Optimal Project Management

 ${\sf Alessandro \ Bonatti}^1 \quad {\sf Doruk \ Cetemen}^2 \quad {\sf Juuso \ Toikka}^3$

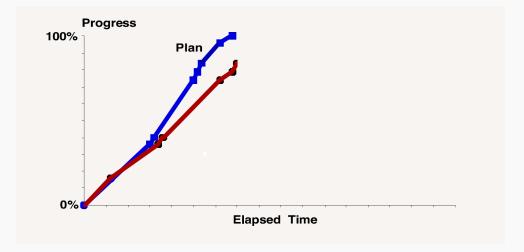
¹MIT Sloan

²Royal Holloway

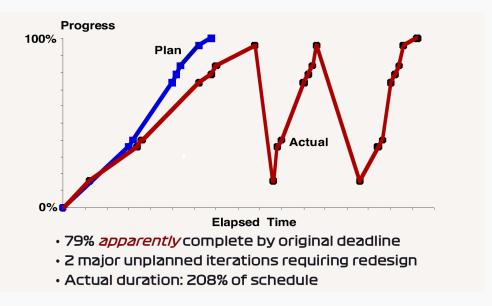
 3 Wharton

October 11, 2023

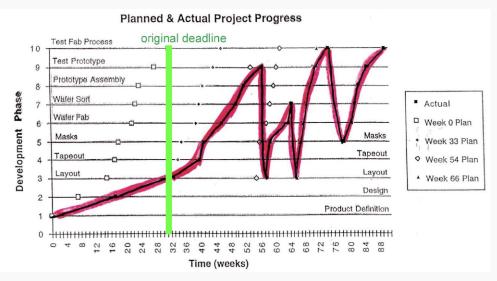
Project Dynamics



Project Dynamics



Project Dynamics



Semiconductor Fabrication Plants (Ford and Sterman, 2003)

Introduction

Project Management (R&D, infrastructure, public works ...):

- Multiple stages, cumulative progress
- Stochastic outcomes; risk of setbacks
- Rewards upon completion

Dynamic moral hazard in a non-stationary environment:

- Progress is slower, success less likely
- Less ambitious, less failure-tolerant projects
- Further delays to deter risk taking

Related Literature

Dynamic moral hazard: lumpy (Poisson) progress

 Mason and Valimaki (2015); Green and Taylor (2016); Guo (2018); Halac, Kartik, Liu (2018); Moroni (2018)

Dynamic moral hazard: continuous progress

Georgiadis (2015); Georgiadis, Lippman, and Tang (2014)

Dynamic mechanism design: optimal stopping

Kruse and Strack (2015, 2018); Madsen (2022); McClellan (2023)

Choice of risk

DeMarzo et al. (2014); Wong (2019); Li and Williams (2023)

Principal (P) hires agent (A) to complete a project The project's (stochastic) progress is publicly observable Agent controls the process exerting costly hidden effort Time is continuous and possibly infinite: $t \in [0, \infty)$ Common discount rate $r \ge 0$

Baseline Model

Project evolves in continuous time according to

 $dX_t = \mu(a_t, X_t)dt + \sigma(X_t)dZ_t$

For this talk

$$\mu(a_t, X_t) = a_t, \quad \sigma(X_t) = \sigma$$

Threshold structure: project is successful if $X \ge \bar{x}$ (target, ceiling...)

Principal's Payoffs

The project is complete the first time the progress X hits the target \bar{x}

The principal can also terminate the project earlier

Let τ denote the termination time. Principal's realized payoff:

$$e^{-r\tau}\left(\mathbf{1}_{\{X_{\tau}\geq\bar{x}\}}b+\mathbf{1}_{\{X_{\tau}<\bar{x}\}}s\right)-\left(\int_{0}^{\tau}e^{-rt}c_{t}dt+\frac{e^{-r\tau}}{r}c_{\tau}\right)$$

b > 0 is the benefit from project completion

s > 0 is the salvage value of the project

 c_t is the flow wage paid to the agent

Agent's Payoffs

Agent's (CARA) flow utility:

$$u(\hat{a}, \hat{c}) = -\frac{1}{\eta} \exp\{-\eta(\hat{c} - h(\hat{a}))\} = -\frac{1}{\eta} \exp\{-\eta(\hat{c} - \frac{1}{2}\hat{a}^2)\}$$

