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Abstract

This paper studies semiparametric identification of substitution patterns between

two goods using a panel multinomial choice model with bundles. My model allows the

two goods to be either substitutes or complements and admits heterogeneous com-

plementarity through observed characteristics. I characterize the sharp identified set

for the model parameters and provide sufficient conditions for point identification.

My identification analysis accommodates endogenous covariates through flexible de-

pendence structures between observed characteristics and fixed effects while placing

no distributional assumptions on unobserved preference shocks. I propose a two-step

consistent estimator of the identified set, which through Monte Carlo simulations

is shown to perform more robustly than a parametric estimator. As an empirical

illustration, I apply my method to estimate substitution patterns between cigarettes

and e-cigarettes using the Nielsen data.
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1 Introduction

Substitution relationships between goods have been studied in many applications such as

online news versus print newspapers, digital books versus traditional books, and cigarettes

versus e-cigarettes. The relationship plays a crucial role in consumers’ decisions; therefore,

understanding substitution patterns is important for predicting demand for a good and

analyzing the welfare effects of, for example, a merger of two companies or the introduc-

tion of a new good (Petrin (2002), Goolsbee and Petrin (2004), Gentzkow (2007), Liu,

Chintagunta, and Zhu (2010)).

The standard multinomial choice models typically assume that consumers can buy

only one good at a time, which implies that goods are substitutes. However, many re-

search papers suggest that some goods traditionally perceived as substitutes may in fact

be complements. For example, Zhao (2019) suggests that cigarettes and e-cigarettes are

complements, while Grzybowski and Pereira (2008) show the complementarity between

telephone calls and messages. Motivated by these findings, my paper uses a panel multino-

mial choice model with fixed effects that allows for bundles to study substitution patterns.

This model allows consumers to purchase two goods simultaneously, therefore accommo-

dating the possibility that the two goods are either substitutes or complements. The model

also permits heterogeneous complementarity relationships through observed characteristics.

Identifying substitution patterns in a model with bundles presents multiple challenges.

First, the demand for one good involves consumers who buy this good alone and those who

buy a bundle. Therefore, a large demand for one good could come from consumers’ high

utility for this good or its complementarity with another good. I need to disentangle the two

sources to identify the complementarity relationship. Second, the purchase of two goods

together may be due to either the goods’ complementarity or the unobserved correlation

between consumers’ preferences over the two goods. For example, consumers may buy

a variety of organic goods because of their preferences over organic goods instead of the

complementarity between organic goods. Distinguishing the complementarity relationship

and the correlation between consumers’ tastes for goods is challenging since they are both

unobserved and can affect consumers’ decisions simultaneously.

To tackle these challenges, my paper uses intertemporal variation in conditional choice

probabilities for identification. In doing so, I exploit a conditional stationarity assumption

about preference shocks over time, which requires the distribution of the preference shocks

to be same over any pair of two periods conditional on fixed effects and covariates. I

derive the sharp identified set for the complementarity parameter and characterize sufficient

conditions for point identification. There are two crucial features of my methodology.
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First, the model allows for endogenous covariates by accommodating flexible dependence

structures between observed characteristics and unobserved fixed effects. One example

of endogenous covariates is the price of a product, which is potentially correlated with

unobserved heterogeneity such as the quality of the product. Second, the analysis does

not impose any parametric assumptions on the distributions of preference shocks, and it

allows the shocks to be freely dependent across choices and over time. The simulation

results show that misspecifications in distributional assumptions may lead to misleading

estimators of substitution patterns.

The main strategy behind my identification analysis is to derive identifying restrictions

for the model parameters based on intertemporal comparisons of conditional choice prob-

abilities that can be identified from data. The analysis of substitution patterns consists of

two parts. The first part entails identifying the sign of the substitution pattern based on

variation in the demand for the two goods. The primary idea is to exploit the relationship

between changes in the utility of one good and the demand for the other good. If the two

goods are complements, then increasing the utility of one good (by decreasing its price,

for example) will encourage consumers to buy the two goods together and thus increase

the demand for the other good. When decreasing demand for either of the two goods is

observed even as the two goods become more attractive to consumers, the two goods are

identified as substitutes. If they were complements, the demand for the two goods would

increase.

Additionally, I derive bounds for the complementarity from the sum of conditional

probabilities of two different choices over different periods. For example, when the sum

of the conditional probabilities of buying two goods together and that of buying neither

good is large, then a lower bound for the complementarity can be established. This is

because if the complementarity between the two goods is too small, consumers will be

more likely to buy a single good instead of buying the two goods together. Therefore,

when a high probability of buying two goods and neither good is observed, I can provide

a lower bound for the complementarity. Similarly, I can derive an upper bound for the

complementarity parameter when the sum of the conditional probability of buying a single

good over different periods is large.

The paper establishes the sharpness of the identification results, suggesting that the

results have exhausted all useful information from the data for the model parameters. The

process for proving sharpness is as follows. I first construct the ‘choice sets,’ which are

the collections of unobserved terms such that a single choice is selected. Then for any

parameter satisfying the identifying conditions, I construct a conditional distribution on
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the choice sets such that the constructed distribution satisfies the model assumptions and

matches the observed data, which proves the sharpness. The paper also provides sufficient

conditions for point identification of the model parameters under large support conditions

of the covariates and a linear specification of the complementarity.

I propose a two-step estimator that is computationally easy to implement and estab-

lish its consistency. The first step is to estimate conditional choice probabilities using a

nonparametric estimator. Then the second-step estimator is obtained by minimizing the

sample objective function that depends on the first-step estimator. In Monte Carlo sim-

ulations, I compare the finite sample performance of the two-step estimator to that of an

estimator that assumes a parametric distribution over the error terms and a linear model

for fixed effects. The simulation results show that the two-step estimator performs robustly

over different DGP designs, whereas the parametric estimator performs poorly if either the

parametric distribution or the linear model is incorrectly specified.

As an empirical illustration of this approach, I estimate the substitution pattern be-

tween cigarettes and e-cigarettes using the Nielsen Retail Scanner data. The data contain

weekly store-level information about the prices and sales of cigarettes and e-cigarettes. The

substitution pattern between the two goods is identified from comparisons of the condi-

tional demand for the two goods over different weeks. The estimation results based on the

currently available data show that cigarettes and e-cigarettes are substitutes on average.

As an extension, I study a more general utility function that allows for nonseparability

in characteristics, fixed effects, and error terms, where I assume monotonicity in the co-

variate index. Under this more general utility function, new identification results for the

model parameters are established. I also develop a method to test the complementarity

relationship between two goods by characterizing conditional moment inequalities under

the null hypothesis of the presence of complementarity. Moreover, I allow for unobserved

heterogeneity in the complementarity and provide a partial identification analysis for the

fraction of people for whom the two goods are complements.

1.1 Related Literature

This paper contributes to the literature studying substitution patterns in a discrete choice

model with bundles. Gentzkow (2007) uses a model allowing for bundles to study sub-

stitution effects between online news and print newspapers. His paper allows for flexible

substitution patterns and correlations between preference shocks across choices, but he

assumes parametric distributions over unobserved fixed effects and error terms; he also

assumes that covariates are exogenous. Dunker, Hoderlein, and Kaido (2015) and Iaria
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and Wang (2020) allow for endogeneity and provide identification results of models with

bundles by extending the classic BLP approach in Berry, Levinsohn, and Pakes (1995).

Their methods rely on demand inversion and parametric distributions over error terms,

and they address endogeneity using instrumental variables. My work exploits panel data

to control for endogeneity and does not require instrumental variables. It also allows for

unknown distributions of both fixed effects and error terms. Moreover, my paper studies

a class of nonseparable and potentially unknown utility functions in an extension of this

paper.

There are some papers that allow for unknown distributions of error terms to study

substitution patterns. Fox and Lazzati (2017) study semiparametric identification of a

discrete choice model with bundles under a large support assumption and exogenous co-

variates. I provide sharp identification with bounded support and allow for endogeneity.

Allen and Rehbeck (2020) consider unobserved heterogeneous complementarity and provide

partial identification for the fraction of people for whom the two goods are complements.

My paper focuses on heterogeneous complementarity through observed covariates and can

identify substitution patterns given consumers’ characteristics. In an extension of this pa-

per, I allow for unobserved heterogeneity in the complementarity relationship while relaxing

the exogenous covariates assumption and the exclusion restriction in Allen and Rehbeck

(2020).

My paper is also related to a large body of literature on panel multinomial choice models

with fixed effects. Chamberlain (1980) provides a conditional fixed effect logit estimator for

the panel multinomial choice model under a logistic distribution over disturbances. Manski

(1987) as well as Honoré and Lewbel (2002) relax the logistic distribution assumption

and study semiparametric identification of a binary choice model. Manski (1987) uses a

maximum score approach that relies on a group stationarity assumption, and Honoré and

Lewbel (2002) exploit the idea of a special regressor to identify the panel binary choice

model.

Pakes and Porter (2019) and Shi, Shum, and Song (2018) extend a binary choice model

to a multinomial choice model. Pakes and Porter (2019) derive sharp identification of the

model by characterizing conditional moment inequalities, while Shi, Shum, and Song (2018)

use cyclic monotonicity for identification and estimation. Gao and Li (2020) relax the sep-

arable utility function assumption in the previous papers and study a class of nonseparable

utility functions. These papers all focus on identification of own price coefficients rather

than substitution patterns between different goods. My paper builds on this literature to

allow for bundles in the panel multinomial choice model and characterizes identification of
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substitution patterns.

The rest of this paper is organized as follows. Section 2 introduces the panel multinomial

choice model with bundles. Section 3 characterizes the sharp identified set for the model

parameters and provides sufficient conditions for point identification. Section 4 introduces

a two-step consistent estimator, and Section 5 examines the estimator via Monte Carlo

simulations. Section 6 studies substitution patterns between cigarettes and e-cigarettes

as an empirical illustration. Section 7 studies some extensions of the model, such as

nonseparable utility functions and latent complementarity. Section 8 concludes.

2 Panel Multinomial Choice Model

This section presents a panel multinomial choice model allowing for bundles. Consider a

short-panel structure: let i ∈ I denote consumers and t ≤ T denote time periods where

the length of the panel T ≥ 2 is fixed. Since this paper focuses on substitution patterns

between two goods, I consider the case of two goods: {A,B}. Instead of assuming that

consumers can buy either only good A or only good B, this model allows consumers to

purchase goods A and B simultaneously. The possibility of buying the two goods together

allows the two goods to be either substitutes or complements.

The choice set for consumers is C = {A,B,AB,O}, where A (or B) denotes purchasing

only good A (or B), AB denotes purchasing A and B simultaneously within a single period,

and O denotes the outside option. I assume that consumers buy at most one unit of each

good, and they select the choice yielding the highest utility in their choice set.

Consumers’ utility of a single good has three key components. Let Xijt ∈ Rdx denote

a vector of observed characteristics, which may include consumer i’s characteristics (e.g.,

income), product j’s characteristics (e.g., price), and the interaction terms between them.

Let αij ∈ R denote an unobserved individual-specific fixed effect for product j that does

not change over time, such as consumers’ loyalty to a brand. Let εijt ∈ R denote an

unobserved and time-varying shock that affects consumers’ utility over time.

To specify the utility of the choice AB, let Γit denote the incremental utility from

consuming the bundle AB compared to the sum of utilities of consuming goods A and B

alone. The sign of Γit captures the complementarity relationship between the two goods.

I discuss later the relationship between the sign of Γit and an alternative definition of

substitution patterns using aggregate demand.
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The utility uijt of consumer i from consuming choice j ∈ C at time t is specified as

uiAt = X ′iAtβ0 + αiA + εiAt,

uiBt = X ′iBtβ0 + αiB + εiBt,

uiABt = uiAt + uiBt + Γit,

uiOt = 0,

(1)

where β0 ∈ Rdx denotes a finite-dimensional unknown parameter vector.

Without loss of generality, the utility of the outside option is normalized to zero so the

utility of the remaining choices is defined relative to the utility of the outside option. In

this paper, I focus on an additive and separable utility function that is commonly used in

the literature. I also study a class of nonseparable utility functions in the extension of this

paper and derive the identified set for the model parameters. For simplicity of notation,

the coefficient β0 is assumed to be the same for the two goods. The analysis can generalize

to the case in which the coefficients of the two goods are different.

In addition to the covariate Xijt, I assume that consumer i’s choice at time t is observed

which is denoted as Yit ∈ C. Consumers select the choice with the highest utility, implying

Yit = j =⇒ uijt ≥ uikt for all k ∈ C.

When ties between choices happen with nonzero probability, I use a simple selection rule

whereby consumers randomly select a choice with a fixed (potentially unknown) probability.

The main objective of this paper is to discover the complementarity relationship between

goods A and B from consumers’ choices Yit and observed covariates Xijt.

The standard discrete choice models assume that consumers can only purchase one good

and focus on identifying the coefficient β0. This is equivalent to imposing a restriction on

Γit: Γit = −∞, which restricts the two goods to be substitutes. In this paper, Γit can be

either positive, negative, or zero, which allows for the possibility that two goods can be

either substitutes or complements. My paper derives the sharp identified set for both the

coefficient β0 and the complementarity relationship Γit between the two goods.

Next, I introduce some assumptions for model (1).

Assumption 1. The incremental term Γit in the utility uiABt is specified as

Γit = Γ(Zit, γ0),

where the function Γ is known up to a finite-dimensional parameter γ0, and Zit ∈ R
dz

7



denotes a vector of observed characteristics.

Assumption 1 allows the complementarity Γit to depend on observed covariates Zit

in a parametric function. The function Γ is flexible and can be nonlinear in the covari-

ate Zit, which will admit rich complementarity patterns. The covariate Zit may include

consumers’ characteristics such as income and age so that Assumption 1 allows for heteroge-

neous complementarity relationships through consumers’ characteristics. The identification

analysis is conducted conditional on the same value of the covariate Zit over two periods:

Zis = Zit = z. For simplicity of notation, I consider the covariate to be fixed over time:

Zit = Zi ∈ Rdz for any t.

One restriction of Assumption 1 is that it excludes unobserved heterogeneity in the

complementarity Γit. In an extension, I discuss the case in which Γit is a random variable

such that it incorporates unobserved heterogeneity into the complementarity relationship.

In this scenario, the distribution of the sign of Γit is partially identified. Under Assumption

1, I establish more informative results that not only identify the sign of the complementarity

relationship but also bound the magnitude of the complementarity Γ(z, γ0) conditional on

Zi = z. The more informative results are useful for many analyses, such as the effect of

introducing a new good.

Assumption 2 (Exclusion). There exists at least one characteristic X∗it in Xit = (XiAt, XiBt)

that is not in Zi, and its coefficient is nonzero.

