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rival and magnitude of future LTC costs into a life-cycle model with endogenous aging, and

we analyze how this affects the optimal behavior of agents. We show that uncertainty boosts

precautionary savings, lowers investment in preventive care, and weakens the effectiveness

of subsidies to encourage prevention. Our results therefore suggest that uncertainty should

not be ignored in models that study positive or normative aspects of health investment.
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1. Introduction

Health care costs surge at old age. In the US, for instance, average medical expenditures

for a 65+ individual are 2.6 times higher than the national average (De Nardi et al., 2016).

Long-term care (LTC), which involves the services designed to meet a person’s everyday

needs, is a key component of this increase in health care costs (OECD, 2020). With the

threat of rising medical bills looming on the horizon, young adults are often encouraged

to save and to invest in preventive health care. Preventive health care lowers the burden

of disease and associated risk factors. Examples include medical screening, exercise and a

healthy diet. Though recent research has studied this intertemporal link between choices

by young adults and old-age LTC costs (Marchiori and Pierrard, 2022; Schünemann et al.,

2022), an essential element is missing: uncertainty.1

Indeed, medical bills of elderly people are not only high, but also wildly uncertain. According

to De Nardi et al. (2018), the average 70-year-old US household pays $122 000 in medical-

related activities over remaining life. At the right tail of the distribution, however, the

outlook is rather grimmer: 5% of households pay more than $300 000 and 1% more than

$600 000. Moreover, much of the risk is uninsured, for the private insurance market for LTC

is almost nonexistent (Brown and Finkelstein, 2011).2 Our paper therefore draws attention

to how uncertainty shapes the interactions between preventive care, savings, and LTC costs.

Using a simple theoretical model, we will argue that uncertainty about LTC costs boosts

savings, lowers investment in preventive care, and weakens the effectiveness of preventive

care subsidies.

Our baseline model follows the deterministic life-cycle setup of Dalgaard and Strulik (2014)

and Schünemann et al. (2022). A simple law of motion for human frailty is at the core of

the model: as individuals age, they become weaker. This aging process is unstoppable, but

individuals can slow it down by investing in preventing care. In its deterministic version, the

model assumes that upon reaching a fixed level of human frailty, individuals begin to pay

LTC costs proportional to their frailty levels. Therefore, individuals know when they will

begin to pay LTC costs (switch time henceforth), and also know their overall LTC bills.

This is not true in our stochastic setup: the switch time is no longer given by a fixed known

threshold, but by a random variable with a hazard rate increasing in the level of human frailty.

1Risk and uncertainty are different notions: risk can be measured precisely whereas uncertainty cannot

be expressed by specific probabilities of occurrences (Knight, 1921). Strictly speaking, our analysis relates

to risk but, by abuse of language, we will use the two terms interchangeably, as in the related literature (see

below).
2Estimations from De Nardi et al. (2018) include out-of-pocket as well as Medicaid expenditures, which

reduce the ‘net’ medical spending risks, especially of the poorest households. These considerations are beyond

the scope of our paper.
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Our modeling approach implies that preventive health care delays the expected switch time,

thus introducing risk: however large an individual’s health investment, LTC costs can bite

at any moment.3 Modeling the switch time as a random variable generates both income risk

and return risk. Income risk because total LTC costs, and hence net income, can no longer

be perfectly predicted. Return risk because preventive care is now a risky investment with

an uncertain return. These two risk sources are behind all of our insights.

We obtain three main results. First, uncertainty over the switch time makes it optimal to

reduce investment in preventive care. While in the deterministic setup every extra unit of

preventive care pushes the switch time into the future, in the stochastic setup preventive

care only pushes the expected switch time into the future. In other words, the payoff on

health investment is certain in the deterministic setup but uncertain in the stochastic one.

Under this return risk, two well-known opposite effects are at play (see for instance Sandmo,

1970): an income effect which stimulates individuals to increase health investment in face of

uncertainty, and a substitution effect which encourages individuals to hold fewer risky assets

(here health investment). Jouini et al. (2013) show that under standard assumptions on the

utility function, the second effect dominates. This is what we also obtain in our model.

Our second result is that uncertainty reduces the effectiveness of subsidies for investment in

preventive care. Put differently, deterministic setups overestimate the effectiveness of health

policy. This result can be understood as a portfolio choice problem. Subsidies on health

investment will increase its return. If health investment is risk-free, an investor will augment

its portfolio share, but if the return to investment is stochastic, a second – opposite – effect

arises, more health investment also makes the portfolio riskier. As a result, a risk-averse

investor will invest less in health (see for instance Chang, 1996, for a similar discussion).

Third, uncertainty over the switch time increases precautionary savings. That is, risk-averse

individuals build a capital buffer to meet sooner-than-expected medical bills. This finding

echoes the unambiguous link between income uncertainty and precautionary savings put

forward by Sandmo (1970), Skinner (1988), Caballero (1991) and many others.

Our work relates to the literature extending the seminal Grossman (1972) model with uncer-

tainty; see Dardanoni and Wagstaff (1990) for a static setup, and Nocetti and Smith (2010)

and Picone et al. (1998) for discrete-time versions. This body of work, where medical care

enhances health, which enters utility directly, conveys conflicting messages about the effects

3Throughout the paper, uncertainty only relates to the switch time, i.e. to the moment an individual

starts paying LTC costs. An alternative would be a fixed switch time but uncertain LTC costs. This would

leave our key insights unchanged. We also assume an exogenous end time (death). However, a similar

kind of uncertainty could apply to death: healthy people die later on average, but there exists individual

randomness. We leave this extension to ‘double uncertainty’ (switch time and end time) for future research.
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of uncertainty on health investment. Results typically depend on the way uncertainty is in-

troduced and health enters the utility function. We differ from this literature in at least four

ways: (i) ours is a continuous-time model with an endogenous regime switch; (ii) physical

frailty entails costs – or equivalently affects disposable income – rather than disutility flows;

(iii) uncertainty blurs the effectiveness of preventive care (return risk on health investment);

(iv) uncertainty also generates a net income risk. Our approach is therefore in line with the

empirical observations in De Nardi et al. (2016, 2018) that medical expenses of the elderly

are high and uncertain, come mostly from nursing home spending, and once incurred, tend

to be persistent over time.

Our paper also connects to the literature modeling health externalities in deterministic frame-

works (see e.g. Kuhn et al., 2011; Leroux et al., 2011). This class of models exhibit under-

investment in health, since individuals do not fully internalize its marginal benefits. In our

setup, however, low health investment does not originate from a market failure, but from an

intrinsic feature of the economy: uncertainty.

Section 2 presents the deterministic model. Section 3 adds uncertainty (stochastic model).

Section 4 studies the effectiveness of a health subsidy policy. Section 5 extends the previous

model with savings. Section 6 concludes.

2. Deterministic Model

Our benchmark model is a simplified version of the deterministic setup due to Dalgaard

and Strulik (2014) and Schünemann et al. (2022). As humans age, they experience a growing

number of disorders, often referred to as ‘health deficits’. When this deficit reaches a certain

level, individuals incur persistent medical expenditures (or equivalently, LTC costs). Agents

thus face an intertemporal tradeoff: boost current utility by raising consumption or slow

down the aging process, and the future LTC costs, by investing in preventive care. To solve

the model analytically, we assume that (i) agents cannot save; and that (ii) preventive care

has a linear impact on health deficits. To simplify discussion, we do not discount the future.

As shown in Section 5, our findings are robust to all these assumptions.

