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Abstract

Despite the central role of self-assembled groups in animal and human societies,
statistical tools to explain their composition are limited. We introduce a statisti-
cal framework for cross-sectional observations of groups with exclusive membership
to illuminate the social and organizational mechanisms that bring people together.
Drawing from stochastic models for networks and partitions, the proposed framework
introduces an exponential family of distributions for partitions. We derive its main
mathematical properties and suggest strategies to specify and estimate such models.
A case study on hackathon events applies the developed framework to the study of
mechanisms underlying the formation of self-assembled project teams.

Keywords: exponential families, stochastic partitions, statistical modeling, social groups,
self-assembled groups

1 Introduction

1.1 The study of self-assembled groups

In gregarious species, individuals have a tendency to come together in groups. This is
especially pertinent in humans. Often, the composition of these groups emerge from vol-
untary decisions of members, thus, crystallizing socializing preferences in social groups, or
goal-oriented behaviors in the case of task-oriented groups. In some cases, membership to
a group is exclusive, in the sense that every individual can only be member of one group.
This exclusivity might result from physical and temporal constraints—e.g. when group
boundaries are defined by physical gathering—or structural rules—e.g., group overlap is
often forbidden when groups compete for some goal. In such cases of self-assembled and
exclusive groups, the decision to group with certain individuals rather than others can
depend on important social mechanisms that structure the organisation of a community.
The present paper introduces a statistical framework to model and explain observations
of self-assembled exclusive groups, with a view to better understand the mechanisms un-
derlying their formation.

Examples of self-assembled exclusive groups are numerous, ranging from mammal herds
in the wild to player squads in online games. Numerous situations require individuals to
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organize themselves into such groups, in order for them to execute an action or acquire
a resource. In the animal kingdom, many species gather into flocks, herds, or schools for
traveling purposes (Okubo, 1986; Reynolds, 1987) and predators assemble packs for hunt-
ing (Creel & Creel, 1995; Gittleman, 1989). In the human world, children groups gather
in the schoolyard to engage in common activities (Moody, 2001), sport clubs emerge to
provide opportunities for shared free-time activities (Putnam, 2000; Lazarsfeld & Merton,
1954), and project teams assemble spontaneously to tackle organizational tasks (Guimera
et al., 2005; Zhu et al., 2013). In this paper we use the example of human groups and in
particular project teams in the empirical illustration.

The existence and composition of social groups have a crucial role in determining
societal outcomes. Seminal sociological works recognize that by coming together in groups,
individuals influence each other’s cognition, affective structures, and individual outcomes
(Parsons, 1949; Homans, 1950; Lewin et al., 1936). Various theories develop concepts
for group settings, such as social circles (Simmel, 1949), social foci (Feld, 1982), social
settings (Pattison & Robins, 2002), or social situations (Block, 2018). Groups lay ground
for the development of social ties (Fischer, 1982; Moody, 2001; Lazarsfeld & Merton, 1954;
Simmel, 1949) and provide the context for exchange relations (Granovetter, 1985), where
the ability of one group member to acquire resources and social support will depend on
what the other members can provide. Additionally, the set of attributes present in a group
as well the relations between its members might have an impact on some essential group
outcomes. At a broader level, the formation of groups in a community can indicate and
impact how different parts of the community relate to each other and segregate (Allport
et al., 1954). Investigating group formation is all the more important in instances where
such outcomes are crucial to the functioning of individuals and communities. The study
of these interdependent group processes calls for the development of mathematical tools
tailored for this level of social unit, as argued by Lindenberg (1997).

The main aim of the model we propose is to uncover which mechanisms guide the com-
position of self-assembled groups in a given setting, and to assess their relative importance.
Such mechanisms can fall in the categories of biological imperatives, social preferences, and
exogenous constraints. Adding to the variety of their origin, the mechanisms underlying
group formation can also be situated at different levels.

1. For any group member, the characteristics of the other members reflect their indi-
vidual attraction towards others exhibiting some particular attribute.

2. Group composition can also reflect dyadic preferences, such as the preference of
individuals connected through a relationship (e.g., kinship or friendship) to belong
to the same groups.

3. Finally, group-level mechanisms, such as the optimization of a certain combination
of attributes, can guide group formation.

