298 (2.283,2.316) 1.101 (1.095,1.105) 0.600 (0.599,0.602) 
J c=0.03 2.297 (2.274,2.318) 1.100 (1.095,1.104) 0.600 (0.599,0.602) 
J c = 0.50 2.300 (2.282,2.320) 1.101 (1.096,1.106) 0.600 (0.599,0.602) 
Br. Sheet 2.300 (2.283,2.322) 1.101 (1.095,1.106) 0.600 (0.598,0.602) 
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Method: High-pass eigenvector (C-SCPC) 
 

Null Rejection Probability: k = 1  
DGP  q = 5 q = 10 q = 20 q = 50 q = 100 
Levy-BM 0.129 (0.117,0.139) 0.095 (0.087,0.103) 0.070 (0.063,0.078) 0.050 (0.045,0.056) 0.042 (0.037,0.046) 
I(1) c=0.01 0.174 (0.160,0.184) 0.141 (0.132,0.152) 0.118 (0.106,0.128) 0.090 (0.081,0.099) 0.069 (0.061,0.078) 
I(1) c=0.03 0.215 (0.205,0.234) 0.183 (0.168,0.197) 0.150 (0.137,0.167) 0.111 (0.096,0.128) 0.081 (0.071,0.097) 
I(1) Matern 0.193 (0.180,0.206) 0.165 (0.152,0.180) 0.146 (0.131,0.159) 0.118 (0.106,0.136) 0.097 (0.077,0.121) 
J c=0.03 0.050 (0.045,0.054) 0.051 (0.046,0.056) 0.050 (0.045,0.055) 0.045 (0.040,0.049) 0.040 (0.035,0.044) 
J c = 0.50 0.120 (0.112,0.133) 0.093 (0.086,0.099) 0.070 (0.064,0.076) 0.050 (0.045,0.055) 0.041 (0.037,0.047) 
Br. Sheet 0.213 (0.186,0.270) 0.192 (0.163,0.246) 0.167 (0.141,0.221) 0.132 (0.113,0.174) 0.099 (0.084,0.136) 

 
Null Rejection Probability: k = 5  

DGP  q = 5 q = 10 q = 20 q = 50 q = 100 
Levy-BM 0.125 (0.116,0.134) 0.093 (0.087,0.101) 0.070 (0.065,0.078) 0.051 (0.045,0.057) 0.041 (0.037,0.046) 
I(1) c=0.01 0.161 (0.151,0.170) 0.135 (0.125,0.147) 0.114 (0.106,0.126) 0.089 (0.078,0.102) 0.068 (0.061,0.078) 
I(1) c=0.03 0.200 (0.187,0.212) 0.173 (0.161,0.184) 0.144 (0.133,0.158) 0.108 (0.094,0.126) 0.082 (0.070,0.097) 
I(1) Matern 0.179 (0.167,0.188) 0.157 (0.147,0.168) 0.139 (0.129,0.153) 0.118 (0.104,0.134) 0.095 (0.080,0.113) 
J c=0.03 0.051 (0.046,0.054) 0.051 (0.048,0.056) 0.051 (0.046,0.054) 0.045 (0.042,0.051) 0.040 (0.036,0.044) 
J c = 0.50 0.117 (0.108,0.128) 0.090 (0.085,0.096) 0.069 (0.063,0.074) 0.050 (0.045,0.057) 0.041 (0.037,0.045) 
Br. Sheet 0.203 (0.182,0.249) 0.183 (0.161,0.232) 0.160 (0.140,0.214) 0.129 (0.108,0.174) 0.100 (0.083,0.138) 

 
Average Length: k = 1  

DGP  q = 5 q = 10 q = 20 q = 50 q = 100 
Levy-BM 0.565 (0.552,0.578) 0.467 (0.459,0.476) 0.391 (0.382,0.399) 0.328 (0.322,0.335) 0.320 (0.314,0.325) 
I(1) c=0.01 0.744 (0.720,0.770) 0.647 (0.625,0.671) 0.558 (0.541,0.576) 0.464 (0.450,0.479) 0.428 (0.414,0.441) 
I(1) c=0.03 0.789 (0.755,0.825) 0.690 (0.656,0.715) 0.587 (0.567,0.617) 0.489 (0.468,0.510) 0.449 (0.427,0.466) 
I(1) Matern 0.788 (0.759,0.820) 0.690 (0.666,0.720) 0.607 (0.581,0.628) 0.521 (0.492,0.542) 0.501 (0.466,0.522) 
J c=0.03 0.419 (0.412,0.425) 0.388 (0.381,0.394) 0.353 (0.349,0.359) 0.318 (0.314,0.324) 0.317 (0.313,0.322) 
J c = 0.50 0.558 (0.542,0.575) 0.465 (0.455,0.475) 0.389 (0.383,0.399) 0.329 (0.322,0.334) 0.320 (0.314,0.325) 
Br. Sheet 0.592 (0.571,0.614) 0.523 (0.498,0.551) 0.472 (0.449,0.498) 0.423 (0.401,0.447) 0.409 (0.394,0.427) 

