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1 Introduction

Newmacroeconomic information is the most important driver of the US bond market.
Indeed, themarket’s responses to the release of newdata like inflation, unemployment and
output receive considerable attention in economics. The releases have large immediate
impacts on the yields, trading volumes, and volatilities of Treasury bonds (Ederington
and Lee, 1993; Fleming and Remolona, 1999; Gürkaynak, Sack, and Swanson, 2005). A
common intuitive explanation for these large impacts is that bond investors assess the
new information about the economy and update what they expect the Federal Reserve
to do in the future. In short, macro news act on yields through the expectation channel
(e.g., Swanson andWilliams 2014). However, it is well known that the yields on long-term
bonds embed expectations of future short-term interest rates as well as of returns for
bearing risks, the term premium (e.g., Fama 1984; Campbell and Shiller 1991). Since the
empirical literature has concluded that this compensation for risk varies with the state of
the economy, the intuition that macro news act on yields only through the expectation
channel seems incomplete.

This paper is the first to empirically distinguish how newmacroeconomic information,
as measured in data releases, affects yields through the expectation and term premium
channels. To obtain the results, we first rely on high-frequency data to identify the
impact of economic releases on bond yields within each month. We then develop a
novel specification for bond yields dynamics, set at the monthly frequency, in which we
embed the impacts of the data releases, measured in high-frequency data. Mixing these
two ingredients delivers new results about the shares explained by macro news in the
variances of the expectation and term premium components of yields.

We find that macro news act on bond yields mostly through the responses of the term
premiums and less so through the expectation channel. This pattern holds over short
horizons following the releases and persists over longer horizons up to several quarters,
or years. We provide several robustness checks as well as model-free and consistent
evidence based on direct contemporaneous regressions of excess bond returns or changes
in survey forecasts. This new stylized fact emerges as a puzzlewhen looked at through the
lens of the intuitive expectation channel. If investors could easily map data releases onto
the expected responses of the Federal Reserve, then why is the new information about the
economy entering yields largely via the term premium?

We offer an answer that builds on the idea that investors have imperfect information
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about the Federal Reserve’s response. Intuitively, data releases provide imperfect infor-
mation about where the economy is heading as well as how the central bank interprets
and eventually acts on the new data. One case in point is the 2021 April jobs report,
which produced a disappointing increase in the non-farm payrolls. This led to intense
speculations on the day of the news around the meaning for future monetary policy. US
Treasury Secretary Janet Yellen even held a press briefing to address concerns that looser
monetary policy would be inappropriate.1 By contrast, data releases may contain more
precise information about the risks that investors bear from holding bonds and, therefore,
about the compensation for these risks embedded in the term premium. For instance,
Ludvigson and Ng (2009) document the close links between observable economic vari-
ables and future bond returns, consistent with theories implying that investors must be
compensated for bearing macroeconomic risks.

To check whether imperfect information quantitatively matches the evidence, we con-
sider a parsimonious no-arbitrage bond pricing model in which investors use the data
releases together with Bayes’ rule to learn about future central bank policy actions. In
the model, news are informative about the expectation component of yields and the com-
pensation for risks, which drives the term premium. We let the information in the data
releases have different degrees of precision about these two components of yields.

We calibrate the model parameters to the average level, volatility, correlation, per-
sistence and term premium of bond yields across the maturities. We also calibrate the
parameters to the share of the variance of yields attributed to data release. However, we
do not use the shares attributed to the term premium or the expectation components in
the calibration. The calibrated parameters imply that data releases are much less infor-
mative about the central bank’s future responses and more informative about the term
premium. The model closely matches the variance decomposition statistics that we de-
rived from the data, both at short and long horizons. In addition, the model implies that
themacroeconomic information in data releases enters the yieldsmostly through the term
premium.

The calibrated model identifies two sources of risk driving the compensation for risk
and the term premium: (i) the variations in the true state of the economy and (ii) the
updates in past filtering errors due to the imperfect information. If we eliminate the

1See details of Janet Yellen’ remark at the link for the Press Briefing. Similarly, CPI growth rates above
2 percent during 2021 triggered a debate between two sides arguing whether or not, or when, the Federal
Reserve would accommodate or repress the higher inflation.
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filtering errors, by assuming that macro news carry perfect information to investors, the
model predicts that the bonds’ Sharpe ratios decrease substantially and the term premium
is cut by half for every maturity. This exercise suggests that the term premium is a new
and distinct channel through which improvements in central bank’s communication can
lower bond yields and financing costs across the economy.

Our contribution gives researchers the ability to analyze how different sources of
economic information enter bond yields and propagate over time, either via the term
premium or expectation channel. Existingworks focus on the immediate impacts of news,
using events studies, and neglect the propagation over time or the distinction between
the term premium or expectation channels. Empirically, the results carry important
implications for dynamic stochastic equilibrium models that are used to understand the
interplay between economic shocks, monetary policy and the business cycles. Mainstream
models embed an exclusive role for expectations in transmitting structural shocks to long-
term interest rates while only a few cases have that the term premium also channels
economic shocks (Rudebusch and Swanson, 2012; Van Binsbergen et al., 2012). Finally,
our findings also contribute to the literature looking at whether better communication can
make policy more effective by encouraging earlier endogenous bond yields’ adjustments
to incoming economic data. Blinder et al. (2008) review this “revolution in thinking about
central bank’s communication” that occurred between an era when central banks were
opaque and until the present state with regular and detailed announcements. Our results
suggest that improving central bank communications may also reduce the term premium
and provide further gains through this new additional channel.2

Related Literature

We contribute to a growing literature showing that learning plays a central role in
the determination of bond prices. Cieslak (2018) presents evidence that bond market
participants do not have full information about the Federal Reserve’s monetary policy
reaction. Steffensen, Schmeling, and Schrimpf (2021) document persistent investors’ errors
in expectations of federal responses. Leombroni et al. (2021) find that ECB speeches can

2A related channel could be a desire to minimize financial markets’ volatility (Stein and Sunderam,
2018). Blinder et al. (2005) review the first FOMC public announcement in February 1994 and note it
was introduced by Chairman Greenspan based on the concern that the interest rate hike would disrupt
the market. Greesnpan (2001) noted how the growth in stock of outstanding financial instruments made
apparent the risk and the deadweight loss associated with opaque policy-making.
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have a powerful impact on the yield curve because market participants have imprecise
knowledge. We also find evidence of learning by bond investors, but the evidence also
shows that new macroeconomic information influences yield mostly through the term
premium.

One implication of our results is that investors lean more heavily on information out-
side of macro data releases to learn and form expectations of what the Federal Reserve
will do. For instance, investors may update their beliefs due to information about eco-
nomic fundamentals that is embedded in equity market valuations (see Cecchetti 2003
for a review). Cieslak, Morse, and Vissing-Jorgensen (2019) suggest systematic informal
communication of Federal Reserve officials to the media and financial sector as a channel
through which new information about monetary policy has reached the market.

Our results build on a long-standing literature linking high-frequency changes in
bond yields to the information in data releases. Gürkaynak, Sack, and Swanson (2005) use
the MMS news releases data set to document the responses of short- and long-maturity
interest rates to new economic data. We also use the MMS data set and high-frequency
data to identify the effect of data releases on yields. Gurkaynak, Kisacikoglu, and Wright
(2018) find that information beyond the headline number in the releases also drives a
large response.3 Like them, we use yield changes around the data releases to capture the
new information that the report contains, beyond the headline surprise. Using changes
in market prices directly as primitives offers the added benefits of controlling for the
endogenous variations in investors’ attention, which is correlatedwith the size or volatility
of the surprises as well as with the risk premium (Bansal and Shaliastovich, 2011; Andrei
and Hasler, 2015; Kacperczyk et al., 2016).

Our empirical approach also accounts for the announcement risk premium earned
during small periods of time around the release (Savor and Wilson, 2014; Ai and Bansal,
2018). Focusing on the announcement windows, Wachter and Zhu (2021) explain the an-
nouncement risk premium in model where data releases matter for stock prices because
they reveal imperfect information to investors concerning underlying shocks that have
already occurred. While we also emphasizes that data release contain imperfect informa-
tion, this growing literature analyzes the unconditional risk-returns relationship around
announcement window while we analyze the changes in the conditional expectation and

3Beechey and Wright (2009) disentangle the responses in terms of the nominal and real components of
interest rates. Faust et al. (2007) and Andersen et al. (2007) analyze the impact of US news on the exchange
rate and foreign bond yields.
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term premium components. However, like in Wachter and Zhu (2021) our model also
embeds the notion that investors learn about the past. This notion is also consistent with
low-frequency evidence put forward by Duffee (2021), who finds that asset prices can
react to new because investors observe some output growth innovations with a lag.

Altavilla, Giannone, and Modugno (2017) ask how much of the yield variance at the
monthly and quarterly frequencies can be attributed to data releases. Like them, we
map high-frequency yield responses onto monthly time series. However, we embed these
monthly series within a parsimonious dynamic term structure, which means that we
can split the yields’ responses around the releases between the changes in the expected
response of the central bank (the expectation channel) and the changes in expected bond
returns above short-term rates (the risk premium channel). Then, we can also analyse
the dynamic impacts on both components at horizons between a few months and up to
several years.

Our results are distinct from the rich literature analyzing the impact of a specific struc-
tural shock on bond yields, an approach pioneered by Rudebusch (1998) and Kuttner
(2001) in the case of monetary policy shocks. More recent papers also consider growth
shocks and risk premia shocks (e.g., Gurkaynak, Sack, and Swanson 2007; Cieslak and
Schrimpf 2018; Bauer and Swanson 2020; Kaminska, Mumtaz, and Sustek 2021). Other
recent papers disentangle standard monetary policy shocks and information-revelation
shocks (Campbell, Fisher, Justiniano, and Melosi, 2017; Nakamura and Steinsson, 2018;
Miranda-Agrippino and Ricco, 2018; Jarociński and Karadi, 2020). In line with our em-
phasis on the role of learning, Hamilton, Pruitt, and Borger (2011) suggest that FOMC
statements provide imperfect information about future policies and Bauer and Swanson
(2020) argue that learning by investors is important to understand the response of bond
prices to FOMC monetary policy announcements. However, we aggregate together how
yields respond to every data release and monetary policy announcement in a month—
hencewe are commingling the different structural shocks—andwe analyze their collective
role behind bond yields variations.

There is an extensive literature analyzing asset pricing models with imperfect infor-
mation.4 In the context of term structure models, Giacoletti, Laursen, and Singleton (2020)

4See Hansen and Sargent (2020) or the review by Pastor and Veronesi (2009). A substantial part of the
literature, such as e.g. Andrei, Hasler, and Jeanneret (2019) or Johannes, Lochstoer, andMou (2016), focuses
on learning about the consumption process in structural asset pricing models to help explain the behavior
of equity prices.
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show that learning about the parameters based on the yield data implies a Bayesian in-
vestorwith amore variable subjective risk premiumandproduces accurate yield forecasts.
We also find that imperfect information and learning substantially increase the level and
volatility of the bond risk premium. However, we analyze learning about the state of
economy based on imperfection in the data releases.5 Hillenbrand (2021) considers a
model similar to ours in which bond investors receive imperfect information from either
announcements or private signals. However, he focuses on what bond investors learn
about the long-horizon path of the interest rate based on the Federal Reserve FOMC an-
nouncements. Despite the different focus, he also argues that bond investors face relatively
large uncertainty around this path.

The dynamic model that we develop to estimate variance ratios is related to themacro-
finance dynamic term structure models (DTSM) studying the linkages between bond
prices and macroeconomic variables. Ang and Piazzesi (2003) report the share of yields
variance due to innovations in observed macro variables, where the innovations are mea-
sured based on a VAR model.6 Bauer (2015) uses the no-arbitrage restrictions to measure
the contemporaneous impacts of different types of macro news jointly across bond yields,
but does not explore their role in the long run. We showan explicitmapping onto a generic
macro-finance DTSM à la Ang and Piazzesi (2003) with unobserved macroeconomic fac-
tors. Intuitively, our approach corresponds to filtering the yields dynamics based on the
observed yields factors and the observed yields responses to the data releases. Hence,
this approach is related to DTSMs where current yields plus additional information from
their history are needed to capture their dynamics.7

2 Macro News and the Term Structure

2.1 Bond Yields Variance Ratios

We represent the cross-section of zero-coupon yields with their first three principal
components PC , calculated from yields with yearly residual maturities between one year
and ten years, which are available from the Gurkaynak, Sack, and Wright (2006) data set.

5Learning about state variables is a slightly different but analytically tractable approach also used in
other contexts (e.g., Andrade, Crump, Eusepi, and Moench 2016).

6Other leading examples of macro-finance DTSMs include Ang, Piazzesi, and Wei (2006), Diebold,
Rudebusch, and Aruoba (2006), Rudebusch and Wu (2008) and Moench (2012).