 \hat{c}_t is agent's time-t chosen consumption level

Agent can privately borrow and save at rate $r \ge 0$

Savings account with balance S_t at time t

Agent also has outside option W_0

Planner's Problem

The social planner solves the following problem

$$\max_{A,\tau} \mathbb{E}_{A} \left[\mathbf{1}_{\{X_{\tau} \geq \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_{\tau} < \bar{x}\}} e^{-r\tau} s - \frac{1}{2} \int_{0}^{\tau} e^{-rt} a_{t}^{2} dt \right]$$

subject to

$$dX_t = a_t dt + \sigma dZ_t$$

Planner's Problem

The social planner solves the following problem

$$\max_{A,\tau} \mathbb{E}_{A} \left[\mathbf{1}_{\{X_{\tau} \geq \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_{\tau} < \bar{x}\}} e^{-r\tau} s - \frac{1}{2} \int_{0}^{\tau} e^{-rt} a_{t}^{2} dt \right]$$

subject to

$$dX_t = a_t dt + \sigma dZ_t$$

Recursive Formulation:

$$rV(x) = \max_{a} \left[-\frac{1}{2}a^2 + aV'(x) + \frac{1}{2}\sigma^2 V''(x) \right]$$

Planner's Problem

The social planner solves the following problem

$$\max_{A,\tau} \mathbb{E}_{A} \left[\mathbf{1}_{\{X_{\tau} \geq \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_{\tau} < \bar{x}\}} e^{-r\tau} s - \frac{1}{2} \int_{0}^{\tau} e^{-rt} a_{t}^{2} dt \right]$$

subject to

$$dX_t = a_t dt + \sigma dZ_t$$

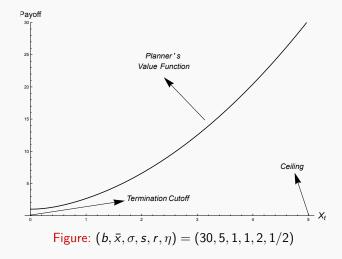
Recursive Formulation:

$$rV(x) = \max_{a} \left[-\frac{1}{2}a^2 + aV'(x) + \frac{1}{2}\sigma^2 V''(x) \right]$$

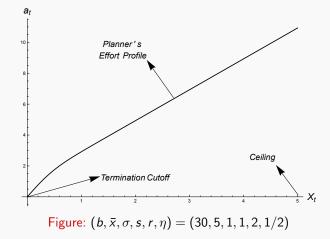
Optimal Effort: a(x) = V'(x)

Optimal Termination: two thresholds \bar{x} and \underline{x}^{FB} that satisfy Value Matching $(V(\bar{x}) = b, V(\underline{x}^{FB}) = s)$ and Smooth Pasting $(V'(\underline{x}^{FB}) = 0)$

Planner's Value Function



Planner's Effort Profile



Contracting Problem

A contract is a triple $C = (A, C, \tau)$ adapted to the public history X^t :

- recommended consumption level C (i.e., flow wage process)
- recommended effort level A (i.e., reference progress path)
- termination policy au

Savings account evolution:

$$dS_t = rS_t + c_t dt - \hat{c}_t dt, \quad S_0 = 0, \quad \lim_{t \to \infty} \mathbb{E}\left[e^{-rt}S_t\right] \to 0$$

Agent continuation utility representation:

$$dW_t = (rW_t - u(\hat{a}_t, c_t, \hat{c}_t)) dt + \beta_t (-\eta rW_t) (dX_t - a_t dt)$$

Principal's Problem

Principal maximizes her payoff by choosing $\ensuremath{\mathcal{C}}$

$$\max_{A,C,\tau} \mathbb{E}_A \left[\mathbf{1}_{\{X_\tau \ge \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_\tau < \bar{x}\}} e^{-r\tau} s - \int_0^\tau e^{-r\tau} c dt - \frac{e^{-r\tau}}{r} c_\tau \right]$$

subject to: $\mathsf{IC} + \mathsf{IR} + \mathsf{No} \ \mathsf{Savings}$

Principal's Problem

Principal maximizes her payoff by choosing ${\mathcal C}$

$$\max_{A,C,\tau} \mathbb{E}_A \left[\mathbf{1}_{\{X_\tau \ge \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_\tau < \bar{x}\}} e^{-r\tau} s - \int_0^\tau e^{-r\tau} c dt - \frac{e^{-r\tau}}{r} c_\tau \right]$$

subject to: $\mathsf{IC} + \mathsf{IR} + \mathsf{No} \ \mathsf{Savings}$

General Recursive Formulation

$$v(x,w) = \max_{a \in \mathcal{A},c} \left[-c + \underbrace{\mu(W)}_{drift \text{ of cont. util.}} v_w + \frac{1}{2} \underbrace{\sigma^2(w)}_{volatility \text{ of cont. util.}} v_{ww} + av_x + \frac{1}{2} \sigma^2 v_{xx} + \sigma \cdot \sigma(w) v_{xw} \right]$$

