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Abstract

The way monetary policy is conducted is a key element in New Keynesian models,
and crucially determines allocations’ properties. We show that assuming monetary
authorities follow a Taylor rule may bias estimation of New Keynesian type models for
two reasons. The first one is theoretically trivial, and is a standard misspecification
bias that occurs if the actual conduct of policy does not follow the model specified
Taylor rule. The second one is more subtle, and we refer to it as a determinacy
bias. It occurs when wrongly assuming a Taylor rule restricts the set of admissible
model deep parameters when one requires the equilibrium to be determinate, as is
almost always the case in the applied literature. Using US data, we show that the
determinacy bias is a serious problem in small scale New Keynesian models, as the slope
of Phillips curve is biased upwards. The misspecification bias is a serious problem when
estimating a medium-scale model, as it affects the contribution of the various shocks
to macroeconomic fluctuations. We propose an alternative agnostic specification of the
policy rule that is immune to both misspecification and determinacy biases.
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Introduction

It is well-known but sometimes forgotten that assuming nominal rigidities does not put

many restrictions on real equilibrium allocations. What is relevant in the combination

of sticky prices and monetary policy. In a way, it is for that very reason that nominal
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rigidities have been introduced in macroeconomic analysis of monetary policy. A per-

fect illustration of this importance of monetary policy is the canonical three-equation

New Keynesian model with only demand shocks; model in which monetary policy can

replicate the flexible price real allocations when it responds with infinite aggressiveness

to inflation fluctuations. The specification of the monetary policy rule is therefore key

in the derivation of the model equilibrium allocations properties. Given the importance

of the monetary policy rule, it is surprising that little attention is paid to its specifica-

tion in the applied macroeconomic literature, when estimating New Keynesian DSGE

(Dynamic Stochastic General Equilibrium) models, as if it should not matter for the

model estimation. An alternative justification for using one particular Taylor rule is

that one needs to assume something. We contradict this argument as one may assume

only that the instrument is a function of the minimal state space of the economy.

In this paper, we show that specifying the conduct of monetary policy as follow-

ing a Taylor rule does seriously bias model deep parameters estimates as well as our

understanding of macroeconomic fluctuations. Biases come from two different sources

that we coin misspecification bias and determinacy bias. We show the existence of

these two biases in simple abstract economies, and then show that they do materialise

when estimating New Keynesian type models on US data. Small models, which are

more prone to indeterminacy, suffer from the determinacy bias. We will show that this

leads to an overestimation of the Phillips curve slope. We will then show that medium

scale models suffer from the misspecification bias. To avoid such biases, we propose an

alternative and agnostic specification of the conduct of monetary policy (a state rule)

that nests the Taylor rule specification and that is immune to both types of biases.

Taylor rule(s)

There is a large applied literature on estimated monetary DSGE models, from the

early work of Rotemberg and Woodford [1997] to Ireland [2004], Christiano, Eichen-

baum, and Evans [2005] and Smets and Wouters [2007], and the recent the Federal

Reserve Bank of New York’s DSGE model (Negro, Gleich, Lee, Nallamotu, and Sen-

gupta [2022]). Models in this literature feature a version of the Taylor rule that follows

Taylor [1993b]. Let us briefly describe the wealth of specifications used in the litera-

ture. This is relevant as we will show later that differences in specifications can lead

to important differences in allocation properties.

The original Taylor’s [1993b] rule is (dropping constants)

it = πt + .5ŷt + .5πt−2,

where i is the federal fund rate, π is the rate of inflation and ŷ is an output gap. J. Tay-

lor introduces this rule as “a hypothetical but representative policy rule [... that] closely
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approximates Federal Reserve policy [...]”, but does analyses it in a full DSGE models.1

The rule is not is not meant to describe the actual implementation of monetary policy,

but rather to closely track the trajectory of the nominal interest rate.

To the best of our knowledge, the first micro-founded and estimated New Keynesian

model with an interest rule is Rotemberg and Woodford [1997]. The authors “assume

that recent U.S. monetary policy may be described by a feedback rule for the federal

funds rate of the form”

it = i⋆ +

ni∑
k=1

µk(it−k − i⋆) +

nπ∑
k=1

ϕk(πt−k − π⋆) +

ny∑
k=1

θkyt−k + ϵt.

i is the Federal funds rate, π inflation, y the percentage deviation of real GDP from

trend, and i⋆ and π⋆ are long run “targets”. Rotemberg and Woodford [1997] justify

this rule by following “ the monetary-policy “reaction function” literature, especially

Taylor [1993b]”. The rule is estimated from a VAR in a first stage, and the rest of the

model is estimated, and some counterfactual simulations are done with the Taylor rule

it = θππt + θyyt.

Note that this is not exactly the specification of Taylor [1993b] we reported before. A

very similar exercise is performed by Christiano, Eichenbaum, and Evans [2005] in a

richer model with capital, and counterfactual simulations are performed with a Taylor

rule specified as

it = ρit−1 + (1− ρ) (ϕπEt−1[πt+1] + ϕyyt) ,

There is no motivation for that particular specification but “It is commonplace in the

literature to represent monetary policy as a parsimonious Taylor rule.” Note that in

their specification inflation enters as Et−1[πt+1].

The first paper we know that jointly estimated Taylor rule and other equations of

a DSGE is Ireland [2004], who chooses the specification:

it = ρiit−1 + ρyyt−1 + ρππt−1 + εit.

The justification for this specification is that this rule “generalizes Taylor’s rule, how-

ever, by adding a term involving the lagged interest rate: when ρi is nonzero, the

interest rate adjustment to output and inflation occurs gradually over time.” Note that

the output gap enters here with a lag.

The classic reference for estimated DSGE paper is Smets and Wouters [2007], in

which the specification is

it = ρit−1 + (1− ρ) (ϕππt + ϕyyt) + ϕ∆y (yt − yt−1) ,

1Taylor [1993a] adds a Taylor rule to a large econometric model that is not microfounded and estimated
equation by equation
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This rule is introduced in the following way: “Finally, the model is closed by adding

the [above] empirical monetary policy reaction function [...] The monetary authorities

follow a generalized Taylor rule.” Note the addition of the growth rate of the output

gap to the rule.

Finally, Negro, Gleich, Lee, Nallamotu, and Sengupta [2022] represents the latest

vintage of New Keynesian DSGE models, and it features a Taylor rule of the type

it = ρiit−1 + (1− ρi) (ψ1(πt − π⋆t ) + ψ2yt) + ψ3 (yt − yt−1) + εit,

Tis rule is introduced by “the monetary authority follows a generalized policy feedback

rule.” Note here that a moving inflation target π⋆t has been included in the rule.

The point that we want to make here is that the choice of a particular specification

of the Taylor rule is not justified as a better description if the actual implementation

of monetary policy by the Fed. We speculate that the choice is driven by a trade-off

between giving the model a good fit and not deviating too much from Taylor original

rule. We will show that the specification choice is unfortunately likely to create biases

in the deep parameters estimation.

The importance of the Taylor rule specification

Let us showcase the crucial role of the Taylor rule specification in shaping equilibrium

allocations. Consider the following (reasonably parametrized) three-equation New Key-

nesian model:

yt = Et[yt+1]− (it − Et[πt+1]) + dt, (1)

πt = 0.99 Et[πt+1] + 0.1 yt + µt, (2)

where d and µ are autoregressive shocks with persistence 0.9 and unit innovation vari-

ance. We close the model with one of the two following Taylor rules:

it = 1.2 πt + 0.25 yt, (3)

it = 1.2 Etπt+1 + 0.25 (yt − yt−1). (4)

These two “Taylor rules” are consistent with the narrative that monetary authorities

set the nominal interest rate in reaction to inflation (current or expected) and the

output gap (level or growth rate). We consider the response to the following combi-

nation of shocks: an innovation of 1 to d and 2 to µ. The impulse responses to that

combination of shocks are represented on Figure 1. It is striking to see that although

“instruments” (real or nominal interest rates) respond in qualitatively (and to a large

extent quantitative) similarly with the two policy rules, qualitative responses of output

and inflation are totally different: the same set of shocks does increase output with one
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rule and decrease it with the other one; inflation and output co-move with one rule,

while they move in opposite direction with the other rule. This example (in particular

the set of shocks) is admittedly peculiar, and has no other virtue than illustrating the

qualitative dependance of allocations properties to the specification of the Taylor rule.

Figure 1: Impulse response to a combination of d and µ shocks

it it − Et[πt+1]
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Notes: The IRF are derived from the model (1), (1) and Taylor rule 3) or(4). The shock is a combination
of d (size 1) and µ (size 2).

State Policy Rule

Throughout the paper, we will contrast Taylor rules with “state rules”. We define

a state rule as a rule in which the policy instrument is a function of the minimal

state space of the economy in the spirit of McCallum [1983]. It corresponds to what

Svensson and Woodford [2005] call an explicit instrument rule. As we will show, the

advantage is that the state rule we will use will guarantee determinacy while staying

agnostic about the actual implementation of monetary policy. Furthermore, we will

prove that such a rule is encompassing all the other rules. An argument against such

a state rule is that it supposes that the central bank observes the full state space of

5



the economy, as it is discussed for example in Giannoni and Woodford [2003]. That

would be a concern if we were to identify the optimal policy. We do not look for

optimal monetary policy, but we simply want to estimate the actual policy, so that

potential restrictions in the information set of the Fed will be estimated by our state

rule. One may argue that it is more efficient for the estimation to ex ante restrict

the state space that policy maps into the instrument, using priors coming from the

study of the Fed decision process. It is true, but that should be explicitly justified

by an in-depth analysis of the actual implementation of monetary policy. As we have

shown above, this is not what is done when assuming one or another specification of

the Taylor rule. Our state rule is totally agnostic about the implementation of policy,

and therefore also agnostic about the information set of the policy maker. We will

show that if wrongly used, Taylor rules create misspecification and determinacy biases

in the estimation of all the model deep parameters. Misspecification bias is hardly

a surprising result in theory. Our contribution is to show that it matters big time,

and changes our account of macroeconomic fluctuations, as seen through the lens of a

medium scale New Keynesian DSGE. Determinacy bias occurs when assuming wrongly

a Taylor rule restricts the set of admissible model deep parameters when one requires

the equilibrium to be determinate, as almost always done in the applied literature. We

show that the determinacy bias is pervasive when estimating small models.