In the example of project teams, individuals might seek (1) teams with individuals who
have similarities that promote mutual understanding and common expectations, (2) col-
leagues with whom they have already collaborated, or (3) teams with an efficient distri-
bution of competences (Skvoretz & Bailey, 2016). On top of these formation mechanisms,
some contexts might constrain group compositions or sizes – for example, a maximal group
size might be imposed. The proposed model aims to shed light on the role of these diverse
factors in group formation processes while taking such constraints into account.
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1.2 Previous approaches

1.2.1 Network approaches

A common approach to represent group membership is to define a two-mode, or bipar-
tite, network in which nodes on one level (i.e., individuals) are connected to a second
level of nodes (i.e., groups). We review here the use and limitations of models for such
representations.

First, permutation test techniques and models such as the Quadratic Assignment Pro-
cedure (QAP) proposed by (Krackhardt, 1988) can be used to investigate whether some
combinations of attributes within groups are more likely than others in a bipartite net-
work. However, these models condition on group structure (i.e., the distribution of group
structures) and cannot be used to investigate the factors explaining the distribution of
group sizes. Moreover, interpreting the effect of covariates conditional of group structure
can be problematic when these covariates are potentially responsible for the group struc-
ture itself (e.g., if an attribute explains both the size of groups and homophily within the
groups).

Alternatively, the Exponential Random Graph Model (ERGM) leverages the capa-
bilities of exponential family models (Sundberg, 2019) and make use of techniques from
spatial statistics (Besag, 1974) and graphical modeling (Lauritzen, 1996) to capture more
complex dependencies between the membership ties (Lusher et al., 2013; Schweinberger et
al., 2020). The ERGM can be used to model both attribute and structural dependencies,
such as the propensity of individuals to join groups in case they already share other groups
with their members. Theoretically, it is possible to restrict the support of an ERGM to bi-
partite networks with individuals’ degrees fixed to one (Morris et al., 2008), thus allowing
to model exclusivity in group membership, and create some structural effects to capture
group sizes. The main problem remaining is that the number and characteristics of second
mode nodes should be predetermined and cannot be modelled themselves (Wang et al.,
2009). A way to circumvent this could be to set an initial number of second mode nodes
equal to the maximum number of groups, i.e., the number or actors. In that case, it is
straightforward to see that different partitions would be represented by different numbers
of equivalent networks. For example, for three individuals A, B, and C, the partition
with three isolated individuals would be equivalent to six bipartite networks, while the
partition with A, B, and C in the same group would only be equivalent to three networks.
Consequently, interpreting the structural parameters of such a constrained ERGM would
be problematic. All in all, using constrained ERGMs would bring few insights into the
mechanisms underlying the number and size of the self-emergent groups.

A variation of the network logic that integrates the constraint of exclusive group mem-
bership was defined in the general location system (GLS) model of Butts (2007). This
model is tailored to observations where individuals can be assigned to only one group
(or location) at a time, similarly to how individuals set themselves into occupations or
geographical residences. In the same vein as the ERGM, the GLS framework builds upon
the exponential family formalism but requires to know the number and characteristics of
the available groups in advance.

So far, only approaches designed for dynamic changes in group compositions over time
could circumvent the issue of having to pre-define the second mode nodes, by artificially
creating and deleting the second mode nodes (Hoffman et al., 2020), but such procedures
remain ill-suited for cross-sectional observations.
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1.2.2 Partition approaches

A way to circumvent the difficulty of not having predefined groups is to represent groups
as a partition of the set of individuals, with a partition being a division of the individuals
into non-overlapping groups. Popular partition distributions are the uniform Dirichlet-
multinomial partitions defined for partitions with a maximum possible number of groups
(McCullagh, 2011; Kingman, 1978) and Poisson-Dirichlet distributions (Pitman & Yor,
1997). Such families of distributions still assume a predefined number of available classes,
although the possible number of groups now sits between one and a maximal value. The
extension of these models when the maximum value becomes infinite is known as the
Ewens distribution (Ewens, 1972; McCullagh, 2011). The Ewens distribution was first
applied to the problem of allele sampling in genetics (Ewens, 1972), but its use, as well
as the use of the related Dirichlet distributions, has spread into the fields of biodiversity
(Hubbell, 2001), Bayesian statistics (Ferguson, 1973; Antoniak, 1974) and many other
fields of mathematics (Crane et al., 2016). Interestingly, the Ewens specification also de-
fines an exponential family (Crane et al., 2016). One limitation of these models is that they
cannot incorporate attribute and structural dependencies between group memberships in
the same way ERGMs and GLS models do. This is connected to their main applications
to sampling problems.