Principal's Problem

Principal maximizes her payoff by choosing $\ensuremath{\mathcal{C}}$

$$\max_{A,C,\tau} \mathbb{E}_A \left[\mathbf{1}_{\{X_\tau \ge \bar{x}\}} e^{-r\tau} b + \mathbf{1}_{\{X_\tau < \bar{x}\}} e^{-r\tau} s - \int_0^\tau e^{-r\tau} c dt - \frac{e^{-r\tau}}{r} c_\tau \right]$$

subject to: $\mathsf{IC} + \mathsf{IR} + \mathsf{No} \ \mathsf{Savings}$

General Recursive Formulation

$$v(x,w) = \max_{a \in \mathcal{A},c} \left[-c + \underbrace{\mu(W)}_{drift \ of \ cont. \ util.} v_w + \frac{1}{2} \underbrace{\sigma^2(w)}_{volatility \ of \ cont. \ util.} v_{ww} + av_x + \frac{1}{2} \sigma^2 v_{xx} + \sigma \cdot \sigma(w) v_{xw} \right]$$

In general this PDE is difficult to analyze

CARA Properties

 $\begin{array}{l} \mbox{Private savings} + \mbox{CARA helps tractability (He, 2011)} \\ \mbox{We extend these results to non-stationary environment} \end{array}$

CARA Properties

Private savings + CARA helps tractability (He, 2011) We extend these results to non-stationary environment

- 1. CARA implies level-invariance of continuation utility
 - Consider a deviating agent with savings S who faces contract C. Denote the agent's continuation value at time t by W_t(S,C). It holds that

$$W_t(S, \mathcal{C}) = e^{-\eta r S} W_t(0, \mathcal{C}),$$

where $W_t(0, C)$ is the continuation value along the no-savings path.

CARA Properties

Private savings + CARA helps tractability (He, 2011) We extend these results to non-stationary environment

- 1. CARA implies level-invariance of continuation utility
 - Consider a deviating agent with savings S who faces contract C. Denote the agent's continuation value at time t by W_t(S,C). It holds that

$$W_t(S, \mathcal{C}) = e^{-\eta r S} W_t(0, \mathcal{C}),$$

where $W_t(0, C)$ is the continuation value along the no-savings path.

2. Consumption pinned down \Rightarrow continuation utility is a martingale

•
$$c_t = \frac{1}{2}a_t^2 - \frac{1}{\eta}\ln(-\eta rW_t)$$
, i.e., $u(a_t, c_t) = rW_t$
• $dW_t = (rW_t - u(a_t, c_t)) dt + \beta_t(-\eta rW_t)(dX_t - a_t dt)$
 $= \beta_t(-\eta rW_t)(dX_t - a_t dt)$

Incentive Compatability

- 3. Incentive Compatibility of the agent
 - Agent's problem

$$\max_{\hat{a}} \left[u(\hat{a}, \hat{c}) + dW \right]$$

Incentive Compatability

3. Incentive Compatibility of the agent

$$\max_{\hat{a}} \left[u(\hat{a}, \hat{c}) + dW \right]$$

• Equivalently

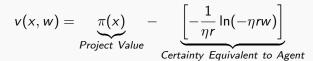
$$\max_{\hat{a}} \left[u(\hat{a}, \hat{c}) + \beta(-\eta rW)(dX - \hat{a}dt) \right]$$
FOC + CARA

$$u_a(\hat{a}, \hat{c}) = \beta \eta rW \Rightarrow \hat{a} = \beta$$

4. 1+2+3 together yield additively separable solution to the PDE

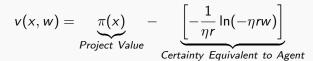
Let v(x, w) denote the principal's value function

Let v(x, w) denote the principal's value function



CARA utility \Rightarrow the certainty equivalent is all that matters for continuation values

Let v(x, w) denote the principal's value function



CARA utility \Rightarrow the certainty equivalent is all that matters for continuation values

Let v(x, w) denote the principal's value function

$$v(x,w) = \underbrace{\pi(x)}_{Project \ Value} - \underbrace{\left[-\frac{1}{\eta r}\ln(-\eta rw)\right]}_{Certainty \ Equivalent \ to \ Agent}$$

CARA utility \Rightarrow the certainty equivalent is all that matters for continuation values Using the functional form

$$v_{xw} = 0; \quad v_{ww} = -\frac{1}{\eta r w^2}; \quad \mu(w) = 0; \quad \sigma^2(w) = (-\beta \eta r W)^2;$$

Let v(x, w) denote the principal's value function

$$v(x,w) = \underbrace{\pi(x)}_{Project \ Value} - \underbrace{\left[-\frac{1}{\eta r}\ln(-\eta rw)\right]}_{Certainty \ Equivalent \ to \ Agent}$$

CARA utility \Rightarrow the certainty equivalent is all that matters for continuation values Using the functional form

$$v_{xw} = 0; \quad v_{ww} = -\frac{1}{\eta r w^2}; \quad \mu(w) = 0; \quad \sigma^2(w) = (-\beta \eta r W)^2;$$

