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Abstract: Macroeconomic and aggregate �nancial series were shown empirically to share

an unconventional form of cyclical and persistent dynamics, whose functional form was

obtained from the solution of general-equilibrium models with heterogeneous �rms. The

econometric modelling of equations that link such series requires a new methodology, as ex-

isting parametric techniques can cause paradoxical regression results and omit predictabil-

ities. We provide a solution to disentangle the genuine relation between variables (the

parameters linking them) from the unconventional dynamics that drive them.

As an application, we show that GBP-USD forward premia have no predictive power

for excess returns over 1976�2015 (thus solving this forward-premium puzzle) once the

unconventional dynamics of spot rates are modelled. Taking advantage of these dynamics,

we uncover a trading strategy which consistently outperforms existing ones in the out-

of-sample period 2015�2021, delivering almost treble their pro�ts and yielding a Sharpe

ratio of 85%. Hence, even in this heavily traded market, the E¢ cient Market Hypothesis

has been failing for over 45 years as persistent pro�t opportunities remained unexploited
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because of the unconventional dynamics of the spot rate.
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1 Introduction

There are a number of puzzles where some intuitive and theory-consistent economic relation

between macroeconomic or �nancial variables seems to be violated, with the estimated

coe¢ cients of the relation defying economic logic. Many of these paradoxes involve variables

whose dynamics are notoriously di¢ cult to model. In addition, in macroeconomics, existing

models have been accused of failing to predict the turning points of the economic cycle and

the troubles that have followed. Our paper aims to introduce new tools for handling

relations between such series in a way that prevents misleading estimates and improves

predictability.

The persistence of a series can be depicted by its Auto-Correlation Function (ACF), in

addition to its usual time-domain and frequency-domain representations. Motivated by the

dynamic solution of the micro-founded general-equilibrium model of Abadir and Talmain

(2002), the paper by Abadir, Caggiano, and Talmain (2013) provided the counterpart of

Dickey-Fuller unit-root tests for univariate time series in the ACF domain, and it was

applied to show that almost all macro series and aggregate indexes fall outside the scope of

Auto-Regressive Integrated Moving-Average (ARIMA) and Unit Root (UR) models. The

current paper takes it to the next step of modelling the co-movement of such series: if

such individual series are not integrated, we need to �nd an alternative to co-integration
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analysis for them. The sheer impact of co-integration on empirical macro and �nance

shows that a new method of co-movements is needed to re-examine the empirical relations

in the literature, after the revelations of the 2013 paper. The need for models incorporating

nonlinearity and long memory has been felt in a variety of applications that have led to the

introduction of statistical models to address these speci�c applications; e.g., see Gil-Alana

(2001), Guidolin, Hyde, McMillan, and Ono (2009), Kruse (2011), Chauvet and Potter

(2013), Kostakis, Magdalinos, and Stamatogiannis (2015), and Chevillon and Mavroeidis

(2017).

To give a �avour of the constraints that economic theory imposes on empirical models,

we now illustrate why the heterogeneity of �rms causes the dynamics of GDP to be non-

linear. Denote GDP by Y . It is the summation of the value-added of the �rms or sectors

in the economy, Y1; Y2; : : : , as

Y := Y1 + Y2 + � � � = ey1 + ey2 + � � � 6= ey1+y2+:::; (1)

where the usual logarithmic transformation yi := log Yi (i = 1; 2; : : : ) is needed to model

percentage changes in Yi (it also ensures the dynamics of Yi remain positive, in addition to

variance stabilization). Taking logs, the aggregate y := log Y satis�es

y := log(ey1 + ey2 + : : : ) 6= y1 + y2 + : : : ; (2)

where the left-hand side entails a highly nonlinear aggregation of the processes for y1; y2; : : :

and the two sides are always equal if and only if there is only 1 component in Y (the

representative-�rm assumption that was disposed of in Abadir and Talmain, 2002).1 The

right-hand side of (2) is the linear aggregation that has been used to generate linear ARIMA

processes, including fractionally-integrated I(d) cases which have long memory, but nonlin-

earity is built into even the simplest national-income accounting as in the equations above.

Abadir and Talmain (2002) work out explicitly the analytic solution of their microfounded

1Abadir and Talmain (2002) use a generalization of (1), a Dixit-Stiglitz CES aggregator of the output

of �rms with di¤erent technical e¢ ciencies and dynamic adjustments, the components Yi being dependent

because of the interaction of �rms through the price system and market clearing.
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model, with resulting nonlinear and long-memory dynamics. The intuition is that, with

GDP evolving in the long run according to this new process, the interrelation of the vari-

ables in the general-equilibrium model implies a shared new form of common stochastic

trend and cycle for the solution of the other variables in the system.

A striking message that was subsequently obtained from the graphs in Abadir et

al. (2013) is the regularity of the actual ACF compared to the jagged time-paths of these

variables, and the implied predictability of key features in the series. These ACFs are very

di¤erent from the ones implied by �nite-order ARIMA models, none of which can generate

cycles with such persistence properties, as well as local concavity/convexity features that

were found in the ACFs. Furthermore, if there are persistent cycles in the variables, di¤er-

encing them cannot remove this persistence (unlike in the case of di¤erencing I(1) series).2

This is why a new econometric methodology is needed to deal with estimating relations

between variables containing this type of nonlinear long-memory.

If the dynamics of the variables in a parametric model are not adequately represented,

more than just �nite-sample e¢ ciency loss can arise, namely biased and inconsistent esti-

mates of the relation linking the variables; e.g., see Maddala and Rao (1973) for an early

demonstration in a much simpler context. We exploit the common structure of our ACFs to

devise a method to disentangle the co-movements of variables (estimating the parameters

of the relation linking them) from the e¤ects of persistence of the individual series.

As an application, we show how our method dramatically reverses a much-debated and

long-standing counterintuitive �nding in tests of the Uncovered Interest Parity (UIP). For

this, we take the longest established and one of the most heavily-traded markets, the GBP-

USD foreign exchange (FX) rate, and demonstrate that its subtle dynamics (rather than

the forward premium) holds predictive power over currency excess returns. Although our

2A simple example is the unemployment rate, a variable that is bounded and yet found in many empirical

studies to have a unit root when the model is restricted to the ARIMA class. Removing its persistence is

not to be achieved by di¤erencing, and it was demonstrated in the 2013 paper that this series belongs to

the new class of processes, rather than the ARIMA class; see also Gil-Alana and Trani (2019).
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estimation method below will be more elaborate and will involve a model with multiple

variables, here we use a very simple descriptive illustration of these unconventional dynam-

ics in Figure 1, where we plot the ACF of the logarithm of the GBP-USD exchange rate

and its �t by our functional form (6) for August 1976 to March 2015.3 The ACF shows

a very persistent cycle but one that decays nevertheless, unlike what ARIMA models can

represent. Froot and Thaler (1990, p.188), put their �nger on the problem, noting that

the forward-premium puzzle could be explained �if only part of this appreciation occurs

immediately, and the rest takes some time�. We will show that this is precisely the sort of

problem that current econometric techniques cannot adequately deal with.

We also show that, on the out-of-sample period April 2015 to April 2021, an FX trading

strategy based on our methodology outperforms by a large margin the well-known Carry

Trade and Momentum FX strategies, yielding cumulative pro�ts of more than 2.9 times

the best competing method. Ours also exhibits a Sharpe ratio of 0.85 against a maximum

of 0.25 for the two others. Our strategy uses only data contemporaneously available to the

traders to make out-of-sample forecasts, all parameters having been estimated from the

preceding period of August 1976 to March 2015, and not re-estimated subsequently (hence

relying on the stability and robustness of our estimates). This demonstrates simultaneously

that the UIP anomaly is not caused by the forward premium, and that the E¢ cient Mar-

ket Hypothesis has been failing over the last 45 years even in this ideal currency market

where persistent pro�t opportunities remained unexploited because of the unconventional

dynamics of the spot rate. Being able to formulate and model the FX dynamics, through

our new methodology, will allow better performance than hitherto.