2.1. Setup. An individual lives from age t = 0 to t = T > 0. Her overall welfare is thus

given by ∫ T

0

ln c(t) dt− φ d(T ) (1)

with φ > 0. As usual, the first term represents utility flows from consumption c, while

the second term captures the salvage cost of health deficit d(T ). Without this salvage cost,

there is no reason to invest in health towards the end of life, and h would tend to −∞ when
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t→ T .4 This health deficit, which embodies the link between aging and frailty, evolves as

ḋ(t) = µ(d(t)− Ah(t)) (2)

where µ ∈ (0, 1/T ) is the natural growth rate of d, that is, its growth rate in the absence of

preventive care h. A > 0 governs the effectiveness of preventive care at slowing health deficit

accumulation. At each instant t ∈ (0, T ), individuals receive an exogenous income y > 0.

the budget constraint is then

c(t) =

{
y − h(t) if d(t) < d̄

y − h(t)−Bd(t) if d(t) ≥ d̄
(3)

where B > 0. The rationale for investing in preventive care is now clear: as soon as the

health deficit d(t) crosses the known threshold d̄, individuals face LTC costs Bd(t).

Agents choose the sequence {h(t)}Tt=0 that maximizes (1) subject to (2) and (3). This

optimization program has two boundary conditions: d(0) = d0 with 0 < d0 < d̄, and

q(T ) = −φ, where q is the shadow price (i.e. intrinsic value) of d. The initial condition

ensures that individuals do not face LTC costs when they are born. The final condition

balances the shadow price of d(T ) and the marginal benefit that an extra unit of d(T ) would

have on welfare. Since the marginal benefit is in fact negative in our setup, q(T ) is also

negative.

2.2. Solution. We need to solve a two-stage optimal control problem featuring one con-

trol h(t), one state d(t), and one co-state q(t). Solving the model means finding the op-

timal switch time τ ∈ (0, T ) such that d(τ) = d̄, and the optimal piecewise sequences for

{h(t), q(t), d(t)}Tt=0. Below we directly report the model’s optimality conditions, but Appen-

dix A provides mathematical details and intuitions. Importantly, we implicitly assume when

deriving the solution below that c(t) > 0 and that the regime switch happens once and only

once during the lifetime. In Section 2.3, we provide sufficient conditions on the parameters

to satisfy these assumptions.

(i) Solution paths when 0 ≤ t < τ
q(t) = − τ exp(−µt)

(d̄−Ay) exp(−µτ)−(d0−Ay)

d(t) = Ay + (d0 − Ay) τ−t
τ

exp(µt) + (d̄− Ay) t
τ

exp(−µ(τ − t))
h(t) = y + 1

µAq(t)

4An alternative solution is to impose an upper bound d̃ on d(T ) and use the Kuhn-Tucker conditions, but

we have no information on how to choose the upper bound. We may interpret the salvage cost in two ways.

One can see it as utility obtained from a ‘decent’ end of life (or equivalently disutility from a ‘painful’ end of

life). Alternatively, one can consider that the final period (death) T ′ > T is endogenous. The salvage value

encompasses all extra income from the non-modeled period (T, T ′]. The higher is health deficit, the lower is

T ′ and hence the extra income.
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(ii) Solution paths when τ ≤ t ≤ T
q(t) = −φ exp(η(T − t))
d(t) = (d̄− θ) exp(η(t− τ)) + t−τ

φ
exp(−η(T − t)) + θ

h(t) = y −Bd(t) + 1
µAq(t)

Here η ≡ µ(1 +AB) and θ ≡ Ay/(1 +AB). Though d(t) is continuous at τ , neither its time

derivative nor q(t) nor h(t) are. The logic is straightforward: once the threshold is crossed,

agents’ budget constraints change, and so do shadow prices, investment in preventive care,

and the speed at which health deficits accumulate.

(i) Switch time τ

Let H−(t) = ln(y − h(t)) + q(t)µ(d(t) − Ah(t)) be the Hamiltonian function for t < τ .

Likewise, let H+(t) = ln(y−h(t)−Bd(t)) + q(t)µ(d(t)−Ah(t)) be the Hamiltonian function

for t ≥ τ . The switch time τ ∈ (0, T ) is implicitly defined by H−(τ) = H+(τ). Using the

piecewise solutions above, H−(τ) and H+(τ) are given by{
H−(τ) = − τµ(d0−Ay)

(d̄−Ay) exp(−µτ)−(d0−Ay)
− ln τ

(d̄−Ay) exp(−µτ)−(d0−Ay)

H+(τ) = −η(T − τ)− lnφ− ηφ(d̄− θ) exp(η(T − τ))

In words, the Hamiltonian function is continuous at τ , for at the optimal switch time agents

must be indifferent between remaining in the first regime or moving to the second one.

The next subsection provides parameter restrictions ensuring a well-defined and meaningful

equilibrium. The analysis not only enhances our understanding of the deterministic model,

but also helps us to calibrate it and set the stage for the introduction of uncertainty.

2.3. Parameter Restrictions. We want to make sure our model satisfies three features:

(i) ḋ(t) > 0 ∀t; (ii) ∃τ ∈ (0, T ) such that d(τ) = d̄; and (iii) h(t) > 0 ∀t.5 Feature (i) makes

health deficits irreversible and rules out negative deficits, since d(0) = d0 > 0. Feature (ii)

ensures the existence of an optimal switch time τ . When combined with the first feature

(ḋ > 0), the existence of τ also guarantees its uniqueness, which implies that agents cannot

go back and forth between regimes. Lastly, feature (iii) imposes strictly positive investment

in preventive care. The following parameter restrictions guarantee these three features.

Proposition 1. min[(d̄−Ay)− (d0−Ay) exp(µT ) , (d̄−Ay)− (d0−Ay)(1− µT )] > 0 is a

sufficient condition to have ḋ(t) > 0 in the regime without LTC (0 ≤ t < τ).

Proof. See Appendix B. �
5By abuse of language, we define the time derivative on all t ∈ (0, T ). Strictly speaking, it is only defined

on (0, τ) ∪ (τ, T ).
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Proposition 2. (d̄−θ)ηφ exp(ηT )+exp(−ηT ) > 0 is a sufficient condition to have ḋ(t) > 0

in the regime with LTC (τ ≤ t ≤ T ).

Proof. See Appendix B. �

The conditions in Propositions 1 and 2 ensure that ḋ(t) > 0 ∀t ∈ [0, T ]. Crucially,

Propositions 1 and 2 also guarantee that q(t) < 0 and q̇(t) > 0 ∀t ∈ [0, T ]. This makes

sense: health deficits hinder welfare, so their shadow prices must be negative. In addition,

health deficits are more costly at an early age, because they naturally accumulate at rate

µ (ḋ/d = µ if there is no health investment). Therefore, their shadow prices must converge

to their final value (−φ) from below. Since the optimality condition for consumption reads

c(t) = −1/(µAq(t)), Propositions 1 and 2 also ensure that c(t) > 0 ∀t. Lastly, Propositions 1

and 2 imply the continuity of H−(τ) and H+(τ), ∀τ ∈ [0, T ].

Moving to feature (ii), it can be shown that H−(τ = 0) → ∞ and H+(τ = 0) < ∞.

Therefore, if H+(τ = T ) > H−(τ = T ), the continuity of H−(τ) and H+(τ) ensures there

exists at least one τ such that d(τ) = d̄. Proposition 3 provides a necessary and sufficient

condition.

Proposition 3. µT (d̄−Ay)

(d̄−Ay)−(d0−Ay) exp(µT )
− ln

(
(d̄− Ay)− (d0 − Ay) exp(µT )

)
+ lnT − lnφ −

ηφ(d̄− θ) > 0 is a necessary and sufficient condition to have H+(T ) > H−(T ).

Proof. See Appendix B. �

Furthermore, since d is strictly increasing everywhere, the existence of a τ such that

d(τ) = d̄ immediately implies its uniqueness.6

Finally, the last two propositions ensure that investment in preventive care does not take

negative values.

Proposition 4. y − (d̄−Ay)−(d0−Ay) exp(µT )
µAT

> 0 is a sufficient condition to have h(t) > 0 in

the regime without LTC (0 ≤ t < τ).

Proof. See Appendix B. �

Proposition 5. min
[
y −B

(
d̄+ T

φ

)
− 1

φµA
, y −B

(
d̄+ T

φ
− θ(exp(ηT )− 1)

)
− 1

φµA

]
> 0

is a sufficient condition to have h(t) > 0 in the regime with LTC (τ ≤ t ≤ T ).

