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Project Dynamics

Progress
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« 79% apparently complete by original deadline

- 2 major unplanned iterations requiring redesign
« Actual duration: 208% of schedule
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Project Dynamics

Planned & Actual Project Progress
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Introduction

Project Management (R&D, infrastructure, public works ... ):
» Multiple stages, cumulative progress
» Stochastic outcomes: risk of setbacks

> Rewards upon completion

Dynamic moral hazard in a non-stationary environment:
» Progress is slower, success less likely
P Less ambitious, less failure-tolerant projects

» Further delays to deter risk taking
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Model

Principal (P) hires agent (A) to complete a project

The project’s (stochastic) progress is publicly observable
Agent controls the process exerting costly hidden effort
Time is continuous and possibly infinite: t € [0, c0)

Common discount rate r > 0

6/49



Baseline Model

Project evolves in continuous time according to

dXt = M(at, Xt)dt + O'(Xt)dzt

For this talk
M(at,Xt) = dat, O'(Xt) =0

Threshold structure: project is successful if X > X (target, ceiling...)
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Principal’s Payoffs

The project is complete the first time the progress X hits the target X
The principal can also terminate the project earlier

Let 7 denote the termination time. Principal’s realized payoff:

e (Lx, >x1b + 1yx, <x35) — (/0 e "teodt + © p CT)

b > 0 is the benefit from project completion
s > 0 is the salvage value of the project

¢t is the flow wage paid to the agent
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Agent's Payoffs

Agent's (CARA) flow utility:

Ct is agent's time-t chosen consumption level
Agent can privately borrow and save at rate r > 0
Savings account with balance S; at time t

Agent also has outside option W
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Planner’'s Problem

The social planner solves the following problem

- - L [T 2
n)‘?TxIEA Lix.>xpe "b+1ix x€ ’75—2/0 e ratdt]

subject to
dXt = atdt + O'dZt
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Planner’s Problem
The social planner solves the following problem
[
n)‘?TXIEA [I{Xe;}e_”b +1ix, 16”75 — 2/0 e " atdt]

subject to
dXt = atdt + O'dZt

Recursive Formulation:

1 1
rV(x) = max [—232 +aV/(x) + 502 V”(x)}
a

Optimal Effort: a(x) = V/(x)

Optimal Termination: two thresholds X and x/B that satisfy
Value Matching (V(X) = b, V(xB) =s) and Smooth Pasting (V/(xB) = 0)
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Planner’'s Value Function
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Figure: (b,x,0,s,r,n) = (30,5,1,1,2,1/2)
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Planner’s Effort Profile
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Contracting Problem

A contract is a triple C = (A, C, 7) adapted to the public history X*:

» recommended consumption level C (i.e., flow wage process)

» recommended effort level A (i.e., reference progress path)

P termination policy 7
Savings account evolution:

dSt = rSt + Ctdt — 6tdt, 50 = 07 lim E [e_rtst] —0
t—00

Agent continuation utility representation:

th = (rWt — U(ét, Ct, 6t)) dt + 5t(—77rWt)(dXt — atdt)
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Principal's Problem

Principal maximizes her payoff by choosing C

—rT

9'=9

,
m(:'p;EA l{XTZ)—(}e_rTb%—l{XT<>—(}e_rTs—/0 e "cdt —

subject to: IC 4+ IR 4+ No Savings
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Principal maximizes her payoff by choosing C

—rT

E 1 _ —rTb 1 AT —rt dt—
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9'=9

subject to: IC 4+ IR 4+ No Savings

General Recursive Formulation

1
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Principal's Problem

Principal maximizes her payoff by choosing C

9'=9

subject to: IC 4+ IR 4+ No Savings

General Recursive Formulation

max Ea [1{x722}e_"b + Lix.<xy€”

T e T
Ts — e edt — cr
0 r

1

v(x,w) = max [— c+  wW) w + 5 o?(w) Vi

acA,c ——
drift of cont. util.

In general this PDE is difficult to analyze

volatility of cont. util.