Outline

Section 1 will theoretically illustrate the consequences of the dependance of allocations

and parameters estimates to the specification of the monetary policy rule. The em-

pirical relevance of problem when estimating small scale (Section 2) and medium scale

(Section 3) models.

1 Determinacy Bias and Misspecification Bias

In this section, we show that the use of a Taylor rule type of policy rule can lead to

determinacy and misspecification biases in estimation. We also show that they can be

replaced by state rules that are not subject to both types of bias.

1.1 Determinacy Bias

We propose here a simple abstract model in which we can illustrate how the use of a

“Taylor” type of policy rule can generate a determinacy bias.
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Model

Let’s consider the following forward looking equation:

yt = αEtyt+1 + βit + st, (5)

with 0 ≤ α < 1 and for simplicity β > 0. y is the variable of interest, that is set by the

private sector. y also depends on a policy instrument i that is controlled by a policy

maker. Finally, s is an autoregressive shock

st = ρst−1 + εt, (6)

with 0 ≤ ρ < 1 and ε is iid with unit variance. We do not specify what is the objective

of the policy maker, and in that sense, we are not looking for optimal rules. We

nevertheless restrict the policy maker choice to rules that guaranty determinacy of the

solution, as this is what the applied DSGE literature is doing.2.

As previously written, i is an instrument, a policy variable that helps controlling y

in order to reach some objective that we . The policy maker can choose two types of

policy rules. The first type makes the instrument reacting to some of the endogenous

variables of the current period (an example is the Taylor rule). We coin it a feedback

rule. In this simple example, the feedback (“ϕeedback”) rule will be

it = ϕyt. (7)

The second type makes the instrument reacting to the state of the economy. Given the

restriction to determinate outcomes, the state space will be the minimal set of state

variables. As alluded to in the introduction, we coin such a rule a state rule. In this

simple example, the only state variable is the shock st. and the state (“σtate”)- rule

will be

it = σst + νt. (8)

Note that in this example, the state of the economy is unidimensional, and both rules

map one variable into the instrument. We show below that the feedback rule is never-

theless restrictive, which can cause bias in estimation.

Solution with a feedback rule

In the case of a feedback rule, plugging (7) into (5) and substituting forward gives

yt =
1

1− βϕ

 ∞∑
j=0

(
αρ

1− βϕ

)j
 st (9)

2There are a few exceptions to that statement, for example, Lubik and Schorfheide [2004], Beyer and
Farmer [2007] and Bianchi and Nicolò [2021]
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The condition for this sum to converge for any admissible persistence parameter ρ is∣∣∣ α
1−βϕ

∣∣∣ < 1. In that case, the solution of the model will be determinate. This condition

can be written as a condition on the policy parameter ϕ, and is given by

ϕ /∈
]
1− α

β
,
1 + α

β

[
. (10)

This condition echoes the “Taylor principle” condition in New Keynesian models.

When the condition (10) is satisfied, the solution of the model under a feedback rule

is given by

yt =
1

1− βϕ− αρ
st. (11)

Solution with a state rule

In the case of a state rule, plugging (8) into (5) and substituting forward gives

yt = (1 + βσ)

 ∞∑
j=0

(αρ)j

 st (12)

In that case, because α is assumed to be in the unit interval, the sum converges for

any admissible ρ and any policy choice σ, and the solution of the model under a state

rule is given by

yt =
1 + βσ

1− αρ
st (13)

Equivalent rules

Is the choice of the rule – in other words the description of actual implementation of

policy – irrelevant? Here we show that for any feedback rule for which a determinate

solution exists, there exist an equivalent – meaning spanning the same allocations –

state rule, but that the converse is not true.

Consider first a feedback rule model with parameter ϕ such that the solution is

determinate (condition (10) is satisfied). Comparing (11) and (13), we can see that a

state rule with parameter σE generates the same allocations that a feedback rule under

the necessary condition:

σE =
ϕ

1− βϕ− αρ
.

As the equilibrium with state rules is always determinate, the above necessary condition

is also sufficient.

Consider now a state rule model with parameter σ. Comparing again solutions (11)

and (13), a necessary condition for a feedback rule with parameter ϕE to generates the

same allocations that a state rule with parameter σ) is that

ϕE =
σ(1− αρ)

1 + βσ
.
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But that condition may not be sufficient, as the equilibrium with feedback rule ϕE may

not ne determinate. If σ > −1+α
2αβ , then ϕ

E will satisfy the determinacy condition (10).

But if σ < −1+α
2αβ , there is no determinate feedback model that can reproduce the state

rule allocations.

These results show that under the assumption that the equilibrium is determinate,

as for example almost always the case in monetary DSGE models, assuming a feedback

rule is putting restrictions on allocations while assuming a state rule does not. If the

Data Generating Process (DGP) features a state rule, then assuming a feedback rule

might biased the estimation if ϕE does not satisfy the determinacy condition (10),

while the converse is not true. Below, we illustrate this in a very specific case, and

then in a simulation exercise.

Implications for estimation, an analytical case:

In order to obtain analytical results, we make here some rather stark assumption

about what is known and observed by the econometrician. We will relax later these

assumptions in a simulation exercice. Let us assume that the DGP is the feedback

rule model, that β, ρ, ϕ and σE are known to the econometrician and that only y is

observable. The econometrician aims at estimating the only unknown parameter α.

In such a case, the maximum likelihood estimator of α can be obtained by matching

the model unconditional variance of y with its sample counterpart. With an infinite

amount of data, the model unconditional variance of y is equal (using equation (11))

to

V ϕ(α) =
1

(1− βϕ− αρ)2
1

1− ρ2
.

Here V ϕ(α) denotes the variance of y in the model with parameter α and a feedback

rule with parameter ϕ. Assume that the econometrician wrongly believes that the

DGP is a state rule model, so that the variance of y writes (using equation (13)):

V σ(α) =

(
1 + βσE

1− αρ

)2
1

1− ρ2
.

An estimator of α is then given by α̂ that solves

V σ(α̂) = V ϕ(α) (14)

Equation (14) has two solutions in α̂, that are α and 2/ρ−α. The second one is greater

than one. Therefore, selecting the solution that gives determinacy under a state rule

(i.e. imposing |α̂| < 1) always provides an unbiased estimate of α. Wrongly assuming

that the economy has a state policy rule is of no consequence for the estimation of α.

Let us now assume the reverse, i.e. that the DGP is a model with a state rule.

Again, the econometrician knows all the parameters, including the equivalent feedback
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rule parameter ϕE , but has to estimate α observing only y and assuming that the DGP

is the feedback rule model. This can be done again by matching the variance of y, In

this case, the variance of y is is asymptotically given by

V σ(α) =

(
1 + βσ

1− αρ

)2 1

1− ρ2
.

According to the econometrician DGP, the variance of y is

V ϕ(α) =
1

(1− βϕE − αρ)2
1

1− ρ2

An estimator of α is then given by α̂ that solves

V ϕ(α̂) = V σ(α) (15)

Again, this equation has two solutions in α̂, that are α and (βσ−1)
1+βσ α + 2

ρ(1+βσ) , one

under which the model is determinate and one under which it is not.

Imposing that the model is determinate under α̂ allows to select among the two

possible values of α̂. Recall that a feedback model with equivalent ϕE is determinate

if and only if σ > 1+α
2αβ . By the very definition of ϕE (equivalent ϕ), the model is in

that case determinate for α̂ = α, and not for α̂ = (βσ−1)
1+βσ α + 2

ρ(1+βσ) . In this case, α

is estimated without bias. But if parameters are in the region σ > 1+α
2αβ , then imposing

determinacy leads to the selection of the biased value α̂ = (βσ−1)
1+βσ α + 2

ρ(1+βσ) . What

happens is that the restriction for determinacy “forces” the econometrician to choose

the wrong value of α. Note that in this extreme case, this comes at no cost in terms

of likelihood.

The above result can be illustrated graphically. Assume α = .9, β = .2 and ρ = .9.

We consider two values for σ. In the first case, σ = −4.3 > −1+α
2αβ , so that the feedback

model with equivalent ϕE is determinate. In the second case, σ = −6.3 < −1+α
2αβ , so

that the feedback model with equivalent ϕE is indeterminate.

In the first case, σ > −1+α
2αβ . It corresponds to panel (a) in Figure 2. On this Figure,

the light gray line plots the variance of y denoted V σ(α) as a function of α. Only one

point on this line is relevant as α = .9. This point is the dark dot. It corresponds to

the observed variance of y. The dark line plots V ϕ(α̂). It represents the variance of y

under the assumption that the DGP is has a feedback rule and when the estimated α

is α̂. The black vertical line separate the plane into a white zone in which α̂ is such

that the model is determinate, and a grey zone in which it is indeterminate. The two

candidates for the estimation of α are the two values of α̂ for which V ϕ(α̂) = V σ(α).

