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Abstract. We propose a model of network formation based on reinforce-
ment learning, which can be seen as a generalization as the one proposed
by Skyrms [1, 12] for signaling games. On a discrete graph, whose ver-
tices represent individuals, at any time step each of them picks one of its
neighbors with a probability proportional to their past number of commu-
nications; independently, Nature chooses, with an independent identical
distribution in time, which ones are allowed to communicate. Communi-
cations occur when any two neighbors mutually pick each other and are
both allowed by Nature to communicate.

Our results generalize the ones obtained by Hu, Skyrms and Tarrès in
[12]. We prove that, up to an error term, the expected rate of communi-
cations increases in average, and thus a.s. converges. If we define the limit
graph as the non-oriented subgraph on which edges are pairs of vertices
communicating with a positive asymptotic rate, then, for stable configura-
tions, within which every vertex is connected to at least another one, the
connected components of this limit graph are star-shaped and satisfy a cer-
tain balance condition. Conversely, given any stable equilibrium q whose
associated graph satisfies that property, the occupation measure converges
with positive probability to a stable equilibrium in a neighborhood of q
with the same limit graph.

1. Introduction

We introduce and analyse a model of network formation, based on one hand
on a reciprocity condition - we can talk to somebody only if he conversely
wants to talk to us - and on the other hand on a reinforcement learning
procedure - we want to talk more to the ones we already talked to frequently.

Start with a weighted graph G = (V, E,∼), where the vertices in V repre-
sent people, and nonoriented edges in E represent links between them.

Let A := (aij)i,j∈V be a collection of nonnegative real numbers such that,
for any i, j ∈ V, aij = aji, and if aij > 0 then {i, j} ∈ E; aij represents the
affinity between i and j. Let the network GA be the graph G with weights A.

Now consider the following game on the network GA, whose players are the
vertices of G. The game is played in infinitely many rounds (one at each time
step), and each of them consists in the following procedure:

• each vertex i ∈ V chooses one, and only one, of its neighbours j ∼ i;
1
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• Nature independently picks a subset V ⊆ V of vertices, allowed to
communicate;
• if i, j ∈ V are neighbours, i.e. i ∼ j, and if i and j mutually choose

each other, then a communication occurs between them and they both
receive a payoff equal to their affinity aij.

We model the choice by Nature of the set of vertices which are allowed to
communicate at each time step by random independent identical Bernoulli
distributions on the set of subsets of V, denoted by P(V).

More precisely, we let (pV )V ∈P(V) be a family of nonnegative real numbers
such that ∑

V ∈P(V)

pV = 1,

and assume that the sequence of subsets Vn ∈ P(V) chosen by Nature at time
n ∈ N is an i.i.d. sequence of Bernoulli random variables with probability
(pV )V ∈P(V).

Note that, given any two adjacent vertices i, j ∈ V, i ∼ j,

pij :=
∑

V ∈P(V): i,j∈V

pV

is the probability that i and j are both allowed to communicate by Nature at
any time step. By convention, we fix pij = 0 when i � j. The numbers aijpij,
i ∼ j, will be important in the results. In general the nonoriented edges {i, j}
are not chosen independently of each other by Nature.

Let us describe three noticeable choices of (pV )V ∈P(V).
The most obvious one is pV = 1, and pV = 0 if V 6= V, where any adjacent

pair of vertices is allowed to communicate together at any time.
Another natural choice is that of a sequence (pV )V ∈P(V), such that pV 6= 0

if and only if (iff) V = {i}∪{j : j ∼ i} for some i ∈ V: at each time step only
one particular (random) vertex i and its neighbours are allowed by Nature to
communicate together.

The third choice is that of a signaling game, on which the same reinforce-
ment learning procedure was studied in [12]. Let S1 and S2 be two disjoint
subsets spanning V, i.e. V = S1 ∪ S2, S1 ∩ S2 = ∅. Then assume pV 6= 0 iff
V = Vi := {i} ∪ S2 for some i ∈ S1. Then pij > 0 only if i ∈ Sp, j ∈ Sq, p,
q ∈ {1, 2}, p 6= q. In other words the graph on which communications occur
is bipartite in this case, see Figure 1. In [12], the bipartite graph is complete,
and it is assumed that pVi = 1/M1, where M1 is the number of vertices in S1,
but the condition is not required in the current paper.

The game being defined, let us now describe how the individuals pick each
other. The model we consider here is reinforcement learning, a trial-and-error
procedure in which agents are more likely to use the strategies that have
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Figure 1. In the signaling game, S1 and S2 correspond re-
spectively to the sets of states of Nature and signals: the agents
learn to signal, i.e. they create a common language.

given more payoff before, which in our case means that, the more an agent
has already talked to somebody, the more he will be likely to again talk to him.
At each round, each vertex will choose one of its neighbours with a probability
that is proportional to the payoff they shared together so far.

More precisely, for all i, j ∈ V, let us define the cumulative payoff V n
ij (resp.

V n
i ) on the edge {i, j} (resp. vertex i) at time n by

V n
ij = v0

ij + aijN
n
ij,

V n
i =

∑
j∈V:j∼i

V n
ij ,

where v0
ij is a nonnegative constant such that v0

ij > 0 iff i ∼ j, and Nn
ij is

the number of communications that succeeded between i and j at time n. If
i � j, we set V n

ij = 0 for all n. Note that we could have i ∼ j (so that v0
ij > 0)

but aij = 0, in which case V n
ij = v0

ij for all n.
Now we assume that, at each time step, any vertex i ∈ V chooses one of its

neighbours j with probability
V n
ij /V

n
i .

By symmetry, j also chooses i among its neighbours with probability

V n
ij /V

n
j .

Let F := (Fn)n be the filtration generated by the process, i.e

Fn := σ((V 0
ij , ..., V

n
ij ), i, j ∈ V), n ∈ N.

Then, the probability of a communication through an edge ij ∈ E is

P
(
V n+1
ij = V n

ij + aij
∣∣Fn) = pij

(V n
ij )

2

V n
i V

n
j

,(1.1)
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and the communication is considered to be successful if V n+1
ij = V n

ij + aij and
aij > 0.

We have now described our learning procedure of the network game. Ob-
serve that reinforcement learning is one of a number of models of strategic
learning in games, in which players adapt their strategies, with the (possibly
unconscious) aim to eventually maximize their payoffs, amongst for instance
no-regret learning, fictitious play and its variants, and hypothesis testing, see
[22].

In the spectrum of adaptive procedures, reinforcement learning certainly
does not provide an optimal strategy, and rather assumes that players have
bounded rationality. In particular they do not need to know which game the
other agents are playing, or which strategies they are playing. It is therefore
attractive as a simple behavioral model, since it does not require the agents
to be entirely devoted to their task and, in our setting, even to be aware that
they are involved in the formation of a network, but on the contrary just
to observe their effective payoffs. Moreover it accumulates inertia, since the
relative increase in payoff decreases in time, which would make it more stable
with respect to randomness of the payoffs for instance, and in general avoid
instability of the strategies.

Models of network formation using reinforcement learning were already
proposed by Pemantle and Skyrms [18] as follows: each day, each individual
chooses one of his neighbours and talks to him, the communication being
always accepted by the neighbour; then both of them reinforce the probabil-
ity to talk to each other. An important difference is that, in our model, a
reciprocity assumption is made, in the sense that the communication is not
necessarily accepted by the chosen neighbour.
A similar model, with strong reinforcement, has been proposed by Van der
Hofstad et al. in the context neural network formation, see [?].

Let us now summarize the results obtained in this paper, which are de-
scribed in more detail in Section 2. As explained above, the network game
model can be seen as a generalisation of the signaling game [17], on which
the same reinforcement learning procedure was analyzed by Hu, Skyrms and
Tarrès [12]. Our results are generalisations of the ones in [12], and the proofs
adapt their techniques to a more general setting.

The main tools are stochastic approximation techniques. In particular,
we will approach the behavior of some stochastic process by a deterministic
ordinary differential equation (ODE), with the difficulty that the function
governing the ODE is not continuous on the boundary of the simplex on
which it is defined. One could instead show that the process, with a different
system of coordinates, approximates a smooth dynamics, but it would then
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take place in an unbounded domain, which would lead to other technical
difficulties (see Section 4).

First, we prove that there is a Lyapunov function for the deterministic
ODE, which enables us to deduce in Theorem 2.3 the a.s. convergence of the
expected payoff of the random dynamics. Then we prove in Theorem 2.4 that
the occupation measure of the communications converges a.s. to the set of
equilibria of the ODE.

In Proposition 2.9, we show a property which characterizes the stable equi-
libria of the ODE: if we define the limit graph as the non-oriented subgraph on
which edges are pairs of vertices communicating successfully infinitely often,
the connected components of this limit graph are star-shaped components,
in other words core and shell (see Figure 2), satisfying furthermore a bal-
ance condition on the affinities aij and probabilities pij. In particular each
connected component contains a nucleus vertex linked to (one or several)
satellite vertices which are only linked to the nucleus.

In Theorem 2.11 we prove that any graph correspondence with the pre-
ceding property, such that no vertex is falling out of use (see Section 2 for a
precise definition), is a limit configuration with positive probability.

2. Main results

We let Cst(a1, a2, . . . , ap) denote a positive constant depending only on a1,
a2, . . . ap, and let Cst denote a universal positive constant.

Given two real functions f and g defined on a set D, we write f = O(g) iff
there exists a constant C > 0 such that |f(x)| 6 Cg(x) for all x ∈ D.

First, notice that if there is no i, j ∈ V such that aijpij > 0, then we are
the trivial case where no successful communication can ever occur hence the
system is just frozen in its initial configuration. Therefore, we assume that
there exist i, j ∈ V such that aijpij > 0 for the rest of the paper.

For all n ∈ N, define:

Tn :=
∑
i,j∈V

V n
ij ,(2.1)

xnij :=
V n
ij

Tn
, for all i, j ∈ V,

xni :=
V n
i

Tn
=
∑
j∈V

xnij, for all i ∈ V.

