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Abstract

Characterizing and explicitly computing equilibria of undiscounted dynamic games
has been a challenge for many years. In this paper we look at quitting games, which are
stopping games where the terminal payoff does not depend on the stage of termination.
We develop several practical algorithms that compute different classes of subgame per-
fect equilibria. Our algorithms are based on the novel representation of strategy profiles
through absorption paths, which was developed in Ashkenazi-Golan, Krasikov, Rainer,
and Solan (2021). The baseline algorithm deals with absorption paths in which exactly
one player randomizes between quitting and continuing at any point in time. Two ad-
ditional algorithms extend the baseline algorithm by allowing for multiple players to
randomize at the same time. Since quitting games are special case of both stopping
games and stochastic games, our approach may be useful in studying more general
classes of stopping games and stochastic games.
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1 Introduction

Two classes of dynamic games that have been extensively studied in the literature are
stochastic games (Shapley, 1953) and stopping games (Dynkin, 1967; Neveu, 1975). In
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stochastic games, the stage payoff depends on a state variable as well as on the actions of
the players at that stage, and the state changes as a function of the players’ actions. In
stopping games, each player decides when to stop the interaction, and the game terminates
once the first player decides to stop. These games have diverse applications. Stochastic
games have been used to study, e.g., capital accumulation (Levhari and Mirman, 1980,
Dutta and Sundaram, 1992, 1993, Amir, 1996, Nowak, 2003c), taxation (Chari and Kehoe,
1990, Phelan and Stacchetti 2001), communication network (Sagduyu and Ephremides,
2003), and queues (Altman and Hordijk, 1995, Altman, 2005), and stopping games have
been applied to, e.g., market exit (Ghemawat and Nalebuff, 1985), product innovation and
asset sale (Dutta and Rustichini, 1993), and pricing of game options (Kifer, 2000).

When players discount their payoffs, both discounted games and stopping games ad-
mit equilibria under fairly general conditions (see, e.g., Fink (1964), Takahashi (1964),
Mertens and Parthasarathy (1987), Ferenstein (2007), Jaskiewicz and Nowak (2017)), and
undiscounted equilibrium is known to exist only under restricted conditions (for stochastic
games, see, e.g., Vrieze and Thuijsman (1989), Solan (1999), Vieille (2000a, 2000b), Simon
(2007, 2012), and Flesch, Schoenmakers, and Vrieze (2008, 2009), and for stopping games,
see, e.g., Shmaya and Solan (2004) and Laraki and Solan (2005)). Hörner, Rosenberg, Taka-
hashi, and Vieille (2011) proved a Folk Theorem that characterizes the set of discounted
equilibrium payoffs in stochastic games with finitely many states and actions.

The problem of calculating an equilibrium also received a lot of attention. Algorithm for
approximating discounted equilibria have been developed, see, e.g., Vrieze and Tijs (1982),
Breton (1991), Filar and Vrieze (1996), and Herings and Peeters (2004). Algorithms for
approximating ε-optimal strategies in two-player zero-sum undiscounted stochastic games
with finite sets of states and actions were developed by Chatterjee, Majumdar, and Hen-
zinger (2008), Solan and Vieille (2010), and Oliu-Barton (2021). Efficient algorithms for
computing equilibria have been devised for specific classes of zero-sum games and for non-
zero-sum stochastic games in which a single player controls the transitions, see, e.g., Breton
(1991), Filar and Raghavan (1984), Nowak and Raghavan (1993), Raghavan (2003), and
Bourque and Raghavan (2014).

A class of games that lies in the intersection of stochastic games and stopping games is
the class of quitting games. Quitting games are stopping games where the terminal payoff
depends only on the set of players who quit at the termination stage, and not on the stage of
termination. Thus, quitting games are stochastic games with a single non-absorbing state.

Flesch, Thuijsman, and Vrieze (1997) studied a specific three-player quitting game and
characterized the set of its equilibria. Solan and Vieille (2001) formally defined the family
of quitting games and provided a sufficient condition that guarantees the existence of an
ε-equilibrium. Solan (2001) and Solan and Vieille (2002) exhibit three- and four-player quit-
ting games, respectively, which show that ε-equilibria in quitting games may have complex
structure. Further sufficient conditions for the existence of ε-equilibrium in quitting games
have been provided by Simon (2007, 2012), Solan and Solan (2020), and Ashkenazi-Golan,
Krasikov, Rainer, and Solan (2021). To date it is not known whether all four-player quitting
games admit ε-equilibria.

In this paper we provide the first practical algorithm for computing a class of undis-
counted subgame-perfect equilibrium payoffs in multiplayer quitting games. To describe the
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extent of our algorithm, we recall a new representation of strategy profiles called absorption
paths, defined in Ashkenazi-Golan, Krasikov, Rainer, and Solan (2021) (AKRS for short).
This representation allows for both discrete-time aspects and continuous-time aspects in the
players’ behavior, and it involves parametrizing time according to the accumulated proba-
bility of absorption. In the new representation, discrete-time aspects capture stages where
at least one player quits with probability that is bounded away from 0, and continuous-time
aspects capture stages where all players quit with small probability.

AKRS introduced a notion of subgame perfectness, that applies to absorption paths,
which they called sequential perfectness to distinguish it from subgame perfectness that
applies to strategy profiles, and shows that the set of payoffs that correspond to sequentially
perfect absorption paths coincides with the set of subgame-perfect equilibrium payoffs,
namely, limits of subgame-perfect ε-equilibrium payoffs as ε goes to 0.

We will provide an algorithm that calculates the set of payoffs, which correspond to
sequentially perfect absorption paths that involve only continuous-time aspects. This set
corresponds to the limit set of subgame-perfect ε-equilibrium payoffs, where along the cor-
responding subgame-perfect ε-equilibria, players quit with low probability.

The paper is organized as follows. The model is described in Section 2. A naive ap-
proach to computing the set of undiscounted equilibrium payoffs appears in Section 3. The
more sophisticated approach using the Essential APS operator, is described in Section 4.
Extensions of the algorithm to equilibria in which a set of players are allowed to randomize
quitting in continuous time are presented in Section 5. Discussion on possible extensions
of our results to all equilibrium payoffs, as well as conclusions and final remarks, appear in
Section 6.

2 Model

Definition 2.1 A quitting game is a pair Γ = (I, r), where I is a finite set of players and
r :

∏
i∈I{Ci, Qi} → RI is a payoff function.

Player i’s action set is Ai := {Ci, Qi}. These actions are interpreted as continue and quit,
respectively. Denote by A :=

∏
i∈I A

i the set of action profiles. The game is played as
follows. Let N = {0, 1, 2, . . .} be the set of non-negative integers. At every stage n ∈ N
each player i ∈ I chooses an action ain ∈ Ai. If all players continue, the play continues to
the next stage; if at least one of them quits, the play terminates, and the terminal payoff is
r(an), where an = (ain)i∈I . If no player ever quits, the payoff is r(C⃗), where C⃗ := (Ci)i∈I .
It is convenient to normalize the payoff function so that ri(Q

i, C−i) = 0 for every i ∈ I.
We denote by A∗ := A \ {C⃗} the set of all action profiles in which at least one player

quits, by A∗
1 := {(Qi, C−i), i ∈ N} the set of all action profiles in which exactly one player

quits, where C−i := (Cj)j ̸=i, and by A∗
≥2 := A∗ \ A1 the set of all action profiles in which

at least two players quit.
A mixed action profile is a vector ξ = (ξi)i∈I ∈ [0, 1]I , with the interpretation that ξi is

the probability with which player i quits. The probability of absorption under the mixed
action profile ξ is p(ξ) := 1 −

∏
i∈I(1 − ξi). Extend the absorbing payoff to mixed action
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profiles that are absorbing with positive probability: for every ξ ∈ [0, 1]I such that p(ξ) > 0,

define r(ξ) :=
∑

a∈A∗ ξ(a)r(a)

p(ξ) , where ξ(a) :=
(∏

{i : ai=Qi} ξ
i
)
·
(∏

{i : ai=Ci}(1− ξi)
)
, for every

a ∈ A.
A (behavior) strategy of player i is a function xi = (xin)n∈N : N → [0, 1], with the

interpretation that xin is the probability that player i quits at stage n if the game did not
terminate before that stage. A strategy profile is a vector x = (xi)i∈I of strategies, one for
each player.

Denote by θ := inf{n ∈ N : an ∈ A∗} the stage of termination; θ = ∞ if all players
continue throughout the game. Every strategy profile x induces a probability distribution
Px over the set of plays. Denote by Ex the corresponding expectation operator. A strategy
profile x is absorbing if Px(θ < ∞) = 1.

The payoff under strategy profile x is

γ(x) := Ex

[
1{θ<∞}r(aθ) + 1{θ=∞}r(C⃗)

]
.

Let ε ≥ 0. A strategy profile x∗ is an ε-equilibrium if γi(x∗) ≥ γi(xi, x∗,−i) − ε for every
player i ∈ I and every strategy xi of player i. A strategy profile x∗ is a subgame-perfect ε-
equilibrium if for every n ∈ N, the strategy profile (x∗n, x

∗
n+1, . . . ) is an ε-equilibrium. When

ri(C⃗) < ri(Qi, C−i) = 0 for some i ∈ I, any subgame-perfect ε-equilibrium is absorbing,
provided ε is small enough. A payoff vector w ∈ RI is a subgame-perfect equilibrium payoff
if w = limε→0 γ(x

ε), where xε is a subgame-perfect ε-equilibrium for every ε > 0, and it is
said to be absorbing if xε is an absorbing strategy profile for every ε > 0.

