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Abstract: Does outsourcing IT impact a startup’s ability to differentiate itself and grow? With the advent 
of cloud services, firms are licensing IT instead of developing IT in-house. Despite this growing trend, we 
know little about how early-stage resource acquisition decision affects technology adoption, product 
differentiation, and longer-term performance. When firms outsource their IT, they develop a supplier 
relationship with a cloud services provider and receive valuable resources related to their cloud provider’s 
platform. However, cloud suppliers control which resources they create and share, which technologies they 
suggest, and how well technologies fit with their platform, potentially impacting product differentiation. 
Using panel data on app-developing startups, I find that startups outsourcing to cloud platforms adopt more 
technologies. When outsourcing, development tools that programmers use to code an app become more 
similar to other startups, saving time by avoiding compatibility issues. On the other hand, data analytics 
capabilities become more diverse, enabling startups to cultivate more robust data, which aids in product 
differentiation and startup growth. 
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1. Introduction 

Entrepreneurs develop innovations that fuel economic progress (Gans et al., 2019; Guzman and Stern, 2020; 

Kerr et al., 2014). Yet digitization and the use of big data raise numerous unanswered questions about the 

nature of entrepreneurial innovation (Greenstein et al., 2013; Lerner and Nanda, 2020). To survive and 

scale, young startups must acquire the Information Technology (IT) assets necessary to develop their 

products (Bessen et al., 2018, 2022; DeStefano et al., 2020; Jin and McElheran, 2019). Outsourcing IT asset 

development to cloud providers has become increasingly common, particularly for new firms that need 

access to IT quickly.1 Despite this growing trend, we know little about how this early-stage resource 

acquisition decision affects technology adoption, differentiation, and longer-term performance. The need 

for IT forces firms to determine whether they “make” or “buy” these resources early in their existence 

before developing their products (Lacity et al., 2009; Schneider and Sunyaev, 2016; Susarla et al., 2009), 

potentially creating a tradeoff between efficiencies gained from outsourcing and the ability to differentiate 

digital products. 

Outsourcing has implications for firms’ organizational structure, partnerships, and ability to control 

production (Coase, 1937; Williamson, 1979, 1998), which may influence the technologies used as inputs 

to develop resulting products. When firms make IT assets in-house, they hire specialized technical labor, 

purchase computing hardware (e.g., servers, mainframes) from many manufacturers and distributors, 

acquire physical space to house their IT infrastructure, and sign long-term IT services agreements. These 

activities increase their initial capital expenditure and expand their firm's structure horizontally. 

Alternatively, when firms outsource (i.e., the "buy" scenario), they lease subscription-based cloud IT 

services from a single technology firm, adapt the base IT platform through co-invention, and develop their 

products on that infrastructure, which enables a narrow organizational structure focused on a single product. 

Cloud services have become more sophisticated and secure, making them increasingly challenging to 

 
1The use of cloud services has become so prolific that Gartner (2018) suggests firms not using cloud services will 
soon be as rare as firms not using the internet. Acemoglu et al. (2022) provide census data from 2019 (Figure 4 in 
their paper; https://www2.census.gov/ces/wp/2022/CES-WP-22-12.pdf) showing that younger, smaller firms are 
more likely to adopt cloud services. 
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replicate and raising the cost of developing comparable IT capabilities internally.2 The initial capital 

expenditure of internal IT development may be too high for cash-strapped startups and their investors to 

bear, especially compared to highly discounted introductory offers from cloud providers that share 

technological resources that lower development costs.3 The decision to either internally develop or 

externally license IT assets was once a strategically important source of differentiation. However, now, due 

to the benefits of quickly and cheaply accessing high-quality cloud IT services, it is difficult for digital-first 

startups to rationalize internal IT development, even if that means forgoing aspects of technological 

differentiation. 

My research question asks whether and how outsourcing IT development impacts startup 

differentiation and growth. On the one hand, since capital requirements are lower, VC investors can provide 

more startups with enough money to start product development (i.e., “spray and pray” investing: Ewens et 

al., 2017). Possibly more startups are “experimenting” with their business models and quickly testing their 

product ideas (Kerr et al., 2014; Koning et al., 2022). On the other hand, we have little insight into how 

these changes affect the nature of resulting innovations (Lerner and Nanda, 2020; Ewens et al., 2017). In 

fact, despite potential increases in aggregate production at the industry level, there are many reasons why 

one could expect outsourcing IT development to a few large technology firms to constrain startups from 

adopting more diverse technological inputs and producing more differentiated products than startups 

developing their IT internally. First, outsourcing constrains startups’ ability to customize aspects of their 

IT to fit their specific product development needs.4 Second, outsourcing startups use services from a single 

cloud supplier instead of many suppliers (e.g., distributors, original equipment manufacturers, software 

 
2Similarly, Bloom and Pierri (2018) discuss the increased pace of cloud adoption for smaller, newer firms in an HBR 
article (https://hbr.org/2018/08/research-cloud-computing-is-helping-smaller-newer-firms-compete). I depict cloud 
platform adoption rates for startups in my sample that are three or more years old in Appendix Figure C.1. 
3When outsourcing, startups incur "co-invention" costs when adapting the IT infrastructure and their processes. 
Bresnahan et al. (1996) describe co-invention as users adapting the initial invention to make it more economically 
valuable for their needs amid the shift from mainframes to client/server computing in the 1990s. In the case of internal 
development, a startup would be "inventing" on its own. Moreover, there are costs in determining the compatibility 
of technologies with one other and with the underlying IT platform. 
4More specifically, using a cloud platform can constrain startups’ abilities to customize aspects of runtime, 
middleware, virtualization, and networking capabilities. 
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vendors), limiting access to a broader array of resources and expertise. Third, outsourcing creates a supplier 

relationship that provides all startups with the same platform-related resources. Startups use these resources 

to co-invent on the platform to meet their production needs but potentially make similar adaptations to other 

startups using the same shared resources. Fourth, product development requires platform-specific 

investment in complementary assets (i.e., asset specificity; sunk cost), increasing the fit of the startup’s 

technologies with one platform and limiting cross-compatibility with other platforms. Lastly, investors, 

stretched thin from funding more startups, have less bandwidth to tailor their expertise and guidance to each 

startup’s specific needs.5 

This paper examines unique panel data on technology adoption for ~3,400 high-tech, app-

producing startups with a web-based or mobile (i.e., Android, iOS) application (app) to examine the impact 

of outsourcing IT development on startup differentiation. The main analysis relies on an OLS difference-

in-differences research design with firm-level fixed effects to control for time-invariant aspects of firms 

and year-level fixed effects to control for variation correlated with time. My main analyses include 

Coarsened exact matching (CEM) based on observable firm characteristics to ensure that startups using 

cloud platform services are demographically comparable to startups not using these services.6 Next, I 

examine two mechanisms related to startup differentiation: a stronger customer-supplier relationship and 

an increased need for technological fit. To further support my analysis, I use Heckman’s (1979) selection 

approach, an instrumental variable approach based on Google’s late 2015 open source release of 

TensorFlow7, and a double machine learning model (Chernozhukov et al., 2018) based on a random forest 

algorithm. These methods adjust estimates for potential explainable variation in the control and treatment 

groups (e.g., CEM, Heckman), omitted variables (e.g., IV, ML) and reverse causality (e.g., IV). 

 
5Ewens et al. (2018) note that VCs are less likely to join startups' boards. 
6CEM models match on firm age, location (region), size, and industry. 
7TensorFlow, an AI development framework enabling firms to train neural network algorithms, is a quasi-exogenous 
shock to AI production, reducing the costs associated with AI development and increasing the value of complementary 
AI-related labor (Rock, 2019). https://github.com/tensorflow 
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To gauge changes in startup differentiation, I examine the adoption of two types of technologies: 

product development (i.e., app development tools) and data analytics technologies (i.e., data analytic 

capabilities). These analyses show that startups adopt more technologies after outsourcing IT development 

(i.e., adding cloud platform services). However, outsourcing affects the breadth of the bundle of 

technologies that startups adopt, depending on the technology’s type, interdependency with other 

technologies, and fit with the IT platform’s underlying technologies for the digital app to work effectively. 

First, product development tools are developer operations frameworks, such as angular, next, and 

django, which enable programmers to build, test, organize, and update code necessary in app development. 

Bundles of these development technologies become more similar to those used by potential rivals – other 

app-producing startups in my sample – as apps will only work effectively if these technologies are 

compatible with one another and fit with the IT platform. As an example based on traditional manufacturing 

processes, product development technologies are like individual machines used in an assembly line, and 

each technology provides some interrelated function in production. The development technology bundle 

represents all the interdependent “machines” a firm uses to develop its product. These machines must fit 

with the assembly line process and other machines used in production for products to work effectively. 

Second, firms cultivate data analytics capabilities to collect, analyze, and reconfigure data, and 

these more unique and robust data resources aid in product design improvements and decision-making. 

Data resources are valuable to digital firms, particularly AI-producing startups needing data to train 

algorithms. For example, data analytics technologies like matomo and parse enable startups to analyze their 

website traffic to determine user location and demographics. Others like improvely and optimizely enable 

a/b testing to create experiment settings that provide valuable data as outputs. Unlike product development 

technologies, these analytics technologies are more modular, rendering the fit with the IT platform and 

compatibility of these technologies with each other less important to producing needed data resources. 

Moreover, they do not necessarily interact with the app or impede its functionality.8  

 
8Technologies supporting data capabilities are connected to the startup’s web domain, powered by the cloud, and used 
in ways that may or may not related to the product app. For instance, these technologies could analyze telemetry data 
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Investors reward startups for adopting more similar development tools and more distinct data 

analytics capabilities than others, supporting that startups may benefit from streamlining their app 

development “assembly line” to focus on accessing the data resources needed to enable differentiation. A 

secondary analysis of startup description changes before and after outsourcing to a cloud platform supports 

these findings, suggesting that end products become more differentiated after outsourcing to a cloud 

platform, driven by more diverse data analytics capabilities. Altogether, this paints a picture of a high-

performing digital startup as standardizing its development tools to fit with its other technologies and 

supplier’s platform and then cultivating more diverse data analytics capabilities to differentiate its products 

with richer data resources. 

My paper makes several contributions. First, I contribute to a developing research agenda in high-

tech entrepreneurship (Bessen et al., 2018, 2021; Dushnitsky and Stroube, 2021; Ewens et al., 2018; Lerner 

and Nanda, 2020) and, more broadly, digitization (Cowgill and Tucker, 2019; Furman and Seamans, 2019; 

Goldfarb and Tucker; 2019; Tucker, 2019) by showing how technology adoption changes when using cloud 

platform services. Furthermore, I show meaningful relationships between changes in technology adoption 

and measures of product differentiation and venture performance.9Next, I contribute to the literature on 

resource sharing and the nature of technological innovation (Baumol, 2001; Boudreau, 2012; Gulati, 1995; 

Katila et al., 2022. Mowery et al., 1998; Stuart, 2000; Stuart et al., 1999) by examining how suppliers’ 

shared resources and the need for technological fit with the supplier’s platform influence technology 

adoption and differentiation. Lastly, I use the context of digital entrepreneurship to contribute to the 

literature on transaction cost economics (Nagle et al., 2020; Tadelis and Williamson, 2012; Williamson, 

1979, 1998) by showing that startups using cloud suppliers with a higher market (i.e., more market power) 

adopt relatively more similar bundles of platform-related technologies than startups using lower market 

share cloud providers. 

 
from their app's usage. Alternatively, they could analyze their and competitors’ website traffic or general market 
trends. 
9Performance measures include any funding, VC funding, deal size, and duration of web domain visits. 
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This paper proceeds as follows. Section 2 provides an overview of related theories on outsourcing 

and differentiation, focusing on how outsourcing reduces a startup’s control over production, affecting their 

partnerships, initial resources, and organizational structure. Section 3 introduces the context of high-tech 

startups developing apps and provides insight into two mechanisms, the strength of the customer-supplier 

relationship and the need for technological fit, influencing the breadth of technology adoption as a proxy 

for startup differentiation. The following two sections describe my sample and data, technology adoption 

measures (Section 4), and the research design (Section 5). Then, section 6 reports these findings, robustness 

analyses related to these findings, and econometric approaches used to support that my results are consistent 

with a causal interpretation. Section 7 examines the link between adopting more diverse data analytics 

technology bundles and increased product differentiation and the connection between technology adoption 

and firm performance. The last section (Section 8) discusses these findings and concludes. 

 

2. The impact of outsourcing on differentiation 

The decision to outsource, and expand the boundaries of the firm, relates to a broad literature on transaction 

cost economics that extends the neoclassical economic perspective by adapting contracting theory to 

address optimal organizational structures and governance models (Coase, 1937; Williamson, 1979, 1998). 

Coase (1937) provides the initial argument that firms will outsource when the market offers lower costs 

than internal production. However, drawing on learnings of coordination across multidivisional firms10, 

Klein (1980) and Williamson (1979) highlight the limitations of contracts, explaining that inefficiencies 

arise from splitting surplus rents ex-post and that boundedly rational suppliers are potentially opportunistic. 

Moreover, Aghion and Tirole (1993) expand this literature by discussing optimal ownership arrangements 

amongst firms, suppliers, and third-party investors and the appropriability of resulting innovations. Supplier 

opportunism in outsourcing arrangements leads to potential inefficiencies, such as switching costs 

 
10Williamson (1975) discusses the advent of the multidivisional firm, and issues of sharing and collaboration across 
internal departments.  
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(Monteverde and Teece, 1982), hostage due to credible threats (Williamson, 1983), corresponding asset-

specific investments (i.e., sunk costs; Riordan and Williamson, 1985), and uncertainty associated with 

contract terms and the frequency of exchange (Grossman and Hart, 1986). 

The literature on outsourcing pulls from research examining the inefficiencies associated with 

contracting and co-financing, interweaving an understanding of these inefficiencies into more nuanced 

discussions of the impact of outsourcing on supplier power, partnerships, and organizational structure. 

First, outsourcing increases a supplier's power over which technologies customers adopt now 

(Rysman and Simcoe, 2008; Wen et al., 2022) and in the future (Greenstein, 1993). Firms often adopt 

technologies compatible with their supplier’s platform or technologies (Simcoe, 2012). They make 

complementary asset-specific investments11 and engage in co-invention activities with their supplier to 

increase their fit with the supplier’s technologies, aligning with their supplier’s ‘ad hoc’ standards 

(Bresnahan et al., 1996). These investments and the availability of complementary resources may lead firms 

down a particular technological path (Arthur, 1994; Pfeffer and Salancik, 2003; Schilling, 1999), locking 

firms to the platform (e.g., hostage; Williamson, 1983) and the first ability to compete in an industry 

(Rivkin, 2000; Siggelkow, 2001). Switching costs increase over time as these firms compound sunk 

investments and progress along this technological path, suggesting that outsourcing will constrain 

differentiation in the long run. 

Second, the decision to outsource creates a supplier relationship that affects future partnerships 

(Combs and Ketchen, 1999; Madhok and Tallman, 1998; Young-Ybarra and Wiersema, 1999), which in 

turn influences the firm’s technology adoption (Gulati, 1995; Katila et al., 2022; Mowery et al., 1998; 

Stuart, 2000, et al., 1999) and innovations (Ahuja, 2000; Baumol, 2001; Hagedoorn and Schakenraad, 

1990). Suppliers determine which resources they develop and whether they share those resources with their 

broader ecosystem. If they share resources, they decide which resources will be shared and which partners 

 
11Investments are unrecoverable (i.e., sunk) and asset-specific, fitting only with the current platform. Firms would 
likely have to make similar investments in complementary assets and increased compatibility again if they changed 
platforms, raising switching costs and “locking” the startup to their providers (Monteverde and Teece, 1982). 
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will receive them. Moreover, suppliers determine the compatibility of their shared technologies with other 

technologies, further constraining technology adoption. 

However, despite this undue influence on future technologies, resource-strapped entrepreneurial 

ventures may cease to exist without access to these early resources (Stuart et al., 1999). These “access 

relationships” (Stuart, 2000), including customer-supplier relationships, technology exchange agreements, 

and one-directional technology flows12, enable firms to access needed resources to develop their products. 

Moreover, these interfirm relationships create synergies that overwhelm the benefits of internal 

development in many cases (Madhok and Tallman, 1998; Silverman, 1999) and mitigate hold-up issues 

amongst network participants when information is dispersed widely across firms in an industry (Powell et 

al., 1996). These relationships complement the codification of the transaction terms, strengthening 

governance mechanisms (Poppo and Zenger, 2002). Moreover, the benefits from collaboration provide 

insight into why firms may depart from the resources-based perspective that internal development of rent-

generating resources enables firms to collect excess returns from imperfections in strategic factor markets 

(Barney, 1986) and reduces the threat of imitation (Montgomery, 1994; Peteraf, 1993). 

Third, firms’ outsourcing decisions impact their organizational structure. Firms choosing to make 

a resource must vertically integrate the inputs of that resource’s production, which diversifies the firm to 

focus on developing an additional product (Argyres and Zenger, 2012; Brynjolfsson et al., 1994; Teece, 

1982). Having to focus on an additional product line can impede progress for two reasons. First, in digital 

industries, having multiple production lines may prevent benefits from scaling. This ability to scale digital 

resources rapidly (Fazli et al., 2018), coupled with the firm being more vertically narrow scope, enabling a 

greater focus on a single product, may create a situation where the potential gains of being able to scale a 

single product quickly13 outweigh the transaction cost inefficiencies from outsourcing (Cachon and Harker, 

2002; Giustiziero, 2021). Second, it may be difficult for firms to develop processes and products 

 
12Hagedoorn and Schakenraad (1990, p.5) provide an exhaustive list, including direct investment, joint research 
corporations, joint ventures, and joint R&D agreements. 
13Research suggests that productivity gains (Aral et al., 2012) and IT discounts (Benzina, 2019) are associated with 
scaling and increased firm size. 