Let xn := (xnij)i,j∈V be the occupation measure at time n. Note that
∑

i,j x
n
ij =

1. Moreover, it is straightforward to see that for all i, j ∈ V, j ∼ i, with
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aijpij = 0, we have V n
ij = v0

ij a.s. for all n ∈ N. Hence, for any n ∈ N,

∑
i,j:aijpij>0

xnij = 1−
∑

i,j:aijpij=0

v0
ij

Tn
> 1−

∑
i,j:aijpij=0

v0
ij

T0

=
∑

i,j:aijpij>0

x0
ij =: h1 a.s.

(2.2)

Moreover, h1 > 0 as we assumed that there exists some i, j ∈ V such that
aijpij > 0, which implies v0

ij > 0.
Therefore, the occupation measure xn belongs to the simplex:

∆ :=
{

(xij)i,j∈V :
∑
i,j∈V

xij = 1 and
∑

i,j:aijpij>0

xij > h1,(2.3)

where xij = xji > 0, and xij = 0 if i � j
}
.

Remark 2.1. Let us comment the restriction
∑

i,j:aijpij>0 xij > h1 in the

definition of ∆. This will be useful in the analysis of the equilibria and their
stability done in Section 5. Indeed, without this assumption, we could find
some pathological equilibria which are of no interest for the random process
we study.

In order to define the expected payoff, let us compute the conditional incre-
ment of Tn, for any n ∈ N, recalling (1.1),

E (Tn+1 − Tn| Fn) =
∑
i,j∈V

E
(
V n+1
ij − V n

ij

∣∣Fn) =
∑
i,j∈V

aijpij
(xnij)

2

xni x
n
j

.(2.4)

Definition 2.2. Let H : RV×V+ −→ R+ be the function defined, for all x ∈ ∆,
by

H(x) :=
∑

i,j∈V:xij>0

aijpij
x2
ij

xixj
.

If x ∈ ∆, we call H(x) the expected payoff at x.

In this paper we use stochastic approximation techniques, namely we com-
pare the evolution of the random process (xn) to the behavior of the deter-
ministic dynamics driven by the mean-field ODE

dx

dt
= F (x),(2.5)

where F is a function from ∆ to T∆, tangent space of ∆, which maps x to

F (x) =

[
xij
(
aijpij

xij
xixj

−H(x)
)]

i,j∈V

,
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with the convention that F (x)ij = 0 if xij = 0 and that aijpijx
2
ij/xixj = 0

whenever aijpij = 0. We will make the link between the ODE and the random
process explicit in Section 3.1.

As we will see, H is a Lyapunov function for the ODE (2.5), which should
imply that, up to a small error term, the random process (H(xn))n increases in
average. We are indeed able to show the convergence of (H(xn))n, and hence
the asymptotic linear growth of (Tn)n by conditional Borel-Cantelli Lemma,
see Corollary 3.7. The proof is technical, since the function H is irregular on
the boundary of the simplex.

Theorem 2.3. The expected payoff process (H(xn))n∈N converges almost surely.

The next Theorem 2.4 shows the convergence of (xn)n∈N towards the set of
equilibria of the ODE (2.5), defined by

Γ :=
{
x ∈ ∆ : F (x) = 0

}
.(2.6)

The equilibria are not isolated in general, and this result does not imply the
a.s. convergence of (xn)n∈N, which we could not prove in general.
We call x ∈ ∆ \ ∂∆ a stable equilibrium of the ODE (2.5) iff x ∈ Γ and the
maximum real part of the eigenvalues of the Jacobian matrix of F at x is
nonpositive, see Definition 5.7. This condition is close to the following one: if
the solution of the ODE (2.5) starts near x, it will remain in its neighbourhood
forever (see Section 5 for more detail).

Theorem 2.4. The random processes (F (xn))n∈N and (xn)n∈N respectively
converge a.s. to 0 and to the set of equilibria Γ.

Our next result provides necessary and sufficient conditions for the stability
of equilibria of the ODE.

Let us first define the boundary of the simplex as

∂∆ :=

x ∈ ∆ : ∃i ∈ V s.t.
∑

j∈V:aijpij>0

xij = 0

 .

Note that ∂∆ is not the topological boundary of ∆. If xn → ∂∆, then
one of the vertices falls out of use, in the sense that the frequency of its
communications asymptotically goes to zero. Let us emphasize that we could
have some vertex i falling out of use without making xn converging to ∂∆:
this happens if aijpij = 0 for all j ∼ i.

We characterize in Proposition 2.9 the stable equilibria x ∈ ∆\∂∆ in terms
of a graph structure associated to x.

Let us first introduce some definitions. For any x ∈ ∆, we define a subgraph
Gx of G, with adjacency

x∼, of possible communications between vertices
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associated to x. Then Definition 2.6 will introduce the property corresponding
to the stability of equilibria in ∆ \ ∂∆.

Definition 2.5. Given x ∈ ∆, let Gx be the subgraph of G with vertices in V
and adjacency

x∼ such that i
x∼ j if and only if xij > 0, for all i, j ∈ V.

Definition 2.6. Consider a subgraph G of G, with adjacency
G∼, and let

C1, ..., Cd be its connected components. Let PG be the following property:

(1) ∀m ∈ {1, ..., d}, i, j, k, l ∈ Cm, s.t. i
G∼ j and k

G∼ l, aijpij = aklpkl > 0;
(2) ∀m ∈ {1, ..., d}, Cm contains at most one vertex with several neigh-

bours;
(3) a vertex i ∈ V has a corresponding edge within G if and only if aijpij >

0 for some j ∼ i.

Definition 2.7. Consider a subgraph G of G which satisfies PG. For each
connected component C of G, we define the nucleus vertex of C as the single
vertex i ∈ C which has several neighbours, chosen arbitrarily when C contains
exactly two vertices, or as the single vertex in C when this component consists
of an isolated vertex.

Condition (1) in Definition 2.5 is a balance condition on the affinities within
a connected component, whereas Condition (2) means that each connected
component is star-shaped: if PG holds then within each connected component,

there exists a nucleus vertex i0 such that if j1
G∼ i0 is a satellite vertex, then

j1
G� i for any i 6= i0, see Figure 2. Finally, Condition (3) applied to G = Gx

Figure 2. Stable configuration composed of three star-
shaped connected components

is equivalent to x ∈ ∆ \ ∂∆.

Definition 2.8. Let G be a subgraph of G such that PG holds and let us denote
N the set of its nucleus vertices. We define the set ΓG such that q ∈ ΓG if
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(1) Gq = G and consequently qij = 0⇔ i
G� j;

(2) for any i ∈ N , qi = (ap)i/(2
∑

j∈N(ap)j) where, for any j ∈ N ,

(ap)j = ajkpjk for some/any k
G∼ j;

(3) for any i ∈ N , (qij)j:j G∼i is any collection of positive numbers such that∑
j:j
G∼i
qij = qi.

In particular, ΓG ⊂ ∆ \ ∂∆ and ΓG 6= ∅.

The following result is a consequence of Proposition 5.9 and Proposition
5.13.

Proposition 2.9. Let x ∈ ∆ \ ∂∆. Then, the following assertions are equiv-
alent:

(i) x is a stable equilibrium;
(ii) x is an equilibrium and its associated subgraph Gx satisfies the property

PGx;
(iii) x ∈ ΓG, for some subgraph G satisfying PG.

Remark 2.10. This last result implies that, if PG holds for some subgraph G,
then the set of stable equilibria x with Gx = G is a non-empty continuum .

Theorem 2.11 implies that any subgraph G of G such that PG holds, with
positive probability xn converges to some stable equilibrium x ∈ ∆ \ ∂∆ with
Gx = G; and G is a limit graph in a strong sense, since after a (random) time
communications will only occur within edges of this graph.

Theorem 2.11. Let G be a subgraph of G such that PG holds. Fix q ∈ ΓG, so
that, in particular, q ∈ ∆ \ ∂∆, Gq = G and q is a stable equilibrium for the
ODE (2.5) associated to the evolution of (xn).
Let N (q) be a neighbourhood of q in ΓG. Then, with positive probability,

(1) xn → x ∈ N (q), where x is thus a stable equilibrium with Gx = G.
(2) ∀i, j ∈ V, V ∞ij =∞ ⇐⇒ {i, j} is an edge of G.

Theorems 2.3, 2.4 and 2.11, and Proposition 2.9, are generalisations of re-
sults of Hu, Skyrms and Tarrès [12], in the case of the so-called signaling
game, see Section 1.

We believe but cannot prove that xn converges a.s. to some stable equilib-
rium in ∆. The difficulty arises from the fact that convergence towards ∂∆
is also possible. In Section 4, we explain how several sites can a.s. asymptoti-
cally fall out of use (i.e. xni → 0) on a network, although all of them performs
infinitely many successful communications. The behavior in the neighborhood
of ∂∆ is difficult to analyse, since the functions F and H are not continuous
on ∂∆, and since the error in the stochastic approximation can be irregular.
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The paper is organized as follows. In the following Section 3.1, we explicit
the ODE associated to the dynamics of xn, and prove that H is a Lyapunov
function for the deterministic dynamics. Section 3.2 and Section 3.3 are re-
spectively dedicated to the proofs of Theorem 2.3 and Theorem 2.4. Section 4
yields some explanation on the technical difficulties arising from the possible
convergence to ∂∆. Section 5 is devoted to the classification of equilibria and
analysis of stability, and Section 6 concerns the proof of Theorem 2.11.

3. Stochastic Approximation

Let us first compute the conditional increment of the process (xn) and de-
rive some mean-field ODE. Using stochastic approximation techniques, we
will then study this ODE (in particular its equilibria in Section 5), following
the idea that the random process approximates the solutions of the ODE.