1,
+ avx+§a Vax + 0 - 0 (W) Vi
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CARA Properties

Private savings + CARA helps tractability (He, 2011)

We extend these results to non-stationary environment

15 /49



CARA Properties

Private savings + CARA helps tractability (He, 2011)

We extend these results to non-stationary environment

1. CARA implies level-invariance of continuation utility

» Consider a deviating agent with savings S who faces contract C. Denote the
agent’s continuation value at time t by W;(S,C). It holds that

W,(S,C) = e " W,4(0,C),

where W;(0,C) is the continuation value along the no-savings path.
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CARA Properties

Private savings + CARA helps tractability (He, 2011)

We extend these results to non-stationary environment

1. CARA implies level-invariance of continuation utility

» Consider a deviating agent with savings S who faces contract C. Denote the
agent’s continuation value at time t by W;(S,C). It holds that

W,(S,C) = e " W,4(0,C),

where W;(0,C) is the continuation value along the no-savings path.

2. Consumption pinned down =- continuation utility is a martingale
> Ct = % % L |n(—77rWt), i.e., U(at, Ct) = rWt

> th rWt — U(at, Ct)) dt + 6t(_77rWt)(dXt — atdt)
= Bt(_ant)(dXt — atdt)
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Incentive Compatability

3. Incentive Compatibility of the agent

> Agent’s problem
max [u(&, &) + dW]
a
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Incentive Compatability

3. Incentive Compatibility of the agent
> Agent’s problem
max [u(&, &) + dW]

a

» Equivalently
max [u(3, &) + B(—nrW)(dX — 4dt)]
a

FOC + CARA
u)(8,8) =pntW = 4=

4. 14243 together yield additively separable solution to the PDE
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HJB Equation - Derivation

Let v(x, w) denote the principal’s value function

17/49



HJB Equation - Derivation

Let v(x, w) denote the principal’s value function

xw) = 1) = ||

Project Value

Certainty Equivalent to Agent

CARA utility = the certainty equivalent is all that matters for continuation values
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HJB Equation - Derivation

Let v(x, w) denote the principal’s value function

xw) = 1) = ||

Project Value

Certainty Equivalent to Agent

CARA utility = the certainty equivalent is all that matters for continuation values

Using the functional form

1

Viw = 0; Vyw = -
nrw

p(w) =0; o(w) = (—Bnrw)?;
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HJB Equation - Derivation

Let v(x, w) denote the principal’s value function

xw) = 1) = ||

Project Value

Certainty Equivalent to Agent

CARA utility = the certainty equivalent is all that matters for continuation values

Using the functional form

1
Viw = 0; Vyw = _an2 M(W) =0; 02(W) = (_Ban)2;
IC + No savings
1
c= §a2 — =In(—nrW);, B=a
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HJB Equation

Plugging it back to HJB
1 1
rr(x) = max { — 5#;7132 + amx(x) + 70'27TXX(X)},

acA 2

where x := (1 +nro?)~1 < 1. (Note: the planner's problem corresponds to x = 1)
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HJB Equation

Plugging it back to HJB

1 _
rr(x) = max{ — sk 122 ¢ ame(x) + 5027rxx(x)},

where x := (1 +nro?)~1 < 1. (Note: the planner's problem corresponds to x = 1)
Intuition: separability + downward sloping Pareto frontier; but IC requires

progress-contingent wages, and a risk-averse agent requires compensation; therefore,
the principal cannot pay W and induce efficient effort.
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Principal’'s Problem: Solution

1 1
rﬂ(x) = Tea_,zl({ — EH_132 + aﬂ'x(X) + EUZWXX(X)}

= a*(x) = rkm(x) (FOC)

Theorem (Optimal Contract)

The principal’s optimal termination policy is given by two thresholds x and Xx.
These thresholds solve the following ODE

rr(x) = %FU [ (P + %o%xx(x),

with boundary conditions:
Value Matching =n(X)=b, =n(x)=s
Smooth Pasting 7, (x) = 0.
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Optimal Contract

“Ceiling” model = optimal contract “retires’ the agent at the top and at the bottom

Proposition (Properties of the Optimal Contract)
The principal’s value function satisfies the following properties:

» m(x) is increasing (mx(x) > 0) and convex (mx(x) > 0)
» Effort is increasing in x

» Agent works harder and longer in the planner’s solution
> x> xB

> afB(x) > a(x) for all x € [x,X]