They correspond to the two dots at the intersection of the horizontal dashed line whose

ordinate is V σ(α) and the variance if y when the model is a feedback rule one, which

is the dark line V ϕ(α̂). In this configuration of parameters, selecting the determinate

10



solution leads to the unbiased estimate α̂ = α (the star on the figure). Panel (b) of

Figure 2 corresponds to the case in which the unbiased estimate is not chosen because

it is in the indeterminacy zone, so that α is estimated at the star (in the determinacy

zone), which corresponds to α̂ = −0.75 instead of 0.9.

Figure 2: Determinacy Bias in the Estimation of α

(a) Unbiased estimate when σ > −1+α
2αβ

(b) Biased estimate when σ < −1+α
2αβ
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Notes: See main text for detailed explanation of this Figure.

Implications for Estimation, A Monte Carlo Illustration

Le us now assume that the econometrician observes y and i and is estimating all the

parameters of the model except for the variance of shocks which are assumed to be

known. In that case again, the estimation is constrained to determinate models. As we

cannot analytically derive the determinacy bias, we provide illustrative simulations.

Assume a state rule model model given by equations (5), (6) and (8). Let’s assume

α = .99, β = .2 and ρ = .9. We consider two values for σ. In the first case, σ = −4.3 >

−1+α
2αβ , the feedback rule model with equivalent ϕE is determinate. In the second case,

σ = −6.3 < −1+α
2αβ , the feedback rule model with equivalent ϕE is indeterminate. To

avoid stochastic singularity, we assume that there is a shock ν to the policy rule that

is is iid with unit variance.

For the two state models, we run 100,000 simulations of length 1,000, and estimate

by Maximum Likelihood a feedback rule model on each of those 100,000 samples.

Results from this Monte Carlo exercise are presented in Table 1. As we can see in this

table, there is no bias in estimating a feedback rule model when the equivalent feedback

rule model is determinate, but α is seriously biased when the equivalent feedback rule

model is indeterminate. Biasing α is the only way for a feedback rule model to fit the

data while ensuring determinacy. As shown on Figure 3, imposing a feedback rule in
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the estimation can seriously bias the impulse response to a s shock.

Table 1: Estimation of a feedback rule model when the DGP is a state rule model

When the equivalent feedback model is determinate
σ > −1+α

2αβ

α β ρ σ ϕE

DGP .99 .2 .9 -4.31 -3.38
Estimation .91 .18 .90 – -3.35

(.18) (.05) (.01) – (.02)

When the equivalent feedback model is not determinate
σ < −1+α

2αβ

α β ρ σ ϕE

DGP .99 .2 .9 -6.31 2.63
Estimation -.06 .24 .90 – 2.61

(.09) (.03) (.01) – (.01)

Notes: in this table we report the mean of the point estimates over the 100,000 simulations of length 1,000,
with the standard deviation of the point estimates over the 100,000 simulations between parenthesis.

Figure 3: DGP and estimated impulse responses to a s shock

Determinate equivalent feedback model Indeterminate equivalent feedback model
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Notes: on the left panel, the DGP is a state rule model with σ > − 1+α
2αβ , so that the equivalent feedback

rule model is determinate. On the right panel, the DGP is a state rule model with σ < − 1+α
2αβ , so that the

equivalent feedback rule model is indeterminate. The values of the parameters are given in Table 1. Estimated
IRF are computed with the mean value of the estimated coefficients over the 100,000 simulations of length
1,000.

1.2 Misspecification Bias

A second type of bias (misspecification bias) may occur if one wrongly puts restrictions

on the policy rule by assuming a feedback rule, whereas a state rule would never face
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such a bias. This bias is we believe well understood, and we illustrate it using an

abstract simple model.

Model

The model has dynamics and two shocks. The variable of interest y follows

yt = βit + s1t + γs2t, (16)

where (s1, s2) are two iid unit variance shocks. i is the policy variable that helps

controlling y. The policy maker can again choose two type of policy rules, a feedback

rule or a state rule. The feedback rule is

it = ϕyt + νt, (17)

and the state rule is

it = σ1s1t + σ2s2t + νt. (18)

νt is a iid shock with unit variance. Note that in this example, the state of the economy

is bi-dimensional. The state rule rule maps the two state variables into the instrument,

while the feedback rule maps a one-dimensional space into the instrument. It is no

surprise that if the DGP has a state rule, the feedback rule model will be generically

misspecified

In the case of the feedback rule model, plugging (17) into (16) gives the solution

yt =
1

1− βϕ
s1t +

γ

1− βϕ
s2t + βνt. (19)

In the case if the state rule model, plugging (18) into (16) gives the solution

yt = (1 + βσ1)s1t + (γ + βσ2)s2t + βνt (20)

Estimating γ

Assume that γ is the unknown deep parameters of interest, that β and the variances of

s1 and s2 are known to the econometrician and that y, i, s1 and s2 are observed. When

the true model is known, the econometrician can identify the model parameters (γ, ϕ)

or (γ, σ1, σ2) in the following way. The policy parameters ϕ or σ1 and σ2 are obtained

by estimating equations (17) or (18). Then, estimating the solution equations (19) or

(20) gives the multiplier µ2 =
∂x
∂s2

, that allows for the identification of γ.

How is the estimation affected by a misspecification of the policy rule? Let us

first assume that the DGP is the feedback rule model. If the econometrician wrongly

assumes that the policy is the state one, that will be inconsequential, as the state rule

nests the feedback one. Indeed, the econometrician will believe that the multiplier is

µ2 = γ + βϕ2
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She will then first estimate equation (18) to obtain σ̂1 and σ̂2, and those estimators

will be asymptotically equal to σ̂1 = ϕ(1 − βϕ)−1 and σ̂2 = γϕ(1 − βϕ)−1 (using the

solution of the true DGP (19)). In a second step, she will use the misspecified model

to back out γ from

µ̂2 = γ̂ + βσ̂2,

so that

γ̂ = µ̂2 − βσ̂2.

Because the DGP has a feedback rule, we know that µ̂2 = γ(1− βϕ). Given the value

of σ̂2, we obtain

γ̂ = γ(1− βϕ)− βγϕ(1− βϕ)−1 = γ.

As we said, because the misspecified state rule encompasses the feedback rule, the

estimation of γ is unbiased.

Let us now assume that the DGP is the state rule model, and that the econome-

trician wrongly believes that it is the feedback rule one. The econometrician will first

estimate the feedback rule (17), which amount to solve

min
ϕ
E
[
((ϕ− σ1)s1t + (ϕ− σ2)s2t)

2
]
,

and the solution to this estimation problem is

ϕ̂ =
1

2
(σ2 + σ2).

γ will then be identified, under the belief that the model has a feedback rule policy, by

solving

µ̂2 = γ̂(1− βϕ̂)−1

where µ̂2 = γ + βσ2 because the DGP is a state rule model. Asymptotically, the

estimator of γ will therefore be

γ̂ =

(
1− β

2
(σ1 + σ2)

)
γ + βσ2

(
1− β

2
(σ1 + σ2)

)
Misspecification will therefore create a bias in the estimation of γ, except in the non-

generic case in which σ1 =
(1−γ))
β(1+γ) and σ2 =

γ(1−γ))
β(1+γ) .

2 Small Scale New Keynesian Models

We have shown in the previous section that Taylor rules (and more generally feedback

rules) may create determinacy and misspecification biases. In this section, we show that

these biases do matter in practice when estimating a three-equation New Keynesian

model or various extension of that model.
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2.1 Three Equation Model with Taylor or State Rule

We start by estimating the following prototypical linearised New Keynesian model as

in Woodford (2003) and Gali (2015), where the first two equations are given by:

yt = αyEtyt+1 −
1

γ
(it − Etπt+1) + dt

πt = βEtπt+1 + κyt + µt

The first of these is the Euler equation, and the second is the New Keynesian Phillips

curve. We allow for “discounting” in the Euler equation3 (|αy| < 1) for a reason that

will be clear later in this section, but αy can be arbitrarily close to one. β is the

household’s subjective discount rate, γ is the coefficient of relative risk aversion and

κ is the slope of the Phillips curve. dt and µt are “demand” and “supply” shocks

respectively4, and both follow AR(1) processes of the form

dt = ρddt−1 + εdt ,

µt = ρµµt−1 + εµt ,

with respective standard deviation of innovations sd and sµ. The third equation of the

model is a monetary policy rule that sets the nominal interest rate. One possibility we

will explore is the standard Taylor rule:

it = ϕππt + ϕyyt + νt,

Note that this rule can be rewritten without loss of generality as a real interest rule:

it − Etπt+1 = Etπt+1 + ϕππt + ϕyyt + νt,

where νt is a monetary shock that follows an AR(1) process:

νt = ρννt−1 + ενt ,

with standard deviation of innovations sν . The alternative rule we will consider is a

state rule that maps the state of the economy into the real interest rate. Note that the

minimal model state consists here of the three shocks, as the model is purely forward

looking. The state rule is

it − Etπt+1 = σddt + σµµt + νt

3See McKay, Nakamura, and Steinsson [2016], Farhi and Werning [2019], Gabaix [2020] or Beaudry, Hou,
and Portier [2020] for microfoundations.

4The two shocks can be derived from shocks to the household discount factor and shocks to the elasticity
of substitution between varieties if preferences are Dixit and Stiglitz [1977]
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This rule is not meant to describe the actual implementation of monetary policy. As

discussed in the previous section, for any feedback policy restricted to give a determi-

nate equilibrium, there exist a state rule that replicates the same equilibrium alloca-

tions. The assumption of a discounted Euler equation |αy| < 1 makes the equilibrium

determinate with the real interest state rule for any parameters σd and σµ. Indeed,

with such a state policy (and this is the reason why we have chosen a stat rule for

the real interest rate), the model becomes recursive. Replacing in the Euler equation

it − Etπt+1 by its expression in the state rule gives

yt = αyEtyt+1 +

(
1− σd

γ

)
dt −

σµ
γ
µt −

1

γ
νt

which can be uniquely solved forward for any shocks persistence as long as |αy < 1|.
Then the solution for y can be plugged into the Phillips curve, that can also be uniquely

solved forward as |β| < 1.