IC + No savings

$$c=rac{1}{2}a^2-rac{1}{\eta}$$
In $(-\eta rW);\ eta=a$

HJB Equation

Plugging it back to HJB

$$r\pi(x) = \max_{a \in \mathcal{A}} \left\{ -\frac{1}{2}\kappa^{-1}a^2 + a\pi_x(x) + \frac{1}{2}\sigma^2\pi_{xx}(x) \right\},$$

where $\kappa := (1 + \eta r \sigma^2)^{-1} < 1$. (Note: the planner's problem corresponds to $\kappa = 1$)

HJB Equation

Plugging it back to HJB

$$r\pi(x) = \max_{a \in \mathcal{A}} \left\{ -\frac{1}{2}\kappa^{-1}a^2 + a\pi_x(x) + \frac{1}{2}\sigma^2\pi_{xx}(x) \right\},$$

where $\kappa := (1 + \eta r \sigma^2)^{-1} < 1$. (Note: the planner's problem corresponds to $\kappa = 1$)

Intuition: separability + downward sloping Pareto frontier; but IC requires progress-contingent wages, and a risk-averse agent requires compensation; therefore, the principal cannot pay W_0 and induce efficient effort.

Principal's Problem: Solution

$$r\pi(x) = \max_{a \in \mathcal{A}} \left\{ -\frac{1}{2}\kappa^{-1}a^2 + a\pi_x(x) + \frac{1}{2}\sigma^2\pi_{xx}(x) \right\}$$

$$\Rightarrow a^*(x) = \kappa\pi_x(x) \quad (FOC)$$

Theorem (Optimal Contract)

The principal's optimal termination policy is given by two thresholds \underline{x} and \overline{x} . These thresholds solve the following ODE

$$r\pi(x) = \frac{1}{2}\kappa \left[\pi_x(x)\right]^2 + \frac{1}{2}\sigma^2\pi_{xx}(x),$$

with boundary conditions:

Value Matching $\pi(\bar{x}) = b$, $\pi(\underline{x}) = s$

Smooth Pasting $\pi_x(\underline{x}) = 0.$

Optimal Contract

"Ceiling" model \Rightarrow optimal contract "retires" the agent at the top and at the bottom

Proposition (Properties of the Optimal Contract) The principal's value function satisfies the following properties:

• $\pi(x)$ is increasing $(\pi_x(x) \ge 0)$ and convex $(\pi_{xx}(x) \ge 0)$

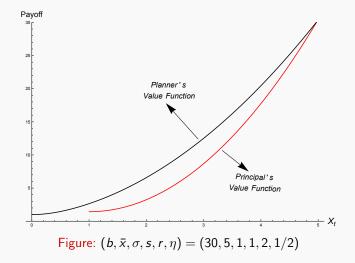
► Effort is increasing in x

Agent works harder and longer in the planner's solution

•
$$\underline{x} \geq \underline{x}^{FE}$$

•
$$a^{FB}(x) \ge a(x)$$
 for all $x \in [\underline{x}, \overline{x}]$

Principal's Value Function



Principal's Effort Profile

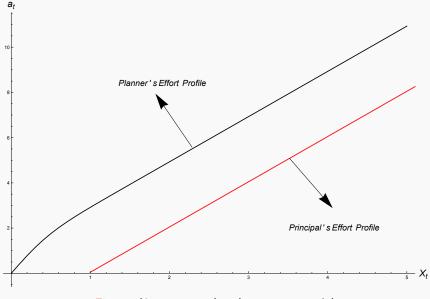
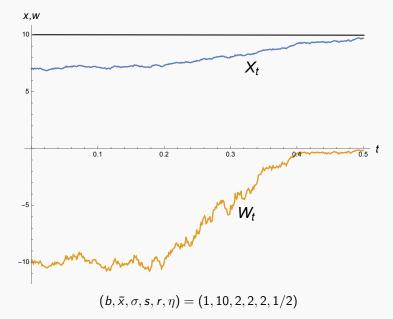


Figure: $(b, \bar{x}, \sigma, s, r, \eta) = (30, 5, 1, 1, 2, 1/2)$

Sample Paths



Endogenous Project Scope

Suppose now principal can control how ambitious the project is

• endogenize the ceiling; b(x)

Smooth pasting needs to hold at the top as well

 $\pi_x(\bar{x}) = b_x(\bar{x})$

Endogenous Project Scope

Suppose now principal can control how ambitious the project is

• endogenize the ceiling; b(x)

Smooth pasting needs to hold at the top as well

$$\pi_x(\bar{x}) = b_x(\bar{x})$$

Distortion at both cut-offs (upper and lower)

- Principal chooses less ambitious projects $\bar{x} < \bar{x}^{FB}$
- Principal terminates earlier $\underline{x} > \underline{x}^{FB}$

Risk Choices

Two dimensional moral hazard

```
Agent chooses risk level q_t \in \{0,1\} and the effort a_t
```