» The planner succeeds with higher probability
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Principal’s Value Function

Payoff
30
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Figure: (b,x,0,s,r,n) = (30,5,1,1,2,1/2)
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Principal’'s Effort Profile

at

Planner' s Effort Profile

Principal's Effort Profile
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Figure: (b,X,0,s,r,n) =(30,5,1,1,2,1/2)
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Sample Paths

(bﬂ)_(70757 r717) = (17 107272725 1/2)
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Endogenous Project Scope

Suppose now principal can control how ambitious the project is
> endogenize the ceiling; b(x)

Smooth pasting needs to hold at the top as well

Tx(X) = bx(X)
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Endogenous Project Scope

Suppose now principal can control how ambitious the project is
> endogenize the ceiling; b(x)

Smooth pasting needs to hold at the top as well
Tx(X) = bx(X)

Distortion at both cut-offs (upper and lower)

» Principal chooses less ambitious projects X < X8

» Principal terminates earlier x > x"B
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Risk Choices

Two dimensional moral hazard

Agent chooses risk level g; € {0,1} and the effort a;
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Two dimensional moral hazard

Agent chooses risk level g; € {0,1} and the effort a;
Baseline breakdown risk: project terminates at rate A
g: = 1 implies agent choose risky action

» risk boosts the drift by g > 0

P also increases the arrival rate by A, > 0
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Risk Choices

Two dimensional moral hazard
Agent chooses risk level g; € {0,1} and the effort a;
Baseline breakdown risk: project terminates at rate A

g: = 1 implies agent choose risky action

» risk boosts the drift by g > 0

P also increases the arrival rate by A, > 0

Formally, project evolves according to following SDE

dXt = ,U,(at, Xt, qt)dt -+ O'(Xt)dzt — Ddl\lt7
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|C with Hidden Risk

Proposition (Continuation Utility )

Agent’s continuation utility W under an incentive compatible contract evolves
according to following SDE:

dW; = (rW; — u(a, ©)) dt+8:(—nrWe) (dXe—(ar+q:g) dt)+ e (—nrWe ) (dNe— (X + geA,) dt),

where [3 is the process controlling the strength of incentives and v is the process
controlling the strength of risk taking incentives
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|C with Hidden Risk

Proposition (IC for Risk Taking)
The agent chooses the risky regime (q: = 1) if and only if

Ar
—rnW; gB: + A >0 = BtZ—Eth

boost in X boost in risk
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|C with Hidden Risk

Proposition (IC for Risk Taking)
The agent chooses the risky regime (q: = 1) if and only if

Ar
—rnW; gB: + A >0 = ﬁtZ—E%bt

boost in X boost in risk

If she increases 3, the principal must also increase the size of the punishment (¢ < 0)
in order to deter the agent from taking the risky action
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Optimal Contract with Hidden Risk

Principal’'s HJB equation (seperable) can be written as follows:

1
rf(x, w) = max —c + (a+qg)f + (rw — u(a,c) — (A + A\ Q)0 £, + §B202fww

+ A+ Aq) (T(w +9) = F(x, w)),

where T(w + 1)) denotes the termination payoff of the principal when agent has
continuation utility of w + 1
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Optimal Contract with Hidden Risk

Using No Savings condition + IC for effort

1 1
rf(x, w) = max —2a° + (2 + ag) e — (A + M@y + 53°0% oy

+ A+ Aq) (T(w +9) = F(x, w)),
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Optimal Contract with Hidden Risk
Using No Savings condition + IC for effort

1 1
rf(x, w) = max —2a° + (2 + ag) e — (A + M@y + 53°0% oy

+ A+ Aq) (T(w +9) = F(x, w)),

FOC respect to g,

1
gfx + Arth + A, <s— f(x, W)+mln(1—nr¢)) >0

FOC respect to 1,

1

(>‘+)\r)q_()‘+)\r)q _1777r¢

= (A +A)q(L

1
1—nry )=0

When g = 1, we have ¢y =0
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Optimal Contract with Hidden Risk
Using No Savings condition + IC for effort

1 1
rf(x, w) = max —2a° + (2 + ag) e — (A + M@y + 53°0% oy
+ A+ Aq) (T(w + ) — f(x,w)),