There has been a growing body of evidence of the existence of more accurate predictabil-

ity in exchange rates, especially with regard to various key features that our process pos-

sesses, leading to a strong argument in favour of our new dynamics. Strong autocorrelations

3Such an ACF arises again in Talmain (2018) who extends Abadir and Talmain (2002) to a two-country

general-equilibrium model where �rms are heterogeneous in each country. This time, the ACF applies to

the exchange rate between the two countries�currencies.
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have been stressed in Backus, Gregory, and Telmer (1993), Bekaert (1996), and Okunev

and White (2003). Evidence of long swings and persistence has been shown in Engel and

Hamilton (1990), Diebold, Husted, and Rush (1991), Diebold, Gardeazabal, and Yilmaz

(1994), Baillie and Bollerslev (1994, 2000), Maynard and Phillips (2001), Carvalho and

Nechio (2011), and Bansal and Shaliastovich (2013). Nonlinearities in the process have

also been highlighted in Sarno, Valente, and Leon (2006), Della Corte, Sarno, and Tsiakas

(2009), Verdelhan (2010), and Kruse (2011).

The plan is as follows. Section 2 outlines our procedure and explains how it deals with

these unconventional dynamics in a single-equation framework. We kept derivations and

technical remarks out of Section 2 (and shifted them into the Appendix) to make it widely

accessible to users, as this is the section that most applications will require. Section 3

extends the approach to a system of equations. Section 4 introduces the UIP application

and demonstrates the puzzle. Section 5 applies our method to it, solving the puzzle and

providing a new trading strategy. Section 6 concludes, and the Appendix follows. We also

use the acronyms AT, UR, CT, Mom as shorthands for Abadir and Talmain, Unit Root,

Carry Trade, Momentum; respectively.

2 The ACF-based procedure for a single equation

This section contains two parts. First, we introduce informally the need for our ACF-based

estimation, then we present our estimation procedure.

2.1 The intuition behind the setup

Consider the generic decomposition

yt = yyt + ut; t = 1; 2; : : : T; (3)

where yyt represents the time-varying �fundamental value� (in an economic sense) of yt,

while ut are the residual dynamics of adjustment towards such a value. By de�nition, ut
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is centered around zero and is mean-reverting as will be speci�ed more explicitly after (7)

below; otherwise yt will not revert to its fundamental value y
y
t . Denoting the T � 1 vector

of stacked yt values by y := (y1; : : : ; yT )
0, and similarly for yyt and ut, we write y = y

y +u.

Di¢ culties arise with existing parametric techniques when the residuals ut are not gen-

erated by a �nite-order linear ARIMA process,4 but instead by a more complicated process

as the results of Abadir et al. (2013) suggest. First, it distorts estimation and inference.5

Second, it entails a loss of predictability if the new dynamics exist and are not modelled.

One may wish to think of the special case of yy being the linear relation yy =X�. Our

presentation focuses on the nonlinearity in the dynamics of the residuals u, rather than on

the speci�cs of the functional form relating yy toX. Naturally, our procedure will estimate

simultaneously the parameters of the relation linking y to X (such as �) as well as the

parameters governing the process u.

The ACF �1; �2; : : : of a process futg
T
t=1 is

�� :=
cov(ut; ut�� )p
var(ut)var(ut�� )

; (4)

where �0 � 1. Long memory is a case where this function of � decays very slowly as �

increases, typically at a hyperbolic speed and hence much slower than the exponential rate

of decay obtained for stationary AR models. Unlike unit root models, shocks to a long-

memory process do not have an everlasting impact. More details of standard long-memory

can be found in Beran (1992) and Robinson (1994). Their origin from aggregation can be

found in Robinson (1978), Granger (1980), Chambers (1998), Chevillon, Hecq, and Laurent

(2015). By de�nition, long memory means that the process for futg is stationary.
4The relevance of the required �nite order can be seen in Abadir and Taylor (1999) and Remark A3 in

our Appendix below.
5Adjusting the Standard Errors (SEs) for omitted autocorrelation has been extended to the case of

long-memory that has a spectral singularity at frequency zero; see Abadir, Distaso, and Giraitis (2009)

for a comparison of two methods, including the widely-used Newey-West SEs. Although feasible, there

has been no extension to the relatively new case of nonzero frequency, which is the case considered here.

Furthermore, parameter estimates (not just their SEs) are also a¤ected by omitted long memory.
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The autocorrelation matrix of u can be written as

R :=

0BBBBBBBBBBBB@

1 �1 �2
. . . �T�2 �T�1

�1 1 �1
. . . . . . �T�2

�2 �1
. . . . . . . . . . . .

. . . . . . . . . . . . �1 �2

�T�2
. . . . . . �1 1 �1

�T�1 �T�2
. . . �2 �1 1

1CCCCCCCCCCCCA
: (5)

If one were dealing with the simple case of a stationary AR(1) with autoregressive parameter

�, one would have had �� = �� and knowledge of � alone would have allowed �lling the whole

R matrix. But in the general case of (5), estimating R requires estimating �1; : : : ; �T�1,

that is T � 1 parameters, while only T data points are available. Our solution to this

parametrization issue is to let �� take the functional form in Abadir, et al. (2013)

�� �
1� a [1� cos (!�)]

1 + (b�)c
(b; c > 0; ! 2 (0; 2�)) ; (6)

with only 4 parameters to estimate rather than T �1.6 It is assumed that a; b; c; ! combine

to produce a positive de�nite R for any T ; see Remark A1 in the Appendix for more

details. Fourier inversion of this ACF (6) gives a spectral density f(�) that is proportional to

j�� !jc�1 as �! ! and is bounded elsewhere; that is, at frequency !, there is a singularity

when c 2 (0; 1). For linear long-memory ARIMA(p; d; q) processes having d 2 (0; 1
2
),7

the spectrum has a singularity at the origin that is proportional to j�j�2d, giving the

correspondence c = 1 � 2d if ! = 0 but not otherwise. Giraitis, Hidalgo, and Robinson

(2001) and Hidalgo (2005) give a frequency-domain method of estimating ! and d.

Abadir et al. (2013) show that this 4-parameter functional form (6) represents the dy-

namics of almost all known macroeconomic variables more accurately than ARIMAmodels,

6The estimation of autocorrelation matrices such as (5) can be improved, especially in the case of big

data, by applying a �at-top kernel to the sample autocorrelation; see McMurry and Politis (2010) and

Jentsch and Politis (2015).
7In fractional I(d), long-memory is the case d 2 (0; 12 ). If a series has more persistence, it is di¤erenced

to map the memory parameter from [ 12 ;
3
2 ) to [�

1
2 ;

1
2 ).
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but their context is that of a single variable in the ACF domain. Here, we deal with incor-

porating ACFs of this functional form into multivariate time-domain estimation, in order

to extract the relation linking the variables.

2.2 Maximum Likelihood procedure

We now present a Maximum Likelihood (ML) procedure to estimate jointly the parameters

of yyt and those of the ACF of ut. To simplify the exposition, we adopt the linear model

y =X� + u; with u � N(0;� ); (7)

where u has the T �T autocovariance matrix � , with R its corresponding autocorrelation

matrix whose elements are de�ned by (6), and we assume that � is proportional to the

autocorrelation matrix R in (5)�(6). The proportionality assumption can be relaxed, as

explained after (A2) in the Appendix. We now give a method to estimate � and � jointly.

We adopt the conditions of Robinson and Hidalgo (1997) which are su¢ cient (but not

necessary) for the asymptotic normality below to hold. They allow for the regressors X

to also have long memory. Essentially, we will show in Proposition 1 that our objective

function boils down to a concentrated likelihood for estimating the autocorrelation matrix

R, after which the distributional results are known and limiting normal in Proposition 2.

Denote the determinant of a square matrixM by jM j and, for any given R, de�ne

b�R := �X 0R�1X
��1

X 0R�1y (8)

as a function of R. Then, we have the following result for our ML Estimator (MLE) of R

and �.