7That is, models in which yields are not “Markovian”, see Cochrane and Piazzesi 2005; Joslin, Le, and
Singleton 2013; Feunou and Fontaine 2018; Hanson, Lucca, and Wright 2021).
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In this representation, the yield with < periods left until maturity H(<)C is given by:

H
(<)
C = �< + �>< PC . (1)

Equation (1) tells us that the yield curvemoves becausePC moves. The coefficients �< and
�< can be estimated freely or in a restricted way to embed the no-arbitrage conditions.
We choose the latter but this does not influence our results.8 Note that Equation (1) has
no bearing on the dynamics of yields. In particular, the principal components are not
necessarily sufficient to forecast yields.

To distinguish the variations in PC that are caused bymacroeconomic data releases, we
introduce the following accounting identity:

ΔPC = ΔP=,C + ΔPH,C , (2)

whereΔP=,C captures the variations caused by the release of newdata andΔPH,C represents
the variations occurring at other times and due to other types of information.

Using Equations (1)-(2) and fixing a forecasting horizon ℎ ≥ 1, we define the share of
the variance of the yields H(<)

C+ℎ attributed to economic releases:

V(<)
ℎ
≡

�><V
(
P=,C+ℎ |ℱC

)
�<

�><V
(
P=,C+ℎ + PH,C+ℎ |ℱC

)
�<

, (3)

where ℎ is the forecast horizon, V
(
P=,C+ℎ |ℱC

)
is the variance of the news components

given the current information set ℱC = {ℱC , ℱC−1, . . .} that is relevant to forecast yields
(defined in the next section). Equation (3) is similar to an '2 ratio. The conditioning
in Equation (3) means that this ratio captures yield variations caused by economic data
released between C and C + ℎ and ignores predictable yield variations caused by economic
information released before C (e.g., due to a bond risk premium).

To estimate the variance ratios given byEquation (3), we proceed in three steps. Wefirst
specify the time-series dynamics of the principal components PC to produce forecasts and
obtain forecast error variances. Second, we identify the sub-components ΔP=,C and ΔPH,C

8Duffee (2018) estimates the coefficients �< and �< in Equation (1) with ordinary least squares. The
no-arbitrage condition implies restrictions on coefficients across maturities. See, e.g., Joslin, Singleton, and
Zhu (2011).
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using high-frequency data. Finally, we estimate the model, including the �< coefficients,
and report the variance ratios.

2.2 A Dynamic Macro-Finance Framework

The specification of the yields’ dynamics is grounded in a genericmacro-financemodel
à la Ang and Piazzesi (2003):(

PC+1

ℳC+1

)
=

(
ΦP ΦP ,ℳ
Φℳ ,P Φℳ

) (
PC
ℳC

)
+

(
$P $P ,ℳ
0 $ℳ

) (
DC+1

ΔP=,C+1

)
, (4)

where PC andℳC have the same dimension (for simplicity); DC+1 and ΔP=,C+1 are uncorre-
lated; E

(
DC+1 |ℱC

)
= 0 and E

(
ΔP=,C+1 |ℱC

)
= 0; and where the innovations have variances

V(DC) = ΩD and V (ΔP=,C) = Ω= .

The unobserved variableℳC represents all the information in the history of macroe-
conomic data that is relevant to forecast bond prices. The question of what relevant
variablesℳC should embed remains unsettled in the literature. For instance, Ang and
Piazzesi (2003) use one principal component from inflation-related variables and one prin-
cipal component from real activity variables, but several other choices have beenproposed,
including the use of lagged values of themacroeconomic variables or the use of a dynamic
factor model to summarize a large panel of macroeconomic variables (e.g., Ludvigson and
Ng 2009; Joslin, Priebsch, and Singleton 2014; Coroneo, Giannone, and Modugno 2016).

We take a different route to bypass the construction ofℳC . One reason for this choice
is that we are not interested in using the yield curve to forecast the macroeconomic state
variableℳC . Our approach uses high-frequency data to identify the impacts of major data
releases on the yield curve. We then aggregate the individual news impact to construct the
monthly component P=,C , which we then directly use as the innovation in Equation (4).
Then, based on the information set ℱC = {PC , ΔP=,C}, we can recover the conditional
dynamics of the yield factors PC ,

ℰC ≡ E
(
ΔPC+1 |ℱC

)
, (5)

by applying the Kalman filter to Equation (4), which leads to:

ℰC =  0 + ΘℰC−1 +  PPC +  =ΔP=,C +  H (ΔPC − ΔP=,C) , (6)
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where the innovations are given by:

ΔPC+1 − E
(
ΔPC+1 |ℱC

)
= ΔP=,C+1 + DC+1. (7)

The intuition in Equation (6) is that, by observing the history of the yield principal
componentPC andnews releases impactsΔP=,C , we canproduce the same forecast of future
yields as if we could also observe the macro variableℳC .9 Appendix A.1-A.2 provide the
derivation and include the explicit mapping between the parameters of Equations (4) and
(6); these two models have the same number of degrees of freedom, as well as conditions
for stationarity and invertibility of the model.

2.3 Measuring the Impact of Macro News

To estimate Equation (6), our next step is construct an observable counterpart to P=,C .
We do this by aggregating the impact of the major data releases within the month. Our
approach uses high-frequency financialmarket data in the spirit of Fleming andRemolona
(1999) and Kuttner (2001). We assume that the movements of yields in a small window
around the time of every data release are caused by the new information that investors
receive from this release.10

Weuse data about CME futures contracts for delivery of Treasury securities and denote
the futures yields by �(�)C ,� , where the superscript � ∈ {24, 60, 120} is the maturity of the
underlying bond and the index � ∈ [0, 1) measures how much time has passed in the
month. We write the high-frequency changes as follow:

Δ�
(�)
=,C+�9 := �(�)

C ,�9+dC − �
(�)
C ,�9−dC , (8)

where 9 ∈ {1, ..., JC} indexes the different types of data releases, �9 is the time of the
release and JC is the number of releases in month C. Appendix A.3 provides more details
about the high-frequency data.

To identify the relevant data releases, we follow the existing literature and use all
the scheduled US releases in the MMS data set (see e.g., Kilian and Vega (2011) and
Altavilla, Giannone, and Modugno 2017), along with data about the monetary policy

9That is, the filtrations generated by {PC , ΔP=,C} and {PC , ℳC} are equal.
10The timings of the releases are pre-determined and contain no information.
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announcements from the FOMC and Piazzesi (2005).11 This approach captures the most
important regular releases but, to be clear, there are other sources of macroeconomic
information. For instance, data releases outside of the US, official speeches, and other
events influence economic conditions and bond yields. We do not attempt to exhaust
all the possibilities. Nonetheless, this standard set of US data releases offers a long time
series of exogenous variations in yields, on which investors and the Federal Reserve put
great emphasis, and provides a laboratory to test howmacro informationmaps onto bond
yields.

The movements in yields attributed to all data releases during month C is given by the
sum of all the announcement impacts:

Δ�
(�)
=,C =

JC∑
9=1
Δ�
(�)
=,C+�9 . (9)

The aggregation scheme in Equation (9) is a natural choice because news releases that had
a larger impact on market prices are given larger weights. By using price changes directly,
this scheme captures the wide range of new information that is contained in data releases
beyond the headline surprise, as shown by Gurkaynak, Kisacikoglu, and Wright (2018).
For robustness, Section 4.4 considers several alternative aggregation schemes.

We then map the monthly variations measured from the futures markets onto the
principal components of yields. To motivate this mapping, Appendix A.3 shows that
the information spanned by the CME futures yields and the GSW zero-coupon yields is
virtually the same.12 Formally, we construct ΔP(8)=,C by running the following regression at
the monthly frequency:

ΔP(8)C = �>8 Δ�=,C − �8JC︸             ︷︷             ︸
ΔP̂=,C

+�(8)C , (10)

where the vector Δ�=,C stacks the monthly measures across the three maturities.13

11The number of data releases in our sample gradually increases over time. There were typically around
20 distinct monthly releases after the late 1990s.

12Contemporaneous regressions of monthly GSW zero-coupon yields on the three principal components
of the futures yields produce '2s of 0.985 or more. See Table A.2.

13Table A.1 in the Appendix reports that '2s based on Equation (10) range from 18 to 33 percent across
the components P8 ,C .
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The term �8JC is a time-varying intercept that cleans our measure of a potential drift
in futures prices that may be caused by compensation for the risk of holding the con-
tract around the release time. Savor and Wilson (2014) show that the average excess
returns earned around announcement days is significant and aligned with the theoreti-
cal predictions from the CAPM. Appendix A.3 provides a formal derivation for the risk
premium adjustment. In unreported results, we checked that our results are qualitatively
unchanged if we ignore this adjustment. Finally, the appendix shows that the components
ΔP̂=,C that we recover are white noise, consistent with the assumption in Equation (6),
while the raw principal component changes ΔPC are not white noise.

2.4 Model-Implied Variance Ratios

Wewill present estimates of variance ratios likeV(<)
ℎ

in Equation (3) separately for the
expectation and term premium components of bond yields:

H
(<)
C = E

[
1
#

<−1∑
8=0

H
(1)
C+8

��ℱC]︸                 ︷︷                 ︸
EH(<)C

+ TP(<)C , (11)

where EH(<)C is the expectation component and TP(<)C is the term premium. A common
intuition is that the release of new economic data acts on yields through changes in
the expectation components ΔEH(<)C . Indeed, financial markets experts’ commentaries
following the news almost exclusively discuss its impact in terms of what the central bank
response will be. Changes in nominal bond yields are commonly interpreted as changes
in future inflation and policy rates. Mainstream DSGE models also embed this exclusive
role that expectations have in transmitting structural shocks to bond prices.14

We check this intuition, using the variance ratios to measure the relative importance of
the expectation and term premium channels in the transmission of news to bond prices.
Because of the linearity assumptions embedded in the model, the variance ratios are
available in closed formand can be easily computed oncewe estimate the parameters of the
risk-neutral and historical dynamics. The expectation component EH(<)C in Equation (11)
has a closed-form expression because the short rate H(1)

C+8 is a linear combination of the

14Rudebusch and Swanson (2012) and Van Binsbergen et al. (2012) provide important exceptions where
the risk premium also channels macroeconomic shocks to the bond yields.

11



principal components PC+8 and the conditional expectation is also linear (Equation 6).15
In the case of the term premium component, because the risk-neutral dynamics belong to
the family of affine term structure models, the variance ratio can be computed in closed
form as well.

2.5 Results

Estimation of the parameters involves details that we relegate to the appendix. In
particular, Appendix A.4 details the estimation of the historical dynamics for PC given in
Equation (6), provides the likelihood in closed-formand reports the parameter estimates.16
For the yield coefficients �<s in Equation (1), we follow Joslin, Singleton, and Zhu (2011)
and assume that the bond factors PC follow Gaussian VAR(1) dynamics under the risk-
neutralmeasure. We then estimate the risk-neutral parameters byminimizing the squared
errors between the observed and fitted yields with 1, 3, 5, 7 and 10 years to maturities.

Figure 1: Share of the Yields Components’ Variances Attributed to Data Releases
Panel (a) reports the share of the variance of forecast errors for yields expectation components
EH(<)C that is attributed to data releases over different horizons. Panel (b) reports this share for the
term premium TP(<)C . Monthly data, 1995-2016.
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15The expectation component has the following form: EH(<)C = �̃< + �̃>< PC + �̃>< ℰC + �̃>< ΔP=,C +
�̃>< (ΔPC − ΔP=,C).

16Our baseline specification (labeled Cm-Ur ) leaves the parameters in Equation (6) unrestricted. Sec-
tion 4.3 shows that the results are essentially the same inmany popular specifications of the yields dynamics
that are nested in the baseline specification.
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Based on these estimates, Panel (a) of Figure 1 reports the variance ratios for the
expectation component EH across bond maturities and forecast horizons while Panel (b)
reports results for the term premium. Panel (a) shows that the variance ratio is around
10 percent for the expectation component for every horizon and maturity. Thus, investors
seem to update their expectation of future short-term interest rates at other times, outside
the windows when the data are released. Instead, Panel (b) shows that data releases are
an important driving force of yields via the term premium. The variance ratios attribute
around 30 to 40 percent of the term premium variations to data releases across horizons
and maturities, except for a hump with higher shares for some of the short horizons.

One plausible reason for the smaller contribution of news to the variance of the expec-
tation component is that investors have imperfect information about themapping between
the releases and the central bank decisions. This can happen in two different ways. One
way is that the data releases provide imperfect information about where the economy is
heading. The other reason may be that there is imperfect information about the central
bank’s response to the news. Indeed, Section 3 introduces this type of imperfect informa-
tion in a no-arbitrage bond pricingmodel tomatch the variance ratios. Hence, the variance
ratios that we document provide significant evidence and have important implications for
equilibrium models of bond prices with imperfect information.

