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Abstract

We examine identification of differentiated products demand when one
has “micro data” linking the characteristics and choices of individual con-
sumers. Our model nests standard specifications featuring rich observed
and unobserved consumer heterogeneity as well as product/market-level
unobservables that introduce the problem of econometric endogeneity.
Previous work establishes identification of such models using market-
level data and instruments for all prices and quantities. Micro data
provides a panel structure that facilitates richer demand specifications
and reduces requirements on both the number and types of instrumental
variables. We address identification of demand in the standard case in
which non-price product characteristics are assumed exogenous, but also
cover identification of demand elasticities and other key features when
these product characteristics are endogenous and not instrumented. We
discuss implications of these results for applied work.

∗Early versions of this work were presented in the working paper “Nonparametric Iden-
tification of Multinomial Choice Demand Models with Heterogeneous Consumers,” first
circulated in 2007 and superseded by the present paper. We thank Jesse Shapiro, Suk Joon
Son, and numerous seminar participants for helpful comments. Miho Hong and Jaewon Lee
provided capable research assistance.



1 Introduction
Demand systems for differentiated products are central to many questions in
economics. In practice it is common to estimate demand using data on the
characteristics and choices of many individual consumers within each market.
This setting is often referred to as “micro data,” in contrast to another com-
mon case in which only market-level outcomes are observed.1 At an intuitive
level, the panel structure of micro data seems to offer more information than
market-level data alone. But in what precise sense does micro data help? How
significant are the advantages of micro data? What specific kinds of variation
within and across markets are helpful, and how?

This paper considers nonparametric identification of demand using micro
data. Our nonparametric consumer-level demand model substantially gener-
alizes standard parametric models used in a large literature building on Berry,
Levinsohn, and Pakes (1995, 2004). Micro data provides a panel structure,
with many consumers in each of many markets. A key benefit is that un-
observables at the level of the product×market remain fixed as consumers’
attributes and choices (quantities demanded) vary within a given market. We
show that identification can be obtained by combining this clean “within”
variation with cross-market variation in choice characteristics, market charac-
teristics, prices, and instruments for prices (only). Compared to settings with
only market-level data, this both allows a more general demand model and
substantially reduces demands on instrumental variables.

Although we focus exclusively on identification, our aim is to inform the
practice and evaluation of empirical work. The celebrated “credibility rev-
olution” in applied microeconomics has redoubled attention to identification
obtained through quasi-experimental variation, such as that arising through
instrumental variables, geographic boundaries, or repeated observations within
a single economic unit. Identification of demand presents challenges that are
absent in much of empirical economics (see, e.g., Berry and Haile (2021)).
Nonetheless, we show that these same types of variation allow identification
of demand systems exhibiting rich consumer heterogeneity and endogeneity.
Nonparametric identification results do not eliminate concerns about the im-
pact of parametric assumptions relied on in practice. However, they address
the important question of whether such assumptions can be viewed properly
as finite-sample approximations rather than essential maintained hypotheses.
Identification results can also clarify which assumptions may be most difficult
to relax, reveal essential sources of variation, point to specific roles that func-
tional forms may play in practice, offer assurance that robustness analysis is

1See Berry and Haile (2021) for a discussion of other forms of data, including consumer
panels and hybrids such as that in Petrin (2002).

1



possible, and potentially lead to new (parametric or nonparametric) estimation
approaches.

Our most important message for applied work is that micro data has a
high marginal value over market-level data alone. Availability of instrumental
variables is the most important and challenging requirement for identifica-
tion of demand, and micro data can substantially reduce both the number
and types of instruments needed. Berry and Haile (2014) showed that with
market-level data, nonparametric identification typically requires instruments
for all quantities and prices. There, the so-called “BLP instruments” (i.e.,
exogenous characteristics of competing products) play a crucial role as instru-
ments for quantities.2 In contrast, here we find that with sufficiently rich
micro data the only essential instruments are those for prices. This cuts the
number of required instruments in half and avoids the necessary reliance on
BLP instruments. This in turn permits a more flexible model of how non-price
product characteristics affect demand and avoids the necessity that at least
some such characteristics be exogenous. Micro data also opens the possible
use of additional classes of instruments.

We also show that it is often possible to identify the ceteris paribus effects
of prices on quantities demanded—critically, e.g., own- and cross-price demand
elasticities—when observed non-price characteristics of products/markets are
endogenous and not themselves instrumented. This requires that instruments
for prices remain valid when conditioning on the endogenous non-price ob-
servables.3 We show that standard instruments (or variations thereon) can
satisfy this requirement under many models of endogeneity. Our analysis of
instruments for this case makes elementary use of causal graphs, which provide
attractive tools for evaluating the necessary exclusion condition. Endogenous
product characteristics are an important concern in the applied literature on
differentiated products, and it can be difficult to find instruments for all such
characteristics. Thus, our findings expand the range of applications in which
primary features of interest can be identified despite these concerns.

Our model and setting incorporate several key features. First, as in the
large empirical literature building on Berry (1994) and Berry, Levinsohn, and
Pakes (1995, 2004), we emphasize the role of market-level demand shocks (un-
observables at the level of the product×market) that result in the econometric
endogeneity of prices. Explicit accounting for these demand shocks is essen-
tial to the identification of policy-relevant features such as demand elasticities
and equilibrium counterfactuals (see Berry and Haile (2021)). This drives our

2Instruments for quantities are what have sometimes been referred to informally as in-
struments for the “nonlinear parameters” in the applied literature using random coefficients
discrete choice models. Berry and Haile (2021) provide additional discussion.

3This is related to well-known results regarding endogenous controls in regression models.
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focus on market-level endogeneity and cross-market data, differentiating our
work from much of the prior research on the identification of choice models
with micro data.4 To our knowledge, the examination of identification with
market-level data in Berry and Haile (2014) offers the only prior nonpara-
metric identification results applicable to the workhorse models of this large
empirical literature.

Second, the panel structure of consumers-within-markets is essential to
the questions we ask. It is what distinguishes micro data from market-level
data. This panel structure is responsible for the reduction in the number of
needed instrumental variables, as well as the elimination of restrictions on the
way product-level observables enter demand. These features contrast with
the setting and model in Berry and Haile (2014). There the demand system
(especially if combined with a model of supply) also connects to nonparametric
simultaneous equations models, as studied by, e.g., Benkard and Berry (2006),
Matzkin (2008, 2015), Blundell, Kristensen, and Matzkin (2013, 2020), and
Berry and Haile (2018). However, the panel structure essential to the present
paper is absent in all of that prior work.

Third, our model avoids requirements that consumer-level observables be
exogenous, or that certain consumer observables be linked exclusively to the
desirability of specific products. The latter requirement (often in combination
with large support and exogeneity assumptions) is widely used in “special re-
gressor” approaches to identification of consumer-level discrete choice models,5
but is often difficult to motivate in practice. More natural are situations in
which multiple consumer-level observables interact to alter tastes for all goods.
As a simple example—one illustrating a broader interpretation of “demand”—
consider a discrete choice model of expressive voting in a two-party (“R” vs.
“D”) election, applied to survey data matching individual reported votes to
voter sociodemographics.6 Although voter-specific measures like age, income,

4This includes prior work on identification of discrete choice models allowing market-level
demand shocks only though composite “error” terms—one for each choice—representing all
latent heterogeneity (e.g., Lewbel (2000)). Explicit modeling of demand shocks also makes
clear that the strong functional form assumptions permitting application of control func-
tion approaches (Blundell and Matzkin (2014)) generally fail, even in standard parametric
models. See Berry and Haile (2014, 2021) for additional discussion of these issues.

5See the review by Lewbel (2014) and references therein. A very early version of this
paper, (Berry and Haile (2010)), featured an example of such an approach. In practice,
geographic distances are often modeled as providing consumer-level variation exclusive to
each product. But even these are inherently restricted to lie on a 2-dimensional surface in
RJ

+, since the underlying consumer heterogeneity reflects only consumer locations.
6Advertising, rather than price, often plays the role of the endogenous choice

characteristic—one whose effects are sometimes of primary interest. See, e.g., Gerber (1998)
and Gordon and Hartmann (2013).
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gender, race, and education may provide rich variation in preferences between
the two parties (and the outside option to abstain), no such measure is natu-
rally associated exclusively with the attractiveness of a single option.

Fourth, although we initially emphasize discrete choice demand, this is not
essential. The primitive feature of interest in our analysis is a demand function
mapping observables (at the level of market, products, and consumer) and a
vector of market-level demand shocks to expected quantities demanded. This
can allow continuous demand as well as departures from common assumptions
regarding consumers’ full information or rationality.

Of course, our results do require some structure, including conditions on
sources of variation. In addition to instruments (for prices) satisfying standard
conditions, we rely on three important assumptions. One is a nonparametric
index restriction on the way market-level demand shocks and some observed
consumer attributes enter the model.7 The second is injectivity of the map-
pings that link observed consumer attributes to choice probabilities. Below we
connect these requirements to canonical specifications from the literature.

Finally, we require sufficient variation in the consumer observables to sat-
isfy a “common choice probability” condition that we believe is new to the
literature. This condition requires that the number of observed consumer at-
tributes be at least as large as the number of products, and that they have
sufficient independent variation. However, it contrasts with a standard “large
support” condition, which would require that variation in such observables
drive certain choice probabilities arbitrarily close to zero or one. Whereas
large support would imply our common choice probability condition, the lat-
ter allows a broad range of cases where choice probabilities are never close to
one or zero.8 An attractive feature of the common choice probability condition
is that it is verifiable; i.e., its satisfaction or failure is identified.

Our assumptions on the dimension and variation of the observed consumer
attributes are tightly related to the generality of our demand model which, e.g.,
places few restrictions substitution patterns or how price effects vary across
products. Of course, some settings—particularly those with a large number of
choices—may lack the dimension of variation we require for the most flexible

7In contrast to related conditions in Berry and Haile (2014, 2018) or Matzkin (2008),
here each index depends on observed consumer attributes rather than observed product
characteristics (which are fixed within markets), and there is no requirement that these
observables be exogenous.

8In the voting example, our condition would require a vote share vector—say 0.4 for
R and 0.4 for D (the remainder abstaining)—such that in every market (e.g., metro area)
with the same pair of candidates and equal values of any metro-level observables, there is a
combination of individual-level sociodemographic measures that generates this conditional
vote share. The level of education etc. required to match the given vote share might be
higher (and perhaps income lower, etc.) in an unobservably conservative market.
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models. This motivates our exploration (in an appendix) of trade-offs between
common modeling assumptions and the types/dimension of variation sufficient
for identification. For example, we discuss semiparametric restrictions that can
allow identification (even with a large choice set) with a single consumer-level
observed attribute having only binary support.