Electronic copy available at: https://ssrn.com/abstract=4200675



10 
 

simultaneously (Henderson and Clark, 1990). Moreover, aspects of firm structure may impair the firm's 

ability to remain flexible and adjust levels of product and process R&D. This inflexibility could inhibit a 

firm’s ability to benefit from sequencing process and product-related research activities in the short-run 

(Athey and Schmutzler, 1995). When nascent firms initially outsource process-related R&D, their structure 

would be more focused on product-related R&D. For digital firms, this focus on digital products would 

manifest in firms acquiring richer data resources or the means enabling enhanced data collection, 

recombination, and use. 

Lastly, this literature also considers the technological environment’s dynamism and the pace of 

technological change in examining the decision to outsource. Vertical integration is more effective when 

the likelihood of technological obsolescence is high (Balakrishnan and Wernerfelt, 1986). Outsourcing may 

be more beneficial in digital industries where technological development is fast-paced and quickly renders 

prior technologies obsolete (Aral et al., 2012; Cachon and Harker, 2002; Giustiziero, 2021). High-tech firms 

may benefit from outsourcing due to the rapid pace of technological change, forgoing upfront investment 

in the internal development of quickly deteriorating IT assets. 

 

3. High-tech startups developing apps on cloud platforms 

Though subscription-based cloud services are fairly new, since 2006, they have fundamentally changed 

how startups procure IT assets. This paper primarily focuses on cloud platform services (PaaS), a specific 

type of cloud service which enables startups to host technologies on their web domain and develop and test 

apps. These platforms are a “layered architecture of digital technology” (Yoo et al., 2010) with a governance 

model (Rochet and Tirole, 2003; Parker et al., 2017). Cloud providers also offer hardware infrastructure 

services (IaaS), leased cloud-based computers and servers, that are less consequential to differentiation than 

platform services but important in the context of IT spending, hardware development, and productivity. 

High-tech startups outsourcing IT platform development may access difficult-to-develop resources 

from their suppliers, avoid investment in deteriorating technologies, and benefit from a more vertical 
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organizational structure that enables quick scaling of their digital product. On the other hand, outsourcing 

may constrain differentiation when firms adopt technologies to fit with their suppliers’ technologies, co-

invent with the same shared resources as others, or alter their firms' structure to facilitate outsourcing 

similarly to others. Supplier power increases over time as startups make additional sunk, asset-specific 

investments to fit their cloud platform and as monopsony costs increase from cloud suppliers consolidation. 

Moreover, incentives to innovate dissipate as these platforms grow larger (Boudreau, 2012), suggesting that 

the emergence of several large cloud suppliers may further reduce differentiation. Still, others argue the 

opposite, that large platforms are multi-dimensional product spaces offering a nearly limitless possibilities 

for technology recombination (Caves, 2000; Parker et al., 2017; Zittrain, 2006) 

Two mechanisms, the strength of the customer-supplier relationship and the need for technological 

fit, provide insight into how outsourcing impacts technology adoption and differentiation. These 

mechanisms are interrelated, influencing technological inputs in production directly and the allocation of 

time and programming labor among app development and data analytics activities indirectly.  

Need for technological fit. Startups will adopt increasingly similar technologies when the fit amongst 

interdependent technologies or between the bundle of technologies and the underlying cloud platform’s 

technologies is important for the outcome. In the case of product development technologies, this outcome 

is developing a working app. For data analytics technologies, the outcome is producing data resources that 

are unrelated to the app working effectively. 

First, the need for technological fit amongst interdependent technologies impacts the breadth of 

technology adoption. The potential for technological incompatibility increases with the size of a firm's 

technology bundle, as it is increasingly difficult to combine many highly interdependent technologies in 

production (i.e., complexity catastrophe; Fleming and Sorenson, 2001). Firms using larger bundles of 

interdependent technologies incur increased coordination costs associated with managing fit, incentivizing 

them to use more standardized development tools with known compatibilities. Data analytics technologies 

do not face similar constraints as they are more modular (i.e., less interdependent). Second, a startup’s 
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initial fit with its development platform is strategically significant, as startups may be unable to incur the 

added cost of adapting less compatible technologies to fit the platform.14 Moreover, the need for firm 

impacts which technologies are added to a startup’s technology bundle. These adaptation and coordination 

costs are relatively higher for development technologies due to interdependencies, potentially requiring 

many technologies to be exchanged or adapted. Given these costs of maintaining fit, startups may benefit 

from entrenching themselves with a single provider’s recommended development tools, following a 

particular technological trajectory. 

Customer-supplier relationship. When digital startups are founded, they have few customers and lack 

relationships with other firms, However, they quickly establish a relationship with a technology firm 

supplying their cloud services. Larger technology firms have abundant IT and data resources. The largest 

cloud services providers – Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft 

Azure – have startup-related corporate programs that share resources with their customers.15 These 

corporate accelerator programs share generalized resources like traditional accelerators (Hochberg, 2016; 

Yu, 2020) yet also provide technical resources (i.e., software, compatibility documentation, expertise, and 

troubleshooting) related to their cloud platform. Unlike traditional accelerator programs, these corporate 

programs are often open to any viable startups. This relationship is a conduit for resources to pass from the 

supplier to their customers. Suppliers likely have a stronger relationship with startups that are potentially 

valuable customers, using more of their cloud service products (i.e., both platform and infrastructure 

services). This stronger relationship may unlock additional shared resources that are difficult for young 

startups to develop. Alternatively, receiving more resources may incentive adopting certain technologies 

 
14Once startups develop their apps on their supplier’s platform, moving their product to another platform or 
internalizing production is costly. There are fees for offloading data. Moreover, fit-enhancing investments in a specific 
platform do not necessarily transfer to another platform, and firms may have to replicate some of those investments 
on the new platform. Startups may even need to hire different programmers as coding requirements are not universal 
across platforms. It may be less costly for a firm to abandon its app on one cloud platform and start development from 
ground zero on a different platform than to move its app. 
15To give a sense of the scale and breadth of these programs, Amazon AWS even has an accelerator specifically 
focused on providing resources to startups focused on space travel. https://www.geekwire.com/2021/amazon-web-
services-launches-space-accelerator-final-frontier-startups/ 
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that the supplier touts to be compatible with their services. Moreover, coordination costs may be higher 

increasing the technological constraints associated with coordinating fit with an additional cloud service. 

When fit issues emerge, access to a cloud provider’s shared technologies, processes, and 

technological compatibility guidance could save time for programmers. Programmers could adopt more 

standardized development tools and spend their saved time and resources cultivating data analytics 

capabilities. There is a fixed pie of available resources, and startups that more efficiently build a functional 

app have more resources to collect and analyze data resources that could provide them with a competitive 

advantage. Firms benefit from developing data analytics capabilities (Brynjolfsson et al., 2021; Provost and 

Fawcett, 2013, Tambe, 2014). These benefits may be even larger for firms with a digital app, enabling them 

to examine their app’s usage data (Chatterji and Fabrizio, 2014), or for firms producing AI, enabling them 

to source, clean, and recombine training data (Furman and Seamans, 2019; Bessen et al., 2022).The 

potential of shifting resources from one important activity to another aligns with recent research findings 

that using standardized or low-code development tools can enable commercial success (Miric et al., 2021; 

Dushnitsky and Strobe, 2021), suggesting that using more standardized development tools does not 

necessarily limit the ability for firms to differentiate. In the case of digital app production, product 

differentiation stems from utilizing unique or more robust data that is challenging for rivals to replicate.16 

 

4. Data 

Before starting the quantitative analyses, I informally interviewed fifteen high-tech startup founders to 

understand the IT asset outsourcing decision better. Founders and early technical employees determine 

which cloud provider to adopt before developing their product. All the startups I interviewed used cloud 

platform services, and about half also used infrastructure services. 17 One startup initially developed IT in-

 
16That data then could be used to make business decisions (e.g., product design decisions, marketing decisions, and 
customer and partner acquisitions decisions) and, in the case of AI-developing startups, to train algorithms. 
17 A few mentioned adding a second cloud provider to access more free cloud credits for a tangential project or from 
“blob” storage, which lets developers store unstructured data on the cloud. This data can be accessed from anywhere 
in the world and can include audio, video, and text. Blobs are grouped into "containers" that are tied to user accounts. 
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house (from 2013 to 2017) to produce a marketing app, citing security issues of working with sensitive data 

and competitively significant algorithms in the cloud. Several founders mentioned that their end-customers’ 

industry influences their decision on which cloud supplier to adopt. One healthcare startup felt pressure to 

develop on the Microsoft Azure platform because Azure offered HIPAA-compliant cloud services earlier, 

enabling Azure to develop an early foothold in that vertical. Some startups responded that they joined a 

particular platform to access free software, services, cloud credits, or corporate accelerator programs. 

However, most startups I contacted revealed that highly discounted offers facilitated through their 

accelerator or incubator programs influenced their decision to join a particular cloud platform. 

The initial cloud decision impacts the startups’ future technological compatibility and 

complementarity as it is challenging to switch platforms. For instance, several startups reported being 

unable to change cloud providers because they would have to “rebuild their entire product” on the new 

platform.18 Founders discussed programming labor as a constraint: “it is hard to find (replace) a good 

programmer.” Some mentioned having to hire a programmer with different coding preferences if they 

switched to Azure, a platform requiring more extensive knowledge of C# than GCP or AWS, arguing that 

it would be costly to find other programmers. Others suggested that they cannot backstep and start over if 

they already have a functioning app, which is often a milestone for investors. Developing a functioning app 

and landing a few early customers are clear initial goals.  

4.A. Firm demographics 

To examine how outsourcing IT affects startup technology adoption and differentiation, I establish a sample 

of startups with a digital app from multiple data providers. I use data from Crunchbase19 and Pitchbook20 

to compile a list of active, high-tech startups in IT or software-related industries. Then I use data from 

 
18Only one startup changed to a new primary cloud provider after product development; however, the change 
coincided with the startup founder hiring a prior executive from the new cloud provider. 
19Crunchbase provides data about startups and sources its data in four ways: venture programs, machine learning, an 
in-house data team, and the Crunchbase community. 
20Pitchbook is a software-as-a-service company that delivers data, research, and technology covering private capital 
markets, including venture capital, private equity, and M&A transactions. 
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Apptopia21 and startup descriptions to confirm these startups have a mobile or website-based app and an 

active web domain. To capture higher-growth potential startups, I exclude firms that are older (i.e., >10 

years old), larger (i.e., more than 500 employees), or located in China.22 These criteria yield a sample of 

3,434 startups that develop an app as their product and were founded between 2012 and 2021. Most startups 

in the sample operate in more developed economies (~90%) and are primarily located in the Americas (56% 

SD 0.05) or Europe (27% SD 0.04). The average startup in the sample is 4 (SD 2.4) years old and has 45 

(SD 63) employees. One-fifth of these startups target customers in the financial services and healthcare 

industries. Many describe themselves as developing commercial AI products (38% SD 0.49) or using 

machine learning in production (9% SD 0.29) (Table 1.A. under the heading Demographics). 

4.B. Founder measures 

I build measures on startup founders from three data sources: Mantheos23, AIdentified24, and manually 

collected data from public LinkedIn25 profiles. In our sample, 12% (SD 0.33) of startups have founders at 

least one founder with prior IT experience, including 5% (SD 0.22) with prior hardware development 

experience and 7% (SD 0.25) with prior Big Tech experience (Amazon: 1%, Google: 3%, Microsoft: 3%). 

On average, 44% (SD 0.50) of startups have a founder with a technical26 undergraduate or graduate major; 

21% (SD 0.41) have an advanced degree (i.e., master’s or doctorate) in a field other than business 

administration; 24% (SD 0.43) have a master’s degree in business administration (MBA). From text 

analysis of founder’s names, I determine that 13% (SD 0.33; 95% CI) of startups have a female founder or 

 
21Apptopia’ s data intelligence platform enables brands to analyze critical competitive signals and gain insights across 
mobile applications and connected devices. 
22As a potential limitation, third-party data sources may not accurately represent the underlying population. These 
English-language data sources underrepresent the number of startups in China or from certain emerging countries 
where the English language is less commonly used. Additionally, founders from these countries will be 
underrepresented on LinkedIn. Yet, even in English-language developed markets, a small number of very young 
startups may try to stay under the radar. Results from this sample will be more valid for developed markets, where 
data-representativeness issues are less of a concern. 
23Mantheos is a business intelligence company providing accurate, clean, and structured data aggregation on demand. 
They are currently out of business (4/25/2022) after being sued by LinkedIn. 
24AIdentified reveals the best paths for sales teams, account executives, and brands to connect to hyper-targeted, 
qualified prospects using predictive analytics and next-level AI-based relationship intelligence mapping. 
25LinkedIn is an employment-oriented online service that operates via websites and mobile apps. 
26Technical degrees include math, physics, computer science, statistics, and data science. 
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CEO.27 These estimates reflect the low participation of females in the population of high-tech 

entrepreneurship (Table 1.A. under the heading Founders). 

4.C. Cloud services provider measures 

I collect firm-level cloud services and technology adoption data across time (2012-2021) for these startups 

from BuiltWith.28 This provider offers information on cloud services (i.e., PaaS, IaaS, storage) and 

technologies connected to the startup’s web domain by making “HTTP requests” and analyzing website 

code to determine which “back end” technologies startups adopt.29 Since each of these startups has a digital 

app as its product, information on the adoption of domain-based technologies provides insight into web and 

mobile app development. Most startups in my sample develop their app on a cloud platform (85%) and 

license cloud hardware infrastructure services (79%) (Table 1.B.). 

I identify ten technology firms that license cloud services. The largest suppliers are Amazon, 

Google, and Microsoft (Big Tech CSPs, 78%). The other seven suppliers offer more niche (e.g., fintech 

digital currency mining) or less expensive technology services: Alibaba, Digital Ocean, IBM, OVH, Oracle, 

and Linode (Other CSPs, 7%). These cloud providers also offer hardware infrastructure services that 

provide high-power virtual machines with processors (GPUs) and solid-state hard drives (SSD), which are 

particularly valuable in AI development.30 The remaining startups (15%) do not have cloud-based platforms 

connected to their web domain (Table 1.C.)31  

 
27I used the “gender” library in R, SSA method, focused on English language birth names common in the 1980s. 
28BuiltWith returns all the technologies connected to a web domain, covering more than 59k technologies across 
analytics, advertising, hosting, frameworks, CMS, and more. 
29Prior research in strategy uses similar data from BuiltWith: Koning et al., 2022 (A/B testing technologies); 
Dushnitsky and Stroube, 2021 (connection with Shopify technologies). I connect to BuiltWith's API to download this 
data on each startup's web domain; all startups included have an active website. More information on BW: 
https://techcrunch.com/2012/02/16/ builtwith-reveals-the-tech-used-by-the-130-million-web-sites-that-matter-most 
30E.g., Amazon Elastic Compute (EC2), Google Compute Engine, Cloud AutoML, and Azure Machine Learning 
31Despite the richness of this technology adoption data, there are several limitations. First, I assume that startups with 
a supplier relationship participate in programs that share resources. Next, cloud suppliers with startup programs, a 
conduit for sharing resources, share resources with greater than suppliers without programs. Third, I cannot pinpoint 
which technologies startups added as a direct result of sharing. Fourth, and related to the prior point, I cannot determine 
which other non-technology resources, like technical and business expertise, are shared formally through programs or 
informally through increased network connectedness. 
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4.D. Technology adoption measures 

Though I have data on all domain-connected technologies for each startup, this paper does not focus on 

“front end” technologies (e.g., website hosting, fonts, e-commerce, payment, etc.) or organizational 

technologies (e.g., customer relationship management, sales tools, workforce management, email hosting, 

etc.). Instead, it focuses on product development technologies (e.g., content management systems, content 

delivery networks, frameworks, and security) and analytics technologies (e.g., data analytics, collection, 

and telemetry) that are essential for high-tech startups that develop apps and run their business.32 I share 

summary statistics on these measures in Table 1.D. under the heading Technology Adoption. 

Technology Bundle Size. First, I calculate the firm-year technology bundle size, a count of technologies 

connected to the web domain, using a similar approach to Berman and Israeli (2022). Startups use an 

average of 50 (SD 27) technologies, ranging from 1 to 252. Startups using a cloud platform have larger 

technology bundles (53 SD 27) than startups not using a cloud platform (36 SD 19). On average, firms use 

8 (SD 4) product development technologies and 6 (SD 6) analytics technologies.33 

Technology Bundle Dissimilarity. Next, I calculate firm-year technology dissimilarity for product 

development and data analytics technologies based on pairwise cosine similarity each year to address my 

research question, focused on relative changes to the breadth of technology adoption of app-producing firms 

in my sample as a proxy of startup differentiation. I calculate angular distance as a technology dissimilarity 

measure based on prior strategy and economics research (Seamans and Zhu, 2014; Sweeting, 2010; Wang 

and Shaver, 2014).34 In my case, the coordinates are firm-year vectors of technologies, taking the value 1 

 
32I list all the technologies included in the analyses and their descriptions in Appendix D, and I provide more 
information on cleaning the BuiltWith data in Appendix Note A.1. Even though I make all attempts to clean and 
organize technologies based on the provided categories and descriptions of technologies, there is the chance that 
startups onboard a technology and not use it. Some of these technologies have a licensing cost and are likely to be off-
boarded quickly; however, free technologies, especially those not requiring substantial space, could linger. 
Alternatively, they could use product development technologies in a way that is unrelated to application development. 
33Additionally, I calculate the number of Big Tech technologies (13 SD 6), premium/subscription technologies as 
defined by BuiltWith (3 SD 4) and open source technologies (1 SD 1) as defined by analysis of their descriptions. 
(Table 1.D.) 
34An example of this measure comes from astronomy, where the angular distance is the angle between two “sightlines” 
of two far-away objects. 
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when both startups do not use the technology and 0 when both startups use the technology, configuring a 

positive semidefinite matrix. The resulting dissimilarity measure will be bound by [0,1], taking the value 

of 1, the maximum distance, when there is no overlap of any technologies in a given year, and the value of 

0 when there is perfect overlap. 