One reasonwhy thevariance ratios are relativelyhigh for the termpremiumcomponent
could be that data releases are relatively more informative about the investors’ compen-
sation for risk. First, the data releases may be informative about, e.g., consumption risk,
long-run risks, habit risk and crash risk. Second, data releases may carry information
about the quantity of risk that attracts compensation. For instance, Berger, Dew-Becker,
and Giglio (2020) and Dew-Becker, Giglio, and Kelly (2021) show that the realized volatil-
ity that is associated with new information carries significant risk premium. Overall,
the evidence points to the importance of embedding significant roles for both imperfect
information and risk premium channels to understand how new information about the
economy determine bond prices.

We do not emphasize the absolute levels of the variance ratios. As we noted before,
sampling the pre-scheduled data releases could miss many events that contain important
macroeconomic information. For instance, speeches, new legislative initiatives, foreign
events, etc., also influence bond prices. However, focusing on the pre-scheduled releases
identifies the causal impacts of some of the most basic information about the economy.
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Observing that this information has a higher impact on the variance of the term premiums
is relevant, and possibly puzzling, even if this sample does not capture the population of
relevant macro news.

Next, we put together the expectation and term premium components and report
results for bond yields in Figure 2. Panel (a) reports the shares for the level, slope
and curvature factors separately. Overall, we attribute between 15 and 40 percent of the
principal components’ variances to the data releases. The variance ratios of the level factor
P1,C , which drives the larger share of yields’ variations, exhibit a declining pattern across
horizons, starting from close to 35 percent at the monthly horizon to less than 20 percent
at longer horizons. The share for the slope and curvature factors exhibit hump-shaped
patterns but that also declines with the horizon.

Figure 2: Share of the Yields’ Variances Attributed to Data Releases
Panel (a) reports the share of the variance of the forecast errors for the principal components PC
that can be attributed to macroeconomic data releases across different forecast horizons. Panel (b)
reports this share for yields. Monthly data, 1995-2016.
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The shapes in Panel (a) translate into similar patterns for yields in Panel (b) of Figure 2.
The variance ratio ranges between 25 and 35 percent across maturities at the monthly
horizon. The results at this short horizon are reassuring and consistent with existing
regression-based results in Altavilla, Giannone, and Modugno (2017). At the longest
horizons, around 15 to 20 percents of yields’ variances is attributed to data releases. This
declining pattern arises because the variance ratios in Panel (b) mix the variance ratios for
the expectation and the term premium components in Figure 1. The variance ratios are
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higher for the term premium component and drive the ratios for yields for short forecast
horizons. However, the expectation component is more persistent and its ratios drive the
results for yields in the case of long forecast horizons.

Overall, the results are surprising in one key aspect. Despite the common intuition
that the data releases influence yields mostly (if not exclusively) because investors update
how they think the Fed will respond to the new information, we find that most of the
yields’ variances around the news are due to changes in the term premium. This suggests
that investors cannot easily map data releases onto the expected responses of the Federal
Reserve and that this source of imperfect information is an important feature of the bond
market. This is the mechanism that we explore in the next section.

3 A Model with Imperfect Information

To explain the patterns in empirical variance ratios, we propose a mechanism where
macroeconomic releases provide imperfect information about future interest rates and
compensation for risks. For instance, the weekly employment report provides a signal
about the state of the labor market, but the implications for future monetary policy and
the market prices of risks could be unclear. We develop a theoretical no-arbitrage model
with imperfect information. Consistent with this mechanism, we find that periods with
high uncertainty around monetary policy are also characterized by a low share of yields
variances explained by data releases. We then show in a calibration that this mechanism
can explain the patterns in the variance ratios in Figures 1 and 2.

3.1 A Two-factor Model

The economic information relevant for the bond market is summarized by two state
variables P1,C and P2,C with dynamics given by:

P8 ,C = �8 + )8P8 ,C−1 + �8 ,C , (12)

where |)8 | < 1 and �8 ,C ∼ N
(
0, �2

�8

)
are independent white noise. We assume that bond

investors do not directly observe the state variables P8 ,C at date C but receive a noisy signal
I8 ,C given by:

I8 ,C = P8 ,C + �8 ,C , (13)
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where the noise �8 ,C ∼ N
(
0, �2

�8

)
are uncorrelated with each other and with �8 ,C . Investors

update their beliefs rationally usingBayesianupdating andwedenote their best evaluation
of the factors with PC |C ≡ E[PC |ℱC].

We interpret IC as the public but imperfect information contained in the economic data
being released throughoutmonth C. There are several intuitive reasons for this assumption:
(i) the aggregated data can mask heterogeneity across the economy, (ii) several of the data
releases are provisional numbers that will eventually be revised, (iii) the data releases
provide a snapshot of the current situation but offer incomplete information about what
investors should forecast and, most importantly, (iv) the investors still have to infer how
the central bank will interpret the data and respond to the new information (Stein and
Sunderam, 2018), given there uncertainty around the impact of policies the economy
(Brainard, 1967).

For simplicity, we assume that bond investors obtain complete information about P8 ,C
after onemonthhaspassed, at date C+1. Therefore, the investors’ information set at date C is
given by ℱC = {IC , PC−1, IC−1, PC−2, . . .} and Appendix A.5.1 describes the corresponding
filtering problem and derives the state-space representation of PC |C .

The assumption that information about economic conditions at date C is revealed after
one period is similar to the approximation made by Stein and Sunderam (2018) to solve a
dynamic version of their equilibrium model with monetary policy gradualism. Allowing
for the for values PC to be revealed more slowly would produce a richer information set
and the model may have more flexibility to fit the data, but at the costs of parsimony and
the loss of clarity and tractability.

3.2 Bond Yields

Thepricingkernel in this economy is givenby log(mC+1) = −AC |C+log(m1,C+1)+log(m2,C+1),
where AC |C is the short-term rate given the time-C information set of investors. Each
component m8 ,C+1 for 8 = 1, 2 is given by:

log(m8 ,C+1) =�8 ,C
[
I8 ,C+1 − E

(
I8 ,C+1

��ℱC)] − 1
2�

2
8 ,C

(
�2
�,8

[
1 + )2

8 (1 −K8)
]
+ �2

�,8

)
, (14)

where �8 ,C is the price of risk andK8 =
�2
�8

�2
�8
+�2

�8

is the Kalman gain measuring the precision

of the information about P8 ,C that is revealed by I8 ,C . The innovations I8 ,C+1 − E(I8 ,C+1
��ℱC)
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in Equation (14) mix two sources of risk: the unexpected content of the releases I8 ,C+1 and
the correction of the filtering errors P8 ,C −P8 ,C |C . We attribute the same price of risk to both
sources of information, for simplicity and because both concern the same state variables
PC+1. Finally, we have EC[mC+1 |ℱC] = 4−AC |C , as required.

To ease the interpretation, we give distinct roles to P1,C |C and P2,C |C in constructing bond
prices. First, we assume that the short-term interest rate is determined by P1,C |C alone:

AC |C = P1,C |C . (15)

Therefore, P1,C |C summarizes both the current level and the dynamics of the short rate.17
Next, P2,C |C captures investors’ time-varying preference toward risks that influence the
term premium in bond yields. For this purpose, and following Duffee (2002), the prices
of risk are linear in the state variables:(

�1,C

�2,C

)
=

(
�0,1

�0,2

)
+

(
Λ1 Λ1,2

0 Λ2

) (
P1,C |C
P2,C |C

)
. (16)

The exclusion restriction is included for parsimony and simplicity. Given the assumptions
introduced so far, Appendix A.5.2 shows that bond yields H(<)C satisfy the following no-
arbitrage relation:

H
(<)
C = �< + �1,< P1,C |C + �2,< P2,C |C , (17)

where �< , �1,< and �2,< are given by closed-form recursions.

3.3 Variance Ratios

The variance of P8 ,C+ℎ |C+ℎ for any horizon ℎ is given by:

V8 ,ℎ := V
(
P8 ,C+ℎ |C+ℎ | ℱC

)
= K 2

8 Σ8

(
1 − )2ℎ

8

1 − )2
8

)
︸              ︷︷              ︸

releases

+K8(1 −K8)Σ8

(
)2
8

1 − )2ℎ
8

1 − )2
8

)
︸                            ︷︷                            ︸

error correction

, (18)

17In a more general multivariate setting, one linear combination of a state vector would represent the cur-
rent rate and a distinct combinationwould represent its expected path (e.g., �>PC |C and �>)PC |C , respectively
in the common notation). Although more realistic, it does not produce additional insight for our purpose.
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where Σ8 = �2
�8 + �2

�8 (see Appendix A.5.3). These two terms represent distinct sources
of variability in P8 ,C |C from the investors’ point of view. The first term represents the
variability due to data releases. The second term represents the correction of the filtering
errors. This term decreases when the signal is more precise, and it disappears if the data
releases provide complete information about the state P8 ,C (i.e., if K = 1). We then get to
an important intermediate result. The share of P8 ,C |C variance attributed to economic data
releases is given by:

V8 := K8
K8 + (1 −K8))2

8

, (19)

which varies between 0 and 1 with the precision of the signal. This ratio is constant across
the forecasting horizons.

Therefore, the model predicts that the precision of the information contained in the
data releases determines the share of the variance explained by these news releases. As
a check of this mechanism, we compare the share of yields’ realized volatility attributed
to data releases each month with the monthly Baker-Bloom-Davis (BBD) monetary policy
uncertainty index (MPU) for the United States (Baker, Bloom, and Davis, 2016). In a first
step, we compute the sum of squared changes in the 2-year yield observed around data
releases within each month, which we normalize with the sum of all squared daily yield
changes during that month. We report the 12-month moving average of this realized
variance ratio together with the 12-month moving average of theMPU index in Figure 3.18

The results show a clear negative relationship between theMPU index and our realized
variance ratio. The contribution of the data releases to the realized volatility of yields
is high when the MPU index is low (the sample correlation is -0.52). Since the MPU
index measures how frequently uncertainty is mentioned in newspapers’ discussion of
monetary policy, a low value of the index also likely means that the main data releases
provide precise information about the economy. Therefore, the relationship shown in
Figure 3 is consistent with Equation (19), which predicts that the variance ratio varies
with the precision of the news.

Overall, this simple reduced-form exercise provides an initial validation of the mecha-
nism at the heart of our model. While Figure 3 also suggests that economic shocks driving

18We focus on the 2-year yield but the results are very similar if we use the 5- or 10-year yield. The
realized variance ratios are highly correlated: the first principal component explains 93 percent of the total
variations. The results are also similar whether we use the BBD MPPU index based on the broad Access
World News set of US newspapers or based on the 10 major newspapers.
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Figure 3: Realized Variance Ratio and Monetary Policy Uncertainty
Time-series of (i) the Baker-Bloom-Davis Monetary Policy Uncertainty index (MPU) derived from
the Access World News database and available from the Economic Policy Uncertainty web site;
and (ii) the share of the realized volatility in the 2-year yield within the month attributed to the
data releases. For both variables, we report a 12-month moving average. Monthly data 1995-2016.
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the bond yields have conditional variances that vary over time, we leave this for future
research. If the variance changes over time, the procedure in Section 2.4 belongs to the
family of quasi-maximum likelihood estimators and produces consistent estimates of the
parameters as well as of the unconditional variance ratios in Figure 1-2. In the following,
we check if the model can quantitatively match these unconditional moments across bond
maturities and across horizons.

19
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3.4 The Term Structure of Variance Ratios

The share of bond yields variance explained by macroeconomic releases is a weighted
average of the primitive ratiosV8 associated with the P1,C and P2,C as follows:

V(<)
ℎ

= $(<)
ℎ
V1 +

(
1 − $(<)

ℎ

)
V2 , (20)

where the weights $(<)
ℎ

depend on the horizon ℎ and the maturity <:

$(<)
ℎ

:=

(
1 +

�2
2,<

�2
1,<
× V1,ℎ
V2,ℎ

)−1

. (21)

Thus, the ratio of both factors’ variances V1,ℎ/V2,ℎ determines the pattern that these
weights $(<)

ℎ
exhibit across the horizons ℎ and the ratio of factors loadings �2

2,</�2
1,<

determines the pattern across the maturities <. These patterns are important because the
set of weights $(<)

ℎ
determines the shape of the variance ratios for yields in Figure 2. Since

the variance ratios are relatively lower for the expectation component and higher for the
termpremium component, themodel canmatch the evidence only if theseweights decline
with the horizon ℎ. Proposition 1 summarizes how themodel parameters determine these
patterns.

Proposition 1

(i) The weight $(<)
ℎ

decreases with the bond maturity <.

(ii) The weight $(<)
ℎ

increases with the forecast horizon ℎ only if )1 > )2, and vice versa.

Appendix A.5.4 provides the proof. The first result in Proposition 1 says that the role of
the expectation component in the variance of yields decreases with the maturity of the
bond. This happens for two reasons. First, the variability of the expectation component
decreases with the maturity of the bond because the short rate is stationary and forecasts
of the short rate converge to a constant. Second, the term premium varies more at longer
maturities because interest-rate risk is higher.