Proposition 1 The MLE of R, denoted by bR, is obtained by maximizing the concentrated
log-likelihood (up to constant and scale of 1

2
)

 := � log
�����y �Xb�R�0R�1

�
y �Xb�R�R���� (9)

with respect to the four parameters of the ACF given in (6), and the corresponding MLE

of � is b� � b� bR.
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The objective function to be maximized is nonlinear in R, and a grid search over the

4 parameters of the ACF may be needed to ensure that a global maximum is achieved.

The optimization of the joint likelihood (for R and �) now depends on only 4 parameters

that determine the whole autocorrelation matrix R. The parsimonious parameterization

of the autocorrelation matrix R has allowed us to build our estimation procedure. This

parameterization transcends the chosen estimation method, and it can be used as an input

for methods other than ML. We chose ML because of its statistical optimality properties,

but other choices are now feasible and can employ our parameterization of R. One such

additional method is given in the Appendix, where we also give in (A4) the estimator

of the remaining scale parameter �2 needed for the asymptotic variance that makes �

proportional to R; e.g., see (A8).

Our MLE is asymptotically valid as a pseudo or quasi MLE under more general condi-

tions than normality in (7), which cover a wide range of distributions of u. For this to hold

more generally in a likelihood-based estimation procedure, we need to assume regularity

conditions with respect to the density from which the sample u would be drawn in (7), and

these are stated in the Appendix.

Our MLE satis�es the following asymptotic result.

Proposition 2 The estimator b� is consistent and asymptotically normal for any c > 0.

Furthermore, whenX contains no deterministic trends, the limiting distribution of
p
T (b��

�) is a non-degenerate normal with mean 0 and �nite variance matrix.

Note that the consistency rate of b� will depend on the presence of deterministic com-
ponents in X, but that normalized statistics such as likelihood ratios and t-ratios do not

require these rates.8 For illustrations, see Section 5 below.

8Note also that if estimates of � are substituted into a test statistic for �, a projection-type adjustment

needs to be made to the variance used in constructing the test statistic if it is of the Wald type (such as

t-ratios); see Pierce (1982) for details of this adjustment.
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3 The ACF-based procedure for a system of equations

We will write the system in its general reduced-form speci�cation. Let us de�ne

y :=

0BBB@
y1
...

yk

1CCCA ; z :=

0BBB@
z1
...

zm

1CCCA ; (10)

where each of y1; : : : ;yk contains the T observations on the k endogenous series, and the m

series in z are allowed to include lagged dependent variables. The Vector Auto-Regression

(VAR) with exogenous variables is a special case of the reduced-form0BBB@
y1
...

yk

1CCCA = (B 
 IT )

0BBB@
z1
...

zm

1CCCA+
0BBB@
u1
...

uk

1CCCA ; (11)

where the last vector is to be written as u, the matrix B is k � m, and 
 denotes the

Kronecker product.

Let �1; : : : ;�k denote the k univariate autocovariance matrices (each of size T � T ) of

u1; : : : ;uk, and � denote the k� k variance matrix that generalizes �2 of (A2). Write the

T -dimensional vectors "1; : : : ; "k for the k ACF-transformed residuals (one for each endoge-

nous variable) that have no autocorrelation in their marginal distributions N(0T ; �2i IT ) for

i = 1; : : : ; k.9 Then, letting �i = �2iLiL
0
i, the model can be written as

L�1y = L�1 (B 
 IT )z + "; (12)

where

L := diag(L1; : : : ;Lk);

with diag denoting a block-diagonal matrix, and var(") = � 
 IT (hence var(u) =

L (� 
 IT )L0). Notice that "it is an uncorrelated sequence over time but contempora-

neously correlated with "jt (i; j = 1; : : : ; k), and these are transformed such that each

9Note that these k ACF-transformed errors have covariances �ij from the o¤-diagonal terms of �. Also,

we use the convention �ii � �2i .

11



resulting uit has its own nonlinear long-memory dynamics of the previous section, with

its own set of ACF parameters from �i, while at the same time being contemporaneously

correlated with ujt for general �.

The typical block of L�1 (B 
 IT ) is �ijL�1i : the i-th T -dimensional block in the rows

of (11) is transformed by L�1i to remove the autocorrelation of ui, and can be written as

L�1i yi = L
�1
i

mX
j=1

�ijzj + "i � fXi�i + "i; (13)

where fXi := (L
�1
i z1; : : : ;L

�1
i zm) and �i := (�i1; : : : ; �im)

0. This allows us to reformulate

the model in a less compact form that will be needed to simplify the estimation procedure.10

It is the format used by Zellner (1962) for Seemingly Unrelated Regression Equations

(SURE), ey = fX� + "; (14)

where

ey :=
0BBB@
L�11 y1
...

L�1k yk

1CCCA ; fX := diag(fX1; : : : ;fXk); � :=

0BBB@
�1
...

�k

1CCCA :

By

log jL (� 
 IT )L0j = T log j�j+
kX
i=1

log jLiL0ij = T log j�j �
kX
i=1

�
T log �2i � log j�ij

�
;

the normal log-likelihood in terms of the model�s u is obtainable from (12) then reformu-

lated via " = L�1u and (14) as

 :=� T log j�j+
kX
i=1

�
T log �2i � log j�ij

�
� u0L�10(��1 
 IT )L�1u

=� T log

 
j�jQk
i=1 �

2
i

!
�

kX
i=1

log j�ij �
�ey � fX��0 ���1 
 IT

� �ey � fX�� (15)

10This equation also shows that we have the �exibility to allow the number of right-hand side variables

m to vary with each equation i. It would have been more cumbersome to write this in the earlier equations,

but now we can easily alter the summation in (13) to
Pmi

j=1. This will not a¤ect subsequent theoretical

derivations, and it should be implemented in computations to avoid including irrelevant variables.
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up to a constant in T and a scale of 1
2
as in the proof of Proposition 1. Note that

j�j =
Qk
i=1 �

2
i = 1 (i.e., the �rst term of  drops out) when k = 1 (as in the previous

section) or when � is a diagonal matrix (no contemporaneous correlation of "). Other-

wise, this ratio measures the deviation of � from diagonality and is always � 1 by the

inequality of geometric and arithmetic means; see Abadir, Heijmans, and Magnus (2018,

p.196).

Our ML estimator for this model is obtained by maximizing  . For any given � and

� := (�1; : : : ;�k), this function is optimized for unrestricted estimates by

b��;� := �fX 0 ���1 
 IT
� fX��1 fX 0 ���1 
 IT

� ey:
Our estimation procedure is as follows:

1. Estimate the parameters of � from the k individual equations, estimating the 4-

parameter ACF for each positive-de�nite �i (i = 1; : : : k) as in the previous section,

leading to an estimator that we denote by e� . This enables us to calculate ey and fX.
2. We then follow the original SURE approach of estimating the k-dimensional � by

b� :=
1

T

0BBB@
b"01
...b"0k

1CCCA� b"1 : : : b"k �

with b" := �
ITk � fX(fX 0fX)�1fX 0

� ey the residuals from an Ordinary Least Squares

(OLS) regression of ey on fX. As usual, the information matrix is block-diagonal
(orthogonal parametrization) with respect to �, so the remainder of the procedure

determines estimators for � and � only.

3. We could take the simple estimator e� := b� b�; e� . But if � is not diagonal (which can

be tested, with standard inference applying to b�), e¢ cient estimation of a system
requires us to maximize

�
kX
i=1

log j�ij �
�ey � fXb� b�;�

�0 � b��1 
 IT
��ey � fXb� b�;�

�
(16)
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with respect to the 4k parameters in � to get b� and hence b� � b� b�; b� .
We can now state the following result to complete the procedure.

Proposition 3 The estimators e� and b� are consistent and asymptotically normal for any
c > 0. Furthermore, when z1; : : : ;zm contain no deterministic trends, the limiting distrib-

utions of
p
T (e���) and pT (b���) are non-degenerate normals with means 0 and �nite

variance matrices.