𝑏𝑢𝑛𝑑𝑙𝑒_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!",$ = 0𝑐𝑜𝑠%& 3
𝑉!$ ∗ 𝑉"$

∥ 𝑉!$ ∥∥ 𝑉"$ ∥
78

𝜋
2

; 			(1) 

where, 𝑏𝑢𝑛𝑑𝑙𝑒_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!",$ refers to the pairwise angular distance of the focal firm and rival35, i refers 

to the focal firm, j refers to the rival, t takes on the value of the year, and (𝑉!$ ∗ 𝑉"$)	is the firm-level pairwise 

dot product, normalized by the length of each vector (∥ 𝑉!$ ∥∥ 𝑉"$ ∥), so the technology bundle size will not 

impact measurement. 

For the main analysis, I calculate the mean of the angular distance for each focal startup with respect 

to other app-developing startups in the comparison panel (e.g., all startups, startups using a CSP, startups 

using Big Tech CSP, startups using Amazon AWS, etc.) from the disaggregated data. For instance, when I 

calculate this mean measure for focal startups in the Amazon AWS panel, it only includes pairwise matches 

of firms that use the Amazon AWS platform. The average bundle dissimilarity is 0.78 (SD .07) for product 

development technologies and 0.66 (SD 0.12) for analytics technologies.36 

4.E. Funding measures  

I create and use indicator variables for whether startups received any funding (71% SD 0.45; including 

seed/angel funding), follow-on funding (52% SD 0.5; at least two rounds of funding), venture capital 

funding (61% SD 0.49), or higher reputation venture capital funding (9% SD 0.28). Next, I create a firm-

year measure of deal size (5.1 SD 7.1, log) and an aggregate measure of total funding (11.9 SD 6.2, log).37 

 
35Rival firms are defined as any other high-tech app-producing startup in my sample. 
36I provide additional details on measure construction in Appendix Note A.2., kernel density estimates in Appendix 
Figure C.2, and summary statistics in Table 1.D. under the heading Technology Adoption. I depict the relationship 
between product development and analytics technology bundle dissimilarity before and after outsourcing to a cloud 
platform services in Figure C.3. 
37Also, I create indicator variables for participating in an accelerator (19% SD 0.39) or having direct funding from a 
Big Tech firm (3% SD 0.26). 
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As another performance measure, I use data on website visit duration (3.1 SD 3.3, log minutes) from 

SimilarWeb38 and an indicator variable for if startups have a patent (4% SD 0.18) from IPQwerty.39 Though 

many young high-tech startups do not patent, this measure captures some aspects of proprietary innovation. 

Only 5% (SD 0.21) of startups have closed, and 6% (SD 0.24) of startups have been acquired. Startups in 

my sample are young, so we do not yet have a clear indication of which startups will survive, opening the 

door for future research in the years to come. I provide additional descriptive statistics in Table 1.D. under 

the heading Performance, and I report correlations of these measures with firm demographics measures 

(Appendix Table A.3.), technology measures (Table A.4.), and performance measures (Table A.5.) 

 

5. Research Design 

I construct a relatively homogenous sample of active startups less than ten years old with fewer than 500 

employees and an existing app. Then I use Coarsened Exact Matching (CEM; Iacus et al., 2012) based on 

observables: age, employment size, region, industry vertical (healthcare, financial services) across 

comparison groups to weight regressions. This matching procedure is consistent with the argument that 

startups using a cloud platform are not observably different from those not using a cloud platform. I provide 

summary statistics on sample means before and after matching on the right side of Tables 1.A. and 1.C. and 

depict the standardized mean differences between the weighted and unweighted groups in Appendix Note 

A.6. 

For the main specification, I use an OLS difference-in-differences approach with two-way fixed 

effects to model the impact of outsourcing IT development to a cloud platform on technology adoption. 

This approach assumes that the treatment and control groups have parallel trends even if no firms are treated 

(Abadie 2005). I compare the trends for the control and treatment groups in Appendix Figure C.4. 

 
38SimilarWeb is a digital intelligence provider for enterprise and small to mid-sized business customers. The platform 
provides web analytics services and offers its users information on their clients' and competitors' web traffic and 
performance. 
39IPQwerty applies a series of contextual clues to help differentiate between similar company names, then separates 
each into the correct IP profile. 
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Development technology bundle size and dissimilarity show parallel trends across all years, as does 

analytics bundle size. However, analytics differentiation shows parallel trends only up until 2019. 

𝑦!$ = 	𝛽&𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ + 𝛽'𝑦𝑒𝑎𝑟𝐹𝐸$ + 𝛽(𝑓𝑖𝑟𝑚𝐹𝐸! + 	𝜀!$			(2) 

where, 𝑦!$ refers to the dependent variables: technology bundles size and dissimilarity measures; 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ refers to an indicator variable that takes the value 1 if a startup uses a cloud platform and 0 

otherwise; 𝑦𝑒𝑎𝑟𝐹𝐸$ refers to the year-level fixed effect; 𝑓𝑖𝑟𝑚𝐹𝐸! refers to the firm-level fixed effect. I 

cluster standard errors at the firm level. In these models, I match and weight regression according to the 

treatment, adopting a cloud platform versus not adopting a cloud platform, which drops 21 unmatched 

firms. To overcome potential estimation issues from a staggered difference-in-differences model with two-

way fixed effects, I estimate aggregated pre- and post-treatment estimates, average treatment effects, local 

average treatment effects, and heterogeneity-robust instantaneous treatment effects for robustness. 

Next, I use the following OLS specification to compare different platforms, adjusting my CEM 

matching approach to compare across treatment groups (i.e., outsourcing to Platform X vs. Platform Y). 

For example, when comparing startups outsourcing to the AWS platform versus those outsourcing to a 

different platform, I would match to ensure that startups using AWS are similar to those not using AWS. 

𝑦!$ = 		𝛽&(𝑐𝑙𝑜𝑢𝑑_𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑋!$ = 1) + 𝛽'(𝑐𝑙𝑜𝑢𝑑_𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑌!$

= 1) + 𝛽(𝑦𝑒𝑎𝑟𝐹𝐸!$ + 𝛽)𝑓𝑖𝑟𝑚𝐹𝐸!$ + 	𝜀!$			(3) 

where, 𝑦!$ refers to the dependent variable: technology bundle size or dissimilarity measures, 

𝑐𝑙𝑜𝑢𝑑_𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑋	!$	refers is an indicator variable that takes the value 1 if the startup outsources to Platform 

X and 0 otherwise, 𝑐𝑙𝑜𝑢𝑑_𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑌	!$ refers is an indicator variable that takes the value 1 if the startup 

uses cloud services from Platform Y and 0 otherwise. 
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6. Impact of outsourcing to a cloud platform on technology adoption 

6.A. Main findings  

I examine how technology adoption changes when startups outsource to cloud platform services, using 

panel data product development and data analytics technology bundles startups. These technologies are 

direct inputs in digital production. 

Larger technology bundles. I find that product development technology bundles (Table 2, model (1): +0.43 

SD 0.02) and analytics technology bundles (model (8): +0.52 SD 0.02) become larger after outsourcing. 

OLS estimates increase when adding firm-level fixed effects (models (2) and (9)) and decrease when adding 

year-level fixed effects (models (3) and (10)).40 Adding both firm and year-level fixed effects reduces 

estimates of technology bundle size (model (4): +0.30 SD 0.02; model (11): +0.24 SD 0.02), but results 

remain positive and significant. These estimates remain similar when dropping 21 unmatched startups and 

weighting regressions based on the matching procedure, controlling for potential observable differences 

between the control and treatment groups (models (5) and (12)). Lastly, the ratio of development tools to 

all other technologies slightly increases after outsourcing to a cloud platform (model (7): +0.012 SD 

0.003).41 

More standardized tools. Technology bundle size, the total number of technologies that startups use, 

provides limited insight into startup differentiation. Regardless of if startups use more technologies, their 

apps will not work effectively unless these technologies fit with their production needs, other 

interdependent technologies, and their IT platform’s underlying technologies. As anticipated, product 

development technology bundles, collectively the tools that programmers use to build digital apps, become 

less dissimilar (i.e., more similar; model (1): -0.041 SD 0.002) to other startups in the sample when they 

outsource to cloud platform services. These technologies have similar fit constraints and receive many of 

 
40When firm-level fixed effects are added, 290 single observations/firms are dropped. These firms have no pre/post 
outsourcing variation.  
41Additionally, in Table B.1., I report additional results for Big Tech (i.e., developed and licensed by Amazon, 
Google, or Microsoft), paid/subscription, and open source technology bundle size. 
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the same resources from their suppliers, pushing them toward a similar technological path. Building from 

this base model, I add firm-level fixed effects (model (2): -0.089 SD 0.002), year-level fixed effects (model 

(3): -0.025 SD 0.002), and both firm and year-level fixed effects (model (4): -0.028 SD 0.002). Lastly, 

results remain the same when I weight regressions and drop 21 unmatched firms in addition to including 

fixed effects (model (5) -0.028 SD 0.002; coefficients depicted in Figure 1). 

Next, I examine two mechanisms, the need for technological fit and the strength of the customer-

supplier relationship, to provide evidence consistent with a causal relationship. Product development 

technologies are often interdependent, requiring certain base technologies for the added technology to work 

appropriately. Startups using larger bundles of development technologies incur increased costs of 

coordinating among a higher number of interdependent technologies. Moreover, the larger bundle of 

technologies must still fit with the cloud platform’s underlying technologies for the app to work effectively. 

As such, the development tools become even more similar (Table 3 model (6), Outsource x H. Tech Count: 

-0.056 SD 0.003; Figure C.5.A.). 

As a second mechanism, startups with a stronger cloud provider relationship will likely have access 

to additional shared resources yet face greater fit constraints from using multiple cloud services products. 

Startups are more entrenched in a single supplier’s technology when they license cloud hardware 

infrastructure services (e.g., virtual machines providing computing power) in addition to cloud platform 

services. These additional shared resources sources from the potentially stronger relationship may mitigate 

some compatibility issues but also may guide startups down the same development path or technological 

trajectory. Development tools become more similar when startups use multiple cloud services from the 

same provider (Table 3 model (7), Outsource x IaaS: -0.032 SD 0.002; Figure C.5.B.), which makes them 

face the same new set of additional fit-related constraints and provides them with the same resources that 

lead them to similar technical solutions. 

More diverse data analytics capabilities. Technologies enabling firms to collect, analyze, and recombine 

data become more dissimilar when outsourcing to a cloud platform (Table 3 model (12): +0.087 SD 0.005; 
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coefficients depicted in Figure 1).42 Since these technologies are not related to the mechanics of product 

development, startups can use large and more diverse analytics technology bundles without fit and 

compatibility-related issues reducing the app’s efficacy. Unlike the tools used to develop the app, data 

analytics technologies are not a cog in a larger development process. Data analytics technologies are more 

modular (i.e., less interdependent) than development technologies. Without these constraints, having a 

larger analytics technology bundle enables the adoption of a more diverse data analytics technology bundle. 

Moreover, additional shared resources enable the adoption of a more diverse analytics technology bundle 

as they are modular and less affected by fit constraints from adopting additional cloud services products. 

Substitution. Before outsourcing, there is no significant relationship between the dissimilarity of product 

development and data analytics technologies. However, after outsourcing, there is a significant tradeoff 

between these two technologies: using more standardized tools relates to adopting more diverse data 

capabilities. The sequencing of this tradeoff is even starker for startups with fewer employees than those 

with more employees, as smaller startups have more resource-deprived (Appendix Figure C.6.). Smaller 

startups adopt more standardized development tools in the period after outsourcing and adopt more diverse 

data capabilities in the following period. I interpret this as startups saving programmer time by outsourcing 

to a cloud platform and taking advantage of the standardized tools and guidance on how to use those tools 

to develop an app that integrates well with their cloud platform. Startups can focus their technical labor on 

other priorities, such as developing more diverse data analytics capabilities, which enable them to build 

more robust data resources. 

6.B. Identification 

In addition to matching and weighting regressions based on observable demographics, I use three additional 

methods to adjust regression estimates for potential endogeneity: Heckman’s selection approach, an 

instrumental variable approach, and a double machine learning model. 

 
42In Table 3 models (8)-(11), I provide a similar build-up to support these results as in the preceding section, adding 
firm fixed effects, year fixed effect, firm and year fixed effects, and firm and year fixed effects with matching. 
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Selection model. Empirical insight into firm-level decisions to outsource to a cloud platform is scarce in 

prior research (Schneider and Sunyaev, 2016; Yang and Tate, 2012), partly because adoption is 

endogenous. Startups are not randomly assigned to different IT development conditions or cloud platforms. 

Instead, founders and early IT employees chose to develop internally or adopt services from a specific cloud 

provider.  

I examine selection based on founder characteristics, industry, headquarters location, age, and funding from 

a Big Tech cloud provider using a time-series probit specification in Table 4.43 In model (1), I examine 

cloud platform adoption. The startup’s age is a significant driver of cloud platform adoption (+0.65 SD 

0.01), as startups make these decisions when they reach product development. Startups selling into 

healthcare and energy, more highly regulated industries, are less likely to outsource. Additionally, in 

Europe, where data regulation (e.g., GDPR) is more intense, startups are less likely to outsource to cloud 

platform services (-0.23 SD 0.05), raising a potential concern that European entrepreneurs are missing out 

on the benefits of cloud if, indeed, there are benefits.44 Firms with earlier funding from one of the three 

largest cloud providers are more likely to outsource to a cloud platform (+0.30 SD 0.11). As anticipated, 

startups with a founder with hardware experience are more likely to develop IT in-house. Lastly, founders 

with an MBA or advanced technical degree are more likely to outsource.45 

Using Table 4 model (1) as the base probit specification, I calculate the inverse Mill’s ratio (IMR) 

based on Heckman’s (1979) selection approach, using including founder characteristics in the IMR 

calculation but excluding them in second stage regression (Appendix Note A.7.). Results remain similar to 

the main results when including IMR as a control (Table B.2. model (4), development dissimilarity: -0.025 

SD 0.09; model (8), analytics dissimilarity: +0.086 SD 0.005). 

 
43As a limitation of this selection analysis, certain characteristics may not be observable or are not captured in the 
data. Moreover, the size of the founding team and combinations of the founding team's characteristics could affect 
selection in a way unaccounted for by my model. 
44And this finding supports the notion that Americans may do (cloud) I.T. better than others, too (Bloom et al., 2012).  
45I examine the selection of a Big Tech versus other smaller cloud platform providers for the treatment group in Table 
4 model (2). Model (3) compares the selection of Amazon AWS versus other providers. Model (4) uses a multinomial 
time series probit model and finds similar results to model (2) based on the full sample.  
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Instrumental variable approach. To address endogeneity issues stemming from unobservable variables and 

reverse causality, I use the release of an open source46 version of TensorFlow in late 2015 as a quasi-

exogenous shock to AI startups’ adoption of cloud services. TensorFlow is an AI framework that enables 

firms to develop and train deep learning algorithms. Google’s decision to develop and release TensorFlow 

enabled AI-producing firms using cloud services to be more productive and their complementary labor 

more valuable, enabling them to customize this AI framework to their development needs (Rock, 2021).47 

After the open source release, TensorFlow could be used on any cloud platform, not just Google’s platform. 

However, it took another year for Amazon to develop an Amazon Machine Image (AMI) that easily enabled 

the use of TensorFlow on their platform.48 

This instrumental variable approach includes the interaction between two binary variables: startups 

that 1) benefit from TensorFlow (i.e., startups that adopted Google Cloud Platform in 2016 or Amazon 

AWS in 2017) and 2) develop AI products (i.e., startups that benefit from AI frameworks like TensorFlow), 

described in Appendix Note A.8. Including an interaction term between two binary variables increases the 

strength of the first-stage regression without biasing estimation (Aghion et al., 2005; Bun and Harrison, 

2018). In this case, my first stage regression yields significant F-statistics (K-P Wald F: 102, C-D Wald F: 

105), consistent with the argument that the instrument is adequately powered. 

Using TensorFlow directly relates to AI startups adopting a cloud platform, the outcome variable 

in the first stage. (Table 5.A., Tensor: +0.24 SD 0.018; Tensor x AI: +0.29 SD 0.024). Yet, in support of 

the exclusion restriction, TensorFlow does not directly relate to the breadth of technology adoption.49 The 

 
46Apache 2.0 opensource license 
47Other recent research also supports that complementarities exist between AI and human labor (Choudhury et al., 
2020; Krakowski et al., 2022; Tong et al., 2021). 
48Though other AI frameworks were released around this same time, TensorFlow was the most popular. Keras was 
released in March 2015; Microsoft’s Cognitive Toolkit (CNTK) was released in January 2016; Facebook’s PyTorch 
was released in September 2016. Amazon’s Sagemaker, released in November 2017, and open sourced in 2019.  
49There are two potential limitations I wanted to address. First, though I discussed TensorFlow's higher market share 
and the release timing of other competing frameworks, it is possible that I am gauging the effect of TensorFlow and 
other frameworks. I try to overcome this by building my TensorFlow measure to exclude startups on Google’s cloud 
platform, who were less able to benefit from TensorFlow’s open source release but could still benefit from the release 
of other platforms. Second, though many programmers tout the versatility of TensorFlow, there could be some 
technologies that are indeed dependencies and influence the breadth of innovation (on the margins). However, I cannot 
find any documentation that suggests this. 
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second-stage regression results remain directionally similar and significant. The impact of cloud services 

increases product development dissimilarity (i.e., development tools become even more similar) from -

0.027 SD 0.002 (main analysis repeated in Table 5.B. model (1)) to -0.051 SD 0.016 (IV approach, model 

(2)). Analytics dissimilarity remains similar, slightly increasing from +0.087 SD 0.005 (main analysis 

repeated in model (4)) to +0.089 SD 0.018 (IV approach, model (5)).50 

Double machine learning. As another method of addressing endogeneity from potentially omitted variables 

(Belloni et al., 2014), I use a double machine learning model to estimate the treatment and outcome using 

a random forest machine-learning algorithm trained with 64 firm-level control variables. This approach, 

described in Appendix Note A.9., divides the sample in half, using half the observations to train the model 

and the other half for prediction, and calculates Neyman orthogonal scores to estimate the causal parameter 

(Chernozhukov et al., 2018; Neyman, 1959; Wooldridge, 1991). I then take the first differences based on 

the machine learning models’ prediction of the (1) treatment and (2) outcome and run an OLS regression 

with firm and year-level fixed effects. 