The second result in Proposition 1 says that the importance of the more persistent
component of bond yields increases with the horizons. Indeed, the variance of forecast
errors increases more rapidly with the horizons for a persistent variable. From the lens of
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our model, the case where )1 > )2 means that the expectation component of bond yields
is more persistent than the term premium, which is an assumption that is supported by
the data. This is also the relevant case to match the variance ratios observed in the data.
Using Equation (20), the variance ratio decreases at longer horizons if:

V(<)
ℎ+1 < V

(<)
ℎ
⇐⇒

(
$(<)
ℎ+1 − $

(<)
ℎ

)
(V1 −V2) < 0. (22)

Figure 1 shows that the variance ratioV1 of the expectation component is lower than the
ratio V2 for the term premium. Therefore, the variance ratios V(<)

ℎ
decreases with the

horizons only if the weight $(<)
ℎ

increases with the horizon, and this occurs only if the
expectation factor is more persistent )1 > )2 (see Proposition 1). We conclude that our
theoretical model can reproduce the pattern in our empirical findings based on mild and
realistic assumptions. We analyse the quantitative implications of the model below.

3.5 Calibration Results

To check the predictions of themodel for the variance ratios, we calibrate the parameter
to important statisticalmoments of bondyields. Since thevariance ratios areunconditional
moments, we calibrate the model to the following set of unconditional moments for the 1-
and 10-year yields. Specifically, we match the average, auto-correlation and volatility of
each yield. We alsomatch the correlation between these yields, the average term premium
and the variance ratios at the one-month horizon V(<)1 . Note that the one-month ratios
do not rely on the dynamic models that we estimated earlier. These ratio can be directly
obtained from the regression in Equation (10). In addition, these moments do not include
any direct information about how the expectation and the term premium components of
yields respond to data releases.

Figure 4 reports these statistics for the targeted maturities and shows that the model
matches the samemoments for several othermaturities (3-month, 3-year, 5-year and 7-year
maturities). The red dots indicate the moments used for the calibration, which the model
matches nearly exactly by design. The yellow boxes indicate the same moments but for
other maturities and shows that this simple 2-factor model provides a good fit.19

19It would also be unrealistic to use a two-factor model to capture conditional moments of yields. Indeed,
Section 2.2 shows that capturing the rich dynamic properties of yields and the patterns in the variance ratios
requires a more general approach than the common VAR(1) dynamics, even with three factors.
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Figure 4: Calibration of the Two-Factor Model with Imperfect Information
Calibration of the two-factor model in Section 3.1 to moments of bond yields. The model parameters are
calibrated to exactly match the moments indicated by the red dots. Panel (a): average yield curve; Panel
(b): volatility curve; Panel (c): cross-correlations; Panel (d): auto-correlations; Panel (e): 1-month variance
ratiosV(<)1 ; Panel (f): term premium.
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Table 1 reports the calibrated parameters values.20 While the calibration exercise pins
down all parameters simultaneously, different moments are naturally more informative
about different subsets of parameters. Thepersistence andvolatility parameters are largely
driven by the moments in Panels (a)-(d). We find that the expectation component is more
persistent and has more volatile innovations than the term premium. Second, the noise
parameters are largely driven by the fact that the 1-month variance ratio increases with the
maturity in Panel (e) noise. The parameters imply that the data releases are more infor-
mative about the variations in the term premium than that in the expectation component.
The standard deviation ��1 of noise in the expectation component is roughly ten times
larger than the standard deviation ��2 for the termpremium. Finally, the parameters of the

20Note that we report the parameters of the factor dynamics under the risk-neutral measure, but Ap-
pendix A.5.2 reports the one-to-one mapping with the parameters of the prices of risk that we defined in
Equation (16).
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risk-neutral dynamics are largely determined by the average term premium in Panel (f).

Table 1: Calibrated Parameter Values
Parameter values for two-factor model with imperfect information described in Section 3.1. The parameters
were calibrated to unconditional moments of bond yields shown in Figure 4.

� Φ �� �� K

P
P1,C |C 0.0120 0.9951 0 0.2396 0.5640 0.1529
P2,C |C -0.0053 0 0.9482 0.0433 0.0567 0.3684

Q
P1,C |C 0.0120 0.9870 -0.6321
P2,C |C -0.0053 0 0.9608

Equipped with values for all the model parameters, we report the variance ratios
implied by the model. Based on the discussion of Proposition 1, the combination of a
relatively noisier and more persistent expectation component should drive a decreasing
pattern across the horizons in the variance ratios V(<)

ℎ
. Figure 5 reports the results.

Panel (a) provides the model-implied variance ratios for yields and corresponds to the
results in Figure 2. The comparison immediately shows that the calibration reproduces the
decreasing pattern that we documented in the variance ratios, although no information
about the decline in the variance ratios has been used in the calibration. Hence, these
standard statistics of yields are enough to generate the desired patterns once we allow for
the learning mechanism.

Panels (b)-(c) of Figure 5 reports the model-implied variance ratios for the expectation
and term premium components, respectively. These ratios can be compared with the
results in Figure 1. In the calibration results, the variance ratios of the expectation compo-
nent are close to 10 percent and constant, while the variance ratios of the term premium
component are close to 40 percent and exhibit a declining pattern. Again, no information
about the variance ratios of the expectation or term premium components were used to
calibrate the model. The outcome followed frommatching standard moments of yields to
a model that incorporates learning.

3.6 Model Counterfactuals

The calibration shows that imperfect information can explain the patterns that we
observe in variance ratios. In this section, we use the model to assess the importance
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Figure 5: Two-Factor Model with Imperfect Information—Variance Ratios
Variance ratios implied from the two-factor model with imperfect information described in Section 3.1
and calibrated to moments of bond yields shown in Figure 4. The variance ratios measure the share of
variability attributed to the new information in data releases. Panel (a): ratios for bond yields; Panel (b):
ratios for the expectation component of yields; Panel (c): ratios for the term premium component.
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of imperfect information in the risks that bond investors face and the expected returns
that bonds offer. We consider the counterfactual case where data releases provide perfect
information about the expected path of future short rates (i.e., ��1 = 0). For completeness,
we also consider a perfect information economy, where the data releases convey perfect
information about both factors (i.e., ��1 = ��2 = 0 ). In essence, we keep unchanged
the variability in the true state of the economy, but we remove imperfect information
completely. This lowers the term premium by reducing or eliminating the risk due to the
correcting of past filtering errors.

Panel (a) of Figure 6 reports the average annualized expected bond excess returns—the
risk premium—in the baseline and counterfactual calibrations. In the baseline, the risk
premium ranges from zero at the shortest maturity to around 2 percent for the 5-year bond
and to slightly more than 2.5 percent for the 10-year bond. By contrast, the risk premium
in the counterfactual scenarios ranges between 1.25 and 1.75 percent for the same two
bonds. Hence, the risk premium is 30 to 40 percent lower in the counterfactual. Panel (b)
analyzes the volatility of excess returns. In the baseline calibration, the volatility of excess
returns reaches up to around 6 and 11 percent annually for the 5- and 10-year bond. These
values decrease to around 4 and 8 percent in the counterfactual. Panel (c) put average and
volatility together and reports the Sharpe ratios. We find that the declines in expected
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returns dominate the declines in returns volatilities so that the Sharpe ratios also fall. The
Sharpe ratios decrease from around 0.6 to 0.35 for short maturities, a 40 percent drop,
but this effect dampens with longer maturities. The lower term premium and Sharpe
ratio in turn translate into higher borrowing costs and can distort savings and investment
decisions. This exercise put forward a new channel through which improvement in the
central bank communication about future decisions can improve their effectiveness.

Figure 6: Counterfactual—Excess Returns
Model-implied unconditional statistics of yields in the baseline calibration (Baseline), in a counterfactual
case setting the standard deviation of noise to zero for the expectation component ��1 = 0 (Perfect signal
EH), or the case setting both standard deviation parameters to zero ��1 = ��2 = 0 (Perfect signals). Panel (a):
average expected bond excess returns; Panel (b): volatility of bond excess returns; Panel (c): Sharpe ratio.
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The lower excess returns and Sharpe ratios are due to the lower variability of the
pricing kernel (Equation 14). The reason is that reducing the noise and allowing for
perfect information about future short rates lowers the variance of the pricing kernel,
which implies a lower covariance of returns with the pricing kernel and, therefore, a lower
bond risk premium.

The impact on the yield curve is completely driven by this risk premium channel.
In particular, the counterfactual with perfect information leaves almost unchanged the
variance of the filtered state variables and that of bond yields. To see why that is the case,
Equation (18) can be simplified to:

V
(
P8 ,C+1|C+1

��ℱC) = �2
&,8

[
)2
8 +K8

(
1 − )2

8

)]
.

In general, if )8 << 1, the conditional variances of the factors increase if we increase
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the precision of the signal. This arises because the investors’ filtering problem produces
estimates that are less smooth and track the signal more closely. However, this effect
essentially disappears empirically because the yields factors are persistent, i.e., )8 ≈ 1.

4 Robustness of the Variance Decomposition

The stylized facts in Figure 2 rely on the baseline dynamic specification given in
Equation (6) as well as the monthly aggregation given in Equation (9). In this section,
we confirm that the main results are robust across a range of dynamic specifications and
across a different aggregation schemes. We also provide model-free evidence based on
survey forecasts data as well as direct regressions.

4.1 Survey-based Evidence

Survey forecasts support the results in Figure 1. To show this, we use quarterly survey
forecasts for the 3-month T-bill (%�(ℎ)C at horizon ℎ from the survey of professional fore-
casters as a proxy for the expectation component. We then estimate the contemporaneous
regressions of forecast changes on the quarterly news components from yields ΔP=,C :

Δ(%�
(ℎ)
C ,C+3 = ℎ + �>ℎ

3∑
8=1

ΔP=,C+8 + �ℎ(%�C + D(ℎ)C ,C+3, (23)

where we include a lag of the survey forecasts to account for a potential mean reversion in
survey forecasts, which may be due to systematic forecast errors that are correlated with
the level of interest rate.

Table 2 reports results for quarterly horizons from 1 to 4 quarters ahead as well as
annual horizons of 1 and 2 years. We use the same sample period than in our earlier
results. We include the '2s as well as a partial '2 measure that corresponds to the share
of macro news in the variance of the expectation component (to the extent that the SPF
survey is a good measure of expectations):

V
(
�̂>
ℎ

∑3
8=1 ΔP=,C+8

)
V

(
�̂>
ℎ

∑3
8=1 ΔP=,C+8 + �̂ℎ(%�C + D̂

(ℎ)
C ,C+3

) , (24)
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where �̂ℎ , �̂ℎ and D̂(ℎ)C ,C+3 are the OLS estimates.

Across all quarterly and annual horizons, the '2s are less than 10 percent and the
partial '2s range between 3 and 8 percent. There is some evidence of a role for the slope
componentΔP=,2,C—the coefficient estimates are close to 0.6 across the forecast horizons—
but the estimates are only marginally significant. There is also some evidence for the level
component, but only at the shortest horizons and the estimates are again only marginally
significant. We conclude that results using survey forecasts are consistent with our earlier
results. Revisions in survey forecasts of future short-term interest rates are weakly related
to yield changes measured around economic data releases during the same quarter.