The exclusion assumption requires that there exists one variable that only influences

the utility for good A or B but not the complementarity between the two goods. One

example of this variable is the price of good A or B, which affects the utility of a single

good but may not influence the complementarity between the two goods. The sign of the

coefficient for X∗it can be still unknown to researchers. Moreover, this assumption does not

restrict the covariate Zi; any variable affecting the complementarity is allowed to influence

the utility of a single good.

The last assumption is the stationarity condition for the distribution of the unobserved

shocks. Let Xit = (XiAt, XiBt), αi = (αiA, αiB), and εit = (εiAt, εiBt) collect covariates, fixed

effects, and error terms of the two goods.

Assumption 3. (Stationarity) The distribution of εit conditional on (Xis, Xit, Zi, αi) is

stationary over time; that is,

εis | Xis, Xit, Zi, αi
d∼ εit | Xis, Xit, Zi, αi for any s, t ≤ T.
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This assumption is a multinomial extension of the conditional homogeneity assump-

tion in Manski (1987). It is commonly used in the literature on panel multinomial choice

models, including Pakes and Porter (2019) and Shi, Shum, and Song (2018), which study

identification of the coefficient β0 under this assumption. Assumption 3 restricts the con-

ditional distribution of εit to be stationary over time, but it allows the error term εit to be

dependent across choices and over time. In addition, it does not impose any distributional

restrictions on the unobserved term εit. Therefore, the standard logit/probit models and

i.i.d. assumption of the error term can be nested in Assumption 3.

One crucial feature of Assumption 3 is that it can accommodate endogenous covariates

by allowing for arbitrary dependence structures between the fixed effects αij and the co-

variates Xit. Endogeneity is important in demand estimation since the price of a product

potentially depend on the unobserved heterogeneity of the product, such as the quality of

the product or consumers’ taste for the product. Chesher, Rosen, and Smolinski (2013)

and Berry and Haile (2014) provide more detailed discussions about the importance of

allowing endogeneity in demand estimation.

Assumption 3 also imposes some restrictions. For example, it excludes some dependence

structures between εit and the covariate Xit. Consider that if εit only depends on Xit for any

period t, then εis may have a different distribution than εit when Xis and Xit take different

values. Some dependence structures between εit and Xit are allowed in Assumption 3:

for example, if εit depends on covariates in a time-invariant form such as 1
T

∑T
t=1X

′
itβ0,

Assumption 3 can still hold.

2.1 Substitution Patterns

Before describing the identification results, I discuss the relationship between two different

definitions of substitution patterns. This paper uses the sign of Γ(z, γ0) to represent the

substitution relationship between two goods, This sign captures the incremental utility

from consuming the bundle compared to consuming a single good. Now I introduce an

alternative definition of substitution patterns that is widely used in the literature such as

Gentzkow (2007). In Lemma 1, an equivalence result between the two different definitions

is established.

The alternative definition of substitution patterns centers on how the demand for good

A (or B) is affected by an increase in the price of good B (or A). The two goods are

substitutes if the demand for good A increases, complements if it decreases, and indepen-

dent if the demand does not change. Let pjt denote the price of good j whose coefficient

is nonzero, and let X̃it = Xit \ {pBt} denote the remaining covariates in Xit excluding
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the price of good B. I fix all other covariates X̃is = X̃it = x̃ over time and compare the

conditional demand for good A under different prices pBs 6= pBt of good B. Under model

(1), the demand for good A comes from two sources: individuals who purchase only good

A and those who purchase the bundle AB. Let D` = {`, AB} collect all choices containing

good ` ∈ {A,B}. Let sign(x) = 1{x > 0} − 1{x < 0} denote the sign function.

The substitution pattern sAB(z) conditional on the covariate Zi = z is defined as

sAB(z) ≡ sign

{
Pr(Yis ∈ DA | pBs, pBt, x̃, z)− Pr(Yit ∈ DA | pBs, pBt, x̃, z)

pBs − pBt

}
.

The value of sAB(z) ∈ {−1, 0, 1} represents the complementarity relationship between

goods A and B. For consumers with the covariate Zi = z, the two goods are substitutes

if sAB(z) = 1, independent if sAB(z) = 0, and complements if sAB(z) = −1. Under

the aforementioned Assumptions 1-3, the value of sAB(z) is the same defined by any two

periods s 6= t, and it is independent of other variables except z since the complementarity

term Γ(z, γ0) depends only on z; therefore, sAB(z) is written as a function of only z.

It is often difficult to study substitution patterns directly from the definition of sAB(z).

The term sAB(z) uses only variation in prices and requires the fixing of all other covariates.

This may not be feasible since the other covariates may change simultaneously with prices

or the covariates may include time-varying variables such as time dummies. In addition,

variation in prices may not be available in some scenarios in which the prices of products

are constant over time. Moreover, as the definition sAB(z) involves conditional choice

probabilities, directly estimating sAB(z) may perform poorly, especially when the dimension

of covariates is large.

The next lemma establishes the relationship between sAB(z) and the incremental utility

Γ(z, γ0).

Lemma 1. Under Assumptions 1-3, the following holds for any Zi = z:

Γ(z, γ0)sAB(z) ≤ 0.

Lemma 1 shows that sAB(z) always has the opposite sign of the incremental utility

term Γ(z, γ0). This lemma implies that the sign of sAB(z) can be learned if the sign of

the incremental utility Γ(z, γ0) is identified. Therefore, identifying the complementarity

parameter γ0 is sufficient for studying substitution patterns defined by sAB(z).

To illustrate the intuition of Lemma 1, I focus on the case in which the incremental

utility is positive: Γ(z, γ0) > 0. If the additional utility from consuming the bundle AB is

positive, consumers with a small utility from a single good will still purchase the bundle
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since they can obtain additional positive utility from consuming the two goods together.

When the price of good B increases such that the utility of the bundle decreases, some

consumers will switch from buying the bundle to buying the outside option since their

utility from a single good is small. Therefore, the demand for good A decreases, which

implies sAB(z) ≤ 0.

A similar result to Lemma 1 is shown in Gentzkow (2007) with cross-sectional data.

The difference is that Gentzkow (2007) requires an independence condition between un-

observed error terms and observed covariates, so his results do not apply to the case with

endogenous covariates. My paper mainly employs the stationarity assumption, which al-

lows for endogenous covariates. Therefore, the result in Lemma 1 shows that even with

endogenous covariates, the relationship between the two definitions of substitution patterns

(Γ(z, γ0)sAB(z) ≤ 0) still holds by using intertemporal variation in covariates.

3 Identification

This section establishes identification results for the parameter θ0 = (β0, γ0), which includes

the utility coefficient β0 and the complementarity parameter γ0. The observed data are

the covariates (Xit, Zi) and consumers’ choices Yit ∈ C in each period.

Let Pt(K | xs, xt, z) denote the conditional choice probability (CCP) of Yit ∈ K for

K ⊂ C at time t given covariates (Xis, Xit) = (xs, xt) and Zi = z. It is the probability that

there exists one choice in the set K generating the highest utility among all choices; that

is,

Pt(K | xs, xt, z) ≡ Pr(Yit ∈ K | xs, xt, z)

= Pr
(
∃j ∈ K s.t. ∀k ∈ C uijt ≥ uikt | xs, xt, z

)
.

When K is a singleton, this reduces to the conditional probability of selecting one choice.

The main idea of my identification analysis is to derive identifying restrictions of the

true parameter θ0 from intertemporal variation in conditional choice probabilities over two

different periods. All parameters satisfying those identifying restrictions form an identified

set for the true parameter.

Let δ`t = x′`tβ0 denote the covariate index for good ` ∈ {A,B} given Xi`t = x`t. Let

δABt = δAt + δBt and δOt = 0 denote the covariate indices for the bundle AB and the

outside option, respectively. Let ∆s,tδj = δjs− δjt denote the change in the covariate index

for choice j ∈ C between periods s and t.

In models assuming that consumers can buy only one good at a time, two goods can only

be substitutes. Since the complementarity relationship is known, the only unknown factor
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affecting conditional choice probabilities is variation in covariate indices of all choices. My

paper allows for the possibility that two goods can be either substitutions (Γ(z, γ0) < 0) or

complements (Γ(z, γ0) > 0) and the complementarity relationship is unknown. Therefore,

there are two unknown sources affecting conditional choice probabilities in my paper: one

is changes in covariate indices and the other is the complementarity relationship between

the two goods. Distinguishing the two sources and identifying the complementarity makes

the identification analysis challenging and different from the literature.

The following proposition characterizes the identifying restrictions for the parameter θ0

under Assumptions 1-3. Let C1 ∨ C2 mean that either condition C1 or C2 holds or both

hold, and let C1 ∧ C2 mean that both C1 and C2 hold.

Proposition 1. Under Assumptions 1-3, the following conditions hold for any (xs, xt, z)

and s 6= t ≤ T :

(1) comparisons of CCP of choice j ∈ C:

Ps({j} | xs, xt, z) > Pt({j} | xs, xt, z) =⇒ ∃k 6= j s.t. ∆s,tδj > ∆s,tδk; (ID1)

(2) comparisons of the demand for good ` ∈ {A,B} and let `−1 6= ` ∈ {A,B},

P s

(
{`, AB} | xs, xt, z

)
> Pt

(
{`, AB} | xs, xt, z

)
=⇒

{∆s,tδ` > 0} ∨
{

∆s,t(δ` + sign(Γ(z, γ0))δ`−1) > 0, |Γ(z, γ0)| > −∆s,tδ`

}
;

(ID2)

(3) comparisons of the sum of CCP of two choices:

Ps({AB} | xs, xt, z) + Pt({O} | xs, xt, z) > 1 =⇒{
Γ(z, γ0) > −min{∆s,tδA,∆s,tδB}

}
∧ {∆s,t(δA + δB) > 0};

Ps({A} | xs, xt, z) + Pt({B} | xs, xt, z) > 1 =⇒{
Γ(z, γ0) < min

{
∆s,tδA,−∆s,tδB}

}
∧ {∆s,t(δA − δB) > 0}.

(ID3)

Proposition 1 characterizes identification restrictions for the parameter θ0 from compar-

isons of conditional choice probabilities over two periods that can be identified from data.

The identifying restrictions for θ0 in Proposition 1 are free from unobserved terms including

the fixed effects αi and the error term εit. Since the above results hold for any fixed length

T of panel data, I can use variation in conditional choice probabilities for any two periods

to identify θ0 and take intersections of the identified sets. Later I formulate conditional
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moment inequalities based on the identifying restrictions in Proposition 1, which can be

used to estimate the parameter θ0.

Condition (ID1) in Proposition 1 contains the identifying restrictions for the coefficient

β0. The intuition of this result is as follows: if the conditional probability of selecting choice

j increases, then it is impossible that choice j becomes worse (in terms of the covariate

index) compared to all other choices. Therefore, it can be inferred that the covariate index

for choice j should increase relative to at least one other choice.

The remaining two conditions in Proposition 1 provide novel identification results for

the complementarity parameter γ0. Condition (ID2) identifies the sign of the complemen-

tarity Γ(z, γ0) and bounds its absolute value by comparing the conditional demand of the

two goods over time. Condition (ID3) establishes both lower and upper bounds for the

complementarity Γ(z, γ0) using the sum of probabilities of two different choices over two

periods. Next, I describe the intuition for the two conditions.

Condition (ID2) mainly exploits the idea that increasing the utility of one good affects

the demand for the other good differently under different complementarity relationships

between the two goods. Under model (1), the demand for one good involves individuals

who buy a single good and the bundle. Therefore, the demand depends not only on the

utility of a single good but also on the complementarity term Γ(z, γ0) in the utility of the

bundle. When the two goods are complements, increasing the covariate index of good A

will encourage consumers to buy the bundle AB so the demand for good B also increases. If

the two goods are substitutes, increasing the covariate index of good A will shift consumers

from originally buying good B only to buying good A only so that the demand for good

B decreases.

Therefore comparisons of the conditional demand over two periods can help identify the

sign of the complementarity relationship Γ(z, γ0). For example, when increasing demand

for good A or good B is observed even as the covariate indices for the two goods both

decline, this implies that the two goods are substitutes (Γ(z, γ0) < 0). It is because if the

two goods were complements, decreasing the covariate indices of both goods would lead to

a decline in the demand for both goods. Similarly, when the covariate index for good A

decreases and for good B increases while the demand for good A increases, the two goods

are identified as complements (Γ(z, γ0) > 0).

Condition (ID3) in Proposition 1 can bound the value of the complementarity Γ(z, γ0)

by taking the sum of conditional probabilities of two choices over time. The intuition is

that if the sum of conditional probabilities of buying the bundle and that of the outside

option is large, then the complementarity Γ(z, γ0) cannot be too small because otherwise
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consumers will prefer to buy a single good instead of buying the two goods together.

Therefore, the lower bound for the value of the complementarity can be established in this

case. Similarly, if the sum of conditional probabilities of buying a single good is large, then

the upper bound of the value of Γ(z, γ0) can be obtained.

The identifying restrictions (ID1)-(ID3) in Proposition 1 characterize an identified set

ΘI for θ0, which is defined as

ΘI = {θ : conditions (ID1)− (ID3) hold with θ in place of θ0}.

Theorem 1. Under Assumptions 1-3, the identified set ΘI is sharp.

Theorem 1 shows that the identifying restrictions (ID1)-(ID3) have exhausted all pos-

sible information from the observed data for the parameter θ0. The proof of the sharpness

is conducted through direct construction. For any parameter in the identified set ΘI , if I

can construct an underlying DGP that satisfies Assumptions 1-3 and matches the observed

conditional choice probabilities, it shows the sharpness of the identified set ΘI . The diffi-

culty is that the unknown DGP involves infinite-dimensional distributions that make the

construction challenging.

This paper addresses the difficulty by first constructing ‘choice sets,’ which are collec-

tions of unobserved terms such that a single choice is selected conditional on covariates.

It is sufficient to focus on constructing the distributions on the choice sets because their

distributions determine the observed choice probabilities. The number of choice sets is

finite due to the finite number of choices; accordingly, I need only to assign probabilities

on the finite number of sets, which simplifies the construction. Then the paper shows that

for any parameter in the identified set ΘI , there exists a conditional distribution on the

choice sets that satisfies the assumptions and generates the observed choice probabilities.

The construction of the probabilties on the choice sets depends on the sign of the com-

plementarity Γ(z, γ0) as well as the covariate index ∆s,tδj, which is discussed in detail in

Section A.3.

There are some interesting facts from Theorem 1. First, the identified set ΘI employs

only marginal choice probabilities at each period yet it is shown to be sharp. Therefore,

joint choice probabilities over different periods do not provide any extra information for

the parameter θ0. This is because joint choice probabilities also depend on the unknown

dependence structure of the error term εit over different periods, and this dependence

structure cannot be distinguished from the effects of variation in covariate indices without

further assumptions.

To show sharpness, I need to construct a joint distribution of εijt across choices and
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over time to match the observed data. The sharpness result exploits the fact that the

unobserved shock εijt can be freely correlated across choices and over time. If additional

restrictions are imposed on the dependence structure of the error terms across choices or

over time, then the identified set ΘI may not be sharp and can be further tightened.