4 Application: Statement of UIP Theorem and Forward-

Premium Puzzle

One test for the e¢ ciency of the foreign exchange market, going back to Fisher (1930), is

that speculators will equalize the expected return on the similar short term assets across

countries once converted to the same currency. However, a large number of authors an-

alyzing the data have found systematic deviations from this norm. The data seemed to

lend support to a very substantial negative relation between the future returns on holding

a currency and the current forward premium on it. This is known as the forward-premium

puzzle or anomaly. Many authors have studied this very counterintuitive result and excel-

lent summaries are found in Froot and Thaler (1990), Lewis (1995), Engel (1996).

This section contains two parts: the three main alternative formulations of a test of the

UIP theorem, followed by the empirical puzzle. The �rst two formulations are the most

popular, in terms of excess returns and in terms of currency depreciation, respectively. The

latter also provides a bridge to the third form which is in terms of the levels of the variables

and shows how the UIP regression can be expressed in terms of our estimation method.

Note that Apte, Sercu, and Uppal (2004) recommend using levels in the related context of

purchasing power parity. They show that it leads to the model in levels outperforming the

other traditional formulations in terms of �rst-di¤erences and di¤erences between variables.
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4.1 Forms of UIP regressions, and potential sources of failure

UIP regressions. Ignoring transaction costs, a US investor�s excess return on investing

in a one-period GBP-denominated riskless bond over the corresponding USD bond is

rt+1 := i$t � it +�st+1; (17)

where i$t and it are the logarithmic returns on the UK and US bond, respectively, st is

the log of the spot exchange rate St (the GBP-USD rate, such that £ 1 is worth $St)

and �st+1 := st+1 � st is the logarithmic rate of depreciation of the US currency. The

UIP hypothesis requires that, under symmetry and frictionless assumptions, traders should

expect high interest rate currencies to depreciate relative to low interest ones, thus ensuring

no systematic excess returns. The E¢ cient Market Hypothesis adds that rt+1 should not

be predictable with any information available at time t. In particular, the forward premium

(ft � st), where ft is the log of the forward rate Ft, should have no explanatory power. We

brie�y consider three essentially-equivalent formulations of a test for this joint hypothesis.

The three main formulations of the UIP regression are:

1st Form: rt+1 = �+ � (ft � st) + ut+1; (18)

2nd Form: �st+1 = �+  (ft � st) + ut+1; (19)

3rd Form: st+1 = �+  (ft � st) + �st + ut+1: (20)

The �rst form is the usual direct implementation, where unpredictability is checked by

testing � = 0. The literature has found signi�cantly negative estimates b� of �, leading to
the forward premium puzzle which we shall return to in the next subsection.

The second form of the UIP regression is equivalent to the �rst one, up to the Covered

Interest Parity (CIP) relation i$t � it = � (ft � st).11 By substituting this CIP relation into

11Consider converting $1 into £ 1=St, investing this amount in the foreign bond, and selling forward the

forthcoming £
�
1 + I$t

�
=St at the forward rate Ft. Since all of these transactions can be completed today

at no risk, the USD yield on this (i$t + ft � st) must be equal to the USD yield of investing in a domestic

bond (it), by arbitrage.
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(18), and using de�nition (17), we get the second form of the UIP regression with  = �+1.

In normal market conditions, and unlike the UIP relation, the CIP holds almost exactly

(hence rt+1 � st+1� ft from (17)). It has been argued that the CIP for the Euro-USD pair

failed to a signi�cant degree during the 2008 �nancial crisis. We checked the CIP for the

GBP-USD pair. A total of eight violations were found in our sample of 543 observations,

with only half of them being of a substantial magnitude.

The conditions for a random walk for fstg can be seen more clearly in the second form.

If � = �1 hence  = 0 (which would violate UIP), the exchange rate follows a random walk

if one were to believe that ut+1 did not contain further dynamics. (Testing of � and the

dynamics of ut+1 will follow in Section 5.) Alternatively, a random walk consistent with

UIP can arise if fft � stg is an i.i.d. series or, as a degenerate special case of it, fft � stg

is approximately constant as assumed in the pricing of currency options.12

The third form of the UIP regression is obtained by recalling that �st+1 := st+1 � st

and adding st to both sides of (19), giving � = 1. The UIP hypothesis is then a test of

 = 1 and � = 1. This formulation is in terms of the levels of the variables, with st+1 as

the dependent variable and only ut+1 is contemporaneous to it in the equation.

Two potential failures of the UIP regressions.The third form highlights the equiv-

alence between forecasting the excess return (rt+1) and the spot rate (st+1), up to the CIP.

It outlines two possible breakdowns of the UIP regression. The coe¢ cient  of the forward

premium may be di¤erent from 1 ( 6= 1) and/or the spot rate may not be a unit-root

process (� 6= 1). Figure 1 is already hinting that the latter is certainly a source of concern,

the ACF being very di¤erent from that of a unit-root process; see also Footnote 12.

One of the possibilities we will consider is the following. Investors could exploit the

information in the forward premium (or interest-rate di¤erential) and eventually it would

lead to no further pro�t opportunities, but they may be unable to capitalize on the de-

12This random walk hypothesis for st is negated visually by Figure 1 where we see persistent cycles

whose memory dies out eventually. Also, a random walk would imply an increasing variance over time,

var(st) / t, but we know that the GBP-USD exchange rate has been con�ned so far to St 2 [1; 2:5] almost

always since its �oating in 1973.
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viations of the spot rate from the random walk because these are much harder to model.

In this case, the forward premium will lack explanatory power and lead to  = 0, but

the coe¢ cient � of the spot rate will be unconstrained and the remaining unconventional

dynamics of st+1 will be left over in ut+1 (which we will model explicitly through ACFs).

We will refer to this case as the irrelevance of the forward premium. Interestingly, Hassan

and Mano (2019) established that the estimate of b� had no statistical signi�cance for the
returns on carry trade strategies. Indeed, they �nd that across-time variations account for

a large percentage of the dollar trade anomaly.

4.2 The Forward-Premium Puzzle

We start by presenting the results using traditional methods, to verify the presence of the

puzzle in GBP-USD data. We use GBP-USD monthly data from Datastream for the period

August 1976 to April 2021. Running the regression (18) on the original data, OLS gives

brt+1 = �0:002 �2:38 (ft � st) ;

(�1:50) (�3:86)
(21)

where the t-ratios are given in parentheses below the estimates. The hypotheses they test

are that the coe¢ cients are 0. They show that the coe¢ cient of (ft � st) is signi�cantly

di¤erent from its anticipated value of 0. It seems that forward rates violate the UIP in a

puzzling way, if one were to believe these estimated parameters.

By the CIP�s ft � st = �(i£t � it), (18) becomes

rt+1 = �� �(i£t � it) + ut+1 (22)

and the estimate b� � 0 from (21) means that positive interest di¤erentials are associated,

on average, with substantial positive excess returns on the high-yield currency: instead

of depreciating as expected from UIP, high-interest currencies puzzlingly outperform one

period later. Also, this correlation has been associated in practice with carry trades. But,

one should keep in mind the following:
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� Correlation measures only the linear part of a relation; e.g., the population (not

sample) correlation of a symmetric x with y := (x� E(x))2 is exactly zero, even

though y is (by de�nition) fully determined by x.

� Correlation measures only association, not true dependence whose genuine source

may be other factors as we shall show. We will see that estimating (21) or (22) does

not give the best model to �t the data (because of the dynamics in ut+1 that have

been neglected) and that neither of (ft � st) or (i£t � it) is the optimal predictor of

rt+1; the regression is misspeci�ed and the true � is very di¤erent from the �awed

estimate b� obtained in this section.
5 Application: Solving the Forward-Premium Puzzle,

and a new trading strategy

This section contains two parts. We start with estimation and inference in the UIP regres-

sion by means our ACF-based procedure, revealing that the source of the UIP breakdown is

not the forward premium and its puzzling coe¢ cient estimate. The estimation is performed

on the 464 observations of August 1976 to March 2015,13 keeping a few initial values back

to January 1976 in reserve in case lagged variables need to be considered in the regressions.

The remaining 73 observations, April 2015 to April 2021, will be used for out-of-sample

forecasting. Our parameter estimates do not rely on any information from the second sub-

sample and, based on our out-of-sample forecast, we devise a trading strategy to show that

our methodology outperforms � by a long stretch� the leading existing strategies. Such

forecast comparisons could have been performed live after the estimation period.