Risk Choices

Two dimensional moral hazard

Agent chooses risk level $q_t \in \{0,1\}$ and the effort a_t

Baseline breakdown risk: project terminates at rate λ

 $q_t = 1$ implies agent choose risky action

• risk boosts the drift by g > 0

▶ also increases the arrival rate by $\lambda_r > 0$

Risk Choices

Two dimensional moral hazard

Agent chooses risk level $q_t \in \{0,1\}$ and the effort a_t

Baseline breakdown risk: project terminates at rate λ

 $q_t = 1$ implies agent choose risky action

- risk boosts the drift by g > 0
- also increases the arrival rate by $\lambda_r > 0$

Formally, project evolves according to following SDE

$$dX_t = \mu(a_t, X_t, q_t)dt + \sigma(X_t)dZ_t - DdN_t,$$

Proposition (Continuation Utility)

Agent's continuation utility W under an incentive compatible contract evolves according to following SDE:

 $dW_t = (rW_t - u(a,c)) dt + \beta_t (-\eta rW_t) (dX_t - (a_t + q_tg)dt) + \psi_t (-\eta rW_t) (dN_t - (\lambda + q_t\lambda_r) dt),$

where β is the process controlling the strength of incentives and ψ is the process controlling the strength of risk taking incentives

Proposition (IC for Risk Taking)

The agent chooses the risky regime $(q_t = 1)$ if and only if

$$-r\eta W_t \left(\underbrace{g\beta_t}_{boost in X} + \underbrace{\lambda_r \psi_t}_{boost in risk}\right) \ge 0 \quad \Rightarrow \quad \beta_t \ge -\frac{\lambda_r}{g} \psi_t$$

Proposition (IC for Risk Taking)

The agent chooses the risky regime $(q_t = 1)$ if and only if

$$-r\eta W_t \left(\underbrace{g\beta_t}_{boost in X} + \underbrace{\lambda_r \psi_t}_{boost in risk}\right) \ge 0 \quad \Rightarrow \quad \beta_t \ge -\frac{\lambda_r}{g} \psi_t$$

If she increases β , the principal must also increase the size of the punishment ($\psi < 0$) in order to deter the agent from taking the risky action

Principal's HJB equation (seperable) can be written as follows:

$$rf(x,w) = \max_{a,c\beta,\psi,q} -c + (a+qg)f_x + (rw - u(a,c) - (\lambda + \lambda_r q)\psi)f_w + \frac{1}{2}\beta^2\sigma^2 f_{ww} + (\lambda + \lambda_r q)(T(w+\psi) - f(x,w)),$$

where $T(w + \psi)$ denotes the termination payoff of the principal when agent has continuation utility of $w + \psi$

Using No Savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

Using No Savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln (1 - \eta r \psi) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q \frac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - \frac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0$

Using No Savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln (1 - \eta r \psi) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q rac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - rac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0 \Rightarrow$ no punishment for risk taking

Using No Savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln (1 - \eta r \psi) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q rac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - rac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0 \Rightarrow$ no punishment for risk taking

IC for risk taking is non binding by construction, $\beta \geq 0$

When q = 0, we have $\psi < 0 \Rightarrow$ punishment for risk taking IC for risk taking binds

$$\beta = -\frac{\lambda_r}{g}\psi$$

Higher the punishment, higher the $\beta \Rightarrow a$

Theorem (Optimal contract with Hidden Risk)

The optimal contract is characterized by two regions:

- High risk region $q_t = 1$, where $[\underline{x}, x_c]$
- Low risk region $q_t = 0$, where $[x_c, \bar{x}]$

Theorem (Optimal contract with Hidden Risk)

The optimal contract is characterized by two regions:

• High risk region
$$q_t = 1$$
, where $[\underline{x}, x_c]$

• Low risk region
$$q_t = 0$$
, where $[x_c, \bar{x}]$

In the high risk region principal's HJB equation solves

$$(r+\lambda+\lambda_r)f(x) = \max_{a\in\mathcal{A}}\bigg\{-\frac{1}{2}a^2+(a+g)f_x-\frac{1}{2}\eta ra^2\sigma^2+\frac{1}{2}\sigma^2 f_{xx}+(\lambda+\lambda_r)s\bigg\},$$

Theorem (Optimal contract with Hidden Risk)

The optimal contract is characterized by two regions:

• High risk region
$$q_t = 1$$
, where $[\underline{x}, x_c]$

• Low risk region
$$q_t = 0$$
, where $[x_c, \bar{x}]$

In the high risk region principal's HJB equation solves

$$(r+\lambda+\lambda_r)f(x) = \max_{a\in\mathcal{A}}\bigg\{-\frac{1}{2}a^2+(a+g)f_x-\frac{1}{2}\eta ra^2\sigma^2+\frac{1}{2}\sigma^2 f_{xx}+(\lambda+\lambda_r)s\bigg\},$$

Boundary condition $f(\underline{x}) = s$

Smooth Pasting $f_x(\underline{x}) = 0$

Switching point $x_c := \inf_{x > \underline{x}} [gf_x(x) + \lambda_r(s - f(x))] = 0$