Similar to the instrumental variable approach, the double machine learning approach dampens the 

effect of platform adoption, down about 40% from the base model (Table 5.B. model (3), Development 

dissimilarity: -0.015 SD 0.002; model (6), Analytics dissimilarity: +0.053 SD 0.004). However, this 

additional analysis support that the effect remains and is significant.51 

6.C. Robustness 

Since my panel is unbalanced, I run the main specification with a subsample of firms with data before and 

after the outsourcing event, dropping all firms that outsourced in their initial year of existence (Table B.2. 

 
50I realize that an instrumental variable approach does not solve all related endogeneity issues; yet, in conjunction with 
my main analysis, these findings provide more confidence in the scale and direction of my findings. As robustness for 
this approach, I examined the effect of TensorFlow's release on all firms (not just AI startups), and the results are not 
significant in the second stage. 
51I then test coefficient stability (Oster, 2019; Development dissimilarity: 𝛿 = 3.08, Analytics dissimilarity: 𝛿 = 1.35) 
to support that effect is unlikely to be negated by unobserved variables. A 𝛿 = 3.08 is interpreted as the impact of 
unobserved variables would need to be 3x greater than the impact of observed variables for the effect to change signs. 
Impacts greater than 1x are highly unlikely (<5%). 
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model (1), Development dissimilarity: -0.027 SD 0.02; model (5), Analytics dissimilarity: +0.092 SD 

0.005). Next, I run the main specification with firms greater than three years old with data from 2012 to 

2018 to overcome potential concerns that: (a) startups have less choice over whether they outsource to cloud 

platforms in more recent years, (b) cloud services are fundamentally different in earlier years, and (c) 

parallel trends impact analytics technology bundle dissimilarity measures before 2018, and (d) product 

development and data analytics technologies are at different stages in their lifecycle in earlier periods 

(model (2), Development dissimilarity: -0.026 SD 0.03; model (6), Analytics dissimilarity: +0.082 SD 

0.006). Third, I include a firm-level investor overlap measure as a control for resource sharing from 

investors (model (3), Development dissimilarity: -0.033 SD 0.04; model (7), Analytics dissimilarity: +0.079 

SD 0.008).52 For instance, firms with the same investors may receive similar guidance (e.g., “talk to Sue 

about how to build that feature,” “hire the new programmer with X skill or through Y recruiting agency,” 

or “join Z startup programs”). 

Fourth, to ensure a single cloud provider does not drive the outsourcing effect, I run the main 

specification for subsets of firms by cloud provider: AWS, GCP, MS, and Other; results remain similar 

(Table B.3.). Fifth, I show the results of an alternate dependent variable, a technology dissimilarity measure 

based on how often a particular technology is used by startups in the sample (Appendix Note A.10.; Table 

B.4.). Sixth, I show that my analysis holds in several key verticals: AI, ML, Financial Services, and 

Healthcare (Table B.5.). Seventh, to support that spatial autocorrelation, stemming from technological 

spillovers from technology hub locations, does not impact the validity of my results, I show that results for 

city-level subsamples for San Francisco, London, and New York are similar in direction and significance 

to the main results (Table B.6.). 

Eight, as robustness for my staggered difference-in-differences model with two-way fixed effects, 

I use several approaches to estimate treatment effects. In the most straightforward approach, I collapse my 

 
52Using this methodology, I create an investor dissimilarity measure based on if startups have overlapping investors 
for the firms that have investors. For example, on the extremes, this measure takes a higher value if two firms have 
the same investors and takes a value of 0 if they have no investors in common. Mean investor dissimilarity is 0.59 SD 
0.08. 
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data to pre- and post-estimates for a balanced panel of 873 firms (i.e., switchers) that change from in-house 

to outsourcing. This two-period model estimates the outsourcing event to be more intense (Table B.7. model 

(1), Development dissimilarity: -0.086 SD 0.002; model (5), Analytics dissimilarity: +0.129 SD 0.005). In 

another approach, I report the average treatment effect (ATE), computed as the difference between the 

average treatment received by switchers after their first switch and the treatment they would have received 

if they had never switched (models (2) and (6); De Chaisemartin and d’Haultfoeuille, 2020). Additionally, 

I use a fuzzy difference-in-differences approach to estimate the local average treatment effect (LATE; 

models (3) and (7); De Chaisemartin and d’Haultfoeuille, 2018). In the last approach, I estimate 

heterogeneity-robust instantaneous treatment effects (ITE) to estimate the treatment in each period (models 

(4) and (8); Athey and Imbens, 2022; De Chaisemartin and d’Haultfoeuille, 2020).53 

Ninth, I use disaggregated pairwise data (35 million observations) to address potential issues from 

the treatment effect spillovers (i.e., stable unit treatment violations assumption; SUTVA). This more 

granular data enables me to calculate the pairwise angular distance for stable rivals, including all the focal 

startups and only the rival startups that do not change their technologies. Results on this subset are similar, 

suggesting that spillovers from the treatment effect did not change the results (Table B.8. model (1), 

Development dissimilarity: -0.027 SD 0.003; model (9) Analytics dissimilarity: +0.083 SD). Then lastly, I 

include firm, rival, and year-level fixed effects to show that results are robust to all combinations of these 

effects (models (8) and (16)). 

Tenth, I also run two analyses to ensure that differences in the technology lifecycle stage of product 

development technologies (older) and data analytics technologies (newer) do not impact my results. 

Technologies that are relatively newer would experience greater increases in diversity as the number of 

technologies in the category exponentially grow versus more mature technology categories. First, I run a 

randomization, which shows similar downward trends (i.e., increased similarity) over time. However, data 

 
53Under the Common Trends Assumption, further analyses of switchers support that all switchers who received the 
treatment have positive weight. STATA package: twowayfeweights; De Chaisemartin and d'Haultfoeuille (2020). 
Also, this approach estimates prior periods before the outsourcing event, confirming that pre-trends are not an issue. 
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analytics technologies start from a higher point, aligning with my understanding that these technologies 

are, on average newer and at an earlier lifecycle stage (Figure C.7.). Given that there is no difference in 

trends, the year-level fixed effect in my main specification effectively adjusts for differences in levels. 

Second, I examine Shannon’s (1948) entropy for both these technologies. Product development technology 

entropy increases at a slower rate than data analytics technology entropy, though absolute levels are similar 

and not significantly different from one another (Figure C.8.). I interpret this as data analytics technologies 

becoming slightly less concentrated over time, enabling more diversity. 

6.D. Additional findings 

Supplier power. Three-quarters of startups in my sample outsource to Amazon AWS. I examine 

heterogeneous effects adopting the largest platform, AWS, which has higher market power compared with 

other suppliers.54 Based on analyses of the treatment group, using higher market share platforms relates to 

using more standardized tools (Table B.10. model (1): -0.08 SD 0.01) and more diverse data analytics 

capabilities (model (4): +0.09 SD 0.03). The effect remains similar when using specification (3) to compare 

startups using one of the largest three cloud providers (AWS, GCP, and MS Azure) versus other smaller 

cloud providers (Alibaba, Digital Ocean, IBM, OVH, Oracle, and Linode) in models (2) and (5) and 

comparing firms using the AWS platform versus those using any other platform (models (3) and (6)). 55 

Heterogeneity by location. Startups located in cities with higher concentrations of VC firms (e.g., San 

Francisco Bay Area, London, New York, Boston) use more diverse analytics technology bundles after they 

outsource, despite having a similar level of development technology bundle dissimilarity (Appendix Figure 

C.10.). This finding suggests that these hubs potentially enable increased analytics technology dissimilarity, 

yet there are several plausible mechanisms. For instance, more robust analytics technologies could be a hot 

topic for investors, increasing startup awareness. Though, cities with higher concentrations of investors also 

 
54For instance, Google GCP is the next largest supplier with around 5% market share. 2,466 startups use a single cloud 
platform; 467 startups use more than one cloud provider’s platform. Analysis in Appendix Table B.10 only includes 
firms that use a single cloud provider. 
55I graph technology dissimilarity on the event timeline starting for AWS versus not AWS from year 0, the year the 
startup outsourced (treatment group only), in Appendix Figure C.9. 
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have more technology firms. These firms could increase awareness of the benefit of more robust and unique 

data resources amongst themselves, potentially by hiring each other employees.56 Moreover, these 

technology hubs have a higher proportion of programmers and tech-focused labor than other cities. 

 

7. Link with product differentiation and performance  

Product differentiation. Analyses of technology adoption are interesting in their own right, especially in the 

context of app development, given the close gap between development technologies and end products. In 

this paper, they serve as a proxy for startup differentiation because objectively collected product data from 

these young, small startups are challenging to find at scale. To understand end-product differentiation, I use 

text analysis to measure changes to startup descriptions. These descriptions are typically a couple of 

sentences describing a startup’s product.57 Though this measure is likely a closer proxy product 

differentiation than other aspects of technology adoption, the smaller sample size is relatively small, as only 

193 startups changed their descriptions after outsourcing to the cloud. Moreover, the reasons prompting 

startups to change their description are unclear. 

The text measure of description differentiation is significantly correlated with data analytics 

technology bundle dissimilarity, providing additional support that data analytics capabilities relate to 

increased differentiation. Moreover, I find a link that descriptions become more differentiated after 

outsourcing (Table 6 model (1): +0.016 SD 0.004; Figure 2), and this correlation increases when the 

outsourcing startups use more dissimilar data analytics technology bundles (model (3), Outsource x 

Analytics dissimilarity (cont.): +0.027 SD 0.009). This finding corroborates that more distinct analytics 

capabilities aid in product differentiation. 

 
56Other aspects of location are not significant; however, heterogeneity by VC location suggests there is potential to 
explore spatial spillovers in additional research. For instance, distance from a VC funding/technology hub is likely to 
be more influential on technology adoption than other location features.  
57Calculation: quanteda is an R package for managing and analyzing textual data developed by Kenneth Benoit, Kohei 
Watanabe, and other contributors. The European Research Council supported its initial development. Summary 
statistics are reported in Table 1.D. under the heading Product Differentiation. 
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Link with performance. Performance analyses are correlational, relying on OLS specification with firm and 

year-level fixed effects and panel data of startups that outsource (Figure 3). Decreased development 

technology dissimilarity relates to decreased funding (Table 7 model (5): -3.3 SD 1.2), and decreased 

analytics technology dissimilarity relates to increased performance (model (6): +2.3 SD 0.71). Performance 

results align with my interpretation that a) startups using more similar development tools benefit from using 

technologies that fit with the cloud platform’s underlying technologies and b) startups benefit from 

receiving their cloud supplier’s resources, which provide insight into navigating compatibility issues among 

interdependent technologies. Moreover, startups benefit when adopting more diverse data analytics 

capabilities, which produce data as outputs that aid in product differentiation. 

A similar relationship holds for binary measures of positive funding and follow-on (i.e., second-

round) funding. 58 Lastly, I examine the average duration spent on a startup’s web domain as an additional 

performance measure, and I find a significant correlation between adopting more similar development tools 

and increased web traffic (model (7): -3.56 SD 0.48) and patenting (model (9): -0.08 SD 0.023). 

 

8. Discussion and Conclusion 

Given the importance of data-centric entrepreneurship and AI development to future macroeconomic 

growth, it is paramount to understand how the rise of several large cloud platforms that share lots of 

resources with the startup ecosystem affects startup differentiation and growth. Cloud platforms are here to 

stay. They continue to grow in usefulness and scale and provide services that are becoming increasingly 

difficult to replicate in-house. Cloud suppliers enable access to IT and share resources, making it easier for 

startups to fund entry and develop their digital products. However, less differentiated products may benefit 

the economy less, driving lower productivity growth than anticipated. 

 
58For robustness, I use alternate dependent variables, including VC backed, higher reputation VC, closed, and 
acquired, to support this interpretation further (Table B.10). Additionally, I examine the interaction between an 
indicator variable for larger bundles of technologies and higher levels of technology dissimilarity (Table B.11). 
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My findings contribute to understanding how outsourcing to a cloud platform impacts the breadth 

of technologies used to develop digital innovations. More specifically, the impact of the cloud on product 

differentiation depends on whether interdependencies among technologies and fit issues with the platform 

hinder the technology’s functionality in producing its intended outcome. However, when interdependencies 

create compatibility issues, shared resources present a solution, guiding startups down a particular 

technological path to alternate compatible technologies. Moreover, some evidence suggests that investors 

reward adopting more standardized, similar bundles of technologies when there are fit constraints. Perhaps 

this indicates that top-performing startups of a particular vintage converge on adopting the latest and 

greatest bundle of compatible product development technologies at a given time. Using more standardized 

tools reduces coordination and adaptation costs and saves time. 

For resource-strapped startups, unspent technical resources can be redeployed on other firm 

objectives like building data analytics capabilities. It is plausible that startups repurpose programming labor 

to experiment with which data analytics technologies are necessary to ascertain needed data. These 

technologies are less constrained by fit and interdependencies and become more distinct from other startups 

that outsource to the cloud. Moreover, the substitution of programming labor, coupled with fewer technical 

constraints, likely enables the adoption of more diverse data analytics technologies, enabling them to collect 

and manipulate data resources to suit their needs and aiding in product differentiation. Furthermore, this 

narrative aligns with the finding from the analysis of changes in startup descriptions; more diverse data 

analytics technologies are important for digital product differentiation. 

I employ numerous econometric approaches (i.e., matching, selection models, instrumental 

variable, firm fixed effects, double machine learning) to provide results consistent with a causal argument 

based on observed and unobserved variation to rule out alternate explanations and adjust estimates of 

potentially omitted variables. Though I cannot entirely dispel threats to causal identification: all analyses 

yield similar results; an Oster test suggests that the risk of an unobservable variable negating my findings 

is low; the instrumental variable approach provides some evidence that reverse causality is not a significant 

concern. 
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Evidence supports that European startups are slower to adopt cloud services than similar startups 

in the US. However, there is limited evidence of the heterogeneous effects of adopting cloud platform 

services on technology adoption by country or region. Startups in Europe may be missing the potential 

benefits of adopting cloud platform services more quickly, enabling programmers to focus less on 

development tools and more on analytics capabilities. National boundaries seem less important to cloud 

platform adoption's impact than startup proximity to a large technology hub city (San Francisco, New York, 

London). Startups in or near these cities use more diverse analytics technologies, suggesting a potentially 

nuanced spatial relationship between technological differentiation and distance from these hubs. Estimating 

these technology differentiation spillovers remains an interesting avenue for future research. 

By comparing startups using cloud providers with and without startup programs, this paper 

contributes to the literature on interfirm resource sharing by showing the impact of the customer-supplier 

relationship on digital product differentiation. There are significant differences in technology adoption for 

startups using cloud platforms with startup programs (e.g., AWS, GCP, and Azure) compared to those using 

smaller cloud platforms that do not have these programs. Programs that share platform-related resources 

lower the costs of coinventing on the platform and selecting other compatible technologies. 

Though these findings suggest that startup and product differentiation remain robust presently, they 

also raise concerns that cloud suppliers can curate which bundles of compatible technologies are used in 

high-tech product development, directly and indirectly altering technology adoption. Technology firms 

managing these cloud platforms control all the levers. They choose which features to build into the platform, 

which resources to develop and share with startups, and which technologies are more and less compatible 

with their platform. Using suppliers with more monopsony power (i.e., control) relates to adopting more 

similar development tools yet more diverse analytics capabilities, providing insight into how startups 

differentiate digital products while using more standardized development tools. Tying back to transaction 

cost economics, firms become more dependent on their suppliers over time, potentially enabling cloud 

suppliers with higher market share to exert control over technology adoption in a way that may not yet 

manifest in the inability to differentiate products. Despite increased control, the importance of analytics 
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capabilities and richer data resources in enabling high-tech startups to differentiate their products will 

remain constant. 

This gradual increase in supplier control will not bode well for startups competing against their 

cloud providers in downstream markets. It posits an interesting question for future research: Will startups 

be able to effectively differentiate their products when competing against one of these larger technology 

firms in downstream markets? Startups’ analytics capabilities and data resources pale in comparison to 

those of the largest technology firms (Benzina, 2019; Iansiti, 2021; Khan, 2016; Scott-Morton et al., 2019). 

In addition to having less robust data-related technologies, capabilities, and resources, startups share tons 

of information about their products and industries with their cloud providers through these corporate startup 

programs. Cloud providers can use startup feedback and platform usage data59 to improve their platform, 

products, and strategies, and this information is likely competitively valuable when aggregated across many 

startups. In the most egregious cases, technology firms could use this information to make acquisitions 

directly shaping the technological landscape (Cunningham et al., 2019; Zingales et al., 2021). In a likelier 

scenario, they could use this information and control over their platform’s compatibilities to advance their 

and their largest customers’ strategies and goals. 