In order to compute the increment of (xn)n∈N at time n we define, for all
i, j ∈ V, i ∼ j, and for all n ∈ N, the variables

∆n+1
ij := V n+1

ij − V n
ij ,(3.1)

∆n+1
T := Tn+1 − Tn.(3.2)

Now, for all ij ∈ E, we have

xn+1
ij − xnij =

V n
ij + ∆n+1

ij

Tn + ∆n+1
T

−
V n
ij

T n
=
Tn ·∆n+1

ij − V n
ij ·∆n+1

T

Tn
(
Tn + ∆n+1

T

)
=

∆n+1
ij − xnij ·∆n+1

T

Tn+1

=
1

Tn

(
∆n+1
ij − xnij ·∆n+1

T

)
+ R̃ij

n+1,(3.3)

where we define (R̃n+1) = (R̃ij
n+1)i,j∈V by

R̃ij
n+1 :=

(
∆n+1
ij − xnij ·∆n+1

T

)( 1

Tn+1

− 1

Tn

)
.(3.4)

R̃ij
n is the increment of a bounded and almost surely converging process: in-

deed, 0 6 ∆n+1
ij 6 aij, 0 6 ∆n+1

T 6
∑

k,l∈V akl, so that, for all k ∈ N,∑
n>k, i,j∈V

∣∣∣R̃ij
n+1

∣∣∣ 6 2
∑

n>k, i,j∈V

akl

(
1

Tn
− 1

Tn+1

)
6

2
∑

k,l∈V akl

Tk
.

Taking the conditional expectation of (3.3) and using (1.1) and (2.4), we
have

E(xn+1
ij − xnij|Fn) =

xnij
Tn

(
aijpij

xnij
xni x

n
j

−H(xn)
)

+Rij
n =

F (xn)i,j
Tn

+Rij
n ,
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where Rij
n := E

(
R̃ij
n+1

∣∣∣Fn), and F is defined in (2). Note that
∑

n |Rij
n | <∞

a.s., using (3) and a generalised version of Conditional Borel-Cantelli Lemma,
see [5, Lemma 2.7.33].

The following Lemma 3.1 can be deduced from the estimates above; we use
the L1 Euclidean norm | · | on R|V|×|V|.

Lemma 3.1. There exists an adapted martingale increment process (ηn)n∈N
such that, for all n ∈ N ,

xn+1 − xn =
F (xn)

Tn
+ ηn+1 + R̃n+1,(3.5)

and, for all k ∈ N,

(3.6) |ηn+1| 6 2

∑
i,j∈V aij

Tn
,
∑
n>k

|R̃n+1| 6
2
∑

k,l∈V akl

Tk
.

Proof. Note that

(3.7) |xn+1 − xn − R̃n+1| =
∣∣∣∣ 1

Tn

(
∆n+1
ij − xnij ·∆n+1

T

)∣∣∣∣ 6
∑

i,j∈V aij

Tn
,

which provides the upper bound on |ηn+1|; the upper bound on (Rn)n∈N is
given by (3). �

Corollary 3.7, which proves asymptotic linear growth of Tn, will in particular
imply that the martingale (

∑n
k=1 ηk)n∈N converges a.s. by Doob’s convergence

theorem.
Equation (3.5) is a stochastic approximation of (xn). We will show in

Corollary 3.7 that 1/Tn is the step size and is of the order of 1/n. Therefore
it is reasonable to expect that (xn) converges to the set of equilibria of (2.5),
which we show in Theorem 2.4.

We first study the evolution of the deterministic process driven by (2.5).
Recall the definition (2.6) of Γ, the set of equilibria of the ODE (2.5).

3.1. Analysis of the mean-field ODE. In this section we show that the
function H is a Lyapunov function for the ODE (2.5), i.e. that H is nonde-
creasing along the paths of the ODE. It is natural to expect that result, in the
sense that the overall expected payoff of the network should indeed increase
in average; see [12] for more details.

We will then deduce that the random process H(xn) is a submartingale up
to an error term (see Theorem 2.3). Recall that this stochastic result does not
directly follow from the deterministic statements and classical results, since
H is not continuous on the boundary ∂∆.
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Let, for all x ∈ ∆,

p(x) :=
∑

i,j,k∈V:xij ,xik>0

xijxik
xi

(yij − yik)2 ,(3.8)

where, given x ∈ ∆ \ ∂∆ we let, for all i, j ∈ V such that i ∼ j,

yij := aijpij
xij
xixj

(3.9)

be the weighted efficiency of the pair ij.

Proposition 3.2. H is a Lyapunov function on ∆ \ ∂∆ for the mean-field
ODE (2.5), more precisely,

(3.10) ∇H · F (x) = p(x) > 0,

where ∇H = (∂H/∂xij)i,j∈V.

Remark. H is not a strict Lyapunov function, i.e. ∇H · F can vanish
outside Γ.

Proof. Note that, in the definition of ∇H, xij and xji are independent vari-
ables. For any x ∈ ∆ \ ∂∆, we have

∇H · F (x) =
∑
i,j∈V

aijpij

{
2
x2
ij

xixj

(
aijpij

xij
xixj

−H(x)

)

−
x2
ij

x2
ixj

(∑
k∼i

aikpik
x2
ik

xixk
− xikH(x)

)

−
x2
ij

xix2
j

(∑
l∼j

ajlpjl
x2
jl

xjxl
− xjlH(x)

)}

= 2
∑
i,j∈V

a2
ijp

2
ij

x3
ij

(xixj)2

−
∑
i,j,k∈V

aijpij
x2
ij

x2
ixj

aikpik
x2
ik

xixk
−
∑
i,j,l∈V

aijpij
x2
ij

xix2
j

ajlpjl
x2
jl

xjxl

−H(x)×
∑
i,j∈V

aijpij
x2
ij

xixj

(
2− 1

xi

∑
k∼i

xik −
1

xj

∑
l∼j

xjl

)

= 2
∑
i,j∈V

a2
ijp

2
ij

x3
ij

(xixj)2
− 2

∑
i,j,k∈V

aijpijaikpik
x2
ijx

2
ik

x3
ixjxk
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=
∑
i,j,k∈V

a2
ijp

2
ij

x3
ijxik

x3
ix

2
j

+
∑
i,j,k∈V

a2
ikp

2
ik

x3
ikxij
x3
ix

2
k

−
∑
i,j,k∈V

2aijpijaikpik
x2
ijx

2
ik

x3
ixjxk

=
∑
i,j,k∈V

xijxik
xi

[
aijpij

xij
xixj

− aikpik
xik
xixk

]2

= p(x) > 0.

We used, in the third equality, that
∑

k∼i xik = xi (and the same equality
with j instead of i), and we also used relevant substitutions and permutations
of the indices. In the last equality, we use definition (3.9) of yij.

�

Given x ∈ ∆ \ ∂∆, and i, j ∈ V such that i ∼ j, let

Ni(x) :=
∑
k∈V

xik
xi
· yik(3.11)

be the weighted efficiency Ni(x) of i. Recall that yik is defined in (3.9).

Lemma 3.3. For any x ∈ ∆ \ ∂∆:

p(x) = ∇H · F (x) = 2
∑
i,j∈V

xij

(
yij −Ni(x)

)2

.(3.12)

Remark. In the context of communication systems, the above two formulas
(3.10), (3.12) mean that the growth rate of the expected payoff is a function
depending on the difference between efficiencies of different strategy pairs.

Proof of Lemma 3.3. Fix i ∈ V, and define a measure Pi and a random vari-
able Y such that, for all k ∈ V, Pi(Y = yik) := xik

xi
. We denote Ei the

expectation associated with Pi. Recalling (3.11), we have

Ei(Y ) = Ni(x).

This implies that, for all j ∼ i,

Ei
[(
yij − Y

)2
]

=
(
yij −Ni(x)

)2

+ Ei
[(
Y −Ni(x)

)2
]

=
(
yij −Ni(x)

)2

+
∑
k

xik
xi

(
Ni(x)− yik

)2

.

On the other hand,

Ei
[(
yij − Y

)2
]

=
∑
k

xik
xi

(yij − yik)2 .
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Therefore, for any x ∈ ∆ \ ∂∆,

∇H · F (x) =
∑
i,j,k∈V

xijxik
xi

[
yij − yik

]2

=
∑
i,j∈V

xij
∑
k

xik
xi

[
yij − yik

]2

=
∑
i,j∈V

xij

(
yij −Ni(x)

)2

+
∑
i,j,k∈V

xijxik
xi

(
Ni(x)− yik

)2

= 2
∑
i,j∈V

xij

(
yij −Ni(x)

)2

,

switching labels of k and j on the last sum of the penultimate line. �

Let us define

Λ := {x ∈ ∆ : p(x) = 0},(3.13)

where p, defined in (3.8), is the derivative of H along a trajectory of the
ODE (2.5). The proof of the following Lemma 3.4 is straightforward.

Lemma 3.4. x ∈ Λ if and only if

yij = yik, for all i, j, k ∈ V s.t. xij 6= 0, xik 6= 0.

Remark 3.5. x ∈ Λ iff the weighted efficiencies on edges ye are constant over
the connected components of (Gx,

x∼). Now x ∈ Γ iff ye is equal to H(x) for
any edge e of Gx. Therefore Γ ⊆ Λ but Λ 6= Γ in general, and H is not a
strict Lyapounov function.

3.2. Proof of Theorem 2.3 and asymptotic linear growth of (Tn).

Proof of Theorem 2.3. In order to compute the conditional expectation of the
increment of (H(xn)), let us first estimate the increment

ξn+1
ij =

(V n+1
ij )2

V n+1
i V n+1

j

−
(V n

ij )
2

V n
i V

n
j

.

By Taylor expansion,

(1 + a)2

(1 + b)(1 + c)
= 1 + 2a− b− c+O(a2 + b2 + c2)

for all a, b, c > 0.
We use notation ∆n+1

ij from (3.1), and also define ∆n+1
i :=

∑
j ∆n+1

ij . We
have

ξn+1
ij =

(V n
ij )

2

V n
i V

n
j

[
(1 + ∆n+1

ij /V n
ij )

2

(1 + ∆n+1
i /V n

i )(1 + ∆n+1
j /V n

j )
− 1

]

=
(V n

ij )
2

V n
i V

n
j

(
2

∆n+1
ij

V n
ij

− ∆n+1
i

V n
i

−
∆n+1
j

V n
j

+ εijn+1

)
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=
2V n

ij∆
n+1
ij

V n
i V

n
j

−
(V n

ij )
2∆n+1

i

(V n
i )2V n

j

−
(V n

ij )
2∆n+1

j

V n
i (V n

j )2
+ ζ ijn+1,

where |εijn+1| and |ζ ijn+1| are upper bounded by

(3.14) C

(∆n+1
ij

V n
ij

)2

+

(
∆n+1
i

V n
i

)2

+

(
∆n+1
j

V n
j

)2
 ,

for some universal constant C > 0.
Note that, since the harmonic series converges we have, for all i, j ∈ V,∑

n∈N

|ζ ijn+1| <∞.