Proof. See Appendix B. �

To better understand all these propositions, consider a simple numerical example. Let us

normalize T , y, and d0 to 1, and set µ = 0.1, A = 1.2 and B = 0.1. Figure 1 shows where

6More formally, Proposition 1 implies that H−τ (τ) < 0 and Proposition 2 implies that H+
τ (τ) > 0 (see

Appendix B). Therefore, conditional on Propositions 1 and 2, Proposition 3 ensures not only the existence

but also the uniqueness of τ .
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Figure 1. Sufficient Conditions on Parameters φ and d̄

Notes. Sufficient conditions in the graph are based on the calibration T = y = d0 = 1, A = 1.2, B = 0.1

and µ = 0.1. The parameter φ (x-axis) represents the salvage cost of health deficit and the parameter

d̄ (y-axis) represents the health deficit threshold. The sufficient condition from Proposition 2 is not

binding in the chart area and therefore does not appear. Propositions 1 to 5 are only respected in

the shaded area. The dot represents the {φ, d̄} combination we use for the numerical simulations in

Sections 3 and 4. Superscripts − and + indicate before and after the switch time, respectively.

our propositions are satisfied when we vary parameters φ and d̄.7 As d̄ falls, for instance,

individuals boost their investment in preventive care to avoid paying LTC costs while young.

Below a certain level of d̄ (i.e. below the solid blue line), these large investments actually

reduce health deficits, thus violating Proposition 1. Likewise, Proposition 3, which ensures

the existence of a τ such that d(τ) = d̄, does not hold for large values of φ and d̄ (i.e. area

above the dashed red line). This is intuitive: too large a φ makes health deficits too costly.

Individuals therefore invest more in preventive care, always keeping health deficits below

the threshold d̄. Similarly, too large a d̄ simply makes the threshold unreachable. In turn,

Proposition 4 and 5, under which h(t) > 0 ∀t, do not hold for large d̄’s and low φ’s. As

mentioned above, too large a d̄ (i.e. dotted yellow line) makes the LTC regime out of reach

even if individuals were to ‘dis-invest’ in preventive care. In addition, too low a φ (i.e. purple

dotted line) kills the incentives to invest in preventive care once the threshold d̄ is crossed,

for the negative welfare effects of health deficits become negligible.

7Proposition 2 is too weak to appear in Figure 1.
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All told, only the shaded area ensures that Propositions 1 to 5 hold. Section 3.3 will use the

calibration just discussed with the admissible pair φ = 10 and d̄ = 1.05.8

3. Stochastic Model

In our deterministic model, there was no uncertainty over the impact of preventive care

on the switch time τ . Put differently, τ was determined by agents’ optimal choices. This

is no longer the case in our stochastic setup. Here τ is a random variable with hazard rate

λ(d) ∈ [0,∞). This hazard rate is a C1-function of d with λd ≥ 0, implying that higher

health deficits increase the likelihood of switching to the LTC regime. τ therefore becomes

partly random, which limits agents’ ability to control it.

Crucially for our analysis, the deterministic model is a limit case of its stochastic counterpart

when λ(d) approximates a step function equaling 0 when d < d̄ and L when d ≥ d̄, with L

sufficiently large. At the other end of the spectrum, λd = 0 breaks the link between τ and

d, making the switch time purely random.

3.1. Setup and Solution. The stochastic setup is similar to (1) to (3), but now the switch

time is not known in advance, so individuals maximize expected life-time utility. Formally,

the optimization problem is

E

[∫ T

0

ln c(t) dt− φ d(T )

]
(4)

under

ḋ(t) = µ(d(t)− Ah(t)) (5)

with

c(t) =

{
y − h(t) if t < τ

y − h(t)−Bd(t) if t ≥ τ
(6)

τ is a random variable and its density is

λ(d(t)) exp

(
−
∫ t

0

λ(d(u))du

)
(7)

The associated hazard rate is therefore λ (d(t)), which must respect the above-mentioned

restrictions.

We rely on the Hamilton-Jacobi-Bellman equation to solve the stochastic model. As before,

the model features one control h(t), one state d(t), and one co-state q(t). There is an

additional auxiliary variable γ(t) measuring the expected flow of remaining utility along the

8Though this calibration is certainly arbitrary, any alternative satisfying Propositions 1 to 5 generates

similar qualitative outcomes.
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optimal path. As shown in Appendix C, the solution in the non-LTC regime is governed by

the system of three differential equations

q̇(t) = (λ(d(t))− µ)q(t) + φ exp(η(T − t)) [λ(d(t))− λd(d(t))(d(t)− θ)]
+λd(d(t))

[
γ(t) + η

2
(T − t)2 + (1 + ln(µAφ))(T − t) + φ θ

]
γ̇(t) = ln(−µAq(t)) + λ(d(t))

[
γ(t) + η

2
(T − t)2 + (1 + ln(µAφ))(T − t)

+φ(d(t)− θ) exp(η(T − t)) + φ θ]

ḋ(t) = µ(d(t)− Ay)− 1
q(t)

with three boundary conditions d(0) = d0, q(T ) = −φ and γ(T ) = −φd(T ), as well as

h(t) = y +
1

µAq(t)

The first two boundary conditions are as before. The third one ensures that the only utility

remaining at T is the salvage value of the health deficit. This non-linear boundary value

problem has no closed-form solution. Below, we will solve it numerically.

However, after the switch to the LTC regime, the model accepts the following closed-form

solution
q(t) = −φ exp(η(T − t))
γ(t) = −η

2
(T − t)2 − ln(µAφ)(T − t)− φ(d(τ)− θ) exp(η(T − τ))− (T − τ)− φθ

d(t) = (d(τ)− θ) exp(η(t− τ)) + t−τ
φ

exp(−η(T − t)) + θ

h(t) = y −Bd(t) + 1
µAq(t)

After the regime switch, the paths for {q(t), d(t), h(t)} are identical to the ones from the

deterministic setup. This makes sense, for all uncertainty vanishes after τ . The closed-form

solution for the new auxiliary variable γ(t) is helpful to derive the solution before the regime

switch (see Appendix C).

3.2. Uncertainty and Health Investment. We assume that the hazard rate follows a

logistic function

λ(d) =
L

1 + exp(−k(d− x0))

with L and x0 ∈ (0,∞), and k ∈ [0,∞). Let us consider two limiting cases for which we can

provide analytical insights.

The first case is k →∞, x0 = d̄ and L very large. λ(d) becomes a continuous approximation

of a step function with λ(d) → 0 when d < d̄ and λ(d) → L when d ≥ d̄. As a result, the

probability of switching from the non-LTC regime to the LTC regime tends to zero when d is
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below d̄ and to 1 when d reaches d̄. That is, uncertainty disappears and thus the stochastic

model nests its deterministic counterpart.9

The second limiting case is k = 0. The logistic function becomes λ(d) = λ = L/2, making the

switch time entirely exogenous. The closed-form solution for the co-state variable q(t) ∈ [0, τ)

is now

q(t) = − φ

η + λ− µ
((η − µ) exp(−(λ− µ)(T − t)) + λ exp(η (T − t)))

Appendix D shows that q(t) < 0 and q̇(t) > 0. As before, health deficits lower utility,

and are more harmful early in life, because they naturally increase over time. In addition,

Appendix D proves that qλ < 0. The intuition is as follows. Higher values of λ will lower the

expected value of τ . For lower expected values of τ , the expected LTC costs of accumulating

health deficits will be higher and hence q(t) will become more negative.

Comparing these limiting cases yields our first key insight: uncertainty lowers investment in

preventive care. In the absence of uncertainty (k →∞), rising h(t) decreases d(t), which in

turn entails three positive effects: (1) a higher value of τ , (2) lower per-period LTC costs,

and (3) lower health deficits at T . Figure 2 illustrates these three channels. Channels (1)

and (2) reduce total LTC expenditures (shaded area) and channel (3) reduces the salvage

cost (proportional to the dots at time T ). However, under maximal uncertainty (k = 0), the

first channel disappears, as τ becomes exogenous. There is therefore less incentive to invest

in preventive care. Mathematically, k = 0 raises the shadow price of health deficits (i.e.

decreases the absolute value of q(t)), calling for less investment in preventive care. We show

numerically in the next section that the transition between these two extremes is monotone.