Table 2: SPF T-Bill Rate Forecasts and Data Releases
Columns (1)-(6): regressions of quarterly changes in SPF survey forecasts of the average 3-month US T-bill at
horizons 1 to 4 quarters ahead and 1 to 2 years (see Equation 23). Columns (7)-(8): regressions survey-based
measures of the term premium in the 1-year and 2-year yields, respectively. The partial '2 measure reports
the share of the variance attributed to the news components P= . Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

(1) (2) (3) (4) (5) (6) (7) (8)
1Q 2Q 3Q 4Q 1Y 2Y TP(1Y) TP(2Y)

lag −0.029 −0.033 −0.034 −0.033 −0.033 −0.054∗∗ −0.483∗∗∗ −0.533∗∗∗
(0.021) (0.021) (0.021) (0.021) (0.023) (0.027) (0.090) (0.094)

ΔP=,1 1.486∗ 1.438∗ 1.254 0.955 0.851 0.683 2.635∗∗∗ 2.047∗∗
(0.813) (0.831) (0.801) (0.750) (0.900) (0.967) (0.833) (0.910)

ΔP=,2 0.683∗∗ 0.661∗∗ 0.588∗ 0.520∗ 0.561 0.667∗ 0.720∗∗ 0.192
(0.320) (0.327) (0.315) (0.295) (0.354) (0.381) (0.333) (0.358)

ΔP=,3 0.169 0.108 0.047 −0.019 0.105 −0.236 0.165 0.054
(0.191) (0.195) (0.188) (0.176) (0.212) (0.227) (0.192) (0.210)

Constant 0.047 0.057 0.059 0.056 0.034 0.096 0.149∗∗∗ 0.059
(0.071) (0.074) (0.074) (0.073) (0.078) (0.095) (0.054) (0.057)

Obs. 87 87 87 87 87 87 87 87
R2 0.076 0.076 0.074 0.071 0.056 0.105 0.302 0.351
Part. R2 0.054 0.052 0.05 0.05 0.033 0.083 0.142 0.144

We can also use survey forecasts to provide model-free evidence about the share of
the term premium variance due to data releases. To proxy for the term premium, we use
the difference between a given yield and the SPF survey forecast of the T-bill rate for an
horizon that matches the yieldmaturity. The last two columns of Table 2 report the results
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from regressions that parallel Equation (23) but with this term premium proxy on the
left-hand side. The results show that the '2s are three times higher. The partial '2s are
also twice as high, relative to the results for the expectation components. Consistent with
our earlier results, the yields’ responses around the data releases are more closely linked
to changes in the term premium than in the expectation component.21

4.2 Contemporaneous Excess Returns Regressions

Consider the excess returns AG(<)
C+ℎ from holding the bond with maturity < for a period

of ℎ months, which is given by:

AG
(<)
C ,C+ℎ = −

< − ℎ
ℎ

H
(<−ℎ)
C+ℎ + <

ℎ
H
(<)
C − H

(ℎ)
C . (25)

Then, using Equations (1)-(2) we arrive at the following decomposition:

AG
(<)
C ,C+ℎ = ℎ,< + �>ℎ,<PC + �

>
ℎ,<

ℎ∑
8=1

ΔP=,C+8 + �(<)C ,C+ℎ , (26)

where we use the common simplifying assumption that the current components PC span
the forecasts of the future yields H(<)

C+ℎ .22 This representation attributes realized excess
returns to three sources: (i) the predictable bond risk premium component �>

ℎ,<
PC , (ii) the

yield changes due to data releases �>
ℎ,<

∑ℎ
8=1 ΔP=,C+8 and (iii) a residual component �(<)

C ,C+ℎ
due to other information. We can estimate Equation (26) with ordinary least squares and
derive an estimator of the share of variance attributed to data releases, given by:

V
(
�̂>
ℎ,<

∑ℎ
8=1 ΔP=,C+8

)
V

(
�̂>
ℎ,<

∑ℎ
8=1 ΔP=,C+8 + �̂

(<)
C ,C+ℎ

) , (27)

where �̂ℎ,< and �̂(<)
C ,C+ℎ are the OLS estimates.

Figure 7 reports this partial '2 for maturities < = {12, 24, . . . , 120} and for monthly
holding periods from one month up to two years. At the one-month horizon, the variance

21The results based on survey forecast in Table 2 also suggest that the term premium exhibits reversion to
the mean but that the expectation components are more persistent and close to a random walk.

22This is a conservative choice. Expanding the information set used to forecast the risk premium compo-
nent will tend to lower the estimated share of variance attributed to the data releases.
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Figure 7: Bond Returns Variance Decomposition
Variance ratios computed using the estimator in Equation (27) based on the excess return regres-
sions in Equation (26). This variance ratio measures the share of the unexpected yield variability
over a given horizon that can be attributed to macroeconomic data releases during the same
horizon, after controlling for the predictable variations due to a risk premium.
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ratio ranges between 25 to 35 percent across the bond maturities. Altavilla, Giannone,
and Modugno (2017) provide comparable results for the weekly, monthly and quarterly
horizons.23 At longer horizons, we find that the share of the variance explained by data
releases gradually decreases. The overall pattern and level are consistent with our core
results.

The regression-based evidence in Figure 7 cannot be extended to longer holding peri-
ods. A dynamic model such as the one in Section 2 is needed for that. The main reason
is that, as the horizon lengthens, the left-hand side variable in the regression features
overlapping observations and the number of distinct observations is small, meaning that
reliable inference can be difficult to achieve (e.g., Bauer and Hamilton 2018).

23If anything, we find slightly higher ratios at horizons below one quarter, which may be due to the fact
that the regression specification in Equation (26) controls for the predictable component of yields.
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4.3 Other Model Specifications

The baseline specification in Equation (6) nests the simple Var(1) as well as more
complex models with up to 31 parameters, and potentially includes a moving-average
component. We can easily check the results’ robustness across a range of models.

Table 3 summarizes the eight cases that we consider. The first group of nested models
includes four specifications sharing the restriction that  = =  H . In these cases, the news
components P=,C drop from the conditional mean dynamics of yields, and we expect
that the pattern of decreasing variance ratios in Figure 2 will largely disappear. In the
univariate case, it is easy to check that the variance ratio is flat across the horizons. This
group of models includes the Var(1) and the Var(2) as well as the extension of these
two models with one moving-average component. The labels for these two extensions are
Cm(1) andCm(2,1) Ṫhematrix ofmoving-average coefficientsΘ in Equation (6) is restricted
to Θ = � · �, where � is a scalar, both for parsimony and to be consistent with the evidence
in Feunou and Fontaine (2018).

Table 3: Model Specifications
Taxonomy of model specifications. The number of parameters # in the conditional mean dynamics
does not account for the covariance matrix, which has the same number of parameters across
specifications.

 H  = Θ #
Var(1) 0 0 0 12
Var(2)  H  H 0 21
Cm(1) 0 0 � · � 13
Cm(2,1)  H  H � · � 22
Var-Rr :>H :>= 0 20
Var-Ur  H  = 0 30
Cm-Rr :>H :>= � · � 21
Cm-Ur  H  = � · � 31

A second group of models includes four specifications where  = ≠  H , which allows
data releases to have a distinct impact on the dynamics of yields. Again, the first two
cases Var-Rr and Var-Ur have no moving-average component, while the last two cases
Cm-Rr and Cm-Ur do. The Var-Rr and Cm-Rr models consider the parsimonious case
where only one line linear combination of the news is enough to update the dynamics for
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the yield factors (i.e.,  H = :>H and  = = :>= ). This parsimony is consistent with the
evidence in Bauer (2015) and Gurkaynak, Kisacikoglu, andWright (2018) that the impacts
of data releases on yields of different maturities have one dimension.

Table 4 provides diagnostics of these models based on statistical criteria.24 We report
the predictive '2s for each factor P8 ,C , the sum of the squared predictive residuals SSR
across factors, the log-likelihood as well as the AIC and AIC-c selection criteria. The AIC
criteria accounts for the number of parameters and the AIC-c criteria is a refinement that
includes an adjustment for the sample size. For every criteria (i.e., in each column), we
use the F and H superscript to indicate the best and worst performances.

Table 4: Model Selection Criteria
Summary statistics across model specifications. The '2 measures is 1 − +[DC (8)]

+[ΔPH,C (8)] for each term
structure factor PH,C(8), where ΔPH,C = ΔPC − ΔP=,C ; SSR is the sum of squared residuals; Lik is
the Gaussian log-likelihood; AIC and AICc are the raw and corrected Akaike information criteria,
respectively. The symbol F and H indicates the best and worst model, respectively.

'2
ΔP1,C

'2
ΔP2,C

'2
ΔP3,C

SSR Lik AIC AICc

Var(1) 2.27H 2.65 9.35H 67.10H 816.6H −1585.2 −1580.2
Var(2) 5.75 7.02 9.95 65.90 836.9 −1607.7 −1598.0
Cm(1) 2.50 2.37H 9.49 67.06 817.2 −1584.5H −1579.0H

Cm(2,1) 4.15 9.79 10.90 64.96 851.7 −1635.3 −1624.9F
Var-Rr 5.90 4.08 9.37 66.72 836.4 −1608.9 −1599.7
Var-Ur 8.29F 9.74 10.16 65.23 846.7 −1609.3 −1593.0
Cm-Rr 4.12 4.86 10.18 66.21 847.7 −1629.5 −1619.7
Cm-Ur 6.36 11.73F 12.03F 63.96F 860.9F −1635.7F −1618.5

The first message from Table 4 is that there is strong evidence against the restriction
 H =  = = 0. One of either the Var(1) or the Cm(1) specifications ranks last across every
criteria that we use. Based on the AIC, there is a steep difference of close to 50 points
between the our baseline model and the Var(1) or the Cm(1) model. Hence, the increase
in the time-series fit is quite unlikely to be due to the higher number of parameters in
the more complex models. Instead, the evidence suggests that the improvements are due

24Appendix A.4 reports parameter estimates for the eight specifications in Tables-A.3 -A.4 as well as the
RMSEs of pricing errors in Table A.5. The RMSEs are very low and essentially the same across models by
construction, because every specification uses the same yield factors PC in the pricing equation.
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to the larger information set that we use when we distinguish the updates around the
economic data releases.

The second message from Table 4 is that there is solid evidence against the restriction
 = =  H (even if they are both different fromzero). There is a single occurrence against this
conclusion across all of Table 4, where theAIC-c statisticalmodel criteria favors theCm(2,1)
model. Otherwise, the baselineCm-Ur specification produces the best performance across
model criteria. Based on the likelihood ratio test, the data favor the the Cm-Ur against
Cm(2,1) at the 5 percent level (the restriction  = =  H is rejected). This statistical difference
translates into a predictive '2 of 6 percent and 12 percent for the level and slope factor,
respectively. Again, the evidence supports the use of a richer information set.

Figure 8 reports the variance decompositions for every model that we consider. Our
main result is robust. Across all models that allow a distinct role for P=,C , the variance
ratiosV(<)

ℎ
is higher for the term premium than for the expectation component. Moving

from the VAR(1) model to the more flexible models has the main effect of lowering the
estimated share attributed to the data releases in the variance ratios of the expectation
component.

Figure 8: Share of the Variances Attributed to Data Releases–Robustness
Robustness results. The share of the yields’ conditional variance attributed to data releases across
model specifications summarized in Table 3. "CM" stands for conditional mean, and indicates the
presence of an MA(1) component. "RR" stands for reduced-rank, and indicates that  = and  H
have rank-one. Monthly data, 1995-2016.
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4.4 Other Aggregation Schemes

The baseline aggregation in Equation (9) uses market weights to aggregate the intra-
day impacts of data releases up to a monthly time series. The baseline method then uses
OLS to map this monthly series of futures price changes into a series for bond yields
changes (see Equation 10). We check the robustness of our results across four alternative
aggregation schemes.

The first alternative is labeled RV and uses information about the realized volatility
within the month to aggregate the data. To do this, we estimate the intra-month realized
variance-covariancematrix fromdaily changes in futures prices, andwe add all the distinct
elements from this matrix to the regression in Equation (10) (this adds the three volatility
terms and three correlation terms). In this way, we allow the aggregation to account for
a potential correlation between the responses of futures prices and the realized volatility
during the month (see Appendix A.6.1). The second alternative is labeled WLS and uses
weighted least square (WLS) to estimate Equation (10) to capture potential estimation effi-
ciency gains in the case where the baseline regression residuals exhibit heteroscedasticity
(see Appendix A.6.2).

The third alternative uses different weights across the types of data releases in Equa-
tion 9. To do this, we first estimate the weights for each news type in daily regressions
of the daily yields principal components on the changes in futures prices around news
releases. We then use these weights to aggregate the high-frequency measures in the
monthly regression (see Appendix A.6.3). Finally, the fourth alternative uses a similar
approach, but gives different weights across the types of data releases and depending on
the sign of the observed futures price changes (see Appendix A.6.4).

Figure 9 reports the variance decomposition of yields based on these alternative aggre-
gation methods. In all cases, we estimate the dynamics specification given by Equation 6.
For every method and virtually all maturities, the variance ratios V(<)

ℎ
starts at a value

around 30-40 but declines with the horizon. When we include RV as a control variable,
the share attributed to the data releases declines to around 20-25 at the longest horizons.
When using weighted least squares, or when using different weights across news types,
the share declines to around 15-20 percent. The largest differences relative to our baseline
results can be observed for the most flexible aggregation schemes, that is, when we esti-
mate different weights across the types of data releases and the sign of the market impact
(bottom-right panel of Figure 9). In this case, the share of the one-year yield’s variance
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Figure 9: Share of the Variances Attributed to Data Releases–Other Aggregation Schemes
Robustness of the share of the yields’ conditional variance attributed to data releases in the baseline Cm-Ur
specification across four aggregation schemes described in Section 4.4 and Appendix A.6.
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attributed to news releases is higher, around 35%, and flat across horizons. However, the
patterns remain as in the baseline results for bond with longer maturities. Overall, we
conclude that the patterns in the baseline results reported in Figure 2 are robust when we
used a different method to aggregate the impact of data releases to themonthly frequency.