In this paper, we incorporate insights from the network and partition modeling lit-
erature into a novel statistical framework suited for observations of self-assembled and
exclusive groups. This framework represents groups of individuals as a partition of a set
of individuals and builds upon the literature on exponential families for networks to cap-
ture non-trivial dependencies between the groups composing the partition. The model
allows for the size and composition of groups to be the result of individual, relational, and
group-level processes and offers the possibility to draw inference on the processes driving
the formation of groups in a certain context. Sections 2 to 4 describe the definitions,
mathematical formulation, and interpretation of the model. Sections 5 and 6 cover the
computation and estimation of the model parameters. Section 7 presents an application
to the study of self-assembled teams during hackathon competitions.

2 Definitions

2.1 Notation

Consider a set of n actors A. A partition P over A represents a division of these actors
into non-overlapping subsets. Formally, P is a set of groups or blocks, denoted G, that
satisfies the conditions: ⋃

G∈P
= A,

∀(G,G′) ∈ P 2, G 6= G′ : G ∩G′ = ∅,

∀G ∈ P : G 6= ∅.

For convenience, we define the function gP : [[1, n]] 7→ P returning the group of a given
node:

gP (i) = G | i ∈ G.

We can also transform the partition representation into the binary n× n matrix

X =
[
xi,j
]
i,j∈A where xi,j = 1⇔ gP (i) = gP (j).
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Figure 1: Possible representations of a partition over the nodeset {1, 2, 3, 4, 5, 6}.

Figure 1 illustrates different possible representations of a partition in comparison to the
ones used in the case of networks.

In the following sections, we use the notation #P for the number of groups in a
partition P , and #G to define the size of a given group G. Furthermore, we use the letter
P when referring to a random partition, and p for the realization of a partition. To avoid
any confusion, probabilities are written with the symbol Pr.

We further use the letters a for individual covariates (e.g. gender, age) and Z for
dyadic covariates (e.g., friendship ties).

2.2 Definition of the partition set

The power set of all partitions over the set A is referred as P(A) (or P when the nodeset
is not ambiguous). The size of P is given by the Bell number Bn (Bell, 1934; Pitman,
1997) and can be calculated iteratively by:

B0 = 1 and Bn+1 =

n∑
i=0

(
n

i

)
Bi. (1)

In certain contexts, some partitions of the actor set might not be realistic or allowed,
in which case one might only consider a subset P ′ of the whole partition space P. Most
prominently, certain group sizes might not be allowed. When considering subsets P ′ that
only contain groups of sizes higher or equal to minimal value smin and lower or equal to a
value smax, a number of calculations can be extended. The number of partitions belonging
to this subset can be calculated similarly to Equation (1) with a sequence B′n (details can
be found in Appendix A). After defining the values imin = max(0, n + 1 − smax) and
imax = min(n, n+ 1− smin), B′n is defined by:

B′n = 0 for 0 < n < σmin,

B′0 = B′σmin
= 1,

B′n+1 =

imax∑
i=imin

(
n

i

)
B′i for n > σmin.

2.3 Relations between partitions

For the purpose of parameter estimation and interpretation, we define three symmetric
binary relations between the elements of P, called the merge/split, permute, and transfer
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Figure 2: Illustration of the merge/split, permute, and transfer relations for the full set of
partitions over three nodes. All relations are binary and symmetric.

relations (see an illustration of these relations in Figure 2).
The merge/split relation Rmerge is the set of all unordered pairs of partitions for which

one partition of the pair is obtained by merging two distinct groups in the other partition.
Since these are unordered pairs, in the reverse direction this definition includes splitting
one group in one partition into two groups in the other. Formally, we define P−G,G′ =
P \ {G,G′} the partition P with two groups G and G′ removed. The relation can be
written as:

Rmerge =
{
{P, P ′} ⊆ P | ∃G,G′ ∈ P : P ′ = P−G,G′ ∪ {G ∪G′}

}
.