Our results are relevant to a large empirical literature exploiting micro
data to estimate demand. A classic example is McFadden’s study of trans-
portation demand (McFadden, Talvitie, and Associates (1977)), where each
consumer’s preferences over different modes of transport are affected by her
available mode-specific commute times and other factors. This example illus-
trates an essential feature of the type of micro data considered here: consumer-
specific observables that alter the relative attractiveness of different options.
Consumer distances to different options have been used in a number of applica-
tions, including those involving demand for hospitals, retail outlets, residential
locations, or schools, as in the examples of Capps, Dranove, and Satterthwaite
(2003), Burda, Harding, and Hausman (2015), Bayer, Keohane, and Tim-
mins (2009), and Neilson (2021). More broadly, observable consumer-level at-
tributes that shift tastes for products might include income, sociodemographic
measures, or other proxies for idiosyncratic preferences. For example, income
and family size have been modeled as shifting preferences for cars (Goldberg
(1995), Petrin (2002)); race, education, and birth state have been modeled as
shifting preferences for residential location (Diamond (2016)). Other promi-
nent examples include applications to demand for grocery products (Ackerberg
(2003)), newspapers (Gentzkow and Shapiro (2010)), neighborhoods (Bayer,
Ferreira, and McMillan (2007)), and schools (Hom (2018)).9 An important
feature of many examples, reflected by our model, is that the typical consumer-
level observable cannot be tied exclusively to a single good.

In what follows, section 2 sets up our model of multinomial choice demand.
Section 3 connects this model to random coefficients random utility specifica-
tions widely used in practice. We present our identification results in section
4. We discuss some key implications for applied work in section 5 before con-
cluding in section 6. Appendix A discusses variations on our baseline model,
including continuous demand and examples in which key assumptions in the
text can be relaxed by strengthening others. Appendix B provides an exam-
ination of the proper excludability of standard instruments for prices when
non-price observables are endogenous and uninstrumented.

9Here we cite only a small representative handful of papers out of a selection that spans
many topics and many years. Recent development of commercial consumer-level data sets
suggests the potential for micro data to play an even larger role in the future.
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2 Model and Features of Interest
We consider choice among J goods (“products”) and an outside option (“good
0”) by consumers i in “markets” t. Formally, a market is defined by:

• a price vector Pt = (P1t, . . . , PJt);

• a set of additional observables Xt;

• a vector Ξt = (Ξ1t, . . . ,ΞJt) of unobservables;

• a distribution FY Z (·; t) of consumer observables (Yit, Zit) ∈ RH × RJ

with support Ω (Xt), for some H ≥ 0.

For clarity, we write random variables (all of which have t among their sub-
script indices) in uppercase and their realizations in lowercase. The variables
(Pt, Xt,Ξt) are common to all consumers in a given market.10 We distinguish
between Pt and Xt due to the particular interest in how demand responds to
prices and the typical focus on endogeneity of prices. However, we have not
yet made the standard assumption that Xt is exogenous—e.g., independent or
mean independent of the demand shocks Ξt. We will see below that identifi-
cation of demand elasticities and other key features of demand can often be
obtained without such an assumption (or additional instruments for Xt).11

Although Xt will typically include observable product characteristics, it
may also include other factors defining markets.12 For example, consumers
might be partitioned into “markets” based on a combination of geography,
time, product availability, and demographics (average or individual-level) in-
cluded in Xt. In contrast, observables varying across consumers within a
market are represented by Yit and Zit. We make a distinction between Yit
and Zit in order to isolate our requirements on consumer-level data. Key con-
ditions, made precise below, are that consumer observables provide variation
of dimension at least J (hence, Zit ∈ RJ) and that changes in Zit alter the

10The assumption that all consumers in a market face the same prices and product char-
acteristics is standard and may influence how markets are defined in practice. This rules
out some forms of price discrimination.

11Alternatively, when instruments are available for endogenous components of Xt, our
results generalize immediately by expanding Pt to include these endogenous characteristics.

12Because Xt could include indicators for product availability, our treatment of J as fixed
is without loss. With additional assumptions, variation in the number of goods available
can be valuable; e.g., data from markets with J available goods could be used to predict
outcomes in markets with more or fewer goods. Xt could also include product fixed effects.
Such fixed effects generally do not address the endogeneity challenges central to identification
of demand (see, e.g., Berry and Haile (2021)).
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relative attractiveness of different goods. We do not require the additional
consumer observables Yit but can accommodate them in an unrestricted way;
and conditioning on an appropriate value of Yit can weaken some assumptions.
Although our requirements on Zit permit the case in which each component
Zijt exclusively affects the attractiveness of good j, we will not require this.
Nor will we require independence (full, conditional, or mean independence)
between (Yit, Zit) and Ξt.

The choice environment of consumer i in market t is then represented by

Cit = (Zit, Yit, Pt, Xt,Ξt) .

Let C denote the support of Cit. A basic primitive characterizing consumer
behavior in this setting is a distribution of decision rules for each cit ∈ C.13 As
usual, heterogeneity in decision rules (i.e., nondegeneracy of the distribution)
within a given choice environment may reflect a variety of factors, including
latent preference heterogeneity across consumers, shocks to individual prefer-
ences, latent variation in consideration sets, or stochastic elements of choice
(e.g., optimization error).14

2.1 Demand and Conditional Demand

The choice made by consumer i is represented by Qit = (Qi1t, . . . , QiJt), where
Qijt denotes the quantity (here, 0 or 1) of good j purchased. Given Cit, a dis-
tribution of decision rules is fully characterized by the conditional cumulative
joint distribution function FQ (q|Cit) = E [1 {Qit ≤ q} |Cit]. In the case of dis-
crete choice, this distribution can be represented without loss by the structural
choice probabilities

s (Cit) = (s1(Cit), . . . , sJ(Cit)) = E [Qit|Cit] . (1)

13Under additional conditions a distribution of decision rules can be represented as the
result of utility maximization. See, e.g., Mas-Colell, Whinston, and Green (1995), Block
and Marschak (1960), Falmagne (1978), and McFadden (2005). We will not require such
conditions or consider a utility-based representation. A related issue is identification of
welfare effects. Standard results allow construction of valid measures of aggregate welfare
changes from a known demand system in the absence of income effects. Bhattacharya (2018)
provides such results for discrete choice settings when income effects are present.

14For many purposes, one need not take a stand on the interpretation of this random-
ness, since the economic questions of interest involve changes to the arguments of demand
functions, not to the functions themselves. This covers the canonical motivation for de-
mand estimation: quantifying responses to ceteris paribus price changes. However, for some
questions—e.g., those involving information interventions or requiring identification of car-
dinal utilities—the interpretation becomes important. See Barseghyan, Coughlin, Molinari,
and Teitelbaum (2021) for a recent contribution on this topic.
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Given the measure of consumers in each choice environment, the mapping s

fully characterizes consumer demand. We will therefore consider identification
of the demand mapping s on C.

However, it is useful to also consider identification of the conditional de-
mand functions

s̄ (Zit, Yit, Pt; t) = s (Zit, Yit, Pt, xt, ξt)

on
C(xt, ξt) = supp (Zit, Yit, Pt) | {Xt = xt,Ξt = ξt}

for each market t. The function s̄ (Zit, Yit, Pt; t) is simply the demand function
s when (Xt,Ξt) are fixed at the values (xt, ξt) realized in market t. Because
Ξt is unobserved and prices are fixed within each market, identification of
s̄ (Zit, Yit, Pt; t) is nontrivial. However, this mapping fully characterizes the re-
sponses of demand (at all combinations of (Zit, Yit)) to counterfactual ceteris
paribus price variation, holding Xt and Ξt fixed at their realized values in mar-
ket t. Thus, knowledge of s̄(·; t) for each market t suffices for many purposes
motivating demand estimation in practice.

Notably, s̄(·; t) fully determines the own- and cross-price demand elasticities
for all goods in market t. One implication is that s̄(·; t) is the feature of s needed
to discriminate between alternative models of firm competition (e.g., Berry
and Haile (2014), Backus, Conlon, and Sinkinson (2021), Duarte, Magnolfi,
Sølvsten, and Sullivan (2021)). And, given a model of supply, s̄(·; t) suffices
to identify firm markups and marginal costs, following Berry, Levinsohn, and
Pakes (1995) and Berry and Haile (2014); to decompose the sources of firms’
market power, as in Nevo (2001); to determine equilibrium outcomes under a
counterfactual tax, tariff, subsidy, or exchange rate (e.g., Anderson, de Palma,
and Kreider (2001), Nakamura and Zerom (2010), Decarolis, Polyakova, and
Ryan (2020)); or to determine equilibrium “unilateral effects” of a merger (e.g.,
Nevo (2000), Miller and Sheu (2021)). Furthermore, s̄(·; t) alone determines
the “diversion ratios” (e.g., Conlon and Mortimer (2021)) that often play a
central role in the practice of antitrust merger review.

Of course, because the functions s̄(·; t) are defined with fixed values of
(Xt,Ξt), they do not suffice for answering all questions—in particular, those
requiring knowledge of ceteris paribus effects of Xt on demand.15 However, by
avoiding the need to separate the effects of Xt and Ξt, identification of s̄(·; t) in
each market t can often be obtained without requiring exogeneity of Xt. This
can be important when exogeneity is in doubt and one lacks the additional

15In some cases, such effects may be of direct interest—e.g., to infer willingness to pay
for certain product features. In other cases, such effects are inputs to determination of
demand under counterfactual product offerings or entry. Thus, while knowledge of s̄(·; t) in
all markets suffices in a large fraction of applications, knowledge of s is required for others.
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instruments that would allow treating endogenous elements of Xt as we treat
prices Pt below.

2.2 Core Assumptions

So far we have implicitly made three significant assumptions:

(i) all latent heterogeneity across markets can be represented by a J-vector Ξt;
(ii) conditional on Xt, the support of (Yit, Zit) is the same in all markets; and
(iii) the consumer-level observables Zit have dimension J .

The first is important but standard (when market-level unobservables are ac-
knowledged). The second seems mild for many applications and can be relaxed
at the cost of more cumbersome exposition. The third will be more easily sat-
isfied in applications with modest J , although some modern micro data sets
can offer dozens or even hundreds of consumer-level observables. We focus on
J-dimensional Zit to explore the the extent to which micro data can eliminate
the need to instrument for J endogenous quantities. Appendix A illustrates
how our requirements on the dimensions of Zit and excluded instruments can
be relaxed by strengthening other conditions.

We will also rely on Assumptions 1–4 below. These serve a key element of
our strategy for demonstrating the gains from micro data: inferring variation
across markets in the demand shock vector Ξt using variation in the value of
the vector Zit required to produce particular choice probabilities (conditional
on other observables).

Assumption 1 (Index). s (Cit) = σ (γ (Zit, Yit, Xt,Ξt) , Yit, Pt, Xt), with
γ (Zit, Yit, Xt,Ξt) = (γ1 (Zit, Yit, Xt,Ξt) , . . . , γJ (Zit, Yit, Xt,Ξt)) ∈ RJ .

Assumption 2 (Invertible Demand). σ (·, Yit, Pt, Xt) is injective on the sup-
port of γ(Zit, Yit, Xt,Ξt)|(Yit, Pt, Xt).

Assumption 3 (Injective Index). γ (·, Yit, Xt,Ξt) is injective on the support
of Zit|(Yit, Xt).

Assumption 4 (Separable Index). γj (Zit, Yit, Xt,Ξt) = Γj (Zit, Yit, Xt) + Ξjt

for all j.