As we said, the real interest state rule is an agnostic representation of monetary

policy, that does not impose any restrictions on how monetary policy is conducted5.

The way we are here thinking of monetary policy is as follows. The Euler equation and

Phillips curve describe an hyper surface {yt, πt}∞t=0. Given the shocks, the equilibrium

allocation is one point on that hyper surface. One way to describe monetary policy

is that it pins down that point, and an agnostic way of describing the selection of

that point for estimation is the real interest rate state rule we have introduced. But

an output state rule of the type yt = σddt + σµµt + νt, estimated together with the

Euler equation and the Phillips curve, would replicate the same allocations and equal

deep parameters estimates.6 We prefer to use the real interest rate state rule as the

interpretation of the rule parameters σd and σd is more natural.

This first example of a purely forward New Keynesian model fits exactly the first

abstract model presented in the previous section. In the Taylor rule, the nominal

interest rate reacts to two endogenous variables plus the monetary policy shock. As

there are exactly two other shocks, estimation with the Taylor rule will not be subject

to misspecification as compared to an estimation with the state rule, but may be

subject to indeterminacy bias. Note that the condition for determinacy in the Taylor

rule model is a form of the well-known Taylor principle:

Ω = ϕy

(
1− β

κ

)
+ ϕπ > 1 (21)

In order to compare to the “traditional” New Keynesian model without Euler discount-

ing, we will set αy = 0.999 such that there is quasi-no Euler discounting.

5This real interest rate rule is different from Holden’s [2022] “real rate rules” defined as it = rt + ϕπt.
This latter rule is a feedback rule shown to be “robust” in the sense that it avoids indeterminacy in many
environments.

6This is true in theory, and we have checked that it is also true in practice.
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2.2 Estimation

We estimate the model over the period 1959:I-2019:IV. The data series we use are the

output gap from the CBO, the inflation rate measured as the log difference of the CPI,

and finally the Federal Funds rate. The shadow Federal Funds rate from Wu and Xia

[2016] is used from 2009 onwards - the period when the zero lower bound served as a

binding constraint. We calibrate β = 0.99 and γ = 1 (log utility), both standard values,

and then proceed to estimate the remaining parameters with Bayesian methods. We

specify uniform priors for the state rule parameters, and standard prior distributions

for all other parameters. Table 2 displays estimated parameters under the two rules.7

Table 2: Estimation Results, Simple Three Equation Model with a Taylor Rule or a State
Rule

Taylor R. State R. Taylor R. State R.

κ .678 .006 ρd .962 .992
(.0626) (.0014) (.0121) (.0038)

ϕπ 1.769 - ρµ .994 .371
(.1741) - (.0031) (.0317)

ϕy -.014 - ρν .457 .924
(.0128) - (.0182) (.0104)

σd - .971 sd .092 .102
(.0145) (.0129) (.0104)

σµ - -.463 sµ .575 .324
- (.0657) (.0535) (.0235)

sν .811 .057
(.0878) (.0077)

Notes: Estimated model is the simple three-equation New Keynesian model with a Taylor rule. Posterior
standard deviations are reported between parenthesis. Sample is 1959Q1-2019Q4.

Monetary policy rules parameters show that the Taylor rule is mainly reacting to

inflation, while the state rule shows that the Fed increases the real interest rate in

response to demand shocks and decreases it in response to supply shocks.

The most notable difference in parameter estimates is κ, the slope of the Phillips

curve - 0.678 in the Taylor rule model at the posterior mean vs 0.006 in the state rule

model.8 Figure 4 compares the posterior distribution of κ in the two models. The

7In the appendix, Tables A.1 and A.2 present priors and full estimation results.
8A second difference is that supply shocks µt are estimated to be both much more persistent and to

exhibit more variance in the Taylor rule model. Variance decompositions show that the demand shock is
estimated to be the most important source of output fluctuations in the state rule model, while the supply
shock is the primary shock for business cycles in the Taylor rule model. Since the model is highly stylised,
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larger value in the Taylor rule model implies quite a steep estimated Phillips curve,

while we estimate a very flat one in the state rule, with almost all the mass on the

range between 0 and 0.015. Moreover, the estimate in the state rule model lies in the

range typically estimated when using single-equation estimation of the Phillips curve.

For example, Mavroeidis, Plagborg-Møller, and Stock [2014] conduct such estimates

over a very large number of different specifications, and find that the median estimate

across these is 0.004, which is very close to the posterior mean we estimate in the state

rule model. Our estimate exactly coincides with that in Hazell, Herreño, Nakamura,

and Steinsson [2022] for their baseline specification. The posterior mean in the Taylor

rule model is implausibly large compared to the range of single-equation estimates in

the literature. It is also in line with the estimated slope of Beaudry, Hou, and Portier

[2020] who consider a Phillips curve augmented with a cost channel.

Figure 4: Comparison of the Posterior Distributions of the Phillips Curve Slope κ

Taylor rule model State rule model

Notes: this Figure compares the estimator posterior distributions of the Phillips curve slope parameter
κ for a simple three-equation New Keynesian model, with a Taylor rule or a state rule. Sample is
1959Q1-2019Q4.

How can we explain such a difference between the two estimated Phillips curve

slopes? The only extra restriction that the Taylor rule specification puts on the data, as

compared to the state rule specification, is that Taylor rule parameters must guarantee

determinacy. On the contrary, determinacy is always granted with the state rule model.

These results suggest that we have here the determinacy bias, as defined in the previous

section. This is most clearly understood by doing the following exercice. We take the

with many frictions and shocks omitted, a variance decomposition should not be taken too literally.
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Table 3: Estimated and Implied Taylor Rule

Taylor Rule Implied Taylor Rule
ϕπ 1.77 -0.24
ϕy -0.01 0.68

Notes: Estimated model is the simple three-equation New Keynesian model with a state rule. Sample
is 1959Q1-2019Q4.

state rule estimates and backup the implied Taylor rule, in the sense of the previous

section. In words, the implied Taylor rule is the only candidate Taylor rule that, for the

deep parameters estimates we have obtained with the (unrestricted) state rule, would

produce the same equilibrium allocations.

Table 3 displays the implied Taylor rule at the posterior mean as well as the Taylor

rule we obtain when estimating the model under a Taylor rule. The implied Taylor rule

has a negative coefficient on inflation, which is a trivial violation of the Taylor principle.

and would produce indeterminacy in the model with the Taylor rule. Thus, when we

allow for a state rule that nests the Taylor rule, the data strongly favours parameter

combinations that produce indeterminacy in a standard New Keynesian model. This

suggests that the restriction of determinacy, which is implicitly imposed whenever the

standard model is estimated, is substantially distortionary and has material impact on

parameter estimates. This shows that for this simple forward looking model estimated

on US data, the determinacy bias is indeed present.

Finally, we compare how well each model fits the data. To ensure a valid compari-

son, it is necessary that the prior integrates to one for all compared models. For state

rule model, this is always satisfied but for the Taylor rule model this is not the case

due to implicit prior truncation as a result of the Blanchard-Khan conditions not being

satisfied. To alleviate this, when we perform model comparison we use a uniform prior

for ϕπ in the range between 1 and 3, meaning the Blanchard-Khan conditions are sat-

isfied at all parts of the prior mass and there is no truncation. Posterior estimates are

practically indistinguishable from the ones in Table A.1 and so we do not report them.

Let log (p (Z1:T | Mj)) denote the log marginal likelihood of model j for data vector

Z1:T . For the Taylor rule model, we obtain log (p (Z1:T | MTR)) = −489.1, whereas

for the state rule model, we obtain log (p (Z1:T | MTR)) = −459.3. Therefore the data

overwhelmingly prefers the state rule model. To ascertain the degree to which the state

rule model is preferred, we compute odds ratios and estimate a posterior density over

the pair of models. We use non-informative priors, i.e. p(MTR) = p(MRR) = 0.5.

Using these priors, we obtain a posterior probability on the state rule model of 1 and

the state rule model is favoured decisively.
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2.3 Pre- and Post-Volcker

Lubik and Schorfheide [2004] present evidence that prior to Paul Volcker becoming

chairman of the Federal Reserve, US monetary policy was inconsistent with determi-

nacy. Through the lens of a very similar stylised New Keynesian model which features

a Taylor rule, by deviating from typical estimation methods and allowing for indeter-

minacy they find that indeterminacy was indeed present prior to 1980. To a similar

end, we re-estimate theh model with a state rule in the pre- and post-Volcker periods.

The pre-Volcker period is defined as 1959Q1-1979Q2, while the post-Volcker period is

defined as 1982Q4-2019Q4, meaning that the Volcker disinflation period is excluded.

Table 4 presents the implied Taylor rules and value of the determinacy condition (if

monetary policy was specified as following the implied Taylor rule) for each period,

evaluated at the respective posterior mean.9

A key result is that the determinacy condition (21) is not satisfied in the pre-Volcker

period, but is satisfied in the post-Volcker period, aligning with the findings in Lubik

and Schorfheide [2004]. Ω > 1 is the condition for determinacy of the equilibrium under

a Taylor rule. At the posterior mean, we have Ω = 0.72 in the pre-Volcker period and

Ω = 1.38 in the post-Volcker period. Figure 5 plots the posterior distribution of the

determinacy condition in the two periods, clearly illustrating that in the pre-Volcker

period the majority of the posterior mass is in the Ω < 1 region, whereas in the post-

Volcker period the majority of the posterior mass is in the Ω > 1 region. We have

Pr(Ω ≤ 1) = 0.71 in the pre-Volcker period and Pr(Ω ≤ 1) = 0.13 in the post-Volcker

period, indicative of a shift to the determinacy region.