Let ζn+1 =
∑

i,j∈V aijpijζ
ij
n+1.

On the other hand, summing our estimate over i, j, we deduce that

H(xn+1) − H(xn)− ζn+1

= 2
∑
i,j∈V

aijpij
V n
ij∆

n+1
ij

V n
i V

n
j

− 2
∑
i,j∈V

aijpij
(V n

ij )
2∆n+1

i

(V n
i )2V n

j

=
∑
i,j,k∈V

aijpij
V n
ijV

n
ik

(V n
i )2V n

j

∆n+1
ij +

∑
i,j,k∈V

aikpik
V n
ikV

n
ij

(V n
i )2V n

k

∆n+1
ik

−2
∑
i,j,k∈V

aijpij
(V n

ij )
2

(V n
i )2V n

j

∆n+1
ik .

Recall that E
(
∆n+1
ik |Fn

)
= aikpik

(xnik)2

xni x
n
k

, for all i, k ∈ V. Finally, taking the

conditional expectation yields

E
[
H(xn+1)−H(xn)− ζn+1

∣∣Fn]
=
∑
i,j,k∈V

V n
ijV

n
ik

V n
i

[(
aijpij

V n
ij

V n
i V

n
j

)2

+

(
aikpik

V n
ik

V n
i V

n
k

)2

− 2aijpijaikpik
V n
ijV

n
ik(

V n
i V

n
j

)2

]

=
1

Tn

∑
i,j,k∈V

xnijx
n
ik

xni

[
aijpij

xnij
xni x

n
j

− aikpik
xnik
xni x

n
k

]2

=
1

Tn
p(xn),

(3.15)

where p is defined in (3.8). We conclude by noting that (H(xn)) is the sum
of a converging process and a bounded submartingale. �

We have proved that the expected payoff process converges almost surely.
We can now prove that the process (xn) converges to Λ, defined in (3.13).
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Proposition 3.6. (xn)n∈N converges a.s. to Λ. More precisely, (p(xn))n∈N
converges to 0 a.s.

Define for all ε > 0 the set

∆ε := {x ∈ ∆ \ ∂∆ : p(x) > ε}.(3.16)

Proof. This argument is similar to the proof of convergence to the set of
equilibria in [1]. Let, for all n ∈ N,

ξn =
n∑
k=0

ζk.

We have proved that (H(xn)− ξn) is a bounded submartingale. Thanks to
the Doob decomposition, we write it as the sum of a martingale (Mn) and an
increasing predictable process (An). For all n ∈ N, we have:

H(xn)− ξn = Mn + An.

(Mn) is an upper-bounded martingale, hence a.s. converges. On the other
hand, using (3.15),

An+1 − An = E
[
H(xn+1)−H(xn)− ζn+1

∣∣Fn] =
1

Tn
p(xn).

Fix ε > 0 and define δ > 0 the distance between the sets ∆ε and ∆c
ε/2.

First, notice that xn cannot stay in ∆ε for ever as 1/Tn is not summable.
Then, assume that xn ∈ ∆ε, xn+1, ..., xn+k−1 ∈ ∆ε/2 ∩∆c

ε, xn+k ∈ ∆c
ε/2, then:

An+k − An =
n+k−1∑
r=n

p(xr)

Tr
> ε

n+k−1∑
r=n

1

2Tr
.

Therefore, using (3.7) and Lemma 3.1, we have

δ 6
n+k−1∑
r=n

|xr+1 − xr| 6
n+k−1∑
r=n

Cst(a)

Tr
6

Cst(a)

ε
(An+k − An).

Then, if (xn) were infinitely often away from Λ, An, and consequently H(xn),
would explode. This implies the conclusion. �

We end this section by stating a result that implies that the process (Tn)
has a linear asymptotic growth.

Define the constant

wmin = min {aijpij : aijpij > 0} .(3.17)
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Corollary 3.7. There exists a constant hmin = Cst((V 0
ij)i,j∈V) > 0 such that,

a.s.

Tn
n
→ lim

n→∞
H(xn) ∈

[
hminwmin,

∑
i,j∈V

aijpij

]
as n→∞.

Moreover, for all i ∈ V such that aijpij 6= 0 for some j ∼ i, n ∈ N,

(3.18) Ni(xn) =
∑

j∈V, xj>0

aijpij
(xnij)

2

(xni )2xnj
> hminwmin.

Proof. Given x ∈ ∆, recall definition (3.11) of Ni(x). Using that
∑

j∈V xj = 1,
we have, by Cauchy-Schwarz inequality, if xi 6= 0,

Ni(x) =

 ∑
j∈V, xj>0

aijpij
x2
ij

x2
ixj

∑
j∈V

xj > wmin

( ∑
j:aijpij>0, xj>0

xij
xi

)2

Note that, for all j ∼ i with aijpij = 0, we have V n
ij = v0

ij a.s. for all n ∈ N.
Hence, almost surely∑

j:aijpij>0

xnij
xni

= 1−
∑

j:aijpij=0

v0
ij

V n
i

> 1−
∑

j:aijpij=0

v0
ij

V 0
i

=
∑

j:aijpij>0

x0
ij

x0
i

.

Moreover, the last sum is lower bounded by some constant h0 > 0 as soon as
there exists some j ∼ i such that aijpij > 0. This provides the lower-bound
on Ni(x).
Similarly, for any x ∈ ∆, defined in (2.3), we have, by Cauchy-Schwarz in-
equality and using that

∑
i,j xixj = 1,

H(x) > wmin

( ∑
i,j:aijpij>0

xij

)2

> wminh
2
1,(3.19)

where h1 > 0 is defined in (2.2). This gives us a lower-bound on lim infnH(xn).
The upper bound on H is trivial.

Finally, recall that

E (Tn+1 − Tn| Fn) = H(xn)

and the result is now a direct consequence of Theorem 2.3 and a generalised
version of Conditional Borel-Cantelli Lemma, see [5, Lemma 2.7.33]. �
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3.3. Proof of Theorem 2.4. In the previous section, we proved that the
occupation measure (xn) converges a.s. to Λ, which is the set of points where
the derivative of the Lyapunov function H vanishes. As we already mentioned
in Remark 3.5, H is not a strict Lyapunov function, i.e. Γ ⊆ Λ but Γ 6= Λ,
where Γ is the set of equilibria of the ODE (2.5), defined in (2.6).

The aim of this section is to prove that the occupation measure converges
a.s. to the set of equilibria of the ODE (2.5). To that end we show the fol-
lowing Proposition 3.8 in Section 3.3.3.

Proposition 3.8. Let i, j ∈ V, i ∼ j. Then

lim sup
n→∞

xnij
(
ynij −H(xn)

)−
= 0.

Proposition 3.8 will enable us to conclude. Indeed, for all n ∈ N, we have

H(xn) =
∑
i,j∈V

ynijx
n
ij = H(xn) +

∑
i,j∈V

(ynij −H(xn))+xnij −
∑
i,j∈V

(ynij −H(xn))−xnij

Now, for all i, j ∈ V, Proposition 3.8 implies that limn→∞ x
n
ij(y

n
ij−H(xn))− =

0. Subsequently, for all i, j ∈ V,

(3.20) lim
n→∞

xnij(y
n
ij −H(xn)) = 0,

so that F (xn) converges to 0 as n→∞.
Let us show that this implies convergence of (xn)n∈N to the set of equilibria

Γ. Recall that | · | denotes the L1-norm on RV×V. Let L be the limit-set of
(xn)n∈N, which is a non-empty subset of ∆ by compactness. Fix ε > 0. Then
there exists n0 such that |xn−L| < ε for any n > n0 (otherwise there would be
a limit-point at distance at least ε from L, by compactness). For any n > n0,
there exists z ∈ L (that may depend on n) such that |z−xn| < ε: let us prove
that z ∈ Γ.
By contradiction, assume that there exist i0, j0 such that zi0j0 > 0 and
|ai0j0pi0j0zi0j0/zi0zj0 − H(z)| = cz > 0. Fix δ ∈ (0,min{zij/4 : zij > 0}).
Let N ∈ N be such that |xkij

(
ykij − H(xk)

)
| < δ for any k > N . As

z ∈ L, there exists k > N such that |xk − z| < δ which implies, using
that δ < min{zij/4 : zij > 0}, that xkij > δ if and only if zij > 0, for any
i, j ∈ V. In this case, it is straightforward to check that

aijpij

∣∣∣∣∣ xkijxki x
k
j

−
zkij
zki z

k
j

∣∣∣∣∣ , aijpij
∣∣∣∣∣(xkij)2

xki x
k
j

−
(zkij)

2

zki z
k
j

∣∣∣∣∣ 6 δCst((aml, pml)m,l∈V, z).

Besides, if xkij 6 δ then aijpij(x
k
ij)

2/xki x
k
j 6 δCst((aml, pml)m,l∈V), using that

H is bounded and that |xkij
(
ykij −H(xk)

)
| < δ.
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We deduce subsequently that |H(xk) − H(z)| < δCst((aml, pml)m,l∈V, z). Fi-
nally, as soon as δ is small enough, we obtain a contradiction by noting that∣∣∣∣ai0j0pi0j0 zi0j0zi0zj0

−H(z)

∣∣∣∣ 6
∣∣∣∣∣ai0j0pi0j0 xki0j0xki0x

k
j0

−H(xk)

∣∣∣∣∣+ δCst((aml, pml)m,l∈V, z)

6 δCst((aml, pml)m,l∈V, z) < cz.

Therefore, z ∈ Γ.

Let us now sketch the proof of Proposition 3.8, given in Section 3.3.3. Define

(3.21) Uij(ε) :=
{
x ∈ ∆ : xij < ε or yij −H(x) > −ε

}
,

and recall the definitions of ∆ε and hmin respectively introduced in (3.16) and
in Corollary 3.7.

Proposition 3.8 will follow from Lemma 3.9, which implies that both xnij
(resp. ynij) decreases (resp. increases) outside Uij(ε) ∪∆ε4 .