13It is customary to require long samples when estimating long-memory processes, which explains the

length of our �rst subsample. It ends when transitory uncertainty, due to the announcement of the 2016

Brexit referendum, starts to visibly impact the exchange rates and their volatility.
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5.1 The new parameter estimates and hypothesis testing

Model with new ACF dynamics in ut. Using our procedure on the August 1976 to

March 2015 subsample, we estimate the dynamics of the spot rate with the model

st+1 = �+ �1D1t + �2D2t +  (ft � st) + �st + ut+1 (23)

with ut having the ACF dynamics seen in Section 2. The dummies D1 and D2 are for the

exceptional events of March 1985 (run-up to the Plaza Accord) and October 2008 (Global

Financial Crisis), respectively; so D1t = 1 when t = March 1985 and D1t = 0 otherwise,

D2t = 1 when t = October 2008 and D2t = 0 otherwise. We will refer to this model as

the AT model. These dummies will also be introduced in the comparison with competing

models below, as well as in the baseline UIP model.

First, we estimate the unrestricted version of the regression (23) then, by estimating the

restricted versions, we perform Likelihood Ratio (LR) tests of the 3 hypotheses: H0 :  = 1,

H0 : � = 1, and the joint H0 :  = 1 and � = 1. We also test the irrelevance of the forward

premium as H0 :  = 0. For the unrestricted regression, we get the joint estimates

b�� = 1� 1:011 [1� cos (0:0565�)]
1 + � 0:124

(24)

and bst+1 = 0:14D1t � 0:14D2t � 1:25 (ft � st) + 0:88 st + but+1; (25)

where the estimated constant was insigni�cant and not reported.14 There is a slight of

notation here: the term but+1 refers to the values of ut+1 �tted (or explained) by the ACF
whose parameter were estimated in (24). Unlike in standard models, but+1 here is not the
observed residual that would make up y = Xb� + bu whose left-hand side is y (the actual
data). We chose this unusual notation in (25) to stress that ut+1 contains predictable

dynamics that are �tted as part of the model�s estimation of st+1.

We analyzed the unexplained residuals b" implied by our estimation, to check for model
misspeci�cation, as per the discussion after (A2) in the Appendix. They easily passed the

14The likelihood surface of our model is �at in combinations of large b and c. To mitigate this problem,

we use the normalization b � 1 for the parameter b that scales the horizontal axis of the ACF.
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following diagnostics: AR tests for omitted autocorrelations, Ramsey�s RESET test for

omitted nonlinearity, and White�s two tests for unconditional heteroskedasticity (with and

without cross-products of regressors). However, there was some conditional heteroskedas-

ticity left in the residuals, which is usual for this kind of data containing volatility clustering.

It would reduce the �nite-sample e¢ ciency of the estimates (not a major concern in such

a large sample) but not a¤ect their unbiasedness and consistency.

The optimization problem being formulated in terms of the concentrated likelihood,

it is straightforward to use LR tests for all four hypotheses which we examine; see also

Footnote 8 (following Proposition 2) if one were to use instead t-tests or more generally

Wald-type tests. The results are in Table 1, where UR stands for Unit Root, ` stands for

the log-likelihood (` = const +1
2
 from Proposition 1 and its derivation in the Appendix),

LR := 2 (`unrestricted � `restricted) =  unrestricted �  restricted
a��2(�)

with degrees of freedom � equal to the number of restrictions under H0, and the p-value

gives the tail area to the right of any obtained value of LR as Pr(�2(�) > LR).

Model: unrestricted �; 

� = 1

s has UR

f � s free

� = 1;  = 1

UIP

 = 1

s free

f � s constrained

 = 0

s free

f � s irrelevantba 1:011 1:005 1:005 1:021 1:014bb 1 1 1 1 1bc 0:124 0:050 0:050 0:196 0:149b! 0:0565 0:0658 0:0643 0:0547 0:0555

` 2; 102:3 2; 093:9 2; 090:3 2; 098:7 2; 101:2

LR 16:71 23:92 7:15 2:14

p-value 0:0% 0:0% 0:7% 14:4%

Table 1: LR tests for alternative models of st+1 in (23) estimated by the AT methodology.

The UIP joint hypothesis  = 1 and � = 1 is heavily rejected again, but the source of

the rejection and its implication for the forward premium puzzle are important. Restricting
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only � = 1 (to test this by LR) still leads to rejecting � = 1, but freeing up the parameter

� of s (to test ) changes the results substantially: the conclusion of the irrelevance of

the forward premium (hypothesis  = 0) cannot be rejected even at the 14% level. This

coincides with the �ndings of Hassan and Mano (2019) about the lack of a link between

(ft � st) and the performance of carry trades. The results are e¤ectively telling us that

st+1 is predictable by its own dynamics, rather than by the forward premium which has

been blamed for the UIP failure. Going further, we pin down the culprit for this puzzle,

and it is the exchange rates which follow unconventional persistent cycles that are di¤erent

from a random walk.

In addition, recursive parameter estimates (as the sample is gradually increased until

March 2015) indicate the stability of our estimates over time: there are no recurring struc-

tural breaks in the model. The instability of the coe¢ cient of (ft � st) in the standard

UIP regression, noted by some authors such as Baillie and Bollerslev (2000), has vanished.

In Figure 2a, each central line presents recursive parameter estimates for the coe¢ cients

of the forward premium (ft � st) and of the spot rate st in equation (25), as the sample

is increased to its full estimation size. The bands around the estimates are the traditional

formula for an approximate �2 Standard Error (SE) and corresponding 95% con�dence

interval. For stability of the parameter estimates, the central lines should become nearly

horizontal as the sample is recursively increased to its full size for estimation. Apart from

the initial estimates which are based on a handful of data points, both central lines are

near horizontal for our estimates and are well within the terminal (full estimation sample)

�2 SE bands.

Notice that the power of � in (24) indicates that the memory in ut decays eventually

(unlike in unit-root models), but it does so more slowly than stationary linear AR models

can allow. Also notice that the studies �nding long memory or strong autocorrelations,

which we mentioned in the introduction, are corroborated here and the role of cyclical long-

memory in causing the puzzle is explained. In addition, the cyclicality that we estimate

explains why linear ARIMA processes need to be augmented with a persistent time-varying
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component (risk premium) to explain the data, as in Baillie and Bollerslev (2000), Engel

and West (2005), and Engel (2016). Of course, we could improve our results further by

including risk premia, transaction costs, and/or peso problems; but this is not the purpose

of our analysis.

The NoD model. For a fair comparison, let us look at the UIP regression (25) under

the erroneous assumption that the residuals are white noise but adding our two dummies.

We will refer to this model as the No Dynamics (NoD) model because it does not model

the dynamics in ut+1. The results are:

bst+1 = 0:15D1t �0:15D2t �1:18 (ft � st) +0:98 st;

(from 0) (5:5) (�5:6) (�2:0) (97:5)

(from 1) (�3:8) (�1:7)

(26)

where the estimated constant was insigni�cant and not reported. The coe¢ cient of st

jumps from 0:88 to almost 1 (a unit root) to pick up the leftover dynamics of ut+1 which

have been omitted from the model. The t-ratios for signi�cance from 0 or 1 are in the

two lines below the parameters estimates, respectively. Bearing in mind that the model is

misspeci�ed and so is inference based on it, the coe¢ cient of the forward premium seems

to indicate a marginal signi�cance (from 0) and much more so from the 1 needed for UIP.

Recursive estimation of the parameters in Figure 2b contrast with the earlier results

of Figure 2a, as we now see coe¢ cients trending up then down or vice versa, something

that was not present in the �atter recursive estimates for AT. The new results indicate

that the coe¢ cient of (ft � st) was signi�cantly di¤erent from zero for most of the sample

period, notably for January 1985 to February 2009 and towards the end of 2014, unlike

for our estimates. The coe¢ cient for the autoregressive component increases into explosive

territory, before reverting to being a unit root. As noted by a referee, this makes the SE

bands for � indicative rather than asymptotically accurate (if the model were correctly

speci�ed and nonstationarity existed), because the distribution theory would be di¤erent

under a unit or explosive root.