A second striking result comes with respect to the stability of the Phillips curve

over time. If one restimates10 the model over the two subsamples with a Taylor rule

model (ruling out by assumption indeterminacy), then there appears to be a significant

structural break between the two periods for the slope of the Phillips curve, as it

becomes much steeper in the Post-Volcker era (from κ = 0.220 pre-Volcker to κ = 0.745

post-Volcker with respective 95% interval [0.11 0.33] and [0.69 0.79]). In the state rule

model, however, the slope does not change between the two periods and remains flat

in both (κ = 0.006 pre-Volcker and κ = 0.005 post-Volcker). This again implies that

the restriction to the determinacy region in the estimation of the Taylor rule model

is influencing the estimate of structural parameters. This result aligns with Hazell,

Herreño, Nakamura, and Steinsson [2022], who find, using state-level data on inflation

and unemployment, that the Phillips curve has consistently been flat over time.

Furthermore, the state rule model provides a better fit to the data in both periods.

In the pre-Volcker period, we obtain log (p (Z1:TPre
| MTR)) = −181.5, whereas for the

9Tables A.3 and A.4 in the Appendix present the posterior estimates for both models in each period.
10See Tables A.5 and A.6 in the Appendix
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Table 4: Implied Taylor Rule and Determinacy Condition, Pre-Volcker and Post-Volcker

Pre-Volcker Post-Volcker

Taylor R. State R. Implied Taylor R. State R. Implied

ϕπ 1.79 0.24 2.19 -0.16
ϕy 0.06 0.29 0.01 0.77

Ω 0.72 1.38

Notes: The estimated model is the simple three-equation New Keynesian model with a Taylor rule or
state rule. The Taylor rule columns present the posterior mean estimates of the Taylor rule parameters,
while the state rule columns present the implied Taylor rule obtained from the model with all parameters
at the posterior mean. The state rule model is also used to obtain the posterior mean for Ω which is the
determinacy condition. The condition for determinacy is Ω > 1. This is performed for estimations from
the pre-Volcker and post-Volcker periods. Samples are 1959Q1-1979Q2 and 1982Q4-2019Q4 respectively.

state rule model, we obtain log (p (Z1:TPre
| MRR)) = −172.6. In the post-Volcker pe-

riod, we obtain log (p (Z1:TPost
| MTR)) = −217.9, whereas for the state rule model, we

obtain log (p (Z1:TPost
| MRR)) = −152.4. This results in a posterior model probability

extremely close to 1 in both cases for the state rule model.

There is clear evidence from the state rule model suggesting that monetary pol-

icy did change post-Volcker, becoming more hawkish, and this was how determinacy

was achieved. Specifically, the estimates suggest that the Federal reserve responded

much more aggressively to ’demand’ shocks, raising the real interest rate by almost

twice as much after Volcker than it did before. We also estimate that it lowered real

interest rates by a lesser degree in response to supply shocks post-Volcker, by around

half as much as previously. In the Taylor rule model, the inflation coefficient increases,

as is typically associated with more hawkish monetary policy post-Volcker. In the

pre-Volcker period, the coefficient is still estimated to be well above one however, in

contrast to Clarida, Gaĺı, and Gertler [2000], who present reduced form evidence that

the coefficient was below one before during this period, . This is also what Lubik and

Schorfheide [2004] find when they estimate a DSGE model and allow for indeterminacy.

The implied Taylor rule from the state rule model estimates actually suggest that the

coefficient on inflation fell between the two monetary regimes. As the prior passage

outlined, however, this is still consistent with a more hawkish shift in monetary pol-

icy. The two models draw differing conclusions on the changing role of discretionary

monetary policy (the monetary shock). The Taylor rule model estimates show that the

standard deviation of monetary shocks increased post-Volcker, whereas the state rule

model finds a small decrease. Both models agree that the volatility of demand shocks
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Figure 5: Posterior Distribution of the Determinacy Condition

Notes: The dotted black line represents the boundary between the indeterminacy and determinacy re-
gions. The condition for determinacy is Ω > 1. Estimated model is the simple three-equation New
Keynesian model with a state rule. Samples are 1959Q1-1979Q2 and 1982Q4-2019Q4.

decreased post-Volcker and that the volatility of supply shocks increased.

2.4 An Extended Three-Equation Model

The fully forward three equation New Keynesian model is clearly stylised, and so we

estimate an extended version of the model which includes habit persistence and a

hybrid Phillips curve

yt = αy ((1− α1)Etyt+1 + α1yt−1)−
1

γ
(it − Etπt+1) + dt,

πt = π1πt−1 + π2Etπt+1 + κyt + νt,

where:

α1 =
λ

1 + λ
,

π1 =
β

1 + βι
,

π2 =
ι

1 + βι
,

(22)

and with λ denoting the habits parameter in the utility function and ι denoting the

degree of price indexation to past inflation. This collapses to the standard three equa-

tion model when ι = λ = 0. Again, we assume quasi-no Euler discounting by setting

αy = .999. The model is closed by a standard Taylor rule:

it = ϕππt + ϕyyt + νt,
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or a state real interest rate rule:

it − Etπt+1 = σy−1yt−1 + σπ−1πt−1 + σddt + σµµt + νt

Table A.7 in the appendix presents prior and posterior distributions from the Taylor

rule model, while Table A.8 presents estimates from the state rule model. The two

key results we have obtained with the fully forward model remain present: i) the

estimate of the Phillips curve slope is much lower in the state rule model (0.004)

than in the Taylor rule model (0.682) ii) the data overwhelmingly prefers the state

rule model, with log (p (Z1:T | MNK+,TR)) = −483.5, and log (p (Z1:T | MNK+,RR)) =

−458.7 for a posterior model probability of 1 for the latter. Additionally, the state

rule model estimates a much larger value of λ, the habits parameter as well as ι, the

price indexation parameter. The implied Taylor rule at the posterior mean of the state

rule model yields ϕπ = −0.20 and ϕy = 0.65, which would create indeterminacy if

implemented in the model.

The Taylor rule we have used in the estimation maps a linear space of dimension two

(plus the monetary shock) to the instrument, while the state rule uses a linear space of

dimension four (plus the monetary shock). The bias could come from determinacy or

from misspecification (or from both). To sort this out, we reestimate the model with

an augmented Taylor rule that uses the same linear space than the state rule:

it = ϕππt + ϕyyt + ϕy−1yt−1 + ϕπ−1πt−1 + νt,

Estimation results are presented in Table A.9. Note that parameters estimates are

still very different from the ones obtained with the state rule. In particular, the slope

of the Phillips curve parameter κ posterior mean is large (0.483). As there is no

misspecification in that estimation, the bias has to be a determinacy bias. Indeed, if

we use the implied Taylor rule, as obtained from the estimation of the state rule model,

in a model with coefficient estimated with the augmented Taylor rule, we find that

Blanchard and Kahn’s [1980] condition is not satisfied and that we have indeterminacy.

2.5 A Heterogeneous-Agent New Keynesian Model

We further extend the model and now estimate the sticky wage Heterogeneous-Agent

New Keynesian (HANK) model of Broer, Hansen, Krusell, and Öberg [2020]. The

model features workers and capitalists, with a no-borrowing constraint and zero net

supply of bonds resulting in a degenerate wealth distribution in equilibrium. Wage

setting is subject to Rotemberg’s [1982] adjustment costs, leading to a wage Phillips

curve in addition to the standard price Phillips curve. Once again we introduce demand,

supply and monetary shocks into the framework, and also add a wage setting shock

and quasi-no Euler discounting (αy = .999). We refer to Broer, Hansen, Krusell, and
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Öberg [2020] for the derivation of the set of equilibrium conditions in the linearised

model, which are given by

yt = αyEtyt+1 −
1

γ

(
it − Etπ

p
t+1

)
+ dt, (23)

πpt = βEtπ
p
t+1 + κwt + µt, (24)

πwt = βEtπ
w
t+1 − κw (wt − (yt + ψnt)) + µwt , (25)

wt = wt−1 + πwt − πpt , (26)

yt = wt + nt. (27)

Equation (23) is the Euler equation, (24) the Phillips curve, (25) the wage Philips

curve, (26) the wage accounting euqation and (27) is market clearing condition.

The model is closed by either the Taylor rule the authors have specified:

it = ϕππ
p
t + νt,

or the real interest rate state rule:

it − Etπt+1 = σwwt−1 + σddt + σµµt + σµwµwt + νt

We again estimate the two models over the period 1959:I - 2019:IV. The data we use

are the Fed Funds rate, CPI inflation rate, the growth rate of real compensation per

hour and the growth rate of real consumption. We calibrate β = 0.99, γ = 1, ψ = 1.

Table A.10 displays the prior and posterior distributions for the estimated parameters

in the model with a Taylor rule, while Table A.11 displays these for the model with a

state rule.

Once again, the most notable result is that the state rule model estimates a much

flatter Phillips curve than the Taylor rule model by a substantial degree. This is also

true for the slope of the wage Phillips curve, although the differential is smaller. The

state rule parameter estimates imply that the Federal reserve raises the real interest rate

in response to demand shocks, and lowers it in response to supply and wage shocks. A

model comparison reveals that the state rule model is again overwhelmingly preferred.