5 Conclusion

We measure the long-run impact of macroeconomic data releases on bond yields.
Macroeconomic news releases are measured using the impact on yields in high-frequency
sampling of futures data around the announcements. Our main empirical result shows
the impact of these news releases act on bond yields over time; mostly through the term
premium. We show theoretically and in a calibration exercise that imperfect information
about the response of monetary policy to the new information in data releases can explain
our findings. In a counterfactual where the information becomes perfect, the level of the
bond risk premium is significantly lower. This significantly adds to the reasons whymore
work is needed to understand how investors process the arrival of new macroeconomic
information and form expectations about future monetary policy.
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A Appendix

A.1 Link with Canonical Macro-finance Models
In the conditional mean equation given by Equation (6), the yield factors PC ∈ R3 are driven by
two sets of uncorrelated shocks: the macro news shocks ΔP=,C and other shocks DC . Hence, we
can write:

ΔPC+1 = ℰC + ΔP=,C+1 + DC+1 . (A.1)

Let us assume that there exists a set of macroeconomic factors ℳC ∈ R3 that are relevant to
explain yields dynamics. We assume these factors are linear in the same present and past shocks
that impact the yield factors, such that:

ℳC+1 = ΦℳℳC +Φℳ ,PPC + $ℳΔP=,C+1 + $ℳ ,PDC+1 . (A.2)

In practice, the dimension ofℳC may be less or the same as the dimension of PC . The dynamics
of PC andℳC have the desired VAR(1) representation:(

PC+1

ℳC+1

)
=

(
ΦP �

Φℳ ,P Φℳ

) (
PC
ℳC

)
+

(
� �

$ℳ ,P $ℳ

) (
DC+1

ΔP=,C+1

)
, (A.3)

whereV(DC) = ΩD andV (ΔP=,C) = Ω= . Two identification assumptions are imposed in the above
formulation. First, the macro-news shocks ΔP=,C enter directly in the yields factors without
scaling or rotation. This is merely a consequence of the accounting relationship that the shocks
on PC are equal to DC + ΔP=,C . Second, the top-right of the auto-regressive matrix is equal to
identity to set the rotation and the scale ofℳC .
Our goal is to map the parameters of Equation (A.3) to the parameters in Equation (6). We can
directly see from the previous equation that the conditional mean of PC is linear in its past and
the past of the macro factors. Thus:

(ΦP − �)PC +ℳC = ℰC (A.4)

⇐⇒ (ΦP − �)PC +ℳC =  PPC +  =ΔP=,C +  H
(
ΔPC−1 − ΔP(=)C−1

)
+ ΘℰC−1 .

Then:
(ΦP − �)PC +ℳC =

(
 P +  H

)
PC +

(
 = −  H

)
ΔP=,C −  HPC−1 + ΘℰC−1 . (A.5)

Since this relationship holds for any date, we directly identify:

ΦP = � +  P +  H . (A.6)

We rewrite our equality as:

ℳC =
(
 = −  H

)
ΔP=,C −  HPC−1 + ΘℰC−1 . (A.7)
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Plugging Equation (A.4), we get:

ℳC =
(
 = −  H

)
ΔP=,C −  HPC−1 + Θ [(ΦP − �) PC−1 +ℳC−1]

=
(
 = −  H

)
ΔP=,C −  HPC−1 + Θ

[ (
 P +  H

)
PC−1 +ℳC−1

]
=

(
 = −  H

)
ΔP=,C +

[
Θ P + (Θ − �) H

]
PC−1 + ΘℳC−1 . (A.8)

This formulation provides us with an immediate mapping between the two models:(
PC+1

ℳC+1

)
=

(
� +  P +  H �

Θ P + (Θ − �) H Θ

) (
PC
ℳC

)
+

(
� �

0  = −  H

) (
DC+1

ΔP=,C+1

)
. (A.9)

A.2 Model properties
It is useful to re-write the joint dynamics for PC andΔPH,C+1 = ΔPC−ΔP=,C using the following

minimal representation:(
PC+1

ΔPH,C+1

)
=

(
 0

 0

)
+

(
� +  P  H + Θ
 P  H + Θ

) (
PC

ΔPH,C

)
(A.10)

+
(

DC+1

ΔP=,C+1

)
−

(
Θ − =
Θ − =

) (
DC

ΔP=,C

)
.

We can then easily check the mappings with existing DTSMs. First, the standard DTSM model
with VAR(1) dynamics (e.g., Joslin et al. 2011) obtains if  H =  = = 0 and if Θ = 0. Second,
relaxing  H =  = ≠ 0 leads to models with VAR(2) dynamics. Finally, relaxing Θ ≠ 0 but with
 H =  = = 0 leads to the family of CM-DTSMmodels in Feunou and Fontaine (2018). These three
yield-only special cases have in common the restriction  H =  = and, therefore, that there are no
distinct roles in the yield dynamics for the news and non-news components. Every month, the
shocks DC+1 and ΔP=,C+1 combine to produce PC+1 with coefficients of one for both. However, our
use of high-frequency data allows us to identify the differential effect of news and non-news on
yields.

There is another reason why this representation is useful: we can easily check conditions
for the stationarity and invertibility using standard results for multivariate linear processes (see
Lütkephol 2006). For completeness, we provide these conditions in Proposition 2.

Proposition 2 Stationarity and Invertibility
The process for

(
PC , ΔPH,C+1

)
is (i) stationary and (ii) invertible if and only if:

(8) max

����� sp

(
� +  P  H + Θ
 P  H + Θ

)����� < 1 (A.11)

(88) max

����� sp

(
Θ − =
Θ − =

) (
0 �

−� −�

)����� < 1. (A.12)

42



A.3 Construction of the Monthly News Component P=,C
A.3.1 CME Data We use high-frequency CME data to measure the immediate response of
futures rates to the release of new macroeconomic data. Specifically, we use transaction data for
US Treasury futures contracts between 1995 and 2016. Mizrach and Neely (2008) show that for
the larger part of our sample, the future contracts weremore informative than Treasury securities
around data releases. We choose a window of 45 minutes to capture changes in futures prices
around each release. The most liquid contracts are for delivery of Treasury securities with either
2 years, 5 years or 10 years to maturity. For each maturity, a futures contract is available with
quarterly delivery at the end of March, June, September or December. If an observation date falls
in the first two months of a given quarter, we use the contract for the same quarter. For instance,
for data releases observed in January and February, we use the contract maturing in March. This
is the most liquid contract at this date. However, for releases observed in the last month of any
quarter, we use the next quarterly contract, because trading activity migrates to this contract. For
instance, for releases observed inMarchwe use the contract maturing in June. This yields a panel
of futures contracts referencing three Treasury securities with different but constant maturities.
These are the most liquid Treasury futures contracts.

Next, we convert the change of futures prices around data releases in terms of bond yields.
The procedure is straightforward. Recall that the payoff of futures contracts is contingent on
the price of the Treasury bond that will be delivered, multiplied by a conversion factor. The
conversion factor is public and easy to compute. Essentially, the procedure means that the
quoted futures prices closely approximates the price we should observe in the Treasury market
for a bond with a six percent coupon (eight percent before September 29, 1999). This means we
can use the standard bond pricing formula to translate the futures prices into a bond yield. Any
small approximation error in the computation of the implied yield washes out whenwe compute
changes around small time intervals.

Figure A.1 illustrates aggregation of high-frequency impacts in Equation (9) for the case of 5-
year Treasury futures. Blue bars correspond to change in small windows around macro releases
within the month and red bars correspond to change between these windows. Panel (a) reports
the results for July 2004. On July 2nd, the 5-year yield declined by 18 bps after the Non-Farm
Payroll release (payrolls had increased by 112 thousands month-over-month, less than half the
median survey forecast). July 2004 is a typical month when data releases play the larger role:
the 5-year yield declined by 22 bps overall, due to the data releases. Panel (b) shows the results
for September 1998, in the aftermath of LTCM’s financial difficulties, which is an example where
data releases played only a small role. Overall, the 5-year yield fell by around 45 basis points
during the month but little of it fell in windows with data releases.25
A.3.2 The Baseline Monthly Regression Our approach allows a drift in futures returns to
capture its potential premium. For a pre-determined announcement time �, the conditional
mean of futures returns is given by:

E�−1

(
Δ�
(�)
C ,�, 9

)
= 0
(�)
C ,�−1, 9 . (A.13)

25The largest fall occurred on September 11, 1998, with four other large falls during the month, partly anticipating
the response of the FOMC to financial conditions at their scheduled meeting on 29 September (the target rate was
cut by 25 basis points), but also partly reflecting a flight to the safety of Treasury bonds (Longstaff 2004; Fontaine
and Garcia 2012).
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Figure A.1: Daily 5-Year Futures Changes
Changes in the 5-year Treasury futures-implied yields during days with data releases (blue bars) and
without data releases (red bars). Panel (a): changes during the month of July 2004; Panel (b): during
the month of September 1998. The components P=,C that we construct sum the effect of all these releases
across three maturities for every month in our sample.
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Throughout the paper, we assume that this premium is constant through time and across news
type, such that:

0
(�)
C ,�−1, 9 = 0

(�) . (A.14)

Consider the regression of the monthly changes in one of the principal components P(8)C on the
total changes in futures prices around data releases during the month C:

ΔP(8)C = �>8

�∑
9=1

∑
�∈[C ,C+1)

[
Δ�C ,�, 9 − EC−1

(
Δ�C ,�, 9

) ]
+ �(8)C , (A.15)

where �8 has length 3. There is no need for an intercept because the left- and right-hand sides
have mean zero. Using Equation (A.14), we obtain:

ΔP(8)C = �>8


�∑
9=1

∑
�∈[C ,C+1)

Δ�C ,�, 9 − �0 × JC
 + �(8)C , (A.16)

where 0 =
(
0(24), 0(60), 0(120)

)>
and JC denotes the number of news announced in month C. In

principle, it could be possible to identify the vector 0, but this is not of interest for our purposes.
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Hence, we write in a reduced-form way:

ΔP(8)C = �>8


�∑
9=1

∑
�∈[C ,C+1)

Δ�C ,�, 9

 − �8JC + �(8)C , (A.17)

which leads to Equation (10) in the text.
A.3.3 Additional Results Table A.1 reports regression results for Equation (10). The coefficient
estimates are intuitive. The first component P1,C shows only one significant coefficient estimate
at the 10-year maturity, consistent with this component capturing level effects. The second
component P2,C has two significant coefficient estimates with opposite signs at the 2- and 10-year
maturities, consistent with this component capturing slope effects across bonds. Finally, P3,C has
three significant coefficient estimates with a V shape across the 2-, 5- and 10-year maturities,
consistent with it capturing curvature effects.

Table A.1: Regression Results for Equation (10)

Results from estimating the linear regression of Equation (10) using OLS. The right-hand side variables
consist of the 2-year, 5-year, and 10-year futures-implied yields variations around macroeconomic an-
nouncements, as defined by Equation (9). JC counts the number of news per month.

Dependent variable:

ΔP1,C ΔP2,C ΔP3,C

Δ�
(2H)
=,C 0.195 0.949∗∗ 1.685∗∗∗

(0.155) (0.376) (0.638)

Δ�
(5H)
=,C −0.241 1.230∗ −7.038∗∗∗

(0.302) (0.734) (1.247)

Δ�
(10H)
=,C 0.806∗∗∗ −3.751∗∗∗ 5.383∗∗∗

(0.279) (0.678) (1.151)
JC −0.0005 0.0005 −0.00004

(0.0004) (0.001) (0.002)

Observations 263 263 263
R2 0.331 0.278 0.176
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A.3.4 Comparing Yields and Futures Data Our exercise relies on the ability of movements in
futures yields to span the variations observed in bond yields. To confirm this intuition, we run
regressions of zero-coupon yields on the three principal components of futures yields, using
monthly data. Figure A.2 shows that the '2 in regressions of bond yields on futures yields range
between 0.985 and 0.999.

Second, Figure A.3 shows that the first two principals components from Treasury yields and
futures (i.e., level and slope) are essentially identical in the time series, while the third principal
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Figure A.2: '2s in Regressions of Yields on Futures
'2 in regressions of GSW zero-coupon yield H(<)C on �C : three futures-implied yields for bonds with 2, 5
and 10 years.
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Figure A.3: Yield and Futures PCA–Time Series
Times-series of bond yield PCAs and futures yield PCA.
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A.3.5 Auto-correlations Figure A.4 shows the time-series of monthly changes in futures ΔPC
and its news component ΔP=,C . The patterns clearly suggest that ΔPC has a slowly-moving com-
ponent but that P=,C is white noise. Inspection of the autocorrelation and partial autocorrelation
functions confirms that each element of ΔPC has auto-regressive and moving-average dynamics.
However, standard tests based on the autocorrelation and partial autocorrelation functions do
not reject that each of the news components P=,C is white noise (unreported).
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Figure A.4: Monthly Changes ΔPC and ΔP=,C
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A.3.6 Principal component analysis of ΔPC Table A.2 shows that the first principal component
of ΔPC , ΔP=,C and ΔPH,C explains a very similar 95 percent of the total variance in each case.