Finally, my identification analysis in Proposition 1 and the sharpness result for ΘI can

be extended to a more general model, ui`t = f(Xi`t, β0) + g(αi`, εi`t), where f is a known

function up to a finite-dimensional parameter β0 and g is a function that can be unknown

to econometrician. This utility function allows for infinite-dimensional fixed effects and

idiosyncratic shocks as well as admits arbitrary interactions between them.

3.1 Point Identification

This section studies the conditions under which the parameters β0 and γ0 can be point

identified up to scale. The analysis depends on the specification of the additional utility

term Γ(Zi, γ0). I focus on point identification under a linear specification of the comple-

mentarity: Γ(Zi, γ0) = Z ′iγ0.

For simplicity of notation, I consider a two-period model (T = 2) to illustrate the idea.

Let ∆Xi` = Xi`2 −Xi`1 denote the change in observed covariates for consumer i and good

` ∈ {A,B} over the two periods, and let ∆Xi = (∆XiA,∆XiB) collect the changes in

covariates for the two goods. I use a superscript k to denote the kth element of a vector,

e.g., ∆Xk
iA represents the kth element of the vector ∆XiA.

I first introduce sufficient conditions for point identification of the coefficient β0.

Assumption 4. The support of the conditional density of εit given (Xi1, Xi2, Zi, αi) is R2.

Assumption 5. For any ` ∈ {A,B}, there exists k` that satisfies βk`0 6= 0. Let ∆X̃i =

∆Xi \ (∆XkA
iA , X

kB
iB ) denote the remaining elements in ∆Xi. The support of the conditional

density of (∆XkA
iA , X

kB
iB ) conditional on (∆X̃i, Zi) is R2. Furthermore, the support of ∆Xi`

is not contained in any proper linear subspace of Rdx.

Assumption 4 requires that the conditional density of εit is positive everywhere on R2.

This rules out the uninformative case in which conditional choice probabilities do not vary

when the covariate indices change over time. Assumption 5 is a support condition on the

covariate ∆Xi. It requires at least one covariate for each good to have large support,

while the support of the remaining covariates is unrestricted. The large support condition

guarantees that there is sufficient variation in the covariate over time such that the true

parameter can be distinguished from any other candidate parameters.
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Under these assumptions, β0 can be point identified (up to scale) by using the first

identifying restriction (condition (ID1)) in Proposition 1. For any parameter b 6= kβ0 for

any k > 0, the large support condition (Assumption 5) implies that there exists one value

∆x` of the covariate such that the covariate index ∆x′`β has different signs under the true

parameter β = β0 and the candidate parameter β = b. The conditional choice probabilities

then change in different directions under β0 and b so that the parameter β0 is identified.

For example, suppose that the covariate index satisfies ∆x′`β0 > 0 and ∆x′`b < 0 for any

` ∈ {A,B}. Then under Assumption 4, the conditional choice probability of buying the

bundle AB will strictly increase under the true parameter β0, but strictly decrease under

the parameter b. Therefore, β0 is identified.

Under the conditions for point identification of β0, the sign of the covariate index

∆X ′ijβ0 is also identified. Next, I present the conditions for point identification of the

complementarity parameter γ0.

Assumption 6. There exists k such that γk0 6= 0, and the support of Zk
i is R. Furthermore,

the support of Zi is not contained in any proper linear subspace of Rdz .

Similar to Assumption 5, this assumption requires a large support restriction on the

covariate Zi. Based on the identifying condition (ID2) in Proposition 1, the sign of the

complementarity Z ′iγ0 can be identified from intertemporal variation in the conditional de-

mand for the two goods. Then for any candidate parameter γ̃ 6= kγ0, Assumption 6 implies

that there exists some value of the covariate Zi such that the sign of the complementarity

Z ′iγ is different under the true parameter γ0 and the candidate parameter γ̃. Thus, the

parameter γ0 can be point identified.

Theorem 2. Under Assumptions 1-6 and Γ(Zi, γ0) = Z ′iγ0, the parameters β0 and γ0 are

point identified up to scale.

Theorem 2 establishes the point identification results under the large support assump-

tions of covariates and the linear specification of the complementarity. Without the large

support assumption, I characterize the sharp identified set ΘI for θ0 in Theorem 1 with

the bounded support of covariates. Next, I establish the estimation method based on the

identification analysis. The method is valid for both the partial and point identification

results in Theorem 1-2.
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4 Estimation

This section presents the estimation method for the identified set ΘI . The identified set

ΘI characterized by conditions (ID1)-(ID3) is abstract and it is a challenging task to check

whether every candidate parameter satisfies all of the identifying conditions. This section

develops an alternative characterization of the identified set ΘI by constructing condi-

tional moment inequalities of the parameter. Based on this characterization, I formulate a

criterion function and propose a two-step estimator of the identified set.

4.1 Characterization of ΘI

The identification conditions (ID1)-(ID3) in Proposition 1 have the same structure of de-

riving restrictions for the parameter θ0 from some intertemporal comparisons of condi-

tional choice probabilities that are identified from data. I focus on the first condition

(ID1) in Proposition 1 to describe the idea of constructing conditional moment inequali-

ties. Let Wist = (Xis, Xit, Zi) collect all of the covariates at the two periods (s, t), and let

wst = (xs, xt, z) denote one realization of the covariate Wist.

Condition (ID1) exploits comparisons of the conditional probability of a single choice

j ∈ C to derive restrictions for the parameter. Let λjs,t(wst, θ) denote the indicator index

of the identifying restriction in condition (ID1), which is defined as

λjs,t(wst, θ) = 1
{
∃ k 6= j s.t. ∆s,tx

′
jβ > ∆s,tx

′
kβ}.

Condition (ID1) derives the identifying restriction λjs,t from a positive variation in the

conditional probability of selecting choice j over time:

Ps({j} | wst)− Pt({j} | wst) > 0 =⇒ λjs,t(wst, θ0) = 1.

The contraposition of the above condition is presented as follows: if the identifying

restriction λjs,t does not hold, then the variation in the conditional probability of selecting

choice j is nonpositive.

λjs,t(wst, θ0) = 0 =⇒ Ps({j} | wst)− Pt({j} | wst) ≤ 0.

Plugging into the definition of the conditional choice probability Pt({j} | wst) =

E[1{Yit = j} | Wist = wst], the above condition leads to the following conditional mo-
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ment inequality for any wst,

gjs,t(wst, θ0) = E
[
(1− λjs,t(wst, θ0))(1{Yis = j} − 1{Yit = j}) | Wist = wst

]
≤ 0.

The above conditional moment inequality holds since either the binary index holds

λjs,t(wst, θ0) = 1 so that the moment function gjs,t is zero or the binary index does not hold

λs,t(wst, θ0) = 0 implying that the function gjs,t is nonpositive. I provide an equivalent

characterization to condition (ID1) using conditional moment inequalities. The character-

ization for the remaining two conditions in Proposition 1 can be constructed similarly.

Next I define the binary indicator of identifying restrictions for the parameter in condi-

tions (ID2)-(ID3). Condition (ID2) derives restrictions of the parameter from comparisons

of the demand for good ` ∈ {A,B}. The indicator λD`
s,t (wst, θ) of the identifying restriction

in condition (ID2) is defined as follows, let `−1 6= ` ∈ {A,B},

λD`
s,t (wst, θ) =1

{
{∆s,tx

′
`β > 0}

∨
{

∆s,t(x` + sign(Γ(z, γ))x`−1)
′β > 0, |Γ(z, γ)| > −∆s,tx

′
`β
}}

.

From comparisons of the demand for good ` ∈ {A,B}, the conditional moment inequal-

ity can be constructed as follows:

gD`
s,t (wst, θ0) = E

[
(1− λD`

s,t (wst, θ0))(1{Yis ∈ D`} − 1{Yit ∈ D`}) | Wist = wst
]
≤ 0.

Condition (ID3) derives lower and upper bounds for the complementarity Γ(z, γ0) from

the sum of conditional probabilities of two choices. The binary indices of the identifying

restrictions in condition (ID3) are defined as

λLs,t(wst, θ) = 1

{{
Γ(z, γ) > −min{∆s,tx

′
Aβ,∆s,tx

′
Bβ}

}
∧ {∆s,t(xA + xB)′β > 0}

}
,

λUs,t(wst, θ) = 1

{{
Γ(z, γ) < min{∆s,tx

′
Aβ,−∆s,tx

′
Bβ}

}
∧ {∆s,t(xA − xB)′β > 0}

}
.

Similarly, the conditional moment inequalities are constructed as follows based on con-

dition (ID3) in Proposition 1:

gLs,t(wst, θ0) = E
[
(1− λLs,t(wst, θ0))(1{Yis = AB}+ 1{Yit = O} − 1) | Wist = wst

]
≤ 0,

gUs,t(wst, θ0) = E
[
(1− λUs,t(wst, θ0))(1{Yis = A}+ 1{Yit = B} − 1) | Wist = wst

]
≤ 0.
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I have developed conditional moment inequalities that are equivalent to the identifying

conditions (ID1)-(ID3) in Proposition 1. Let gs,t = ({gjs,t}j∈C, gDA
s,t , g

DB
s,t , g

L
s,t, g

U
s,t)
′ denote a

vector of all conditional moment functions. The identified set ΘI is characterized by the

set of parameters satisfying the conditional moment inequalities as follows:

Proposition 2. Under Assumptions 1-3, the following holds,

ΘI = {θ : gs,t(wst, θ) ≤ 0 ∀wst, ∀s, t ≤ T}.

Given the above characterization, the inference for the parameter can be conducted

using the methods in the literature developed for general moment inequalities such as

Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013). However, it is difficult

to implement these methods when the dimension of the covariate wst is large with panel

data. Due to practical challenges, this paper proposes an estimation method using a

criterion function that makes it computationally easy to estimate the identified set.

4.2 Criterion Function

The criterion function is formulated by first transforming conditional moment inequalities

as conditional equalities: for any wst,

gs,t(wst, θ0) ≤ 0⇐⇒ [gs,t(wst, θ0)]+ = 0,

where [x]+ = max{x, 0}.
Recall that the function gks,t denote an element in the vector function gs,t for k ∈ K =

{A,B,AB,O,DA, DB, L, U}. The criterion function Ω is established by aggregating all of

the conditional equalities and taking expectations over the covariate Wist:

Ω(θ) =
∑

k∈K,s 6=t≤T

E
[
[(gks,t(Wist, θ)]+

]
≥ Ω(θ0) = 0.

Based on the above criterion function, the corresponding sample objective function and

the estimator can be establised. The criterion function Ω includes the moment function

gks,t that needs to be estimated. According to the definition of the function gks,t, the only

unknown term in the function gks,t is the conditional choice probability Pt({j} | wst). There-

fore, to construct the sample objective function, the first step is to estimate the conditional

choice probability using nonparametric estimators. Let P̂t({j} | wst) denote an estimator
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for the conditional probability of selecting choice j ∈ C. I will discuss the assumptions of

the estimator later.

The sample objective function can be constructed by plugging in the first-step estimator

P̂t({j} | wst) and replacing the expectation with the sample mean. Let ĝks,t denote the esti-

mated moment function that uses the first-step estimator P̂t({j} | wst) for the conditional

choice probability. The sample objective function can be formulated as

Ω̂(θ) =
1

N

N∑
i

∑
k∈K,s 6=t≤T

[ĝks,t(Wist, θ)]+.

Since only the relative utility between choices matters for consumers’ decisions, the

parameter can be only identified up to a constant. Therefore, I normalize the first element

θ1 of the parameter θ to be one: Θ = {θ ∈ Rdx : θ1 = 1}. Following Chernozhukov, Hong,

and Tamer (2007), the set estimator for the identified set ΘI is proposed as

Θ̂ĉN =
{
θ ∈ Θ : Ω̂(θ) ≤ inf

θ∈Θ
Ω̂(θ) + ĉN/aN

}
,

where aN is the uniform convergence rate of the first-step estimator (Assumption 7). The

choice of ĉN has been discussed in Chernozhukov, Hong, and Tamer (2007): one feasible

way is to choose ĉN to grow slowly, such as ĉN ∝ log(N). When point identification is

achieved, we can set ĉN to be zero and choose the minimizers of the sample objective

function.

Now I state some assumptions to establish the consistency of the estimator Θ̂ĉN in

Hausdorff distance between two sets, defined as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A
||a− b||

}
. (2)

Assumption 7 (First-Step Estimator). There exists a sequence aN → ∞ such that the

first-step estimator P̂t({j} | wst) satisfies the following: for any j ∈ C and t ≤ T ,

sup
wst

∣∣P̂t({j} | wst)− Pt({j} | wst)∣∣ = Op(1/aN).

Assumption 7 is about the uniform convergence rate of the first-step estimator P̂t({j} |
wst). When point identification of θ0 is achieved, Assumption 7 can be replaced by the uni-

formly consistency assumption of the first-step estimator: supwst

∣∣P̂t({j} | wst) − Pt({j} |
wst)

∣∣ = op(1). The literature has provided abundant nonparametric and semiparametric es-
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timators such as kernel estimators, nearest neighborhood estimators, and sieve estimators.

The performance of those estimators has been well established in the literature, for exam-

ple, Bierens (1987) and Chen (2007) conduct comprehensive analysis for kernel estimators

and sieve estimators.

Assumption 8 (Regularity Condition). (1) The parameter space Θ is compact; (2) there

exists one element in the covariate Xijt and Zi respectively that is continuously distributed

and its coefficient is nonzero in the parameter space; (3) the complementarity Γ(z, γ) is

continuous in γ for all z in the support of Zi.

Assumption 8 includes some regularity conditions to ensure the continuity of the pop-

ulation objective function Ω. Conditions (1) and (3) are standard, which are about the

compactness of the parameter space and the continuity of the function Γ. Condition (2)

requires one continuous random variable in the covariate Xijt and Zi. It still allows other

variables to be discrete and puts no restrictions on the support of the covariates.

The following result shows the consistency of the set estimator Θ̂ĉN in Hausdorff dis-

tance:

Theorem 3. Under Assumptions 1-3 and 7-8, if ĉN satisfies ĉN/aN → 0 and ĉN → ∞,

the following holds:

dH(Θ̂ĉN ,ΘI) = op(1),

where dH denotes the Hausdorff distance defined in (2).

Theorem 3 established consistency of the estimator Θ̂ĉN . Deriving the asymptotic

distributions of the estimator is difficult since the sample objective function is a non-

smooth function and involves infinite-dimensional first-step estimators. The inference for

the parameter can be still conducted using the methods for conditional moment inequalities

but could suffer from the computational burden of implementation.