That uncertainty lowers preventive care echoes the literature on investment under return

risk. This body of work (see for instance Sandmo, 1970) reveals that return risk leads to

two competing forces. On the one hand, high risk makes it necessary to protect oneself

against the future. This is an income effect calling for greater health investments. On the

other hand, high risk makes an agent less inclined to expose her resources to the probability

of loss. This is a substitution effect calling for lower health investments. As shown by

Jouini et al. (2013), for standard utility functions the substitution effect always dominates

the income effect. This is exactly reflected in our first key finding.

9This can be easily shown mathematically: taking λ(d) → 0 and λd(d) → 0 when t < τ , the differential

equation for q simplifies to q̇ = −µq as in the deterministic setup (see Appendix A). With the same boundary

conditions and using d(τ) = d̄, we obtain the deterministic solution paths for all t ∈ [0, T ].
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Figure 2. Effects of health investment on LTC costs, without uncertainty

t

LTC exp.

Bd̄

τ T

(1)

(2)

(3)

Notes. The black line shows a stylized evolution of LTC costs over time. Higher investment in health

lowers health deficit. Without uncertainty, this affects LTC expenditures and the salvage cost through

three channels (numbered arrows). Proposition 2 ensures that the blue line is always below the black

line, i.e. that the direction of channels (2) and (3) is unambiguous.

3.3. Numerical Illustration. As mentioned earlier, the general boundary value problem

presented in this section has no closed-form solution. Therefore, we solve it using the col-

location method proposed by Shampine et al. (2003). We will study the two limiting cases

considered above with an intermediate case taking 0 < k <<∞.

We calibrate parameters {T, y, d0, A,B, µ, φ} as in the deterministic model in Section 2.3.

However, parameters {x0, k, L}, which govern λ(d), are specific to the stochastic model. Our

choice for the curve’s midpoint is x0 = d̄, thus allowing the stochastic model to nest its

deterministic counterpart (see Section 3.2). Regarding the curve’s steepness, we consider

three cases: k = {0, 100, 2000}. The first case breaks the link between d and λ(d). In the

second case, λ(d) increases smoothly with d, taking meaningful positive values over a long

period.10 The third case approximates a step function: around x0, λ(d) jumps from 0 to

L . Lastly, we choose the curve’s maximum value L so that if health deficits followed the

same path as in the deterministic model, the median switch time in a large panel of agents

10In a large panel of agents, k = 100 (together with L = 6.65) implies that 3% of the population faces

long term costs at the age of T/4, 14% at the age of T/2 and 85% at the age of T .
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Figure 3. Health dynamics
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Notes. Mean paths of health investment (h) and health deficit (d) in a stochastic time series simulation

of 50,000 agents.

would equal the switch time in such a model. The resulting values are L = 1.74 when k = 0,

L = 6.65 when k = 100, and L = 128 when k = 2000.11

Figure 3 plots the mean paths of health investment and health deficit in a stochastic time

series simulation of 50,000 agents under k = {0, 100, 2000}. As a benchmark, we also show

the paths from the deterministic model. The figure illustrates our key result: uncertainty

reduces investment in preventive care.

In addition, the figure reveals five important properties. First, k = 2000 effectively elim-

inates uncertainty, because individuals know when the switch time will occur. Therefore,

the stochastic economy converges to the deterministic equilibrium. Second, by lowering in-

vestment in preventive care, uncertainty makes health deficits grow faster and reach higher

levels. Third, preventive care falls over time, as health deficits are more harmful early in life

(see Section 3.2). The second and third points apply both at the individual level and for

the population as a whole. Fourth, LTC costs begin to bite at τ , leading agents to abruptly

reduce investment in preventive care at that point. This is clear in the deterministic case

and when k = 2000, since all individuals change regimes simultaneously. However, in the

other two cases, switch times are distributed more heterogeneously across the population,

smoothing the mean path of preventive care. Lastly, the wider distribution of switch times

means that part of the population dies before they face LTC costs (i.e. τ > T ). This is

11We take the median switch time instead of the mean switch time because we cannot compute the latter.

Indeed, computing the mean switch time requires knowing the switch time of all individuals. However, in

the stochastic setup we do not know the switch time of part of the population, because it would happen

after time T (in other words, at the end of their lives, some individuals are still in the regime without LTC).
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why when k is low, the mean health investment at T is above the level in the deterministic

model.12

4. Uncertainty and Policy Transmission

Financial incentives may encourage healthier lifestyles, leading to better health outcomes

and lower costs of care (see for instance Mantzari et al., 2015, or Vlaev et al., 2019, for

a review of the empirical literature). Could uncertainty over the switch time τ affect this

link?

To tackle this question, let us consider a simple policy: the government reimburses part of

private investment in preventive care.13 Formally, the budget constraint becomes

c(t) =

{
y − (1− S)h(t) if t < τ

y − (1− S)h(t)−Bd(t) if t ≥ τ

where S ∈ [0, 1) is the subsidy rate. As before, we rely on the Hamilton-Jacobi-Bellman

equation to solve the model (see Appendix E for more details).

We assess the performance of policy S on a sample of 50,000 agents. First, we calculate

investment in preventive care as a share of income over the life cycle of the average agent

H(S) = E
∫ T

0
h(t | S) dt∫ T

0
y dt

Here h(t | S) is preventive care investment at time t conditional on policy S. Therefore, the

cost of the subsidy as a fraction of total income is SH(S). Next, we compute LTC costs

conditional on policy S for the average agent

LTC(S) = E
∫ T
τ
B d(t | S) dt∫ T

0
y dt

Hence, cost-saving due to S is ∆LTC(S) = −(LTC(S) − LTC(0)). Our measure of the

efficiency of the policy – or equivalently the policy return – is then

R =
∆LTC(S)

SH(S)

Table 1 presents this policy return R as a function of the uncertainty parameter k when

S = 0.05.14 The key message is clear: uncertainty (low values for k) reduces the return of

S, making it a less attractive policy.

12In the left panel of Figure 3, curves cross at different points, although this is not visible under our

calibration.
13In our partial equilibrium model, we do not consider how the government finances the subsidy.
14Although S = 0.05 is an arbitrary choice, the logic underpinning Table 1 holds ∀S ∈ (0, 1).
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Table 1. Effects of a subsidy rate S on health investment

H(0) H(S) SH(S) LTC(0) LTC(S) ∆LTC(S) R

k = 0 17.4 22.5 1.1 3.5 3.5 +0.0 1.2%

k = 100 23.0 31.3 1.6 2.8 2.1 +0.7 43%

k = 2000 27.5 41.9 2.1 2.2 0.2 +1.9 92%

Notes. Mean values of health investment H and LTC costs (both as a percentage of income)

in a stochastic time series simulation of 50,000 agents. We assume a health investment

subsidy rate S = 0.05. ∆LTC(S) = −(LTC(S) − LTC(0)) and R = ∆LTC(S)/(SH(S))

represents the return on policy. For instance a return of R = 50% means that for a policy

subsidy of $1, LTC costs are reduced by $0.5. The level of uncertainty is inversely related

to k (see the discussion in Sections 3.2 and 3.3).

In Table 1, columns 1 and 2 reveal that uncertainty limits agents’ response to policy S.

When uncertainty is almost nil (i.e. k = 2000), the policy raises preventive care investment

by 14.4 percentage points. However, when the switch time is fully random (i.e. k = 0), it

only does so by 5.1 percentage points. Policy S thus leads to lower health deficits under mild

uncertainty, postponing the switch time and reducing LTC costs. Our cost-saving measure,

∆LTC(S), and hence the policy return R, then increase as uncertainty falls. Again, when

uncertainty tends to zero, a $1 subsidy cuts LTC costs by $0.92, making it almost self-

financed. In contrast, when the switch time is fully random, a $1 subsidy has almost no

effect on LTC costs.