 
59Passively provided data is often referred to as telemetry and is a user's digital footprint on the platform or usage 
"exhaust" (Chatterji and Fabrizio, 2014). 
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Tables and Figures 
Table 1.A. – Demographics and founders summary 

  Unmatched Matched 
  All startups In-house Outsource All startups In-house Outsource 

  Mean  SD Min Max Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD 
Demographics                             
Age 4.0 2.4 0.0 9.0 3.0 2.3 4.3 2.3 4.2 2.3 4.2 2.4 4.2 2.3 
Employment 45 63 1 375 35 50 47 66 40 55 39 55 41 55 
Employment (<10 emp., dummy) 0.36 0.48 0 1 0.41 0.49 0.35 0.48 0.36 0.48 0.38 0.49 0.36 0.48 
Healthcare 0.09 0.29 0 1 0.10 0.30 0.09 0.28 0.09 0.29 0.10 0.30 0.09 0.29 
Finance 0.09 0.28 0 1 0.07 0.25 0.09 0.29 0.08 0.28 0.07 0.25 0.09 0.28 
AI 0.38 0.49 0 1 0.37 0.48 0.39 0.49 0.39 0.49 0.40 0.49 0.38 0.49 
Machine learning 0.09 0.29 0 1 0.08 0.27 0.10 0.30 0.10 0.29 0.09 0.29 0.10 0.29 
US 0.49 0.50 0 1 0.41 0.49 0.51 0.50 0.50 0.50 0.47 0.50 0.51 0.50 
UK 0.06 0.25 0 1 0.06 0.24 0.07 0.25 0.06 0.24 0.04 0.21 0.07 0.25 
France 0.03 0.17 0 1 0.02 0.14 0.03 0.18 0.03 0.16 0.01 0.11 0.03 0.18 
Germany  0.03 0.16 0 1 0.04 0.20 0.02 0.15 0.02 0.15 0.03 0.17 0.02 0.15 
Canada 0.04 0.20 0 1 0.04 0.21 0.04 0.20 0.04 0.20 0.05 0.22 0.04 0.20 
Americas 0.56 0.50 0 1 0.47 0.50 0.58 0.49 0.58 0.49 0.54 0.50 0.58 0.49 
Asia (ex. China) 0.13 0.34 0 1 0.15 0.35 0.13 0.33 0.14 0.34 0.17 0.37 0.13 0.33 
Europe 0.27 0.44 0 1 0.34 0.47 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 
Founders                             
IT experience 0.12 0.33 0 1 0.10 0.30 0.13 0.34 0.12 0.33 0.11 0.31 0.13 0.33 
Hardware experience 0.05 0.22 0 1 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.23 0.05 0.21 
Big Tech experience 0.07 0.25 0 1 0.04 0.20 0.07 0.26 0.06 0.25 0.04 0.21 0.07 0.26 
Technical major 0.44 0.50 0 1 0.32 0.47 0.47 0.50 0.44 0.50 0.33 0.47 0.46 0.50 
Advanced degree 0.21 0.41 0 1 0.18 0.39 0.22 0.41 0.21 0.41 0.19 0.39 0.22 0.41 
MBA 0.24 0.43 0 1 0.17 0.37 0.25 0.44 0.23 0.42 0.17 0.37 0.25 0.43 
Female 0.13 0.33 0 1 0.12 0.33 0.13 0.33 0.13 0.34 0.12 0.33 0.13 0.34 
Notes: Unmatched summary statistics are calculated at the firm-year level for all firms in the sample. Matched summary statistics use Coarsened 
exact matching (CEM): age #10, employment size #10, healthcare, financial services, and region #4 based on the treatment, cloud platform versus 
no cloud platform, dropping 21 unmatched firms in the main analyses. All firms included in the sample have a digital app, have an active web 
domain, are listed as active on Crunchbase or Pitchbook, are ten or fewer years old, have fewer than 500 employees, and are not located in China. 
All demographic information is from Crunchbase and Pitchbook. Information on gender is from an analysis of founder names in R. Founders’ 
background measures are calculated at the firm-year level and based on data from AIdentified, Mantheos, Pitchbook, and manual collection of 
public profiles on LinkedIn.   
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Table 1.B. – Cloud services type panel summary 
  Startups (3,434) Observations (19,678) 

  

In-
house PaaS IaaS IaaS/ 

PaaS 

In-house 
/Before  

Outsource 
PaaS IaaS IaaS/ 

PaaS 

All 501 2,933 2,739   1,916/1,949 15,813 13,318   
                  
AWS only   1,181 1087 92%   7,845 6,714 86% 
GCP only   204 180 88%   867 696 80% 
Azure only   48 47 98%   358 300 84% 
Other supplier   121 73 60%   955 398 42% 
AWS/GCP   509 503 99%   1,823 1,710 94% 
AWS/Azure   133 133 100%   751 699 93% 
GCP/Azure   10 10 100%   54 53 98% 
AWS/GCP/Azure   75 75 100%   226 218 96% 
Mixed (Big Tech & other)   652 631 97%   2,934 2,530 86% 
Notes: Cloud services provider information is from BuiltWith. IaaS is cloud infrastructure services, 
licensed by firms to access computation capability from PCs and servers. PaaS is cloud platform services, 
licensed by firms to host and develop applications.  

 
Table 1.D. – Platform comparison summary 

  
Amazon 

AWS 
Google 
GCP 

Microsoft 
Azure Other CSP 

  Mean  SD Mean  SD Mean  SD Mean  SD 
Technology adoption                 
All 52.77 27.2 47.68 23.4 49.35 23.1 49.43 24.4 
Development tech count 8.83 4.1 7.30 3.6 8.62 3.9 8.10 3.7 
Analytics tech count 7.14 5.6 5.75 4.8 5.73 4.8 5.74 4.9 
Big tech count 13.53 6.1 12.43 5.3 13.71 5.7 11.41 5.7 
Premium/paid count 4.02 3.7 2.74 3.1 2.78 2.9 3.01 3.3 
Open Source count 1.32 1.2 0.88 1.1 1.21 1.2 1.09 1.2 
Development dissimilarity 0.77 0.07 0.77 0.07 0.80 0.08 0.78 0.07 
Analytics dissimilarity 0.68 0.08 0.69 0.10 0.67 0.10 0.66 0.09 
Product differentiation         
Firm description 0.86 0.04 0.86 0.05 0.87 0.03 0.86 0.03 
IP description  0.93 0.02 0.93 0.01 0.93 0.01 0.93 0.01 
Performance                 
Funding 0.77 0.42 0.66 0.47 0.75 0.44 0.69 0.46 
Follow-on funding 0.58 0.49 0.49 0.50 0.54 0.50 0.49 0.50 
VC-backed 0.67 0.47 0.59 0.49 0.56 0.50 0.57 0.50 
Higher rep. VC 0.10 0.30 0.09 0.28 0.06 0.25 0.05 0.22 
Deal size (log) 5.10 7.1 4.76 7.0 3.98 6.4 4.29 6.6 
Funds raised (cumulative, log) 12.8 5.6 11.3 6.5 11.8 5.7 11.3 6.2 
Acquired 0.08 0.27 0.03 0.18 0.01 0.10 0.06 0.23 
Closed 0.05 0.22 0.05 0.22 0.06 0.24 0.06 0.24 
Accelerator 0.20 0.40 0.18 0.38 0.26 0.44 0.17 0.38 
Big Tech funding  0.02 0.13 0.02 0.16 0.11 0.32 0.02 0.14 
SimilarWeb visit duration 3.4 3.3 3.2 3.0 3.0 3.3 2.9 3.2 
Patents 0.03 0.18 0.07 0.25 0.03 0.16 0.03 0.16 
Notes: Summary statistics are calculated for firms in the sample that use a single primary cloud provider: 
AWS, GCP, Azure, or Other cloud providers (e.g., Linode, Digital Ocean, etc.) 
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Table 1.C. – Technology, product, and performance summary 
  Unmatched Matched 
  All startups In-house Outsource All startups In-house Outsource 

  Mean  SD Min Max Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD 
Technology adoption                             
All 49.9 26.5 1 252 36.0 18.9 53.3 26.9 49.6 25.8 39.1 20.2 52.3 26.4 
Development tech count 8.2 4.1 1 27 5.5 3.1 8.8 4.1 8.1 4.0 5.9 3.2 8.7 4.0 
Analytics tech count 6.4 5.5 0 39 3.5 3.2 7.1 5.7 6.3 5.3 3.9 3.6 6.9 5.5 
Big tech count 12.5 6.3 0 46 8.0 4.2 13.6 6.2 12.4 6.1 8.7 4.5 13.3 6.0 
Premium/paid count 3.5 3.7 0 27 1.3 1.9 4.0 3.8 3.4 3.5 1.6 2.2 3.8 3.6 
Open Source count 1.2 1.2 0 7 0.9 1.1 1.3 1.2 1.2 1.2 0.9 1.1 1.3 1.2 
Development dissimilarity 0.78 0.07 0 1.00 0.81 0.08 0.77 0.07 0.78 0.07 0.80 0.08 0.77 0.07 
Analytics dissimilarity 0.66 0.12 0 1.00 0.59 0.17 0.68 0.09 0.67 0.11 0.61 0.16 0.68 0.09 
Product differentiation               
Firm description 0.86 0.04 0.56 0.97 0.86 0.04 0.86 0.04 0.86 0.04 0.86 0.04 0.86 0.04 
IP description  0.93 0.02 0.83 0.99 0.93 0.02 0.93 0.02 0.93 0.02 0.93 0.02 0.93 0.02 
Performance                             
Funding 0.71 0.45 0 1 0.53 0.50 0.76 0.43 0.72 0.45 0.59 0.49 0.75 0.43 
Follow-on funding 0.52 0.50 0 1 0.31 0.46 0.57 0.49 0.53 0.50 0.39 0.49 0.56 0.50 
VC-backed 0.61 0.49 0 1 0.42 0.49 0.65 0.48 0.61 0.49 0.48 0.50 0.64 0.48 
Higher rep. VC 0.09 0.28 0 1 0.04 0.20 0.10 0.30 0.08 0.28 0.05 0.23 0.09 0.29 
Deal size (log) 5.1 7.1 0 22 5.0 6.8 5.1 7.1 4.9 7.0 4.6 6.8 5.0 7.0 
Funds raised (cumulative, log) 11.9 6.2 0 22 8.9 7.0 12.6 5.8 11.9 6.1 9.8 6.9 12.5 5.8 
Acquired 0.06 0.24 0 1 0.02 0.14 0.07 0.26 0.06 0.24 0.03 0.17 0.07 0.25 
Closed 0.05 0.21 0 1 0.04 0.20 0.05 0.22 0.05 0.22 0.04 0.19 0.05 0.22 
Accelerator 0.19 0.39 0 1 0.13 0.33 0.20 0.40 0.19 0.39 0.14 0.35 0.20 0.40 
Big Tech funding  0.02 0.15 0 1 0.01 0.11 0.03 0.16 0.02 0.15 0.02 0.12 0.03 0.16 
SimilarWeb visit duration 3.1 3.3 0 12 1.9 2.8 3.4 3.3 3.1 3.2 2.3 3.0 3.3 3.3 
Patents 0.04 0.18 0 1 0.03 0.17 0.04 0.19 0.04 0.18 0.04 0.18 0.04 0.18 
Notes: Unmatched summary statistics are calculated at the firm-year level for all firms in the sample. Matched summary statistics use Coarsened 
exact matching (CEM): age #10, employment size #10, healthcare, financial services, and region #4 based on the treatment, cloud platform versus 
no cloud platform, dropping 21 unmatched firms in the main analyses. All firms included in the sample have a digital app, have an active web 
domain, are listed as active on Crunchbase or Pitchbook, are ten or fewer years old, have fewer than 500 employees, and are not located in China. 
Information on technologies is from BuiltWith. Funding information is from Crunchbase or Pitchbook. Patent information is from IPQwerty. Web 
traffic information is from SimilarWeb.
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Table 2 - Technology bundle size 

DV is log of: Development technology count Ratio: 
Count/All  

  (1) (2) (3) (4) (5) (6) (7) 
[0,1] Outsource 0.429*** 0.583*** 0.371*** 0.295*** 0.290*** 0.150*** 0.012*** 
 (0.015) (0.018) (0.015) (0.019) (0.020) (0.025) (0.003) 
[0,1] IaaS           0.102***   
            (0.030)   
Outsource x            0.353***   
IaaS           (0.021)   
R2 0.100 0.491 0.168 0.588 0.586 0.594 0.502 
                

  Analytic technology count Ratio: 
Count/All  

  (8) (9) (10) (11) (12) (13) (14) 
[0,1] Outsource 0.515*** 0.612*** 0.444*** 0.235*** 0.225*** 0.052* 0.003 
  (0.019) (0.023) (0.020) (0.024) (0.024) (0.029) (0.002) 
[0,1] IaaS           0.118***   
            (0.041)   
Outsource x            0.301***   
IaaS           (0.027)   
R2 0.0733 0.560 0.125 0.641 0.646 0.652 0.565 
                
Observations 19679 19389 19679 19389 18802 18802 18802 
Firms 3434 3144 3434 3144 3123 3123 3123 
Firm FE No Yes No Yes Yes Yes Yes 
Year FE No No Yes Yes Yes Yes Yes 
CEM No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are 
clustered at the firm level in parentheses below the coefficients. Cloud Platform is an indicator variable 
for adopting cloud platform services from a cloud services provider. Models (6) and (13) examine the 
interaction between using cloud platform services and IaaS (an indicator variable for using cloud 
infrastructure services) to estimate the impact of having a stronger relationship with a cloud provider. 
Models (5-7) and (12-14) drop unmatched startups and weight regressions based on Coarsened exact 
matching (CEM): age #10, employment size #10, healthcare, financial services, and region #4.  
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Table 3 - Technology bundle dissimilarity 
DV is: Development dissimilarity 

  (1) (2) (3) (4) (5) (6) (7) 

[0,1] Outsource -0.041*** -0.089*** -0.025*** -0.028*** -0.028*** -0.018*** -0.017*** 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) 
[0,1] H. Tech Count           -0.022***   
            (0.003)   
Outsource x           -0.056***   
H. Tech Count           (0.003)   
[0,1] IaaS             -0.004 
              (0.005) 
Outsource x             -0.032*** 
IaaS             (0.002) 
R2 0.0470 0.385 0.355 0.668 0.673 0.701 0.675 
                

DV is: Analytics dissimilarity  
  (8) (9) (10) (11) (12) (13) (14) 
[0,1] Outsource 0.096*** 0.140*** 0.084*** 0.093*** 0.087*** 0.098*** 0.097*** 
  (0.004) (0.006) (0.004) (0.005) (0.005) (0.005) (0.006) 
[0,1] H. Tech Count           0.089***   
            (0.007)   
Outsource x           0.108***   
H. Tech Count           (0.005)   
[0,1] IaaS             0.017 
              (0.011) 
Outsource x             0.086*** 
IaaS             (0.005) 
R2 0.110 0.502 0.185 0.575 0.577 0.590 0.577 
                
Observations 19679 19389 19679 19389 18802 18802 18802 
Firms 3434 3144 3434 3144 3123 3123 3123 
Firm FE No Yes No Yes Yes Yes Yes 
Year FE No No Yes Yes Yes Yes Yes 
CEM No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are clustered at the firm 
level in parentheses. CSP is an indicator variable for adding a CSP (PaaS). Weighting is based on CEM: age #10, 
employment size #10, healthcare, financial services, and region #4. In models (6) and (13), H. Tech count is an indicator 
variable for startup-level above-median development and analytics bundle size. In models (7) and (14) IaaS is an indicator 
variable for using CSP cloud infrastructure services.  
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Table 4 - Probit selection analysis 
  (1) (2) (3) (4) mprobit 

Treatment, DV is: 

Outsource 
vs. in-house 

Big Tech vs. 
Other CSP 

AWS Only 
vs. Not 
AWS 

In-house/before (0); Big 
(1); Other (2) 

        =1 =2 
[0,1] Healthcare -0.136** 0.082 -0.019 0.069 -0.014 
  (0.066) (0.076) (0.074) (0.046) (0.075) 
[0,1] Energy -0.393* 0.124 0.114 -0.493*** -0.418* 
  (0.200) (0.257) (0.254) (0.132) (0.229) 
[0,1] Financial 0.121* 0.052 0.025 0.124*** 0.179** 
  (0.073) (0.078) (0.077) (0.048) (0.073) 
[0,1] Prior Big Tech  0.297*** 0.003 -0.119** 0.075 -0.252 

funding (0.108) (0.069) (0.059) (0.087) (0.165) 
Age (log) 0.647*** 0.438*** 0.333*** 0.254*** -0.096*** 

  (0.013) (0.009) (0.008) (0.022) (0.034) 
[0,1] Europe -0.233*** -0.261*** -0.242*** -0.458*** 0.260*** 

  (0.045) (0.051) (0.051) (0.030) (0.045) 
[0,1] Asia -0.168*** 0.016 0.086 -0.069* 0.093 

  (0.059) (0.068) (0.067) (0.040) (0.065) 
[0,1] Founder -0.192** 0.075 0.022 -0.095 -0.006 

 OEM/HW exp.  (0.076) (0.070) (0.063) (0.061) (0.098) 
[0,1] Founder  0.186*** 0.127*** 0.083*** 0.075** -0.331*** 

MBA (0.041) (0.034) (0.030) (0.032) (0.057) 
[0,1] Founder  0.199*** -0.037 -0.019 0.232*** 0.078* 

technical degree (0.035) (0.030) (0.027) (0.027) (0.044) 
Observations 19679 17762 17762 19679 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using firm-year level data and 
a time series probit (average effect) model, comparing startups that use certain cloud platforms. 
Model (1) is the base for the Heckman selection model calculation of the inverse of the Mill’s 
ratio and includes all startups. Models (2) and (3) include only the treatment group (17,762 
observations), whereas model (4) used a multinomial probit specification, including the base case 
Outsource/before (0); Big (1); Other (2).  
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Table 5.A. – IV (first stage) 
  IV  

DV is: Outsource 
[0,1] Tensor  0.24*** 
  (0.018) 
[0,1] AI 0.08*** 
  (0.015) 
Tensor x AI 0.29*** 
  (0.024) 
Observations 18802 
Firms 3123 
K-P Wald F 102 
C-D Wald F 70 
K-P LM 105 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients in the first stage are estimated using OLS with 
standard errors clustered at the firm level. Tensor is an indicator variable for if the open source release 
of TensorFlow benefits the startup (i.e., the startup adopted Google GCP in 2016 or Amazon AWS in 
2017). AI is an indicator variable for if the startup develops a commercial AI product. This model 
includes an interaction for AI and Tensor to capture the firms that benefit the most (i.e., those that use 
TensorFlow in AI development.) 