FOC respect to g,

1
gfx + Arth + A, <s— f(x, W)+mln(1—nr¢)) >0

FOC respect to 1,

1 1
1—nry 1—nry

When g = 1, we have ©» = 0 = no punishment for risk taking

(>‘ + Ar)q - ()‘ + )\r)q

= (A +A)q(L

)=0
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Optimal Contract with Hidden Risk
Using No Savings condition + IC for effort

1 1
rf(x, w) = max —2a° + (2 + ag) e — (A + M@y + 53°0% oy
+ A+ Aq) (T(w + ) — f(x,w)),

FOC respect to g,

1
gfx + Arth + A, <s— f(x, W)+mln(1—nr¢)) >0

FOC respect to 1,

1 1
1—nry 1—nry

When g = 1, we have ©» = 0 = no punishment for risk taking

A+ A)g—(A+Ar)g = (A + Ar)q(1

)=0

IC for risk taking is non binding by construction, 3 > 0
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Optimal Contract with Hidden Risk

When g = 0, we have ¥ < 0 = punishment for risk taking
IC for risk taking binds
A
B=-"y
g

Higher the punishment, higher the g = a
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Contract with Hidden Risk

Theorem (Optimal contract with Hidden Risk)

The optimal contract is characterized by two regions:

» High risk region q: = 1, where [x, x|

» Low risk region q: = 0, where [xc, X]
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Contract with Hidden Risk

Theorem (Optimal contract with Hidden Risk)
The optimal contract is characterized by two regions:
» High risk region q: = 1, where [x, x|

» Low risk region q: = 0, where [xc, X]

In the high risk region principal’s HJB equation solves

1 1
(r—{—)\—i—)\,)f(x):max{—a + (a+ g)f — =nra’c® + o2f + A+ A)s }
acA 2 2
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Contract with Hidden Risk

Theorem (Optimal contract with Hidden Risk)
The optimal contract is characterized by two regions:
» High risk region q: = 1, where [x, x|

» Low risk region q: = 0, where [xc, X]

In the high risk region principal’s HJB equation solves

2

1 1
(r—{—)\—|—>\,)f(x):max{—2a + (a+ g)f — =nra’c? + ozfxx—l-

acA

Boundary condition f(x) = s
Smooth Pasting f(x) =0
Switching point x. := inf,~ [gfk(X) + Ar(s — f(x))]

=0

(A+Ar)s }
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Contract with Hidden Risk

Theorem (Optimal Contract with Hidden Risk)

In the low risk region principal’'s HJB equation solves

1 1 1 1
(r+A\)f(x) = arenj,xzb {—2a2+afx+>\1/1—277r3202+)\ <5 + _~ In(1— 77”/’)) "‘2‘725«}’

where a = —%
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Contract with Hidden Risk

Theorem (Optimal Contract with Hidden Risk)
In the low risk region principal’'s HJB equation solves

1 1 1 L
(r+A\)f(x) = ar6nix¢{—2a2+afx+>\1/1—277r3202+)\ <5 + E In(1 — W/J)) +2‘72f><><}’

where a = —%

Boundary condition: f(x) = b
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Optimal Contract

Proposition (Properties of the Optimal Contract)
The principal’s value function satisfies the following properties:

» f(x) is increasing (fi(x) > 0) and convex (fx(x) > 0)
» Effort is increasing up to x., jumps down at x., then keeps increasing

» The planner’s effort is increasing and continuous
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Optimal Contract

Proposition (Properties of the Optimal Contract)
The principal’s value function satisfies the following properties:

» f(x) is increasing (fi(x) > 0) and convex (fx(x) > 0)

» Effort is increasing up to x., jumps down at x., then keeps increasing
» The planner’s effort is increasing and continuous

» The agent works harder and longer in the planner’s solution
> x> xFP
> afB(x) > a(x) for all x € [x, X]

» The principal induces risk-taking longer than the planner

> XCZXfB
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Value Functions

2ayoff

Planner's Value Function

™

a

Principal"s Value Function

Figure: (b,x,0,s,r,n, A\, \;) = (27,5,1,1,2,1/2,3)