The permute relation Rpermute links partitions in which two nodes in two different
groups are exchanged, while the other nodes grouping remains the same. For i and i′ two
nodes respectively belonging to two distinct groups G and G′, we note Gi↔i′ and G′i′↔i
the groups in which the nodes i and i′ have been exchanged. Under the same notation the
relation defines the following unordered pairs:

Rpermute =
{
{P, P ′} ⊆ P | ∃G,G′ ∈ P , i ∈ G, i′ ∈ G′: P ′ = P−G,G′ ∪ {Gi↔i′ , G′i′↔i}

}
.

Finally, the transfer relationRtransfer contains the unordered pairs of partitions {P, P ′}
for which partition P and P ′ are identical, with the exception of one node that belongs
to a different group in P and P ′ (we can say that this node is being transferred from one
group to another). Importantly, this node may be an isolate in one of the two partitions.
Similarly, for a node i belonging to the original nodeset A, we denote P−i the projection
of the partition on the set A\{i}. The relation is then defined by:

Rtransfer =
{
{P, P ′} ⊆ P | ∃i ∈ A: P ′−i = P−i and P ′ 6= P

}
.
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2.4 Definition of the probability distribution

Our aim is to define a parametric set of probability distributions over P for a given set of
actors. The parameters of this distribution should be associated to statistics relevant for
the hypotheses under consideration on the processes resulting in the observed partition.
As outlined earlier, such hypotheses can be associated with the structure of the partition
(i.e. the number of groups and their sizes) or the distribution of actors’ attributes within
the groups.

The class of exponential distributions allows such parametrization in a straightforward
way (Sundberg, 2019). We propose here an exponential family with support the set P
(or a subset P ′). This family is defined for an identity base measure, a vector of natural
sufficient statistics s(P ) =

(
sk(P )

)
k∈K , and a canonical parameter vector α =

(
αk
)
k∈K .

It is expressed by:

Prα(P = p) =
exp

(∑
k αksk(p)

)
κP(α)

. (2)

where the normalizing constant κP(α) is defined by:

κP(α) =
∑
P̃∈P

exp
(∑

k

αksk(P̃ )
)
. (3)

This formulation mirrors the definition of an ERGM when considering a partition
instead of a graph distribution (see (Lusher et al., 2013) or (Robins, Pattison, et al., 2007)
for more details on ERGMs).

Some special cases of this exponential family are related to well-known distributions.
Naturally, the model defined without any sufficient statistic generates the uniform distri-
bution over the partition set P. The Ewens distribution (Ewens, 1972; McCullagh, 2011)
is defined for a positive parameter λ as follows:

Prλ(P = p) =
Γ(λ− 1) λ#p

∏
G∈p (#G− 1)!

Γ(n+ λ− 1)
(4)

with Γ being the Gamma function. As shown in Appendix B, this definition is equivalent
to the following formulation of (2) with the parameter vector α = (log(λ), 1):

Prα(P = p) =
exp

(
α1 #p+ α2

∑
G∈p log

(
(#G− 1)!

))
κP(α)

. (5)

3 Model Specification

3.1 Sufficient statistics

Graphical modeling with dependence graphs is a useful technique for specifying exponen-
tial family distributions (Lauritzen, 1996). In the network literature, this technique was
introduced for Markov graphs by Frank and Strauss (1986) and later developed for ERGMs
(Wasserman & Pattison, 1996; Robins & Pattison, 2012). Dependence graphs then capture
the dependence structure of the tie variables and this structure can inform the choice of
relevant sufficient statistics, by virtue of the Hammersley-Clifford theorem (Hammersley
& Clifford, 1971; Besag, 1974). However, graphical modeling is ill-suited to study partition
models since the dependence graph of group variables with the non-overlapping constraint
is not straightforward. Instead, we take inspiration from the statistics and the indepen-
dence assumptions used in other related statistical models, in particular partition models
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Figure 3: Illustration of the calculation of introduced statistics based on counts for a given
partition p =

{
{1, 2, 5}, {3, 4}, {6}, {7, 8, 9, 10}

}
with a binary covariate (actor’s shape);

the red dashed elements are to be counted to get the statistics value for (a) number of
groups s1(p) = 4; (b) squared group sizes, i.e. each unordered dyad must be counted twice
plus the number of nodes s3(p) = 30; (c) number of dyads within groups that are identical
on shape sdyadic homophily(p) = 4; and (d) number of ordered dyads within groups that
include one square sdyadic sociability(p) = 8.