 
Table 5.B. – IV (second stage) and DML 

  (1) (2) (3) (4) (5) (6) 
DV is: Development dissimilarity Analytics dissimilarity 

Model: Base IV DML Base IV DML 
[0,1] Outsource -0.028*** -0.051*** -0.015*** 0.087*** 0.089*** 0.053*** 
  (0.002) (0.016) (.002) (0.005) (0.018) (0.004) 
Observations 18802 18802 18802 18802 18802 18802 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients in the second stage are estimated using OLS with 
firm-level and year-level fixed effects in all models; standard errors are clustered at the firm level. All 
models include Coarsened exact matching (CEM) based on age #10, employment size #10, healthcare, 
financial services, and region #4), dropping 21 unmatched firms. Model (1) is the main result repeated 
from Table 3 model (4), and model (4) is the main result repeated from Table 3 model (8); Models (2) 
and (5) use the first stage estimation in Table 5.B. above as an instrument to adjust coefficients. Models 
(3) and (6) use a double machine learning approach (DML) to estimate coefficients with ~65 potentially 
omitted variables.  
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Table 6 – Startup differentiation 
  (1) (2) (3) 

DV is: Startup description similarity  
[0,1] Outsource 0.016*** -0.015 0.004 
  (0.004) (0.022) (0.008) 
Outsource x   0.005   
Dev. dissimilarity   (0.025)   
Outsource x     0.027*** 
Ana. dissimilarity     (0.009) 
Observations 382 382 382 
R2 0.0698 0.0694 0.0692 
Firms 191 191 191 
Firm FE No No No 
Year FE Yes Yes Yes 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with year-level fixed effects in all models; 
standard errors are clustered at the firm level. In models (1)-(3), the panel is balanced, with one observation for each 
startup before and after outsourcing. Models (3) includes an interaction between outsourcing to a cloud platform and a 
continuous measure of analytics dissimilarity. 

 
Table 7 - Technology dissimilarity and performance outcomes 

  (1) (2) (3) (4) (5) (6) (7) (8) 
DV is: Funded Follow-on Funding Deal Size (log) Web Visit Dur. (log) 

Development -0.796***   -0.888***   -3.306***   -3.558***   
dissimilarity (0.068)   (0.073)   (1.215)   (0.484)   

Analytics   0.166***   0.124***   2.309***   -0.250 
dissimilarity   (0.043)   (0.045)   (0.711)   (0.342) 

Observations 17628 17628 17628 17628 17628 17628 9200 9200 
R2 0.691 0.686 0.690 0.685 0.165 0.165 0.428 0.422 
Firms 2799 2799 2799 2799 2799 2799 2053 2053 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed 
effects in all models; standard errors are clustered at the firm level. Includes only the treatment group, startups using 
cloud platform services.  
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Figure 1 – Cloud platform adoption event 

 
Product development technology bundle dissimilarity 

 

  
 

Outsourcing to platform year (-1, the year before, is the base) 
 

Analytics technology bundle dissimilarity 
 

  
 

Outsourcing to platform year (-1, the year before, is the base) 
 

Coefficients are estimated using Chaisemartin and D’Haultfoeuille (2020) to account for issues arising in a two-way 
fixed-effect design that does not differentiate between observations that have never been treated or have not yet been 
treated. Each point is the coefficient of the effect based on “switchers” in a given year. These estimates are robust to 
dynamic effects (#5) and do not display parallel trends (#4). Standard errors are clustered at the firm level and 
bootstrapped (#50). Models drop and weight regressions based on CEM: age #10, employment size #10, healthcare, 
financial services, and region #4. The adoption event is year 0; the base period for the regressions is the year prior to 
the adoption, -1.  
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Figure 2 – Relationship between analytics dissimilarity and startup differentiation 
 

 
 
 
These charts use a bin scatter (50 points) with year fixed effects and coarsened exact matching (CEM), to depict the 
correlation before and after the treatment. In the first scenario where startups do not use a cloud platform, consider a 
profit function: 𝛱 = (𝑏!𝑐𝑜𝑢𝑛𝑡"#$ −	𝑐!𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦"#$) +	(𝑏%𝑐𝑜𝑢𝑛𝑡&'& − 𝑐%𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦&'&);	constrained such 
that the 𝑏! < 𝑏% and 𝑐! > 𝑐%. In the scenario where startups use a cloud platform, consider the profit function: 𝛱 =
(𝑏!𝑐𝑜𝑢𝑛𝑡"#$ −	𝑐!𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦"#$) +	(𝑏%𝑐𝑜𝑢𝑛𝑡&'& − 𝑐%𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦&'&) −
	(𝑑(𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦"#$(𝑚𝑎𝑟𝑘𝑒𝑡	𝑠ℎ𝑎𝑟𝑒)*&+,-./)); constrained such that the 𝑏! < 𝑏% and 𝑐! > 𝑐%. 
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Figure 3 – Technology dissimilarity and VC Funding 
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Analytics technology bundle dissimilarity 

 
 

 
To visualize the regression specification, these charts use a bin scatter (100 points) residualized on firm and year 
effects with CEM matching.  
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Appendices 

 

Appendix A 

 

Note A.1. – BuiltWith technology data 

BuiltWith provides the name of the technology and the category of that technology. I create a new set of 
categories that include relevant development technologies from these categories. Here is a list of all 
technology categories, many of which are “front end” or administrative, unrelated to product development. 
These omitted technologies include the following BuiltWith categories: Accounting, Ads, Collaboration, 
Communications, Content Management, Content Marketing, CRM, Demand Generation, Design, Digital 
Marketing, E-commerce, Email Hosting, Finance, Hiring, Marketing Automation, Payments, Product 
Management, Productivity, Sales, SEO and Search Marketing, SEO Headers, Servers, Shopping, Web 
Hosting, Web Server, Workforce Management Additionally, I drop technologies related: 

• Languages (e.g., French, Spanish, English, etc.) 

• Error messages (i.e., common name invalid, domain not resolving)  

• Schema 

From the BuiltWith data, after the cleanups, I have the following categories of “backend” technologies: 1) 
Product development technologies: developer frameworks (API, developer tools, DevOps, and programming 
languages), security, content delivery network, and 2) Analytics technologies. I list and describe the 
technologies used in this study in Appendix D.  

 

Note A.2. – Measures descriptions 

Technology adoption 

• All Technologies is a measure of any technologies connected to the startup’s domain, including 
front-end and back-end technologies.  

• Product Development Technologies are backend, data infrastructure technologies (e.g., Content 
Management Systems, Content Delivery Networks, Frameworks, Security, and) that are core to 
product development 

• Analytics Technologies are backend data collection and analysis technologies that are core to 
accruing and repurposing data. 

• Big Tech Technologies are technologies providers by Amazon, Google, or Microsoft. 

• Paid/Subscription Technologies are proprietary technologies that startups way a royalty to access, 
based on information provided by BuiltWith. 

• Open source Technologies are freely available technologies that startups can adapt and customize. 
These technologies are described as open source in their description in BuiltWith. 
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Startup descriptions 

I omit words used infrequently (i.e., proper nouns) or very often (e.g., the, and, but, or, he, she, it, etc.), 
removing “outliers” at the 5% and 95% level. I then stem words, remove numbers, punctuation, hyphens, 
and web addresses, and tokenize the counts of the analyzed words. This text is then vectorized by word, 
creating a sparse matrix: 0 if the word is not shared in a pairwise match; 1 if the word is shared. I calculate 
the angular distance in the same manner as above using specification (1). Mean startups description 
differentiation is 0.83 (SD 0.04) 

 

Tables A.3.-A.5. – Correlations 

Table A.3. – Correlation (demographics) 
    (1) (2) (3) (4) (5) 

(1) Dev. dissimilarity 1         

(2) Ana. dissimilarity -0.21* 1       

(3) Age -0.40* 0.25* 1     

(4) Employees -0.090* 0.073* 0.067* 1   

(5) Americas -0.0012 0.11* 0.013+ 0.018* 1 

(6) EU -0.016* -0.067* -0.0066 -0.065* -0.68* 

 

Table A.4. – Correlation (technologies) 
    (1) (2) (3) (4) (5) (6) 

(1) Dev. dissimilarity 1           

(2) Ana. dissimilarity -0.21* 1         

(3) Dev. Tech Ct. -0.56* 0.25* 1       

(4) Data Tech Ct. -0.47* 0.32* 0.65* 1     

(5) IaaS -0.25* 0.22* 0.32* 0.29* 1   

(6) AI 0.24* -0.12* -0.11* -0.11* -0.071* 1 

(7) Tensor 0.070* -0.018* -0.013+ -0.021* 0.010 0.034* 

 

Table A.5. – Correlation (funding) 
    (1) (2) (3) (4) (5) 

(1) Dev. dissimilarity 1         

(2) Data dissimilarity -0.21* 1       

(3) Funds raised (log) -0.21* 0.18* 1     

(4) Funded -0.19* 0.16* 0.79* 1   

(5) VC backed -0.21* 0.15* 0.68* 0.79* 1 

(6) Investor dissimilarity -0.12* 0.078* 0.22* 0.078* 0.15* 

Notes: + p<0.10; * p<0.05  
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Note A.6. – CEM matching procedure 

I use the cem package from STATA to match and weight startups based on the following criteria: 

• Age; 10 quantiles 

• Employee; 10 quantiles 

• Regions (4; Asia, Americas, EU, MEA) 

• Healthcare (0,1) 

• Finance (0,1) 

 
 

Note A.7. – Heckman selection and the inverse Mill’s ratio 

To control for this potential selection issue, I use Heckman’s selection equation to calculate the inverse of 
the Mill’s ratio (IMR) to control regression from a probit regression comparing two outcomes (i.e., the 
decision to add a cloud platform versus not, or the decision to add a certain cloud platform). I use IMR as a 
control in the second stage of the regression to address potential selection issues.  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒! = 𝑤!𝛾 + 𝜀!  (Z.1) [Selection equation] 

𝜆 = +(-!.)
0(-!.)

	   (Z.2) [inverse Mill’s ratio] 

where, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒! refers to an indicator variable that takes the value 1 based on the treatment outcome 
(CSP, Other CSP, Amazon) at the observation level. For example, when comparing the impact of using a 
CSP, the variable takes the value 1 if a firm uses a CSP, otherwise 0. 𝑤! is a vector of demographic (e.g., 
industry, age), funding (e.g., prior Big Tech funding), and founder (e.g., hardware or IT work experience, 
technical education) indicator variables plausibly correlated with adoption.  

-0.1 0.0 0.1 0.2 0.3 0.4

Europe

Asia (ex. China)

Healthcare

Finance

Americas

Age (log)

Employment (<10)

Standardized mean differences (CEM)
Matched Unmatched
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Note A.8. – Instrumental variable research design 

Below is the first-stage regression equation of the instrumental variable:  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ = 	𝛽&𝑡𝑒𝑛𝑠𝑜𝑟!$ + 	𝛽'𝐴𝐼!$ + 	𝛽((𝑡𝑒𝑛𝑠𝑜𝑟	!$ 	× 	𝐴𝐼!$) + 	𝜀!$			(𝑍. 3)  

where, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ refers to the binary dependent variable: adopting cloud versus not, 𝑡𝑒𝑛𝑠𝑜𝑟!$ refers to an 
indicator variable take the value 0 if there is no TensorFlow benefit and 1 if there is a Tensor Flow benefit 
(i.e., startup adopts Google’s platform in 2016 or adopts Amazon AWS platform in 2017), 𝐴𝐼!$ refers to an 
indicator variable that takes the value 1 if the firm develops commercial AI and 0 otherwise, and 
𝑡𝑒𝑛𝑠𝑜𝑟	!$ 	× 	𝐴𝐼!$ is the interaction between the two binary variables.  

 

Note A.9. – Double machine learning with orthogonalization  

I use double machine learning following Chernozhukov et al. (2018) to examine the causal parameter 𝜃, a 
scalar that adjusts the regression coefficient, by using a random forest machine-learning algorithm.60 
Specification Z.2 is the main predictive model, and specification Z.3 constructs Neyman orthogonal scores 
(Chernozhukov et al., 2018; Neyman, 1959; Wooldridge, 1991). 

𝑡𝑒𝑐ℎ_𝑑𝑖𝑓𝑓!$ = 𝜃𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ + 𝑔1(𝑥!$) + 𝑦𝑒𝑎𝑟$ +	𝜍!$   (Z.4) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ = 𝑚1	(𝑥!$) +	𝑦𝑒𝑎𝑟$ + 𝜐!$   (Z.5) 

where 𝑦𝑒𝑎𝑟$ is an indicator variable for all observed years (2012 through 2021);	𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ refers to an 
indicator variable that takes the value 1 if the firm adopts the cloud platform and 0 otherwise; 𝑥!$ is a vector 
of covariates error terms;  𝜍!$ and 𝜐!$ are normally distributed (0,1) error terms.  

 This approach uses orthogonalization to overcome regularization biases (i.e., issues associated with 
overfitting the model). The sample is initially randomly ordered, and then 50% of the sample is used from 
training and the remaining 50% for prediction. In the model, I include every possible covariate from the data 
The algorithm determines which of those variables should be added to the model. I calculate the differences 
between the true parameter and test estimates resulting from specifications (Z.4) and (Z.5), adjusting the 
main specification (2) to estimate the coefficient of interest 𝛽&. 

(𝑡𝑒𝑐ℎ_𝑑𝑖𝑓𝑓!$ −	𝑡𝑒𝑐ℎ_𝑑𝚤𝑓𝑓2$[ )= 𝛽&(𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒!$ − 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒2$\ )+𝛽'𝑦𝑒𝑎𝑟𝐹𝐸$ + 𝛽(𝑓𝑖𝑟𝑚𝐹𝐸! + 𝜀!$  (Z.6) 

 

Note A.10. – Average install base of technology bundles dissimilarity measure  

The average install base of the technology bundle is a measure firm-level average of the technology-level 
average number of startups in my sample using each technology.  

     𝐴𝐼𝐵!$ =
∑ 4!567_9:;<$"#$
"%&

=
	   (Z.7) 

Where, i takes on the value of the firm id, t takes on the value of the year, j takes on the value of the 
technology, x is the total count of technologies for each firm in year t, and 𝑟𝑖𝑣𝑎𝑙_𝑐𝑜𝑢𝑛𝑡"$ is the total number 
of users by technology-year in the sample.  

 
60I use the rforest package in STATA with 100 iterations, minimum leaf sized adjusted to 10. 
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Appendix B – Additional analyses and robustness 

 

Table B.1. – Other technology counts 
  (1) (2) (3) (4) (5) (6) 

DV is log of : All Big  Ratio: 
Big/All Open  Premium Ratio: 

Open/Prem 
[0,1] Outsource 0.249*** 0.308*** 0.119*** 0.329*** 0.021*** -0.003** 
  (0.021) (0.019) (0.020) (0.024) (0.004) (0.001) 
Observations 18802 18802 18802 18802 18802 18802 
R2 0.634 0.647 0.571 0.729 0.549 0.500 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes No Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are 
clustered at the firm level. All models drop and weight regressions based on CEM: age #10, 
employment size #10, healthcare, financial services, and region #4. 

 
Table B.2. – Combined robustness  

  (1) (2) (3) (4) (5) (6) (7) (8) 
DV is: Development dissimilarity Analytics dissimilarity 

  Balanced bf. 2018 Inv. diff. IMR Balanced bf. 2018 Inv. diff. IMR 
[0,1] Outsource -0.027*** -0.026*** -0.033*** -0.025*** 0.092*** 0.082*** 0.079*** 0.086*** 

  (0.002) (0.003) (0.004) (0.002) (0.005) (0.006) (0.008) (0.005) 
Investor     -0.017       0.022   

differentiation     (0.012)       (0.021)   
Inv. Mill’s ratio       0.089***       -0.008 

        (0.007)       (0.012) 
Observations 17045 8445 9319 18802 17045 8445 9319 18802 
R2 0.680 0.683 0.698 0.680 0.548 0.639 0.554 0.577 
Firms 2779 2198 1799 3123 2779 2198 1799 3123 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects 
in all models; standard errors are clustered at the firm level. All models are weighted using CEM. 
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Table B.3. –  Platform subsamples 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: Development dissimilarity Analytics dissimilarity 
[0,1] AM -0.029***       0.074***       
  (0.003)       (0.007)       
[0,1] GCP   -0.026***       0.086***     
    (0.006)       (0.012)     
[0,1] MS     -0.008       0.082***   
      (0.010)       (0.014)   
[0,1] Other       -0.021***       0.090*** 
        (0.005)       (0.012) 
Observations 18802 18802 18802 18802 18802 18802 18802 18802 
R2 0.671 0.668 0.667 0.667 0.562 0.553 0.551 0.554 
Firms 3123 3123 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects 
in all models; standard errors are clustered at the firm level. All models are weighted using CEM. Only includes startups 
that use a single cloud platform provider. 
 

Table B.4. – Alternative DV: Average installed base  
  (1) (2) (3) (5) (6) (7) 

DV is: Development tech avg. IB Analytics tech avg. IB 
[0,1] Outsource 0.089*** 0.090*** 0.071*** -0.143*** -0.100*** -0.161*** 

  (0.020) (0.022) (0.024) (0.024) (0.025) (0.031) 
[0,1] H. size bundle   0.006     -0.282***   
    (0.016)     (0.031)   
Outsource x   0.092***     -0.351***   

H. size bundle   (0.021)     (0.027)   
[0,1] IaaS     0.011     0.005 

      (0.033)     (0.044) 
Outsource x     0.097***     -0.136*** 

IaaS     (0.021)     (0.026) 
Observations 18802 18802 18802 18802 18802 18802 
R2 0.818 0.818 0.818 0.702 0.715 0.702 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-
level fixed effects in all models; standard errors are clustered at the firm level. All models are weighted 
using CEM.  
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Table B.5. – Industry Subsamples 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: Development dissimilarity Analytics dissimilarity 
  AI ML Financial Healthcare AI ML Financial Healthcare 

[0,1] Outsource -0.030*** -0.026*** -0.020*** -0.031*** 0.084*** 0.075*** 0.058*** 0.089*** 
  (0.004) (0.008) (0.007) (0.009) (0.008) (0.015) (0.019) (0.014) 

Observations 6872 1651 1574 1719 6872 1651 1574 1719 
R2 0.666 0.723 0.688 0.651 0.567 0.561 0.505 0.538 
Firms 1239 319 268 313 1239 319 268 313 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects in all 
models; standard errors are clustered at the firm level. All models are weighted using CEM. 