Three-player quitting games admit subgame-perfect equilibrium payoffs (Solan, 1999).
It is not known whether the same applies to quitting games with at least four players.
Sufficient conditions that guarantee the existence of a subgame-perfect equilibrium payoff
have been provided by Solan and Vieille (2002), Simon (2007, 2012), Solan and Solan (2020),
and AKRS. The latter also provided a characterization of the set of limits of absorbing
subgame-perfect ε-equilibrium strategy profiles using a novel concept of absorption paths.
To date there is no algorithm that allows to compute the set of subgame-perfect equilibrium
payoffs.

2.1 Motivating example

Suppose that (xε) is a sequence of absorbing subgame-perfect ε-equilibria, and suppose
that w = limε→0 γ(x

ε) exists. To study subgame-perfect equilibrium payoffs one is tempted
to study the limit strategy profile x0 that is defined by x0n := limε→0 x

ε
n for every n ∈ N

(assuming this limit exists). If x0 is absorbing, then it follows from results in Vrieze and
Thuijsman (1989) or Solan (1999) that it is a subgame-perfect 0-equilibrium. However, it
might happen that while going to the limit as ε goes to 0, some probability of absorption
is lost, and then the limit x0 is not necessarily a subgame-perfect 0-equilibrium (or even an
ε-equilibrium, for ε > 0 sufficiently small). In fact, the following example shows that even
the limit of subgame perfect 0-equilibira is not necessarily an ε-equilibrium.
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Example 2.2 (Flesch, Thuijsman, and Vrieze (1997)) Consider the three-player quit-
ting game where the payoff function r is given by the table in Figure 1.

Q1

C1

C2 Q2 C2 Q2
C3 Q3

0, 2,−1

−1,−1,−1

0,−1, 0

−1, 0, 2

−1, 0, 0

2,−1, 0

−1,−1,−1

0, 0,−1

Figure 1: The three-player game in Example 2.2.

We note that ri(C⃗) = −1 < 0 = ri(Q
i, C−i) for all i ∈ I, and therefore every subgame-

perfect ε-equilibrium must be absorbing, for all ε < 1.
For each k ∈ N, let δk = 1− (12)

1/k, so that (1− δk)
k = 1

2 . Consider the strategy profile
xk, which repeats the following block of 3k action profiles:

� In stages 1, 2, . . . , k the players play (δk, 0, 0).

� In stages k + 1, k + 2, . . . , 2k the players play (0, δk, 0).

� In stages 2k + 1, 2k + 2, . . . , 3k the players play (0, 0, δk).

By Flesch, Thuijsman, and Vrieze (1997), xk is a subgame-perfect 0-equilibrium for every
k ∈ N. Since δk ↘ 0, the limit of xk as k goes to 0 is the strategy profile in which all players
always continue, which is not even an ε-equilibrium for ε ∈ (0, 1).

To overcome the difficulty pointed out in Example 2.2, AKRS presented the concept of
absorption paths, which does not allow probability of absorption to be lost when taking the
limit as ε goes to 0. More precisely, they show that, by re-parametrizing time (originally
equal to N) by the non-decreasing probability of absorption, the set of all strategy pro-
files can be embedded in a sequentially compact set of continuous-time, A∗-valued paths,
that contains also the limit case where players quit during some determined times with
infinitesimal probabilities. The main result of AKRS is that w is an absorbing subgame-
perfect 0-equilibrium payoff if and only if there exists an absorption path satisfying a certain
notion of subgame perfectness and w is the expected payoff under this absorption path.

We refer to the original paper for an extensive treatment of this approach. Here we focus
on strategy profiles where at each time only one player quits with vanishing probability, like
in Example 2.2.

In Example 2.2, for each k ∈ N, the strategy profile xk can be described as follows: for
each n ≥ 1,

� set tkn := Pxk(θ < n),

� set ιk(t) := i whenever t ∈ [tkn, t
k
n+1) and xk,in , player i’s probability of quitting under

xk at stage n, is positive.
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Remark that the functions ιk, k ∈ N, -as well as their limit as k tends to +∞- are all
equal to the function ι which is piecewise constant and equals to n + 1 mod (3) on the
interval [1− 1

2n , 1−
1

2n+1 ), for every n ∈ N.
More generally, in the following section we shall introduce a set of right-continuous

I-valued functions ι, that we call Flesch absorption paths. A Flesch absorption path is
a special case of absorption paths where only continuous-time aspects appear, and where
at every time instance, at most one player quits with positive rate. The main result of
the paper is an algorithm for computing the set of absorbing subgame-perfect equilibrium
payoffs that can be attained by Flesch absorption paths.

In Section 5.2 we show how our approach can be used to go beyond the class of Flesch
absorption paths, and characterize the set of absorbing subgame-perfect equilibrium payoffs
that can be attained by continuous absorption paths, i.e., those in which multiple players
quit in continuous time throughout the play.

2.2 Flesch Absorption Paths

As mentioned in the introduction, we will characterize a set of equilibrium payoffs in the
game in discrete time where the per-stage probability of quitting is small. To this end,
it will be convenient to study the quitting game in continuous time. In this section we
define a concept of strategies that is suitable for quitting games in continuous time. In
these strategies, time is divided into intervals, and in each interval a single player quits.
In Section 5 we will extend this concept, and allow more than one player to quit with
positive rate at each time instance. As shown in AKRS, this concept is useful for studying
subgame-perfect ε-equilibrium payoffs in quitting games in discrete time.

Definition 2.3 A Flesch Absorption Path (FAP) is a right-continuous map ι : [0, 1) → I,
such that the set of its discontinuities including 0, denoted by H(ι), is countable and well-
ordered.

The interpretation of an FAP is as follows. Quitting occurs in continuous time, and at
every t ∈ [0, 1), a single player ι(t) quits with rate one. The parameter t does not represent
time but rather the total probability of absorption. For each t ∈ H(ι), the successor of ι(t)
is the minimal element in H(ι) larger than t, which exists since H(ι) is well ordered.

Example 2.4 The FAP ι that is defined by ι([0, 1)) = 1 corresponds to the behavior that
player 1 is the only player who quits. The FAP that corresponds to a situation where
players 1 and 2 alternately quit in continuous time, each with probability 1

2 , is given by

ι(t) =

{
1, t ∈ [0, 12) ∪ [14 ,

1
8) ∪ · · · ,

2, t ∈ [12 ,
1
4) ∪ [18 ,

1
16) ∪ · · · .

More generally, suppose that H(ι) = (tn)n∈N where 0 = t0 < t1 < t2 < · · · , and limn↗∞ tn =
1. This FAP corresponds to a situation where first player ι(t0) quits with probability t1−t0

1−t0
=

t1, then player ι(t1) quits with probability t2−t1
1−t1

, and so on.

Remarks 2.5 Let ι be an FAP as defined above.

6



1. A point t ∈ (0, 1) (resp. t ∈ [0, 1)) is a left accumulation point (resp. right accumu-
lation point) of H(ι) if there is a sequence (tn)n∈N of points in H(ι) that increases
(resp. decreases) to t. Left accumulation points of H(ι) allow describing players’ be-
havior where they quit with arbitrarily small probabilities. The assumption that H(ι)
is well-ordered excludes the existence of right accumulation points.

2. The assumption that ι is right-continuous guaranties that, for each connected compo-
nent (t1, t2) of [0, 1) \H(ι), the value of ι at t1 is the same as on (t1, t2).

3. The set of FAPs is not compact. Indeed, one can devise a sequence of FAPs such
that, in their natural limit, two players quit simultaneously in continuous time. For
example, for each k = 2, 3, . . . , let ιk be the FAP defined by ιk(t) := tk + 1 mod (2)
so that H(ιk) = {0, 1

k , . . . ,
k−1
k }. The FAP ιk corresponds to a situation where player

1 quits with probability 1
k , then player 2 quits with probability ( 1k )/(

k−1
k ) = 1

k−1 , then

player 1 quits with probability 1
k−2 , and so on.

The natural limit of the sequence of these FAPs is the strategy profile in continuous
time in which both players quit simultaneously throughout the game at the same rate,
yet this behavior cannot be described by an FAP.

4. For each i ∈ I, the total probability that player i quits in the interval [a, b) ⊂ [0, 1) is
Leb({s ∈ [a, b)|ι(s) = i}), where Leb is the Lebesgue measure. In particular, Leb({s ∈
[t, 1)|ι(s) = i}) for t ∈ [0, 1) is the total probability that player i quits after time t.

We can then define the expected payoff under an FAP.

Definition 2.6 For every t ∈ [0, 1), the expected payoff after absorption probability t is
given by the following:

γt(ι) :=
∑
i∈I

Leb({s ∈ [t, 1) | ι(s) = i})
1− t

·Ri, (1)

where Ri := r(Qi, C−i) is the payoff when player i quits alone.

Since FAPs model behavior in continuous time, the payoff vector γt(ι) depends only
on the payoffs when players quit alone. We let R be the payoff (|I| × |I|)-matrix of single
quittings whose i’th row is Ri. As we normalized payoffs so that Ri,i = 0 for each i ∈ I, the
diagonal of R is 0⃗ = (0, 0, . . . , 0). We further assume that the matrix R is generic in the
following sense.

Assumption 2.7 (Genericity of payoffs) The quitting game Γ = (I, r) satisfies the fol-
lowing genericity assumption:

Ri,j = 0 ⇐⇒ i = j.

A strategy profile is a subgame-perfect ε-equilibrium if in any subgame no player can
profit more than ε by deviating. When time is continuous, players cannot quit simulta-
neously, hence this requirement translates into two conditions: i) a player who quits with
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positive rate is indifferent between quitting and continuing and ii) a player who quits with
rate 0 cannot profit by quitting. This leads to the following definition of sequential perfect-
ness for FAPs, which is adapted from AKRS.

Definition 2.8 (AKRS) An FAP ι is sequentially perfect if for every t ∈ [0, 1), γt(ι) ≥ 0⃗
and γit(ι) = 0 whenever ι(t) = i.

Remarks 2.9 Let ι be an FAP.