We obtain log (p (Z1:T | MHANK,TR)) = −796.8, whereas for the state rule model, we

obtain log (p (Z1:T | MHANK,RRR)) = −718.1. With uninformative priors, this gives a

posterior model probability of 1 for the state rule model. Generating simulated data

at with parameters at the posterior mean and estimating an implied Taylor rule in the

state rule model, we obtain ϕπ = −0.28. We verify that this parameter configuration

does indeed imply indeterminacy in the Taylor rule model, suggesting that this is a

significant issue for the estimates in this HANK model.
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3 The Smets andWouters’s [2007] Medium Scale

Model

We have seen in the previous section that for relatively small scale models, determinacy

bias is pervasive. We now consider a medium scale model that has many dimensions

of backwardness and that should be less prone to indeterminacy, but has larger state

space, which should makes misspecification bias more likely. The model is the canonical

medium scale New Keynesian model of Smets and Wouters [2007].

3.1 Estimation

The sample period is extended to be 1959Q1-2019Q4, and the same observable variables

are used as in Smets and Wouters [2007] with the only difference being the use of the

shadow Federal Funds rate of Wu and Xia [2016] from 2007Q1 onwards when the zero

lower bound was binding.

The model equations are the same than in Smets and Wouters [2007] except for

the introduction of a quasi-no discounted Euler equation. We first estimate the model

under an extended specification of the Taylor rule, as assumed by Smets and Wouters

[2007]:

rt = ρrt−1 + (1− ρ)(ϕππt + ϕy(yt − ypt )) + ϕ∆y((yt − ypt )− (yt−1 − ypt−1)) + εRt

where yft is the flex price level of output and yt−yft is the output gap. To maintain the

same notation as Smets and Wouters [2007], we now let rt denote the nominal interest

rate while it is investment. As previously, we also perform the model estimation under

the real interest rate state rule

rt − Etπt+1 = ψaε
a
t + ψbε

b
t + ψgε

g
t + ψisε

i
t + ψpinf ε

p
t + ψwsεwt + ψηwη

w
t−1

+ ψηpη
p
t−1 + ψypy

p
t−1 + ψyyt−1 + ψrrt−1 + ψkp,sk

p,s
t + ψksk

s
t

+ ψcpc
p
t−1 + ψipi

p
t−1 + ψcct−1 + ψiit−1 + ψππt−1 + ψwwt−1 + εRt .

Tables A.12 and A.13 present results from estimating the original Smets and Wouters’s

[2007] model over the extended sample, and tables A.14 and A.15 show results from

estimation under the state rule. There are so many parameters that discussing differ-

ences between estimates one by one is both fastidious and difficult to interpret. We

rather look at some moments of the two models. We first compute the slope of the

Phillips curve at the posterior mean, which is given by

κ = 1/
(
1 + βγ1−σcιp

)
[(1− βγ1−σcξp

)
(1− ξp) /ξp ((ϕp − 1) εp + 1)

]
The estimated value of κ is .003 with the Taylor rule and .019 with the state rule.

The difference between these two estimates is not significantly different from zero at
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conventional levels. To get a feel of how different are the two estimations, we plot on

Figure 6 the impulse responses of the output gap, inflation and the real interest rate

to the seven shocks in the model, when parametrs are at the respective posterior mean

of the two versions of the model. We see clearly that responses are very different.

Figure 6: Responses to Shocks in the Smets and Wouters’s [2007] Model with a Taylor Rule
or a State Rule

Notes: The light grey line corresponds to the Taylor rule version of the Smets and Wouters (2007)
Model and the dark grey line to the state rule version. In each case, all parameters are set to their
respective posterior mean values from the model’s estimation. Sample is 1959Q1-2019Q4.

Again, instead of commenting each and every response, let us focus on inflation,

which is a key variable for the users of such models, especially Central Banks. There

are sharp differences in the responses of inflation to virtually all the shocks, except

perhaps the wage markup shock. To better grasp how different is the model depending

on the specification of the policy rule, Table 5 reports the results of an unconditional

variance decomposition of inflation for the state rule and Taylor rule models. Table

A.16 in the appendix repeats this for the output gap.
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Table 5: Unconditional Variance Decomposition of Inflation

State rule Taylor Rule
TFP 16 2
Risk Premium 0 6
Government Spending 16 1
Investment Technology 21 0
Monetary Policy 13 2
Price Markup 14 47
Wage Markup 19 41

Notes: The estimated models are the Smets and Wouters’s [2007] model with either a Taylor rule or a
state rule version. Sample is 1959Q1-2019Q4. The sum of the shares may not add up to one because
of the rounding.

The model with a Taylor rule ascribes almost all of inflation’s unconditional variance

(88%) to the two markup shocks. This is a challenge for the practical use of the

model for policy advising, as these shocks are most likely catch-all shocks with little

observed empirical counterparts. The model with a state rule model gives a totally

different account of inflation fluctuations, as estimates show that six of the seven shocks

contribute to roughly one-sixth of the unconditional variance of inflation.

3.2 The Missepecification Bias

It is important to remind the reader that the state rule specification encompasses the

Taylor rule one. In other words, the Taylor rule is putting constraints on the way

monetary authorities respond to the state of the economy. If these constraints were

present in the Data Generating Process, then the two estimations would give the same

results. One could be doubtful that monetary authorities can observe and react freely

to the twenty state variables of the Smets and Wouters’s [2007] model. But we are not

imposing it with our state rule, as some coefficients could be estimated to zero if the

actual information set of the Fed was coarser.

The differences between the parameters estimates with the two rules (state and

Taylor) indicate that we have a bias. We first check if it is a determinacy bias by

computing the implied Taylor rule of the model estimated with a state rule. We

generate 1,000,000 periods of simulated data, without the monetary shock (which is

equivalent to estimating the Taylor rule instrumenting for all the models shocks but

the monetary policy one). Table 6 reports the estimates for the implied Taylor rule

in the state rule model alongside the Taylor rule parameter estimates for the model

which features this explicitly as the monetary policy rule.
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Table 6: Estimated State Rule and Implied Implied Taylor Rules

Implied Taylor R. Estimated Taylor R.
ϕπ 1.43 1.84
ϕy 0.00 0.11
ρ 0.84 0.87
ϕ∆y 0.17 0.25

Notes: The estimated model is the Smets and Wouters’s [2007] model with a state rule version. The
left column displays the estimates Taylor rule parameters obtained from simulated data from this model.
The right column displays the posterior mean of the Taylor rule parameters in the model which explicitly
features a Taylor rule. Sample is 1959Q1-2019Q4.

Interestingly, the R2 for the implied Taylor rule is 0.97, despite the estimated

coefficients differing substantially from the model where it is featured explicitly. As

such, if an econometrician was estimating a Taylor rule on the generated data, they

would conclude that it has a very good fit, even though in reality this is not the rule

that the monetary authorities are following. A common justification for the use of

Taylor rules in New Keynesian models is that they provide a good fit to the data, but

this exercise illustrates that this can occur even if the underlying rule takes a very

different form. We see that the implied Taylor rule will satisfy the Taylor principle, so

that no determinacy bias is at play here. The discrepancy between the (constrained)

Taylor rule estimation and the (unconstrained) state rule one is therfore explained by

a misspecification bias. In other words, Smets and Wouters’s [2007] specification of

the Taylor rule puts constraints on monetary policy that are rejected by the data, and

that bias the estimation of the model deep parameters.

4 Conclusion

Our analysis started from two observations. First, the specification of how monetary

policy is conducted matters for equilibrium properties of New Keynesian models. Sec-

ond, the applied literature that estimates New Keynesian models does not justify the

specific specification of the Taylor rule that is assumed, as if it should not really matter

as long as it broadly aligns with the Taylor narrative (“tighten when inflation is high,

loosen when output gap is high”). We show that this practice is actually harmful, as it

is subject to a determinacy and a misspecification bias. We use simple abstract mod-

els to theoretically uncover these biases, and then show that they indeed materialise

in small and medium size New Keynesian models, when estimated on US data. The

practical conclusion we draw from our work is the following advice to practitioners.
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Models estimated with an incarnation of the Taylor rule should be re-estimated with

the state rule we have proposed in this paper. If there is a significant difference in the

deep parameters estimates between the two estimations, then the state rule estimation

should be preferred.
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Appendix

A Estimation Results

Table A.1: Simple New Keynesian Model with a Taylor Rule Model

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup
κ gamm 0.100 0.0500 0.678 0.0626 0.5869 0.7849
ϕπ norm 1.500 0.2500 1.769 0.1741 1.4906 2.0523
ϕy norm 0.125 0.0250 -0.014 0.0128 -0.0340 0.0035
ρd beta 0.500 0.2000 0.962 0.0121 0.9417 0.9813
ρµ beta 0.500 0.2000 0.994 0.0031 0.9895 0.9989
ρν beta 0.500 0.2000 0.457 0.0182 0.4275 0.4873
sd invg 0.100 2.0000 0.092 0.0129 0.0707 0.1128
sµ invg 0.100 2.0000 0.575 0.0535 0.4850 0.6591
sν invg 0.100 2.0000 0.811 0.0878 0.6682 0.9469

Notes: Estimated model is the simple three-equation New Keynesian model with a Taylor rule. Sample
is 1959Q1-2019Q4.