5 Simulation Study

This section examines the finite sample performance of the estimator introduced in Sec-

tion 4 via Monte Carlo simulation. To better evaluate my estimator, I also implement a

parametric estimator for comparison that will be described in detail later. The simulation

results demonstrate that misspecifications in either parametric distributions or dependence

structures between covariates and fixed effects lead to a misleading estimator for the com-

plementarity parameter.
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I focus on the case with two periods T = 2 and a linear specification of the comple-

mentarity: Γ(Zi, γ0) = Ziγ0. Section 3.1 has established sufficient conditions for point

identification under the linear specification of the complementarity, so I focus on the es-

timator based on the point identification result. As shown in Section 4, the estimator

(Two-Step Est.) developed in this paper involves two steps. The first step estimates the

conditional choice probability using a single layer artificial neural network estimator. The

asymptotic property of this estimator has been established in Chen and White (1999) so

that Assumption 7 is satisfied. Moreover, the neural network estimator is computation-

ally easy to implement and there is a readily used package for the estimator (Bischl et al.

(2016)). In the second step, the estimator of the parameter θ0 is obtained by minimizing

the sample objective function Ω̂(θ) that depends on the first-step estimator.

I implement a parametric estimator (Parametric Est.) for both the utility coefficient

and the complementarity parameter using the method of simulated moments. For this

parametric estimator, the error terms εijt are assumed to follow a standard Gumbel dis-

tribution, independent across choices and time periods, and also independent of all covari-

ates. I allow the fixed effects αij to depend on covariates through a linear specification:

αij = η0 + X̄ ′ijη1 + vij, where X̄ij = 1
T

∑
tXijt denote the average covariates over time and

vij ∼ N (0, 1) follows standard normal distribution and independent of all covariates. This

parametric estimator is
√
N consistent when its assumptions are all correct, while could

be inconsistent if either the parametric distribution or the model of the fixed effects is

misspecified.

For the coefficient β0, I also evaluate the performance of two other estimators for com-

parison that do not allow for the purchase of bundles Γit = −∞. One estimator is Cham-

berlain’s conditional fixed-effect logit estimator (FE Logit Est.). This estimator assumes

εijt to follow standard Gumbel distribution while leaving the distribution of the fixed effects

αij unrestricted. The other estimator is the semiparametric estimator (Semi. Est.) which

is developed under the stationarity assumption but assumes no bundles. Therefore, this

estimator only uses conditional choice probabilities of {A,B,O} to identify the coefficient

β0.

Now I describe the simulation setup. Let dx and dz denote the dimension of the co-

variates Xit and Zi respectively, and they are set to dx = dz = 2. In each simulation, Xi`t

is drawn from the normal distribution N (0, dx), independently across choices ` ∈ {A,B}
and time t ≤ T . Let the first element of Zi be drawn from N (1, 1) and the second element

from N (0, 1). The true parameters are set as: β0 = γ0 = (1, 1).

I study four different designs of the error terms εijt and fixed effects αij. The first
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design considers the correct specification for the parametric estimator: εij follows a Gumbel

distribution and the fixed effects are specified as αij = X̄ ′ijβ0/2 + vij. In the second design,

the error term εit follows a bivariate normal distribution with the correlation ρ = −0.7.

So the parametric distribution of the error term εit is misspecified in this design. In the

third design, I allow the fixed effects αij to depend on the covariates of the other good in

a non-additive form: αij = (X̄ij − X̄ik)
′β0 ∗ (1 + vij) for j ∈ {A,B} and k 6= j ∈ {A,B}.

In this design, the parametric estimator assumes a wrong model for the fixed effects αij.

The last design combines the second and third design, which considers both a misspecified

distribution of εit and a misspecified model of αij for the parametric estimator. The

following summarizes the four designs:

• Design 1: correct specification

εijt ∼ Gumbel(0, 1),

αij = X̄ ′ijβ0/2 + vij, where vij ∼ N (0, 1).

• Design 2: misspecified distribution

εit ∼ N2

(
[1.5;−1.5], [1 − 0.7;−0.7 1]

)
,

αij = X̄ ′ijβ0/2 + vij, where vij ∼ N (0, 1).

• Design 3: misspecified fixed effects

εijt ∼ Gumbel(0, 1),

αij = (X̄ij − X̄ik)
′β0 ∗ (1 + vij), where vij ∼ N (0, 1).

• Design 4: misspecified distribution and misspecified fixed effects

εit ∼ N2

(
[1.5;−1.5], [1 − 0.7;−0.7 1]

)
,

αij = (X̄ij − X̄ik)
′β0 ∗ (1 + vij), where vij ∼ N (0, 1).

For the above four designs, for the coefficient β0, I compare the four different estima-

tors by reporting their root mean-squared error (rMSE) and median of absolute deviation

(MAD). For the complementarity parameter γ0, I compare the two-step estimator with

the parametric estimator by reporting their standard deviation (SD), root mean-squared

error (rMSE), and median of absolute deviation (MAD). I also report the probability of

estimating the substitution pattern incorrectly (Err) under the two-step estimator and the
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parametric estimator, defined as

Err = E| sign(Ziγ0)− sign(Ziγ̂)|.

Let θk denote the kth element of the parameter θ. The parameter θ0 can be only

identified up to a constant, so the first element of is normalized to one: β1
0 = 1 and the

performance of the estimator of β2
0 is displayed in Table 2. Since only the ratio γ̃0 = γ2

0/γ
1
0

matters for the substitution patterns, I focus on the results for the estimator of γ̃0 in

Table 1. I study three different sample sizes N = 1000, 2000, 4000 and set the simulation

repetitions to B = 1000.

Table 1: Performance Comparisons for γ̂

N Design
Two-Step Est. Parametric Est.

Err SD rMSE MAD Err SD rMSE MAD

1000

design 1 0.038 0.323 0.336 0.250 0.013 0.114 0.114 0.072

design 2 0.037 0.462 0.468 0.232 0.100 1.003 1.391 0.827

design 3 0.044 0.470 0.481 0.242 0.159 1.068 2.222 1.733

design 4 0.043 0.452 0.484 0.248 0.274 151.506 151.577 9.292

2000

design 1 0.033 0.246 0.263 0.182 0.009 0.073 0.073 0.051

design 2 0.035 0.316 0.317 0.191 0.099 0.437 0.987 0.823

design 3 0.036 0.325 0.337 0.201 0.157 0.631 1.909 1.711

design 4 0.036 0.344 0.367 0.204 0.277 178.573 179.403 10.498

4000

design 1 0.024 0.188 0.208 0.148 0.006 0.051 0.051 0.037

design 2 0.026 0.233 0.236 0.155 0.092 0.311 0.843 0.749

design 3 0.029 0.255 0.263 0.154 0.154 0.409 1.718 1.621

design 4 0.032 0.259 0.285 0.166 0.275 531.936 532.125 9.842
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Table 2: Performance Comparisons for β̂

Estimators with bundles Estimators assuming no bundles

N Design
Two-Step Est. Parametric Est. FE Logit Est. Semi. Est.
rMSE MAD rMSE MAD rMSE MAD rMSE MAD

1000

design 1 0.113 0.078 0.077 0.049 0.137 0.093 0.143 0.107

design 2 0.110 0.077 0.124 0.083 0.208 0.133 0.139 0.106

design 3 0.113 0.073 0.131 0.074 0.149 0.099 0.149 0.120

design 4 0.116 0.075 0.127 0.088 0.228 0.148 0.152 0.122

2000

design 1 0.091 0.065 0.052 0.035 0.098 0.066 0.106 0.082

design 2 0.087 0.060 0.101 0.075 0.168 0.131 0.103 0.069

design 3 0.087 0.056 0.087 0.063 0.111 0.069 0.112 0.079

design 4 0.086 0.058 0.112 0.085 0.175 0.122 0.108 0.076

4000

design 1 0.070 0.047 0.035 0.024 0.070 0.046 0.075 0.047

design 2 0.071 0.049 0.090 0.071 0.145 0.122 0.073 0.054

design 3 0.065 0.043 0.084 0.071 0.076 0.053 0.078 0.049

design 4 0.071 0.048 0.109 0.089 0.154 0.129 0.081 0.051

Table 1 compares the performance of the two-step estimator with the parametric esti-

mator for the complementarity parameter γ0. The parametric estimator performs better

only when its assumptions are correctly specified (design 1), but has a worse performance

under misspecifications (designs 2-4) especially when the parametric distribution and the

model of fixed effects are both misspecified. The two-step estimator has uniform per-

formance in all of the four designs, showing its advantage of performing robustly under

different designs of parametric distributions and models of fixed effects. Moreover, as the

sample size increases, the deviation and bias of the two-step estimator both shrink signif-

icantly. However, the performance of the parametric estimator does not improve as the

sample increases in designs 2-4, which shows the inconsistency of this estimator under

misspecifications.

Table 2 compares the performance of the two-step estimator with three other estimators

described before for the coefficient β0 under the four designs. First, the two estimators

that allow for bundles perform uniformly better than the two other estimators assuming

no bundles in all designs. This demonstrates that allowing for the purchase of bundles is

not only crucial for estimating substitution patterns, but also important for estimating the

coefficient β0. Moreover, similar to Table 1, the two-step estimator performs better than

the other three estimators in designs 2-4 and the difference becomes more significant as the
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sample size increases. In summary, the results in Table 1 and Table 2 show the advantage

of the two-step estimator in performing robustly with respect to parametric distributions

or specifications of dependence structures between covariates and fixed effects.

6 Empirical Illustration

As an empirical illustration of my approach, I estimate the substitution pattern between

cigarettes and e-cigarettes as well as the price coefficients of the two goods. This paper

focuses on settings where researchers have access to individual-level panel data of multi-

nomial choices. However, in many scenarios, only aggregate data such as store-level sales

data are available. I first present the identification results when only store-level panel data

are observed.

6.1 Aggregate Panel Multinomial Choice Model

In the aggregate data, the observed variables include: Xrjt which denotes store r’s char-

acteristics of good j at time t (e.g., prices and display); qrjt which denotes store r’s sales

of product j at time t; and Zr which denotes store r’s characteristics related to the com-

plementarity (e.g., demographic information of the store). Under the limitation of only

observing store-level data, I assume that agents who purchase products from the same

store have the same covariates (Xrjt, Zr) and agents visit the same store over time. The

store-specific fixed effects ηr can be allowed in the paper by using a stationarity condition

conditional on the fixed effects ηr.

Let Xrt = (XrAt, XrBt) collect the covariates for goods A and B, and let E[qrjt | xs, xt, z]
denote store r’s expected sales of good j at time t conditional on (Xrs, Xrt) = (xs, xt) and

Zr = z. Recall that ∆s,tδj = x′sβ0−x′tβ0 denotes variation in the covariate index over time.

The next proposition presents the identification results of the parameter θ0 with store-level

data.

Proposition 3. Under Assumptions 1-3, the following conditions hold for any (xs, xt, z),

` ∈ {A,B}, and s 6= t ≤ T :
E
[
qr`s | xs, xt, z

]
> E

[
qr`t | xs, xt, z

]
=⇒

{∆s,tδ` > 0} ∨
{

∆s,t

(
δ` + sign(Γ(z, γ0))δ`−1

)
> 0, |Γ(z, γ0)| > −∆s,tδ`

}
;

E
[
qrOs | xs, xt, z

]
> E

[
qrOt | xs, xt, z

]
=⇒ {∆s,tδA < 0} ∨ {∆s,tδB < 0}.
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Proposition 3 characterizes identifying restrictions for the parameter θ0 with store-level

sales and covariates. The main difference between store-level data and individual-level

data is that in store-level data, only the demand for one good is observed but whether

two goods are consumed together or consumed alone is not distinguishable. Therefore,

Proposition 3 only exploits information of the demand for goods A and B to identify the

substitution pattern Γ(z, γ0), while the results derived from the probabilities of buying two

goods together or buying a single good in Proposition 1 does not apply with store-level

data.

6.2 Application

Since the introduction of e-cigarettes to the U.S. market in 2007, their effect on the con-

sumption of traditional cigarettes has been widely discussed. To learn this effect, it is cru-

cial to discover the substitution relationship between cigarettes and e-cigarettes. However,

this relationship still keeps ambiguous. Some research papers such as Stoklosa, Drope, and

Chaloupka (2016) and Zheng, Zhen, Dench, and Nonnemaker (2017) show that cigarettes

and e-cigarettes are substitutes, while other papers including Cotti, Nesson, and Tefft

(2018) and Zhao (2019) find the complementarity between the two goods.

I investigate the substitution pattern between cigarettes and e-cigarettes using the

approach developed in this paper. The data I use is the Nielsen Retail Scanner Data,

which contains weekly store-level information of sales and prices of cigarettes, e-cigarettes,

and other tobacco products in the United States. I focus on the year 2019 which is the

most recent period in the Nielsen data. It contains T = 52 weeks of store-level sales and

prices information. As shown in Proposition 3, comparisons from any two weeks of data

can be used to estimate the substitution patterns. In the 52 weeks during 2019, there are

around N = 13000 stores that sell both cigarettes and e-cigarettes in all panels of weeks.

The Nielsen data records more than 9000 UPCs (universal product code) of cigarettes

that are sold in packs and cartons. There are around 500 UPCs of e-cigarettes that mainly

include refill cartridges for rechargeable e-cigarettes and disposable e-cigarettes. I aggregate

the sales of all UPCs of cigarettes and e-cigarettes to the store level and calculate the

weighted average prices of the two goods. In addition, I aggregate the two other main

tobacco products, chewing tobacco and cigars, as the outside option for people who have

nicotine dependence.

There are three products: cigarettes, e-cigarettes, and the outside option. The covari-

ates Xrjt and sales qrjt denote the prices and sales of good j purchased in store r at time

t. Table 3 shows the summary statistics of the covariates of cigarettes and e-cigarettes.
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Table 3: Summary Statistics

cigarettes e-cigarettes

price sales ratio price sales ratio

min 3.913 0.187 0.590 0.001

max 25.813 0.992 47.990 0.635

mean 7.105 0.801 13.569 0.045

std 1.338 0.089 3.114 0.039

Let β̂C , β̂E denote estimators of price coefficients of cigarettes and e-cigarettes respec-

tively. Let Γ̂ denote the estimator of the substitution pattern between the two goods, which

is assumed to be the same across all stores. I normalize the price coefficient of cigarettes

to be one: |βC | = 1. The following table displays results by randomly choosing ten and

twenty weeks of data.

Table 4: Estimation Results

price coefficient substitution pattern

Periods β̂C β̂E Γ̂

T = 10 -1 [-1.453, -1.241] [−∞,−5.832]

T = 20 -1 [-1.517, -1.306] [−∞,−8.331]

The estimation results in Table 4 show that cigarettes and e-cigarettes are substitutes

by using the aggregate data. Since the store-level data does not contain information about

whether cigarettes and e-cigarettes are purchased together or alone, the lower bound for

the complementarity parameter cannot be provided. In this application, I focus on the

substitution pattern for the average population since I only have access to the store-level

data. If individual-level panel data were available, my model would allow for heterogeneous

substitution patterns through consumers’ covariates.
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7 Extension: Nonseparable Utility Functions

7.1 Identification

In the baseline model, I consider an additive and separable utility function which is com-

monly used in the literature on discrete choice models. This section studies a more general

class of utility functions that can be nonseparable between observed covariates and unob-

served heterogeneity. This class of utility functions can allow flexible interactions between

observed covariates and unobserved terms.