As we illustrate below, these assumptions generalize standard specifications
in the literature. Given (Yit, Pt, Xt), Assumption 1 requires that Zit and Ξt

affect choices only through indices (γ1 (Zit, Yit, Xt,Ξt) , . . . , γJ (Zit, Yit, Xt,Ξt))
that exclude Pt. This is a type of weak separability assumption. Observe that
Xt and Yit can affect demand both directly and through the indices, and that
the indices themselves enter the function σ in fully flexible form. Assumption
2 requires that the choice probability function σ be “invertible” with respect
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to the index vector—that, holding (Yit, Pt, Xt) fixed, distinct index vectors
map to distinct choice probabilities. Berry, Gandhi, and Haile (2013) provide
sufficient conditions for invertibility of a demand system, which are natural
here when each γj (Zit, Yit, Xt,Ξt) can be interpreted as a (here, consumer-
specific) quality index for good j.16 Assumption 3 requires injectivity of the
index function γ with respect to the vector Zit. This generalizes common
utility-based specifications of demand while avoiding the common requirement
that each Zijt affect the utility of good j exclusively. Assumption 4 requires
each Ξjt to enter the index γj (Zit, Yit, Xt,Ξt) additively. This provides a sense
in which variation in Zit has comparable effects across markets: a unit change
in Γj (Zit, Yit, Xt) has the same effect on demand as a unit change in Ξjt.17

Finally, as documented in Assumption 5, we will assume continuously dis-
tributed consumer-level observables Zit.18 This allows transparent exploration
of the potential gains from micro data, using calculus and moment equalities.
Absent appropriate restrictions on the dimensionality of other elements of the
model, it should not be surprising that continuous variation will be required
for nonparametric point identification. Indeed, below we will require contin-
uously distributed instruments as well. In practice, of course, one may often
rely on at least some instruments or consumer-level observables with discrete
(even binary) support. As in other types of empirical models, in such cases
parametric forms used in estimation will typically fill the gaps left by the lack
of (or limits on) continuous variation (see section A.1.4 for an illustration).

Assumption 5 (Support). supp Zit|(Yit, Xt) is open and connected.

16Other general sufficient conditions for injectivity can be found in, e.g., Palais (1959),
Gale and Nikaido (1965), and Parthasarathy (1983).

17We show in Appendix A that Assumption 4 can be dropped by strengthening other
conditions.

18Given continuously distributed Zit, the assumptions of open and connected support are
technical conditions simplifying the arguments below.
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2.3 A Useful Representation of the Index

Although we have thus far written the index vector

γ (Zit, Yit, Xt,Ξt) ≡ Γ (Zit, Yit, Xt) + Ξt

in a way that maximizes clarity about our core assumptions, for demonstrating
identification (particularly in the case of endogenous Xt) it will be convenient
to define

g (Zit, Yit, Xt) = Γ (Zit, Yit, Xt) + E [Ξt|Xt]

and
h (Xt,Ξt) = Ξt − E [Ξt|Xt] , (2)

so that the index can be rewritten as

γ (Zit, Yit, Xt,Ξt) = g (Zit, Yit, Xt) + h (Xt,Ξt) . (3)

Here we have simply let g (Zit, Yit, Xt) absorb the mean of Ξt conditional
on Xt, leaving the residualized structural error vector h (Xt,Ξt). Observe that

E [h (Xt,Ξt) |Xt] = 0 (4)

by construction.
With this notation, we have

s (Cit) = σ (g (Zit, Yit, Xt) + h (Xt,Ξt) , Yit, Pt, Xt) (5)

and
s̄ (Zit, Yit, Pt; t) = σ (g (Zit, Yit, xt) + h(xt, ξt), Yit, Pt, xt) (6)

We henceforth work with this representation of the demand and conditional
demand functions.

2.4 Technical Conditions

Let X denote the support of Xt. For x ∈ X , let Y(x) denote the support
of Yit|{Xt = x} and, for y ∈ Y(x), let Z(y, x) ⊂ RJ denote the support of
Zit|{Yit = y,Xt = x}. In parts (i)–(ii) of Assumption 6 we assume conditions
permitting our applications of calculus and continuity arguments below. Part
(iii) strengthens the injectivity requirements of Assumptions 2 and 3 slightly
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by requiring that the Jacobian matrices ∂g(z, y, x)/∂z and ∂σ(γ, y, p, x)/∂γ
be nonsingular almost surely.19

Assumption 6 (Technical Conditions). For all x ∈ X and y ∈ Y(x),
(i) g(z, y, x) is uniformly continuous in z on Z(y, x) and continuously differ-
entiable with respect to z on Z(y, x);
(ii) σ (γ, y, p, x) is continuously differentiable with respect to γ for all (γ, p) ∈
supp (γ (Zit, Yit, Xt,Ξt) , Pt) |{Yit = y,Xt = x}; and
(iii) ∂g(z, y, x)/∂z and ∂σ(γ, y, p, x)/∂γ are nonsingular almost surely on Z(y, x)
and supp (γ(Zit, Yit, Xt,Ξt), Pt)|{Yit = y,Xt = x}, respectively.

2.5 Normalization
The model requires two types of normalizations before the identification ques-
tion can be properly posed. The first reflects the fact that the latent de-
mand shocks have no natural location. Thus, we set E[Ξt] = 0 without loss.
The second reflects the fact that any injective transformation of the index
vector γ (Zit, Yit, Xt,Ξt) can be reversed by appropriate modification of the
unknown function σ. For example, take arbitrary A(Xt) : X → RJ and
B(Xt) : X → RJ×J (B(x) invertible at all x). By letting

γ̃ (Zit, Yit, Xt,Ξt) = A(Xt) +B(Xt)γ (Zit, Yit, Xt,Ξt)

σ̃ (γ̃ (Zit, Yit, Xt,Ξt) , Yit, Pt, Xt) = σ
(
B(Xt)

−1 (γ̃ (Zit, Yit, Xt,Ξt)−A(Xt)) , Yit, Pt, Xt

)
one obtains a new representation of the same distribution of decision rules
(and thus same demand), the new one satisfying our assumptions whenever
the original does. We must choose a single representation of demand before
exploring whether the observables allow identification.20

19Although we state Assumption 6 with the quantifier “for all y ∈ Y(x),” our arguments
require these properties only at the arbitrary point y0(x) selected below. Observe also that,
given Assumption 5 and part (i) of Assumption 6, the injectivity of g(·, Yit, Xt) required
by Assumption 3 implies (by invariance of domain) that the image g (O, y, x) of any open
set O ⊆ Z(y, x) is open. An implication is that even without part (iii) there could be no
nonempty open set O ∈ Z(y, x) on which ∂g(z, y, x)/∂z was singular, as g(O, y, x) would
then be a nonempty open subset of RJ , contradicting Sard’s theorem. A similar observation
applies to ∂σ(γ, y, p, x)/∂γ.

20Like location and scale normalizations of utility functions, our normalizations place no
restriction on the demand function s or the conditional demand functions s̄(·; t). However,
our example illustrates an inherent ambiguity in the interpretation of how a given variable
alters preferences. For example, in terms of consumer behavior (e.g., demand), there is
no difference between a change in Zijt (all else fixed) that makes good j more desirable
and a change in Zijt that makes all other goods (including the outside good) less desirable.
In practice, this ambiguity is often resolved with a priori exclusion assumptions—e.g., an
assumption that Zijt affects only the utility obtained from good j. Such assumptions could
only aid identification. See the additional discussion in Appendix A.
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To do this, for each x we take an arbitrary (z0(x), y0(x)) from the support
of (Zit, Yit) | {Xt = x}. We then select the representation of demand in which

g
(
z0 (x) , y0 (x) , x

)
= 0 ∀x. (7)

and
∂g (z, y0 (x) , x)

∂z

∣∣∣∣
z=z0(x)

= I ∀x, (8)

where I denotes the J-dimensional identity matrix.
In the example above this choice of normalization is equivalent to taking

B (x) =

[
∂g (z, y0 (x) , x)

∂z

]−1
∣∣∣∣∣
z=z0(x)

and
A(x) = −B(x)g

(
z0(x), y0(x), x

)
at each x, then dropping the tildes from the transformed model.

3 Example
The literature includes many examples of parametric specifications that are
special cases of our model. A canonical discrete choice demand model is gen-
erated from a random coefficients random utility specification21 like

uijt = xjtβijt − αitpjt + ξjt + ϵijt, (9)

where uijt is consumer i’s conditional indirect utility from good j in market t.
The idiosyncratic taste shock ϵijt is usually specified as a draw from a type-1
extreme value or normal distribution. Components k of the random coefficient
vector βijt are often specified as

β
(k)
ijt = β

(k)
0j +

L∑
ℓ=1

β
(k,ℓ)
zj ziℓt + β

(k)
νj ν

(k)
it , (10)

where each ziℓt represents an observable characteristic of individual i, and
each ν

(k)
it is a random variable with a pre-specified distribution. Often, the

21Random coefficients, represented here by terms in (10) and (11), are popular in discrete
choice models because they allow for greater (if still limited) flexibility in the substitution
patterns permitted by the resulting demand system. We focus directly on identification of
a demand system with very flexible substitution patterns. Section 5.1 provides additional
discussion.
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coefficient on price is also specified as varying with some observed consumer
characteristics yit, such as income.22 A typical specification of αit is

ln(αit) = α0 + αyyit + ανν
(0)
it . (11)

The consumer-level preference shocks (νi0t, . . . , νiJt, ϵi0t, . . . , ϵiJt) are assumed
i.i.d. across consumers and markets.

With (10) and (11), we can rewrite (9) as

uijt = gj (zit, xt) + ξjt + µijt, (12)

where

gj (zit, xt) =
∑
k

x
(k)
jt

L∑
ℓ=1

β
(k,ℓ)
zj ziℓt (13)

µijt =
∑
k

x
(k)
jt

(
β
(k)
0j + β

(k)
νj ν

(k)
it

)
− pjt exp(α0 + αyyit + ανν

(0)
it ) + ϵijt. (14)

Observe that all effects of zit and ξt operate through indices

γj (zit, xt, ξt) = gj (zit, xt) + ξjt j = 1, . . . , J,

satisfying our Assumptions 1 and 4. It is easy to show that the resulting choice
probabilities satisfy Berry, Gandhi and Haile’s (2013) “connected substitutes”
condition with respect to the vector of indices (γ1 (zit, xt, ξt) , . . . , γJ (zit, xt, ξt));
therefore, the injectivity of demand required by Assumption 2 holds. Our core
assumptions require L ≥ J .23 Invertibility of the linear mapping g(zit, xt) =
(g1(zit, xt), . . . , gJ(zit, xt)) in zit (Assumption 3) might then be assumed as a
primitive condition of the model or derived from other conditions.

This example connects our nonparametric model to a large number of ap-
plications. Of course, our model generalizes the example substantially. It does
not require linear utility functions,24 parametric distributional assumptions, or
even a representation of demand through utility maximization. Even within
the linear random coefficients random utility discrete choice paradigm, our

22Our model would permit yit to affect the random coefficients β(k)
ijt as well, reintroducing

yit as an argument of each gj defined in (13). Exclusion of zit from αit is one way to satisfy
the weak separability requirement of Assumption 1 and may be interpreted as defining which
variables serve as zit. However, more general specifications consistent with our model would
allow, e.g., arbitrary interactions between pjt, yit, xt, and the index gj (zit, yit, xt) + ξjt.