1. Set i = ι(0) and suppose that t := inf{s ∈ (0, 1)|ι(s) ̸= i} < 1. Then,

γ0(ι) = tRi + (1− t)γt(ι).

In words, this equation says that the payoff (from t = 0 and on) is equal to the
probability that player ι(0) quits at t = 0 times the payoff if that player quits, plus the
probability that player ι(0) does not quit at t = 0 times the continuation payoff.

2. Given t ∈ [0, 1), the FAP induced by ι in the subgame starting at t is the FAP ιt :
[0, 1) → I defined by ιt(s) := ι(t+ (1− t)s).

� It holds that γt(ι) = γ0(ι
t).

� If ι is sequentially perfect then so is ιt.

Denote the set of sequentially perfect FAPs by Υ, and let E be the set of payoffs that
can be attained by them, that is

E :=
{
w ∈ RI | ∃ ι ∈ Υ s.t. w = γ0(ι)

}
.

We seek to characterize and compute E .

3 APS approach

In this section we naively apply the approach developed in Abreu, Pearce, and Stacchetti
(1986), and bound E by the union of largest invariant sets of a certain monotone operator.

Let RI be the set of all non-negative payoffs that can be attained by FAPs, not neces-
sarily sequentially perfect. By definition, RI is an upper bound on E . For later references,
it is convenient to define also, for each non-empty subset of players N ⊆ I, the set of non-
negative payoffs RN that can be generated by FAPs in which only players in N can ever
quit, that is,

RN :=
{
w ∈ RI

+ | ∃ FAP ι s.t. w = γ0(ι), ι([0, 1)) ⊆ N
}
, ∀N ⊆ I.

The following lemma says that RN equals the set of non-negative convex combinations of
(Ri)i∈N .
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Lemma 3.1 For each non-empty N ⊆ I, we have

RN = co{Ri, i ∈ N} ∩ RI
+,

where co denotes the convex hull. In particular, for any i ∈ I, R{i} = {Ri} if Ri ≥ 0⃗ and
∅, otherwise.
Proof. The “⊆” inclusion follows from the definition of RN and Eq. (1).

Conversely, let w ∈ co{Ri, i ∈ N} ∩ RI
+. By definition, there exists λ ∈ RN

+ such

that
∑

i∈N λi = 1 and
∑

i∈N λiRi = w. Define (tn)
|N |
n=0 by t0 := 0, tn := tn−1 + λn for

n = 1, . . . , |N |. Set ι(t) := n whenever t ∈ [tn−1, tn). By Eq. (1), γ0(ι) = w, and therefore
w ∈ RN .

Remark 3.2 It is evident that E ⊆ RI . On the other hand, for any i ∈ I, we have
R{i} ⊆ E. Indeed, if Ri ∈ RI

+, then the FAP ι with ι(t) = i for all t ∈ [0, 1) belongs to Υ;

and, if Ri ̸∈ RI
+, then R{i} = ∅ and the assertion trivially holds. In general, it is not true

that E = RI . For instance, consider the three-player game in Example 2.2. In this game,
RI is the triangle whose extreme points are (0, 0, 1), (0, 1, 0), and (1, 0, 0), while E is the
boundary of this triangle as shown in Flesch, Thuijsman, and Vrieze (1997).

The following lemma recursively unpacks the set E . It will serve as a basis for our
algorithm.

Lemma 3.3

E =
{
w ∈ RI

+ | ∃ (λ, i, ι) ∈ [0, 1]× I × ι ∈ Υ s.t. w = λRi + (1− λ)γ0(ι), wi = 0
}
. (2)

The lemma states that if w ∈ E , then (a) wi = 0 for some player i, and (b) w is a convex
combination of the payoff if player i quits alone and the payoff induced by some sequentially
perfect FAP.

Proof. Taking λ = 0 and i = ι(0) in the right side of relation (2) makes it clear that it
contains E .

Conversely, let λ ∈ (0, 1], i ∈ I, and ι ∈ Υ such that w = λRi+(1−λ)γ0(ι) and wi = 0.
If λ = 1, then w = Ri ≥ 0⃗. Thus, w is attained by the FAP ι ∈ Υ with ι(t) = i for all
t ∈ [0, 1). If λ ̸= 1, then define a new FAP ι′ by setting

ι′(t) :=

{
i, if t ∈ [0, λ),

ι
(

t−λ
1−λ

)
, if t ∈ [λ, 1).

Clearly, ι′ ∈ Υ and w = γ0(ι
′), and thus w ∈ E .

In what follows we shall construct the APS operator and show that the set E is invariant
with respect to it. For every subset E ⊆ RI , define the set of payoffs T(E) that can be
attained with continuation payoffs in E, that is,

T(E) :=
{
w ∈ RI

+ | ∃ (λ, i, ι) ∈ [0, 1]× I × E, s.t. w = λRi + (1− λ)v, wi = 0
}
. (3)

We list below several useful properties of the operator T.
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Remarks 3.4 Let E ⊆ RI .

1. If E is closed, then T(E) ⊆ RI is closed as well.

2. T(E) ⊆ T(E′) for every E′ such that E ⊆ E′ ⊆ RI , i.e., T is monotone in the
set-inclusion order.

3. Lemma 3.3 implies that the set E is invariant for the operator T.

Since E is invariant forT and included inRI , we can follow Abreu, Pearce, and Stacchetti
(1986) and bound E from above by the largest invariant set E with respect to T within
RI . The existence of this largest invariant set is guaranteed by Knaster-Tarski’s Theorem
(Knaster (1928), Tarski (1955)), which also suggests an algorithm for computing it: E can
be obtained by repeatedly applying the operator T to RI , that is

E =
∞⋂
n=0

Tn(RI), (4)

where Tn is the n-th application of the operator T. Unfortunately, it turns out that the
iterations in Eq. (4) always terminate in a single step with E = RI . As already mentioned,
there is no reason to expect that all these payoffs can be attained by a sequentially perfect
FAP. For instance, E = ∅ but RI ̸= ∅ in the following example.

Example 3.5 Consider the quitting game with four players and the following payoff matrix
of single quittings:

R =


0 4 −1

2 −1
−1 0 3 1
−1

8 −1 0 4
4 1

2 −1 0

 .

The reader can verify that the set RI is the convex hull of (0, 0, 173
87 ,

95
87), (

173
88 , 0, 0,

14
11), (0,

1799
678 , 0, 0),

(0, 0, 0, 1799
635 ), (0,

11
6 , 1, 0), (2,

7
6 , 0, 0), (

11
4 ,

3
8 , 0,

1
4) and (0, 1

10 ,
11
5 ,

4
5). Yet, the set E is empty, a

fact that will be established on page 20.

To sum up, the naive APS approach, which is inspired by the classical recursive algo-
rithm of Abreu, Pearce, and Stacchetti (1986), is not applicable in our undiscounted setting
— even though the set E is invariant with respect to T, it might differ from the largest
invariant sets E . To the best of our knowledge, there is no algorithm that can be used to
compute some invariant sets of T, except the largest (and smallest) ones.

4 Essential APS Approach

In this section we modify the APS operator and construct an alternative operator, which we
term essential APS. We then bound E by the union of largest invariant sets of this essential
APS operator. Finally, we provide a condition for this bound to be tight.
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4.1 Graph of play

Recall that every FAP ι indicates for each time instance a player who quits with a positive
rate. The following lemma shows that not all quitting orders are compatible with sequential
perfectness. Specifically, it establishes that the set of player i’s potential successors Si is
given by

Si := {j ∈ I | Rj,i < 0 < Ri,j}. (5)

Lemma 4.1 Let ι be a sequentially perfect FAP with ι(0) = i. The following three claims
hold:

(C1) There exists j ̸= i such that 0 < Ri,j.

(C2) For each connected component (t, t′) of [0, 1) \H(ι) with t′ ̸= 1, we have Rι(t′),ι(t) <
0 < Rι(t),ι(t′), i.e., ι(t

′) ∈ Sι(t).

(C3) For each left accumulation point t ∈ (0, 1) there exists j ∈ I such that ι(t) ∈ Sj.

Proof. There are two cases to consider, namely ι([0, 1)) = {i} and ι([0, 1)) ̸= {i}. Suppose
first that ι([0, 1)) = {i}. Then, γ0(ι) = Ri. Since ι is sequentially perfect, we must have
Ri ≥ 0⃗. Claim (C1) follows from Assumption 2.7 on the payoff matrix of single quittings,
and (C2) is satisfied vacuously.

Suppose next that ι([0, 1)) ̸= {i}. Since H(ι) is well-ordered, a different player gets to
quit at t := inf{s ∈ ([0, 1) | ι(s) ̸= i} > 0. By Remark 2.9.1,

γ0(ι) = tRi + (1− t)γt(ι).

Let j := ι(t). Sequential perfectness asks for γj0(ι) ≥ 0 and γjt (ι) = γit(ι) = 0. From
Assumption 2.7, we necessarily have Ri,j > 0, which proves (C1).

We now show (C2) for the connected component (0, t). First, note that player j cannot
be a quitter throughout the play. Indeed, if ι([t, 1)) = {j}, then γt(ι) = Rj . In particular,
we have Rj,i = γit(ι) = 0, which contradicts Assumption 2.7. It follows from the same
argument as above that another player gets to quit at t′ := inf{s ≥ t|ι(s) ̸= j} > t, and

(1− t)γt(ι) = (t′ − t)Rj + (1− t′)γt′(ι).

Since ι is sequentially perfect, we have γit(ι) = 0 and γit′(ι) ≥ 0. It follows that Rj,i < 0,
and therefore j ∈ Si.

As a result, since, for each connected component (t, t′) of [0, 1) \H(ι) with t′ ̸= 1, the
FAP ιt, which is defined in Remark 2.9.2, is sequentially perfect, we must have ι(t′) ∈ Sι(t).