Similar to model (1), the utility for consumer i from selecting choice j at time t is

specified as follows:

uiAt = u(X ′iAtβ0, αiA, εiAt),

uiBt = u(X ′iBtβ0, αiB, εiBt),

uiABt = uiAt + uiBt + Γit,

uiOt = 0,

(3)

where the utility function u still depends on the three crucial components: the covariate

index X ′ijtβ0; unobserved agent-level fixed effects αij; and unobserved error terms εijt.

Distinct from model (1), here I do not impose the separability restriction on the utility

function and the function u can be potentially unknown to econometrician.

This utility function in model (3) has also been studied in Gao and Li (2020). Their

paper does not allow for the purchase of bundles and focuses on identification of the

coefficient β0. My paper allows for the bundle of two goods and focus on identification

results for the substitution pattern Γit between the two goods. Following Gao and Li

(2020), I assume a monotonicity assumption on the utility function with respect to the

covariate index X ′ijtβ0.

Assumption 9. (Weak Monotonicity) The utility u(δ, α, ε) is weakly increasing in the

index δ for every realization (α, ε), i.e.

for any (α, ε), u(δ̃, α, ε) ≥ u(δ, α, ε) if δ̃ ≥ δ.

Assumption 9 only requires monotonicity with respect to the covariate index, but im-

poses no restrictions on unobserved fixed effects and error terms. The additively separable

utility function in model (1) is nested in this assumption. The utility function in model (3)

not only admits flexible interactions between observed characteristics and unobserved het-

erogeneity, but also allows for nonlinear functions of the covariate Xijt such as exponential

functions or higher-order polynomial functions.
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The next proposition characterizes the sharp identified set for the parameter θ0 under

model (3).

Proposition 4. Under model (3) and Assumptions 1-3 & 9, the sharp identified set for θ0

is the set of parameters that satisfy the following conditions: ∀(xs, xt, z) and ∀s 6= t ≤ T ,

(1) comparisons of CCP of the choice j ∈ C,

Ps({j} | xs, xt, z) > Pt({j} | xs, xt, z) =⇒{
(−1)1[j∈DA]∆s,tδA < 0

}
∨
{

(−1)1[j∈DB ]∆s,tδB > 0
}

;

(2) comparisons of the demand for good ` ∈ {A,B}, and let `−1 6= ` ∈ D`,

Ps(D` | xs, xt, z) > Pt(D` | xs, xt, z) =⇒

{∆s,tδ` > 0} ∨
{

sign(Γ(z, γ0))∆s,tδ`−1 > 0
}
.

Similar to Proposition 1, Proposition 4 derives identifying conditions for the parameter

θ0 using intertemporal variation in conditional choice probabilities over any two periods.

It is not surprising that the identified set in Proposition 4 is wider compared to the result

in Proposition 1 since model (3) allows for a larger class of utility functions. The main

difference between the two models is: model (1) imposes restrictions on both the direction

and the degree of how covariate indices affect agents’ utility uijt; model (3) only assumes

the monotonicity assumption but is flexible about the degree of how covariate indices affect

the utility.

7.2 Testing Complementarity

The previous sections focused on identification results for substitution patterns. This

section develops a method to test the complementarity (or substitutability) relationship

between the two goods. To convey the idea, I assume that the complementarity Γit = Γ0

is constant across agents; the analysis can be extended to the case where Γit depends on

observed covariates in Assumption 1.

I first consider testing the nonnegative complementarity Γ0 ≥ 0 between the two goods,

so the first pair of hypotheses is given as:

H0 : Γ0 ≥ 0 H1 : Γ0 < 0.
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The main idea of testing H0 is that under the null hypothesis H0 and the alternative

hypothesis H1, increasing the utility of one good affects the demand for the other good in

different directions. When the two goods are complements (H0), increasing the covariate

index of good A will motivate agents to purchase the bundle and thus increase the demand

for good B. When the two goods are substitutes (H1), increasing the covariate index of of

good A will encourage consumers to buy good A only and decrease the demand for good

B.

Therefore, the first step to test the complementarity is to infer the sign of covariate

indices of two goods. Let ξ1
s,t(xs, xt) denote an indicator for increasing probabilities for all

choices j ∈ {A,B,AB} conditional on (Xis, Xit) = (xs, xt), which is defined as

ξ1
s,t(xs, xt) = 1

{
Ps({j} | xs, xt)− Pt({j} | xs, xt) ≥ 0, ∀j ∈ {A,B,AB}

}
.

As shown in Proposition 1, increasing conditional probabilities for all choices j ∈
{A,B,AB} imply that the covariate indices for the two goods both increase:

ξ1
s,t(xs, xt) = 1 =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≥ 0.

Under the null hypothesis of the two goods being complements, increasing the covariate

indices of both goods would imply increasing demand for both goods which generates

testable implications for the null hypothesis. When a decreasing demand for either good

is observed, it can be inferred that the two goods are substitutes and the null hypothesis

is rejected.

Proposition 5. Under model (3) and Assumptions 3 & 9, the null hypothesis H0 implies

the following conditional moment inequality: ∀(xs, xt), ∀` ∈ {A,B},∀(s, t) ≤ T ,

E
[
ξ1
s,t(xs, xt)

(
1{Yis ∈ D`} − 1{Yit ∈ D`}

) ∣∣ xs, xt] ≥ 0.

Proposition 5 has provided testable implications for the null hypothesis H0 by charac-

terizing conditional moment restrictions of the parameter that only depend on observed

variables. Therefore, the null hypothesis can be tested by directly testing the above con-

ditional moment inequalities. Moreover, the results in Proposition 5 are derived under the

utility functions in model (3), so they are robust to a class of nonseparable utility functions.

Tests for the substitutability between the two goods can be conducted similarly. The
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pair of hypotheses is described as follows:

H ′0 : Γ0 ≤ 0 H ′1 : Γ0 > 0.

The distinction from testing H0 is that the relationship between the demand for one

good and the covariate index of the other good is different under the new null hypothesis

H ′0. To characterize the testable implications of the new null hypothesis, I consider the

covariates such that the covariate index of good A increases and of good B decreases. Let

ξ2
s,t(xs, xt) = 1

{
Ps({j} | xs, xt)−Pt({j} | xs, xt) ≥ 0, ∀j ∈ {A,AB,O}

}
indicate increasing

conditional probabilities for all choices j ∈ {A,AB,O}, implying

ξ2
s,t(xs, xt) = 1 =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≤ 0.

Given the above sign of covariate indices for the two goods, the conditional demand

for good A should increase and the demand for good B should decrease under the null

hypothesis of the two goods being substitutes. The next proposition characterizes the

testable implications of the null hypothesis H ′0.

Proposition 6. Under model (3) and Assumptions 3 & 9, the null hypothesis H ′0 implies

the following conditional moment inequalities: ∀(xs, xt) and ∀(s, t) ≤ T ,E
[
ξ2
s,t(xs, xt)

(
1{Yis ∈ DA} − 1{Yit ∈ DA}

) ∣∣ xs, xt] ≥ 0;

E
[
ξ2
s,t(xs, xt)

(
1{Yis ∈ DB} − 1{Yit ∈ DB}

) ∣∣ xs, xt] ≤ 0.

7.3 Latent Complementarity

The previous sections focused on the case where heterogeneity in the complementarity Γit

only comes from observed covariates: Γit = Γ(Zi, γ0). This section allows for unobserved

heterogeneity in the complementarity across individuals. The latent complementarity term

Γit can be a random variable with an unknown distribution.

In this section, the sign of Γit can be different for each individual regardless of their

covariates and it captures the heterogeneous complementarity relationship among the two

goods for each individual. Therefore, I focus on identifying the distribution of the sign of

Γit which represents the fraction of people for whom the two goods are complements or

substitutes.

Next, I introduce some assumptions for the complementarity Γit and the error terms.
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Assumption 10. The joint distribution of (εit,Γit) conditional on (αi, Xis, Xit) is station-

ary over time:

(εis,Γis) | Xis, Xit, αi
d∼ (εit,Γit) | Xis, Xit, αi for any s, t ≤ T.

Assumption 10 is similar to the stationarity assumption 3, except it also assumes a

stationarity condition for the complementarity Γit. Under Assumption 1 which assumes

that the complementarity Γit only depends on covariates, Assumption 10 degenerates to the

stationarity condition in Assumption 3 since Γit is a constant conditional on the covariate.

Assumption 10 only requires that the distribution of Γit is stationary over time, but it

still allows the complementarity Γit for each individual to vary over time. Moreover, this

assumption does not restrict the correlation relationship between the complementarity Γit

with other unobserved terms, including the fixed effects αi and the error terms εit.

Let Xi = (Xit)
T
t=1 collect the covariate of all time periods.

Assumption 11. The complementarity Γit is independent of the covariate Xi conditional

on the fixed effects αi: Γit ⊥⊥ Xi | αi.

Assumption 11 assumes the independence between the complementarity Γit and the

vector of covariates for all periods. Variation in all covariates can be used to identify the

distribution of the complementarity Pr(Γit ≥ 0). This assumption can be relaxed to the

scenario in which there is a subset of covariates that are independent of Γit while other

covariates can be correlated with Γit. In this case, the analysis is conducted conditional on

the covariates that are potentially correlated with the complementarity.

Under the above assumptions, I establish identification of the fraction of individuals

for whom the two goods are complements, denoted as η = Pr(Γit ≥ 0). According to

Assumption 10, the distribution of Γit is stationary over time so that η does not depend

on t. The identification result for Pr(Γit < 0) can be directly derived using the formula

Pr(Γit < 0) = 1− Pr(Γit ≥ 0) so it is skipped here.

The idea of the identification strategy for η is described as follows. The conditional

demand for one good can be expressed as a mixture of two groups: people for whom the

two goods are complements (Γit > 0) and people for whom the two goods are substitutes

(Γit < 0). Variation in covariate indices of one good affects the demand for the other good

for the two groups of people in different directions, which can help identify the fraction of

people for whom the two goods are complements.

Similar to Section 7.2, the first step is to derive the sign of covariate indices (∆s,tδA,∆s,tδB).

Let X 1
s,t = {(xs, xt) | ξ1

s,t(xs, xt) = 1} and X 2
s,t = {(xs, xt) | ξ2

s,t(xs, xt) = 1} denote the col-
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lection of covariates such that ξ1
s,t(xs, xt) = 1 and ξ2

s,t(xs, xt) = 1 respectively, implying

(xs, xt) ∈ X 1
s,t =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≥ 0,

(xs, xt) ∈ X 2
s,t =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≤ 0.

I first consider that the covariate indices for goods A and B both increase: (xs, xt) ∈
X 1
s,t. In this case, the demand for the two goods increases for people for whom the two

goods are complements, but may decline for people for whom the two goods are substitutes.

Therefore, a decreased demand for either of the two goods in data can only come from

people with Γit < 0, which can help establish a lower bound for the fraction of people with

Γit < 0 and thus an upper bound for the fraction of people with Γit ≥ 0. Similarly, a lower

bound for the fraction of people for whom the two goods are complements can be provided

when covariates satisfy (xs, xt) ∈ X 2
s,t.

The next proposition characterizes identification results for η = Pr(Γit ≥ 0).

Proposition 7. Under model (3) and Assumptions 9-11, η can be bounded as η ∈ [Lη, Uη],

where

Lη = sup
(xs,xt)∈X 2

st,`∈{A,B},s,t≤T

{
(−1)1{`=A}[Ps(D` | xs, xt)− Pt(D` | xs, xt)]

}
,

Uη = inf
(xs,xt)∈X 1

st,`∈{A,B},s,t≤T

{
Ps(D` | xs, xt)− Pt(D` | xs, xt)

}
+ 1.

Proposition 7 establishes both lower and upper bounds for η by exploiting variation in

the demand for the two goods under different sets of covariate indices. From the formulas

for the lower and upper bounds, we can see that they have used variation in the demand

over any two periods and all values of covariates. The results in Proposition 7 also provide

testable implications for Assumptions 9-11 since the results imply that the upper bound

should be no smaller than the lower bound: Uη ≥ Lη.

Allen and Rehbeck (2020) also discuss latent complementarity and provide bounds for

the fraction of the population for whom the two goods are complements with cross-sectional

data. Their paper mainly relies on an exclusion restriction: there exists one covariate that

only affects the utility of good A but not good B. Also, their paper requires an indepen-

dence assumption between the covariates and all unobserved terms. As a complement to

this paper, my paper considers panel data setting and mainly exploits intertemporal varia-

tion over time. My method allows covariates to be arbitrarily dependent with unobserved

fixed effects. In addition, the analysis in this paper does not require an exclusion restriction

and can still (partially) identify η when covariates of both goods change simultaneously.
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8 Conclusion

This paper characterizes sharp identification of a panel multinomial choice model allowing

for bundles and provides novel identification results for substitution patterns between two

goods. The model in this paper allows for the possibility that two goods are either sub-

stitutes or complements and admits heterogeneous complementarity relationships through

observed covariates. The primary identification strategy is to derive identifying restrictions

on unknown parameters through intertemporal variation in conditional choice probabilities

that are identified from data.

My identification analysis does not assume parametric distributions over idiosyncratic

error terms and allows for endogeneity by admitting flexible dependence structures between

observed covariates and unobserved fixed effects. Based on the identification analysis, a

two-step consistent estimator is proposed that is shown via Monte Carlo simulations to

perform more robustly than a parametric estimator. As an empirical illustration, I estimate

the substitution pattern between cigarettes and e-cigarettes. The estimation result suggests

that they are substitutes. In the extension, I also study identification under a nonseparable

utility function, provide methods to test complementarity, and develop identification under

latent complementarity.

My work focuses on substitution patterns between two goods. The idea can apply to

the case of more than two goods when consumers only purchase bundles of two goods and

the complementarity between any pair of two goods is the same. Determining whether

and how the identification strategy in this paper can be extended to a more general case

requires additional research. When there are more than two goods, the variation in the

covariate index of one good can affect the demand for another good directly through

their complementarity and also indirectly through the complementarity with other goods.

Therefore, there are multiple channels and interactions affecting the demand for any single

good with more than two goods that makes the identification analysis challenging. In

addition, this paper considers consumers’ choice sets to be homogeneous, it would be

interesting to investigate how to identify the complementarity and utility coefficients with

heterogeneous and unknown choice sets.
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A Appendix

In the following proofs, I will suppress the covariate Zi and use Γ0 to denote the incremental

utility Γ(Zi, γ0).