5 Xt
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Effort Profiles

Planner" s Effort Profile

Principals's Effort Profile

3 Xt

Figure: (b,x,0,s,r,n, A\, \;) = (27,5,1,1,2,1/2,3)
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Conclusions

We study the provision of incentives in dynamic project
» Tractable model
P> Agent works harder as time passes
» Principal terminates the project before than the designer
» To deter risk taking principal slows down the project
Many possibilities to move forward
» Unobserved progress or success

» Adverse selection
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Conclusions

We study the provision of incentives in dynamic project
» Tractable model
P> Agent works harder as time passes
» Principal terminates the project before than the designer
» To deter risk taking principal slows down the project
Many possibilities to move forward
» Unobserved progress or success

» Adverse selection

This line of research is still far from complete!
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Proof of Non-monotonicity

Use the fact a; = By = —%wt, then FOC respect to ¥ when g; =0

A A A2
Ly — L — o () Y+A—A
g g g

T—nri

Rearranging it we reach
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Proof of Non-monotonicity

Use the fact a; = By = —%% then FOC respect to ¥ when g; =0

A A A2
Ly — L — o () Y+A—A
g g g

T—nri

Rearranging it we reach

Recall when g; =1
a = r[fi(x)]

Since fi(x) is continuous at x¢, we have the desired result.
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Backup
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Agent’'s Problem

Given contract with wages ¢ and recommended effort policy A

max E {/ e "u(é, aAt)dt}
{é,3} 0

subject to

dXt = é\tdt + O'dZt, XO = X0
dSt = (rst + Ct = 6t)dt, SO — O, tim e*l’tst — 0
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Agent’'s Problem

Given contract with wages ¢ and recommended effort policy A

max E {/ e "u(é, aAt)dt}
{é,3} 0

subject to

dXt = é\tdt + O'dZt, XO = X0
dSt = (rSt + Ct = 6t)dt, SO — O, tim e*l’tst — 0

w.l.0.g, consider contracts that are IC (4 = a;) + no-savings (& = ¢)
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Analysis: Continuation Utility

Let W; denote the agent's continuation utility at time t

Wt = ]E |:/ e_r(S—t)U(as, Cs)dt + e—r(q—_t)& ‘ f:|
t
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Analysis: Continuation Utility

Let W; denote the agent's continuation utility at time t

Wt = ]E |:/ e_r(S—t)U(as, Cs)dt + e—r(q—_t)& ‘ f:|
t

Proposition

The agent's continuation utility W under an IC contract (A, C) evolves according to
th = (rWt = U(at, Ct)) dt + ,Bt(_'r]rWt)(dXt — atdt),

where (3 is the process controlling the strength of incentives
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No Savings

Lemma

Consider a deviating agent with saving S who faces contract C and denote his
deviation continuation value at time t by Wy(S,C). It holds that

We(S,C) = e " W(0,C)

W;:(0,C) is the agent’s continuation value along the no savings path.
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No Savings

Lemma
Consider a deviating agent with saving S who faces contract C and denote his
deviation continuation value at time t by Wy(S,C). It holds that

Wt(5> C) = efan Wt(07 C)
W;:(0,C) is the agent’s continuation value along the no savings path.

CARA = the agent's problem is translation-invariant to his underlying wealth level

41/49



No Savings

Optimality of agent’s consumption-savings implies

d
uc(a, C) == EWI'(O,C)

marginal utility of consumption . .
& Y P marginal value of savings
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No Savings

Optimality of agent’s consumption-savings implies

d
uc(a, C) == EWI'(O,C)

marginal utility of consumption . .
& Y P marginal value of savings

Therefore, by the above Lemma,
Uc(at, Ct) = —rT]Wt = rWt = U(at, Ct)

and no savings implies

1 1
Ct = 53% — E In(—ant)
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No Savings

Optimality of agent’s consumption-savings implies

d
uc(a, C) == EWI'(O,C)

marginal utility of consumption . .
& Y P marginal value of savings

Therefore, by the above Lemma,
Uc(at, Ct) = —rT]Wt = rWt = U(at, Ct)

and no savings implies
1 1
Ct = 53% — E In(—ant)

Continuation utility becomes a martingale

th = B(—ant) (dXt — atdt)