The channel through which uncertainty limits agents’ response to policy S relates to Ar-

row (1965)’s portfolio selection under uncertainty (see also Chang, 1996, for an application

to health). Specifically, policy S lowers the relative price of preventive care, increasing its

expected return. This mean-effect raises the share of income allocated to investment in pre-

ventive care. If the return to investment is risk-free, or close to, this mean-effect fully explains

how policy S shapes agents’ choices. However, if the return to investment is risky, then a

competing variance-effect arises: larger investments expose agents to more risk. Since agents

are risk-averse, the variance-effect partly offsets the mean-effect, hindering the effectiveness

of policy S in encouraging investment in preventive care.

That uncertainty reduces the effectiveness of a subsidy to investment in health has a clear

corollary. Evaluating health policy through the lens of deterministic setups could lead to

conclusions that are too optimistic (e.g. Marchiori and Pierrard, 2022, for a deterministic

OLG model with optimal subsidy rate). On a related note, uncertainty could also explain

the weak pass-through of some health policies documented in the empirical literature (e.g.

Finkelstein et al., 2019).
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5. Uncertainty and Savings

The stochastic model from Section 3 presents agents with a standard inter-temporal trade-

off between consumption, which raises short-term utility flows, and investment in preventive

care with a risky return, which raises expected long-term welfare. We now expand this trade-

off by introducing risk-free saving. We also adopt a more general setup with a CRRA utility

function, a strictly positive time preference rate, and decreasing returns to investment in

preventive care. While confirming the robustness of previous findings, we also unveil a new

insight: uncertainty about the date when LTC costs appear boosts precautionary savings.

That is, individuals build savings buffers to prepare for potential LTC costs early in their

lives.

Formally, the welfare function is now

E

[∫ T

0

exp(−ρt) c(t)
1−σ − 1

1− σ
dt− exp(−ρT )φd(T ) + exp(−ρT )ψs(T )

]
(8)

where ρ ≥ 0 is the time preference rate, σ > 0 is the coefficient of relative risk aversion,

ψ > 0 is a preference parameter, and s is risk-free savings. The last term captures the

salvage value of s(T ).15 Health deficits evolve according to

ḋ(t) = µ(d(t)− Ah(t)ν − a) (9)

where a ∈ R captures the effects of exogenous forces on the aging process, and ν ∈ (0, 1)

represents decreasing returns to investment in preventive care.16 As for risk-free savings, the

law of motion is

ṡ(t) =

{
y + r s(t)− c(t)− h(t) if t < τ

y + r s(t)− c(t)− h(t)−Bd(t) if t ≥ τ
(10)

where r > 0 is the risk-free rate, and τ is still a random variable with a density function

given by (7) and a state dependent hazard rate λ(d(t)) (see Section 3).

Individuals choose the sequence {c(t), h(t)}Tt=0 that maximizes (8) subject to (9) and (10).

The optimization problem has two state variables, and hence four boundary conditions:

d(0) = d0 ≥ 0, s(0) = s0 ∈ R, q(T ) = −e−ρTφ, and p(T ) = −e−ρTψ. Here q and p are

the co-state variables associated with d and s, respectively. To solve this stochastic optimal

control model, we rely on the Hamilton-Jacobi-Bellman equation (see Appendix F for more

15As mentioned in Footnote 4, salvage values prevent state variables exploding at T . An alternative

solution is to impose bounds on these state variables and work with the Kuhn-Tucker slackness conditions.
16ν < 1 is necessary to get an interior solution to the portfolio allocation choice. Should ν be equal to

1, we would get a corner solution where agents either save on the riskless asset or invest in preventive care

(see also Dalgaard and Strulik, 2014, for a similar discussion). Ruling out this corner solution while setting

ν = 1 would require non-linear salvage functions.
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details). We also develop and solve a deterministic version, which we use as a yardstick to

compare to the stochastic version.

A technical point here deserves further comment. The baseline stochastic model studied in

Section 3 accepted a closed-form solution in [τ, T ]. Thus, we could plug these analytical

decision rules into the Boundary Value Problem determining the model dynamics in [0, τ),

and solve the latter numerically (see Appendix C). The extended stochastic model, however,

never accepts a closed-form solution. Instead of working with the exact optimal solution in

[τ, T ], we shall therefore work with a set of parametric decision rules that, as shown in

Appendix F, approximate it very accurately (see for instance Fernandez-Villaverde et al.,

2016, for an overview of projection methods).

Table 2 lists the values assigned to the model parameters. Without loss of generality, we

normalize the initial state variables to 0, and the income stream together with the end-

of-life period to 1. In addition, we choose conventional values for the utility and savings

parameters: the relative risk aversion parameter σ is set to 1.5 (Chetty, 2006), while the

time preference rate ρ and the risk-free return r are set to 0.05 (Kaplan et al., 2018). In

the deterministic version, we fix the health deficit threshold d̄ > d0 such that agents start

paying LTC costs at t = T/1.2 (i.e. 67 years assuming a lifetime of 80 years). In the

stochastic version, we continue to model the state dependent hazard rate λ(d) as a logistic

function and proceed as in Section 3. The curve’s midpoint x0 is set to d̄. We consider

three levels of uncertainty k while calibrating L to ensure that, if health deficits followed

the same paths as in the deterministic model, the median switch time in a large panel of

agents would remain equal to the switch time in the deterministic version. The medium

level of uncertainty {k, L} = {400, 10.4} implies that 84% of the population at age T (end

of life) faces LTC costs and that 73% of all LTC recipients are above 65 years old (assuming

a lifetime of 80 years). This last number is very close to the average OECD number (75%,

see OECD, 2021).

The remaining parameters {B, µ,A, ν, a, φ, ψ} are chosen to be consistent with the following

outcomes. First, investment in preventive care and investment in savings, as a percentage of

income, are both close to 10% in [0, τ) (World Health Organization, 2019). Second, health

deficits are irreversible (i.e. ḋ(t) > 0 ∀t) meaning that LTC costs increase in [τ, T ]. Moreover,

savings decrease in [τ, T ]. Third, LTC recipients face costs averaging 55% of their income

(European Commission, 2021). Lastly, as in Dalgaard and Strulik (2014), investment in

preventive care features strong decreasing returns to scale.17

17Unfortunately, in this extended setup we can no longer rely on the propositions in Section 2.3 to impose

parameter restrictions.
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Table 2. Calibrated parameters

Parameter Value Description Parameter Value Description

Normalizations Utility and savings

d0, s0 0 Initial state σ 1.5 Relative risk aversion

y 1 Income ρ 0.05 Time preference

T 1 Final period r 0.05 Risk-free return

LTC costs Salvage values

d̄ 0.02 Health deficit threshold φ 40 Deficit cost

B 25 LTC cost level ψ 15 Savings value

Health deficit accumulation Hazard rate

µ 0.02 Natural growth rate x0 0.02 Midpoint

A 3 Effectiveness of investments {k, L} {0, 1.74} Full uncertainty

ν 0.05 Decreasing returns {400, 10.4} Medium uncertainty

a −4 Exogenous shocks {2000, 50.8} Low uncertainty

We are finally in a position to show that, as claimed earlier, uncertainty over the appearance

of LTC costs boosts precautionary savings. The right panel in Figure 4, which plots the

mean path of savings in a large set of agents, shows that individuals in the fully random

economy (solid yellow line) accumulate more savings early in life than their counterparts

in the deterministic economy (dotted red line). The logic is straightforward: risk-averse

individuals build precautionary savings to meet unexpected medical bills, allowing them to

smooth consumption over time. This finding is consistent with the strong link between in-

come uncertainty and precautionary savings put forward by Sandmo (1970), Skinner (1988),

Caballero (1991) and many others.

Finally, the left panel in the figure confirms that our main insight from Section 3 carries

through in the more realistic setting, namely that uncertainty over the switch time lowers

investment in preventive care. Therefore, it follows naturally that in such a framework

uncertainty also limits agents’ response to financial incentives, just as it did in Section 4.