For completeness, Table 2 presents the results of the corresponding �2 tests of this
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incomplete (hence misspeci�ed) model. They lead to the clear rejection of UIP again, but

this time erroneously implying a unit root because the full dynamics of st+1 (through ut+1)

were not considered.

Model: unrestricted � = 1 � = 1;  = 1  = 1  = 0

` 1; 016:1 1; 014:7 1; 008:0 1; 009:1 1; 014:0

LR 2:76 16:22 14:08 4:16

standard p-value 9:7% 0:0% 0:0% 4:1%

Table 2: LR tests for alternative models of st+1 in (23) under the NoD.

But could the statistical gains from uncovering our dynamics be deceiving? Is there some

economic gain that can be built on the statistical one? If our results on the predictability

of the spot rate are useful, then they should deliver an FX strategy that would yield

economically-signi�cant pro�ts. We now investigate this.

5.2 Forecasting and FX trading strategy

Our methodology has identi�ed the source of failure in the UIP regressions, and has pro-

vided a constructive approach to modelling st+1 hence rt+1. There is therefore some pre-

dictability in st+1, and some pro�t-making investment strategy should exist. Such a strategy

should be able to outperform the well-known FX strategies used by traders such as Carry

Trade (CT) or Momentum (Mom). Can our methodology help us identify one?

As our goal is to compare the pro�tability of di¤erent strategies, not to see how this

pro�tability can be re�ned and optimized for actual trading, we keep the trading strategies

at their simplest. We ignore all trading costs and other market frictions. We consider

a single currency pair, the well-established Cable (GBP-USD), instead of a panel of cur-

rencies. We cumulate but do not compound the gains or weigh the amount invested by,

say, the extent of predicted excess return which would favour our method. We only look

at 1-step-ahead trading although, like co-integration, our model�s strength is to reveal the

long-run relations. Even so, we will see that we can achieve substantial gains.
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For each trading strategy S 2 fAT, CT, Mom, NoDg, we estimate the 1-step-ahead

forecast for the spot rate bsSt+1 for April 2015 to April 2021. The forecasted �rst di¤erence
and excess return are easily calculated as

�bsSt+1 := bsSt+1 � st and brSt+1 := �bsSt+1 + i$t � it = �bsSt+1 � (ft � st) :

All S�s are margin strategies:

1. At time t, if brSt+1 > 0, the strategy S says "buy". The trader borrows an amount

$1 in the domestic currency and uses it (after converting into the foreign currency)

to buy the foreign asset. If brSt+1 < 0, S says "sell". The trader borrows $1 worth

in the foreign market and (after converting it) buys $1 of the domestic asset. The

case brSt+1 = 0 has a zero probability, as rt has a continuous distribution, and it is not
observed in our study.

2. In the next period, the actual excess return, rt+1, is revealed. The trader collects

the payo¤ in the currency chosen, and uses the proceeds to pay back the loan in the

other currency. If the trader has correctly predicted the sign of the excess return (i.e.,

sgn
�brSt+1� = sgn (rt+1)) the outcome is called a "hit" and the trader�s pro�t is jrt+1j.

Otherwise, the outcome is called a "miss", and the trader�s pro�t is � jrt+1j. Denote

this binary outcome as xSt+1 and the pro�t as �
S
t+1:

xSt+1 :=

8<: 1 if "hit" (correct prediction of the sign of rt+1)

0 if "miss" (incorrect prediction of the sign of rt+1)

and �St+1 :=

8<: jrt+1j if xSt+1 = 1

� jrt+1j if xSt+1 = 0:

3. The cumulated pro�ts of the strategy are �S :=
PT�1

t=0 �
S
t+1, and the number of hits

XS :=
PT�1

t=0 x
S
t+1. We will also calculate the Sharpe ratios of the strategies.

The 1-step-ahead forecast procedure detailed at the end of the Appendix describes

how bsATt+1 if forecasted by AT. The forecasting exercise is based on the post-estimation
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subsample where we condition on the ACF parameters estimated on the earlier subsample.

It is implicitly a check for whether the ACF still does well after the estimation sample has

ended.

The parameters of the ACF and the coe¢ cients of the regression are those already

estimated under the null of H0 :  = 0 of Table 1 and

bst+1 = 0:06 + 0:15D1t � 0:14D2t + 0:88 st + but+1 (27)

instead of (25) where  = 0 was not imposed. Note that our stable recursive estimates

(see Figure 2a) leading to b� = 0:88 imply that we expect this number to be stable out-

of-sample too, unlike recursive estimates that are trending or cycling as more observations

are added. For CT, brCTt+1 / i$t � it = � (ft � st). For Mom, �bsMomt+1 / �st and, given

how small the interest di¤erential was during the forecast period, the �uctuations in the

currency dominate and we take brMomt+1 / �st. Finally, for NoD, bsNoDt+1 is estimated from (26).

First we visualize the performance of our out-of-sample forecast for bsATt+1 in Figure 3.
Our estimate b! = 0:0555 corresponds to a 9.5 year cycle and can be expected to detect

features around this frequency in the spot rate. Indeed, we observe that our forecast picked

up the downward trend in the 2015�16 period, and the subsequent upward trend but with

a delay of a few months. Clearly, more work is needed to account for the shorter-term

dynamics and, potentially, improve the pro�tability of this strategy. As it stands, our

model is mainly concerned with uncovering the long-memory cycle and its implications on

estimation, using just one lag of st in (27) when more than one lag is needed if one wishes

to add a shorter-term cycle (to arise from complex-conjugate AR characteristic roots).

However, full modelling of the exchange rate is not the purpose here, rather a comparison

of the basic implementation with existing methods.

Table 3 quanti�es the success of these strategies in terms of hits and misses over the 73

out-of-sample forecasts of AT. As a benchmark, the �rst column reports the performance of

a trader with Perfect Foresight (PF), i.e., one who could predict st+1 with 100% accuracy,

thus providing an upper limit for this class of trading. AT is right more frequently than

Carry Trade or Momentum, but is the di¤erence signi�cant? One of the most robust meth-
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ods available to test whether two paired series were generated by a single data-generating

process is the sign test. We reject at 3.5% probability level the null hypothesis that the

median of X for CT is equal to the median for AT, and at the 6.9% level that the median

of X for Mom is equal to the one for AT.

PF AT CT Mom NoD

number of hits XS 73 43 35 35 35

probability of a hit 100% 59% 48% 48% 48%

p-value of sign test versus AT - - 3.5% 6.9% -

p-value of sign test versus NoD - - 50% 50% -

cumulated pro�ts �S 1.61 0.47 0.16 -0.10 -0.13

Sharpe ratio (annual) 6.92 0.85 0.25 -0.20 -0.19

Table 3: Market performances of AT and other trading strategies.

Hence AT is signi�cantly better at predicting the sign of the excess return, but perhaps

it is only better for the smaller excess returns and is beaten badly for the more lucrative

large ones? The AT strategy delivers cumulated pro�ts of 0.47, which are 289% better than

the next best strategy, CT at 0.16, and achieves 29% of the theoretical maximum PF at

1.61. AT is also a much more consistent strategy with a Sharpe ratio of 0.85, more than

treble the next best (CT). Figure 4 plots the cumulative pro�ts for the three strategies over

time. The AT strategy uniformly dominates the other strategies throughout the period,

not just in its �nal cumulated pro�ts. Finally, the strategy based on the NoD provides a

performance comparable to Momentum, and is much worse than AT.

In Table 4, we analyze further the performance by breaking it down into annual pro�ts

and standard deviations. We start the year with April, so that we have 6 full years of

comparison instead of only 5 full calendar years. The results show that AT pro�ts uniformly

dominate CT and dominate Mom 4 times to 2 (one of the latter is only marginally). This,

plus the overall dominance across the whole period, are strong arguments that a generic

trader will prefer AT regardless of her/his risk aversion. The standard deviations are

pretty similar across methods, year-by-year, because the payo¤s in each month are equal in
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absolute value. However, there is only one year (2019-20) in which AT�s standard deviation

is not the lowest (Mom is lower in that year).