Theorem (Optimal Contract with Hidden Risk) In the low risk region principal's HJB equation solves

$$(r+\lambda)f(x) = \max_{a \in \mathcal{A}, \psi} \left\{ -\frac{1}{2}a^2 + af_x + \lambda\psi - \frac{1}{2}\eta ra^2\sigma^2 + \lambda\left(s + \frac{1}{\eta r}\ln(1 - \eta r\psi)\right) + \frac{1}{2}\sigma^2 f_{xx} \right\},$$

where $a = -\frac{\lambda_r\psi}{g}$

Theorem (Optimal Contract with Hidden Risk) In the low risk region principal's HJB equation solves

$$(r+\lambda)f(x) = \max_{a \in \mathcal{A}, \psi} \left\{ -\frac{1}{2}a^2 + af_x + \lambda\psi - \frac{1}{2}\eta ra^2\sigma^2 + \lambda\left(s + \frac{1}{\eta r}\ln(1 - \eta r\psi)\right) + \frac{1}{2}\sigma^2 f_{xx} \right\},$$

where $a = -\frac{\lambda_r\psi}{g}$

Boundary condition: $f(\bar{x}) = b$

Optimal Contract

Proposition (Properties of the Optimal Contract)

The principal's value function satisfies the following properties:

- f(x) is increasing $(f_x(x) \ge 0)$ and convex $(f_{xx}(x) \ge 0)$
- Effort is increasing up to x_c , jumps down at x_c , then keeps increasing
 - The planner's effort is increasing and continuous

Optimal Contract

Proposition (Properties of the Optimal Contract)

The principal's value function satisfies the following properties:

- f(x) is increasing $(f_x(x) \ge 0)$ and convex $(f_{xx}(x) \ge 0)$
- Effort is increasing up to x_c, jumps down at x_c, then keeps increasing
 - The planner's effort is increasing and continuous
- The agent works harder and longer in the planner's solution

•
$$\underline{x} \geq \underline{x}^{FE}$$

- $a^{FB}(x) \ge a(x)$ for all $x \in [\underline{x}, \overline{x}]$
- The principal induces risk-taking longer than the planner

$$\blacktriangleright x_c \ge x_c^{FB}$$

Value Functions

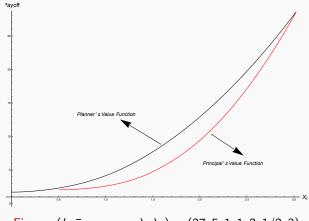


Figure: $(b, \bar{x}, \sigma, s, r, \eta, \lambda, \lambda_r) = (27, 5, 1, 1, 2, 1/2, 3)$

Effort Profiles

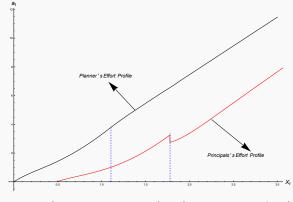


Figure: $(b, \bar{x}, \sigma, s, r, \eta, \lambda, \lambda_r) = (27, 5, 1, 1, 2, 1/2, 3)$

Conclusions

We study the provision of incentives in dynamic project

- Tractable model
- Agent works harder as time passes
- Principal terminates the project before than the designer
- ▶ To deter risk taking principal slows down the project

Many possibilities to move forward

- Unobserved progress or success
- Adverse selection

Conclusions

We study the provision of incentives in dynamic project

- Tractable model
- Agent works harder as time passes
- Principal terminates the project before than the designer
- ▶ To deter risk taking principal slows down the project

Many possibilities to move forward

- Unobserved progress or success
- Adverse selection

This line of research is still far from complete!

DeMarzo, Peter M, Dmitry Livdan, and Alexei Tchistyi (2014) "Risking other people's money: Gambling, limited liability, and optimal incentives," Technical Report 3149, Stanford GSB.

Green, Brett and Curtis R Taylor (2016) "Breakthroughs, deadlines, and self-reported progress: Contracting for multistage projects," *American Economic Review*, 106, 3660–99.

Li, Rui and Noah Williams (2023) "Optimal contracts with hidden risk," Technical report, Working paper, University of Wisconsin–Madison.

Wong, Tak-Yuen (2019) "Dynamic agency and endogenous risk-taking," *Management Science*, 65, 4032–4048.