6. Conclusion

Long term care (LTC) costs faced by elderly individuals are not only high, but also wildly

uncertain. In this paper, we develop a stochastic version of an otherwise standard determin-

istic life-cycle setup with endogenous aging. We show that uncertainty about future LTC

costs boosts precautionary savings, lowers investment in preventive care, and weakens the



19

Figure 4. Health and savings dynamics
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Notes. Mean paths of health investment (h) and savings (s) in a stochastic time series simulation of

50,000 agents.

effectiveness of subsidies for preventive care. This leads us to believe that evaluating health

policy through the lens of deterministic models could be misleading.

Further research is necessary in the following areas. First, stochastic lifetimes would provide

another channel through which health-related uncertainty distorts the intertemporal trade-

off between consumption and investment in preventive care. Second, a general equilibrium

analysis of different health policies (e.g. subsidies on prevention vs. reimbursement of LTC

costs) would provide a normative assessment. This is important since market outcomes in

life-cycle models tend to be Pareto inefficient. Lastly, extending our analysis to environ-

mental economics would help us tackle the question: does our utter failure to fight climate

change relate to the uncertainty surrounding its potential economic effects?
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Appendix A. Solution of the Deterministic Model

The system of equations (1) to (3) is a two-stage optimal control problem. Optimal regime

switch can typically be of two types. In the first type, the switch time is an explicit decision

variable (see for instance Tomiyama, 1985). In the second type, the regime switch happens

when the state variable crosses a threshold (see for instance Boucekkine et al., 2013). Our

problem relates to the second type. Below, we consider the two-stage optimal control problem

of type two, and provide the first order optimality conditions (all mathematical proofs can

be found in Boucekkine et al., 2013). This problem can be generally written as

max

{∫ τ

0

g−(t, h(t), d(t)) dt+

∫ T

τ

g+(t, h(t), d(t)) dt+ v(d(T ))

}
under 

ḋ(t) = f(t, h(t), d(t))

d(0) = d0

d(τ) = d̄

For simplicity, we drop the time index unless needed for the understanding. We define an

Hamiltonian function for each stage{
H− = g− + q f

H+ = g+ + q f

The necessary optimality conditions are{
H−h = 0, H−d = −q̇, H−q = ḋ

d(0) = d0, d(τ) = d̄

{
H+
h = 0, H+

d = −q̇, H+
q = ḋ

d(τ) = d̄, q(T ) = vd(T )

H−(τ)−H+(τ) = 0

h is a control variable, d a state variable and q the associated co-state variable. The first set

of necessary conditions relates to the first stage and the second set to the second stage. The

last condition is a matching condition meaning that the Hamiltonian must be continuous

at the junction time. To understand why, we observe that the left-hand side represents

the marginal gain from extending the first stage regime at the expense of the second stage

regime, whereas the right-hand represents the marginal switch cost (which is nil in our setup).

At the optimal equilibrium, the marginal gain must be equal to the marginal cost. A last

observation: in this problem of type two, the state variable at the switch time τ is not free

but equal to the fixed threshold. This generally implies the discontinuity of the co-state
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variable at time τ .18 We can apply this general formulation to our model in Section 2 by

posing 
g− = ln(y − h)

g+ = ln(y − h−Bd)

f = µ(d− Ah)

v = −φd

The concavity of g− and g+ guarantees that the necessary conditions are also sufficient.

The solution in Section 2 directly follows from applying the general necessary and sufficient

conditions to our specific functional forms.

Appendix B. Proofs of Propositions

Throughout all proofs, we take strict inequalities to simplify the notation, without preju-

dice for the results.

B.1. Proof of Proposition 1. In the first stage (non-LTC regime when 0 < t < τ), the

time derivative of deficit is

ḋ =
d0 − Ay

τ
((τ − t)µ− 1) exp(µt) +

d̄− Ay
τ

(1 + µt) exp(−µ(τ − t))

Therefore

ḋ > 0⇔ (d̄− Ay) (1 + µt) exp(−µτ)︸ ︷︷ ︸
∈(0,1)

−(d0 − Ay) (1− (τ − t)µ)︸ ︷︷ ︸
∈(0,1)

> 0

We distinguish three cases: (i) when d0 < Ay < d̄, ḋ is always positive; (ii) when d0 < d̄ < Ay,

(d̄−Ay)− (d0 −Ay)(1− µT ) > 0⇒ ḋ > 0 for all t ∈ (0, τ) and τ ∈ (0, T ); (iii) when Ay <

d0 < d̄, (d̄−Ay)−(d0−Ay) exp(µT ) > 0⇒ ḋ > 0 for all t ∈ (0, τ) and τ ∈ (0, T ). Moreover,

when d0 < d̄ < Ay, (d̄−Ay)− (d0 −Ay)(1− µT ) > 0⇒ (d̄−Ay)− (d0 −Ay) exp(µT ) > 0;

and when Ay < d0 < d̄, (d̄−Ay)−(d0−Ay) exp(µT ) > 0⇒ (d̄−Ay)−(d0−Ay)(1−µT ) > 0.

As a result,

min[(d̄− Ay)− (d0 − Ay) exp(µT ) , (d̄− Ay)− (d0 − Ay)(1− µT )] > 0⇒ ḋ > 0

This proves Proposition 1.

18This is the key difference with respect to a two-stage optimal control problem of type one: the state

variable is free and the optimality conditions impose not only the continuity of the Hamiltonian but also of

the co-state variable (see Boucekkine et al., 2013, for a in-depth discussion).
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B.2. Proof of Proposition 2. In the second stage (LTC regime when τ < t < T ), the time

derivative of deficit is

ḋ = (d̄− θ) η exp(η(t− τ))︸ ︷︷ ︸
>0

+
exp(−η(T − t))

φ
(1 + η(t− τ))︸ ︷︷ ︸

>0

We distinguish two cases: (i) when d̄ > θ, ḋ is always positive; (ii) when d̄ < θ, (d̄ −
θ)η exp(ηT ) + exp(−ηT ) > 0 ⇒ ḋ > 0 for all t ∈ (0, τ) and τ ∈ (0, T ). This proves

Proposition 2.

B.3. Proof of Proposition 3. The first part of the proof shows that H−(0) =∞ and that

H−τ < 0, under the sufficient condition from Proposition 1. The second part of the proof

shows that H+(0) <∞ and that H+
τ > 0, under the sufficient condition from Proposition 2.

The third part of the proof gives a necessary and sufficient condition to get H+(T ) > H−(T ).

All these conditions therefore imply that τ ∈ (0, T ).

First, we compute H−(τ) = −µ(d0−Ay)x−lnx, with x ≡ τ/((d̄−Ay) exp(−µτ)−(d0−Ay)).

The sufficient condition from Proposition 1 ensures that x > 0 and xτ > 0 for all τ ∈ (0, T ).

We see that H−(0) =∞ and compute H−τ = −µ(d0 − Ay)xτ − xτ/x. Therefore

H−τ < 0 ⇔ µ(d0 − Ay) + 1/x > 0

⇔ (d̄− Ay) exp(−µτ)− (d0 − Ay)(1− µτ) > 0

The sufficient condition from Proposition 1 ensures that H−τ < 0 for all τ ∈ (0, T ).

Second, we compute H+(τ) = η(τ − T ) − lnφ − ηφ(d̄ − θ) exp(η(T − τ)). We see that

H+(0) < ∞ and compute H+
τ = η(1 + ηφ(d̄ − θ) exp(η(T − τ))). The sufficient condition

from Proposition 2 ensures that H+
τ > 0 for all τ ∈ (0, T ).

Third, from the above expressions for H−(τ) and H+(τ), we immediately get

H+(T ) > H−(T ) ⇔ µT (d̄−Ay)

(d̄−Ay)−(d0−Ay) exp(µT )
− ln

(
(d̄− Ay)− (d0 − Ay) exp(µT )

)
+ lnT

> lnφ+ ηφ(d̄− θ)

This proves Proposition 3.