(i.e., Ewens and Dirichlet partitions) or Dirichlet models. Extending the statistics used in
the Ewens formula, we show that statistics defined as sums of group attributes can model
a wide range of partition properties. The independence properties of count statistics are
described in Section 3.2.

3.1.1 Structural statistics

Structural statistics aim to accurately model the observed group sizes and their dispersion
in a given partition. To understand which statistics can be used, we calculate the expected
distribution of group sizes in random partitions of 10 nodes for different statistics related
to group sizes. Having n = 10 allows us to enumerate the number of partitions with
specific group statistics and directly calculate their probabilities (for more details of these
probabilities, see Section 4). Increasing the number of nodes does not affect the behavior
of the presented statistics.

The first relevant statistic to model group sizes is the number of groups (i.e., the
cardinality of the partition, see Figure 3a)

s1(P ) = #P,

as it is the basis of the Ewens formula (see Equation (5)). Figure 4a shows that low values
of α1 favor partitions with large groups of 10, 9, or 8 nodes, while high values favor many
small groups of 1, 2 or 3 nodes. Figure 4b shows that, as α1 increases, the expected
number of groups increases, and so does the expected number of singleton groups. The
expected number of groups of size 10, i.e., trivial one-group partitions, decreases, while
the expected prevalence of the intermediate group sizes 2—9 is unimodal, and assume
their maxima for values of α1 that decrease with group size. Figure 4c further shows that
the probability for a random node to belong to large groups decreases when α1 increases.
Finally, Figure 4d shows that the distribution of group sizes stochastically decreases with
α1. We conclude that the number of groups is a simple and efficient way to model the
central tendency of group sizes in a partition.

Another important feature of the group size distribution is its dispersion or skewness.
We first use the statistic in Definition (5) of the Ewens distribution:

s2(P ) =
∑
G∈P

log
(
(#G− 1)!

)
.
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Figure 4: Distribution of group sizes in a random partition defined by a model with 10
nodes and one sufficient statistic s1(P ) = #P , as a function of the parameter α1. (a)
Expected group size of a given node; (b) expected number of groups of a given size; (c)
probability function for the size of a given node for three values of α1; and (d) expected
distribution of group sizes for three values of α1.
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Since the Ewens model can reproduce a ”richer-get-richer” effect on group sizes (McCullagh,
2011), meaning that sizes become exponentially distributed, we can expect it is the result
of this term being included in the model. We calculate the size distribution for partitions
over 10 nodes for a model containing the two statistics s1 and s2 by varying the parame-
ter α2. To fix the first statistic, we determine the value α1 that maintains the expected
value of s1 equal to 4 for each pre-determined α2. This means we explore the distribution
of expected group sizes for a constant expected number of groups. Figure 5a shows the
expected distribution. The dispersion of sizes increases with the parameter value for the
statistic s2.

Another intuitive statistic for modeling the skewness of the size distribution is the sum
of squared sizes:

s3(P ) =
∑
G∈P

#G2.

It is equal to the sum of the elements of the matrix representation X of the partition (see
Figure 3b). The group size distributions obtained for this statistic are shown in Figure
5b. Once again, increasing the value α3 can increase the dispersion of sizes in the random
partition. Choosing between s2 and s3 to model size dispersion is then a practical matter
of which one represents more accurately the structure of the observed partition.

In case the distribution of group sizes cannot be approximately reproduced by the
above parameters, or if a particular group size might be over- or under-represented for
exogenous reasons, the number of groups of particular sizes can be added as a sufficient
statistics.