A.1 Proof of Lemma 1

Proof. Lemma 1 contains two results to be shown: Γ0 ≥ 0 implies sAB ≤ 0, and Γ0 ≤ 0

implies sAB ≥ 0. I will show the proof for the first result, and the same idea can be applied

to the second case.

Suppose that the complementarity term is positive Γ0 ≥ 0 and I need to show sAB ≤ 0.

From the definition of sAB, proving sAB ≤ 0 is equivalent to showing that whenever

pBs > pBt, Pr(Yis ∈ DA | pBs, pBt, x̃) ≤ Pr(Yit ∈ DA | pBs, pBt, x̃). Since x̃ is fixed over

time which does not affect variation in conditional choice probabilities, it is suppressed in

this proof.

Let β0,p ≤ 0 denote the coefficient for price p`t. Let vi`t = αi` + εi`t for ` ∈ {A,B}.
Then the utility for good B can be expressed as uiBt = pBtβ0,p + viBt and for good A is

uiAt = viAt since all other covariates for good A are suppressed.

Let VDA
(pBt) denote the collection of v = (vA, vB) such that there exists one choice in

DA = {A,AB} being chosen conditional on the price pBt. The set VDA
(pBt) includes two

parts: either choice A or choice AB has higher utility than other options not in DA. So it

can be expressed as follows:

VDA
(pBt) =

{
v | vA ≥ pBtβ0,p + vB, vA ≥ 0

}
≡ V1(pBt)

∪
{
v | vA + Γ0 ≥ 0, vA + pBtβ0,p + vB + Γ0 ≥ 0

}
≡ V2(pBt).

The demand for good A conditional on fixed effects and prices can be expressed as

follows:

Pr(Yit ∈ DA | αi, pBs, pBt) = Pr(vit ∈ VDA
(pBt) | αi, pBs, pBt).

Under the stationarity condition (Assumption 3), the conditional distribution of vit is

stationarity over time since the conditional distribution of εit is the same over time and

the fixed effects αi are constant. Therefore a larger set would imply a higher probability

of choosing the larger set over time as follows:

VDA
(pBs) ⊆ VDA

(pBt) =⇒ Pr(Yis ∈ DA | αi, pBs, pBt) ≤ Pr(Yit ∈ DA | αi, pBs, pBt).

By taking expectations with respect to the fixed effects αi conditional on covariates,
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the above condition leads to:

VDA
(pBs) ⊆ VDA

(pBt) =⇒ Pr(Yis ∈ DA | pBs, pBt) ≤ Pr(Yit ∈ DA | pBs, pBt).

Under the above condition, Lemma 1 is proved if whenever pBs > pBt, it implies

VDA
(pBs) ⊆ VDA

(pBt). To prove VDA
(pBs) ⊆ VDA

(pBt), I am going to show that for

any element v ∈ VDA
(pBs), it satisfies v ∈ VDA

(pBt). The proof will proceed by discussing

two cases: v ∈ V1(pBs) and v ∈ V2(pBs).

Case 1: v ∈ V1(pBs). If v satisfies vA ≥ pBtβ0,p + vB then v ∈ V1(pBt). Otherwise v

should satisfy

vA < pBtβ0,p + vB, vA ≥ 0.

Since Γ0 ≥ 0, it has the following implication:

vA + Γ0 ≥ 0, (vA + Γ0) + pBtβ0,p + vB > (vA + Γ0) + vA ≥ 0.

Therefore we know that v ∈ V2(pBt) ⊆ VDA
(pBt).

Case 2: v ∈ V2(pBs). According to the definition of the set V2(pBs), it is decreasing

with pBs given β0,p ≤ 0. Since pBs > pBt, it implies v ∈ V2(pBs) ⊆ V2(pBt).

In summary, I have shown that for any element v ∈ VDA
(pBs), it satisfies v ∈ VDA

(pBt)

when pBs > pBt. Therefore I conclude that Γ0 ≥ 0 implies sAB ≤ 0.

A.2 Proof of Proposition 1

Proof. Let vi`t = αi` + εi`t for ` ∈ {A,B} denote the sum of the fixed effects and the error

term. For any set K ⊂ C, let VK(xt) denote the collection of v = (vA, vB) such that there

exists one choice in K ⊂ C being chosen conditional on Xit = xt. Let vAB = vA + vB + Γ0

and vO = 0 denote the error term for the bundle AB and the outside option respectively.

The set VK(xt) can be expressed as follows:

VK(xt) =
{
v | ∃j ∈ K s.t. δjt + vj ≥ δkt + vk for all k ∈ Kc

}
.

where δ`t = x′`tβ0 for ` ∈ {A,B}, δABt = δAt + δBt, and δOt = 0.

Tthe conditional probability that there exists one choice in the set K being chosen can

be expressed as follows:

Pr(Yit ∈ K | αi, xs, xt) = Pr
(
vit ∈ VK(xt) | αi, xs, xt

)
.
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Under the stationarity assumption, the conditional distribution of vit is stationarity

over time since the fixed effect αi is constant over time. Therefore a larger set VK(xt)

implies a larger conditional choice probability over time:

VK(xs) ⊆ VK(xt) =⇒ Pr(Yis ∈ K | αi, xs, xt) ≤ Pr(Yit ∈ K | αi, xs, xt). (4)

Now I will provide sufficient conditions on the parameter θ0 for the set relationship

VK(xs) ⊆ VK(xt), which would imply a decreasing conditional probability of the set K

over time. Then by contraposition, identifying restrictions for θ0 can be derived from

increasing choice probabilities over time. Proposition 1 includes three parts of identifying

restrictions, I will show the proof for each part one by one in detail.

Part 1: comparisons of the conditional probability of a single good j ∈ C over time.

According to the definition of the set Vj(xt), it is increasing with respect to δjt − δkt for

k 6= j. So when the covariate index of choice j compared to all other choices decreases over

time, it implies the following set relationship:

δjs − δks ≤ δjt − δkt ∀k 6= j =⇒ Vj(xs) ⊆ Vj(xt).

Plugging into the notation ∆s,tδj = δjs − δjt and condition (4), the above equation can

be rewritten as follows:

∆s,tδj −∆s,tδk ≤ 0 ∀k 6= j =⇒ Pr(Yis = {j} | αi, xs, xt) ≤ Pr(Yit = {j} | αi, xs, xt).

By contraposition and taking expectation of αi conditional on the covariate (xs, xt), it

yields the first identifying restriction in Proposition 1:

Ps({j} | xs, xt) > Pt({j} | xs, xt) =⇒ ∃ k 6= j s.t. ∆s,tδj −∆s,tδk > 0.

Part 2: comparisons of the demand for good ` ∈ {A,B} over time. I take good A as

an example to show the proof. The set VDA
(xt) can be expressed as the union of the two

sets as follows: the set of choice A and the set of choice AB generating higher utility than

other choices not in DA,

VDA
(xt) =

{
v | δAt + vA ≥ δBt + vB, δAt + vA ≥ 0

}
≡ V1(xt)

∪
{
v | δAt + vA + Γ0 ≥ 0, δAt + δBt + vAB ≥ 0

}
≡ V2(xt).

Now I look at the contrapositive statement of condition (ID2) in Proposition 1, which

40



is given as follows:{
∆s,tδA ≤ 0, ∆s,t(δA + sign(Γ0)δB) ≤ 0

}
∨
{
|Γ0| ≤ −∆s,tδA} =⇒ VDA

(xs) ⊆ VDA
(xt).

(5)

If the above condition is shown, then similarly condition (ID2) in Proposition 1 is proved

by contraposition and taking conditional expectation over the fixed effect αi. Condition

(5) also depends on the sign of the complementarity Γ0, I focus on the case Γ0 > 0 and the

idea applies to the other case Γ0 ≤ 0. When Γ0 > 0, the restriction on the parameter θ0 in

(5) includes two parts: C1 =
{

∆s,tδA ≤ 0,∆s,t(δA + δB) ≤ 0
}

and C2 = {Γ0 ≤ −∆s,tδA}.
Now I need to show that one of the two conditions C1 ∨ C2 imply VDA

(xs) ⊆ VDA
(xt).

It can be proved by showing that any element v belonging to VDA
(xs) also belongs to

VDA
(xt) under either condition C1 or C2. For any element v ∈ VDA

(xs), I discuss two

cases: v ∈ V1(xs) and v ∈ V2(xs).

Case 1: v ∈ V1(xs). If v satisfies δAt + vA ≥ δBt + vB, then v ∈ V1(xt) since both

condition C1 and C2 implies δAs ≤ δAt. Otherwise v should satisfy the following condition:

δBt + vB > δAt + vA ≥ δAs + vA ≥ 0.

Since the complementarity is nonnegative Γ0 ≥ 0, it has the following implications:

δAt + vA + Γ0 ≥ 0, (δAt + vA) + (δBt + vB) + Γ0 ≥ 0.

Therefore, I conclude that v ∈ V2(xt) ⊆ VDA
(xt).

Case 2: v ∈ V2(xs). I first consider that condition C1 holds. According to the definition

of the set V2(xs), the set increases when the indices of (δAs and δAs + δBs) both increase.

Condition C1 implies an increase in the covariate indices for good A and the sum of two

goods, so it suggests that v ∈ V2(xt).

Now consider that condition C2 holds. For any element v ∈ V2(xs), condition C2 implies

the following condition,

δAt + vA ≥ δAs + Γ0 + vA ≥ 0.

If v also satisfies the second condition in V2(xt) which is δAt + δBt + vA + vB + Γ0 ≥ 0,

so v is shown to belong to the set V2(xt): v ∈ V2(xt). Otherwise v should satisfy

δBt + vB < −(δAt + vA + Γ0) ≤ δAt + vA.

It implies that v ∈ V1(xt). I have shown whenever v ∈ VDA
(xs), it satisfies v ∈ VDA

(xt)
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under either condition C1 or C2.

Part 3: comparisons of the sum of conditional probabilities of two choices over time.

Condition (ID3) includes two parts of identifying restrictions: one is the sum of the con-

ditional probabilities of buying a single good and the other is the conditional probabilities

of buying the bundle and the outside option. I focus on the condition using the sum of the

conditional probabilities of buying a single good.

Similar to the first two parts, I look at the contrapositive statement of condition (ID3)

in Proposition 1. Let C3 = {min
{

∆s,tδA,−∆s,tδB
}
≤ Γ0} and C4 = {∆s,t(δA − δB) ≤ 0},

the contraposition of condition (ID3) is given as:

C3 ∨ C4 =⇒ VA(xs) ⊆ V{A,AB,O}(xt).

where the set VA(xt) and VA,AB,O(xt) can be expressed as follows:

VA(xt) = {v | δAt + vA ≥ 0, δAt + vA ≥ δBt + vB, δBt + vB + Γ0 ≤ 0},

VA,AB,O(xt) = {v | δAt + vA ≥ δBt + vB or δAt + vA + Γ0 ≥ 0 or 0 ≥ δBt + vB}.

First consider that condition C3 holds, which has the following implications:

δAs ≤ δAt + Γ0 or δBs + Γ0 ≥ δBt.

For any element v ∈ VA(xs), condition C3 implies that v ∈ VA(xs) should satisfy:

δAt + vA + Γ0 ≥ 0 or 0 ≥ δBt + vB.

Therefore it is concluded that v ∈ VA,AB,O(xt). When condition C4 holds, it implies that

δAs−δBs ≤ δAt−δBt. So the element v satisfying v ∈ VA(xs) also satisfies δAt+vA ≥ δBt+vB

and we can conclude that v ∈ VA,AB,O(xt).

The analysis for the sum of the conditional probabilities of purchasing the bundle and

the outside option is similar, so I skip the analysis here.

A.3 Proof of Theorem 1

Proof. To prove sharpness, I need to show that for any parameter θ in the identified set

ΘI , I can construct a data generating process such that it matches the observed choice

probabilities and satisfies the conditional stationarity assumption (Assumption 3).
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Let Xi = (Xit)
T
t=1 and Yi = (Yit)

T
t=1 collect covariates and choice variables at all periods.

Let FY |X(j1, j2, ..., jT | x) denotes the joint choice probabilities for jt ∈ C at all periods

t ≤ T conditional on the covariate Xi = x which are identified from data. I set the fixed

effects to be zero αi = 0 and focus on constructing the conditional distribution for the

error term εi | x.

The first requirement of sharpness is that the constructed distribution over error terms

can match the observed choice probabilities FY |X(j1, j2, ..., jT | x) according to model (1):

FY |X(j1, j2, ..., jT | x) = Pr(uijtt ≥ uikt ∀k 6= jt,∀t ≤ T | x). (6)

In the above condition, the left hand term represents the observed choice probabilities

in data and the right hand term represents choice probabilities generated from model (1)

which depends on the constructed distribution of the error terms.

The second requirement is that Assumption 3 is satisfied, which is equivalent to the

following condition conditional on the covariate (Xis, Xit) = (xs, xt):

Pr(εis ∈ K | xs, xt) = Pr(εit ∈ K | xs, xt) for any set K. (7)

Since only consumers’ choices are observed in data, I construct the conditional distri-

bution of εi | x on choice-determining sets. Let Ej(xt) denote the collection of ε = (εA, εB)

such that choice j is selected conditional on the covariate Xit = xt, defined as follows:

Ej(xt) = {ε | ∃j ∈ K s.t. δjt + εj ≥ δkt + εk ∀k ∈ Kc | xt},

where εAB = εA + εB + Γ0 and εO = 0.

The four choice sets {Ej(xt)}j∈C form partitions of the space of εit conditional on xt.

The conditional probability of selecting choice j can be represented as follows:

Pr(Yit = j | xt) = Pr(εit ∈ Ej(xt) | xt).

For any jt ∈ C, condition (6) is satisfied when the conditional probability of εi | x on

sets Ej(xt) is constructed as follows:

FY |X(j1, j2, ..., jT | x) = Pr(εi1 ∈ Ej1(x1), ..., εiT ∈ EjT (xT ) | x). (8)

Now I only need to verify that the stationarity assumption in condition (7) can be

satisfied. To show it, I need to construct a marginal distribution of εit | (xs, xt) which is
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stationary over the two periods (s, t) and also consistent with the marginal distribution

derived from the joint distribution in equation (8).

Equation (8) only restricts the distribution of εit | (xs, xt) on the choice set Ej(xt), but

this set depends on the covariate xt which changes over time. It is difficult to compare the

distributions defined over different sets and guarantee the stationarity assumption. This

issue can be tackled by constructing the marginal distribution on the intersection of the two

choice sets Ej(xs) and Ej(xt) so that I can compare the distribution over different periods

on the same set. Let Jj,k(xs, xt) denote the intersection of the two sets Ej(xs) and Ej(xt),
defined as follows:

Jj,k(xs, xt) = Ej(xs) ∩ Ek(xt).