Proof of Non-monotonicity

Use the fact $a_t=eta_t=-rac{\lambda_r}{g}\psi_t$, then FOC respect to ψ when $q_t=0$

$$-\frac{\lambda_r}{g}\psi - \frac{\lambda_r}{g}f_x - \sigma^2\eta r\left(\frac{\lambda_r}{g}\right)^2\psi + \lambda - \lambda\frac{1}{1 - \eta r\psi} = 0$$

Rearranging it we reach

$$\boldsymbol{a} = \kappa \left[f_{\boldsymbol{x}}(\boldsymbol{x}) - \frac{\boldsymbol{g}}{\lambda_{r}} \lambda \left(1 - \frac{1}{1 + \eta r \frac{\boldsymbol{g}}{\lambda_{r}} \boldsymbol{a}} \right) \right]$$

Proof of Non-monotonicity

Use the fact $a_t = \beta_t = -\frac{\lambda_r}{g}\psi_t$, then FOC respect to ψ when $q_t = 0$

$$-\frac{\lambda_r}{g}\psi - \frac{\lambda_r}{g}f_x - \sigma^2\eta r\left(\frac{\lambda_r}{g}\right)^2\psi + \lambda - \lambda\frac{1}{1 - \eta r\psi} = 0$$

Rearranging it we reach

$$a = \kappa \left[f_{x}(x) - \frac{g}{\lambda_{r}} \lambda \left(1 - \frac{1}{1 + \eta r \frac{g}{\lambda_{r}} a} \right) \right]$$

Recall when $q_t = 1$

$$a = \kappa \left[f_x(x) \right]$$

Since $f_x(x)$ is continuous at x^c , we have the desired result.

Backup

Agent's Problem

Given contract with wages c and recommended effort policy A

$$\max_{\{\hat{c},\hat{a}\}} \mathbb{E}\left[\int_0^\tau e^{-rt} u(\hat{c}_t, \hat{a}_t) dt\right]$$

subject to

$$dX_t = \hat{a}_t dt + \sigma dZ_t, \quad X_0 = x_0$$

$$dS_t = (rS_t + c_t - \hat{c}_t)dt, \quad S_0 = 0, \quad \lim_{t \to \infty} e^{-rt}S_t = 0$$

Agent's Problem

Given contract with wages c and recommended effort policy A

$$\max_{\{\hat{c},\hat{a}\}} \mathbb{E}\left[\int_0^\tau e^{-rt} u(\hat{c}_t, \hat{a}_t) dt\right]$$

subject to

$$dX_t = \hat{a}_t dt + \sigma dZ_t, \quad X_0 = x_0$$

$$dS_t = (rS_t + c_t - \hat{c}_t)dt, \quad S_0 = 0, \quad \lim_{t \to \infty} e^{-rt}S_t = 0$$

w.l.o.g, consider contracts that are IC $(\hat{a}_t = a_t)$ + no-savings $(\hat{c}_t = c_t)$

Analysis: Continuation Utility

Let W_t denote the agent's continuation utility at time t

$$W_t = \mathbb{E}\left[\int_t^\tau e^{-r(s-t)}u(a_s,c_s)dt + e^{-r(\tau-t)}\frac{u(0,c_\tau)}{r} \mid \mathcal{F}_t\right]$$

Analysis: Continuation Utility

Let W_t denote the agent's continuation utility at time t

$$W_t = \mathbb{E}\left[\int_t^{\tau} e^{-r(s-t)} u(a_s, c_s) dt + e^{-r(\tau-t)} \frac{u(0, c_{\tau})}{r} \mid \mathcal{F}_t\right]$$

Proposition

The agent's continuation utility W under an IC contract (A, C) evolves according to

$$dW_t = (rW_t - u(a_t, c_t)) dt + \beta_t (-\eta rW_t) (dX_t - a_t dt),$$

where β is the process controlling the strength of incentives

No Savings

Lemma

Consider a deviating agent with saving S who faces contract C and denote his deviation continuation value at time t by $W_t(S,C)$. It holds that

$$W_t(S, \mathcal{C}) = e^{-\eta r S} W_t(0, \mathcal{C})$$

 $W_t(0, C)$ is the agent's continuation value along the no savings path.

No Savings

Lemma

Consider a deviating agent with saving S who faces contract C and denote his deviation continuation value at time t by $W_t(S,C)$. It holds that

$$W_t(S, C) = e^{-\eta r S} W_t(0, C)$$

 $W_t(0, C)$ is the agent's continuation value along the no savings path.

 $\mathsf{CARA} \Rightarrow \mathsf{the} \mathsf{ agent's} \mathsf{ problem} \mathsf{ is translation-invariant to his underlying wealth level$

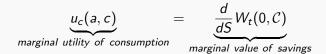
No Savings

Optimality of agent's consumption-savings implies

 $\underbrace{u_c(a,c)}_{dS} = \underbrace{\frac{d}{dS}W_t(0,C)}_{dS}$ marginal utility of consumption marginal value of savings