23If L > J , we can combine the “extra” components of Zit with income to redefine the
partition of consumer observables as (Yit, Zit) with Zit ∈ RJ .

24Thus, it would allow generalization of the nonparametric random utility model in Allen
and Rehbeck (2019) to incorporate market-level demand shocks, flexible heterogeneity in
tastes for product characteristics, and nonadditive product-level taste shocks.
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model would allow the joint distribution of (νi0t, . . . , νiJt, ϵi0t, . . . , ϵiJt) to de-
pend on (g(zit, yit, xt) + ξt, yit, xt, pt). More generally, consumer heterogeneity
in our model is not limited to a finite vector of shocks entering with partic-
ular functional forms: utilities could be specified as nonparametric random
functions of (g(zit, yit, xt) + ξt, yit, xt, pt).

Finally, observe that the example above lacks features sometimes relied
on in results showing identification of discrete choice models: aside from the
absence of individual characteristics that exclusively affect the utility from one
choice j, this model does not exhibit independence between the “error term”
(ξjt + µijt) in (12) and any of the observables zit, xt, pt.25

4 Identification
We consider identification of the demand system

s(Cit)

and the conditional demand systems

s̄(Zit, Yit, Pt; t).

The observables comprise the market index t, the variables (Qit, Zit, Yit, Pt, Xt),
and a vector of instruments Wt discussed further below. As usual, to consider
identification we treat the population joint distribution of the observables as
known. Loosely, we may view this as the result of observing (Qit, Zit, Yit, Pt, Xt)
for many consumers i in each of many markets t.26 These observables imply
observability of choice probabilities conditional on (Zit, Yit, Pt, Xt) in each mar-
ket t. Of course, this implies observability of market-level choice probabilities
(market shares) as well.

Because our arguments do not require variation in Yit, in much of what fol-
lows we will fix Yit (conditional on Xt) at y0(Xt). We proceed in three steps.
First, in section 4.1 we demonstrate identification of the function g(·, y0(x), x)
at each x ∈ X . Second, in section 4.2 we use this result to link latent market-
level variation in h(Xt,Ξt) to variation in the observed value of Zit required to
produce a given conditional choice probability in each market. In particular,
given instruments for prices, we show that the realized values h(xt, ξt) can be

25Even aside from ξjt, the variables xjt and pjt enter the composite error µijt. Further-
more, xjt and pjt may be correlated with changes in the distribution of zit across markets,
introducing dependence between zit and µijt.

26Note that, unlike the case of a consumer panel (see, e.g., Berry and Haile (2021)), the
population of consumers is different for each t.
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pinned down in every market, making identification of the conditional demand
systems s̄(·; t) in each market straightforward. Finally, in section 4.3 we show
that s is also identified when one adds the usual assumption that Xt is exoge-
nous. Thus, after the initial setup and lemmas, the main results themselves
follow relatively easily.

Before proceeding, we provide some key definitions and observations. For
(p, x, ξ) ∈ supp (Pt, Xt,Ξt) let

S (p, x, ξ) = σ
(
g
(
Z(y0(x), x), y0(x), x

)
+ h(x, ξ), y0(x), p, x

)
. (15)

Thus, S (p, x, ξ) denotes the support of choice probabilities in any market t for
which Pt = p,Xt = x, and Ξt = ξ (holding Yit = y0(x)).27 By Assumptions 2
and 3, for each s ∈ S (x, p, ξ) there must be a unique z∗ ∈ Z(y0(x), x) such that
σ (g (z∗, y0(x), x) + h(x, ξ), y0(x), p, x) = s. So for (p, x, ξ) ∈ supp (Pt, Xt,Ξt)
and s ∈ S (p, x, ξ), we define the function

z∗ (s; p, x, ξ)

implicitly by

σ
(
g
(
z∗ (s; p, x, ξ) , y0(x), x

)
+ h(x, ξ), y0(x), p, x

)
= s. (16)

These definitions lead to two observations that play key roles in what fol-
lows. First, in each market t the set S(pt, xt, ξt) and the values of z∗ (s; pt, xt, ξt)
for all s ∈ S (pt, xt, ξt) are observed, even though the value of the argument
ξt is not. That is, if the choice probability s is in the support of those within
market t, there must be some consumer attribute vector for which this choice
probability is implied. This attribute vector is unique under our assumptions,
is observable, and is equal to z∗ (s; pt, xt, ξt) by definition. Second, by the
invertibility of σ (Assumption 2), we have

g
(
z∗ (s; p, x, ξ) , y0(x), x

)
+ h(x, ξ) = σ−1

(
s; y0(x), p, x

)
(17)

for all (p, x, ξ) ∈ supp (Pt, Xt,Ξt) and s ∈ S (p, x, ξ).

4.1 Initial Steps

Let || · || denote the Euclidean norm. We will require the following nondegen-
eracy condition.

27Note that because Z(y0(x), x) is open, continuity and injectivity of σ with respect to the
index vector and of the index function with respect to Zit imply (by invariance of domain)
that S (p, x, ξ) is open.
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Assumption 7 (Nondegeneracy). For each x ∈ X , there exists (possibly un-
known) p ∈ suppPt|{Xt = x} such that suppΞt|{Pt = p,Xt = x} contains an
open subset of RJ .

Assumption 7 requires continuously distributed Ξt but is otherwise mild,
ruling out trivial cases in which conditioning on (Pt, Xt) indirectly fixes Ξt as
well. Such cases are ruled out by standard models of supply, where prices re-
spond to continuous cost shifters or markup shifters (observed or unobserved),
allowing the same equilibrium price vector p to arise under different realiza-
tions of Ξt. A key implication follows from the definition (2): for each x ∈ X
there exist ϵ > 0 and p ∈ suppPt|{Xt = x} such that for any d ∈ RJ satis-
fying ||d|| < ϵ, suppΞt|{Pt = p,Xt = x} contains vectors ξ and ξ′ satisfying
h(x, ξ)−h(x, ξ′) = d. This is exploited to prove Lemma 1, which demonstrates
how local variation across markets in the latent Ξt will produce local variation
in observed values of z∗ (s; pt, xt, ξt) for those markets.

Lemma 1. Let Assumptions 1–7 hold. For each x ∈ X , there exist p ∈
suppPt|{Xt = x} and ∆ > 0 such that for all z and z′ in Z(y0(x), x) satisfying

||z′ − z|| < ∆, (18)

there exist a choice probability vector s and vectors ξ and ξ′ in suppΞt|{Pt =
p,Xt = x} such that z = z∗ (s; p, x, ξ) and z′ = z∗ (s; p, x, ξ′). Furthermore,
such (∆, p) are identified.

Proof. See Appendix C

With this result in hand, Lemma 2 demonstrates that one can use equation
(17) to relate partial derivatives of g(z, y(x), x) at any point z to those at
nearby points z′ by examining the change in consumer characteristics required
to create a given change in the vector of choice probabilities.28

Lemma 2. Let Assumptions 1–7 hold. Then for every x ∈ X there exists a
known ∆ > 0 such that for almost all z, z′ ∈ Z(y0(x), x) satisfying (18) the

matrix
[
∂g(z,y0(x),x)

∂z

]−1 [
∂g(z′,y0(x),x)

∂z

]
is identified.

Proof. Given any x ∈ X , take a (known) (p,∆) as in Lemma 1. Consider
markets t and t′ in which Pt = Pt′ = p but, for some choice probability vector
ŝ,

z = z∗ (ŝ; p, x, ξt) ̸= z′ = z∗ (ŝ; p, x, ξt′) , (19)

28Abusing notation to simplify key expressions, below we write ∂g(z,y0(x),x)
∂z to repre-

sent the Jacobian matrix ∂g(ẑ,y0(x),x)
∂ẑ

∣∣∣
ẑ=z

. Similarly, we write ∂g(z′,y0(x),x)
∂z to represent

∂g(ẑ,y0(x),x)
∂ẑ

∣∣∣
ẑ=z′

.
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revealing that ξt ̸= ξt′ . Lemma 1 ensures that such t, t′, and ŝ exist for all
z, z′ ∈ Z(y0(x), x) satisfying (18). And although ξt and ξt′ are latent, the
identities of markets t and t′ satisfying (19) are observed, as are the associated
values of ŝ, z∗(ŝ; p, x, ξt), and z∗(ŝ; p, x, ξt′). Differentiating (17) with respect
to the share vector within these two markets, we obtain

∂g (z, y0(x), x)

∂z

∂z∗ (ŝ; p, x, ξt)

∂s
=
∂σ−1 (ŝ; y0(x), p, x)

∂s
(20)

and
∂g (z′, y0(x), x)

∂z

∂z∗ (ŝ; p, x, ξt′)

∂s
=
∂σ−1 (ŝ; y0(x), p, x)

∂s
. (21)

Thus, recalling Assumption 6, for almost all such (z, z′) we have[
∂g (z′, y0(x), x)

∂z

]−1
∂g (z, y0(x), x)

∂z
=
∂z∗ (ŝ; p, x, ξt′)

∂s

[
∂z∗ (ŝ; p, x, ξt)

∂s

]−1

.

The matrices on the right-hand side are observed. □

This leads us to the main result of this section, obtained by connecting (for

each value of x) the matrix products
[
∂g(z,y0(x),x)

∂z

]−1 [
∂g(z′,y0(x),x)

∂z

]
identified

in Lemma 2 to the known (normalized) value of the matrix
[
∂g(z,y0(x),x)

∂z

]
at

z = z0(x).

Lemma 3. Under Assumptions 1–7, g(·, y0(x), x) is identified on Z(y0(x), x)
for all x ∈ X .

Proof. For ϵ > 0, let B (b, ϵ) denote an open ball in RJ of radius ϵ, centered at
b. Take any x ∈ X and associated ∆ > 0 as in Lemma 2. For each vector of
integers τ ∈ ZJ , define the set

Bτ = Z(y0(x), x) ∩ B
(
z0(x) +

τ∆

J
,
∆

2

)
.

By construction, all z and z′ in any given set Bτ satisfy (C.2). So by Lemma
2, the value of [

∂g(z, y0(x), x)/∂z
]−1 [

∂g(z′, y0(x), x)/∂z
]

(22)

is known for almost all z and z′ in any set Bτ . Because ∪τ∈ZJBτ forms an open
cover of Z(y0(x), x), given any z ∈ Z(y0(x), x) there exists a simple chain of
open sets Bτ in Z(y0(x), x) linking the point z0(x) to z.29 Thus,[

∂g(z, y0(x), x)/∂z
]−1 [

∂g(z0(x), y0(x), x)/∂z
]

29See, e.g., van Mill (2002, Lemma 1.5.21).
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is known for almost all z ∈ Z(y0(x), x). With the normalization (8) and
the continuity of ∂g(z, y0(x), x)/∂z with respect to z, the result then follows
from the fundamental theorem of calculus for line integrals and the boundary
condition (7). □

Before moving to identification of conditional demand, we pause to point
out that our constructive identification of g(·, y0(x), x) used only a single price
vector p at each value of x—that required by Assumption 7. In typical models
of supply this condition would hold for almost all price vectors in the support
of Pt|{Xt = x}. In addition to providing falsifiable restrictions, this indicates
a form of redundancy that would typically be exploited by estimators used in
practice. Similarly, our proof of Lemma 3 used, for each z ∈ Z(y0(x), x), only
one of infinitely many paths between z0 and z; integrating along any such path
must yield the same function g(·, y0(x), x) at each x.