Table A.2: Simple New Keynesian Model with a State Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup
κ gamm 0.100 0.0500 0.006 0.0014 0.0036 0.0080
σd unif 0.000 1.1547 0.971 0.0145 0.9493 0.9934
σµ unif 0.000 1.1547 -0.463 0.0657 -0.5691 -0.3562
ρd beta 0.500 0.2000 0.992 0.0038 0.9859 0.9977
ρµ beta 0.500 0.2000 0.371 0.0317 0.3187 0.4218
ρν beta 0.500 0.2000 0.924 0.0104 0.9069 0.9412
sd invg 0.100 2.0000 0.102 0.0134 0.0793 0.1232
sµ invg 0.100 2.0000 0.324 0.0235 0.2858 0.3630
sν invg 0.100 2.0000 0.057 0.0077 0.0446 0.0699

Notes: Estimated model is the simple three-equation New Keynesian model with a state rule. Sample
is 1959Q1-2019Q4.
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Table A.3: Simple New Keynesian Model with a State Rule, Pre-Volcker

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.006 0.0033 0.0012 0.0109
σd unif 0.000 1.1547 0.518 0.0898 0.3765 0.6663
σµ unif 0.000 1.1547 -0.863 0.2461 -1.2662 -0.4582
ρd beta 0.500 0.2000 0.739 0.0788 0.6141 0.8654
ρµ beta 0.500 0.2000 0.727 0.0431 0.6577 0.7980
ρν beta 0.500 0.2000 0.863 0.0842 0.7942 0.9519
sd invg 0.100 2.0000 0.372 0.0702 0.2587 0.4846
sµ invg 0.100 2.0000 0.112 0.0233 0.0745 0.1484
sν invg 0.100 2.0000 0.098 0.0280 0.0523 0.1385

Notes: Estimated model is the simple three-equation New Keynesian model with a state rule. Sample
is 1959Q1-1979Q2.

Table A.4: Simple New Keynesian Model with a State Rule, Post-Volcker

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.005 0.0015 0.0028 0.0077
σd unif 0.000 1.1547 0.969 0.0156 0.9452 0.9929
σµ unif 0.000 1.1547 -0.215 0.0604 -0.3126 -0.1146
ρd beta 0.500 0.2000 0.982 0.0064 0.9725 0.9928
ρµ beta 0.500 0.2000 0.179 0.0442 0.1070 0.2527
ρν beta 0.500 0.2000 0.938 0.0096 0.9223 0.9537
sd invg 0.100 2.0000 0.095 0.0098 0.0790 0.1110
sµ invg 0.100 2.0000 0.367 0.0290 0.3195 0.4139
sν invg 0.100 2.0000 0.035 0.0055 0.0255 0.0435

Notes: Estimated model is the simple three-equation New Keynesian model with a state rule. Sample
is 1982Q4-2019Q4.
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Table A.5: Simple New Keynesian Model with a Taylor Rule, Pre-Volcker

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.220 0.0661 0.1135 0.3291
ϕπ norm 1.500 0.2500 1.789 0.2871 1.2577 2.2433
ϕy norm 0.125 0.0250 0.061 0.0389 -0.0088 0.1174
ρd beta 0.500 0.2000 0.839 0.0921 0.7248 0.9648
ρµ beta 0.500 0.2000 0.989 0.0066 0.9799 0.9984
ρν beta 0.500 0.2000 0.634 0.0656 0.5192 0.7322
sd invg 0.100 2.0000 0.157 0.0903 0.0325 0.2338
sµ invg 0.100 2.0000 0.240 0.0775 0.1208 0.3761
sν invg 0.100 2.0000 0.612 0.1157 0.4098 0.8044

Notes: Estimated model is the simple three-equation New Keynesian model with a Taylor rule. Sample
is 1959Q1-1979Q2.

Table A.6: Simple New Keynesian Model with a Taylor Rule, Post-Volcker

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.745 0.0387 0.6898 0.7925
ϕπ norm 1.500 0.2500 2.190 0.1983 1.8639 2.5175
ϕy norm 0.125 0.0250 0.011 0.0213 -0.0242 0.0452
ρd beta 0.500 0.2000 0.976 0.0096 0.9607 0.9916
ρµ beta 0.500 0.2000 0.993 0.0036 0.9881 0.9987
ρν beta 0.500 0.2000 0.423 0.0127 0.4025 0.4437
sd invg 0.100 2.0000 0.071 0.0080 0.0573 0.0838
sµ invg 0.100 2.0000 0.480 0.0338 0.4248 0.5360
sν invg 0.100 2.0000 1.002 0.0996 0.8409 1.1661

Notes: Estimated model is the simple three-equation New Keynesian model with a Taylor rule. Sample
is 1982Q4-2019Q4.
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Table A.7: Extended New Keynesian Model Taylor Rule Model

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.682 0.0632 0.5961 0.7924
ϕπ norm 1.500 0.2500 1.594 0.1279 1.3842 1.7995
ϕy norm 0.125 0.0500 -0.064 0.0147 -0.0870 -0.0394
ι beta 0.500 0.2000 0.031 0.0173 0.0047 0.0566
λ beta 0.500 0.2000 0.104 0.0345 0.0477 0.1600
ρd beta 0.500 0.2000 0.965 0.0117 0.9464 0.9846
ρµ beta 0.500 0.2000 0.989 0.0057 0.9804 0.9977
ρν beta 0.500 0.2000 0.445 0.0192 0.4144 0.4775
sd invg 0.100 2.0000 0.077 0.0108 0.0587 0.0943
sµ invg 0.100 2.0000 0.616 0.0543 0.5269 0.7054
sν invg 0.100 2.0000 0.738 0.0629 0.6373 0.8409

Notes: Estimated model is the extended three-equation New Keynesian model with a Taylor rule. Sample
is 1959Q1-2019Q4.

Table A.8: Extended New Keynesian Model with State Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.004 0.0011 0.0020 0.0056
σd unif 0.000 1.1547 0.741 0.0906 0.6039 0.8833
σµ unif 0.000 1.1547 -0.389 0.0677 -0.4991 -0.2769
σy−1 unif 0.000 1.1547 0.059 0.0128 0.0384 0.0803
σπ−1 unif 0.000 1.1547 -0.033 0.0294 -0.0801 0.0160
ι beta 0.500 0.2000 0.202 0.0686 0.0908 0.3150
λ beta 0.500 0.2000 0.291 0.0741 0.1674 0.4130
ρd beta 0.500 0.2000 0.991 0.0044 0.9840 0.9976
ρµ beta 0.500 0.2000 0.148 0.0644 0.0445 0.2529
ρν beta 0.500 0.2000 0.929 0.0129 0.9075 0.9492
sd invg 0.100 2.0000 0.096 0.0150 0.0722 0.1206
sµ invg 0.100 2.0000 0.369 0.0255 0.3270 0.4104
sν invg 0.100 2.0000 0.090 0.0105 0.0720 0.1062

Notes: Estimated model is the extended three-equation New Keynesian model with a state rule. Sample
is 1959Q1-2019Q4.
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Table A.9: Extended New Keynesian Model with Extended Taylor Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.483 0.0708 0.3662 0.5959
ϕπ norm 1.500 0.2500 1.772 0.1387 1.5442 1.9984
ϕy norm 0.125 0.0500 0.233 0.0425 0.1644 0.3041
ϕπ−1 norm 0.000 0.2500 -0.086 0.0834 -0.2198 0.0509
ϕy−1 norm 0.000 0.2500 -0.342 0.0464 -0.4173 -0.2651
ι beta 0.500 0.2000 0.049 0.0268 0.0075 0.0888
λ beta 0.500 0.2000 0.287 0.0459 0.2105 0.3611
ρd beta 0.500 0.2000 0.968 0.0110 0.9496 0.9857
ρµ beta 0.500 0.2000 0.954 0.0181 0.9250 0.9835
ρν beta 0.500 0.2000 0.331 0.0366 0.2714 0.3908
sd invg 0.100 2.0000 0.080 0.0098 0.0638 0.0960
sµ invg 0.100 2.0000 0.514 0.0533 0.4250 0.5975
sν invg 0.100 2.0000 0.877 0.0734 0.7564 0.9947

Notes: Estimated model is the extended three-equation New Keynesian model with a longer Taylor rule.
Sample is 1959Q1-2019Q4.

Table A.10: Broer, Hansen, Krusell, and Öberg’s [2020] HANK Model with a Taylor Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.723 0.0494 0.6541 0.7925
κw gamm 0.100 0.0500 0.154 0.0437 0.0843 0.2201
ϕπ norm 1.500 0.2500 1.792 0.1397 1.5618 2.0162
ρd beta 0.500 0.2000 0.964 0.0119 0.9442 0.9832
ρµ beta 0.500 0.2000 0.988 0.0057 0.9792 0.9970
ρν beta 0.500 0.2000 0.445 0.0164 0.4194 0.4725
ρw beta 0.500 0.2000 0.991 0.0045 0.9848 0.9986
sd invg 0.100 2.0000 0.096 0.0099 0.0790 0.1114
sµ invg 0.100 2.0000 0.589 0.0425 0.5183 0.6575
sν invg 0.100 2.0000 0.823 0.0728 0.7043 0.9414
sw invg 0.100 2.0000 0.275 0.0783 0.1488 0.3924

Notes: Estimated model is the HANK model with a Taylor rule. Sample is 1959Q1-2019Q4.
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Table A.11: Broer, Hansen, Krusell, and Öberg’s [2020] HANK Model with a State Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamm 0.100 0.0500 0.003 0.0008 0.0015 0.0041
κw gamm 0.100 0.0500 0.035 0.0153 0.0151 0.0553
σd unif 0.000 1.1547 0.936 0.0250 0.8955 0.9766
σµ unif 0.000 1.1547 -0.438 0.0710 -0.5517 -0.3179
σµw unif 0.000 1.1547 -0.467 0.2640 -0.8523 -0.0785
σw unif 0.000 1.1547 0.057 0.0133 0.0355 0.0790
ρd beta 0.500 0.2000 0.968 0.0217 0.9393 0.9995
ρµ beta 0.500 0.2000 0.403 0.0364 0.3450 0.4639
ρν beta 0.500 0.2000 0.965 0.0085 0.9516 0.9794
ρw beta 0.500 0.2000 0.979 0.0083 0.9658 0.9921
sd invg 0.100 2.0000 0.203 0.0215 0.1641 0.2345
sµ invg 0.100 2.0000 0.314 0.0249 0.2723 0.3536
si invg 0.100 2.0000 0.051 0.0092 0.0361 0.0662
sw invg 0.100 2.0000 0.067 0.0265 0.0319 0.1015