We now show that (C3) holds. Recall that for every s ∈ [0, t), the players’ payoffs under
ι satisfy the following relationship:

(1− s)γs(ι) =
∑
j∈I

Leb{l ∈ [s, t)|ι(l) = j} ·Rj + (1− t)γt(ι).

It follows that γs(ι) converges to γt(ι) as s goes to t. Since γ
ι(s)
s (ι) = 0 for all s ∈ [0, t), we

necessarily have that γjt (ι) = 0 for all j ∈
⋂

s∈[0,t) ι([s, t)) \ {ι(t)}. We claim that ι(t) is a
successor of at least one such player j.

11



Indeed, by the same argument as above, Rι(t),j < 0 for each such player j ∈
⋂

s∈[0,t) ι([s, t))\
{ι(t)}. On the other hand, if Rj,ι(t) < 0 for all j ∈

⋂
s∈[0,t) ι([s, t)) \ {ι(t)}, then for every s

sufficiently close to t,∑
j∈I

Leb{l ∈ [s, t)|ι(l) = j} ·Rj,ι(t) + (1− t)γ
ι(t)
t (ι) < 0,

which contradicts sequential perfectness of ι.

It is convenient to visualize the order of players’ quittings by a direct graph (I, L), where
I is the set of vertices (players) and L := {(i, j) ∈ I2 : j ∈ Si} is the set of directed edges.
To make further progress we explore the topology of (I, L).

Let us introduce some auxiliary definitions. A subgraph (N,LN ) is a directed graph
where N ⊆ I, N ̸= ∅ and LN := {(i, j) ∈ N2 : j ∈ Si}. To simplify notations we identify a
subgraph with its vertices, i.e., we write N instead of (N,LN ). A directed path in N from
i ∈ N to j ∈ N is a vector of distinct vertices (i1, ..., im) ∈ Nm such that i1 = i, im = j and
ik ∈ Sik−1

for k = 2, ...,m. In particular, there is a trivial directed path from each vertex to
itself. A simple circuit N is a subgraph with at least two vertices such that for all distinct
i, j ∈ N there exists a unique directed path in N from i to j.

A subgraph N is called a strongly connected component if it is a maximal set of vertices,
such that there is a directed path between each pair of these vertices. Let I be the set of
strongly connected components of (I, L). For each N ∈ I, we denote by N̂ ⊆ I the set of all
vertices not in N that are reachable from N :

N̂ := {j ∈ I \N | ∃ directed path in I from some i ∈ N to j} .

Since the collection of strongly connected components is a partition of I, N̂ is the union of
all strongly connected components disjoint of N that are reachable from N .

Remarks 4.2

1. The set I is a partition of I.

2. Each N ∈ I contains either one or more than three elements, because for every distinct
i, j ∈ I we cannot have simultaneously j ∈ Si and i ∈ Sj, see Eq. (5).

3. The strongly connected components of (I, L) form an acyclic graph. This is the graph
whose vertices are the strongly connected components of (I, L), such that there is a
directed edge from the component N to the component N ′ if and only if N ′ is reachable
from N .

4. Every player i ∈ I with Ri ≤ 0⃗ forms a singleton strongly connected component;

moreover, {̂i} = ∅.

5. Every player i ∈ I with Ri ≥ 0⃗ forms a singleton strongly connected component;
moreover, there is no N ∈ I such that i ∈ N̂ .

12



6. Since the number of strongly connected components is finite, and they form an acyclic
graph, there always exists at least one strongly connected component N ∈ I with N̂ = ∅.

Example 4.3 Consider the following payoff matrix of single quittings:

R =



0 + − × × × × × − +
− 0 + × × × × × − +
+ − 0 + × × + × − +
× × − 0 + − × − − +
× × × − 0 + × × + +
× × × + − 0 × × − +
× × − × × × 0 × − +
× × × + × × × 0 − +
− − − − − − − − 0 +
+ + + + + + + + + 0


,

where “+” (“-”) stands for a positive (negative) entry, “×” at positions (i, j) and (j, i)
means that neither i ∈ Sj nor j ∈ Si, i.e., Ri,jRj,i > 0. Figure 4.3 plots the directed graph
(I, L) visualizing the order of players’ quittings. There are six strongly connected compo-

1 3

2

4 6

5

7 8

9

10

Figure 1: Digraph (I, L).

nents, that is I = {{1, 2, 3}, {4, 5, 6}, {7}, {8}, {9}, {10}} with {̂7} = {̂9} = ∅, ̂{4, 5, 6} =

{9}, {̂8} = {̂10} = {4, 5, 6, 9} and ̂{1, 2, 3} = {4, 5, 6, 7, 9}.

4.2 Constructing the Essential APS Operator

In this section we build on the classical APS operator to construct a tighter bound for the
set E of payoffs attainable by sequentially perfect FAPs. The gist of our construction is
to inductively find the largest invariant sets in each strongly connected component of the
graph (I, L) following their order prescribed by reachability. For this purpose, we shall use
Lemma 4.4 to decompose E . Recall that each set of payoffs R{i} := {Ri} ∩RI

+ corresponds
to the set of payoffs attained by the constant FAP ι(t) = i, when it is sequentially perfect,
and is empty otherwise.
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Lemma 4.4 It holds that E = ∪i∈IEi, where, for all i ∈ I,

Ei = R{i} ∪
{
w ∈ RI

+ | ∃(λ, ι) ∈ [0, 1]×Υ s.t. w = λRi + (1− λ)γ0(ι), wi = 0,

ι(0) ∈ Si, ι([0, 1)) ⊆ N ∪ N̂
}
,

where N is the strongly connected component containing player i; i.e., Ei is the set that
contains all payoffs that can be attained by sequentially perfect FAPs in which player i
receives 0, quits at the outset with some probability and any player who quits next must be
reachable from i in the graph (I, L).

Proof. Remark 3.2 and Lemma 3.3 imply that Ei ⊆ E for all i ∈ I.
Conversely, for w ∈ E , let ι ∈ Υ be such that w = γ0(ι), and i ∈ I such that wi = 0. If

ι([0, 1)) = {i}, then w = Ri ∈ R{i} ⊆ E . If ι([0, 1)) ̸= {i}, then, since H(ι) is well-ordered,
the value of t := inf{s ∈ (0, 1)|ι(s) ̸= i} is positive. By Lemma 4.1, ι(t) ∈ Si. Moreover,
(C1) and (C2) of this lemma jointly imply that no player outside of N ∪ N̂ will ever get to
quit under ι, i.e., ι([0, 1)) ⊆ N ∪ N̂ . The assertion of the claim then follows from Remark
2.9.1: γ0(ι) = tRi + (1− t)γ0(ι

t), where ιt := ι(t+ (1− t)·) belongs to Υ.

Recall that the classical APS operator T maps subsets of RI to subsets of RI , and was
defined so that the set E is invariant under it. In contrast, the Essential APS operator
takes as an input a collection of subsets of RI , outputs a collection of subsets of RI , and
it is defined in such a way that (Ei)i∈I is invariant under this operator. This operator will
be used separately on each strongly connected component of (I, L), and it will be defined
recursively along the graph of strongly connected components.

To this end note first that, for N ∈ I and i ∈ N , we necessarily have Si ⊆ N ∪ N̂ . Then,

given an arbitrary collection of sets indexed by N̂ , say (Ej)j∈N̂ ⊆ (RI)
N̂ , the following

operator is well-defined: for all collections (Ej)j∈N ⊆ (RI)
N , set

Ti,N

(
(Ej)j∈N |(Ej)j∈N̂

)
:= R{i} ∪

{
w ∈ RI

+|∃ (λ, v) ∈ [0, 1]× ∪j∈SiEj ,

s.t. w = λRi + (1− λ)v, wi = 0
}
. (6)

The set Ti,N

(
(Ej)j∈N |(Ej)j∈N̂

)
contains all payoffs that can be attained at time 0 when

player i quits with non-negative probability, selects a player j in Si and a continuation
payoff in Ej that yields 0 to player i. It is convenient to stack together Ti,N as

TN

(
(Ei)i∈N |(Ei)i∈N̂

)
:=

(
Ti,N

(
(Ej)j∈N |(Ej)j∈N̂

))
i∈N

.

We next mention a few useful properties of TN .

Remarks 4.5 Fix N ∈ I and (Ei)i∈N∪N̂ ⊆ (RI)
N∪N̂ .

1. If the sets (Ei)i∈N∪N̂ are closed, then TN

(
(Ei)i∈N |(Ei)i∈N̂

)
is a collection of closed

sets as well.
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2. For each i ∈ N , we have Ti,N

(
(Ej)j∈N |(Ej)j∈N̂

)
⊆ Ti,N

(
(E′

j)j∈N |(E′
j)j∈N̂

)
for

every (E′
j)j∈N∪N̂ such that Ej ⊆ E′

j ⊆ RI for all j ∈ N ∪ N̂ .

3. Lemma 4.4 implies that the collection (Ei)i∈N is a fixed point of the operator TN

(
·|(Ei)i∈N̂

)
,

that is,

(Ei)i∈N = TN

(
(Ei)i∈N |(Ei)i∈N̂

)
. (7)

4.3 An algorithm based on the essential APS operator

After a transition out of a strongly connected component N , the play will never return to
it, hence we can inductively construct the largest invariant sets (Ei)i∈I of the Essential APS
operator. These largest invariant sets will be upper bounds of the sets (Ei)i∈I .