 

Table B.6. – City level subsamples 
  (1) (2) (3) (4) (5) (6) 

DV is: Development dissimilarity Analytics dissimilarity 

  San 
Francisco London  New York San 

Francisco London  New York 

[0,1] Outsource -0.028*** -0.034*** -0.050*** 0.101*** 0.130*** 0.075*** 
  (0.006) (0.010) (0.008) (0.013) (0.024) (0.023) 

Observations 2765 866 1530 2765 866 1530 
R2 0.668 0.655 0.689 0.547 0.560 0.536 
Firms 452 142 244 452 142 244 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and 
year-level fixed effects in all models; standard errors are clustered at the firm level. All models are 
weighted using CEM. 

 
Table B.7. – Staggered DiD with two-way fixed effects (robustness) 

  Development dissimilarity Analytics dissimilarity 

  Pre/Post ATE LATE ITE Pre/Post ATE LATE ITE 
  (1) (2) (3) (4) (5) (6) (7) (8) 
[0,1] Outsource -0.086*** -0.011*** -0.014*** -0.021*** 0.129*** 0.036*** 0.139*** 0.051*** 
  (0.002) (0.002) (0.007) (0.02) (0.005) (0.004) (0.014) (0.005) 
Observations 1746 3284 19082 5539 1746 3284 19082 5539 
R2 0.579 0.0058     0.380 0.0191     
Firms 873 3284  3284 873 873 3284 3284 873 
Year FE Yes Yes No No Yes Yes No No 
CEM Weights Yes Yes Yes Yes Yes Yes Yes Yes 
SE Clustered 

(ID) 
Clustered 
(ID) 

Bootstrap Clustered 
(ID) 

Clustered 
(ID) 

Clustered 
(ID) 

Bootstrap Clustered 
(ID) 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS. All models drop and weight regressions based 
on CEM: age #10, employment size #10, healthcare, financial services, and region #4, and all models cluster standard error at 
the firm level.  
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Table B.8. – Disaggregated data: SUTVA and focal/rival effects 

  

Stable 
Rivals 

Base Focal FE Rival FE Focal & 
Rival FE 

Focal & 
Year FE 

Rival & 
Year FE 

Focal, 
Rival & 
Year FE 

DV is: Development dissimilarity 
  (1) (2) (3) (4) (5) (6) (7) (8) 
[0,1] Outsource -0.027*** -0.076*** -0.088*** -0.098*** -0.105*** -0.028*** -0.031*** -0.029*** 
  (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) 
 R2 0.716 0.0278 0.504 0.0571 0.526 0.710 0.262 0.710 
                  
  Analytics dissimilarity 

  (9) (10) (11) (12) (13) (14) (15) (16) 
[0,1] Outsource 0.083*** 0.114*** 0.115*** 0.132*** 0.130*** 0.088*** 0.106*** 0.096*** 
  (0.005) (0.006) (0.005) (0.006) (0.005) (0.005) (0.006) (0.005) 
 R2 0.622 0.0469 0.577 0.0519 0.582 0.613 0.0811 0.614 
                  
Observations 8013783 34461926 34461926 34461926 34461926 34461926 34461926 34461926 
Firms 3123 3123 3123 3123 3123 3123 3123 3123 
Focal Firm FE Yes No Yes No Yes Yes No Yes 
Rival Firm FE No No No Yes Yes No Yes Yes 
Year FE Yes No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects in 
all models; standard errors are clustered at the firm level. 

 

Table B.9. – Platform market share 
  (1) (2) (3) (4) (5) (6) 

DV is: Development dissimilarity Analytics dissimilarity  
Market share -0.077***     0.087***     
  (0.011)     (0.025)     
Big Tech   -0.016***     0.031***   
    (0.004)     (0.006)   
Not Big Tech   base     base   
          
AWS     -0.025***     0.009* 
      (0.003)     (0.005) 
Not AWS     base     base 
          
Observations 11588 9588 7530 11588 9588 7530 
R2 0.690 0.344 0.334 0.560 0.0799 0.0575 
Firms 2225 2466 1609 2225 2466 1609 
Firm FE Yes No No Yes No No 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Matched No Yes Yes No Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level 
and year-level fixed effects in all models; standard errors are clustered at the firm level. Models 
that use the treatment sample do not include CEM matching.  
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Table B.10. – Additional performance measures 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: VC backed VC rep. Closed Acquired 
Development -0.721***   -0.195***   0.016   0.011   

dissimilarity (0.066)   (0.035)   (0.015)   (0.025)   
Analytics   0.115***   0.013   0.000   0.031*** 

dissimilarity   (0.041)   (0.021)   (0.008)   (0.011) 
Observations 17628 17628 17628 17628 17628 17628 17628 17628 
R2 0.751 0.747 0.817 0.816 0.948 0.948 0.960 0.960 
Firms 2799 2799 2799 2799 2799 2799 2799 2799 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level 
fixed effects in all models; standard errors are clustered at the firm level. 

 

Table B.11. – Funding outcomes (interaction) 
  (1) (2) (3) (4) (5) (6) 

DV is: 
Funded Follow-on 

Funding 
Deal size 

(log) 
Funded Follow-on 

Funding 
Deal size 

(log) 

Development bundle             
L. size x  0.053*** 0.042*** -0.225       

Less diss. (0.009) (0.010) (0.202)       

L size x  base 
      

More diss.       
H. size x  0.108*** 0.121*** 0.837***       

Less diss. (0.009) (0.010) (0.193)       
H. size x  0.094*** 0.084*** 0.825***       

More diss. (0.010) (0.011) (0.199)       
Analytics bundle             

L. size x        
base 

Less diss.       

L. size x        0.012 -0.000 0.330* 
More diss.       (0.010) (0.011) (0.183) 

H. size x        0.099*** 0.101*** 0.653*** 
Less diss       (0.011) (0.012) (0.231) 

H size x        0.093*** 0.115*** 0.694*** 
More diss.       (0.010) (0.010) (0.190) 

Observations 17628 17628 17628 17628 17628 17628 
R2 0.691 0.689 0.166 0.690 0.690 0.165 
Firms 2799 2799 2799 2799 2799 2799 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level 
fixed effects in all models; standard errors are clustered at the firm level.  
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Appendix C – Additional Figures 
 

Figure C.1. – Percentage of startups (>3 years old) outsourcing IT to cloud platforms 
 

 
 

Figure C.2. – Kernel density (Outsource vs. in-house) 
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Figure C.3. – Difference in technology type correlation (Outsource vs. in-house) 
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Figure C.4. – Differences in technology type trend (Outsource vs. in-house) 
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Figure C.5. – Mechanism impacting product development technology breadth 
 

Mechanism A: Need for technological fit (Size of technology bundle) 
 

 
 

 
 

Mechanism B: Customer-supplier relationship strength (IaaS/second cloud service) 
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Figure C.6. – Heterogeneity in technology dissimilarity by firm size 
 

Development technology bundle dissimilarity 
 

 
 

 Analytics technology bundle dissimilarity 
 

 
Notes: These graphs plot the prediction of the heterogeneous treatment effects of adopting cloud platform services 
due to size. The specification includes year-level fixed effects and weighing. Standard errors are clustered at the firm 
level.  
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Figure C.7. – Randomization: Outsourcing event assigned to a random year 
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Figure C.8. – Shannon’s entropy measure by year 
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Figure C.9. – Technology dissimilarity (AWS vs. not AWS, treatment group) 

 
Development technology bundle dissimilarity 
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Analytics technology bundle dissimilarity 

 
Years since outsourcing to cloud platform services 

 
Notes: These graphs plot the precited difference in technology dissimilarity for startups using AWS versus not using 
AWS. Includes only the treatment groups (i.e., startups using cloud platform services) based on specification (3).  
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Figure C.10. – Heterogeneity in technology dissimilarity (Higher vs. lower VC concentration city) 
 

Development technology bundle dissimilarity 

 
 

Analytics technology bundle dissimilarity 

 
Notes: These graphs plot the prediction of the heterogeneous treatment effects of adopting cloud platform services 
due to VC location (San Francisco, New York City, Boston, London, Hong Kong.) The specification includes year-
level fixed effects and weighing. Standard errors are clustered at the firm level.  
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Appendix D – Technology Descriptions 
 

Development Technologies  

Development Technology Description 
adobecoldfusion coldfusion is an application server and software development framework used for the 

development of computer software in general, and dynamic web sites in particular. 
adobedreamweaver based on the use of certain javascript functions, this page contains code generated, at least 

initially, by dreamweaver. 
ajaxlibrariesapi the ajax libraries api is a content distribution network and loading architecture for the most 

popular, open source javascript libraries. 
akamai akamai provides a distributed computing platform for global internet content and application 

delivery. 
akamaiedge akamai's edge platform is one of the world's largest distributed computing platforms. it is a 

network of more than 95,000 secure servers equipped with proprietary software and deployed in 
71 countries. 

alphassl certificate provided by alphassl, a globalsign company. 
alternateprotocol the server advertises alternate protocol options, most probably providing spdy support. 
amazonapigateway create, publish, maintain, monitor, and secure apis at any scale. 
amazoncloudfront amazon cloudfront is a web service for content delivery. it integrates with other amazon web 

services to give developers and businesses an easy way to distribute content to end users with low 
latency, high data transfer speeds, and no commitments. 

amazons3cdn amazon simple storage provides unlimited storage to developers and online businesses - saving 
costs and increase storage reliability. 

amazonssl amazon supplied ssl certificate 
angular angular version 4.2.* 
antdesign react ui kit / design framework. 
apache apache tomcat is an open source software implementation of the java servlet and javaserver pages 

technologies. 
apollographql app development framework. 
asp asp.net is a web application framework marketed by microsoft that programmers can use to build 

dynamic web sites, web applications and xml web services. it is part of microsoft's .net platform 
and is the successor to microsoft's active server pages (asp) technology. 

authpassthrough frontpage security module for apache. 
azureedge content delivered via azure edge network 
bootstrapcdn bootstrap cdn system - encompasses maxcdn, netdna and stackpath - donated to jsdelivr. 
bugbounty the website has some form of responsible disclosure mechanism for the reporting of security 

vulnerabilities. 
bulma bulma is an open source css framework based on flexbox and built with sass. 
bunnycdngeneral using content hosted at bunny cdn. 
cdnjs cloudflare's cdn with popular javascript frameworks available. 
centos centos is an enterprise-class linux distribution derived from sources freely provided to the public 

by a prominent north american enterprise linux vendor.  centos conforms fully with the upstream 
vendors redistribution policy and aims to be 100% binary compatible. 

classicasp active server pages (asp) is a server-side scripting environment that you can use to create and run 
dynamic, interactive web server applications. 

cloudflare automatically optimizes the delivery of your web pages so your visitors get the fastest page load 
times and best performance. 

cloudflarecdn content owned by this site hosted on the cloudflare cdn. 
cloudflaressl ssl solutions from cloudflare 
cloudinary image management & delivery solution. 
codeigniter codeigniter is a powerful php framework with a very small footprint. 
coldfusionmarkuplanguage(cfml) cfml is the scripting language used by adobe coldfusion, bluedragon, railo, smithproject, coral 

web builder, ignitefusion. 
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comodo comodo positive ssl certificate. 
cpanelssl cpanel certificate. 
dav a set of extensions to the http protocol which allows users to collaboratively edit and manage files 

on remote web servers. 
ddosguard ddos protection for your business. 
debian debian is a free operating system (os) for your computer. 
digicert certificate provided by digicert. 
digitaloceanspaces s3-compatible object storage with a built-in cdn. 
djangocsrf django is a high-level python web framework that encourages rapid development and clean, 

pragmatic design. this metric displays sites that are using django + csrf. 
djangolanguage this website is running the django framework and is setting a language cookie. 
encryptioneverywhere high value, low friction end-to-end security for web hosting partners from symantec. 
entrustssl certificate provided by entrust. 
envoy open source edge and service proxy. 
essentialssl certificate provided by essentialssl, a comodo company. 
express a web application framework for node node.js - expressjs. 
facebookcdn this page has content that links to the facebook content delivery network. 
facebookdomainverification domain verification provides a way for you to claim ownership of your domain in facebook 

business manager. 
fastlycdn links to fastly cdn based content. 
firebase a scalable real time backend system for websites. 
flatsome woocommerce responsive theme. 
gandistandardssl gandi hosting standard ssl certificate. 
gatsbyjs modern website and web apps generator for react. 
geotrust certificate provided by geotrust. 
githubhosting this site is hosted on github infrastructure. 
globalsign certificate provided by globalsign. 
godaddycdn this site has content that links to godaddy cdn. 
godaddyssl certificate provided by godaddy. 
googlecloudfunctions event-driven serverless compute platform. 
googlecloudstorage store objects of any size and manage access to their data on an individual or group basis within 

the google network. 
googlepagespeedmodule the pagespeed modules are open source server modules that optimize your site automatically. 

googlessl uses ssl from google 
gstaticgooglestaticcontent google has off-loaded static content (javascript/images/css) to a different domain name in an 

effort to reduce bandwidth usage and increase network performance for the end user. 
gumby gumby 2 is a responsive css framework. 
herokussl ssl certificate provided by heroku. the site is normally hosted on heroku for this to happen. 

herokuvegurproxy content from this page is being sent via the heroku vegur proxy. 
highwindscdn cdn built to meet the delivery needs of even the largest media and entertainment companies. 

incapsulacdn global cdn and optimizer. 
ionic ionic framework is a open source mobile sdk for developing native and progressive web apps. 

javaee java platform, enterprise edition (java ee) is the industry standard for developing portable, robust, 
scalable and secure server-side java applications. 

jquerycdn the jquery amazon s3 content delivery network 
jsdelivr a free cdn where javascript developers can host their files. encompasses maxcdn, and 

bootstrapcdn. 
laravel a php mvc framework. 
letsencrypt let’s encrypt is a free open certificate authority. 
limitermodules log byte and bandwidth limiter modules. 
lottiefiles open source animation file format providing lightweight, scalable animations . 
materializecss material design css framework 
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materialui react components that implement google's material design. 
maxcdn maxcdn's dynamic site acceleration optimizes content delivery and web applications by using 

edge locations. previously known as netdna. 
mediatemplessl the site is using ssl certificate from media temple hosting. 
meteor meteor is an environment for building modern websites. 
microsoftazureblobstorage windows azure blob storage is a service for storing large amounts of unstructured data that can be 

accessed from anywhere in the world via http or https. 
microsoftcdn content delivery network services from microsoft azure. 
microsoftssl the ssl certificate is connected with microsoft. 
modpagespeed mod_pagespeed is an open source apache module that automatically optimizes web pages and 

resources on them. 
modssl this module provides strong cryptography for the apache 1.3 webserver via the secure sockets 

layer (ssl v2/v3) and transport layer security (tls v1) protocols 
next react.js framework for static site generator apps. owned by vercel. 
nuxt vue.js application framework. 
oneclickssl fully automated ssl secure site activation from gmo internet group. 
openresty application server and framework system. 
openssl the openssl project is a collaborative effort to develop a robust, commercial-grade, full-featured, 

and open source toolkit implementing the secure sockets layer (ssl v2/v3) and transport layer 
security (tls v1) protocols as well as a full-strength general purpose cryptography library. 

optimole real-time image processing and image cdn for wordpress. 
osscdn open source software cdn from maxcdn. 
ovhanycast content hosted on an anycast load balanced ip address from ovh. 
ovhssl ssl certificates from french based network provider ovh 
parallelspleskpanel host and manage websites and servers at any scale, includes virtualization software. 
parallelsssl ssl reseller program from parallels 
perl perl is a general-purpose programming language originally developed for text manipulation and 

now used for a wide range of tasks including system administration, web development, network 
programming, gui development, and more. 

php php is a widely used general-purpose scripting language that is especially suited for web 
development and can be embedded into html. 

placeholdit a quick and simple placeholder service. 
pubnub api that allows you to build realtime apps in minutes. 
pure a set of small, responsive css modules. 
pusher pusher is a realtime service that complements your existing server architecture. 
python python version 2.4.* 
quic quick udp internet connections, pronounced quick is a transport layer network protocol developed 

by google. 
rackspacecdn rackspace cdn system. 
rapidssl rapidssl certificate provider. 
rawgit serves raw files from github with the right content type headers. 
reactonrails react on rails integrates rails with (server rendering of) facebook's react front-end framework. 
redhatenterpriselinux red hat enterprise linux (often abbreviated to rhel) is a linux distribution produced by red hat and 

targeted toward the commercial market, including mainframes. 
rubyonrails ruby on rails is an open source web framework that is optimized for programmer happiness and 

sustainable productivity. note that ruby on rails has two detection techniques and this is one of 
them. 

sectigo ssl from sectigo formerly comodo. 
semanticui semantic empowers designers and developers by creating a language for sharing ui. 
sonatype devops automation nexus system. 
ssl certificate provided by ssl.com 
stackoverflowcdn stackoverflow and family cdn. 
stackpath accelerates websites, apps, apis, streams and downloads. 
stackpathbootstrapcdn stackpath's bootstrap cdn system - encompasses maxcdn and netdna. 
starfieldtechnologies certificate provided by starfield technologies 
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startssl certificate provided by startssl. 
startupframework design framework for web developers. 
stimulus javascript framework for augmenting html from basecamp. 
sucuricloudproxy sucuri firewall (cloudproxy) is a cloud-based waf and intrusion prevention system for web sites 
svelte ui interface builder system. 
symantec verisign/symantec ssl certificates. 
thawtessl certificated provided by thawte. 
total a server side framework for node.js providing the ability to build web sites using js, html and css. 
twittercdn this page contains content sourced from the twitter cdn, either by the use of widgets or linking to 

image content on twimg.com currently hosted by akamai and amazon. 
ubuntu ubuntu is a free, debian derived linux-based operating system, available with both community and 

professional support. 
unix a *nix based operating system (undisclosed). 
unpkg unpkg is a fast, global content delivery network for everything on npm. 
vimeocdn this page uses content from the vimeo cdn. 
yahooimagecdn the website contains links to yahoo image cdn. 
zencodercdn this page has content hosted on the zencoder cdn, owned by brightcove. 