4.2 Identification of Conditional Demand

We demonstrate identification of the conditional demand functions s̄(·; t) under
two additional conditions. The first is a requirement of sufficient variation in
the consumer-level observables Zit.

Assumption 8 (Common Choice Probability). For each x ∈ X , there exists
a choice probability vector s∗(x) such that s∗(x) ∈ S (p, x, ξ) for all (p, ξ) ∈
supp (Pt,Ξt) |{Xt = x}.

Assumption 8 requires that, at each x ∈ X , there exist some choice prob-
ability vector s∗(x) that is common to all markets—that⋂

(p,ξ)∈ supp (Pt,Ξt)|{Xt=x}

S (p, x, ξ)

be nonempty. The nondegeneracy of each set S (pt, xt, ξt) (recall (15)) reflects
variation in Zit across its support. Assumption 8 requires enough variation
in Zit that for some s∗(x) we have s∗(x) ∈ S (pt, x, ξt) for all (pt, ξt) in their
support conditional on Xt = x.

The strength of this assumption depends on the joint support of (Pt,Ξt)
given {Xt = x} and on the relative impacts of (Zit,Ξt, Pt) on choice behavior.
Observe that Pjt and Ξjt typically will have opposing impacts and will be pos-
itively dependent conditional on Xt under equilibrium pricing behavior; thus,
large support for g (Zit, y

0(x), x) may not be required even if Ξt were to have
large support. Indeed, we can contrast our assumption with a requirement
of special regressors with large support: the latter would imply that every
interior choice probability vector s is a common choice probability for all x;
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we require only a single common choice probability at each x. Because choice
probabilities conditional on (Zit, Yit) are observable in all markets, Assump-
tion 8 is verifiable.30 And, because the choice of each y0(x) was arbitrary, it
implies that we require only existence (for each x) of one such y0(x) ∈ Y such
that Assumption 8 holds.31 Importantly for what follows, the values of any
common choice probability vectors s∗(x) may be treated as known.

Our second requirement is existence of instruments for prices satisfying the
standard nonparametric IV conditions.

Assumption 9 (Instruments for Prices).
(i) E [hj(Xt,Ξjt)|Xt,Wt] = E [hj(Xt,Ξjt)|Xt] almost surely for all j = 1, . . . , J ;
(ii) In the class of functions Ψ(Xt, Pt) with finite expectation,
E [Ψ (Xt, Pt) |Xt,Wt] = 0 almost surely implies Ψ(Xt, Pt) = 0 almost surely.

Part (i) of Assumption 9 is the exclusion restriction, requiring that varia-
tion in Wt not alter the mean of the latent h(Xt,Ξt) conditional on Xt. Recall
that E[h(Xt,Ξt)|Xt] = 0 by construction; thus part (i) implies

E [hj(Xt,Ξjt)|Xt,Wt] = 0 a.s. for all j. (23)

This is true regardless of whether Xt itself is exogenous. Of course, one must
be particularly cautious about satisfaction of part (i) when Xt is thought to
be endogenous. We discuss this further in section 5.3 and Appendix B. The
relevance requirement of part (ii) is a standard completeness condition. This
is the nonparametric analog of the rank condition required for identification of
linear regression models. For example, Newey and Powell (2003) have shown
that under mean independence (the analog of (23) here), completeness is nec-
essary and sufficient for identification in separable nonparametric regression.32

The following result demonstrates that, given existence of a common choice
probability vector s∗, the same instrumental variables conditions suffice here
to allow identification of hj(xt, ξjt) for all j and t.

Lemma 4. Under Assumptions 1–9, the scalar hj(xt, ξjt) is identified for all
j and t.

Proof. In each market t, taking x = xt, p = pt, ξ = ξt and s = s∗(xt) in
equation (17), we have

g
(
z∗ (s∗(xt); pt, xt, ξt) , y

0(xt), xt
)
= σ−1

(
s∗(xt); y

0(xt), pt, xt
)
− h(xt, ξt).

30See Berry and Haile (2018) for a formal definition of verifiability.
31When more than one such value y0(x) exists, or when there is more than one common

choice probability vector s∗(x), this introduces additional falsifiable restrictions.
32See also, e.g., Florens and Rolin (1990), Chernozhukov and Hansen (2005), and Severini

and Tripathi (2006).

20



Thus, for all t and each j = 1, . . . , J ,

gjt = fj(xt, pt)− ejt (24)

where we have defined ejt ≡ hj(xt, ξjt), fj(xt, pt) ≡ σ−1
j (s∗(xt); y

0(xt), pt, xt),
and gjt ≡ gj (z

∗ (s∗(xt); pt, xt, ξt) , y
0(xt), xt). By Lemma 3 each gjt on the

left side of (24) is known (recall that the values of each z∗ (s∗(xt); pt, xt, ξt)
are observable, even though the value of each ξt is not). Thus, for each j
this equation takes the form of a standard separable nonparametric regression
model with exogenous regressors Xt, endogenous regressors Pt, and additive
structural errors Ejt. By (23), we have E[Ejt|Xt,Wt] = 0 a.s. So under
the completeness condition (part (ii) of Assumption 9) identification of each
function fj follows immediately from the identification result (Proposition 2.1)
of Newey and Powell (2003). This implies identification of each ejt (i.e., each
hj(xt, ξjt)) as well. □

Identification of the conditional demand functions s̄(·; t) now follows easily.

Theorem 1. Under Assumptions 1–9, s̄(·; t) is identified on C(xt, ξt) for all t.

Proof. Recall that

s̄(Zit, Yit, Pt; t) = s(Zit, Yit, Pt, xt, ξt)

= σ(g(Zit, Yit, xt) + h(xt, ξt), Yit, Pt, xt)

= E [Qit|Zit, Yit, Pt, xt, h(xt, ξt)] .

Because Qit, Zit, Yit, Pt, Xt are observed and each h(xt, ξt) is known, the result
follows. □

We emphasize that although the conditional demand functions s̄(·; t) are
indexed by t, this merely stands in for the values of Xt and h(Xt,Ξt). Within
a single market, there is no price variation. However, Lemma 4 allows us to
utilize information from all markets with given values of Xt and h(Xt,Ξt) to
reveal how price variation affects demand at all (Zit, Yit, Pt, Xt, h(Xt,Ξt)) in
their joint support.

4.3 Identification of Demand

As discussed already, knowledge of the conditional demand functions suffices
for a large fraction of the questions motivating demand estimation, but not
all. In particular, it is not sufficient to answer questions concerning effects of
Xt on demand or other counterfactual outcomes when Xt changes holding Ξt

fixed. Addressing such questions will require separating the impacts of Xt and
Ξt. This can be done by adding the standard assumption that Xt is exogenous.
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Assumption 10 (Exogenous Product Characteristics). E[Ξt|Xt] = 0.

When Assumption 10 holds, the definition (2) implies

h(Xt,Ξt) = Ξt.

This has two important implications. First, when Assumption 10 is main-
tained, the IV exclusion condition (part (i) of Assumption 9) softens to require
instruments Wt that are exogenous conditional on exogenous (rather than en-
dogenous) Xt. Second, Lemma 4 now implies that each realization ξt of the
demand shock vector is identified. Recalling that

s(Cit) = E [Qit|Zit, Yit, Pt, Xt,Ξt] ,

identification of s follows immediately from the facts that (Qit, Zit, Yit, Pt, Xt)
are observed and all realizations of Ξt are now known.

Theorem 2. Under Assumptions 1–10, s is identified on C.

5 Lessons for Applied Work
Although the study of identification is formally a theoretical exercise, a pri-
mary motivation is to provide guidance for the practice and evaluation of
demand estimation in applied work. Here we discuss some key messages.

5.1 The Incremental Value of Micro Data

The most important practical lesson from our results is that the marginal
value of micro data is high. The specific benefits of micro data concern some
of the most significant challenges to identification of demand when one has only
market-level data: (i) the need to instrument for all prices and quantities, and
(ii) the nonparametric functional form and exogeneity conditions that allow
some of these IV requirements (in particular, the proper excludability of BLP
instruments) to be satisfied.

The gains from micro data reflect the fact that consumer-level observables
create within-market variation in consumers’ choice problems. Such varia-
tion is similar in some ways to that which can be generated by instruments
for quantities (see footnote 2 and Berry and Haile (2014)). In particular, it
can pin down key aspects of consumer substitution patterns. From (5), we
see that ∂s

∂Zit
= ∂σ

∂γ
∂g
∂Zit

. Since ∂s
∂Zit

is observed, identification of g (which we
demonstrated without instruments) implies identification of the derivatives of
demand with respect to the index vector γ (and, thus, with respect to the vec-
tor of demand shocks Ξt). In standard parametric models like the example of
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section 3, these substitution patterns—and those with respect to prices—are
determined (conditional on observables) by the joint distribution of the ran-
dom coefficients and product-level taste shocks. Our nonparametric model, of
course, allows more flexible substitution patterns, and our results show that
micro data allows their identification without any instruments—a stark con-
trast to the case of market-level data alone.

Critically, however, the reason micro-data variation is free from confound-
ing effects of demand shocks is not an assumption of exogeneity—indeed, Zit

was not assumed to be independent or mean independent of Ξt. Rather, this
follows from the fact that market-level demand shocks Ξt do not vary within
a market. This has a strong connection to the “within” identification of slope
parameters in panel data models with fixed effects.

Thus, researchers should prefer micro data and seek it out whenever pos-
sible. Collecting reliable micro data will sometimes be difficult, and in some
cases only limited forms of micro data may be available. But even when the
setting and assumptions permit use of BLP instruments—or when the micro
data available are more limited than we have assumed to explore fully nonpara-
metric identification—variation from micro data can be a powerful addition.
This message is consistent, for example, with the findings in the empirical
literature (e.g., Petrin (2002), Berry, Levinsohn, and Pakes (2004)) that the
addition of even limited forms of individual-level data can result in much more
precise estimates than those obtained with market-level data alone.

5.2 The Necessity of Cross-Market Variation

Although within-market variation accounts for the advantages of micro data,
cross-market variation remains essential. The proof of Lemma 2, for example,
relied on variation in Ξt across markets in the key steps toward identification
of g and, thus, of the substitution patterns discussed in section 5.1. More
fundamentally, the demand system (5) depends on arguments (Xt, Pt,Ξt) that
have no variation within a market. Thus, without strong additional restric-
tions, data from a single market cannot reveal anything about the effects of
prices or product characteristics on demand.33

This observation serves as a caution. As a practical matter, a parametric

33For example, with data from a single market τ , one could set Ξτ = 0 without loss,
assume that Xt has no effect on demand, and assume that demand follows the multinomial
logit model with money-metric mean utilities gj(Zit) − pjt for each good j. One can then
fit the observed conditional choice probabilities sτ (ziτ ) in market τ perfectly by setting
g(ziτ ) = σ−1

MNL(sτ (ziτ ))+ pτ , where σ−1
MNL is the inverse share function for the multinomial

logit. The fitted model’s implications regarding effects of Xt and Pt on demand, of course,
reflect only the a priori assumptions, and neither these nor other arbitrary assumptions can
be ruled out using data on a single market.
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specification of demand may allow estimation using data from only one mar-
ket, exploiting a combination of functional form restrictions and cross-product
variation in prices and product characteristics.34 In some cases, as in the
classic work of McFadden, Talvitie, and Associates (1977), only a single mar-
ket is available for study. However, identification in such cases—indeed, the
ability to rule out any arbitrary model of how prices (and other product char-
acteristics) affect demand—will be possible only through additional a priori
restrictions that could be relaxed in a multi-market setting.