• Consider first N ∈ I such that N̂ = ∅. Set FN := RN , and define (Ei)i∈N as follows:

(E i)i∈N :=
∞⋂
n=0

(TN )n
(
(FN )N | ∅

)
. (8)

• Consider next N ∈ I such that N̂ ̸= ∅, and suppose that the sets (E i)i∈N̂ are already
known. Let FN be given by

FN := co

{
{Ri} ∪

⋃
j∈Si∩N̂

(
Ej ∩ {w ∈ RI | wi = 0}

)
, i ∈ N

}
∩ RI

+. (9)

We can see recursively that, for all N ∈ I, FN ⊂ RI and compact. Then again, we can
define the sets (E i)i∈N by

(E i)i∈N :=

∞⋂
n=0

(TN )n
(
(FN )N | (E i)i∈N̂

)
. (10)

The following lemma unpacks the sets (E i)i∈I as defined in (8) and (10), and gives a
first link between our upper bounds and E :

Lemma 4.6 Let N ∈ I. For each i ∈ N and every w ∈ E i, there exists a sequence
(wn, in, λn)n∈N ⊂ (RI ×(N ∪N̂)× [0, 1])N with w0 = w and i0 = i, such that for each n ∈ N,

wn ∈ E in ,

wn = λnRin + (1− λn)wn+1,

in+1 ∈ Sin whenever λn ̸= 1.

(11)

Moreover, if wn ∈ E for some n ∈ N, then w ∈ E.
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If
∏

n∈N(1−λn) = 0, then the sequence (wn, in, λn)n∈N of Lemma 4.6 naturally defines a
sequentially perfect FAP: player i0 quits first with probability λ0, and w1 is the continuation
payoff; player i1 quits with probability λ1, and w2 is the continuation payoff, and so on.
If

∏
n∈N(1 − λn) > 0, then this sequence defines a prefix of an FAP that implements the

payoff vector w0.

Proof. Fix i ∈ N and let w ∈ E i. The existence of a sequence (wn, in, λn)n∈N satisfying
Eq. (11) follows from the fact that for each M ∈ I reachable from N , the sets (Ej)j∈M are
invariant with respect to TM (· | (Ej)j∈M̂ ).

We now prove the second claim. Suppose that there exists n ∈ N such that wn ∈ E , i.e,
there is a sequentially perfect FAP ι with γ0(ι) = wn. If n = 0, then w = w0 ∈ E . Since
i0 = i, we have wi = 0, and hence w ∈ Ei ⊆ E .

If n ̸= 0, then we know that once the time reaches tn, a sequentially perfect strategy
profile to continue the play and obtain a payoff of wn is available. We only need to verify
that up to time tn the algorithm yields a beginning that answers the conditions of sequential
perfectness when the continuation payoff at time tn is wn. Let (tk)nk=0 be as follows: t0 := 0
and tk+1 := tk + (1− tk)λk for k = 0, . . . , n− 1. Define a new FAP ι′ by

ι′(t) :=

{
ik if t ∈ [tk, tk+1), k = 0, . . . , n− 1,

ι
(

t−tn

1−tn

)
if t ∈ [tn, 1).

By construction,
w = γ0(ι

′) with wi = 0, w ∈ RI
+ and ι′ is sequentially perfect, thus w ∈ Ei ⊆ E .

We show now that the sets (E i)i∈I are supersets of (Ei)i∈I . Our argument is divided
into two parts. Lemma 4.7 establishes that (E i)i∈I is larger than any collection of invariant
sets of the Essential APS operator satisfying a certain property. It is then sufficient to show
that the collection (Ei)i∈I satisfies the premise of Lemma 4.7.

Lemma 4.7 Fix N ∈ I. Let (Ei)i∈N∪N̂ be a collection of sets such that for all M ∈ I
reachable from N , as well as for M = N ,

� Ei ⊆ FM , for each i ∈ M ,

� (Ei)i∈M = TM

(
(Ei)i∈M | (Ei)i∈M̂

)
.

Then, Ei ⊆ E i for all i ∈ N ∪ N̂ .

Proof. We proceed by induction. For N ∈ I such that N̂ = ∅, the result follows directly
from Eq. (8) and the fact that TN (· | ∅) is monotone.

Next consider N ∈ I such that N̂ ̸= ∅, and suppose that Ei ⊆ E i for each i ∈ N̂ . The
monotonicity of TN in all its arguments imply that

(Ei)i∈N =
∞⋂
n=0

(TN )n ((Ei)i∈N | (Ei)i∈N̂ ) ⊆
∞⋂
n=0

(TN )n ((FN )N | (E i)i∈N̂ ) = (E i)i∈N ,
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which completes the inductive step.

Proposition 4.8 Ei ⊆ E i for all i ∈ I.

Proof. We proceed again by induction. In view of Remark 4.5.3 and Lemma 4.7 it is
sufficient to prove that Ei ⊆ FN for every strongly connected component N and every
i ∈ N . This trivially holds if N̂ = ∅.

Fix now N ∈ I such that N̂ ̸= ∅, and suppose that (Ei)i∈M ⊆ (FM )M for every M ∈ I
reachable from N . Let w ∈ Ei as defined in Lemma 4.4, i.e., w = λRi + (1 − λ)γ0(ι) ≥ 0
with wi = 0 for some (λ, ι) ∈ [0, 1]×Υ. We shall show that w ∈ FN .

Suppose first that ι([0, 1)) ⊆ N . Then, w is a convex combination of (Rj)j∈N , and the
assertion trivially holds.

Suppose next that t := inf{s ∈ (0, 1) | ι(s) ̸∈ N} < 1. By construction, γt(ι) ∈ Eι(t),
and, by Lemma 4.1, there exists j ∈ N such that γjt (ι) = 0 and ι(t) ∈ Sj . It follows that w

is a convex combination of
(
{Rj} ∪

⋃
l∈Sj∩N̂

(
El ∩ {w ∈ RI | wj = 0}

))
j∈N

.

By the induction hypothesis, (Ej)j∈M ⊆ (FM )M for every M ∈ I reachable from N that

implies that Ej ⊆ Ej for all j ∈ N̂ . As a result, w ∈ FN , and the induction step is complete.

The following theorem delivers a condition under which the algorithm of this section
computes the set E , i.e., every payoff vector in

⋃
i∈I E i can be attained by some sequentially

perfect FAP. This condition says that for every strongly connected component N , the sets
(E)i∈N are such that there is no subset of players who can quit consecutively after each
other with zero probabilities. This is satisfied in Example 2.2, see also Section 4.4 for more
computed examples.

Theorem 4.9 Suppose that for every strongly connected component N ∈ I with at least
three elements, FN ∩ {w ∈ RI | wi = 0, ∀i ∈ M} = ∅ for all simple circuits M ⊆ N . Then,

E =
⋃
i∈I

E i.

Furthermore, for each w ∈ E, there exists a sequentially perfect FAP ι with γ0(ι) = w such
that the ordinality of H(ι) is at most the ordinality of N.

Proof. Lemma 4.4 and Proposition 4.8 imply that E =
⋃

i∈I Ei ⊆
⋃

i∈I E i. In what follows
we show the reverse inclusion.

Take N ∈ I and suppose that, by induction, we have already shown that for each i ∈ N̂ ,
(i) the set E i is closed, (ii) E i ⊆ E , and (iii) all elements of E i can be obtained by FAPs ι
such that the ordinality of H(ι) is at most the ordinality of N. Note that the premise is
vacuously true whenever N̂ = ∅.

Property (i) is immediate. Indeed, since TN (· | (E i)i∈N̂ ) maps closed sets to closed sets

and FN is closed, the sets (E i) are closed as an intersection of closed sets.
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We now establish properties (ii) and (iii). Fix i ∈ N and w ∈ E i. Suppose first that there
exists a sequence (wn, in, λn)n∈N satisfying Eq. (11) such that either λn = 1 or in+1 ∈ N̂ for
some n ∈ N. In the former case, we must have wn = Rin ≥ 0⃗, whereas in the latter case,
wn+1 ∈ E in+1 ⊆ E . In either case, Lemma 4.6 implies that w ∈ E .

Suppose now that any sequence (wn, in, λn)n∈N satisfying Eq. (11) is such that λn < 1
and in+1 ∈ N for all n ∈ N. Define a sequence (tn)n∈N by setting t0 := 0 and tn+1 :=
tn+(1− tn)λn for all n ∈ N. By construction, (tn)n∈N is non-decreasing and bounded from
above by 1. We claim that this sequence converges to 1. To establish this claim, consider
the following infimum:

ν := inf(
(̃ik)

|N|
k=1,w̃,(λ̃k)

|N|−1
k=1

)
∈N |N|×FN×[0,1]|N|−1

∑|N |−1
k=1 λ̃k,

s.t. ĩk+1 ∈ Sĩk for k = 1, . . . , |N | − 1, and
w̃ĩ1 = 0,

w̃ĩ2 = λ̃1Rĩ1 ,̃i2 ,

w̃ĩk = λ̃1Rĩ1 ,̃ik +
∏k−2

m=1(1− λ̃m)λ̃k−1Rĩk−1 ,̃im for k = 3, ..., |N |.

(12)

The quantity
∑|N |−1

k=1 λ̃k serves as a proxy to the total probability of quitting of N − 1
consecutive players in a sequence (wn, in, λn)n∈N satisfying Eq. (11). Thus, ν is the infimum
of these quantities.

We will show that the condition in Theorem 4.9 implies that ν > 0, which will imply
that the sequence (tn)n∈N converges to 1. By way of contradiction, assume that ν = 0.

Since FN is compact, the infimum is attained by some point, say
(
(̃ik)

|N |
k=1, w̃, (λ̃

k)
|N |−1
k=1

)
.

By assumption, ν = 0 which implies that w̃j = 0 for every j ∈ {̃ik}|N |
k=1. Since ĩk+1 ∈ Sĩk

for k = 1, . . . , |N | − 1, there exists a simple circuit M in (̃ik)
|N |
k=1. The existence of a simple

circuit and a payoff in which all players in that simple circuit gets zero contradict the
assumption of the theorem. It follows that ν > 0.