Let Pt(j | xs, xt) = Pr(Yit = j | xs, xt) denote the marginal probability of choosing j at

time t which is identified from data. To show the stationarity condition (7), it is equivalent

to proving the following conditions: for any j, k ∈ C,

Pr(εis ∈ Jj,k(xs, xt) | xs, xt) = Pr(εit ∈ Jj,k(xs, xt) | xs, xt),∑
k

Pr(εis ∈ Jj,k(xs, xt) | xs, xt) = Ps(j | xs, xt),∑
j

Pr(εit ∈ Jj,k(xs, xt) | xs, xt) = Pt(k | xs, xt).

(9)

The first equation guarantees the conditional stationarity assumption, and the other

two equations ensure that the constructed marginal distribution of εit | (xs, xt) is consistent

with the observed data.

The following proof is conducted conditional on each covariate (xs, xt), and I will sup-

press (xs, xt) for the conditional probabilities to simplify notation. Let rj,k ≥ 0 denote the

probability on the set Jj,k for all j, k ∈ C, and the first condition in (9) is satisfied since

this probability rj,k is time invariant. Then I only need to construct nonnegative rj,k ≥ 0

such that the last two conditions in (9) hold for all j, k ∈ C:∑
k

rj,k = Ps(j),∑
j

rj,k = Pt(k).
(10)

I focus on the case of Γ0 ≥ 0 and the idea applies to the other case of Γ0 < 0. Next

I need to discuss the relationship between the covariate indices and the complementarity

{∆s,tδA,∆s,tδB,∆s,tδAB,Γ0} since this relationship determines the set relationship between
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choice sets.

Case 1: ∆s,tδA ≥ ∆s,tδAB ≥ 0 ≥ ∆s,tδB, and Γ0 ≥ min{∆s,tδA,−∆s,tδB}. From the

proof for Proposition 1 in A.2, the relationship between the covariate indices imply the

following set inclusion relationship:

EJ(xt) ⊆ EJ(xs) for any J ∈ {{A}, {A,AB}, {A,AB,O}},

EB(xt) ⊆ EB,AB,O(xs).

Then by the definition of Jj,k, the above set inclusion relationship implies some sets Jj,k

are empty:

Jk1,A = Jk2,AB = JB,O = JA,B = ∅ for k1 6= A, k2 = {B,O}.

Given the relationship of covariate indices, then the contraposition of conditions (ID1)-

(ID3) in Proposition 1 are equivalent to the following inequalities for choice probabilities:

Pt(A) ≤ Ps(A),

Pt(B) ≥ Ps(B),

Pt(A) + Pt(AB) ≤ Ps(A) + Ps(AB),

Pt(B) + Ps(A) ≤ 1.

(11)

Now I need to show that when the above restrictions (11) hold, then the probabilitiies

rj,k ≥ 0 on nonempty sets Jj,k can be constructed such that (10) holds. The following

displays all probabilities rj,k which are not determined:

rB,B

rO,B rO,O

rAB,B rAB,O rAB,AB

rA,O rA,AB rA,A

Condition (10) requires that the sum of each row of rj,k equals to Ps(j) and the sum of

each column equals to Pt(j). Then the first two probabilities can be determined as follows:

rB,B = Ps(B), rA,A = Pt(A).
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I look at the sum of the probabilities in the first column and second row:

rO,B + rAB,B = Pt(B)− Ps(B),

rO,B + rO,O = Ps(O).

Based on the above conditions, the probability will be constructed as follows:

rO,B = min{Pt(B)− Ps(B), Ps(O)},

rAB,B = Pt(B)− Ps(B)− rO,B,

rO,O = Ps(O)− PO,B.

Similarly I look at the sum of the probabilities in the last row and third column and

the corresponding probabilities can be constructed as:

rA,AB = min{Ps(A)− Pt(A), Pt(AB)},

rA,O = Ps(A)− Pt(A)− rAB,A,

rAB,AB = Pt(AB)− rAB,A.

The last probability rAB,O can be determined by the third row or the second column:

rAB,O =



1− Pt(B)− Ps(A) if Ps(A) ≥ Pt({A,AB}), Pt(B) ≥ Ps({B,O}),

Ps(AB) if Ps(A) ≥ Pt({A,AB}), Pt(B) ≤ Ps({B,O}),

Pt(O) if Ps(A) ≤ Pt({A,AB}), Pt(B) ≥ Ps({B,O}),

Ps({A,AB})− Pt({A,AB}) if Ps(A) ≤ Pt({A,AB}), Pt(B) ≤ Ps({B,O}).

The probabilities rj,k satisfy the condition (10) by construction. Also, the probability

rAB,O is nonnegative from condition (11) and all other probabilities rj,k are nonnegative by

their definitions. The idea of constructing nonnegative probabilities rj,k for the following

cases is similar.

Case 2: ∆s,tδA ≥ ∆s,tδAB ≥ 0 ≥ ∆s,tδB and Γ0 < min{∆s,tδA,−∆s,tδB}, it implies the

following set inclusion relationship:

Jk1,A = Jk2,AB = Jk3,O = ∅ for k1 6= A, k2 = {B,O}, k3 = {B,AB}.

Given the relationship between the covariate indices and the complementarity, the
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contraposition of conditions in Proposition 1 leads to the following:

Pt(A) ≤ Ps(A),

Pt(B) ≥ Ps(B),

Pt(A) + Pt(AB) ≤ Ps(A) + Ps(AB),

Pt(B) + Pt(AB) ≥ Ps(B) + Ps(AB).

(12)

The probability rj,k can be constructed as follows:

rB,B = Ps(B), rA,A = Pt(A),

rO,O = min{Pt(O), Ps(O)}, rO,B = Ps(O)− rO,O, rA,O = Pt(O)− rO,O,

rAB,AB = min{Pt(AB), Ps(AB)}, rAB,B = Ps(AB)− rAB,AB, rA,AB = Pt(AB)− rAB,AB.

By construction, the above probabilities are all nonnegative. The last probability is

determined as rA,B = Ps(A) + Pt(B) − 1 + rAB,AB + rO,O and it can be shown to be

nonnegative rA,B ≥ 0 from condition (12).

Case 3: ∆s,tδA ≥ 0 ≥ ∆s,tδAB ≥ ∆s,tδB. In this case, I also need to discuss Γ0 ≥
min{∆s,tδA,−∆s,tδB}and Γ0 < min{∆s,tδA,−∆s,tδB} which are similar to case 1 and case

2 by exchanging the place of the bundle AB and the outside option O.

Case 4: ∆s,tδAB ≥ ∆s,tδA ≥ ∆s,tδB ≥ 0. The construction is similar to case 2, just

exchange the choice AB with the choice A and exchange the choice B with the outside

option O.

Case 5: 0 ≥ ∆s,tδAB ≥ ∆s,tδA ≥ ∆s,tδB. The construction is the same with case 3 by

exchanging the order of the bundle AB and the outside option O.

Case 6: all other cases are the same as the above cases, except exchanging the place

of the choice A and the choice B.

A.4 Proof of Theorem 2

Proof. I will show the proof for point identification of the coefficient β0 and the idea applies

to the parameter γ0. The first step is to show that for any candidate b 6= kβ0, there exists

some value of the covariate such that the sign of the covariate index ∆X ′i`β for good

` ∈ {A,B} is different under the true parameter β = β0 and the candidate β = b. I take

good A as an example to illustrate the idea.

From Assumption 5, the conditional density of ∆XkA
iA is positive everywhere. Let
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∆X̃iA = ∆XiA \ ∆XkA
iA denote the remaining covariates in ∆XiA and β̃0 denote its co-

efficient. Consider that the coefficient of ∆XkA
iA is positive βkA0 > 0 and the analysis applies

to other cases. For any candidate b, I will discuss three cases: bkA > 0, bkA < 0 and bkA = 0.

Case 1: bkA < 0. When the covariate ∆XkA
iA takes a large positive value ∆XkA

iA =

∆xkAA → +∞ and all other covariates take a value number in their support, then it implies

that ∆xAβ0 > 0 and ∆xAb < 0 since the true coefficient and the candidate coefficient have

different signs βkA0 > 0 and bkA < 0.

Case 2: bkA = 0. For any value ∆XiA = ∆xA, the value of ∆x′Ab is either positive

or nonpositive. First consider that ∆x′Ab > 0 is positive. Then when ∆xkAA takes a large

negative number ∆xkAA → −∞ such that ∆x′Aβ0 < 0 which has a different sign from ∆x′Ab.

Similarly, if ∆x′Ab ≤ 0, there exists ∆xkAA → +∞ such that ∆x′Aβ0 > 0.

Case 3: bkA > 0. From Assumption 5 assuming that the support of the covariate is not

contained in any proper linear subspace, there exits ∆X̃iA = ∆x̃A such that ∆x̃Aβ̃0/β
kA
0 6=

∆x̃Ab̃/b
kA . Suppose that ∆x̃Aβ̃0/β

kA
0 −∆x̃Ab̃/b

kA = k > 0, then when the covariate takes

the value ∆XkA
iA = −∆x̃Ab̃/b

kA−ε with 0 < ε < k. The sign of the covariate index satisfies:

∆x′Aβ0 = βkA0 (k − ε) > 0 and ∆x′Ab = −bkAε < 0. The construction is similar when k < 0.

I have shown that there exists some value of the covariate such that the sign of the

index ∆X ′i`β is different under the true parameter β = β0 and the candidate β = b. From

Assumption 4, the conditional probability of at least one choice changes in strictly different

directions under β0 and b so that β0 is identified. For example, when ∆x′`β0 > 0 and

∆x′`b ≤ 0 for ` ∈ {A,B}, then the conditional probability of choosing AB strictly increases

under β0 and decreases under b. When ∆x′Aβ0 > 0,∆x′Bβ0 < 0 and ∆x′Ab ≤ 0,∆x′Bb ≥ 0,

then the conditional probability of choosing A strictly increases under β0 and decreases

under b. It is similar for the other cases.

A.5 Proof of Theorem 3

Proof. To show Theorem 3, I will invoke Theorem 3.1 in Chernozhukov et al. (2007) which

establish consistency results under condition C.1 in their paper. Condition C.1(a) requires

the parameter space Θ is a nonempty and compact subset of Rd, which is satisfied by

Assumption 8; Condition C.1(b) is about the continuity of the population objective function

Ω; Condition C.1(c) is about the measurability of the sample objective function Ω̂, which

is satisfied by the construction of Ω̂; Condition C.1(d)(e) is about the uniform convergence

of the sample objective function, which can be proved if there exists a sequence aN → ∞
such that supθ∈Θ |Ω̂(θ) − Ω(θ)| = Op(1/aN). Therefore, I only need to show continuity
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of the population objective function Ω and uniform convergence of the sample objective

function Ω̂.

The first step is to verify condition C.1 (b) which is about the continuity of the pop-

ulation objective function Ω. From the definition of the function Ω, for any parameter θ,

the function Ω is only discontinuous when the binary indicators of identifying restrictions

are zero λks,t = 0 for k ∈ K. Assumption 8 implies that the covariate index ∆s,tX
′
i`β0

and the complementarity Γ(Zi, γ0) are both continuously distributed. Then, the scenario

where the binary indicators being zero happens with zero probability. Therefore the pop-

ulation objective function Ω which takes expectations with respect to the covariate Wist is

continuous.

Now I only need to show the uniform convergence of the sample objective function Ω̂

for the proof of consistency. The sample objective function Ω̂ also includes the first-step

estimator P̂t(K | wst) for conditional choice probabilities. So I will decompose the sample

objective function Ω̂ into two parts: the sample objective function with the true conditional

choice probabilities and the remainder. Let Ω̂1(θ) denote the sample function with the true

choice probabilities defined as follows:

Ω̂1(θ) =
1

N

N∑
i

∑
k∈K,s 6=t≤T

[gks,t(Wist, θ)]+.

Then the difference between the criterion function and the sample objective function

supθ∈Θ |Ω̂(θ)− Ω(θ)| can be expressed as follows:

sup
θ∈Θ
|Ω̂(θ)− Ω(θ)| ≤ sup

θ∈Θ
|Ω̂(θ)− Ω̂1(θ)|+ sup

θ∈Θ
|Ω̂1(θ)− Ω(θ)|.

The second term satisfies supθ∈Θ |Ω̂1(θ)− Ω(θ)| = Op(1/
√
N) by the empirical process

theory since the indicator function belongs to the Donsker class. Now I only need to show

the uniform convergence of the first term supθ∈Θ |Ω̂(θ)− Ω̂1(θ)| = Op(1/aN) for a positive

sequence aN →∞.

The sample objective function Ω̂ is aggregating all conditional moment conditions over

all possible choices and periods. I focus one conditional moment condition gjs,t(Wist; θ)

in the sample objective function and the idea applies to other cases. Using the property

|[x1]+ − [x2]+| ≤ |x1 − x2| implies the following condition:

sup
θ∈Θ

1

N

N∑
i=1

∣∣[ĝjs,t(Wist, θ)]+ − [gjs,t(Wist, θ)]+
∣∣ ≤ sup

θ∈Θ

1

N

N∑
i

∣∣ĝjs,t(Wist, θ)− gjs,t(Wist, θ)
∣∣ .
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Plugging into the definition of the function gjs,t leads to the following inequality since

λjs,t is a binary indicator:

gjs,t(Wist, θ) = (Ps({j} | Wist)− Pt({j} | Wist)(1− λjs,t(Wist, θ))

≤ Ps({j} | Wist)− Pt({j} | Wist).

Therefore, the difference between the true and estimated conditional moment function

can be expressed as follows:

sup
θ∈Θ

1

N

N∑
i

∣∣ĝjs,t(Wist, θ)− gjs,t(Wist, θ)
∣∣

≤ 1

N

N∑
i

∣∣∣P̂s({j} | Wist)− Ps({j} | Wist)−
(
P̂t({j} | Wist)− Pt({j} | Wist)

)∣∣∣
≤ sup

i≤N

∣∣∣P̂s({j} | Wist)− Ps({j} | Wist)−
(
P̂t({j} | Wist)− Pt({j} | Wist)

)∣∣∣
=Op(1/aN).

The last equality comes from Assumption 7 which says that the first-step estimator con-

verges uniformly at the rate of aN . In this model, the number of choices and the length

of periods is bounded so that the number of moment conditions in Ω̂ is also bounded.

Therefore, the following condition holds:

sup
θ∈Θ

∣∣∣Ω̂(θ)− Ω̂1(θ)
∣∣∣ = Op(1/aN).

The convergence rate of the sample objective function Ω̂ is derived as follows:

sup
θ∈Θ
|Ω̂(θ)− Ω(θ)| = sup

θ∈Θ
|Ω̂(θ)− Ω̂1(θ)|+ sup

θ∈Θ
|Ω̂1(θ)− Ω(θ)|

=Op(1/
√
N) +Op(1/aN) = Op(1/aN).