5.3 A Focus on Instruments

Given sufficiently rich micro data, our main requirement for identification is
a set of valid instruments for prices. Candidate instruments include most of
those typically relied upon in the case of market-level data: these include cost
shifters, proxies for cost shifters (e.g., “Hausman instruments”), and exogenous
shifters of market structure. Micro data can also make available a related cat-
egory of candidate instruments: market-level observables (e.g., average demo-
graphics) that alter equilibrium markups, the “Waldfogel instruments.”35 With
micro data, one can directly account for the impacts of individual-specific de-
mographics, so it can be reasonable to assume that market-level demographics
are properly excluded from the demand mapping s.

An important and subtle question is whether the required IV exclusion
condition (part (i) of Assumption 9) will hold when Xt is endogenous. In Ap-
pendix B we find that, depending on the instrument and model of endogeneity,
conditioning on endogenous Xt can (i) render otherwise-valid instruments for
prices invalid; (ii) render otherwise-invalid instruments valid; or (iii) have no
effect on instrument validity. In some cases where conditioning on endogenous
Xt causes a violation of the exclusion condition, the problem can be “fixed”
through natural timing assumptions. Overall, this analysis reveals that one
must carefully examine the exclusion condition when Xt is endogenous. As
Appendix B illustrates, causal graphs offer a tool for such examination that is
simultaneously transparent, robust, and formal.

Absent from the discussion above are the BLP instruments. The character-
isticsX−jt of products competing with good j have direct effects on demand for
good j and (in standard models) on good j’s markup. The BLP instruments
are thus relevant shifters of prices and in our model they are not needed as
exogenous shifters of quantities. Of course, the excludability of X−jt requires

34Absent additional restrictions on our nonparametric model, such cross-product variation
does not contribute to identification of demand.

35See Waldfogel (2003) as well as Gentzkow and Shapiro (2010), Fan (2013), and Li,
Hartmann, and Amano (2020).
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not only their exogeneity but also a restriction on the way they enter demand
(Berry and Haile (2014, 2021)). Appendix A shows how such restrictions can
allow BLP instruments for prices in the micro data case.

5.4 What Does Not Follow

Nonparametric identification results demonstrate a particular sense in which
parametric assumptions are not essential, but this does not mean that para-
metric (or other) assumptions relied on in practice can be ignored. Functional
form restrictions can constrain the answers to key questions, and empirical
demand research should continue to explore the sensitivity of estimates to
functional form choices. Likewise, it remains important to explore new (para-
metric, semiparametric, or nonparametric) estimation approaches. Our non-
parametric identification results ensure that such explorations are possible and
may even suggest new estimation strategies.

We also emphasize that our sufficient conditions for nonparametric identi-
fication should not be viewed as necessary conditions for demand estimation in
practice, but should rather guide our thinking about the strength of the avail-
able data and empirical results. Nonparametric identification of economic
models (even regression models) relies on assumptions—index assumptions,
separability assumptions, completeness conditions, support conditions, mono-
tonicity conditions, or other shape restrictions—that will often (perhaps typ-
ically) fall short of full satisfaction in practice. Conditions for nonparametric
identification are not a hurdle but an ideal—a point of reference that can guide
our quest for and aid our assessment of the best available empirical evidence.

6 Conclusion
Since Berry, Levinsohn, and Pakes (1995), there has been an explosion of in-
terest in empirical demand models that incorporate both flexible substitution
patterns and explicit treatment of the demand shocks that introduce endo-
geneity. Understandably, this development has been accompanied by ques-
tions about identification of these models. Our results offer a reassurance that
identification follows from traditional sources of quasi-experimental variation
in the form of instrumental variables and panel-style within-market variation.
This reassurance is particularly important because of the wide relevance of
these models to economic questions and the special identification challenges
arising in the case of demand (see Berry and Haile (2021)).

Furthermore, identification of these models is not fragile. It does not rely
on “identification-at-infinity” arguments; it is not limited to particular types
of settings (e.g., random utility discrete choice); one can substitute one type
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of variation for another (e.g., replacing instruments for quantities with micro-
data variation), depending on the type of data available; and one can relax
many key conditions by strengthening others. Thus, although this is a case
where identification results come well after an extensive empirical literature has
already developed, the nonparametric foundation for this literature is strong.
Of course, not all applications will offer the combinations of micro data and in-
strumental variables permitting nonparametric identification. But even when
such data limitations lead to greater reliance on functional form restrictions,
our results shed light on the roles such assumptions will play.
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Appendices
A Extensions, Variations, and Robustness

A.1 Alternative Modeling Assumptions

Here we explore several variations on our baseline model and associated iden-
tification conditions. This includes straightforward extensions to models of
continuous or mixed discrete-continuous demand. Our results here show that
identification is robust in the sense that a relaxation of one condition for
identification often can be accommodated by strengthening another. And an
understanding of these trade-offs will often be helpful to both producers and
consumers of research relying on demand estimates. A full exploration of
such trade-offs describes an entire research agenda. However, here we illus-
trate some possibilities that enlarge the set of potential instruments, reduce
the number of required instruments, allow a nonseparable index structure, or
reduce the required dimensionality of the micro data.

For simplicity, our discussion will consider the traditional case in which Xt

is exogenous, focusing then on identification of demand rather than conditional
demand. Recall that in this case we have h(Xt,Ξt) = Ξt. Given our focus on
the role of Zit, we will also fix and suppress any additional consumer-level
observables Yit in what follows.

A.1.1 Strengthening the Index Structure

The model used by Berry and Haile (2014) to study identification with market-
level data restricted the way some elements of Xt enter: for each good j, one
element of Xjt affects demand only through the jth element of an index vector.
Such a restriction is common in practice, and adding it here can allow the use
of BLP instruments for prices.36

To illustrate this as simply as possible, partition Xt as (X
(1)
t , X

(2)
t ), where

X
(1)
t =

(
X

(1)
1t , . . . , X

(1)
Jt

)
∈ RJ . Suppose demand takes the form

s (Zit, Pt, Xt,Ξt) = σ
(
γ (Zit, Xt,Ξt) , Pt, X

(2)
t

)
, (A.1)

where for j = 1, . . . , J

γj (Zit, Xt,Ξt) = gj(Zijt, X
(2)
t ) + ηj(X

(1)
jt , X

(2)
t ) + Ξjt. (A.2)

36As suggested in section 5.3, the key issue is proper excludability of these instruments,
not their relevance.
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Here we (a) restrict X(1)
t to enter only through the index vector; (b) associate

the jth components of Zit and X
(1)
t exclusively with the jth element of the

index vector; and (c) impose additive separability between Zijt and X(1)
jt within

each index.37 Many specifications in the literature satisfy these requirements,
typically with additional restrictions such as linear substitution between Zijt

and X(1)
jt . We will also strengthen the common choice probability condition to

require existence of a common choice probability vector s∗(Xt) that does not
vary with X(1)

t .38 For simplicity we also assume here that, for each x(2) in the
support of X(2)

t there is some point z0(x(2)) common to Z(x, x(2)) for all x in
the support of X(1)

t |{X(2)
t = x(2)}.

For the remainder of this section we will condition on X(2)
t , suppress it from

the notation, and let Xt represent X(1)
t .39 With this more restrictive model,

we can simplify our normalizations. First, because adding a constant κj to gj
and subtracting the same constant from ηj would leave the model unchanged,
we take an arbitrary x0 ∈ X and set

ηj(x
0
j) = 0 ∀j. (A.3)

Even with (A.3) (and our maintained E[Ξt] = 0), it remains true that any
linear (or other injective) transformation of the index γj could offset by an
appropriate adjustment to the function σ, yielding multiple representations of
the same demand system (recall the related observation in section 2.5). Thus,
without loss, we normalize the location and scale of each index γj by setting

gj
(
z0j
)
= 0 and

∂gj(z0j )
∂zj

= 1.
The arguments in Lemmas 1–3 will now demonstrate identification of each

function gj. At the common choice probability vector s∗, the inverted demand
system takes the form of equations

gj
(
z∗j (s

∗)
)
+ ηj (xjt) + ξjt = σ−1

j (s∗; pt)

for each j. Writing the jth equation as

gj
(
z∗j (s

∗)
)
= −ηj (xjt) + σ−1

j (s∗; pt)− ξjt, (A.4)

37Exclusivity of X(1)
jt to the index γj is essential to the point we illustrate here, and this

is most natural when exclusivity of each Zijt differentiates the elements of the index vector.
As in our more general model, however, the elements of γ(Zit, Xt,Ξt) need not be linked to
particular goods.

38Formally, we assume that for each x(2) ∈ suppX
(2)
t , there exists a choice probability

vector s∗(x(2)) such that for all x(1) ∈ suppX
(1)
t |{X(2)

t = x(2)}, s∗(x(2)) ∈ S(p, (x(1), x(2)), ξ)
for all (p, ξ) ∈ supp (Pt,Ξt) |{Xt = (x(1), x(2))}.

39Conditioning on X
(2)
t treats it fully flexibly, since the same argument can be applied at

each value of X(2)
t .
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we obtain a nonparametric regression equation with RHS variables xjt and pt.
In this equation x−jt is excluded, offering J − 1 potential instruments for the
endogenous prices pt. Thus, one additional instrument—e.g., a scalar market-
level cost shifter or Waldfogel instrument—would yield enough instruments
to obtain identification of the unknown RHS functions and the “residuals”
ξjt.Once the demand shocks are identified, identification of demand follows
immediately.

Many variations on this structure are possible. For example, as in many
empirical specifications, one might assume that pjt enters demand only through
the jth index. This can lead to a regression equation (the analog of (A.4)) of
the form

gj
(
z∗j (s

∗)
)
= −ηj (xjt, pjt) + σ−1

j (s∗)− ξjt.

Now only one instrument for price is necessary. For example, the BLP instru-
ments can overidentify demand.

A.1.2 A Nonparametric Special Regressor

A different approach is to assume that the demand system of interest is gener-
ated by a random utility model with conditional indirect utilities of the form

Uijt = gj(Zijt) + Ξjt + Eijt,

where Eijt is a scalar random variable whose nonparametric distribution de-
pends on Xjt and Pjt (equation (14) gives a parametric example). In this
case, our Lemma 3 demonstrates identification of each function gj(·) up to a
normalization of utilities.