B.4. Proof of Proposition 4. In the first stage (non-LTC regime when 0 < t < τ)

h > 0⇔ y > − 1

qµA

Because q < 0 and q̇ > 0, a sufficient condition to get h > 0 for all t ∈ (0, τ) and τ ∈ (0, T )

is

y > − 1

q(T )µA
=

(d̄− Ay)− (d0 − Ay) exp(µT )

µAT

This proves Proposition 4.
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B.5. Proof of Proposition 5. In the second stage (LTC regime when τ < t < T )

h > 0⇔ y > Bd− 1

qµA

Because d > 0, ḋ > 0, q < 0 and q̇ > 0, a sufficient condition to get h > 0 for all t ∈ (τ,∞)

is

y > Bd(T )− 1

q(T )µA
= B

(
(d̄− θ) exp(η(T − τ)) +

T − τ
φ

+ θ

)
+

1

φµA

We distinguish two cases: (i) when d̄ < θ, y > B(d̄ + T/φ) + 1/(φµA) ⇒ h > 0 for all

τ ∈ (0, T ); (ii) when d̄ > θ, y > B(d̄ + T/φ − θ(exp(ηT ) − 1)) + 1/(φµA) ⇒ h > 0 for

all τ ∈ (0, T ). Moreover, when d̄ < θ, y > B(d̄ + T/φ) + 1/(φµA) ⇒ y > B(d̄ + T/φ −
θ(exp(ηT )−1)) + 1/(φµA); and when d̄ > θ, y > B(d̄+T/φ− θ(exp(ηT )−1)) + 1/(φµA)⇒
y > B(d̄+ T/φ) + 1/(φµA). As a result

min

[
y −B

(
d̄+

T

φ

)
− 1

φµA
, y −B

(
d̄+

T

φ
− θ(exp(ηT )− 1)

)
− 1

φµA

]
> 0⇒ h(t) > 0

This proves Proposition 5.

Appendix C. Solution of the Stochastic Model

The problem (4) to (6) is a piecewise deterministic control problem. Let τ ∈ (0,∞) be

the stochastic time at which the regime change happens. The optimization problem is

maxE

{∫ min[τ, T ]

0

g−(t, h(t), d(t)) dt+

∫ T

min[τ, T ]

g+(t, h(t), d(t)) dt+ v(d(T ))

}
under {

ḋ(t) = f(t, h(t), d(t))

d(0) = d0

The density of τ is

λ(d(t)) exp

(
−
∫ t

0

λ(d(u))du

)
For simplicity, we now drop the time index unless needed for the understanding. We solve

this problem using the backward procedure method proposed by Naevdal (2006) or Seierstad

(2009).

We first solve the problem after the regime switch occurs. Uncertainty has hence vanished

and we therefore define the usual Hamiltonian function H+ = g+ + q+ f . The necessary

optimality conditions are{
H+
h = 0, H+

d = −q̇+, H+
q+ = ḋ,

d(τ) given, q+(T ) = vd(T )
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h is a control variable, d a state variable, q+ the associated co-state variable. We moreover

define a new auxiliary state variable γ+, measuring the expected flow of remaining welfare

along the optimal path: {
γ̇+ = −g+

γ+(T ) = v(d(T ))

The first equation means that the remaining welfare decreases by g+ every period. The

second equation is a terminal condition stating that the remaining welfare at time T is

only the salvage value. The switch time τ matters in above boundary value problem, for it

determines the initial conditions. The solution is therefore conditional to τ and, in particular,

we will get q+(t | τ) and γ+(t | τ).

We then solve the problem before the regime switch occurs. Because of the uncertainty, we

now define a risk-augmented Hamiltonian function

H̃− = g− + q− f︸ ︷︷ ︸
≡H−

+λ(d)
(
γ+(t | τ = t)− γ−

)

The risk-augmented Hamiltonian is the deterministic one H−, plus the net change in remain-

ing welfare (γ+(t | τ = t)− γ−) times the hazard rate λ(d) of the random process. q− and γ−

are the associated co-state variable and auxiliary state variable, respectively. The necessary

optimality conditions are the usual ones but applied to the risk-augmented Hamiltonian

{
H̃−h = 0, H̃−d = −q̇−, H̃−q− = ḋ,

d(0) = d0, q−(T ) = vd(T )

Using the definition of the risk-augmented Hamiltonian, as well as the fact that ∂γ−/∂d = q−

and ∂γ+/∂d = q+ (see Seierstad, 2003, for a formal proof), we can easily transform the above

necessary optimality conditions into

{
H−h = 0, H−d = −q̇− + λ(d)(q− − q+(t | τ = t)) + λd(d)(γ− − γ+(t | τ = t))

H−q− = ḋ, d(0) = d0, q−(T ) = vd(T )

Finally, we need to define the differential equation and give the boundary value for γ−

{
−g− = γ̇− + λ(d) (γ+(t | τ = t)− γ−)

γ−(T ) = v(d(T ))
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The only difference with the similar equations after the switch is that γ̇− is here augmented

by its net gain if the shock occurs at time τ = t, which takes into account the uncertainty.

We apply this general formulation to our model in Section 3 by posing


g− = ln(y − h)

g+ = ln(y − h−Bd)

f = µ(d− Ah)

v = −φd

The concavity of the problems guarantees that the necessary conditions are also sufficient.

The solution in Section 2 directly follows from applying the general necessary conditions to

our specific functional forms. Note that with our functional forms (in particular the linearity

of the salvage function), q+ does not depend on τ .

Appendix D. Proofs when λ(d) = λ

We here successively prove q < 0, q̇ > 0 and qλ < 0.

First, from the definition η ≡ µ(1 + AB), we have η > µ, which immediately gives q < 0.

Second, we compute

q̇ =
φ

η + λ− µ︸ ︷︷ ︸
>0

λη exp(η (T − t))︸ ︷︷ ︸
>0

−(λ− µ) (η − µ) exp(−(λ− µ)(T − t))︸ ︷︷ ︸
>0



If λ < µ, then q̇ > 0 is immediate. If λ > µ, then we have λη exp(η (T − t)) − (λ − µ)(η −
µ) exp(−(λ− µ)(T − t)) > λη − (λ− µ)(η − µ) = λµ+ µ(η − µ) > 0. Therefore q̇ > 0.

Third

qλ < 0 ⇔ − (η+λ−µ)[exp(ηα)−(η−µ)α exp(−(λ−µ)α)]−λ exp(ηα)−(η−µ) exp(−(λ−µ)α)
(η+λ−µ)2

< 0

⇔ (η − µ) exp(ηα)− (η − µ) exp(−(λ− µ)α)[(η + λ− µ)α + 1] > 0

⇔ exp(ηα) > [(η + λ− µ)α + 1] exp(−(λ− µ)α)

⇔ exp(α(η + λ− µ)) > 1 + α(η + λ− µ)

with α ≡ (T − t) > 0. The latter inequality is always satisfied.
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Appendix E. Solution of the Stochastic Model with Subsidy Rate S

We define η ≡ µ(1 +AB/(1− S)) and θ ≡ Ay/((1− S) +AB) The solution in [0, τ) (i.e.

non-LTC regime) is governed by the system of three differential equations

q̇(t) = (λ(d(t))− µ)q(t) + φ exp(η(T − t)) [λ(d(t))− λd(d(t))(d(t)− θ)]
+λd(d(t))

[
γ(t) + η

2
(T − t)2 +

(
1 + ln

(
µAφ
1−S

))
(T − t) + φ θ

]
γ̇(t) = ln

(
−µAq(t)

1−S

)
+ λ(d(t))

[
γ(t) + η

2
(T − t)2 +

(
1 + ln

(
µAφ
1−S

))
(T − t)

+φ(d(t)− θ) exp(η(T − t)) + φ θ]

ḋ(t) = µ
(
d(t)− Ay

1−S

)
− 1

q(t)

with three boundary conditions d(0) = d0, q(T ) = −φ and γ(T ) = −φd(T ), as well as

h(t) =
y

1− S
+

1

µAq(t)