At this point, it is important to mention that some estimation issues coined as degen-
eracy or near-degeneracy by the ERGM literature (Handcock, 2003; Snijders et al., 2006;
Robins, Snijders, et al., 2007; Lusher et al., 2013) might ensue from the use of certain
statistics combinations in this model. This is the case for the previous models defined for
S =

(
s1, s2

)
and S =

(
s1, s3

)
. As a result, some estimated models will correspond to un-

realistic distributions that concentrate their probability mass on a few extreme partitions
such as the one with only one group and the one only containing singletons rather than
accurately reflecting the observed statistics. In most cases, a degenerate model will point
to some misspecification, and it might prove useful to have a different operationalization
of size dispersion. For example, one might use a weighted sum over all group sizes of the
number of cliques of a given size. Weights could be defined as decreasing in a similar
way as the ”geometrically weighted edgewise shared partners” (gwesp) effect proposed in
Snijders et al. (2006) and Hunter (2007). Most observations on degeneracy made in the
case of ERGMs can be extended to the model presented here.

3.1.2 Statistics for covariates

The influence of individual covariates on the formation of relational ties has been widely in-
vestigated in social networks, starting with the fundamental idea of homophily (McPherson
et al., 2001; Rivera et al., 2010) stating that similar individuals are more likely to be con-
nected. In the case of a dyad, homophily can be operationalized as a dyadic variable
indicating whether the actors have the same (or similar) attributes. Including this mech-
anism in the current model requires to extend the concept of homophily to the group
level.

The most direct extension of dyadic homophily is to consider a group as homophilous if
the similarity within all dyads of actors within the group is high. For example, hackathon
participants might be more likely to form teams in which everyone is about the same age.
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Figure 5: Distribution of group sizes for a random partition defined by a model with
10 nodes and two sufficient statistics for three values of the second parameter (see
the text for the determination of the first parameter). (a) s1(P ) = #P , s2(P ) =∑

G∈P log
(
(#G− 1)!

)
; and (b) s1(P ) = #P , s3(P ) =

∑
G∈P #G2.

If we define a dyadic similarity index simi,j for two actors i and j, we can operationalize
such type of homophily by counting the sum of similarity indexes among dyads in all
groups:

sdyadic homophily(P ) =
∑
G∈P

∑
i,j∈G

simi,j .

For a binary attribute, the similarity index can take the value of 1 when two actors have
the same attribute, and 0 otherwise. This amounts to counting the number of ties between
identical individuals in the network representation of the partition, as illustrated in Figure
3c. For a categorical and ordered attribute, or a continuous attribute, we can simply use
the absolute difference between actors’ attributes (in that case, a positive parameter for
this effect shows heterophily, and a negative one homophily).

Alternatively, homophily can operate at the group level. That would mean that the
similarity of dyads does not matter as much as the distribution of the attributes within
groups. For example, hackathon participants might form teams that are strictly non-
mixed, in terms of language spoken or gender. In that case, a similarity index simG is
defined for any group G, and the relevant statistic becomes:

sgroup homophily(P ) =
∑
G∈P

simG.

For a binary attribute, the similarity index of a group can be a simple indicator that
equals 1 when all group members have the same attribute. One can also use the range of
the attribute values in the group in the case of a continuous attribute (as an indication of
the concentration of values in a certain interval) or the number of different values of the
attribute in the group in the case of a categorical variable. Positive parameters for the last
two implementations would again show heterophily, similarly to using absolute differences
above. Alternatively, the within-group variance of the attribute or, the product p(1− p),
where p is the proportion of a binary attribute, can also be good choices for simG. A
negative parameter would again indicate a tendency for low variance within groups and
therefore some kind of homophily.
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Many variations on the idea of similarity (or dissimilarity) within group members can
be constructed. In the dyadic definition, the count of similar ties could be replaced by
the count of individuals who have at least a certain number of similar individuals in their
groups, if similarity between group members only matters until a certain threshold. In the
group definition, one can consider a statistic counting groups with a certain combination
of attributes, if complementarity is thought to be more important than similarity.