Adding the assumption of independence between Zijt and Eijt then turns
gj(Zijt) into a known special regressor. Under a further (and typically very
strong) large support assumption on gj(Zj), standard arguments demonstrate
identification of the marginal distribution of (Ξjt + Eijt)|(Xt, Pt). This is not
sufficient to identify demand. However, one can use these marginal distribu-
tions to define a nonparametric IV regression equation for each choice j, where
the LHS is a conditional mean and Ξjt appears on the RHS as an additive struc-
tural error.40 In each of these equations the prices and characteristics of goods
k ̸= j are excluded. Identification of these equations identifies all demand
shocks, and identification of demand then follows as in Theorem 2. Thus, in
this framework one needs only one instrument for price, and exogenous char-
acteristics of competing goods (BLP IVs) would be available as instruments.

40See the early working paper version of this paper, Berry and Haile (2010).
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A.1.3 A Nonseparable Index

Our results in the text exploited additive separability of the index functions
γj that enter the fully flexible demand mapping σ (i.e., Assumption 4). Here
we show one way that separability can be dropped.41 Suppose that for each j
the index γj (Zit, Yit, Xt,Ξt) takes the nonseparable form γj (Zijt, Yit, Xt,Ξjt) ,
where γj is strictly increasing in both Zijt and Ξjt. We again fix Yit = y0(Xt)
and condition on Xt, suppressing them in the notation. Then if s∗ is a common
choice probability vector, for every market t there exists a vector z∗t such that
for all j,

σj(γ
∗, pt) = s∗j ,

where γ∗ = (γ1(z
∗
1t, ξjt), . . . , γJ(z

∗
Jt, ξJt)).

By injectivity of σ, we have

γj(z
∗
jt, ξjt) = σ−1

j (s∗; pt)

for all j and t. Since γj is strictly increasing in both arguments, we can take
the partial inverse of both sides, yielding

z∗jt = γ−1
j

(
σ−1
j (s∗; pt) ; ξjt

)
,

where γ−1
j is strictly decreasing in ξjt. Rewriting this as

z∗jt = ψ (pt, ξjt) ,

we have an equation taking the form of the nonparametric nonseperable regres-
sion model considered by Chernozhukov and Hansen (2005), who showed (their
Theorem 4) identification given instruments for prices that are independent of
ξjt and satisfy an appropriate completeness condition.

A.1.4 Semiparametric Models

Moving further in the direction of parametric models commonly used in prac-
tice is one way to reduce both the required dimensionality of consumer at-
tributes and the number of required instruments. Indeed, in some cases a
single instrument and a single binary-valued consumer observable Zit can suf-
fice.

Consider first a semi-parametric nested logit model where inverse demand
in market t, given zit, is

gj(zit) + ξjt = ln(sjt(zit)/s0t(zit))− θ ln(sj/n,t(zit)) + αpjt. (A.5)

41In the context of market-level data, Berry and Haile (2014) include related results re-
laxing additive separability. See also Matzkin (2015) and Blundell, Kristensen, and Matzkin
(2020). None of these covers the panel structure of the micro data setting we consider here.
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Here we have conditioned on Xt and suppressed it from the notation.42 We
have also let sjt(zit) denote good j’s (observable) choice probability in market
t conditional on zit, with sj/n,t(zit) denoting its within-nest conditional choice
probability. The scalar θ denotes the usual “nesting parameter.” Here we
consider a one-dimensional binary Zit taking values 0 and 1.

As with the standard representation of most parametric models of inverse
demand, the nested logit model embeds normalizations of the indices and
demand function analogous to our choices of A(x) and B(x) in section 2.5.
However, we must still normalize the location of either Ξjt or gj for each j to
pose the identification question. Here we will set gj(0) = 0 for all j, breaking
with our prior convention by leaving each E[Ξjt] free.

Here (A.5) implies the two equations

gj(1) + ξjt = ln(sjt(1)/s0t(1))− θ ln(sj/n,t(1)) + αpjt (A.6)
gj(0) + ξjt = ln(sjt(0)/s0t(0))− θ ln(sj/n,t(0)) + αpjt (A.7)

for every market t and product j. Differencing these equations (and recalling
that gj(0) = 0), we obtain

gj(1) = ln

(
sjt(1)

s0t(1)

)
− ln

(
sjt(0)

s0t(0)

)
− θ

[
ln(sj/n,t(1))− ln(sj/n,t(0))

]
. (A.8)

This yields one equation in the two unknowns, gj(1) and θ. As with our fully
nonparametric model, within-market variation does not suffice for identifica-
tion on its own.

However, moving now to a different market, t′, where the observed choice
probabilities are different (perhaps because ξt ̸= ξt′), we have

gj(1) = ln

(
sjt′(1)

s0t′(1)

)
− ln

(
sjt′(0)

s0t′(0)

)
− θ

[
ln(sj/n,t′(1))− ln(sj/n,t′(0))

]
. (A.9)

Given minimal variation in choice probabilities across markets, ensuring that

ln(sj/n,t(1))− ln(sj/n,t(0)) ̸= ln(sj/n,t′(1))− ln(sj/n,t′(0)),

(A.8) and (A.9) can be solved for the two unknowns. Identification of the
remaining parameter α can then be obtained from the “regression” equation
(obtained from (A.5))

gj(zit) = ln(sjt(zit)/s0t(zit))− θ ln(sj/n,t(zit) + αpjt − ξjt (A.10)

42This again treats Xt fully flexibly. Here, let conditional indirect utilities take the form

uijt = u (xt, gj (zit, xt) + ξjt − α (xt) pjt + µijt (xt)) ,

where u is strictly increasing in its second argument, α (xt) is arbitrary, and µijt (xt) is
a stochastic component taking the standard composite nested-logit form at each xt. The
identification argument sketched here may be repeated at each value of xt in its support.
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using a single excluded instrument for price—e.g., an excluded exogenous
market-level cost shifter or markup shifter that affects all prices The inter-
cept in this regression equation will be E[Ξjt].

Although this example involves a model that is more flexible than nested
logit models typically estimated in practice, it moves a considerable distance
from our fully nonparametric model. But it makes clear that additional struc-
ture can further reduce the dimension of the required exogenous variation.
Here one can obtain identification with a single instrument and a scalar bi-
nary individual-level observable zit. This compares to the usual requirement of
two instruments in the fully parametric nested logit when one has only market-
level data (see Berry (1994)). Thus, as in the fully nonparametric case, micro
data cuts the number of required instruments by half.

Other semiparametric models can offer more intermediate points in the set
of feasible trade-offs between the flexibility of the model and the dimension
of exogenous variation needed for identification. Indeed, it is easy to see how
the example here generalizes to settings where Zit has more than two points
of support. Each additional point in the support of Zit adds one additional
equation but also one additional unknown gj(z). Thus, cross-market variation
remains necessary (recall section 5.2). However, when we turn to cross-market
variation, as the number of markets and number of points in the support of
Zit increase, we obtain an increasing number of restrictions that can allow
identification of more complex semi-parametric models, including cases where
the inverse share function is described by multiple scalar parameters. Semi-
parametric generalizations of BLP-style random coefficient logit models offer
one class of examples.

A.2 Beyond Discrete Choice

Although we have focused on the case in which the consumer-level quantities
Qijt take the particular form implied by a discrete choice model, nothing in our
proofs requires this. In other settings, the demand function s defined in (1) may
simply be reinterpreted as the expected vector of quantities demanded condi-
tional on (Xt, Pt,Ξt, Zit, Yit).43 Applying our results to continuous demand is
therefore just a matter of verifying the suitability of our assumptions.44

As one possibility, consider a “mixed CES” model of continuous choice,

43Note that the demand faced by firms in market t is the expectation of this expected
demand over the joint distribution of (Zit, Yit) in the market.

44Berry, Gandhi, and Haile (2013) describe a broad class of continuous choice models
that can satisfy the key injectivity property of Assumption 2. These can include mixed
continuous/discrete settings, where individual consumers may purchase zero or any positive
quantity of each good.

32



similar to the model in Adao, Costinot, and Donaldson (2017), with J + 1
products. Here we reintroduce Yit to denote consumer i’s income, measured
in units of the numeraire good 0. Each consumer i in market t has utility over
consumption vectors q ∈ RJ+1

+ given by

u (q; zit, xt, pt, ξt) =

(
J∑

j=0

ϕijtq
ρ
j

)1/ρ

,

where ρ ∈ (0, 1) is a parameter and each ϕijt represents idiosyncratic prefer-
ences of consumer i. Normalizing ϕi0t = 1, let

ϕijt = exp [(1− ρ) (gj (zit, xt) + ξjt + xjtβit)] , j = 1, . . . , J,

where βit is a random vector with distribution F representing consumer-level
preferences for product characteristics. With p0t = 1, familiar CES algebra
shows that Marshallian demands are

qijt =
yit exp (gj (zit, xt) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit, xt) + ξkt + xktβit − αρ ln(pkt))
] , (A.11)

where α = 1/(1− ρ). Equation (A.11) resembles a choice probability for a
random coefficients logit model, although the quantities qit here take on con-
tinuous values and do not sum to one. It is easy to show that our Assumptions
1–4 are satisfied for the expected CES demand functions, which take the form

σt(g(zit, xt) + ξt, yit, xt, pt) = E [Qit|zit, yit, pt, xt, ξt] ,

where the jth component of E[Qit|zit, yit, xt, pt, ξt] is∫
yit exp (gj (zit, xt) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit, xt) + ξkt + xktβit − αρ ln(pkt))
] dF (βit).

B Instruments When Xt is Endogenous
In section 5.3 we discussed several categories of instruments Wt commonly
relied upon to provide exogenous variation in prices. Here we examine the
question of when such instruments remain properly excluded when condition-
ing on observablesXt that are not (mean) independent of Ξt. Such instruments
are required for Theorem 1 to apply when Theorem 2 does not, allowing iden-
tification of conditional demand without requiring exogeneity of Xt (or instru-
ments for Xt). Unconditional independence is not sufficient (or necessary) for
conditional independence. Indeed, it is well known that conditioning on an
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endogenous “control” variable can (e.g., in the case of linear regression) lead
to violation of independence conditions required for identification.

In what follows we suppress the market subscripts t on the random vari-
ables Xt, Pt,Wt,Ξt, etc. Our discussion will utilize graphical causal models,
with the d-separation theorem providing the key criterion for assessing the
independence between W and Ξ conditional on X.45 Our use of these tools is
elementary, and a graphical approach is not essential—causal graphs represent
information implied by a fully specified model, standard change-of-variables
formulas, and Bayes’ rule. However, the graphical approach allows transparent
treatment of many possible economic examples inducing a smaller number of
canonical dependence structures. It also can be highly clarifying when one ven-
tures beyond the simplest cases. Following the literature on graphical causal
models, we focus on full conditional independence,

W |= Ξ |X, (B.1)

which of course implies the conditional mean independence required by The-
orem 1.

Below we first discuss several causal graphs (and motivating economic ex-
amples) that “work”—i.e., that imply (B.1). We then discuss the main type of
structure that does not work—i.e., in which (B.1) fails despite unconditional
independence between W and Ξ. We will see that each type of instrument
discussed in section 5.3 can remain valid under several models of endogenous
X. However, each type of instrument can also fail; in particular, (B.1) will fail
despite unconditional independence between W and Ξ when firms choose X
in ways that depend on both W and Ξ (or their ancestors). However, in many
of these situations, a natural timing assumption can yield a new set of valid
instruments for prices.