Lemma 3.9. Let i, j ∈ V, i ∼ j, with aijpij > 0. Let

Yn :=
n∑

m=m0

(
ymij − ym−1

ij − aijpij
ε2

6Tm−1

)
1{xm−1 /∈Uij(ε)∪∆ε4};

Sn :=
n∑

m=m0

(
xmij − xm−1

ij +
ε2

2Tm−1

)
1{xm−1 /∈Uij(ε)}.

Assume Tm0 > Cst(aijpij, a, ε) and ε ∈ (0, 1/9). Then

(1) (Yn)n>m0 (resp. (Sn)n>m0) is a submartingale (resp. supermartingale);

(2) lim supn>m,m→∞(Yn − Ym)− = lim supn>m,m→∞(Sn − Sm)+ = 0.

Lemma 3.9 is shown is Section 3.3.2. It follows from Lemma 3.1 for its part
on xnij, and from the following two Lemmas 3.10 and 3.11 for its part on ynij.

Lemma 3.10 is proved in Section 3.3.1, and shows that the increment of ynij
is driven by a differential equation of the type ẏ = G(x), where, for all x ∈ ∆,
we let

G(x) =
(
yij

(
yij −Ni(x)−Nj(x) +H(x)

))
i,j∈V:xij>0

.

Outside Uij(ε) ∪∆ε4 , Lemma 3.11 implies that

G(x)ij ≈ yij(H(x)− yij),
which indeed yields that ynij increases on average.

Lemma 3.10. For all i, j ∈ V, the increment of (ynij)n expands as follows:

(3.22) yn+1
ij − ynij =

1

Tn
G(xn)ij + rn+1

ij + ζn+1
ij ,
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where (rnij) is predictable, E(ζn+1
ij |Fn) = 0 and

|yn+1
ij − ynij|, |ζn+1

ij | 6
c0

Tnxni x
n
j

, and |rn+1
ij | 6

c0

(Tnxni x
n
j )2

,

where c0 = Cst(a).

Lemma 3.11. Assume that ε ∈ (0, 1/9), and that x ∈ ∆c
ε4. Then, for all

vertices i and j, i ∼ j, such that xij > ε, we have:

|yij −Ni(x)| < ε

3
and |yij −Nj(x)| < ε

3
.

Proof. Follows directly from Lemma 3.3. �

3.3.1. Proof of Lemma 3.10. Using (1 + c)−1 = 1− c+O(c2) for all c > 0, we
deduce that

(3.23) f(s, t, u, v) =
(1 + s)(1 + t)

(1 + u)(1 + v)
= 1 + s+ t− u− v +O(η(ε+ η))

if t ∈ [0, ε] and s, u, v ∈ [0, η].
Now recall yij = aijpijTnV

n
ij /(V

n
i V

n
j ): therefore,

yn+1
ij = ynijf(sn+1, tn+1, un+1, vn+1),

where

sn+1 =
Tn+1 − Tn

Tn
, tn+1 =

V n+1
ij − V n

ij

V n
ij

,

un+1 =
V n+1
i − V n

i

V n
i

, vn+1 =
V n+1
j − V n

j

V n
j

.

Let

δn+1
ij = ynij(sn+1 + tn+1 − un+1 − vn+1), ζn+1

ij = δn+1
ij − E(δn+1

ij |Fn).

Note that ζn+1
ij uniquely determines rn+1

ij from (3.22).
By definition of H, Ni and yij, we have

E(sn+1|Fn) =
H(xn)

Tn
, E(tn+1|Fn) =

ynij
Tn
,

E(un+1|Fn) =
Ni(xn)

Tn
, E(vn+1|Fn) =

Nj(xn)

Tn
,

so that

E(δn+1
ij |Fn) =

1

Tn
ynij

(
ynij −Ni(xn)−Nj(xn) +H(xn)

)
.
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On the other hand, sn+1Tn, tn+1V
n
ij , un+1V

n
i and vn+1V

n
j are all upper

bounded by Cst(a), which implies that

|δn+1
ij | 6 Cst(a)

ynij
V n
ij

=
Cst(a)

Tnxni x
n
j

.

Also, assume w.l.o.g. that V n
i 6 V n

j ; then it follows from (3.23) that

|rn+1
ij | 6 Cst(sn+1 ∨ un+1 ∨ vn+1)tn+1y

n
ij 6

Cst(a)

V n
ijV

n
i

TnV
n
ij

V n
i V

n
j

6 Cst(a)

(
Tn

V n
i V

n
j

)2

,

which enables us to conclude, noting that |yn+1
ij − ynij| 6 |δn+1

ij |+ |rn+1
ij |.

3.3.2. Proof of Lemma 3.9. Assume xn 6∈ Uij(ε) ∪∆ε4 .

Using that |R̃ij
n+1| 6 Cst(a)/T 2

n from (3.4), Lemma 3.1 implies

E(xn+1
ij − xnij|Fn) =

xnij
Tn

(
ynij −H(xn)

)
+ E(R̃ij

n+1|Fn)

6 − ε
2

Tn
+

Cst(a)

T 2
n

6 − ε2

2Tn
,

if n > m0 and Tm0 > Cst(a, ε), so that (Sn)n>m0 is a supermartingale.
Also, using Lemma 3.11,

ynij −Ni(xn)−Nj(xn) +H(xn) >
ε

3
.

Hence, using now Lemma 3.10,

E
(
yn+1
ij − ynij|Fn

)
>
ε

3

ynij
Tn
− c0

(Tnxni x
n
j )2

=
1

Tnxni x
n
j

(
aijpijx

n
ijε

3
− c0

Tnxni x
n
j

)
>

1

Tnxni x
n
j

(
aijpijε

2

3
− c0

Tnε2

)
>

Cst(aijpij, a, ε)

Tn

if n > m0 and Tm0 > Cst(aijpij, a, ε). This concludes the proof of (1).

In order to prove (2), define Πn and Ξn as the martingale parts in the Doob
decompositions of Yn and Sn:

Πn := Yn −
n∑

m=m0

E
[
Ym − Ym−1|Fn

]
,

Ξn := Sn −
n∑

m=m0

E
[
Sm − Sm−1|Fn

]
.

By Lemma 3.10, we have for all n > m0,

E
[(

Πn+1 − Πn

)2∣∣Fn] 6 E
[(
ζn+1
ij

)2
1{xn /∈Uij(ε)∪∆ε4}

∣∣Fn]
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6
c2

0

(Tnxni x
n
j )2

1{xn /∈Uij(ε)∪∆ε4} 6
c2

0

ε4T 2
n

.

Therefore, using Corollary 3.7, (Πn)n is bounded in L2 and hence converges
a.s. We conclude for (Ξn)n with similar computations, and (2) follows imme-
diately.

3.3.3. Proof of Proposition 3.8. Let us first prove the following auxilliary
Lemma 3.12.

Lemma 3.12. Let ε > 0, i, j ∈ V, i ∼ j, and assume Tn > Cst(a, ε). If
xn ∈ Uij(ε) and |H(xn+1) −H(xn)| < ε/2, then xn+1 ∈ Uij(2ε), where Uij(·)
is defined in (3.21).

Proof. Assume xn ∈ Uij(ε). Then either xnij 6 ε or ynij −H(xn) > −ε.
If xnij 6 ε then, using (3.6)–(3.7), we deduce |xn+1

ij − xnij| 6 Cst(a)/Tn 6 ε if

Tn > Cst(a, ε), so that xn+1
ij 6 2ε.

If xnij > ε and ynij −H(xn) > −ε, then |yn+1
ij − ynij| 6 Cst(a)/(ε2Tn) 6 ε/2 if

Tn > Cst(a, ε) by Lemma 3.10. By assumption, |H(xn+1)−H(xn)| < ε/2, so
that we conclude that yn+1

ij −H(xn+1) > −2ε. �

Let us now show Proposition 3.8. We fix ε > 0 and m0 ∈ N, and assume
Tm0 > Cst(aijpij, a, ε), so that the assumptions of Lemmas 3.9 and 3.12 hold.
Let τm0 be the stopping time

τm0 = inf
{
n > m0 : xn ∈ ∆ε4 or |H(xn)−H(xm0)| >

ε

4

}
.

We want to prove that either τm0 < ∞, or xn ∈ Uij(3ε) for all large n.
Recall that Uij(·) is defined in (3.21). This will allow us to conclude, as
Proposition 3.6 and Theorem 2.3 imply that there exists almost surely m0 ∈ N
s.t. τm0 =∞.

Let σm0 be the stopping time

σm0 := inf{n > m0 : xn ∈ Uij(ε)}.
Lemma 3.9 (2) implies that there exists a.s. a (random) m0 ∈ N such that,
for all n > m > m0,

(Yn − Ym)− 6
ε

2
, (Sn − Sm)+ 6

ε

2
.(3.24)

Therefore σm0 < ∞: indeed, otherwise ynij → ∞ asn → ∞ by Lemma 3.9

(recall τm0 = ∞, since
∑

n>m0
T−1
n = ∞, so that xn ∈ U ε

ij for large n, which
leads to a contradiction.

For all n > σm0 , let ρn be the largest k 6 n such that xk ∈ Uij(ε). By
(3.24),

(ynij − y
ρn+1
ij ) > −ε

2
.
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By Lemma 3.12, xρn+1 ∈ Uij(2ε) : let us assume for instance that yρn+1
ij −

H(xρn+1) > −2ε. Together with |H(xn) −H(xρn+1)| 6 ε/2, as τm0 = ∞, we
deduce that

ynij −H(xn) > yρn+1
ij −H(xρn+1)− ε > −3ε.

With a similar argument, xρn+1
ij 6 2ε implies xnij 6 3ε. These two arguments

together imply that xn ∈ Uij(3ε) if n > σm0 , which enables us to conclude.

4. Asymptotic behavior near the boundary

The results presented in Sections 5 and 6 concern respectively the charac-
terisation of stable equilibria and convergence towards them on ∆ \ ∂∆.

However, as we mentioned at the end of Section 2, a full analysis of the
asymptotics of the process (xn)n∈N would require a better understanding of the
behavior of the dynamics close to the boundary ∂∆. This can be understood
through the following simple example.