Pro�ts Standard deviations

AT CT Mom AT CT Mom

Apr 15 - Mar 16 0.15 0.08 -0.06 0.025 0.027 0.027

Apr 16 - Mar 17 0.15 0.15 -0.11 0.036 0.036 0.037

Apr 17 - Mar 18 -0.12 -0.12 -0.10 0.024 0.024 0.025

Apr 18 - Mar 19 0.07 0.07 0.01 0.030 0.030 0.031

Apr 19 - Mar 20 0.11 0.09 0.15 0.027 0.027 0.025

Apr 20 - Mar 21 0.12 -0.12 0.01 0.020 0.020 0.023

Table 4: Annual market performances of AT and other trading strategies.

As mentioned at the start of this subsection, there are many ways to re�ne the perfor-

mance if our methodology is to be used for actual trading or full modelling of the exchange

rate. In addition, a referee has pointed out that we could use traders��buy�and �sell�

signals to estimate their expectations. These can be used to augment the model�s expec-

tation of st+1, which di¤ers from a trader�s expectation. If such a re�nement is sought in

modelling exchange rates for trading, we suggest using a popular indicator from technical

analysis called the Relative Strength Index (RSI), which traders often view as a signal to

buy or sell.

Clearly, the AT methodology has brought forth a pro�table trading strategy that dom-

inates the traditional strategies on risk and return, and has also identi�ed some areas of

possible improvement. Our conclusion is that the continuing interest in the UIP (in spite of

the forward-premium puzzle) was not misplaced: market forces have not, so far, uncovered

the predictability in the exchange rate itself.
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6 Concluding comments

Integration and co-integration have had a huge impact on the analysis of macroeconomic

and aggregate �nancial data. They were a major �rst step in establishing methods to deal

with the persistence of these variables. Here, we present an econometric method of analysis

that is justi�ed by the general-equilibrium solutions obtained in Abadir and Talmain (2002)

which imply a speci�c type of persistence and cyclicality. We have applied it to solving

an important puzzle in �nance, but also to showing that substantial economic gains exist

from knowing our process and that traders have so far been unable to capitalize on it. Our

method has the potential to reveal new insights for other relations in macroeconomics and

�nance.

Appendix

This Appendix contains three parts. First, we present further analysis of the model in

Section 2 then provide the proofs for the paper. Second, we discuss some features of our

methodology. Third, we present the details of the method of one-step-ahead forecasting

that we use.

Model and proofs

We can use the Cholesky decomposition to write the matrix � of (7) as � = �2LL0, where

L�1 is the lower triangular matrix that removes the persistence from u and takes the form

L�1 =

0@ A 0

��0 1

1A ; (A1)

with� := (�T�1; � � � ; �2; �1)0 andA a lower-triangular block of dimension T�1. Therefore,

premultiplying (7) by L�1,

L�1y = L�1X� + "; with " � N(0; �2IT ): (A2)
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Notice that we reserve "t for well-behaved errors, and use ut for errors with possible patterns

such as long memory. In the special case of � = �2IT (or R = IT ), the residuals u do

not contain long memory anymore: we have u = " while long memory is allowed in the

stationary X.

The transformed residuals " are now an uncorrelated sequence, and standard estimation

procedures can be applied to the transformed model but, before doing so, we indicate that

the estimates of " can be used to determine the model�s adequacy, as in standard setups.

Such diagnostics include checking for leftover persistence, which can be due to any of: a

simple omitted short-memory autocorrelation (which can be recti�ed by augmentingX), an

incorrect functional form for our ACF and its long-memory dynamics, and/or a spurious

relation between y and X. They also include a check for heteroskedasticity which, if

untreated, would lead to �nite-sample ine¢ cient but still unbiased and consistent estimates.

As in traditional approaches, this heteroskedasticity can be modelled and estimated directly

(e.g., by adding a GARCH structure in " and the corresponding likelihood) or indirectly

by augmenting X with variables that were the source of the omitted heteroskedasticity.

The transformed data L�1y and L�1X in (A2) can be regressed by traditional meth-

ods. The Cholesky decomposition command is built-in as standard in all matrix-handling

languages, such as Gauss and MATLAB. The Generalized Least Squares (GLS) estima-

tors can be obtained by minimizing the criterion (y �X�)0 ��1 (y �X�) with respect to

all parameters jointly. Alternatively, our ML estimators are obtained by maximizing the

log-likelihood (apart from an additive constant)

�1
2
log j� j � 1

2
(y �X�)0 ��1 (y �X�) ; (A3)

where only the �rst term di¤ers from the GLS criterion, and it has the bene�cial e¤ect of

ensuring that the elements of the diagonal of L�1 are not too far from unity. This di¤erence

is responsible for another desirable property that the method of ML has, that it is invariant

to reparameterizations of the model.
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Proof of Proposition 1. Concentrating the normal log-likelihood with respect to

b�R := (X 0R�1X)�1X 0R�1y and b�2L := 1

T
(y �Xb�R)0 (LL0)�1 (y �Xb�R) (A4)

by substituting b�R; b�2L for �; �2 into (A3) and using � = �2LL0 / R, we get

� log
���� 1T (y �Xb�R)0 (LL0)�1 (y �Xb�R)LL0

����� T

= � log
���� 1T (y �Xb�R)0R�1(y �Xb�R)R����� T

= � log
���(y �Xb�R)0R�1(y �Xb�R)R���+ T log(T )� T (A5)

since jT�1M j = T�T jM j for any T�T matrixM . Dropping the constant term�T (1� log(T ))

yields (9), to be optimized with respect to the parameters of the ACF.

For the asymptotics of our ML procedure to apply more generally than for normally-

distributed ", we assume the following regularity conditions with respect to the density from

which the random (i.i.d.) sample " is drawn. We denote by � the vector of parameters to

be estimated:

Condition 1. The density is continuous in � 2 �, and the true � (meaning the � that

generated the data) belongs to the interior of the parameter space �.

Condition 2. In an open neighborhood of the true �, the sample�s log-likelihood `(�) is

continuously di¤erentiable twice, and the expectations of `(�) and its �rst two derivatives

exist.

Condition 3. In an open neighborhood of the true �, the sample�s information matrix I

is positive de�nite, and it is an increasing function of T .

These conditions are standard; e.g., see Chapter 8 of Gouriéroux and Monfort (1995)

or Chapter 12 of Abadir et al. (2018).

Proof of Proposition 2. The ACF of u satis�es �� = O(��c). This is of the same order

as an integrated process I(d) with d = 1� 2c < 1
2
when d > 0, and a short-memory process

otherwise, hence satisfying Conditions 1�3 of Robinson and Hidalgo (1997) as discussed on
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their p.83, and similarly for their pp.94-96 on the asymptotic equivalence of feasible GLS

(the one with estimated R) and infeasible GLS (the one with known R). The latter also

implies the asymptotic equivalence of the MLE b� bR and infeasible GLS whose asymptotic
normality is proven in Sections 2�3 of Robinson and Hidalgo (1997).

Proof of Proposition 3. Transform the data of each equation by e� (as in Section 3)

and apply Proposition 2. Then, the standard consistency of b� implies that the asymptotic

normality result applies to e�. For b�, the same result follows by the optimization of the k
terms in (16).

Remarks on the methodology

Before we comment on some aspects of our procedure, we indicate how it grew out of the

treatment of models with autocorrelated errors, which are nested within our model. We

take the simplest example

yt = xt + ut;

with ut = �ut�1 + "t; j�j < 1; "t � IID(0; �2): (A6)

To estimate this, taking into account the autocorrelation of ut, the variables of the �rst

equation (yt and xt) are transformed, then they are regressed by OLS to estimate the

parameter  of the relation. The vector y := (y1; : : : ; yT )
0 is transformed into

L�1y �

0BBBBBBBBB@

' 0 0 � � � 0

�� 1 0 � � � 0

0 �� 1
. . .

...
...