B.1 Graphs that Work

B.1.1 Fully Exogenous Instruments

The simplest cases arise when the instruments W satisfy

W |= (X,Ξ). (B.2)

The conditional independence condition (B.1) is then immediate, regardless of
any dependence between X and Ξ. Although formal analysis is unnecessary
in this case, it is also easily illustrated to build toward less obvious cases.

45See, e.g., Pearl (2009) and Pearl, Glymour, and Jewell (2016), including references
therein. Throughout we maintain the standard assumption that nodes in a causal directed
acylic graph are independent of their nondescendants conditional on their parents.
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For example, suppose X is chosen by firms with knowledge of Ξ, so that
X is endogenous in the same sense that prices are. Given (B.2), one obtains
the causal graph shown in Figure 1.46 The conditional independence condition
(B.1) then can also be seen to follow immediately by the d-separation criterion.
We would reach the same conclusion if the direction of causation between Ξ and
X is reversed—e.g., if X is chosen without knowledge of Ξ but the distribution
of Ξ changes with the choice of X. Taking the classic example of demand for
automobiles, a manufacturer’s choice to offer a fuel efficient hybrid sedan may
imply a very different set of relevant unobserved characteristics than had a
pickup truck or luxury SUV been offered instead.47

Figure 1

Ξ X W

P

Most of the instrument types discussed in section 5.3 can satisfy (B.2).
For example, W could represent exogenous (independent of Ξ) cost shifters
such as input price shocks, realized after X is chosen and not affected by X.
These might be shocks to import tariffs; shipping costs; retailer costs (e.g.,
rents, wages); demand shifters in other markets served by the same firms (if
they face upward sloping marginal costs); or prices of manufacturing inputs.
One can also obtain this structure when W represents exogenous shifters of
markups. Mergers (full or partial) that are independent of Ξ and leave product
offerings unchanged offer one possibility. Another is cross-market variation
in the distribution FY Z(·|t) (or other aggregate demographic measure at the
market or regional level), as long as this variation is independent of Ξ (as
required generally for the validity of Waldfogel instruments) and X.

B.1.2 Instruments Caused by X

Independence between X and W is not required. For example, consider the
case in which X is chosen with knowledge of Ξ and the choice of X affects

46We assume throughout that prices and quantities are not among the ancestors of
(X,W,Ξ). This is implied by standard assumptions that consumers take X and Ξ as given
when making purchase decisions, that W does not respond to prices or quantities, and that
prices are not chosen before X.

47A similar structure is obtained when dependence between Ξ and X reflects a common
cause.
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W . We then obtain a causal graph in Figure 2, where (B.1) is again easily
confirmed by the d-separation criterion. This causal structure allows addi-
tional examples of cost shifters beyond those discussed above. For example,
suppose X represents product characteristics affecting the level of labor skill
(or quality of another input) required in production, while W is the producer’s
average wage. Alternatively, if producers have market power in input markets,
input prices W would be affected by firms’ choices of product characteristics
X. Models in which the the direction of causation between X and Ξ in Figure
2 reverses will lead to the same conclusions.

Figure 2

Ξ X W

P

B.1.3 X Caused by Instruments

In some cases, the conditional independence condition (B.1) can hold even
when X is affected by W . Consider the causal graph in Figure 3, where (B.1)
is easily confirmed by d-separation. As an example motivating this structure,
suppose W is a product-level cost of producing a product feature measured by
X, the latter chosen by firms with knowledge of W but before Ξ is known.

Figure 3

Ξ X W

P

B.1.4 Hausman Instruments

When X is not independent of Ξ, Hausman instruments generally cannot yield
the trivial case in which (B.2) holds. This is because prices set by a firm in
some “other” market depend on the product characteristics in that market,
and the firm’s product characteristics are typically (highly) correlated across
markets. Nonetheless, Hausman instruments can remain valid in some cases.

36



Figure 4 illustrates one such case. Here L represents latent marginal cost
shifters. We let X−t and Ξ−t represent the non-price observables and demand
shocks of “other markets,” both of which (along with L) affect the Hausman
instruments W (prices in those markets).48 The absence of an edge linking
Ξ and Ξ−t reflects an essential assumption justifying Hausman instruments in
general (i.e., even whenX is exogenous), as does the absence of an edge directly
linking L and Ξ. Here W and Ξ are not independent. But the conditional
independence condition (B.1) is satisfied.

Figure 4

LXΞ X−t Ξ−t

P W

The causal structure of Figure 4 is consistent with a fully specified model
in which X is chosen in each market with knowledge of the latent cost shocks
but before Ξ is realized. The direction of causality between X and L (and
similarly between X−t and L) is not important to this conclusion. However,
as demonstrated in the following section, the direction of causality between Ξ
and X is typically critical in the case of Hausman instruments.

B.2 Graphs that Don’t Work: X is a Collider

The conditional independence condition (B.1) fails when both W and Ξ affect
X. This is illustrated in Figure 5. Here X is a collider in the (undirected)
path between W and Ξ. Thus, although Ξ and W are independent, (B.1) fails.

Figure 5

Ξ X W

P

48Following standard convention, we use a dashed bidirectional edge to represent depen-
dence between X and X−t arising from unmodeled common causes.
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This structure arises whenever firms’ choices of X depend on both W and
Ξ (or their ancestors). An example is when W is a cost shifter affecting firms’
choices of X, the latter also chosen with knowledge of Ξ. Another example is
when W is a market-level demographic measure or market structure measure
(e.g., product ownership matrix) that, along with Ξ, influences firms’ choices
of X.49

As suggested already, we can also obtain this type of structure with Haus-
man instruments. Figure 6 illustrates. This graph again represents models in
which prices and product characteristics X are chosen with knowledge of the
demand shocks Ξ and the latent cost shifters L. Here, regardless of presence
or direction of causation between X and L (the graph shows one possibility),
X is a collider on an unblocked path between Ξ and W .

Figure 6

LXΞ X−t Ξ−t

P W

Thus, just as there are cases in which each type of instrument discussed
in section 5.3 remains valid when conditioning on on endogenous characteris-
tics X, there are are other important cases in which (B.1) will fail. In such
situations, identification will require different instruments for prices. In many
cases such instruments can be constructed under natural timing assumptions.
This is a topic we take up in the final section of this appendix.50

B.3 Avoiding Colliders: Sequential Timing

The previous section describes a class of situations in which candidate instru-
ments that would be properly excluded unconditional on X would fail to be
properly excluded conditional on X. A leading case is that of cost shifters
(e.g., input prices) that, along with Ξ (or its ancestors), partially determine
firms’ choices of product characteristics X. However, in such cases one may be
able to obtain valid instruments by exploiting the (typical) sequential timing
of a firm’s decisions. For example, physical characteristics of new automobiles

49A similar structure arises if the dependence between Ξ and X reflects a latent common
cause.

50We also note that when X is a collider, W provides a candidate instrument for X.
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sold in year τ will reflect design choices made well in advance—in particular,
before the input costs for year-τ production are fully known. Pricing in year τ ,
on the other hand, will typically take place after those costs are known. Such
timing is common to many markets. And, as in other contexts, the temporal
separation of observable choices can offer an identification strategy.51 Here,
for example, even if product characteristics are chosen in response to demand
shocks and expected input costs, current-period innovations to input costs can
offer candidate instruments for prices.

To illustrate, we introduce a time superscript τ to all random variables.
Let M τ denote a vector of period-τ input prices and suppose M τ follows

M τ = Φ(M τ−1) +W τ , (B.3)

where Φ is a possibly unknown function and W τ |= (Ξτ , Xτ ,M τ−1). Given
observability of (M τ ,M τ−1) in all markets, each vector of period-τ innovations
W τ is identified. Now suppose that Xτ is chosen by firms in period τ − 1,
whereas prices for period τ are chosen in period τ . The causal graph in Figure
7 illustrates key features of such a model.52

Figure 7

Ξτ−1

Ξτ

M τ−1

Xτ

W τ

M τ

P τ

Here endogeneity of Xτ reflects its selection with knowledge of Ξτ−1, the
latter correlated with Ξτ . Neither the contemporaneous cost shifters M τ nor
the lagged cost shifters M τ−1 can serve as instruments for prices conditional on
Xτ : Xτ would be a collider, as in the previous section. However, the period-
τ innovation W τ can serve as the instrument. Because W τ alters period-
τ marginal cost, it is relevant for the determination of P τ , conditional on

51Familiar examples in IO include strategies used by Olley and Pakes (1996), Ackerberg,
Caves, and Frazer (2015), and others in the literature on estimation of production functions.

52The presence (or direction) of an edge from Xτ to Ξτ is not important to the argument.
Likewise, although we show the case in which Ξτ−1 is a cause of Ξτ , the same conclusion is
reached if dependence between Ξτ−1 and Ξτ reflects unmodeled common causes.
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Xτ . And, by the d-separation criterion, we see that W τ is independent of
Ξτ conditional on Xτ . Indeed, W τ here is an example of a “fully exogenous
instrument,” as discussed in section B.1.1. Ultimately, the innovation W τ is
simply a cost shifter that is independent of all else. The important insight,
however, is that natural timing assumptions can allow such fully independent
cost shifters to be constructed from measures like input prices that themselves
are not independent of Ξτ conditional on Xτ . Similar arguments can allow
construction of valid instruments from observed markup shifters (e.g., market-
level demographics) whose lagged values affect firms’ choices of X. Indeed,
one may simply reinterpret M τ above as a period-τ markup shifter.

C Proof of Lemma 1
Fix a value of x ∈ X . By Assumption 7, there exist p ∈ suppPt|{Xt = x} and
ϵ > 0 such that for any z and z′ in Z(y0(x), x) for which∣∣∣∣g (z′, y0(x), x)− g

(
z, y0(x), x

)∣∣∣∣ < ϵ, (C.1)

there exist ξ and ξ′ in suppΞt|{Pt = p,Xt = x} such that

h(x, ξ)− h(x, ξ′) = g
(
z′, y0(x), x

)
− g

(
z, y0(x), x

)
,

i.e., γ(z′, y0(x), x, ξ′) = γ(z, y0(x), x, ξ). Taking

s = σ
(
γ(z′, y0(x), x, ξ′), y0(x), p, x

)
= σ

(
γ(z, y0(x), x, ξ), y0(x), p, x

)
,

the definition (16) implies that

z = z∗ (s; p, x, ξ) and z′ = z∗ (s; p, x, ξ′) .

By uniform continuity of g(·, y0(x), x), there exists ∆ > 0 such that (C.1)
holds whenever

||z′ − z|| < ∆. (C.2)

To see that all such (∆, p) are identified, observe that (∆, p) meet the require-
ment if and only if for all z and z′ in Z(y0(x), x) that satisfy (C.2), there exist
a share vector s and markets t and t′ such that

z = z∗ (s; p, x, ξt) and z′ = z∗ (s; p, x, ξt′) .

For any (∆, p), satisfaction of (C.2) is observable, as are the values of z∗ (s; p, x, ξτ )
for all s ∈ S(x, p, ξτ ) in every market τ such that Pτ = p. Thus, satisfaction
of this condition is observable.
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