Let G be a star-shaped connected graph consisting of k + 1 vertices V =
{v, u1, ..., uk}, where v is the core adjacent to all vertices ul, l = 1 . . . k, and
any two vertices ul and um, l 6= m, are not adjacent. Assume w.l.o.g. that the
sequence avul , l = 1 . . . k, is nonincreasing in i, and consider the case where
pV = 1.

Consider our process ((V n
ij )i,j∈V)n∈N on G. Then, for all l = 1 . . . k, Vul,v =

Vul , so that the probability to choose edge {ul, v} at time n is V n
ul,v
/V n

v and,

in that case, V n+1
ul,v

= V n
ul,v

+ avul .
This corresponds to the so-called Friedman’s urn with k colors: when a ball

of color l is chosen, then it is put back into the urn, along with avul other balls
of the same color. Thus V n

ul,v
/navul/avu1 converges a.s. towards a positive r.v.

(see for instance [8]).
Assuming for instance that avul < avu1 for all l 6= 1, we deduce in partic-

ular that xnu2 , ..., x
n
uk

converge a.s. to 0, and that xnu1 , x
n
v converge to 1/2 a.s.

Therefore xn converges to the boundary ∂∆.
Note that, for any general graph G = (V, E,∼), and for all i ∈ V such that

aijpij > 0 for some j ∼ i, the convergence to the boundary will occur at a
rate at most nε−1 for some ε > 0. In particular, this implies that any vertex
i ∈ V such that aijpij > 0, for some j ∼ i, performs infinitely many successful
communications almost surely. This is a consequence of (3.18) in Corollary
3.7: the probability that i receives a positive payoff at time n + 1 will be at
least

xniNi(xn) = xni
∑
j∈V

aijpij
x2
ij

(xni )2xnj
> hminwminx

n
i = hminwmin

V n
i

Tn
.
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If we let Lni = hminV
n
i , then we can couple the process (Lni )n∈N with a Fried-

man’s urn with 2 colors (i and ic), so that when a ball of color i is chosen, then
it is put back into the urn along with at least hminwmin other balls of color
i, and such that in any case (either if i or ic is chosen), at most Cst(a, hmin)
balls of color ic are added.

Now F is not continuous on the boundary ∂∆, so that Lemma 3.1 is not
useful on the event that the trajectory of xn has accumulation points in ∂∆.
However it is possible to write the evolution of our network as a stochastic
approximation of solutions of a smooth ODE: if we let z = ((xi)i∈V, (yij)i,j∈V),
then the process (zn)n∈N can be seen as a Cauchy Euler approximation of the
following ODE:

ẋi = xi(Ni(x)−H(x)),

ẏij = G(y)ij = yij(yij −Ni(x)−Nj(x) +H(x)),

Ni(x) =
∑
k∈V

xky
2
ik.

However the perturbation in the evolution of ynij in Lemma 3.10 depends on
xi and xj, and the state space of the ODE on z is not compact anymore.

5. Classification of equilibria and stability

In this section, we analyze the deterministic dynamics associated to the
ODE (2.5). In particular, we compute the Jacobian matrix of F and give a
characterization of the stable equilibria in ∆\∂∆. Let us first do the following
remark, which we will use several times.

Remark 5.1. For any x ∈ ∆, H(x) is lower bounded by some positive con-
stant, using (3.19). Recalling the definition (2.6) of Γ, this implies that, for
any x ∈ Γ, if aijpij = 0 then xij = 0.

5.1. Properties of Lyapunov function. In this section, we show that H
is constant on each connected component of Γ, defined in (2.6).

Proposition 5.2. H is constant on each connected component of Γ.

We first prove in Lemma 5.3 that H is constant on connected subsets of Γ
with the same support (defined below) by a differentiability argument. Then
we show in Lemma 5.4 that H is continuous on Γ (including Γ ∩ ∂∆), which
enables us to conclude. Let Θ be the set of subsets of E. For any x ∈ ∆, we
define its support

Ex := {ij ∈ E : xij > 0}.(5.1)

Θ can be used as an index set to divide ∆ or Γ into several subsets: for any
θ ∈ Θ,

∆θ := {x ∈ ∆ : Ex = θ},
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Γθ := ∆θ ∩ Γ.

Lemma 5.3. For any θ ∈ Θ, H is constant on each connected component of
Γθ.

Proof. Given q ∈ Γθ, let us differentiateH at q with respect to xij = xji, ij ∈ θ
(i.e. qij > 0 and thus aijpij > 0 by Remark 5.1) without the constraint x ∈ ∆:[
∂H

∂xij
(x)

]
x=q

=

[ ∑
k,l:kl∈θ

∂

∂xij

(
aklpkl

x2
kl

xkxl

)]
x=q

=

[
2
∂

∂xij

(
aijpij

x2
ij

xixj

)
+ 2

∑
k 6=j,ik∈θ

∂

∂xij

(
aikpik

x2
ik

xixk

)

+2
∑

k 6=i,jk∈θ

∂

∂xij

(
ajkpjk

x2
jk

xjxk

)]
x=q

= 2aijpij
qij
qiqj

(
2− qij

qi
− qij
qj

)
−2

∑
k 6=j:ik∈θ

aikpik
qik
qiqk
· qik
qi
− 2

∑
k 6=i:jk∈θ

ajkpjk
qjk
qjqk
· qjk
qj

= 2H(q)

(
2− qij

qi
− qij
qj

)
− 2H(q)

(
1− qij

qi

)
− 2H(q)

(
1− qij

qj

)
= 0.

The penultimate equality comes from the fact that, for all r, s ∈ V, rs ∈ θ
(hence qrs, arsprs > 0, since q ∈ Γθ), we have (arsprsqrs)/(qrqs) = H(q). �

Lemma 5.4. H is continuous on Γ.

Proof. Suppose that q ∈ Γ, and that x ∈ Γ is in the neighbourhood of q ∈ Γ
within ∆, then Ex ⊇ Eq and, using x ∈ Γ,

H(x) =
∑

i,j:ij∈Eq

aijpij
x2
ij

xixj
+

∑
i,j:ij∈Ex\Eq

xijH(x),

so that

H(x) =
1

1−
∑

i,j:ij∈Ex\Eq
xij

∑
i,j:ij∈Eq

aijpij
x2
ij

xixj
,

and the conclusion follows. �
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5.2. Jacobian matrix. At any equilibrium x ∈ (∆ \ ∂∆) ∩ Γ (H and F are
not differentiable on ∂∆), we compute the Jacobian matrix

J(x) =

(
∂Flk
∂xij

)
{i,j},{l,k}:ij,lk∈E

,

where, by a slight abuse of notation,

F (x) = (Fij(x)){i,j}:ij∈E.

For all ij, kl ∈ E, a simple extension of the calculation in the proof of
Lemma 5.3 yields ∂ H

∂xij
(x) = 4H(x)(1{xij 6=0} − 1), so that

∂Flk
∂xij

(x) = −H(x)1{{i,j}={l,k},xlk=0} + xlk
∂ylk
∂xij

(x)− xlk
∂H

∂xij
(x)

= −H(x)1{{i,j}={l,k},xlk=0} +H(x)1{{i,j}={l,k},xlk 6=0} −
xlk
xi
H(x)1{i∈{l,k}}

−xlk
xj
H(x)1{j∈{l,k}} − 4xlkH(x)

(
1{xij 6=0} − 1

)
.

Recalling Remark 5.1, note that the last computation holds for aijpij = 0 or
aklpkl = 0.

Therefore, for xij 6= 0, we deduce

∂Fij
∂xij

= H(x)

[
1− xij

xi
− xij
xj

]
;

∂Fik
∂xij

= −xik
xi
H(x), k 6= j;

∂Fjk
∂xij

= −xjk
xj
H(x), k 6= i;

∂Flk
∂xij

= 0, l 6= i, j; k 6= i, j.

For any ij ∈ E s.t. xij = 0, we have:

∂Fij
∂xij

= −H(x)

∂Flk
∂xij

= 0, l 6= i, j; k 6= i, j;xlk = 0.

Let C1, . . . , Cd be the connected components of the subgraph Gx := (V, Ex),
where Ex is defined in (5.1). Let

Jmx :=

(
∂ Flk
∂xij

)
ij,kl∈Cm

.
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Therefore, Jx can be written as follows, by putting first ij and kl coordinates
such that xij 6= 0 and xlk 6= 0 (in the same order, with increasing connected
components C1, . . . , Cd)

J(x) =



J1
x

. . . (∗)
Jdx

−H(x)

(0)
. . .
−H(x)


.

5.3. Classification of equilibria based on stability. Let us introduce
some definitions on stability for ordinary differential equations.

Definition 5.5. x is Lyapunov stable if for any neighbourhood U1 of x, there
exists a neighbourhood U2 ⊆ U1 of x such that any solution x(t) starting in
U2 is such that x(t) remains in U1 for all t > 0.

Definition 5.6. x is asymptotically stable if it is Lyapunov stable and there
exists a neighbourhood U1 such that any solution x(t) starting in U1 is such
that x(t) converges to x.

An equilibrium that is Lyapunov stable but not asymptotically stable is
sometimes called neutrally stable.

Definition 5.7. x is linearly stable if all eigenvalues of the Jacobian matrix
at x have nonpositive real part; otherwise, x is called linearly unstable.

Remark that, with these definitions, linear stability allows for eigenvalues
to have zero real part, and therefore does not necessarily imply Lyapunov
stability. However the dynamics considered here makes these stable equilibria
indeed Lyapunov stable: as in [12], as we will observe in Section 6 (in a
stochastic version).

Definition 5.8. Let

Γ0 := Γ ∩ ∆ \ ∂∆,

Γb := Γ ∩ ∂∆,

and let Γs (resp. Γu) be the set of linearly stable (resp. unstable) equilibria in
Γ0 for the mean-field ODE.

For any x ∈ Γu, let

Ex := {θ ∈ R|E| : |θ| = 1 and ∃ ij ∈ Ex s.t. θ · eij 6= 0},
where Ex is defined in (5.1).

Recall Definition 2.5 of a graph Gx associated to some x ∈ ∆.
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Proposition 5.9. We have

(a) Γs = {x ∈ Γ0 : PGx holds}.

(b) If x ∈ Γu, then there exists an eigenvector in Ex whose eigenvalue has
positive real part.