. . . . . . . . . 0

0 � � � 0 �� 1

1CCCCCCCCCA

0BBBBBBBBB@

y1

y2

y3
...

yT

1CCCCCCCCCA
=

0BBBBBBBBB@

'y1

y2 � �y1

y3 � �y2
...

yT � �yT�1

1CCCCCCCCCA
; (A7)

where an estimate of � is substituted, and where ' is usually chosen as
p
1� �2 to sta-

bilize the variance of the transformed residuals. The lower triangular matrix L�1 that
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premultiplies the vector of yt-values arises from the Cholesky decomposition

R =

0BBBBBB@
1 � �2

� 1 �
. . .

�2 � 1
. . .

. . . . . . . . .

1CCCCCCA =
�
1� �2

�
LL0: (A8)

Together with � = �2LL0, we see that the proportionality factor linking R to � is

�2= (1� �2), the asymptotic variance of ut.

If ut were following an AR(p), then the lower triangular matrix L�1 in (A7) would

contain p + 1 nonzero diagonals, and the �rst p rows would have a normalization as was

done for '; e.g., see Chapter 5 of Amemiya (1985). When the variables have long memory,

as is in our case, one needs a very large p to make this transformation. We overcame this

problem by using our new ACF-based method in a parsimonious way. Using the matrix

companion form, Abadir, Hadri, and Tzavalis (1999) showed that long lags have a similar

e¤ect to adding dimensions to a VAR, which would increases the bias and variance of the

estimators. Finding a parsimonious solution avoids these types of problems.

We make the following remarks on the requirements and/or features of R and the

corresponding L in our procedure:

Remark A1. In estimating the parameters of the ACF, one needs to restrict their values

so that the estimated bR is positive de�nite, since this is true (by de�nition) for R. There

is no explicit formula for this restriction, because there is no explicit solution for the roots

of polynomials of order greater than 4. Nevertheless, it is straightforward to implement

the restriction numerically either by skipping values that do not satisfy the restriction, or

by imposing a Lagrangian penalty in the objective (e.g., log-likelihood) function.

Remark A2. The lower triangularity of L�1 ensures that each element of the transformed

y is constructed only from past and current (but no future) values of yt; e.g., see (A7). The

same comment applies to X.
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Remark A3. The elements in the last row of L�1 have an interpretation as the coe¢ cients

of an AR(T �1) representation for the last transformed data point, which is why we stated

them explicitly in (A1). Note that any non-explosive process, whether nonlinear and/or

nonstationary, can be represented as an invertible MA having time-varying coe¢ cients,

which explains the time-varying AR representations implied by the rows of L�1. This is

known in time series as Cramér�s decomposition, a generalization of Wold�s decomposition;

see Granger and Newbold (1986) and the widespread applications in McCabe, Martin,

and Tremayne (2005). It is why the nonlinear process arising from Abadir and Talmain

(2002) can be estimated by our linear representation (with square-summable coe¢ cients).

We also refer to Baillie, Diebold, Kapetanios, and Kim (2022) and to sieve regressions as

an alternative way to �exibly model unspeci�ed dynamics (instead of our ACF�s implied

speci�c ARs in L�1) in the transformed (A2). Here, we allow for long-memory and time-

varying AR representations for each data point, the last one being an AR(T � 1), as

implied by (A1). The coe¢ cients of these time-varying ARs follow directly from only the

4 parameters in the long-memory ACF.

Remark A4. A well-known feature of the transformed model (A2) is that the constant,

once transformed by L�1, is not a constant vector anymore; e.g., use { := (1; : : : ; 1)0 instead

of y in (A7) and compare the �rst element to the remaining T �1. In our estimations, it is

therefore assumed that the data (y andX) have been de-meaned before being transformed.

This is because the procedure is based on transforming vectors, say z, which are centered

around 0: from z � D(0;LL0) into L�1z � D(0; IT ). Having a nonzero sample mean

in z would have introduced a common term like L�1{ in all these transformed variables,

which may dominate these series and produce some seemingly common factor that causes

multicollinearity and other unnecessary numerical instabilities. If a constant is required

in the regression, it should be transformed separately then added to the regression for

transformed variables. Numerical instabilities apart, the theorem of Frisch and Waugh
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(1933) proves that the resulting point estimates would be identical with or without removing

the mean.

Forecasting

We conclude this Appendix with our procedure for 1-step-ahead forecasting. Starting from

(A2), we rewrite it as ey = fX� + "; (A9)

where ey := L�1y and fX := L�1X. Since the residuals are now ", traditional methods

of forecasting can be used on this reformulated model, once the variables are transformed

into ey and fX. Furthermore, if desired it is now possible to re-estimate � recursively out-
of-sample using this equation, although we did not do so because of the stability of our

estimates of �. To make all this operational, we now give the details of the transformation

of the variables by our estimator of L.

We denote the estimation period by t = 1; : : : ; T1 < T , then 1-step-ahead forecasts byt
are needed for yt over t = T1 + 1; : : : ; T . Because of the dynamic nature of the model,

the transformation of yt into eyt will require past values of yt and we use data starting in
period T0 < T1, with T0 � T1 in long memory models. Empirically, a good choice for the

initial number of lags Nini := T1 � T0 + 1 appears to be around 3T!, where T! := 2�=! is

the period of the cycle associated with !.

Let N := T � T0 + 1. The next step is to �ll an N � N matrix R by using the ACF

parameters estimated from the �rst subsample, and we denote the corresponding estimate

of L by bL and use it to calculate
ey := bL�1y and fX := bL�1X (A10)

for y = (yT0 ; : : : ; yT )
0 and similarly for X. Note the following:

1. To avoid complicating the notation, we wrote ey instead of b~y since there are no cases
where the unknown L�1y is used simultaneously with the known bL�1y. We will
reserve b~y for the forecast of ey.
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2. We transform all of the last N observations simultaneously in (A10).

3. As shown earlier in this Appendix, L�1 is lower-triangular and hence uses only past

values to transform any yt into eyt, and similarly here for bL�1.
The forecast for eyt+1 is then obtained by setting "t+1 to its expected value of zero, yielding

b~y = fXb� (A11)

as the forecast. It is the optimal forecast, since we condition on the �rst subsample (the

observed past) and its estimation of the ACF parameters which gave us the bL used in

(A10).

This is a forecast for the transformed variables eyt+1, but we need a forecast for the
original variables yt+1, and this is when the forecast becomes a one-step-ahead forecast

for yt+1 because we will be multiplying the relevant vector of ey�s and b~y�s by bL. For t =
T1; : : : ; T � 1, we have a choice of using either0BBBBBBBBBBBB@

eyT0+1
...eytb~yt+1
0

0T�t�1

1CCCCCCCCCCCCA
or

0BBBBBBBBBBBB@

eyT0eyT0+1
...eytb~yt+1

0T�t�1

1CCCCCCCCCCCCA
(A12)

to premultiply it by the t-th row or the (t+ 1)-th row of bL, respectively, thus yielding two
alternative forecasts byt+1. Note the following:
1. At time t, we know eyt�j for j � 0, which are therefore used in the early rows of (A12)
instead of the past forecasted b~yt�j (6= eyt�j with probability 1).

2. The �rst of the two possible vectors in (A12) drops the initial eyT0 to accommodate b~yt+1
as the last nonzero element and to stay on the same t-th row as when the forecast was

constructed using the yT0 ; : : : ; yt (which were transformed by the t-th row in bL�1y),
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but the second choice enlarges the nonzero elements of the vector to include the b~yt+1
while keeping the initial eyT0. The former uses a lag polynomial implied by the t-th
row of bL�1 and its corresponding inverse in the t-th row of bL, but drops the initialeyT0 in return. We found that the two methods gave essentially the same answer in
our application, but this need not be so in general.

Finally, we note that in the special case of our application, we could have done the fore-

casting through bst+1 = b�st + but+1, since we do not re-estimate b� = 0:88. In this case,

we would need a forecast but+1. It could be based on the general method in (A12) or on
� in (A1) which takes the longest lag polynomial although truncation is recommended in

dealing with long-memory processes.
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