Table A.2: Share of variance explained by three principal components.

ΔPC ΔP=,C ΔPH,C
PC1 94.36 95.05 93.33
PC2 4.94 4.32 5.60
PC3 0.71 0.64 1.07

Second, Figure A.5 shows that in every case, the loadings have the usual interpretation in
terms of level, slope and curvature despite being extracted from yields changes. We find that the
level component of ΔPC inherits its predictable dynamics (see Figure A.4). By contrast, the news
components ΔP=,C appear to be largely unpredictable.

Figure A.5: Principal Component Analysis
PCA weights extracted from ΔPC and ΔP=,C , respectively.
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The takeaways are that the monthly yield changes, the monthly news components and the
monthly non-news components each exhibits one large leading factor. To be clear, the almost
identical factor structure in Table A.2 does not imply that the monthly components contain the
same information. Instead, this table says the changes of yields at different maturities can be
summarized by one factor—whether around news or between news—and that this factor acts as
a level.

This is consistent with Bauer (2015), who finds that the effect of macroeconomic news on
yields of different maturities can be summarized by one factor. Gurkaynak et al. (2018) also find
a strong common response of interest rates to data releases. This is an important feature of the
data that we can use to maintain parsimony in term structure models: the information in ΔP=,C
and ΔPH,C can be summarized with one linear combination.
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A.4 Estimation
The conditional likelihood of PC+1 is available in closed-form based on Equation (6), which

can be estimated by updating ℰC recursively to recover the forecast errors:

ΔPC+1 − E
(
ΔPC+1 |ℱC

)
= ΔP=,C+1 + DC+1. (A.18)

We impose that risk-neutral and historical conditional covariances are the same, given by Σ =

ΩD + Ω= . The estimation of dynamic parameters proceeds by quasi-maximum likelihood. To
compute the likelihood, we use the plug-in estimators of the variances ΩD = V

(
DC+1 |ℱC

)
and

Ω= = V
(
ΔP=,C+1 |ℱC

)
andwe assume �>E

(
DC+1, ΔP=,C+1 |ℱC

)
= 0. Indeed, based on the regression

in Equation (10), we have that ΔP=,C and ΔPC − ΔP=,C are orthogonal. Using the law of total
variance, we have that E

[
�>E

(
DC+1, ΔP=,C+1 |ℱC

)]
+ �>E

[
E

(
DC+1 |ℱC

)
, E

(
ΔP=,C+1 |ℱC

)]
= 0. The

second term is null, since ΔP=,C is not predictable. If the conditional covariance is constant,
then we get the desired result. Finally, Appendix A.2 shows that stationarity and invertibility
properties can be verified based on simple parameter computations.

Table A.3: Parameter Estimates—Variance
This table reports the variance parameter estimates for the specifications described in Table 3. The Cm-Ur
model is our baseline.

Var(1) Var(2) Var-Ur Var-Rr Cm(1) Cm(2,1) Cm-Ur Cm-Rr√
ΩD(1, 1) 0.1061 0.1042 0.1028 0.1041 0.106 0.1051 0.1039 0.1051√
ΩD(2, 1) −0.1359 −0.1391 −0.1366 −0.1446 −0.136 −0.1399 −0.1366 −0.1432√
ΩD(3, 1) −0.2055 −0.2103 −0.2146 −0.2083 −0.2069 −0.2185 −0.2206 −0.2181√
ΩD(2, 2) 0.2184 0.2094 0.2066 0.2105 0.2188 0.2043 0.2033 0.2102√
ΩD(3, 2) −0.1169 −0.1205 −0.1211 −0.1309 −0.1164 −0.135 −0.1378 −0.1507√
ΩD(3, 3) 0.3489 0.3431 0.3397 0.3422 0.3479 0.3297 0.3237 0.3252√
Σ(1, 1) 0.13 0.1284 0.1273 0.1284 0.1299 0.1291 0.1282 0.1292√
Σ(2, 1) −0.1856 −0.1884 −0.1866 −0.1929 −0.1857 −0.189 −0.1865 −0.1917√
Σ(3, 1) −0.2352 −0.2389 −0.2421 −0.2372 −0.2364 −0.2456 −0.2472 −0.2453√
Σ(2, 2) 0.2405 0.232 0.2295 0.2326 0.2409 0.2274 0.2266 0.2325√
Σ(3, 2) −0.1364 −0.1402 −0.1412 −0.1493 −0.136 −0.1538 −0.1566 −0.1677√
Σ(3, 3) 0.3815 0.3763 0.3733 0.3754 0.3806 0.364 0.3586 0.3599
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Table A.4: Parameter Estimates—Conditional Mean
This table reports the parameter estimates for the specifications described in Table 3. |AR| and |MA|
provide the maximal modulus of eigenvalues of the autoregressive and moving average matrix. The
Cm-Ur model is our baseline.

Var(1) Var(2) Var-Ur Var-Rr Cm(1) Cm(2,1) Cm-Ur Cm-Rr
 0(1) −0.0113 −0.01 −0.0089 −0.0088 −0.0137 −0.0024 −0.0029 −0.0024
 0(2) 0.0052 0.0103 0.0095 0.009 0.0062 0.0051 0.0059 0.0027
 0(3) −0.0031 −0.0046 −0.0038 −0.0038 −0.0035 −3·10−4 6·10−4 0.0034
 I(1, 1) −0.0118 −0.0112 −0.0129 −0.0116 −0.0141 −0.0023 −0.0047 −0.003
 I(2, 1) 3·10−4 −0.0011 0.0045 7·10−4 3·10−4 −0.0022 0.0017 −7·10−4

 I(3, 1) 0.0603 0.0607 0.0612 0.0602 0.0727 0.0171 0.0256 0.0205
 I(1, 2) 0.0078 0.0066 0.0067 0.0067 0.0095 9·10−4 0.0017 0.0016
 I(2, 2) −0.0373 −0.0416 −0.041 −0.039 −0.0429 −0.0144 −0.0171 −0.0138
 I(3, 2) 0.019 0.0232 0.0246 0.0194 0.021 0.0029 0.0074 0.003
 I(1, 3) −0.008 1·10−4 0.0044 −5·10−4 −0.0107 0.001 0.0037 0.0012
 I(2, 3) −0.0204 −0.0176 −0.0275 −0.009 −0.02 −0.0062 −0.0136 −0.0081
 I(3, 3) −0.1201 −0.1177 −0.1145 −0.1223 −0.1406 −0.0189 −0.0291 −0.0226
 D(1, 1) 0 0.1554 0.251 0.2526 0 0.0456 0.0932 0.098
 D(2, 1) 0 0.4751 0.3885 0.3848 0 0.3294 0.3457 0.1385
 D(3, 1) 0 −0.1535 −0.0694 −0.0734 0 0.1646 0.2554 0.4854
 D(1, 2) 0 0.062 0.0657 0.0631 0 0.0342 0.0477 0.0256
 D(2, 2) 0 0.1344 0.0998 0.096 0 0.0184 −0.0071 0.0362
 D(3, 2) 0 −0.0875 −0.0529 −0.0183 0 0.0972 0.0905 0.1268
 D(1, 3) 0 −0.0142 −9·10−4 0.0123 0 −0.0189 −0.0085 −0.0116
 D(2, 3) 0 0.1242 0.0837 0.0188 0 0.0819 0.0607 −0.0164
 D(3, 3) 0 −0.0725 −0.0677 −0.0036 0 −0.1526 −0.1794 −0.0574
 =(1, 1) 0 0.1554 −0.1793 0.0587 0 0.0456 −0.1849 −0.0191
 =(2, 1) 0 0.4751 1.0692 0.0894 0 0.3294 0.8071 −0.027
 =(3, 1) 0 −0.1535 −0.6344 −0.0171 0 0.1646 −0.4359 −0.0947
 =(1, 2) 0 0.062 0.008 0.0508 0 0.0342 −0.0255 0.0094
 =(2, 2) 0 0.1344 0.3135 0.0775 0 0.0184 0.2176 0.0132
 =(3, 2) 0 −0.0875 −0.2939 −0.0148 0 0.0972 −0.0546 0.0464
 =(1, 3) 0 −0.0142 −0.0992 0.0058 0 −0.0189 −0.0894 −0.0108
 =(2, 3) 0 0.1242 0.3874 0.0088 0 0.0819 0.2864 −0.0152
 =(3, 3) 0 −0.0725 −0.1238 −0.0017 0 −0.1526 −0.0856 −0.0534
� 0 0 0 0 −0.1934 0.7447 0.6614 0.6815
|AR| 0.98 0.982 0.98 0.981 0.979 0.991 0.987 0.985
|MA| 0 0 0 0 0.19 0.75 0.66 0.68
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Table A.5: RMSE of Pricing Errors (in bps)
Pricing errors are produced after estimating the risk-neutral dynamics associated with every model. We
minimize the equally-weighted sum of squared residuals of each yield maturity to estimate  Q0 and  Q

associated with the risk-neutral dynamics PC =  Q0 +  QPC−1 +
√
Σ�QC , where �QC is a normalized Gaussian

white noise vector under the risk-neutral measure. Σ is inherited from themaximum likelihood estimation
of the physical measure.

Maturity 12m 36m 60m 84m 120m
Var(1) 1.97 1.82 1.45 1.62 2.33
Var(2) 1.97 1.82 1.45 1.62 2.33
Var-Ur 1.97 1.82 1.45 1.62 2.33
Var-Rr 1.97 1.82 1.45 1.62 2.33
Cm(1) 1.97 1.82 1.45 1.62 2.33
Cm(2,1) 1.97 1.82 1.45 1.62 2.33
Cm-Ur 1.97 1.82 1.45 1.62 2.33
Cm-Rr MA 1.97 1.82 1.45 1.62 2.33

A.5 A Two-Factor Bond Pricing Model with Learning
A.5.1 The Investor’s Kalman Filter Suppose PC is a scalar (to simplify the notation). Then, the
one-factor state-space model can be expressed as:

©«
PC
PC−1

IC

ª®®¬
��ℱC−1 ∼ N
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(A.19)
where $C−1|C−1 = V

[
PC−1 |�C−1

]
. The case with two factors is a simple vector extension where the

) andK are a diagonal matrix. The Kalman gain is easily obtained as:(
)$C−1|C−1

)2$C−1|C−1 + �2
�

)′ (
$C−1|C−1 )$C−1|C−1
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)(1 −K)
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(A.20)

whereK =
�2
�

�2
�+�2

�
. Thus, the update PC |C is given by:

PC |C = � + )PC−1|C−1 +
(
)(1 −K)
K

)′ (
PC−1 − PC−1|C−1

�C + �C + )
(
PC−1 − PC−1|C−1

) )
= � + )PC−1 +K (�C + �C) . (A.21)
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Using the Kalman filter recursions, the filtering error variance is then given by:

$C |C = )2$C−1|C−1 −
(
)(1 −K)
K

)′ (
)$C−1|C−1

)2$C−1|C−1 + �2
�

)
= (1 −K)�2

� . (A.22)

Therefore, the complete state-space model is given by:
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A.5.2 Bond Pricing The conditional mean of the filtered factors under the risk-neutral measure
is given by:

EQ

[(
P1,C+1|C+1

P2,C+1|C+1

) ��ℱC] = (
�1 + �0,1 × �2

�,1
[
1 + )2

1 (1 −K1)
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2 (1 −K2)
] )

+
(
)1 + �2

�,1
[
1 + )2

1 (1 −K1)
]
Λ1 �2
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)
= �Q +ΦQ

(
P1,C |C
P2,C |C

)
,

where we defined �Q and ΦQ implicitly. Therefore, if the short rate is given by AC =  + �P1,C |C
then the yields are linear combinations of both factors:

H
(<)
C = �< + �′<PC |C = �< + �1,<P1,C |C + �2,<P2,C |C , (A.24)
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where �< = −A</<, �< = −ℬ</<, and
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(A.25)

A.5.3 Variance Decomposition of a Single Factor Iterating forward the filtered factor dynam-
ics, we have:

PC+ℎ |C+ℎ =
1 − )ℎ
1 − ) � + )ℎPC +K (�C+ℎ + �C+ℎ) +

ℎ−1∑
9=1

) 9�C+ℎ−9 , (A.26)

where �C is not observable in real time for the investor. Therefore, we decompose the shocks in
its two orthogonal components:

�C+ℎ−9 =

�>E
(
�C+ℎ−9 , K(�C+ℎ−9 + �C+ℎ−9)

��ℱC)
V

(
K(�C+ℎ−9 + �C+ℎ−9)

��ℱC) K(�C+ℎ−9 + �C+ℎ−9) + �⊥C+ℎ−9

=
�2
�

�2
� + �2

�

(�C+ℎ−9 + �C+ℎ−9) + �⊥C+ℎ−9

= K(�C+ℎ−9 + �C+ℎ−9) + �⊥C+ℎ−9 . (A.27)

Denoting by Σ = �2
� + �2

�, we have that �2
� = KΣ, �2

� = (1 −K)Σ and:

V
(
�⊥C+ℎ−9 | ℱ C

)
= KΣ −K 2Σ = K(1 −K)Σ . (A.28)

This orthogonal component �⊥C is the part of the fundamental shock “missed” by the representa-
tive investor when performing bayesian updating. Thus, it is equivalent to the filtering error of
the investor. We can be convinced of this by looking at the formula for the filtering error itself:

PC − PC |C = (1 −K)�C −K�C . (A.29)

Its conditional variance is given by:

V
(
PC − PC |C | ℱC

)
= (1 −K)2KΣ +K 2(1 −K)Σ = K(1 −K)Σ . (A.30)

Notice that the conditioning in the variance is irrelevant since, by construction, the filtering errors
are orthogonal to the information set spanned by ℱC . We can now easily perform the variance
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decomposition of the factor:

V
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)
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)
. (A.31)

The first bracket is the component related to data releases, while the second part is related to
filtering errors. Looking at the ratio of the first component over the total variance, we obtain the
result:

V := K
K + (1 −K))2 . (A.32)

A.5.4 Proof of Proposition 1 The variance of the yield H(<)C is given by:
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Denoting byV8 the share of the variance of factor 8 attributable to macro-news, we can write the
variance decomposition of any yield as:
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where
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Recall that:

V
(
PC+ℎ |C+ℎ | ℱC

)
=

(
1 − )2ℎ

1 − )2

) [
K + (1 −K))2] KΣ .
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Thus, the ratio of the relative importance of factors is given by:
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The effect of ℎ The only source of variation with respect to ℎ is given by the first ratio, 1−)2ℎ
2

1−)2ℎ
1
.