 
Average Length: k = 5  

DGP  q = 5 q = 10 q = 20 q = 50 q = 100 
Levy-BM 0.535 (0.524,0.549) 0.456 (0.447,0.467) 0.386 (0.380,0.394) 0.329 (0.322,0.334) 0.322 (0.317,0.327) 
I(1) c=0.01 0.735 (0.711,0.755) 0.647 (0.623,0.665) 0.557 (0.542,0.576) 0.465 (0.448,0.480) 0.428 (0.413,0.443) 
I(1) c=0.03 0.792 (0.764,0.820) 0.693 (0.667,0.719) 0.594 (0.573,0.618) 0.491 (0.471,0.511) 0.448 (0.430,0.467) 
I(1) Matern 0.786 (0.765,0.812) 0.697 (0.677,0.725) 0.613 (0.594,0.634) 0.526 (0.498,0.548) 0.501 (0.477,0.525) 
J c=0.03 0.412 (0.406,0.418) 0.383 (0.378,0.389) 0.352 (0.346,0.357) 0.318 (0.314,0.324) 0.319 (0.314,0.325) 
J c = 0.50 0.533 (0.520,0.545) 0.455 (0.446,0.462) 0.387 (0.380,0.393) 0.329 (0.323,0.335) 0.322 (0.316,0.327) 
Br. Sheet 0.551 (0.529,0.575) 0.498 (0.476,0.514) 0.454 (0.436,0.471) 0.413 (0.398,0.430) 0.404 (0.390,0.417) 
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Null Rejection Probability: k = 1  
DGP  m = 10 m = 20 m = 50 
Levy-BM 0.105 (0.090,0.117) 0.105 (0.096,0.114) 0.080 (0.072,0.087) 
I(1) c=0.01 0.125 (0.110,0.137) 0.144 (0.131,0.157) 0.154 (0.137,0.168) 
I(1) c=0.03 0.152 (0.130,0.166) 0.193 (0.174,0.207) 0.235 (0.211,0.254) 
I(1) Matern 0.134 (0.115,0.147) 0.163 (0.149,0.175) 0.193 (0.179,0.206) 
J c=0.03 0.062 (0.058,0.067) 0.062 (0.056,0.067) 0.053 (0.047,0.058) 
J c = 0.50 0.088 (0.081,0.095) 0.087 (0.082,0.094) 0.070 (0.063,0.077) 
Br. Sheet 0.182 (0.132,0.223) 0.198 (0.156,0.234) 0.158 (0.131,0.193) 

 
Null Rejection Probability: k = 5  

DGP  m = 10 m = 20 m = 50 
Levy-BM 0.084 (0.077,0.091) 0.076 (0.068,0.082) 0.048 (0.043,0.052) 
I(1) c=0.01 0.091 (0.082,0.098) 0.091 (0.081,0.098) 0.062 (0.057,0.069) 
I(1) c=0.03 0.104 (0.092,0.114) 0.114 (0.102,0.121) 0.080 (0.072,0.087) 
I(1) Matern 0.092 (0.082,0.101) 0.098 (0.088,0.105) 0.072 (0.064,0.079) 
J c=0.03 0.060 (0.055,0.064) 0.055 (0.049,0.060) 0.043 (0.039,0.047) 
J c = 0.50 0.075 (0.070,0.081) 0.068 (0.060,0.072) 0.045 (0.042,0.051) 
Br. Sheet 0.142 (0.115,0.169) 0.135 (0.106,0.159) 0.070 (0.063,0.085) 

 
Average Length: k = 1  

DGP  m = 10 m = 20 m = 50 
Levy-BM 0.587 (0.575,0.599) 0.442 (0.432,0.470) 0.418 (0.379,0.479) 
I(1) c=0.01 0.871 (0.851,0.899) 0.696 (0.680,0.722) 0.627 (0.583,0.707) 
I(1) c=0.03 1.004 (0.976,1.046) 0.798 (0.780,0.824) 0.701 (0.656,0.789) 
I(1) Matern 0.964 (0.942,0.988) 0.782 (0.762,0.807) 0.709 (0.664,0.768) 
J c=0.03 0.365 (0.357,0.376) 0.330 (0.320,0.345) 0.375 (0.329,0.438) 
J c = 0.50 0.550 (0.537,0.564) 0.428 (0.417,0.442) 0.407 (0.376,0.455) 
Br. Sheet 0.609 (0.590,0.643) 0.468 (0.454,0.488) 0.435 (0.397,0.473) 

 
Average Length: k = 5  

DGP  m = 10 m = 20 m = 50 
Levy-BM 0.480 (0.472,0.491) 0.411 (0.393,0.481) 0.461 (0.385,0.539) 
I(1) c=0.01 0.755 (0.740,0.770) 0.647 (0.614,0.727) 0.652 (0.552,0.767) 
I(1) c=0.03 0.867 (0.851,0.886) 0.730 (0.708,0.805) 0.668 (0.577,0.821) 
I(1) Matern 0.883 (0.863,0.910) 0.783 (0.761,0.873) 0.780 (0.617,0.935) 
J c=0.03 0.359 (0.349,0.372) 0.357 (0.338,0.448) 0.454 (0.359,0.527) 
J c = 0.50 0.467 (0.457,0.477) 0.404 (0.383,0.466) 0.478 (0.396,0.571) 
Br. Sheet 0.503 (0.495,0.522) 0.435 (0.413,0.531) 0.487 (0.390,0.571) 
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R2 values in OLS regression  
 

k = 1  
DGP   
Levy-BM 0.137 (0.125,0.162) 
I(1) c=0.01 0.179 (0.166,0.204) 
I(1) c=0.03 0.208 (0.197,0.238) 
I(1) Matern 0.192 (0.179,0.215) 
J c=0.03 0.010 (0.010,0.011) 
J c = 0.50 0.085 (0.079,0.099) 
Br. Sheet 0.139 (0.117,0.161) 

 
k = 5  

DGP   
Levy-BM 0.434 (0.419,0.471) 
I(1) c=0.01 0.561 (0.548,0.592) 
I(1) c=0.03 0.638 (0.626,0.664) 
I(1) Matern 0.595 (0.584,0.625) 
J c=0.03 0.049 (0.047,0.050) 
J c = 0.50 0.314 (0.298,0.354) 
Br. Sheet 0.443 (0.404,0.471) 
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