The reader can verify that, for each n ∈ N, the point
(
(in+k)

|N |
k=1, w

n, (λn+k)
|N |−1
k=1

)
sat-

isfies the constraints of the auxiliary problem (12). As a result,
∑|N |−1

k=1 λn+k ⩾ ν > 0 for
every n ∈ N.

Going back to the sequence (tn)n∈N, note that t
n+|N |−1− tn =

∑|N |−1
k=1 λn+k(1− tn+k−1)

for every n ∈ N. Since this latter sequence is non-decreasing, for each n ∈ N, it has to
satisfy the following:

tn+|N |−1 − tn ≥
|N |−1∑
k=1

λn+k(1− tn+|N |−1) ≥ ν(1− tn+|N |−1).

It follows that (tn)n∈N converges to 1 as n tends to ∞. Since (tn)n∈N converges to 1, the
following ι constitutes an FAP:

ι(t) := in whenever t ∈ [tn, tn+1).
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By construction, ι is sequentially perfect with w = γ0(ι) and w ∈ E .
Finally, note that in each of the two cases, the ordinality of the constructed FAP ι is of

at most the ordinality of N. This completes the induction step.

Theorem 4.9 provides the condition under which the Essential APS operator can be
used to compute the set of all payoff vectors attainable by sequentially perfect FAPs. We
note that any such payoff vector can be implemented by an FAP without infinite cycles.
This is not true in general, see Example 4.11 below. The next corollary of Theorem 4.9
presents a simple sufficient condition, which ensures that E =

⋃
i∈I E i. It holds in particular

in Example 2.2.

Corollary 4.10 Suppose that for each i ∈ I, Si = {i + 1}, where the addition is modulo
|I|. Then I = {I} and, if 0⃗ ̸∈ RI , then for each i ∈ I,

E i =

∞⋂
n=0

(
Ti,I ◦Ti+1,I ◦ . . . ◦Tii+|I|−1,I

)n
(RI |∅) and E =

⋃
i∈I

E i.

If the condition of Theorem 4.9 fails, then the upper bounds (E i)i∈I might not be tight.
We now provide an example, which illustrates that the assumption of Theorem 4.9 cannot
be easily dispensed with.

Example 4.11 Consider the quitting game with five players and the following payoff matrix
of single quittings:

R =


0 2 −1

2 1 −1
−1

2 0 2 1 −1
2 −1

2 0 1 −1
−1 −2 −3 0 10

7
2 7

2
47
8 − 5

12 0

 .

1 2

3

45

Figure 2: Digraph (I, L).

In this game, S1 = {2, 4}, S2 = {3, 4}, S3 = {1, 4}, S4 = {5}, and S5 = {1, 2, 3},
see Figure 2 for an illustration of the graph (I, L). The reader can verify that the unique
strongly connected component is I.
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We claim that
⋃

i∈I E i ̸= E. To this end, note that there exists a point w ∈ RI such that
w1 = w2 = w3 = 0 and w4 > 0, i.e.,

w =
(
0, 0, 0,

20

71
,
20

71

)
=

5

71
R1 +

686

2911
R2 +

684

2911
R3 +

1309

2911
R4 +

552

2911
R5.

On the one hand, this point cannot be eliminated during iterations of the essential APS
operator, because w ∈ Ti,I({w}|∅) for i = 1, 2, 3 and {1, 2, 3} is a simple circuit. As a
result, w ∈ E i for i ∈ {1, 2, 3}.

On the other hand, w cannot be attained by any sequentially perfect FAP. Indeed, since
Ri,i+1 > 0 for all i ∈ {1, 2, 3}, where the addition is modulo 3, there is no λ ∈ (0, 1] and
v ∈ RI ⊆ RI

+ such that w = λRi + (1− λ)v. It follows that w ̸∈ E1 ∪ E2 ∪ E3. At the same
time, w ̸∈ E4 ∪ E5, because w4 > 0 and w5 > 0. We conclude that there is no sequentially
perfect FAP ι such that γ0(ι) = w.

4.4 Numerical examples

In this section, we illustrate how the Essential APS approach can be used to numerically
compute the set E . All computations were performed numerically in Julia, using exact arith-
metic and the “Polyhedra” and “LazySets” packages. A basic computational step takes a
convex compact set E ⊆ RI

+ with a finite number of extreme points. Then, it returns

co{Ri, E} ∩ {w ≥ 0⃗ | wi = 0} as an output, which is a convex compact set with a finite
number of extreme points. This construction naturally extends to sets that can be written
as a finite union of convex sets.

Example 3.5 continued. Recall that in this example there are four players with the
following payoff matrix of single quittings:

R =


0 4 −1

2 −1
−1 0 3 1
−1

8 −1 0 4
4 1

2 −1 0

 .

The reader can verify that Si = {i+ 1} for every i ∈ I, where the addition is modulo 4,
and the graph (I, L) is a simple circuit. Moreover, the condition of Theorem 4.9 is satisfied.
Since the graph is a simple circuit, the sets (E i)i∈I can be re-written as follows: for each
i ∈ I,

E i = Ti,I(E i|∅) = (Ti,I ◦Ti+1,I ◦Ti+2 ◦Ti+3,I)(E i|∅).

We claim that E i = ∅ for all i ∈ I. To show this, we proceed backwards along the simple
circuit repeatedly applying Ti,I ’s:

� As mentioned on Page 10, the set RI ∩ {w ≥ 0⃗ | w1 = 0} is the convex hull of
(0, 0, 173

87 ,
95
87), (0,

1799
678 , 0, 0), (0, 0, 0,

1799
635 ), (0,

1
10 ,

11
5 ,

4
5), (0,

1
10 ,

11
5 ,

4
5), and (0, 11

6 , 1, 0).

� The set (T1,I ◦T2,I ◦T3,I ◦T4,I)(RI |∅) is the convex hull of (0, 0, 267
193 ,

313
193), (0,

1799
678 , 0, 0),

(0, 0, 0, 1799
635 ), and (0, 626

253 ,
221
1012 , 0).
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� The set (T1,I◦T2,I◦T3,I◦T4,I)
2(RI |∅) is the convex hull of (0, 0, 5349

14095 ,
176243
70475 ), (0, 0, 0,

1799
635 ),

and (0, 42795
24793 , 0,

122753
123965).

Note that every extreme point of (T1,I ◦T2,I ◦T3,I ◦T4,I)
2(RI |∅) is such that w4 > 0,

and therefore T4,I((T1,I ◦T2,I ◦T3,I ◦T4,I)
2(RI |∅)|∅) = ∅. It follows that E = ∅.

We next provide an example in which the set E =
⋃

i∈I E i is non-empty and is strictly
smaller than RI . In other words, the set of attainable payoffs cannot be computed by the
naive approach, but the Essential APS approach does the job.

Example 4.12 There are five players with the following payoff matrix of single quittings:

R =


0 4 −1

2 −1 −1
−1 0 3 −1 1

2
−1

8 −1 0 4 −1
−1 −1

2 −1 0 4
5 1 −1 −1 0

 .

In this game, Si = {i+1} for each i ∈ I, where the addition is modulo 5, and the graph
(I, L) is a simple circuit. The upper bounds (E i)i∈I satisfy the following:

E i = Ti,I(E i|∅) = (Ti,I ◦Ti+1,I ◦Ti+2,I ◦Ti+3,I ◦Ti+4,I)(E i|∅).

We now illustrate how to find E1:

� The set RI ∩ {w ≥ 0⃗|w1 = 0} is the convex hull of (0, 0, 0, 0, 51885
27356), (0, 0, 0, 51885

27356 , 0),
(0, 51885

27356 , 0, 0, 0), (0,
199
680 ,

127
80 , 0, 0), (0, 0,

2197
1362 ,

199
681 , 0) and (0, 0, 3319

1840 , 0,
199
1840).

� The set (T1,I ◦ T2,I ◦ T3,I ◦ T4,I ◦ T5,I)(RI |∅) is the convex hull of (0, 0, 0, 0, 51885
27356),

(0, 0, 0, 51885
27829 , 0), (0,

51885
30158 , 0, 0, 0), (0, 0,

31131
19010 , 0,

10377
38020) and (0, 34590

44969 ,
190245
179876 , 0, 0).

� The set (T1,I◦T2,I◦T3,I◦T4,I◦T5,I)
2(RI |∅) is the convex hull of (0, 1400895

876794 , 0, 0,
415080
3068779),

(0, 178715
152098 ,

46120
76049 , 0, 0), (0, 51885

30158 , 0, 0, 0), (0, 0, 0, 466965
600227 ,

9287415
8403178), (0, 7429932

10054513 ,
20432313
20109026 ,

736767
10054513 , 0),

(0, 0, 5572449
4098515 ,

259425
819703 ,

1857483
8197030) and (0, 0, 0, 51885

27829 , 0).

It turns out that (T1,I ◦ T2,I ◦ T3,I ◦ T4,I ◦ T5,I)
3(RI |∅) = (T1,I ◦ T2,I ◦ T3,I ◦ T4,I ◦

T5,I)
2(RI |∅), as a result, we have E1 = (T1,I ◦ T2,I ◦ T3,I ◦ T4,I ◦ T5,I)

2(RI |∅). One can
similarly obtain the remaining upper bounds E i for i = 2, . . . , 5. The game satisfies the
condition of Theorem 4.9, hence E =

⋃
i∈I E i

In both examples above, there is only one strongly connected component, which forms
a simple circuit. As a result, for each player i ∈ I, the upper bound E i is convex. This
is not necessarily the case when there are multiple strongly connected components as the
following example illustrates.
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Example 4.13 Consider the game with six players and the following payoff matrix of single
quittings:

R =



0 2 −1
2 1 1 1

−1
2 0 2 1 1 1
2 −1

2 0 1 1 1
−3

8 1 1 0 2 −1
2

1 2 1 −1
2 0 2

2 1 1 2 −1
2 0

 .