In [τ, T ], the stochastic model does accept the closed-form solution
q(t) = −φ exp(η(T − t))
d(t) = (d(τ)− θ) exp(η(t− τ)) + t−τ

φ
exp(−η(T − t)) + θ

h(t) = y−Bd(t)
1−S + 1

µAq(t)

Appendix F. Solution of the Stochastic Model with Savings

The problem (8) to (10) is a piecewise deterministic control problem. Let τ ∈ (0,∞) be

the stochastic time at which the regime change happens. The optimization problem is

maxE

∫ T

0

exp(−ρt) g(t, c(t)) dt+ exp(−ρT ) v(d(T ), s(T ))

under 

ḋ(t) = f(t, h(t), d(t))

ṡ(t) = u−(t, h(t), c(t), d(t), s(t)) if t < τ

ṡ(t) = u+(t, h(t), c(t), d(t), s(t)) if t ≥ τ

d(0) = d0

s(0) = s0

The density of τ is

λ(d(t)) exp

(
−
∫ t

0

λ(d(u))du

)
For simplicity, we now drop the time index unless needed for the understanding. We solve

this problem using the backward procedure method proposed by Naevdal (2006) or Seierstad

(2009). See also Appendix C for more intuitions.

We first solve the problem after the regime switch occurs. Uncertainty has hence vanished

and we therefore define the usual Hamiltonian function H+ = g + q+ f + p+ u+. The
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necessary optimality conditions are
H+
h = 0, H+

d = −q̇+ + ρ q+, H+
q+ = ḋ,

H+
c = 0, H+

s = −ṗ+ + ρ p+, H+
p+ = ṡ,

d(τ) given, q+(T ) = vd(T )

s(τ) given, p+(T ) = vs(T )

h and c are control variables, d and s state variables, q+ and p+ the associated co-state

variables. We moreover define a new auxiliary state variable γ+, measuring the expected

flow of remaining welfare along the optimal path:{
γ̇+ = −g+ + ρ γ+

γ+(T ) = v(d(T ), s(T ))

The switch time τ matters in above boundary value problem, for it determines the initial

conditions. The solution is therefore conditional to τ and, in particular, we will get q+(t | τ),

p+(t | τ) and γ+(t | τ).

We then solve the problem before the regime switch occurs. Because of the uncertainty, we

now define a risk-augmented Hamiltonian function

H̃− = g + q− f + p− u−︸ ︷︷ ︸
≡H−

+λ(d)
(
γ+(t | τ = t)− γ−

)
The necessary optimality conditions are the usual ones but applied to the risk-augmented

Hamiltonian. Using the fact that ∂γ−/∂d = q−, ∂γ−/∂s = p−, ∂γ+/∂d = q+ and ∂γ+/∂s =

p+ (see Seierstad, 2003, for a formal proof), we get
H−h = 0, H−d = −q̇− + ρ q− + λ(d)(q− − q+(t | τ = t)) + λd(d)(γ− − γ+(t | τ = t))

H−c = 0, H−s = −ṗ− + ρ p− + λ(d)(p− − p+(t | τ = t))

H−q− = ḋ, d(0) = d0, q−(T ) = vd(T )

H−p− = ṡ, s(0) = 0, p−(T ) = vs(T )

Finally, we need to define the differential equation and give the boundary value for γ−{
−g− + ρ γ− = γ̇− + λ(d) (γ+(t | τ = t)− γ−)

γ−(T ) = v(d(T ), s(T ))

We apply this general formulation to our model in Section 5 by posing

g = c1−σ−1
1−σ

f = µ(d− Ahν − a)

u− = y + r s− c− h
u+ = y + r s− c− h−Bd
v = −φd+ ψs
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In [τ, T ], i.e. after the regime switch, the model accepts a closed-form solution for the co-

state variables (to simplify notations, we drop the superscript +) and hence for the control

variables 
q(t) = Bψ

µ−r exp (( ρ− r)(t− T ))− Bψ+φ(µ−r)
µ−r exp (( ρ− µ)(t− T ))

p(t) = ψ exp ((ρ− r)(t− T ))

h(t) =
(
− p(t)
νµAq(t)

) 1
ν−1

c(t) = p(t)−
1
σ

Note that q and p do not depend on τ because of the linearity and separability of the salvage

function. Obtaining a closed-form solution for the state variables, however, is not possible,

for they are governed by a system of two nonlinear differential equations{
ḋ(t) = µ(d(t)− Ah(t)ν − a)

ṡ(t) = y + r s(t)− c(t)− h(t)−Bd(t)

where the two initial conditions d(τ) and s(τ) are given. As a result, d(T ), s(T ), and hence

γ+(T ) = −φd(T ) + ψs(T ) as well as γ+(t | τ), cannot be computed analytically.

In [0, τ), i.e. before the regime switch, the model solution is governed by the system of five

differential equations (to simplify notations, we drop the superscript −)

q̇(t) = (λ(d(t)) + ρ− µ)q(t) + λd(d(t)) [γ(t)− γ+(t | τ = t)]

−λ(d(t))
[
Bψ
µ−r exp (( ρ− r)(t− T ))− Bψ+φ(µ−r)

µ−r exp (( ρ− µ)(t− T ))
]

ṗ(t) = (λ(d(t)) + ρ− r)p(t)− λ(d(t))ψ exp ((ρ− r)(t− T ))

γ̇(t) = (λ(d(t)) + ρ)γ(t)− p(t)−
1−σ
σ −1

1−σ − λ(d(t))γ+(t | τ = t)

ḋ(t) = µ

(
d(t)− A

(
− p(t)
νµAq(t)

) ν
ν−1 − a

)
ṡ(t) = y + r s(t)− p(t)− 1

σ −
(
− p(t)
νµAq(t)

) 1
ν−1

with five boundary conditions d(0) = d0, s(0) = 0, q(T ) = −φ, p(T ) = ψ and γ(T ) =

−φd(T ) + ψs(T ).

Solving this system requires an analytical expression for γ+(t | τ = t). However, as mentioned

earlier, we do not have such an expression, for the dynamics in [τ, T ] are themselves governed

by a nonlinear system of differential equations. We overcome this problem by working with

a parametric decision rule ψ(τ, d(τ), s(τ)|θ) instead of with γ+(t | τ = t). The vector of

parameters θ is chosen such that ψ(·|θ) provides an accurate approximation of γ+(t | τ = t)

in the relevant domain.

Specifically, we proceed as follows:

(1) Let ψ(·|θ) be a linear combination of monomials in {τ, d(τ), s(τ)} parameterized by

vector θ.
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(2) Generate a 3 dimensional grid on {τ, d(τ), s(τ)} covering the relevant domain where

the model solution lives.

(3) At each grid point, solve the boundary value problem governing the model in [τ, T ]

numerically. Compute and store γ+(t | τ = t).

(4) Estimate θ by least squares

θ∗ = argmin
n∑
i

(γ+(t | τ = t)i − xiθ)

where n is the number of nodes in the grid and x are the variables of function ψ(·|θ).

(5) Test the goodness of fit using R2.

Therefore, ψ(τ, d(τ), s(τ)|θ∗) gives the value of γ+(t | τ = t) for all possible combinations

of {τ, d(τ), s(τ)}. Inserting this parametric decision rule into the boundary value problem

dictating the model dynamics in [0, τ) allows us to solve the stochastic model with savings.

Two exercises confirm the validity of the approach just described. In the first exercise (not

shown), we solve the baseline model presented in Section 3 using this numerical approach

instead of the true closed-form decision rule. We then check that both solutions coincide.

The second exercise, in turn, compares the solution to the stochastic model when k → ∞
with the solution of the deterministic model. Figure 4 in the main text confirms that both

solutions converge, which is exactly what one should expect.
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Appendix G. Additional Charts - Not for Publication

Figure 5. Long term costs – Small model
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Figure 6. Initial health investment h(0) as a function of income y – Small model
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Figure 7. Health subsidy rate – Small model
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Case 2: k=100
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Case 3: k=2000
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Figure 8. Long term costs – Large model
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