We are first going to prove following Lemma 5.10 giving a necessary con-
dition on the elements of Γs. Its proof is widely inspired by that of a similar
result in [4].

Lemma 5.10. If x is in Γs, then for all i, j, k and l in the same connected
component of Gx such that i

x∼ j, k
x∼ l, we have:

aijpij = aklpkl.

Let us denote Pa this last property.

Proof. Choose x ∈ (∆ \ ∂∆)∩Γ. It is sufficient to prove that, if xi0j0 > 0 and
xi0k0 > 0, then ai0j0pi0j0 = ai0k0pi0k0 .

Assume the contrary, for some i0, j0, k0. Then, in particular,

ai0j0pi0j0
xi0j0
xi0xj0

= H(x).

Recall that the entries of the Jacobian matrix J(x), computed in Section
5.2, are such that, on the line corresponding to ij, we have:

∂Fij
∂xij

= H(x)
[
1− xij

xi
− xij
xj

]
.

∂Fij
∂xik

= −xij
xi
H(x), k 6= j,

∂Fij
∂xjk

= −xij
xj
H(x), k 6= i,

∂Fij
∂xkl

= 0, {k, l} ∩ {i, j} = ∅.

Recall also that J(x) is block upper triangular with on its diagonal sub-
matrices Jmx , 1 6 m 6 d. Hence, the eigenvalues of Jmx , 1 6 m 6 d, are
eigenvalues of J(x). Moreover, each Jmx corresponds to the edges within the
same connected component of the graph, where we called Cm this connected
component. This means that for any coordinate kl of Jmx , we have kl ∈ Cm
and xkl > 0.
Let us first prove that the matrices Jmx can be written as the product of a
diagonal matrix and a symmetric matrix. Define the diagonal matrix

Dm :=
(
xijH(x)1{ij=kl}

)
ij,kl∈Cm

.
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Besides, define the symmetric matrix Mm, with entries of the coordinates
(ij, kl), ij, kl ∈ Cm, given by

Mm
ij,ij =

1

xij
− 1

xi
− 1

xj
,

Mm
ij,ik = − 1

xi
, k 6= j,

Mm
ij,jk = − 1

xj
, k 6= i,

Mm
ij,kl = 0, {i, j} ∩ {k, l} = ∅.

It is then straightforward to check that Jmx = DmMm.

Now, the eigenvalues of Jmx are all nonpositive if and only if the eigenvalues
of Mm are all nonpositive. To have a proof of this fact, see the Claim in the
proof of Lemma 1 in [4], p. 2199. Therefore, let us prove that Mm has a
positive eigenvalue, which will enable us to conclude.

Let u be a vector in R|Cm|, such that:

uT = (0, ..., 0, ui0j0 , 0..., 0, ui0k0 , 0, ..., 0).

Dropping the 0 of i0, j0 and k0 for simplicity, we have:(
Mm · u

)
ij

= uij
[ 1

xij
− 1

xi
− 1

xj

]
− uik

1

xi(
Mm · u

)
ik

= uik
[ 1

xik
− 1

xi
− 1

xk

]
− uij

1

xi
,

hence

uTMmu = u2
ij

[ 1

xij
− 1

xi
− 1

xj

]
+ u2

ik

[ 1

xik
− 1

xi
− 1

xk

]
−uijuik

( 1

xi
+

1

xi

)
.

Then, we chose uij = 1 and uik = −1. So, we have:

uTMmu =
1

xij

[
1− xij

xj

]
+

1

xik

[
1− xik

xk

]
.

Recall that
xij
xj
6 1 and xik

xk
6 1, and notice that

xij
xj
6= 1 or xik

xk
6= 1. Indeed,

if
xij
xj

= xik
xk

= 1, as aijpij
xij
xj

= aikpik
xik
xk

(we are on the set of equilibria), then

we would have aijpij = aikpik, which is not the case, by assumption.
Hence uTMmu > 0 and therefore Mm has a positive eigenvalue, as this matrix
is symmetric. Finally, this implies that J(x) has a positive eigenvalue and
therefore x is not stable. �
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Lemma 5.10 implies that Γs ⊆ {x ∈ Γ0 : Pa holds} =: Γa0.
To prove Proposition 5.9, we need the following Lemma 5.11 on the structure
of Gx when x ∈ Γa0.

Lemma 5.11. For all x ∈ Γa0 such that PGx does not hold, then there is at
least one connected component on which every vertex has at least two edges.

Proof. Assume that x is in Γa0 and PGx does not hold. Assume by contradiction
that, on any connected component, there exists a vertex j linked to only one
vertex, say i. So, we have aijpij > 0 by Remark 5.1, and

xij
xj

= 1. Then, as

x ∈ Γa0, for all k such that xik > 0, we have aikpik = aijpij and

yik = aikpik
xik
xixk

= yij = aijpij
xij
xixj

⇒ xik
xk

= 1,

then k is only linked to i, and therefore each connected component of Gx is
star-shaped, which contradicts the assumption that PGx does not hold, and
allows us to conclude. �

Proof of Proposition 5.9. First, assume that x ∈ Γa0 and PGx does not
hold. We want to prove that x ∈ Γu. Lemma 5.11 implies that Gx has a
connected component on which each vertex is adjacent to at least two edges,
which we assume w.l.o.g. to be C1. Let V (C1) (resp. E(C1)) be its set of
vertices (resp. edges). Let us show that J1

x has at least one eigenvalue with
positive real part.

Compute the trace of J1
x :

Tr(J1
x) = H(x)

∑
{i,j}:ix∼j

(1− xij
xi
− xij
xj

)

= H(x)(|E(C1)| − |V (C1)|) > 0.

The last inequality comes from the fact that each vertex has at least two
edges.
It is easy to check that (1, ..., 1) · J1

x = −H(x)(1, ..., 1), hence −H(x) is an
eigenvalue of J1

x and −H(x) < 0 by Remark 5.1. Subsequently, there exists
an eigenvalue with positive real part. This implies part (a) of Proposition 5.9,
using Lemma 5.10.

Now, assume that x ∈ Γa0 and that PGx holds. Then, each connected com-
ponent of Gx is star-shaped. Let us assume for instance that C1 is composed
of a nucleus v and satellite vertices 1, ..., k. Then, for all i ∈ {1, .., k}, xiv = xi,
and we have:

J1
x = −H(x)

xv


x1 . . . x1

x2 . . . x2
...

...
xk . . . xk

 .
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The rank of J1
x is 1, 0 and −H(x) < 0 are eigenvalues, as (1, ..., 1) · J1

x =
−H(x)(1, ..., 1), so all its eigenvalues are nonpositive, which completes the
proof.

�

Remark 5.12. Note that, in general, there may be no stable configuration on
∆ \ ∂∆. Now, if the number of vertices is even, every equilibrium x such that
Gx yields a one-to-one correspondence between vertices (i.e. each connected
component has only two vertices and one edge) is asymptotically stable.

Finally, the following proposition implies the second part of Proposition 2.9.
Recall Definition 2.5 of Gx for x ∈ ∆, Definition 2.6 of the property PG and
Definition 2.8 of the set ΓG, for some subgraph G. Recall also the Definition
5.8 of the set Γs of stable equilibria outside the boundary.

Proposition 5.13. Let G ⊂ G be a subgraph such that PG holds and let q ∈ ∆
be such that Gq = G. Then, q is an equilibrium if and only if q ∈ ΓG and, in
this case, q is stable. In other words, Γs ∩ {q ∈ ∆ : Gq = G} = Γ ∩ {q ∈ ∆ :
Gq = G} = ΓG.

Proof. Let q ∈ ∆ be such that Gq = G. As PG holds, q ∈ ∆ \ ∂∆ and if
aijpij = 0 then qij = 0. Besides, each connected component of G is star-
shaped and contains a single nucleus vertex (see Definition 2.7). We denote
NG the set of nucleus vertices of G.
Now, for any i ∈ NG, we have that aijpij = aikpik =: (ap)i as soon as qijqik > 0.
If i ∈ NG is such that aijpij = 0 for any j ∈ V, then i is isolated in G and
we let (ap)i := 0. Moreover, for any i ∈ NG and j ∈ V with qij > 0, we have
qij/qj = 1. Using this, a simple computation yields

H(q) = 2
∑
i∈NG

(ap)i,

and if q is an equilibrium, then, for any i ∈ NG, qi = (ap)i/(2
∑

j∈NG(ap)j),
hence q ∈ ΓG and q is stable by Proposition 5.9.
Conversely, it is straightforward to check that if q ∈ ΓG then q ∈ ∆ \ ∂∆,
Gq = G and q ∈ Γ, hence q is a stable equilibrium by Proposition 5.9. �

6. Proof of Theorem 2.11

Assume that (G, (aij, pij)ij∈E) is such that Γs 6= ∅, where Γs is the set of
stable equilibria in ∆ \ ∂∆ (see Definition 5.8).

Theorem 2.11 is a consequence of the following Proposition 6.1. Before
stating it, we need some definitions.

Let G ⊆ G be a graph such that PG holds (see Definition 2.6) and let EG
be the set of edges of G. Besides, let us denote VG the set of non-isolated
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vertices of G (in particular, as PG holds, i ∈ VG if and only if aijpij > 0 for
some j ∼ i). Each connected component contains a single nucleus vertex i
(see Definition 2.7) and is such that aijpij = aikpik > 0 as soon as ij, ik ∈ EG.
Finally, we denote by NG the set of nucleus vertices of G.
Let π := πG : V −→ NG be a function mapping i ∈ V to the nucleus vertex of
the connected component that i belongs to. In particular, note that, for any
i ∈ V \ VG, π(i) = i and π(j) 6= i for any j 6= i.

For all i ∈ V, n ∈ N and ε > 0, let us define

αni := xni /x
n
π(i),

H1
n :=

⋂
i∈VG ,i=π(i)

{ V n
i > 2εn},

H2
n :=

⋂
i∈V

{αni > ε},

H3
n :=

⋂
i,j∈V,i 6=π(j),j 6=π(i)

{V n
ij 6

√
n }.

Obviously, all these definitions depend on the graph G, but for simplicity we
do not write this dependency.