Figure 3 depicts the graph (I, L). There are two strongly connected components I =
{{1, 2, 3}, {4, 5, 6}}, and {4, 5, 6} is reachable from {1, 2, 3}.

2

13 4 5

6

Figure 3: Digraph (I, L).

We now use the Essential APS approach to compute the upper bounds. First, consider
the strongly connected component {4, 5, 6}. Similarly to Example 2.2, the sets of payoffs
attainable by sequentially perfect FAPs in which only players 4, 5, and 6 quit coincide with
the boundary of a certain triangle: E4 = R{4,5,6} ∩ {w ≥ 0⃗ | w4 = 0} is the convex hull of

(0, 25
21 , 1, 0,

3
2 , 0) and (98 ,

37
21 , 1, 0, 0,

3
2), E5 = R{4,5,6} ∩ {w ≥ 0⃗ | w5 = 0} is the convex hull of

(98 ,
37
21 , 1, 0, 0,

3
2) and (32 ,

22
21 , 1,

3
2 , 0, 0), and E6 = R{4,5,6} ∩ {w ≥ 0⃗ | w6 = 0} is the convex hull

of (32 ,
22
21 , 1,

3
2 , 0, 0) and (0, 25

21 , 1, 0,
3
2 , 0).

We next consider the strongly connected component {1, 2, 3}, where we focus on E1,
because the remaining sets can be easily derived from it. Iterate along the simple circuit
{1, 2, 3} to obtain the following:

E1 = T1,{1,2,3}(E2|E4) = T1,I(E2|∅) ∪T1,I(E4|∅) = (T1,I ◦T2,I ◦T3,I)(E1|∅) ∪T1,I(E4|∅).

The set F{1,2,3} ∩{w ∈ RI
+|w1 = 0} is the convex hull of (0, 109

63 , 0,
2
3 ,

7
6 ,

2
3), (0,

3
2 , 0, 1, 1, 1),

(0, 0, 3
2 , 1, 1, 1), (0, 0,

421
271 ,

250
271 ,

563
542 ,

250
271) and (0, 25

21 , 1, 0,
3
2 , 0). After n ≥ 1 iterations, the essential

APS algorithm outputs the following:

(T1,I ◦T2,I ◦T3,I)
n(F{1,2,3}|∅) ∪

n−1⋃
k=0

(T1,I ◦T2,I ◦T3,I)
k(T1,I(E4|∅)|∅).

We now numerically approximate each term rounding rational numbers to 1
1000 :

� The set (T1,I ◦T2,I ◦T3,I)
n(F{1,2,3}|∅) converges to the convex hull of (0, 0, 3

2 , 1, 1, 1)
and (0, 3

2 , 0, 1, 1, 1).

� T1,I(E4|∅) is the convex hull of (0, 119
100 , 1, 0,

3
2 , 1) and (0, 173

100 , 1,
667
1000 ,

1167
1000 ,

667
1000).
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� (T1,I ◦T2,I ◦T3,I)(T1,I(E4|∅)|∅) is the convex hull of (0, 1503
1000 , 0,

199
200 ,

501
500 ,

199
200) and

(0, 0, 1513
1000 ,

491
500 ,

1009
1000 ,

491
500).

� (T1,I◦T2,I◦T3,I)
2(T1,I(E4|∅)|∅) is the convex hull of (0, 0, 3

2 , 1, 1, 1) and (0, 3
2 , 0, 1, 1, 1).

The reader can verify that (T1,I ◦T2,I ◦T3,I)
3(T1,I(E4|∅)|∅)is the same as (T1,I ◦T2,I ◦

T3,I)
2(T1,I(E4|∅)|∅). To sum up, E1 can be approximated by the union of the three con-

vex combinations shown above. The number of convex combinations will increase if we
decrease the rounding error. In general, since the assumptions of Theorem 4.9 are satisfied,
E coincides with the union of (E i)i∈I .

We conclude this section by revisiting Example 4.11. Even though the Essential APS
does not produce the set of all payoffs attainable by sequentially perfect FAPs, it can be
used to characterize some subsets of it.

Example 4.11 continued. Recall that in this example there are five players and the payoff
matrix of single quittings is

R =


0 2 −1

2 1 −1
−1

2 0 2 1 −1
2 −1

2 0 1 −1
−1 −2 −3 0 10

7
2 7

2
47
8 − 5

12 0

 .

As pointed out on page 19, the essential APS approach only provides an upper bound to
the set E. We will show that there is a sequentially perfect FAP ι with an infinite cycle,
which should be contrasted with the claim of Theorem 4.9. Then, we will illustrate how the
payoff along this FAP can be numerically approximated using our technique.

The set H(ι) will be order equivalent to N × N, specifically: H(ι) = {tkω+n | k, n ∈ N}
for a certain sequence (tkω+n)k,n∈N. To formally define this FAP, we need the following
auxilary sequence (in, λn)n∈N given by

n 0 1 2 3 4 5 6 7 · · · n · · ·
in 4 5 1 2 3 1 2 3 · · · (n− 2) mod 3 · · ·
λn 1

2
1
2

1
4

3
4+14·4n−3 · · ·

Define recursively (tkω+n)k,n∈N as follows:

tkw := 1−
(

5

12

)k

,

tkω+n+1 := tkω+n + (1− tkω+n)λn,

and set the FAP ι to be

ι(t) = ikω+n whenever t ∈ [tkω+n, tkω+n+1).
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We note that tkω+n converges to 1 as k, n → ∞. Thus, the function ι is, in a sense, periodic
with period ∞.

The reader can verify that this FAP is sequentially perfect, i.e., γtkω+n(ι) ≥ 0⃗ and

γi
kω+n

tkω+n (ι) = 0 for every k, n ∈ N. In fact,

γ0(ι) = (0, 0, 0, 0, 57)

γt1(ι) = (1, 2, 3, 0, 0),

γt2(ι) = (0, 12 ,
1
8 ,

5
12 , 0),

γtn(ι) → γ0(ι),

γtkω+n(ι) = γtk′ω+n(ι), ∀k, k′, n ∈ N.

We now numerically approximate the payoffs of this orbit using our approach. Specif-
ically, for some fixed k ≥ 1, we solve for the set of payoff vectors which are attainable by
sequentially perfect FAPs in which players 1, 2, and 3 cycle for k times and then players 4
and 5 quit consecutively. Let Uk be the set of such equilibrium payoffs at the beginning of
the cycle, when player 1 is the quitter. Then,

Uk ⊆ ((T1,I ◦T2,I ◦T3,I)
k ◦T4,I ◦T5,I)(Uk|∅).

As before, we calculate an upper bound Uk of Uk using iterations, starting with the set
of feasible and rational payoffs:

Uk
:=

∞⋂
n=0

(
(T1,I ◦T2,I ◦T3,I)

k ◦T4,I ◦T5,I

)n
(RI |∅).

Since 0⃗ ̸∈ Uk
, by the same argument as the one used in the proof of Theorem 4.9, every point

in Uk
can be attained by a sequentially perfect FAP. We provide the set Uk

for different
values of k, rounding rational numbers to 1/1000:

� The set U1
is the convex hull of (0, 0, 17

250 ,
43

1000 ,
641
1000), (0,

241
1000 , 0,

79
500 ,

443
1000), (0,

127
200 , 0,

52
125 , 0),

(0, 77
500 ,

101
200 ,

207
500 , 0), and (0, 0, 589

1000 ,
73
200 ,

83
100).

� The set U2
is the convex hull of (0, 0, 313

500 ,
417
1000 , 0), (0,

5
8 , 0,

417
1000 , 0), (0,

59
250 , 0,

157
1000 ,

89
200), and

(0, 0, 67
1000 ,

9
200 ,

319
500).

The reader can verify that when the payoffs are rounded up to 1/1000, U2
= U3

. More-
over, the convex combination of (0, 0, 313

500 ,
417
1000 , 0) and (0, 5

8 , 0,
417
1000 , 0) with weights 1

5 and 4
5 is

approximately equal to γt2(ι) = (0, 1
2 ,

1
8 ,

5
12 , 0).

5 Extensions

The algorithm we presented in Section 4 characterizes the set of all payoffs that correspond
to sequentially perfect FAPs, and allows to construct these FAPs. In general, we may have
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sequentially perfect absorption paths in which several players quit with positive rates at
the same time and/or the set of discontinuities is not well-ordered. In this section we show
that the algorithm can be adapted to handle these cases, which suggests that the algorithm
may be useful in characterizing the set of payoffs that correspond to sequentially perfect
absorption paths in larger classes of games.

5.1 Generalized FAPs

Recall that under an FAP ι, a single player quits with rate one in each connected component
(t, t′) of H(ι). We now define a generalization of FAPs, allowing several players to quit at
the same time over (t, t′).

Definition 5.1 A Generalized Flesch Absorption Path (GFAP) is a right-continuous, piece-
wise constant map α : [0, 1) → ∆(I), such that the set of its discontinuities including 0,
denoted by H(α), is countable and well-ordered.

Let α be a GFAP. For every 0 ≤ t < 1 and for each player i ∈ I, the value of
∫ 1
t αi(s)ds

represents the probability that the play terminates by the action profile (Qi, C−i) in the
interval [t, 1). Since the probability of absorption in [t, 1) is 1− t, the expected payoff after
absorption probability t is given by

γt(α) :=
∑
i∈I

∫ 1
t αi(s)ds

1− t
·Ri. (13)

The notion of sequential perfectness for GFAPs is exactly the same as the one for FAPs:

Definition 5.2 A GFAP α is sequentially perfect if for every t ∈ [0, 1), γt(α) ≥ 0⃗ and
γit(α) = 0 whenever αi(t) > 0.

Let Υ be the set of sequentially perfect GFAPs, and set

E := {w ∈ RI | ∃α ∈ Υ, s.t. w = γ0(α)}.