Let Eℎ =
1−)2ℎ

2
1−)2ℎ

1
, where |)1 | < 1 and |)2 | < 1. We look for the variation of Eℎ with respect to ℎ. Let

us denote by 0 = )2
2 and 1 = )2

1. We compute:
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−
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This ratio has the same sign as the numerator. We then note that:

1 − 0ℎ+1 = (1 − 0ℎ)0 + 1 − 0 ,

and similarly for 1. Thus, the numerator transforms into:
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Let us denote by 5ℎ(0) = 0 + 1−0
1−0ℎ . Then Eℎ+1 − Eℎ has the same sign as the differential 5 ′

ℎ
(0)when

0 and 1 are close. This differential is given by:

5 ′ℎ(0) = 1 + ℎ0
ℎ−1(1 − 0) − (1 − 0ℎ)
(1 − 0ℎ)2

. (A.38)

Notice that since |0 | < 1, (1 − 0ℎ)2 < 1, we can write the following inequality:

5 ′ℎ(0) > 1 + ℎ0ℎ−1(1 − 0) − (1 − 0ℎ) = ℎ0ℎ−1(1 − 0) + 0ℎ > 0, (A.39)

Thus the function is increasing in 0 for any order ℎ. Eventually, we obtain that ΔEℎ+1 is positive,
so Eℎ is increasing whenever 0 > 1, that is when )2 > )1, and vice versa.

We have shown above that the ratio (1 − )2ℎ
2 )/(1 − )

2ℎ
1 ) increases (decreases) with maturity

whenever )2 > )1 ()2 < )1). Thus, given a fixed maturity <, the weight $(<)
ℎ

varies inversely
with (1 − )2ℎ

2 )/(1 − )
2ℎ
1 ), that is $

(<)
ℎ

grows with ℎ when the first factor is more persistent than
the second factor, i.e., )1 > )2.
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The effect of maturity < We now look at the effect of the maturity on the variance decomposi-
tion. According to Equation (A.35), the relationship of the variance decomposition with respect
to maturity is driven by (�2,</�1,<)2. We look for a closed-form expression of these loadings.

Provided our specification of themarket prices of risk (Equation 16), the risk-neutral dynamics
of PC |C are Gaussian and the autoregressive matrix is given by:

ΦQ =

(
)Q1 )Q1,2
0 )Q2

)
.

Since the model is linear and conditionally Gaussian, it is easy to show that the price of a bond
is given by:

exp
(
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)
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,
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Tedious algebraic manipulations show that:
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Remember that �< = − 1
<ℬ< , such that �2,<

�1,<
=
ℬ2,<
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. We therefore compute:
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Let us first focus on )Q
<

2 −)
Q<

1
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. It is useful to express it as:
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Using the result of Section A.5.4, we know that (1 − )Q
<

2 )/(1 − )
Q<

1 ) grows with < if )Q2 > )Q1 ,
and vice versa. Let us assume )Q2 > )Q1 . Then we have that:

)Q
<
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1 − )Q<1

decreases with < , 0=3
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1 −
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increases with < .

Thus,
(
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)2
increases with <, whatever the sign of !Q1,2 since it is squared. Let us now consider

)Q2 < )Q1 . Then we have that:
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Thus, (ℬ2,<)/(ℬ1,<)2 increases with < as well. This shows that whatever the relative risk-neutral
persistence of the processes, as long as )Q1,2 ≠ 0, the ratio (ℬ2,<)/(ℬ1,<)2 grows with the maturity
<. The limiting values are:(

ℬ2,1
ℬ1,1

)2
= 0 and

(
ℬ2,∞
ℬ1,∞

)2
=

)Q
2

1,2(
1 − )Q2

)2 . (A.44)

In the end, since (ℬ2,<)/(ℬ1,<)2 is always increasing, we have that $(<)
ℎ

decreases with the
maturity (see Equation A.35). Thus, since the variance decomposition of the second factor V2
is higher than that of the first one, the relative importance of macro news grows with maturity.
This is consistent with what we obtain empirically.

A.6 Aggregation Schemes
Put in general terms, our goal is to construct the monthly time series of ΔPC based on the high-
frequencymeasuresΔ�C ,�, 9 within eachmonth. All variations of ourmethod consist in successive
linear regressions.
A.6.1 Including RV in the regression Define the monthly 3 × 3 realized variance-covariance
matrixRVC computed fromdailydata. Thenwe include theunique elements of'+C in a regression
extending Equation (A.17) as follows:

ΔP(8)C = 8 + �8 · JC + �>8

�∑
9=1

∑
�∈[C ,C+1)

Δ�C ,�, 9

 + Γ>8 +42ℎ (RVC) + �(8)C , (A.45)

where +42ℎ is the half vectorization operator. We estimate the specification (A.45) by OLS and
consider the fitted values to be the news component.

57



A.6.2 Correcting for the efficiency loss with WLS Assume that the following relationship
holds:

ΔPC =  +Λ
∑

�∈[C ,C+1)
ΔP� , (A.46)

but that the high-frequency impact is measured with errors: ΔP� = Δ̂P� + ��. Then, we have
that:

ΔPC =  +Λ
∑

�∈[C ,C+1)
Δ̂P� +Λ

∑
�∈[C ,C+1)

��. (A.47)

Therefore, the residuals of the monthly regressions �C = Λ
∑

�∈[C ,C+1) �� inherit the potential
heteroskedasticity of ��. One way to control for this heteroskedasticity is to perform weighted
least squares in the second stage, assuming that �C = ΛΩ1/2

C �̃C . In practice, we measureΩC by the
following realized covariance estimate:

ΩC =
1

3C − 1

∑
�∈[C ,C+1)

�̂��̂�
>
, (A.48)

and Ω1/2
C is the Cholesky decomposition of ΩC . Notice that the problem of the covariance of the

residuals has not been entirely treated, since Λ is unknown before running the regression. To
address the this, we use the following estimation procedure. Denote by ΔP the vector of size 3)
stacking all time observations of ΔPC , define X as follows:

X =

1,
∑

�∈[C ,C+1)
Δ̂P�

 ⊗ �3, (A.49)

and write the second-stage regression as follows:

ΔP = Γ + �, (A.50)

where Γ = [>, +42(Λ)>]> and the variance-covariance matrix of the residuals is a rotation of:

Ω = 13806 (Ω1, . . . , Ω)) , (A.51)

where 13806 is the block-diagonal operator, building a large block-diagonal matrix out of the
(3 × 3) realized covariance matrices ΩC . Defining Ω = �Ω�

>
Ω

the block-diagonal Cholesky
decomposition of Ω, our estimator of Γ is given running the OLS regression:

�−1
Ω
ΔP = �−1

Ω
XΓ + �∗C

⇐⇒ ΔP∗ = X∗ Γ + �∗C . (A.52)
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Note that �∗C still has variance covariance given by ΛΛ> in principle. We measure its variance
covariance by assuming it is constant over time, and with the estimator:

Σ̂ =
1
)

)∑
C=1

�̂∗C �̂
∗
C

>
. (A.53)

We then perform a second stage regression in the same fashion, denoting by �Σ the Cholesky
decomposition of Σ̂:

�−1
Σ
ΔP∗ = �−1

Σ
X∗ Γ + �∗∗C

⇐⇒ ΔP∗∗ = X∗∗ Γ + �∗∗C . (A.54)

Last, we form the series of news components of themonthly PCs simply by computing XΓ̂, where
Γ̂ is the last estimated set of parameters from Equation (A.54).
A.6.3 Disaggregating news types Instead of directly transforming the futures data, we can
consider daily regressions as a first step, and the aggregation as a second step. Consider the
following regression of the daily principal components:

ΔP(8)C ,� =
�∑
9=1

�>8 , 9
[
Δ�C ,�, 9 − E�−1

(
Δ�C ,�, 9

) ]
+ �(8)C ,� . (A.55)

We assume that each news type has its own premium, which is invariant through time, such that:

0
(�)
C ,�, 9−1 = 0

(�)
9
. (A.56)

The specification then transforms:

ΔP(8)C ,� =
�∑
9=1

�>8 , 9
[
Δ�C ,�, 9 − 0 9 · 1{news 9 at �}

]
+ �(8)C ,� . (A.57)

The estimates can be obtained by regressing the variation of the daily PCs onto all 3� daily series
of futures and the � series of dummy variables indicating whether there is a news of type 9 on
day �. We estimate this specification by OLS and aggregate the results at the monthly frequency
by performing the following regression:

ΔP(8)C = 8 + �>8
∑

�∈[C ,C+1)

�ΔPC ,� + �(8)C
= 8 +

3∑
ℓ=1

�8 ,ℓ


∑

�∈[C ,C+1)

�∑
9=1

�̂ℓ , 9
> [
Δ�C ,�, 9 − 0̂ 9 · 1{news 9 at �}

] + �(8)C . (A.58)
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This second step is once again estimated by OLS and the fitted values of this regression define
the news component of the monthly PCs.
A.6.4 Disaggregating news types and sign This specification combines themonthly separation
of news impact depending on their signs and the daily specification allowing for news-type
disaggregation. Our specification of Equation (A.57) is replaced by:

ΔP(8)� =

�∑
9=1

�>8 , 9 ,+

[
Δ�+C ,�, 9 − 0

+
9 · 1{news 9 at �}

]
+ �>8 , 9 ,−

[
Δ�−C ,�, 9 − 0

−
9 · 1{news 9 at �}

]
+ �(8)� .

(A.59)
With our assumptions, only the sum 0+

:
+ 0−

:
is identified, and the estimates can be obtained by

running OLS of the variation of the daily PCs onto all 3� daily series of positive futures changes,
the 3� daily series of negative futures changes and the � series of dummy variables indicating
whether there is a news of type 9 on day �. We aggregate the results at the monthly frequency in
the exact same fashion similar to Equation (A.58):

ΔP(8)C = 8 + �>8
∑

�∈[C ,C+1)
Δ̂P� + �(8)C . (A.60)

60


	Introduction
	Macro News and the Term Structure
	Bond Yields Variance Ratios
	A Dynamic Macro-Finance Framework
	Measuring the Impact of Macro News
	Model-Implied Variance Ratios
	Results

	A Model with Imperfect Information
	A Two-factor Model
	Bond Yields
	Variance Ratios
	The Term Structure of Variance Ratios
	Calibration Results
	Model Counterfactuals

	Robustness of the Variance Decomposition
	Survey-based Evidence
	Contemporaneous Excess Returns Regressions
	Other Model Specifications
	Other Aggregation Schemes

	Conclusion
	Appendix
	Link with Canonical Macro-finance Models
	Model properties
	Construction of the Monthly News Component Pn,t
	CME Data
	The Baseline Monthly Regression
	Additional Results
	Comparing Yields and Futures Data
	Auto-correlations
	Principal component analysis of Pt

	Estimation
	A Two-Factor Bond Pricing Model with Learning
	The Investor's Kalman Filter
	Bond Pricing
	Variance Decomposition of a Single Factor
	Proof of Proposition 1

	Aggregation Schemes
	Including RV in the regression
	Correcting for the efficiency loss with WLS
	Disaggregating news types
	Disaggregating news types and sign