I already verified all assumptions in condition C.1. Therefore, the estimator Θ̂ĉN is

shown to be consistent by invoking Theorem 3.1 in Chernozhukov et al. (2007).

A.6 Proof of Proposition 4

Proof. The proof for why conditions (4) and (4) in Proposition 4 hold is similar to the proof

for Proposition 1, so I skip the proof here and only show the sharpness result. The idea
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to show sharpness is similar to the proof for Theorem 1, I need to construct nonnegative

probability rj,k for the set Jj,k such that the following condition holds:∑
k

rj,k = Ps(j),∑
j

rj,k = Pt(k).
(13)

I still focus on the case of Γ0 > 0, and I need to discuss the sign of covariate indices.

Case 1: ∆s,tδA ≥ 0,∆s,tδB ≥ 0. The analysis for the case ∆s,tδA ≤ 0,∆s,tδB ≤ 0 can

be shown by exchanging the place of choice AB and choice O. Given the sign of covariate

indices, it implies the following set relationship:

EAB(xt) ⊆ EAB(xs),

E{`,AB}(xt) ⊆ E{`,AB}(xs) for ` ∈ {A,B}.

Then by the definition of the set f Jj,k, the above set relationship implies the following:

Jk1,AB = Jk2,A = Jk3,B = ∅ for k1 6= AB, k2 /∈ {A,AB}, k3 /∈ {B,AB}.

Also given the sign of covariates index, conditions in Proposition 4 are given as follows:

Pt(AB) ≤ Ps(AB),

Pt(O) ≥ Ps(O),

Pt(`) + Pt(AB) ≤ Ps(`) + Ps(AB) for ` ∈ {A,B}.

(14)

Now we want to show that as long as condition (14) holds, we can construct rj,k ≥ 0

for the nonempty set Jj,k such that condition (13) holds. For ` ∈ {A,B}, the probability

rj,k is constructed as follows:

rO,O = Ps(O), rAB,AB = Pt(AB),

r`,` = min{Pt(`), Ps(`)}, rAB,` = Pt(`)− r`,`, r`,O = Ps(`)− r`,`,

rAB,O = Ps(AB)− Pt(AB)− rAB,A − rAB,B.

It is easy to show that the above probabilities satisfy condition (13). Also by construc-

tion, we can see that all probabilities are nonnegative except rAB,O. Now we look at rAB,O
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which can be simplified as follows:

rAB,O =



Ps(AB)− Pt(AB) if Ps(A) ≥ Pt(A), Ps(B) ≥ Pt(B),

Ps({B,AB})− Pt({B,AB}) if Ps(A) ≥ Pt(A), Ps(B) ≤ Pt(B),

Ps({A,AB})− Pt({A,AB}) if Ps(A) ≤ Pt(A), Ps(B) ≥ Pt(B),

Pt(O)− Ps(O) if Ps(A) ≤ Pt(A), Ps(B) ≤ Pt(B).

Then from condition (14), we know that rAB,O ≥ 0.

Case 2: Now consider ∆s,tδA ≥ 0,∆s,tδB ≤ 0, and the analysis is symmetric for the

case ∆s,tδA ≤ 0,∆s,tδB ≥ 0. Then it implies the following set relationship:

EA(xt) ⊆ EA(xs), EB(xt) ⊇ EB(xs).

Then it implies the following sets Jj,k are empty:

Jk1,A = JB,k2 = ∅ for k1 6= A, k2 6= B.

Also given the sign of covariate indices, conditions in Proposition 4 are givens as follows:

Pt(A) ≤ Ps(A), Pt(B) ≥ Ps(B). (15)

Now we need to show if (15) holds, then I can construct rj,k ≥ 0 on nonempty sets Jj,k

such that condition (13) is satisfied. The probabilities rj,k on nonempty sets are constructed

as follows:

• when Ps(A) ≥ Pt({A,AB,O}),

rA,A = Pt(A), rB,B = Ps(B),

rA,AB = Pt(AB), rAB,AB = 0, rO,AB = 0,

rA,O = Pt(O), rAB,O = 0, rO,O = 0,

rA,B = Ps(A)− Pt({A,AB,O}), rAB,O = Ps(AB), rO,B = Ps(O).
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• when Pt({A,AB}) ≤ Ps(A) < Pt({A,AB,O}), let qs,t = Pt({A,AB,O})− Ps(A),

rA,A = Pt(A), rB,B = Ps(B),

rA,AB = Pt(AB), rAB,AB = 0, rO,AB = 0,

rA,O = Ps(A)− Pt({A,AB}), rAB,O = min{qs,t, Ps(AB)}, rO,O = qs,t − rAB,O,

rA,B = 0, rAB,B = Ps(AB)− rAB,O, rO,B = Ps(O)− rO,O.

• when Pt({A,AB})− Ps(AB) ≤ Ps(A) < Pt({A,AB}),

rA,A = Pt(A), rB,B = Ps(B),

rA,AB = Ps(A)− Pt(A), rAB,AB = Pt({A,AB})− Ps(A), rO,AB = 0,

rA,O = 0, rAB,O = Pt(O)− rO,O, rO,O = min{Ps(O), Pt(O)},

rA,B = 0, rAB,B = Pt(B)− Ps({B,O}) + rO,O, rO,B = Ps(O)− rO,O.

• when Ps(A) < Pt({A,AB})− Ps(AB),

rA,A = Pt(A), rB,B = Ps(B)

rA,AB = Ps(A)− Pt(A), rAB,AB = Ps(AB), rO,AB = Pt({A,AB})− Ps({A,AB})

rA,O = 0, rAB,O = 0, rO,O = Pt(O),

rA,B = 0, rAB,B = 0, rO,B = Pt(B)− Ps(B).

It can be verified that all rj,k are nonnegative under condition (15) and they also satisfy

(13).

A.7 Proof of Proposition 7

Proof. The conditional demand for one good can be expressed a mixture of two groups:

one group is people to whom the two goods are complements Γit ≥ 0 and the other is

people to whom the two goods are substitutes Γit < 0. Therefore, the demand for good A

(B) conditional on the covariate and the fixed effects is given as follows:

Pr(Yit ∈ DA | αi, xs, xt) = Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) Pr(Γit ≥ 0 | αi)+

Pr(Yit ∈ DA | αi, xs, xt,Γit < 0)[1− Pr(Γit < 0 | αi)].

Assumption 11 about the conditional independence of the complementarity Γit implies
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Pr(Γit ≥ 0 | αi, xs, xt) = Pr(Γit ≥ 0 | αi). The main strategy is to use the variation in

the conditional demand for good A over time to bound the probability Pr(Γit ≥ 0 | αi).
First it can be shown that when (xs, xt) ∈ X 1

s,t, the demand conditional on the population

with Γit ≥ 0 increases at time s compared to time t which will be proven later. Also,

the variation in the demand conditional on the population with Γit < 0 can be bounded

by [−1, 1] since it is the difference of two probabilities. Therefore, the variation in the

aggregate demand for good A can be bounded below as follows: for any (xs, xt) ∈ X 1
s,t,

Pr(Yis ∈ DA | αi, xs, xt)− Pr(Yit ∈ DA | αi, xs, xt) ≥ 0 + (−1) ∗ [1− Pr(Γit < 0 | αi)].

By taking expectation over the fixed effect αi conditional on the covariate, the proba-

bility η = Pr(Γit < 0) can be bounded above as follows: for any (xs, xt) ∈ X 1
s,t,

η ≤ Ps(DA | xs, xt)− Pt(DA | xs, xt) + 1.

Since the probability η does not depend on covariates and is stationarity over time under

Assumption 10, it can be bounded by taking infimum over all values of the covariates and

any two periods. Moreover, the variation in the demand for good B can also be exploited

to bound the probability η similarly. Therefore, the upper bound for η can be established

as follows:

η ≤ inf
(xs,xt)∈X 1

s,t,`∈{A,B},(s,t)≤T

{
Ps(D` | xs, xt)− Pt(D` | xs, xt)

}
+ 1 = Uη.

Now I need to show that the probability Pr(DA | αi, xs, xt,Γit ≥ 0) increases at time s

compared to time t when the covariate satisfies (xs, xt) ∈ X 1
s,t. Let vit = εit + αi, and let

VΓ
DA

(xt) denote the collection of (v,Γ ≥ 0) such that either choice A or AB is chosen:

VΓ
DA

(xt) ={(v,Γ ≥ 0) | δAt + vA ≥ δBt + vB, δAt + vA ≥ 0} ≡ VΓ
1 (xt),

∪{(v,Γ ≥ 0) | δAt + vA + Γ ≥ 0, δAt + vA + δBt + vB + Γ ≥ 0} ≡ VΓ
2 (xt).

The conditional demand Pr(DA | xs, xt,Γit ≥ 0) can be expressed as the conditional

probability of the set VΓ
DA

(xt):

Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) = Pr((vit,Γit) ∈ VΓ
DA

(xt) | αi, xs, xt,Γit ≥ 0).

Assumption 10 implies that the distribution (vit,Γit) conditional on (αi, Xis, Xit,Γit) is

stationarity over time. Then I only need to show VΓ
DA

(xt) ⊆ VΓ
DA

(xs) when (xs, xt) ∈ X 1
s,t,
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which has the following implication:

VΓ
DA

(xt) ⊆ VΓ
DA

(xs) =⇒

Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) ≤ Pr(Yis ∈ DA | αi, xs, xt,Γit ≥ 0).

To prove VΓ
DA

(xt) ⊆ VΓ
DA

(xs), I will show that for any element (v,Γ) ∈ VΓ
DA

(xt), it

also satisfies (v,Γ) ∈ VΓ
DA

(xs) when (xs, xt) ∈ X 1
s,t. As shown before, (xs, xt) ∈ X 1

s,t

satisfies δAt ≥ 0, δBt ≥ 0. I discuss two cases to prove the statement: (v,Γ) ∈ VΓ
1 (xt) and

(v,Γ) ∈ VΓ
2 (xt).

Case 1: (v,Γ) ∈ VΓ
2 (xt). According to the definition of the set VΓ

2 (xt), it is increasing

with respect to the covariate index for good A and good B. Therefore it can be inferred

that (v,Γ) ∈ VΓ
2 (xs) since the covariate indices for goods A and B both increase when

(xs, xt) ∈ X 1
s,t.

Case 2: (v,Γ) ∈ VΓ
1 (xt). If v satisfies δAs + vA ≥ δBs + vB, it implies (v,Γ) ∈ VΓ

1 (xs)

since the covariate index for good A increases at time s relative to time t. Otherwise v

should satisfy δAs + vA < δBs + vB. Also the complementarity is nonnegative Γ ≥ 0 since

the set VΓ
1 (xt) only collects nonnegative values of Γ. The following condition holds:

δAs + vA + Γ ≥ δAt + vA ≥ 0, δAs + vA + Γ + δBs + vB ≥ 2(δAs + vA) ≥ 0.

The above condition implies (v,Γ) ∈ VΓ
2 (xs) ⊆ VΓ

DA
(xs). In summary, I have shown

that VΓ
DA

(xt) ⊆ VΓ
DA

(xs) for any (xs, xt) ∈ X 1
s,t, implying that the conditional probability

Pr(Yit ∈ DA | xs, xt,Γit ≥ 0) increases at time s compared to time t.

The proof of the lower bound for η is similar, so I skip the proof here.

B Testable Implications

This section studies the testable implications of the model. To convey the idea, I focus on

the case where the complementarity is constant over consumer: Γit = Γ0; The approach

generalizes to the case where the complementarity depends on observed covariates as shown

in Assumption 1. There are two assumptions in this paper: homogenous complementarity

Γit = Γ0 and stationarity (Assumption 3). I will discuss two types of testable restrictions

for the two assumptions.

The stationarity assumption requires that the error term εit has the same distribution

over two periods conditional on the covariates and fixed effects. Since fixed effects are the
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same over time, variation in conditional choice probabilities only comes from variation in

covariates. So a testable implication of the stationarity assumption is that the conditional

choice probabilities are the same over time when conditional on the same covariates at

the two periods. For any choice j ∈ C and any value x of the covariate Xit, the testable

restriction for the stationarity is described as follows:

Ps({j} | Xis = Xit = x) = Pt({j} | Xis = Xit = x).

Next, I will derive the testable implications for both the stationarity and the homoge-

nous complementarity assumptions. The main idea is that I can derive two different suffi-

cient conditions for two goods being complements Γ0 > 0 or substitutes Γ0 < 0 respectively.

The testable restriction is that at most one of the two sufficient conditions can hold.

I start by introducing sufficient conditions for the two goods being substitutes Γ0 < 0.

The strategy proceeds in two steps: the first step derives the sign of covariate indices

from variation in conditional probabilities of a single choice. The second step establishes

sufficient conditions for the null hypothesis using variation in conditional demand: when

the covariate indices for goods A and B both increase but the demand for good A or B

decreases, this implies that the two goods are substitutes.

When the covariate indices of goods A and B both increase but the demand for good

A or B decreases, this implies that goods A and B are substitutes (Γ0 < 0). Let G1

denote the indicator for decreasing demand for good A or B under the covariates satisfying

(xs, xt) ∈ X 1
s,t:

G1 = 1

{
∃(s, t),∃(xs, xt) ∈ X 1

s,t,∃` ∈ {A,B} s.t. Ps(D` | xs, xt)− Pt(D` | xs, xt) < 0
}
.

When G1 = 1 is observed, the sign of the complementarity Γ0 can be identified as

follows:

G1 = 1 =⇒ Γ0 < 0.

The sufficient conditions for the two goods being complements (Γ0 > 0) can be derived

similarly. When (xs, xt) ∈ X 2
s,t and the demand for good A decreases or the demand for

good B increases, two goods can be inferred to be complements. Let G2 be defined as

follows:

G2 = 1

{
∃(s, t),∃(xs, xt) ∈ X 2

s,t s.t. {Ps(DA | xs, xt)− Pt(DA | xs, xt) < 0}

∨ {Ps(DB | xs, xt)− Pt(DB | xs, xt) > 0}
}
.
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When G2 = 1, two goods are identified as complements:

G2 = 1 =⇒ Γ0 > 0.

Since Γ0 can be either positive or negative, at most one of the two indicators G1,G2 can

hold which leads to the following testable restriction:

G1G2 = 0.

The following proposition summarizes the testable restrictions for the model.

Proposition 8. Under Assumption 3 and Γit = Γ0, the following restrictions hold for any

x ∈ R2dx, j ∈ C, and any (s, t) ≤ T :{
Ps({j} | Xis = Xit = x) = Pt({j} | Xis = Xit = x);

G1G2 = 0.

Proposition 8 establishes testable restrictions for the model in the form of conditional

equalities which only depend on observed variables. The restrictions can be tested using

methods in the literature developed for general conditional moment equalities. Proposition

8 focuses on the case where the complementarity is constant over consumers. When the

complementarity depends on observed covariates Zi, the equalities in Proposition 8 will be

constructed conditional on the covariate Zi = z.
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