We will show how E can be characterized and computed using a variation of the Essential
APS algorithm. Since the construction is parallel to the one in Section 4, we will skip most
of the intermediate steps.

Let us define the digraph (I, L) we need for the algorithm. The vertices are here the
non-empty subsets of players I := 2I \ {∅}, and we add an edge between two sets N,M ∈ I
if the players in N can be followed by M as quitters in a sequentially perfect GFAP. With
analogous arguments as in Lemma 4.1, this is equivalent to the following: (N,M) ∈ L if
and only if N ̸= M and there exist (λi)i∈N ∈ (0, 1]N and (λ′

i)i∈M ∈ (0, 1]M such that{∑
i∈N λiRi,j ≥ 0 ∀j ∈ M,∑
i∈M λ′

iRi,j ≤ 0 ∀j ∈ N.
(14)

For each N ∈ I, let SN be the set of subsets M with (N,M) ∈ L. Let I be the set of
strongly connected components with a typical element N ∈ I. The union of all strongly
connected components reachable from N is denoted by N̂ .
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We now define the Essential APS operator similarly to the definition in Section 4. For
each strongly connected component N ∈ I, every element N ∈ N , and every collection of

sets (EM )
M∈N∪N̂ ⊆ (RI)

N∪N̂ , set

TN,N

(
(EM )M∈N |(EM )

M∈N̂

)
:= R0

N ∪
{
w ∈ RI |∃ (λ, v) ∈ [0, 1]N × ∪M∈SN

EM s.t.

w =
∑
i∈N

λiRi +
(
1−

∑
i∈N

λi

)
v, wj = 0 ∀j ∈ N

}
,

where R0
N := {w ∈ RN |wj = 0 ∀j ∈ N}. Stack together TN,N ’s as follows:

TN

(
(EM )M∈N |(EM )

M∈N̂

)
:=

(
TN,N

(
(EM )M∈N |(EM )

M∈N̂

))
N∈N

.

Following the same inductive approach as in Section 4, we built the largest invariant sets
of this generalized Essential APS operator: for N ∈ I such that N̂ = ∅, we set

FN := co
{
R0

N , N ∈ N
}
∩ RI

+ and (EN )N∈N :=
∞⋂
n=0

(
TN

)n (
(FN )N |∅

)
.

Then, for arbitrary N ∈ I such that the sets (EN )
N∈N̂ are known, define

FN := co

{
R0

N ∪
⋃

M∈SN∩N̂

(
EM ∩ {w ∈ RI

+|wi = 0 ∀i ∈ N}
)
, N ∈ N

}
∩ RI

+,

and set

(EN )N∈N :=

∞⋂
n=0

(
TN

)n (
(FN )|N ||(EN )

N∈N̂

)
.

The following theorem characterizes the set of payoffs which can be implemented by
GFAPs. We omit its proof, because it is parallel to the proof of Theorem 4.9.

Theorem 5.3 Suppose that for every strongly connected component N ∈ I with at least two
elements, FN ∩ {w ∈ RI |wi = 0, ∀N ∈ M, ∀i ∈ N} = ∅ for all simple circuits M ⊆ N .
Then,

E =
⋃
N∈I

EN .

Furthermore, for each w ∈ E, there exists a sequentially perfect GFAP α with γ0(α) = w
such that the ordinality of H(α) is at most the ordinality of N.

5.2 Characterizing continuous equilibrium payoffs

In this last section, we consider the most general framework of continuous quitting. We
adapt the APS approach to approximate the whole set of subgame-perfect equilibrium
payoffs where in the corresponding ε-equilibria, players quit with infinitesimal probabilities
throughout the play.
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Definition 5.4 A continuous absorption path (CAP) α is a measurable map from [0, 1) to
∆(I).

An expected payoff path under CAPs is still given by Eq. (13). The notion of sequential
perfectness for CAPs is almost identical to the analogous notion for GFAPs.

Definition 5.5 A CAP α is sequential perfect if for every t ∈ [0, 1), γt(α) ≥ 0⃗ and γit(α) =
0 for a.e. t ∈ [0, 1) such that αi(t) > 0.

We are interested in the set of payoffs E∗ in which every element can be attained by a
sequential perfect CAP:

E∗ =
{
w ∈ RI | ∃ sequentially perfect α s.t. w = γ0(α)

}
.

We shall show how to characterize the set E∗. To overcome the problem that a set
of discontinuities of CAPs is not necessarily countable and well-ordered, we approach the
elements of E∗ by the expected payoffs of GFAPs on which we impose a uniform lower bound
on their quitting rates and which satisfy a certain relaxed notion of sequential perfectness.
More precisely, we define for all ε > 0 the operator

Tε(E) :=
{
w ∈ RI

+| ∃ (λ, v) ∈ [0, 1]I × E s.t. w =
∑

i∈I λiRi + (1−
∑

i∈I λi)v,∑
i∈I λi ≥ ε and wj ≤ ε∥R∥ whenever λj > 0

}
,

where ∥R∥ := maxi,j |Ri,j | is the max norm of R.

Theorem 5.6 E∗ =
⋂

ε>0

⋂∞
n=0(Tε)

n(RI).

Proof. First of all, we unpack
⋂

ε>0

⋂∞
n=0(Tε)

n(RI) and characterize its elements more
explicitly. For all ε > 0, w ∈

⋂
ε>0

⋂∞
n=0(Tε)

n(RI) if and only if there exists a sequence
(wn, λn)n∈N ⊂ (RI

+ × [0, 1]I)N with w0 = w such that for each n ∈ N,{
wn =

∑
i∈I λ

n
i Ri + (1−

∑
i∈I λ

n
i )w

n+1,∑
i∈I λ

n
i ∈ [ε, 1] and wn

i ≤ ε∥R∥ whenever λn
i > 0.

(15)

We now show that, for any fixed ε > 0, E∗ ⊆
⋂∞

n=0(Tε)
n(RI). Let α be a sequentially

perfect CAP and define (tn)n∈N as follows: t0 := 0, tn+1 := tn + ε(1 − tn) for all n ∈ N.
Remark that tn ↗ 1 as n → ∞. In addition, define a sequence (wn, λn)n∈N by setting for
each n ∈ N, wn := γtn(α), and

λn
i :=

∫ tn+1

tn αi
sds

1− tn
, i ∈ I.

Next, we prove that the sequence (wn, λn)n∈N satisfies the relation (15). Since α is
sequentially perfect, wn ≥ 0⃗ for all n ∈ N. By definition,

∑
i∈I α

i
t = 1 for all t ∈ [0, 1), thus
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∑
i∈I λ

n
i = ε for all n ∈ N.

In this generalized framework it still holds that, for any t > tn,

wn =
∑
i∈I

∫ t
tn αi(s)ds

1− t
·Ri +

1− t

1− tn
γt(α). (16)

Setting t = tn+1 in Eq. (16), we recover the relation between wn and wn+1. Moreover,
for some i ∈ I, if λn

i > 0, then there exists t̃ ∈ (tn, tn+1] such that γi
t̃
(α) = 0, because

Leb({s ∈ (tn, tn+1]|αi
s > 0} ≠ 0 and α is sequentially perfect. Then, Eq. (16) for t = t̃ gives

that wn
i ≤ ε∥R∥.

Now we look at the reverse direction and let w ∈
⋂

ε>0

⋂∞
n=0(Tε)

n(RI). Then, for
all ε > 0, there exists a sequence (wn,ε, λn,ε) ∈ (RI

+ × [0, 1])N that satisfies (15). Let
(tn,ε)n∈N be given by t0,ε := 0, and tn+1,ε := tn,ε + (1− tn,ε)

∑
i∈I λ

n,ε
i for all n ∈ N. Since∑

i∈I λ
n,ε
i ≥ ε > 0, the following CAP αε : [0, 1) → ∆(I) is well-defined:

αε,i
t =

λn,ε
i∑

j∈I λ
n,ε
j

if t ∈ [tn,ε, tn+1,ε) for i ∈ I. (17)

Define πε : [0, 1) × A∗ × R as follows: πε
t (Q

i, C−i) =
∫ t
0 α

ε,i
s ds and πε

t (a) = 0 for all
a ∈ A∗

≥2. The function π∗ is an absorption path as defined in AKRS. Since, by Proposition
4.11 of AKRS, the space of absorption paths is sequentially compact, the sequence (πε)ε>0

admits a convergent subsequence. Let π be the associated limit point. For each t ∈ [0, 1),
since π̂ε

t :=
∑

i∈I πt((Q
i, C−i)) = t for all ε, we have also π̂t = t and it follows that αt :=

(π̇t((Q
i, C−i)))i∈I defines a CAP. As shown in AKRS, the expected payoff is a continuous

function of absorption paths, thus γ(α) = w. Finally, remark that α is sequentially perfect,
because the sequence (wn,ε, λn,ε) satisfies (15) for each ε > 0. Taking all pieces together,
we conclude that w ∈ E∗.

6 Conclusion

The APS approach is an iterative method to calculate a set of equilibrium payoffs (and
strategies that attain them) in discounted games. The Average Cost Optimality Equation
(see, e.g., Feinberg and Shwartz, 2002) is an analog of the APS approach for undiscounted
games, yet we are not aware of an algorithm that uses it for calculating equilibrium payoffs
in undiscounted dynamic games.

In this paper we adapted the APS approach to study undiscounted subgame perfect
equilibria in quitting games, and provided a practical algorithm for calculating a class of
subgame perfect equilibrium payoffs and the corresponding equilibrium strategy profiles in
this class of games. It is interesting to know whether the approach can be extended to
find all subgame perfect equilibrium payoffs in quitting games, and not only those that are
supported by FAPs, GFAPs, or CAPs. Since quitting games are both stopping games and
stochastic games, it is also interesting to know whether our approach can be extended to
more general classes of stopping games and stochastic games.
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