 

Analytics Technologies 
Analytics Technology  Description 
33across a technology that connects users content and products into the social graph. 
6sense lead generation funnel analytics tool. 
accessibe website accessibility monitoring and auditing platform. 
activecampaign marketing automation, email marketing and behavioral analysis. 
acton marketing automation software. 
acxiom technology and marketing services that enable marketers to manage audiences. 
adjust mobile app tracking system. 
adobeanalytics marketing analytics platform from adobe. 
adobedynamictagmanagement satellite puts an end to tag and technology management, letting marketers and analysts manage 

their tools. previously known as search discovery satellite now adobe dtm. 
adobeexperienceplatformidentitys
ervice 

connects devices to people. 

adobelaunch adobe experience platform tag management system. 
adobemarketingcloud a complete set of marketing solutions from adobe. 
affiliatly affiliate tracking software for ecommerce stores. 
agilecrm agile is a fully-integrated sales & marketing suite for small businesses. 
ahoy first party analytics for rails. 
airbrake airbrake collects errors generated by other applications, and aggregates the results for review. 
airpr prtech company provides analytics and insights for what's driving engagement. 
akamaimpulse multi-channel real time analytics package - rum system by akamai previously soasta. 
albacross b2b digital marketing tool that allows you to try to identify the companies that are visiting your 

website. 
alexacertifiedsitemetrics alexa's certified program and pro metrics. 
alexametrics the page has embedded alexa metrics. 
amazonadvertisingsizmekadsuite campaign management analytics from amazon formerly mediamind. 
ambassador referral marketing software. 
amplitude mobile analytics platform. 
appsflyer mobile attribution & marketing analytics platform 
atlasactiontags work alongside the tracking of campaigns and track the conversion performance of your online 

media activity. 
attentive personalized mobile messaging platform. 
augur device and consumer recognition javascript service. 
baiduanalytics analytics tracking pixel from chinese language search engine baidu. 
bingconversiontracking help optimize search ads campaigns. 
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binguniversaleventtracking universal event tracking (uet) is a simple and powerful campaign measurement solution that 
allows you to track key conversion goals important to your business. 

bizible multi-channel roi marketing analytics tool. 
bizoinsights bizo insight tags are installed on a partner website to enable bizo to generate and/or record 

anonymous analytics about the partner’s site visitors. acquired by linkedin. 
boldcommerce shopify app development and partner to help increase sales. previously shappify. 
bombora advertising analytics and tracking service. 
branch mobile deep linking system to increase engagement and retention. 
braze braze is a lifecycle marketing platform formerly known as appboy. 
calltrackingmetrics call tracking & analytics for advertising. 
capterra software tracking system and badge. 
castle deep visibility into what users are doing on your website. 
chartbeat live traffic monitoring of your website. 
claritas custom audience segments & consumer insights for over 120 million households 
clearbit sales and marketing workflow analytics. 
clearbitreveal identifies anonymous visitors to websites. 
clevertap behavioural analytics and engagement platform. 
clicktale records visitors to the website and every action as they browse the site. creates movies to allow 

the website to understand how it gets used. 
clicky clicky web analytics system, previously known as getclicky 
cloudflareinsights visitor analytics and threat monitoring. 
cloudflarerocketloader automatically optimizes your pages to minimize the number of network connections and ensure 

even third party resources won't slow down page rendering. 
cloudflarewebanalytics privacy-first web analytics from cloudflare. 
comscore market research company that studies internet trends and behavior. 
convert increase conversion and engagement of website visitors by personalizing content based on 

behavior. previously known as reedge. 
convertflow lead generation and on-site retargeting 
crazyegg crazy egg provides visualization of visits to your website. 
crimsonhexagon ai-powered consumer insights tracking platform. 
crosspixelmedia cross pixel is the leading provider of high performance audience data. 
customer email people automatically based on what they do (or don't do) in your app. 
datadog cloud monitoring as a service system. 
datalogix leverages the power of purchase-based audience targeting to drive measurable online and 

offline sales 
demandbase abm software for mid-market and enterprise b2b companies. 
digitalwindow digital window provides performance marketing solutions. providing customers with the tools 

and account management to get the most from their affiliate programmes 
dotomi dotomi applies personalized media practices to anonymous, user-level marketing programs. 
doubleclickfloodlight floodlight is feature of doubleclick ads that allows advertisers to capture and report on the 

actions of users who visit their website after viewing or clicking on one of the advertiser's ads. 

dynatrace dynatrace provides software intelligence for enterprise cloud ecosystems. dynatrace is an ai-
powered, full stack and automated monitoring and analytics solution that provides insights into 
users, transactions, applications, and hybrid multi-cloud environments. 

efficientfrontier unified performance marketing platform that optimizes across both search and display. now 
owned by adobe and includes everest tech. 

eloqua marketing automation provider. 
engagio account based marketing service. 
everesttechnologies performance testing and channel strategy provider for ecommerce. 
facebookconversiontracking conversion tracking functionality from facebook, allows a user to track advertisement clicks. 
facebookdomaininsights this website contains tracking information that allows admins to see facebook insights out of 

facebook to this domain. 
facebookpixel facebook pixel is facebooks conversion tracking system for ads on facebook to websites. 
facebookpixelforshopify facebook pixel specifically for shopify. 
facebookpixelviewcontent calls to facebook pixel 'viewcontent' 
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facebooksignal journalists use signal to surface relevant trends, photos, videos and posts from facebook and 
instagram for use in their storytelling and reporting. 

facebooktagapi the javascript tag api can be used to track custom audience and conversion events. 
fastlycdn real-time analytics and cdn platform. analyze your web and server traffic patterns in real-time. 
firstpromoter affiliate and referral tracking system. 
freshmarketer conversion optimization suite from freshworks. 
freshworkscrm ai-based lead scoring, phone, email, activity capture, and more. 
fullstory fullstory lets product and support teams understand everything about the customer experience. 
g2crowdconversion conversion tracking for g2 crowd pages. 
gemiuspl online research company based in poland 
globalsitetag google's primary tag for google measurement/conversion tracking, adwords and doubleclick. 
googleadwordsconversion adwords conversion tracking code. 
googleanalytics google analytics offers a host of compelling features and benefits for everyone from senior 

executives and advertising and marketing professionals to site owners and content developers. 

googlecallconversiontracking use phone call conversion tracking to help you see how effectively your ads lead to phone calls 
from your website. 

googlecontentexperiments content experiments helps you optimize for goals you have already defined in your google 
analytics account, and can help you decide which page designs, layouts and content are most 
effective. 

googleconversion this free tool in adwords can show you what happens after customers click your ad (for 
example, whether they purchased your product, called from a mobile phone or downloaded 
your app). 

googledoubleclickconversion doubleclick conversion tracking from google global site tag. 
googleoptimize360 test different variations of a website and then tailor it to deliver a personalized experience that 

works best for each customer and for your business. 
googleuniversalanalytics the analytics.js javascript snippet is a new way to measure how users interact with your website. 

it is similar to the previous google tracking code, ga.js, but offers more flexibility for 
developers to customize their implementations. 

gosquared see who's reading, commenting, joining, or buying on your website right now. 
growsumo reward customers and people for sending referrals. 
heap heap automatically captures every user action in your web app and lets you measure it all. 
heatmapit heatmap based tools from heatmap.it. 
hittaillongtailkeywordmarketing hittail claims they are the only product that reveals in real time which keywords people use to 

find the website. 
hotjar a heatmap, survey, feedback and funnel application. 
hubspot hubspot provides marketing information and leads via inbounding marketing software. 
hubspotads turn hubspot lists into ads targeting audiences and track the roi of your facebook and google ads 

automatically. 
hubspotanalytics measure the performance of all your marketing campaigns 
hubspotcalltoactions create personalized calls-to-action that are designed to convert and measure them. 
hubspotforms marketing automation form feedback into hubspot tool. 
hubspotleadflows lead flows allow you to easily create and customize engaging lead capture forms. 
igodigital analyzes individual shopper behavior and provides  personalized product recommendations. 

now owned by exacttarget. 
improvely conversion tracking, click fraud monitoring and a/b testing for online marketers and agencies. 
innocraftcloud all in one analytics package from matomo. 
insightera provides b2b customer acquisition with real-time inbound marketing. now marketo real-time 

personalization. 
inspectlet record and watch everything your visitors do. 
invitemedia automatically buy from multiple ad exchanges in real-time, all through the same interface. 
ipstack ip to geolocation apis and global ip database services. 
jabmo automated lead generation software based on website visitors. now known as jabmo. 
keenio analytics backend-as-a-service lets developers build analytics features directly into apps. 
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kenshoo automates the whole process of creating and managing search-engine marketing campaigns. 
kickfire ip address-to-company api and real time visitor intent discovery. 
kissmetrics helps measure results and improve them with analytics from kissmetrics. 
klaviyo customer lifecycle management platform for web apps and ecommerce. 
knowbe4 security awareness system. 
kochava unified audience attribution and analytics platform. 
leadfeeder leadfeeder shows you which companies are visiting your site. 
leadforensics visibility of which companies have visited your site, when they visited, what they searched on 

and the pages they viewed. 
leadin get insights into everyone who fills out a form on your site. from hubspot. 
leadinfo identify b2b website visitors. 
leadlander real time customer intelligence, a website marketing solution. 
leadworx lead discovery tool. 
linkedininsights the linkedin insight tag is a piece of lightweight javascript code that you can add to your 

website to enable in-depth campaign reporting and unlock valuable insights about your website 
visitors and for conversion optimization of ads. 

loader load testing tool for websites. 
loggly cloud-based solution that tries to makes sense of log data coming from applications, platforms, 

and systems. owned by solarwinds. 
lotamecrowdcontrol data driven marketing advertising program provides social media sites with advance targeting 
luckyorange lucky orange lets you see what people are doing on your website, in real time, and interact with 

them. 
madkudu lead scoring and signup forms. 
mailitelite email newsletters made easy signup form. 
mailmunch email marketing service and customer acquisition app. 
marinsoftware helps advertisers and agencies manage and grow their search campaigns . 
marketo marketo provides sophisticated yet easy marketing automation software that helps marketing 

and sales work together to drive revenue and improve marketing accountability. 

marketorealtimepersonalization allows for event tracking and dynamic customization of a webpage back to marketo. 
matomo matomo is an open source web analytics software. it gives interesting reports on your website 

visitors, your popular pages, the search engines keywords they used, the language they speak 
and so much more. previously known as piwik web analytics. 

matomocloud cloud hosted version of matomo analytics. 
mautic open source marketing automation software. 
mediamath tools that enable and empower marketing professionals. 
microsoftadcenter clicks. leads. sales. pay only when someone clicks your ad. 
microsoftapplicationinsights gain insights through application performance management and instant analytics. 
microsoftclarity free-to-use analytics product for webmasters that shows how people are using your website. 
mixpanel this is an analytic platform that is particularly optimized funnel/work-flow optimization. 
moat moat advertising metrics system. owned by oracle. 
mouseflow mouseflow records videos of your site visitors and generates heatmaps highlighting areas users 

are clicking, scrolling and ignoring. 
mutiny personalization platform, engage your site visitors with a tailored experience. 
naveranalytics korean based analytics service. 
netfactorvisitortracker lead generation software for your website. 
newrelic new relic is a dashboard used to keep an eye on application health and availability while 

monitoring real user experience. 
oktopost social media management for b2b marketing. 
omnituresitecatalyst omniture sitecatalyst provides your website with actionable, real-time intelligence regarding 

online strategies and marketing initiatives. 
optimizely optimizely empowers companies to deliver more relevant and effective digital experiences on 

websites and mobile through a/b testing and personalization. 
optimonk retargeting platform, that tries to help increase the conversion rate. 
oribianalytics web analytics and event tracking system. 
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outfunnel sales marketing automation platform for pipedrive. 
owneriq enables advertisers, manufacturers and retailers to more precisely target their online message 

based on what consumers own. 
parse parse.ly provides web analytics tools and apis built specifically for the needs of online content 

sites. its flagship product, parse.ly dash, provides historical, real-time, and predictive insights 
for the web's best publishers. 

paypalmarketingsolutions get powerful marketing tools designed to help increase your sale. includes paypal credit, fast 
checkout and venmo accept options. 

pendo pendo captures user behavior, gathers feedback, and provides contextual help. 
pingdomrum real user monitoring gives insight into performance for actual users visiting the website. 
pinterestconversiontracking tag that allows you to track actions people take on your website after viewing your promoted 

pin. 
pipedrive sales management tool small sales teams, 
plausibleanalytics lightweight and open source web analytics tool. 
poptin create engaging web and mobile overlays to try to improve conversion rate. 
posthog self hosted analytics tool. 
preact preact is web software that takes the job of supporting customers to the next level. formally 

known as less neglect. 
profitwell subscription and financial metrics in one place. 
proof social proof on sales funnel to help increase conversions. 
ptengine ptengine is a heatmap and web analytics platform. 
qualia real-time insights platform to help improve conversion rates. 
qualified conversational marketing software system. 
quantcastmeasurement provides quantcast with tracking information about your site which anyone can access and view 

demographic information. 
rapleaf marketing automation tools with the necessary data to help brands keep their customers 

engaged. now towerdata. 
rdstation digital marketing lead generation tool for websites, from brazil. 
redditconversiontracking conversion tracking system from reddit. 
reporturi enable your users browsers to automatically report security threats. 
sailthruhorizon empowers marketers to turn data into insights and act on those findings quickly and 

automatically. 
salesforce salesforce is a leading platform for cloud based web apps. 
salesforceaudiencestudio captures, connects and monetize consumer data - previous salesforce dmp and krux digital 
salesforcewebtolead with web-to-lead, you can gather information from your company’s website and automatically 

generate up to 500 new leads a day. 
salesloft sales engagement platform. 
salesmanago polish based marketing automation software. 
segment segment gives you the ability to instrument your web app for analytics once, and then send your 

data to any number of analytics services. previously known as segment.io 
sendpulse integrated marketing messaging platform. 
sessioncam session replay, website heatmaps and web analytics. 
shareaholic browser and website analytics tools. 
sharpspring marketing automation for agencies and smbs. 
siftscience sift science monitors a site's traffic in real time and alerts you instantly to fraudulent activity. 
signal distributed data management platform helps share data the website creates with other platforms 

such as advertisers and audience analytics. 
smartlook records screens of real users on your website. 
snowplow open source analytics that you store yourself. 
statcounter the website uses statcounter a free yet reliable invisible web tracker, highly configurable hit 

counter and real-time detailed web stats. 
steelhouse behavioral commerce platform,  real time onsite offers, dynamic retargeting and other 

technology features. 
sumo sales and marketing strategies to reduce cart abandonment and increase average order value for 

ecommerce. 
survicate visitors insights for lead generation & nurturing. 
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tapfiliate affiliate tracking software for ecommerce and saas 
tatari tatari measures tv advertising and helps companies optimize their campaigns. 
tellapart the best customers & prospects from the rest. 
terminus account-based marketing software for b2b marketers. 
thriveleads mailing list and conversion optimization wordpress plugin. 
tiktokconversiontrackingpixel tiktok advertising conversion tracking pixel. 
toutapp toutapp live feed tells you exactly what your leads are doing with your sales emails. 
trackalyzer leadlander solution. 
trendemon conversion optimization for content. 
triblio a content marketing platform. 
trustpilot trustpilot is an open, community-based platform for sharing real reviews of shopping 

experiences online. 
tvsquared real-time tv attribution platform in the industry. 
twitteranalytics a tool that helps website owners understand how much traffic they receive from twitter and the 

effectiveness of twitter integrations on their sites. includes twitter conversion tracking. 
twitterconversiontracking twitter ads conversion tracking code. 
twitterwebsiteuniversaltag a tool from twitter that makes it possible for advertisers to track website conversions and 

manage tailored audience campaigns. 
tynttracer tynt tracer, monitors and watches what is being copied from your website, such as your 

copyrighted content. 
veinteractive ve interactive is a data-driven solutions provider for shopping cart merchants. 
vero send more targeted emails to your customers based on their personal behaviour. 
visistat visistat is a suite of tools that measures the effectiveness of website performance and activity. 
visitorqueue website visitor tracking software 
visualiq marketing attribution and optimization service. 
visualstudiotracking microsoft visual studio based tracking services. 
visualvisitor find out who is on your site and what they are looking at with this lead tool. 
visualwebsiteoptimizer vwo provides a/b, split and multivariate testing software. 
whoisvisiting lead generation from website visitors. 
wizrocket wizrocket is a user behavior analysis & targeting tool. 
woopra woopra is a real-time customer analytics service that provides solutions for sales, service, 

marketing and product teams. 
wootric in-app nps scoring software. 
yahoodot fives advertisers a simple way to measure and improve customer engagement across campaigns. 
yahoowebanalytics yahoo! web analytics is an enterprise site analytics tool that provides real-time insight into 

visitor behavior on your website. 
yandexmetrika a free russian tool for increasing the conversion of the site. watch for key performance site, 

analyze visitor behavior, evaluate the impact of advertising campaigns. 
zarget conversion rate optimization and ab testing software. 
zohopagesense conversion optimization and personalization platform. 
zoominfo b2b database provider and user analytics tracking. 
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