In practice, these definitions might lead to include a bias towards certain numbers of
groups (in the case of sgroup homophily) or certain sizes of groups (in the case of sdyadic homophily).
It can be important either to control for the number of groups and ties (with the structural
statistics s1 and s3) or to normalize these statistics by the number of dyads in each group
(e.g., for sdyadic homophily) or the size of the group (e.g., for sgroup homophily) to increase
comparability, especially in empirical cases of heterogenous group sizes.

Finally, the effect of a dyadic covariate Z (e.g., friendship), can simply be added as:

sdyadic covariate(P ) =
∑
G∈P

∑
i,j∈G

Zi,j .

3.1.3 Mixed statistics

Mechanisms related to both covariates and structural features can be included in the
current framework. This includes a translation of the network concepts of sociability or
aspiration (Snijders & Lomi, 2019), defined as the tendencies for actors with a high at-
tribute to send or receive more ties, respectively. For groups, these mechanisms translate
into the preference of actors that score high on an attribute to be in larger groups. For ex-
ample, extraverted individuals might be more likely to be found in larger groups, which can
be modeled by counting intra-group ties to these individuals with the following sociability
statistic:

sdyadic sociability(P ) =
∑
G∈P

∑
i∈G

(#G− 1) ai.

This is illustrated by Figure 3d. Alternatively, the sum of individual attributes can be
replaced by the average value of the attributes within groups to switch to a group-level
definition:

sgroup sociability(P ) =
∑
G∈P

#G mean
[
ai
]
i∈G.

3.2 Independence properties of the distribution

Classical methods of graphical modeling (Lauritzen, 1996) are ill-suited for representing
dependence assumptions in partition models. However, we can use other concepts to
discuss independence properties of the model.

Kingman (1978) established the property of consistency for the Ewens sampling for-
mula. This concept represents that for a given sampled population that can be modeled
with an Ewens distribution of parameter λ, any sub-population of this population also fol-
lows an Ewens distribution of the same parameter. As shown by simple counter-examples
in Appendix C, most models defined for the statistics presented above fail to fulfill this
condition. The Ewens formula is a special case in that regard, since consistency is a criti-
cal property for the study of population samples and much less so in the case of complete
observations in our case.

A second relevant concept is neutrality, as introduced by Connor and Mosimann (1969)
to study distributions of proportions of a fixed quantity. Such variables are defined as a
strictly positive vector (X1, X2, ..., Xn) with X1 +X2 + ...+Xn = q where q is constant.

12



Each variable will never be independent from the others as it can be expressed as a
linear combination of the others. To remedy this, Connor and Mosimann introduce the
concept of neutrality that defines that the proportion X1, for example, is neutral if it is
independent of the vector

(
X2/(q−X1), ..., Xn/(q−X1)

)
. This property allows to ignore

one or several proportions to study the others. For example, it was shown that neutrality
of all proportions characterizes the Dirichlet distribution (Connor & Mosimann, 1969;
Geiger et al., 1997).

Although the concept of neutrality was initially defined for proportion vectors, its
extension to partitions can help us understand how the composition of a subset of the
partition might affect the rest of the partition. Let P be a random partition over a set
A, and A′ a subset of A, with complement set A′c. We further define π and πc as the
respective projections of partitions in P(A) over A′ and A′c.

We define a distribution to be neutral if and only if the projections of P on A′ and
A′c are independent under the condition that any group of P is either in A′ or A′c. This
condition is equivalent to having P as the union of its two projections: P = π(P )∪πc(P ).
A distribution is neutral if and only if:

Prα
(
P = p | P = π(P ) ∪ πc(P )

)
=

Prα
(
π(P ) = π(p)

)
× Prα

(
πc(P ) = πc(p)

)
. (6)

We show in Appendix C that this property holds for any model specified for statistics
sk defined as sums of real functions of the groups of P . Notably, all statistics proposed
in the previous section and used in our analyses later are of this form, which allows us
to interpret their associated parameters using simple log-odds ratios using the relations
shown in 2.3 (see Results section).

4 Computation of the normalizing constant of the distribu-
tion

4.1 General case

As shown in the re-wiring of the Ewens formula in Equation (4), some model specifications
induce a simplification of Equation (2) into more tractable forms. This allows a direct
evaluation of (2) for these cases, which can be leveraged to approximate the likelihood of
more complex specifications, that we use in the empirical example of the paper.