Notes: Estimated model is the HANK model with a state rule. Sample is 1959Q1-2019Q4.
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Table A.12: Parameter Estimates from Smets and Wouters [2007] with a Taylor Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ρa beta 0.500 0.2000 0.985 0.0059 0.9762 0.9945
ρb beta 0.500 0.2000 0.884 0.0309 0.8345 0.9338
ρg beta 0.500 0.2000 0.975 0.0072 0.9635 0.9870
ρi beta 0.500 0.2000 0.813 0.0557 0.7218 0.9039
ρr beta 0.500 0.2000 0.134 0.0507 0.0483 0.2142
ρp beta 0.500 0.2000 0.919 0.0232 0.8837 0.9565
ρw beta 0.500 0.2000 0.973 0.0156 0.9537 0.9936
µp beta 0.500 0.2000 0.979 0.0103 0.9636 0.9955
µw beta 0.500 0.2000 0.952 0.0203 0.9257 0.9809
φ norm 4.000 1.5000 4.184 0.9269 2.6273 5.6402
σc norm 1.500 0.3750 1.428 0.1649 1.1586 1.6952
λ beta 0.700 0.1000 0.496 0.0485 0.4173 0.5769
ξw beta 0.500 0.1000 0.819 0.0355 0.7630 0.8778
σl norm 2.000 0.7500 1.765 0.4890 0.9710 2.5628
ξp beta 0.500 0.1000 0.862 0.0239 0.8223 0.9005
ιw beta 0.500 0.1500 0.500 0.1241 0.2956 0.7050
ιp beta 0.500 0.1500 0.296 0.0820 0.1603 0.4294
ψ beta 0.500 0.1500 0.692 0.0918 0.5411 0.8420
ϕp norm 1.250 0.1250 1.491 0.0737 1.3693 1.6112
rπ norm 1.500 0.2500 1.842 0.1628 1.5751 2.1103
ρ beta 0.750 0.1000 0.870 0.0180 0.8410 0.9000
ry norm 0.125 0.0500 0.113 0.0237 0.0744 0.1519
r∆y norm 0.125 0.0500 0.254 0.0241 0.2140 0.2933
π̄ gamm 0.625 0.1000 0.789 0.1042 0.6150 0.9571
100(β−1 − 1) gamm 0.250 0.1000 0.132 0.0501 0.0515 0.2093
l̄ norm 0.000 2.0000 1.433 1.1215 -0.4214 3.2585
γ̄ norm 0.400 0.1000 0.390 0.0255 0.3487 0.4308
ρga norm 0.500 0.2500 0.565 0.0632 0.4622 0.6696
α norm 0.300 0.0500 0.186 0.0163 0.1591 0.2128

Notes: Estimated model is the Smets and Wouters’s [2007] model with a Taylor rate. Sample is
1959Q1-2019Q4.
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Table A.13: Parameter Estimates from Smets and Wouters [2007] with a Taylor Rule (Stan-
dard Deviation of Structural Shocks), Sample:1959:I-2019:IV

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ηa invg 0.100 2.0000 0.491 0.0267 0.4471 0.5345
ηb invg 0.100 2.0000 0.087 0.0099 0.0713 0.1036
ηg invg 0.100 2.0000 0.465 0.0224 0.4287 0.5018
ηi invg 0.100 2.0000 0.345 0.0339 0.2890 0.3986
ηm invg 0.100 2.0000 0.217 0.0120 0.1977 0.2368
ηp invg 0.100 2.0000 0.194 0.0141 0.1710 0.2169
ηw invg 0.100 2.0000 0.334 0.0188 0.3026 0.3642

Notes: Estimated model is the Smets and Wouters’s [2007] model with a Taylor rate. Sample is
1959Q1-2019Q4.
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Table A.14: Parameter Estimates from Smets and Wouters [2007] with a State Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

ρa beta 0.500 0.2000 0.982 0.0069 0.9715 0.9934
ρb beta 0.500 0.2000 0.275 0.0805 0.1399 0.4036
ρg beta 0.500 0.2000 0.986 0.0046 0.9786 0.9936
ρi beta 0.500 0.2000 0.809 0.0355 0.7518 0.8677
ρr beta 0.500 0.2000 0.169 0.1065 0.0211 0.3115
ρp beta 0.500 0.2000 0.965 0.0157 0.9419 0.9894
ρw beta 0.500 0.2000 0.970 0.0125 0.9509 0.9893
µp beta 0.500 0.2000 0.807 0.0531 0.7269 0.8913
µw beta 0.500 0.2000 0.901 0.0312 0.8538 0.9504
φ norm 4.000 1.5000 5.856 0.9735 4.2712 7.4485
σc norm 1.500 0.3750 1.607 0.1651 1.3421 1.8723
λ beta 0.700 0.1000 0.710 0.0376 0.6490 0.7724
ξw beta 0.500 0.1000 0.713 0.0548 0.6229 0.8019
σl norm 2.000 0.7500 1.155 0.4633 0.4247 1.8835
ξp beta 0.500 0.1000 0.678 0.0376 0.6161 0.7400
ιw beta 0.500 0.1500 0.608 0.1273 0.3987 0.8172
ιp beta 0.500 0.1500 0.178 0.0620 0.0765 0.2754
ψ beta 0.500 0.1500 0.737 0.0787 0.6089 0.8668
ϕp norm 1.250 0.1250 1.613 0.0751 1.4905 1.7379
ϕa unif 0.000 2.3094 -0.023 0.0513 -0.1063 0.0625
ψb unif 0.000 2.3094 0.576 0.1208 0.3771 0.7702
ψg unif 0.000 2.3094 0.067 0.0394 0.0026 0.1323
ψis unif 0.000 2.3094 0.200 0.1057 0.0275 0.3745
ψpinf unif 0.000 2.3094 -0.426 0.2123 -0.7636 -0.0771
ψws unif 0.000 2.3094 -0.234 0.0656 -0.3406 -0.1262
ψηw unif 0.000 2.3094 -0.027 0.1422 -0.2624 0.2048
ψηp unif 0.000 2.3094 -3.055 0.7439 -4.0000 -1.9388
ψyp unif 0.000 2.3094 2.289 1.1832 0.5863 3.9167
ψy unif 0.000 2.3094 -2.408 1.2094 -4.0000 -0.7162
ψr unif 0.000 2.3094 2.840 0.6099 1.8967 3.8972
ψkp,s unif 0.000 2.3094 -0.923 0.3793 -1.5219 -0.2773
ψks unif 0.000 2.3094 0.034 0.1919 -0.2774 0.3478
ψcp unif 0.000 2.3094 1.986 1.1566 0.3706 3.9990
ψip unif 0.000 2.3094 -1.593 0.4862 -2.3668 -0.7811
ψc unif 0.000 2.3094 0.559 0.7923 -0.7227 1.7883
ψi unif 0.000 2.3094 1.094 0.3484 0.5330 1.6482
ψπ unif 0.000 2.3094 1.580 0.5500 0.6507 2.4438
ψw unif 0.000 2.3094 -0.396 0.1841 -0.6901 -0.0875

Notes: Estimated model is the Smets and Wouters’s [2007] model with a state rule. Sample is
1959Q1-2019Q4.
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Table A.15: Parameter Estimates from Smets and Wouters [2007] with State Rule

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

π̄ gamm 0.625 0.1000 0.609 0.0939 0.4532 0.7600
100(β−1 − 1) gamm 0.250 0.1000 0.160 0.0607 0.0634 0.2550
l̄ norm 0.000 2.0000 -1.316 1.4988 -3.7773 1.1507
γ̄ norm 0.400 0.1000 0.385 0.0198 0.3537 0.4168
ρga norm 0.500 0.2500 0.575 0.0667 0.4654 0.6845
α norm 0.300 0.0500 0.212 0.0158 0.1859 0.2379
ηa invg 0.100 2.0000 0.461 0.0242 0.4226 0.5018
ηb invg 0.100 2.0000 0.214 0.0207 0.1808 0.2486
ηg invg 0.100 2.0000 0.475 0.0226 0.4379 0.5119
ηi invg 0.100 2.0000 0.343 0.0284 0.2969 0.3892
ηm invg 0.100 2.0000 0.231 0.0169 0.2031 0.2583
ηp invg 0.100 2.0000 0.134 0.0132 0.1120 0.1552
ηw invg 0.100 2.0000 0.339 0.0208 0.3047 0.3730

Notes: Estimated model is the Smets and Wouters’s [2007] model with a state rule. Sample is
1959Q1-2019Q4.

Table A.16: Unconditional Variance Decomposition of Output

State Rule Taylor Rule
TFP 37.76 51.04
Risk Premium 0.50 16.04
Government Spending 2.34 2.43
Investment Technology 7.55 7.95
Monetary Policy 4.45 6.21
Price Markup 19.19 7.44
Wage Markup 29.83 8.70

Notes: The estimated models are the Smets and Wouters’s [2007] model with either a Taylor rule or a
state rule version. Sample is 1959Q1-2019Q4.
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