No Savings

Optimality of agent's consumption-savings implies



Therefore, by the above Lemma,

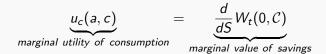
$$u_c(a_t, c_t) = -r\eta W_t \quad \Rightarrow \quad rW_t = u(a_t, c_t)$$

and no savings implies

$$c_t = \frac{1}{2}a_t^2 - \frac{1}{\eta}\ln(-\eta rW_t)$$

No Savings

Optimality of agent's consumption-savings implies



Therefore, by the above Lemma,

$$u_c(a_t, c_t) = -r\eta W_t \quad \Rightarrow \quad rW_t = u(a_t, c_t)$$

and no savings implies

$$c_t = \frac{1}{2}a_t^2 - \frac{1}{\eta}\ln(-\eta rW_t)$$

Continuation utility becomes a martingale

$$dW_t = \beta(-\eta r W_t) \left(dX_t - a_t dt \right)$$

No Savings + IC

Agent's IC

$$\max_{\hat{a}} \left[-\hat{a}\beta\eta rW + u(\hat{a},c) \right]$$

Then FOC implies

 $\hat{a}u_a(\hat{a},c) = \beta \eta r W$

Using the fact that $\hat{a}u_a(\hat{a},c) = u_c(\hat{a},c)$ and $u_c(a,c) = -\eta r W$

That implies

 $\hat{a} = \beta$

HJB Equation

Let v(x, w) denotes the principal's value function

Using No Savings condition we write

$$v(x,w) = \max_{a \in \mathcal{A},\beta} \left[-\frac{1}{2}a^2 + \frac{1}{\eta}\ln(-\eta rW_t) + av_x + \frac{1}{2}(-\beta\eta rW_t)^2 v_{ww}(x,w) - \beta\eta rW_t\sigma v_{xw}(x,w) + \frac{1}{2}\sigma^2 v_{xx}(x,w) \right]$$

Proposition (Continuation Utility)

Agent's continuation utility W under an incentive compatible contract evolves according to following SDE:

 $dW_t = (rW_t - u(a,c)) dt + \beta_t (-\eta rW_t) (dX_t - (a_t + q_tg)dt) + \psi_t (-\eta rW_t) (dN_t - (\lambda + q_t\lambda_r) dt),$

where β is the process controlling the strength of incentives and ψ is the process controlling the strength of risk taking incentives

Proposition (IC for Risk Taking)

The agent chooses the risky regime $(q_t = 1)$ if and only if

$$-r\eta W_t \left(\underbrace{g\beta_t}_{boost in X} + \underbrace{\lambda_r \psi_t}_{boost in risk}\right) \ge 0 \quad \Rightarrow \quad \beta_t \ge -\frac{\lambda_r}{g} \psi_t$$

Proposition (IC for Risk Taking)

The agent chooses the risky regime $(q_t = 1)$ if and only if

$$-r\eta W_t \left(\underbrace{g\beta_t}_{boost in X} + \underbrace{\lambda_r \psi_t}_{boost in risk}\right) \ge 0 \quad \Rightarrow \quad \beta_t \ge -\frac{\lambda_r}{g} \psi_t$$

As β increases in order to deter the agent taking risky action principal needs to increase size of the punishment (negative ψ)

Principal's HJB equation (seperable) can be written as follows:

$$rf(x,w) = \max_{a,c\beta,\psi,q} -c + (a+qg)f_x + (rw_t - u(a,c) - (\lambda + \lambda_r q)\psi_t)f_w + \frac{1}{2}\beta^2\sigma^2 f_{ww} + (\lambda + \lambda_r q)(T(w+\psi) - f(x,w)),$$

where $T(w + \psi)$ denotes the termination payoff of the principal when agent has continuation utility of $w + \psi$

Using no savings condition $+ \mbox{ IC}$ for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi_t f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

Using no savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi_t f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi_t + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln \left(1 - \eta r \psi_t \right) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q \frac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - \frac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0$

Using no savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi_t f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi_t + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln \left(1 - \eta r \psi_t \right) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q rac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - rac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0 \Rightarrow$ no punishment for risk taking

Using no savings condition + IC for effort

$$rf(x,w) = \max_{a,\psi,q} -\frac{1}{2}a^2 + (a+qg)f_x - (\lambda+\lambda_r q)\psi_t f_w + \frac{1}{2}a^2\sigma^2 f_{ww} + (\lambda+\lambda_r q)(T(w+\psi) - f(x,w)),$$

FOC respect to q,

$$gf_X + \lambda_r \psi_t + \lambda_r \left(s - f(x, w) + \frac{1}{\eta r} \ln \left(1 - \eta r \psi_t \right) \right) \ge 0$$

FOC respect to ψ ,

$$(\lambda + \lambda_r)q - (\lambda + \lambda_r)q rac{1}{1 - \eta r \psi} \Rightarrow (\lambda + \lambda_r)q(1 - rac{1}{1 - \eta r \psi}) = 0$$

When q = 1, we have $\psi = 0 \Rightarrow$ no punishment for risk taking

IC for risk taking is non binding by construction, $\beta_t \geq 0$

When q = 0, we have $\psi < 0 \Rightarrow$ punishment for risk taking IC for risk taking binds

$$\beta_t = -\frac{\lambda_r}{g}\psi_t$$

Higher the punishment, higher the $\beta_t \Rightarrow a_t$