42/ 49



No Savings + IC

Agent's IC
max [—aBnrW + u(&, c)]
a

Then FOC implies
du,(4,c) = Bnrw
)

Using the fact that 4u,(4, ¢) = uc(3, ¢) and uc(a, c) = —nrW

That implies

>
Il
™
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HJB Equation

Let v(x, w) denotes the principal’s value function
Using No Savings condition we write

1 1 1
v(x,w) = argjxﬁ - 532 + p In(—nrW:) + avy + 5 (—BnrWe)? Vi (x, w)

2

1
—  BnrWio v (x, w) + 50’ Viex (X, W)
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|C with Hidden Risk

Proposition (Continuation Utility )

Agent’s continuation utility W under an incentive compatible contract evolves
according to following SDE:

dW; = (rW; — u(a, ©)) dt+8:(—nrWe) (dXe—(ar+q:g) dt)+ e (—nrWe ) (dNe— (X + geA,) dt),

where [3 is the process controlling the strength of incentives and v is the process
controlling the strength of risk taking incentives
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|C with Hidden Risk

Proposition (IC for Risk Taking)
The agent chooses the risky regime (q: = 1) if and only if

Ar
—rnW; gB: + A >0 = BtZ—Eth

boost in X boost in risk
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|C with Hidden Risk

Proposition (IC for Risk Taking)
The agent chooses the risky regime (q: = 1) if and only if

Ar
—rnW; gB: + A >0 = ﬁtZ—E@bt

boost in X boost in risk

As [ increases in order to deter the agent taking risky action principal needs to
increase size of the punishment (negative )
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Optimal Contract with Hidden Risk

Principal’'s HJB equation (seperable) can be written as follows:

1
flx,w) = max —c+(a+qg)f+ (e — u(a,c) = A+ X qe) fu + 5 8°0° fu

+ A+ Aq) (T(w +9) = F(x, w)),

where T(w + 1)) denotes the termination payoff of the principal when agent has
continuation utility of w + 1

47 /49



Optimal Contract with Hidden Risk

Using no savings condition + IC for effort

1 1
rf(x, w) = i —582 + (a+ qg)fc — (A + Arq)efy + Qazaszw

+ A+ Aq) (T(w +9) = f(x, w)),
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Optimal Contract with Hidden Risk

Using no savings condition + IC for effort

1 1
rf(x, w) = i —582 + (a+ qg)f — (A + Arq)efu + §a202fww

+ A+ Aq) (T(w +9) = f(x, w)),

FOC respect to g,

1
ng + Ar"bt + )\r <5 - f(X7 W) + E In (1 o nr¢t)> = e

FOC respect to 1,

1

(>‘+)\r)q_()‘+)\r)q _1777r¢

= (A +A)q(L

1
1—nry )=0

When g = 1, we have ¢y =0
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Optimal Contract with Hidden Risk

Using no savings condition + IC for effort

1 1
rfx, w) = max —5a° + (2 + qg) i — A+ A q)peu + 53°0%funs
+ A+ Aq) (T(w + ) — f(x,w)),

FOC respect to g,

1
ng + Ar"bt + )\r <5 - f(X7 W) + E In (1 o nr¢t)> = e

FOC respect to 1,

1 1
1—nry 1—nry

When g = 1, we have ©» = 0 = no punishment for risk taking

A+ A)g—(A+Ar)g = (A + Ar)q(1

)=0
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Optimal Contract with Hidden Risk

Using no savings condition + IC for effort

1 1
rfx, w) = max —5a° + (2 + qg) i — A+ A q)peu + 53°0%funs
+ A+ Aq) (T(w + ) — f(x,w)),

FOC respect to g,

1
ng + Ar"bt + )\r <5 - f(X7 W) + E In (1 o nr¢t)> = e

FOC respect to 1,

1 1
1—nry 1—nry

When g = 1, we have ©» = 0 = no punishment for risk taking

A+ A)g—(A+Ar)g = (A + Ar)q(1

)=0

IC for risk taking is non binding by construction, 8; > 0
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Optimal Contract with Hidden Risk

When g = 0, we have ¥ < 0 = punishment for risk taking
IC for risk taking binds

Higher the punishment, higher the 8; = a;
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