Proposition 6.1. Let G be such that PG holds, and let π := πG. For all
ε ∈ (0, wmin), if H1

n, H2
n and H3

n hold, and n > Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|),

then, with lower bounded probability (only depending on ε, (pij, aij, v
0
ij)i,j∈V,

and |V|), for all i, j ∈ V, k > n,

V ∞ij = V n
ij , when i 6= π(j), j 6= π(i);(6.1)

αki /α
n
i → αi ∈ (1− ε, 1 + ε);(6.2)

V k
i > εk, when i ∈ VG and π(i) = i.(6.3)

Before proving this proposition, let us explain how it implies Theorem 2.11.
Firstly, by Proposition 2.9, if q is a stable equilibrium with Gq = G, then
q ∈ ΓG, where ΓG is defined in Definition 2.8. Secondly, choose such a stable
equilibrium q ∈ ΓG and let us prove that (xn) converges to an equilibrium in
a neighborhood of q with positive probability.

Let us work on a probability event A on which H1
n0

, H2
n0

and H3
n0

hold
for some n0 > Cst(ε, (pij, aij, v

0
ij)i,j∈V, |V|), and (6.1), (6.2) and (6.3) occur.

Moreover, assume that, on A, αn0
i ∈ ((1 − ε)qi/qπ(i), (1 + ε)qi/qπ(i)) for any

i ∈ V.
Note that (6.1) implies that, for any i ∈ V\VG, V ∞i <∞ and thus xni → 0.

Also, for i ∈ VG ∩ NG and j ∈ V such that i 6= π(j), we have that V ∞ij < ∞
and xnij → 0, using (6.1). Besides, for any i ∈ VG ∩ NG, lim infn x

n
i > ε by

(6.3), xnij/x
n
j → 1 for any j such that i = π(j) by (6.1) and xnij/x

n
i converges
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to some positive limit by (6.2). Therefore, as xn stays away from ∂∆, it easily
implies that H(xn) → 2

∑
i∈NG aipi. Additionally, as (xn) converge almost

surely to Γ, we necessarily have that xni → (ap)i/(2
∑

j∈NG(ap)j) = qi for any

i ∈ VG ∩NG and where (ap)i := aikpik for some/any k such that qik > 0.
Together with (6.2), this implies that, on A, (xn) converges to some x ∈ ∆

in a neighborhood of q, and A has positive probability as soon as n0 is large
enough. Moreover, the limit x is such that Gx = G and, for any i ∈ VG ∩NG,
xi = (ap)i/(2

∑
j∈NG(ap)j) and xij > 0 iff i = π(j). Consequently, x ∈ ΓG and

is thus a stable equilibrium by Proposition 2.9.

In the remainder of this section, we fix the graph (G, g∼) (and thus π = πG
and the events Hn’s) and ε > 0. The proof of Proposition 6.1 consists of the
following Lemmas 6.2, 6.3 and 6.4.

Let, for all i, j ∈ V, n ∈ N,

τ 1,i,j
n := inf{k > n : V k

ij 6= V n
ij };

τ 2,i
n := inf{k > n : αki /α

n
i /∈ (1− ε, 1 + ε)};

τ 3,i
n := inf{k > n : V k

i < εk},

and let

τ 1
n := inf

i,j∈V,i 6=π(j),j 6=π(i)
τ 1,i,j
n , τ 2

n := inf
i∈V

τ 2,i
n , τ 3

n := inf
i∈VG ,π(i)=i

τ 3,i
n , τn := τ 1

n∧τ 2
n∧τ 3

n.

Lemma 6.2. If n > Cst(ε, (pij, aij)i,j∈V, |V|), then

P
(
τ 1
n > τ 2

n ∧ τ 3
n | Fn, H1

n, H
2
n, H

3
n

)
> exp

(
−4|V|2 max

i,j∈V
{aij}ε−4

)
.

Proof. Assuming n > Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|),

P
(
τ 1
n > τ 2

n ∧ τ 3
n | Fn, H1

n, H
2
n, H

3
n

)
>
∏
k>n

1−
∑

i,j:i 6=π(j),j 6=π(i)

aijpij
(V n

ij )
2

V k
i V

k
j


> exp

−3 maxi,j∈V{aij}
2

∑
i,j:i 6=π(j),j 6=π(i),k>n

n

ε4k2


> exp

(
−4|V|2 max

i,j∈V
{aij}ε−4

)
.

�

Lemma 6.3. If n > Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|) then, for all i ∈ V,

P
(
τ 2,i
n > τ 1

n ∧ τ 3
n | Fn, H1

n, H
2
n, H

3
n

)
> 1− 2 exp(−Cst(ε)n).
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Moreover, given that H1
n, H2

n and H3
n hold, αik∧τn/α

i
n converges almost surely

as k goes to infinity.

Proof. Notice that if i ∈ V is such that i = π(i), then αni = 1 a.s. for any
n ∈ N and consequently τ 2,i

n =∞ almost surely. Then, fix i ∈ V, n ∈ N, and
assume that π(i) 6= i (in particular i ∈ VG).

Let, for all j ∈ V and k > n,

V̂ k
j := V n

j +
∑
l
g∼j

(V k
jl − V n

jl ),

which is equal to V k
j as long as k < τ 1

n.
Let, for all k > n,

Wk := log
V̂ k
i

V̂ k
π(i)

,

and let us consider the Doob decomposition of (Wk)k>n:

Wk = Wn + ∆k + Ψk,

∆k :=
k∑

j=n+1

E(Wj −Wj−1|Fj−1).

In the following computation, we write u = �(v) if |u| 6 v, for all u, v ∈ R.
Assume that H1

n, H2
n and H3

n hold, and that k < τn: then, using that, for all

j
g∼ π(i), piπ(i)aiπ(i) = pjπ(i)ajπ(i),

|∆k+1 −∆k| = |E [Wk+1 −Wk | Fk] |

=

∣∣∣∣∣∣aiπ(i)piπ(i)

(
V k
iπ(i)

V k
i

)2
1

V k
π(i)

(1 +�((V k
i )−1)

−
∑
j
g∼π(i)

ajπ(i)pjπ(i)

V k
π(i)j

V k
j

V k
π(i)j

(V k
π(i))

2
(1 +�((V k

π(i))
−1)

∣∣∣∣∣∣
=
aiπ(i)piπ(i)

V k
π(i)

∣∣∣∣∣1 + k−1/2�(Cst(ε, (pij, aij)i,j∈V, |V|))

−
∑
j
g∼π(i)

(
1 + k−1/2�(Cst(ε, (pij, aij)i,j∈V, |V|))

) V k
π(i)j

V k
π(i)

∣∣∣∣∣∣
= k−3/2� (Cst(ε, (pij, aij)i,j∈V, |V|)) ,
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where we use that, for all j
g∼ π(i),

(6.4)

∣∣∣∣∣V
k
π(i)j

V k
j

− 1

∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
j
g∼π(i)

V k
π(i)j

V k
π(i)

− 1

∣∣∣∣∣∣ 6 k−1/2Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|).

Therefore, for all k > n,

|∆k| 6 n−1/2Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|),

which is less than ε/4 as soon as n is large enough. Moreover ∆k∧τn converges
a.s.

Let us now estimate the martingale increment: |Ψk+1 − Ψk| 6 Cst(ε)k−1

(since |Wk+1 − Wk| 6 Cst(ε)k−1), so that [12, Lemma 7.4] (stated here as
Lemma 6.5) implies

P
(

sup
k>n
|Ψk∧τn −Ψn| 6 ε/4

)
> 1− 2 exp(−Cst(ε)n).

Moreover, the martingale (Ψk∧τn)k>n is bounded hence a.s. converges. This
completes the proof. �

Recall the definition (3.17) of wmin.

Lemma 6.4. If ε ∈ (0, wmin) and n > Cst(ε, (pij, aij, v
0
ij)i,j∈V, |V|) then, for

all i ∈ VG such that π(i) = i (i.e. i ∈ NG),

P
(
τ 3,i
n > τ 1

n ∧ τ 2
n

∣∣Fn, H1
n, H

2
n, H

3
n

)
> 1− 2 exp(−Cst(ε)n).

Proof. Let n ∈ N, assume that H1
n, H2

n and H3
n hold, and fix i ∈ VG such that

π(i) = i. Let us consider the Doob decomposition of (V k
i )k>n:

V k
i := V n

i + Φk + Ξk

Φk :=
k∑

j=n+1

E
(
V j
i − V

j−1
i | Fj−1

)
.

Now, for all η > 0, if n > Cst(η, ε) and k < τn, (6.4) implies

Φk+1 − Φk = E
(
V k+1
i − V k

i | Fk
)
>
∑
j
g∼i

aijpij
(V k

ij )
2

V k
i V

k
j

> wmin − η,

if n > Cst(ε, η, p, a, |V|).

Let us now estimate the martingale increment: let, for all p > n,

χp :=

p−1∑
k=n

Ξk+1 − Ξk

k
.
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Then, for all p > n,

Ξp =
∑

n6k6p−1

(χk+1 − χk)k = −
∑

n6k6p−1

χk + (p− 1)χp.

This implies, using [12, Lemma 7.4] (see Lemma 6.5) and |Ξk+1 − Ξk| 6 1
for all k > n, that for all ε > 0

P
(
∀k > n, V k

i > (2ε− η)n+ (k − n)(wmin − η) | Fn
)

> P
(

sup
p>n

∣∣∣∣Ξp

p

∣∣∣∣ 6 η | Fn
)
> P

(
sup
k>n
|χk| 6

η

2
| Fn

)
> 1− 2 exp(−Cst(η)n);

we choose η = min(ε, wmin − ε), which completes the proof.
�

The following Lemma 6.5 states an exponential inequality for martingales
(see for instance [12], Lemma 7.4 for a proof).

Lemma 6.5. Let (γk)k∈N be a deterministic sequence of positive reals, let
G := (Gn)n∈N be a filtration, and let (Mn)n∈N be a G-adapted martingale such
that |Mn+1 −Mn| 6 γn for all n ∈ N. Then, for all n ∈ N and λ > 0,

P
(

sup
k>n

(Mk −Mn) > λ | Gn
)
6 exp

(
− λ2

2
∑

k>n γ
2
k

)
.
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