For a model specified only with the statistic s1(P ) = #P for a set of n nodes, we can
make use of the Stirling numbers of the second kind (Riordan, 1958) to derive a simple
formulation of the normalizing constant κP . The Stirling number

{
n
m

}
is the number of

partitions with m groups, in other words, the number of partitions for which s1(P ) = m
(Pitman, 1997). We can therefore sum over all possible values m and get the direct
expression:

κP(α1) =

n∑
m=1

{
n

m

}
exp(α1m). (7)

More interestingly, one can calculate the normalizing constant of any model containing
statistics of the form:

sk(P ) =
∑
G∈P

fk(#G) (8)

where fk are functions of the block sizes. For such models, the sufficient statistics define
an exchangeable distribution (McCullagh, 2011) that does not depend on the labeling of
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the nodes. We define κn as the normalizing constant of these models on any set of n
nodes. This constant can be constructed as a recursive sequence and computed with the
following formulas:

κ0 = 1, κ1 = exp
(∑
k∈K

αkfk(1)
)
,

κn+1 =

n∑
i=0

(
n

i

)
exp

(∑
k∈K

αkfk(n+ 1− i)
)
κi. (9)

The proof of the derivation of these relations can be found in Appendix D.

4.2 Restriction to smaller supports

As mentioned in Section 2.3, some analyses might require restricting the sampled space of
partitions. For the interest of this paper, we focus on the subset P ′ of partitions containing
only groups of sizes between σmin and σmax.

The formula (7) previously established for the sole statistic s1(P ) = #P can also be
used by replacing the Stirling numbers

{
n
m

}
by an extension defined by the number of

partitions in m blocks with all block sizes belonging to [σmin, σmax]. Appendix A provides
details on how to recursively calculate these numbers.

More generally, the property given by formula (9) can be extended for this case of
size restrictions (see Appendix D). Again, models defined for statistics of the form (8) on
the set P ′ are exchangeable and we can write the constant κP ′ as κ′n as it only depends
on the number of nodes. By using again the values imin = max(0, n + 1 − σmax) and
imax = min(n, n+1−σmin), we can construct the sequence κ′n with the following recursion:

κ′n = 0 for 0 < n < σmin,

κ′0 = 1, κ′σmin
= exp

(∑
k∈K

αkfk(σmin)
)
,

κ′n+1 =

imax∑
i=imin

(
n

i

)
exp

(∑
k∈K

αkfk(n+ 1− i)
)
κ′i for n > σmin. (10)

5 Estimation

In the case of exponential families, the maximum-likelihood estimation method is equiv-
alent to the method of moments that consists in finding the parameters under which the
expected statistics of the modeled partition are equal to the observed statistics (Sundberg,
2019). Such estimations require, however, the calculation of either the likelihood function
or the expected statistics under the model. When the normalizing constant of a model,
and therefore its likelihood, can be calculated as shown in Section 4, any optimisation
method, such as a Newton-Raphson method (Deuflhard, 2011), can be applied to approx-
imate the parameter value for which this likelihood is maximum. This maximum either
exists and is unique, or is infinite, by virtue of the properties of convexity in exponential
families (Wedderburn, 1976).

As soon as a model includes statistics related to actors’ attributes, such simplifications
of the normalizing constant κP are unlikely to be found. Since κP contains Bn terms,
following Equation (1), the calculation of this likelihood is practically intractable for a
large number of nodes. This problem can be circumvented with Monte-Carlo Markov
Chain (MCMC) techniques, drawing inspiration from algorithms originally devised for
ERGMs (Lusher et al., 2013; Snijders, 2002; Hunter & Handcock, 2006).
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5.1 Sampling partitions

As the space P becomes extremely large for high values of n, we can only sample a subset
of random partitions to approximate the distribution of partitions under a given model.
Monte-Carlo Markov Chain (MCMC) methods can assist in constructing such a subset
by sampling partitions from a Markov chain whose stationary distribution is the model
distribution given by Equation (2). A suitable algorithm for this purpose is the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970; Chib & Greenberg, 1995).

The Metropolis-Hastings approach consists in defining a Markov chain with transition
probabilities q defined as the following product:

q(p′|p) = q̃(p′|p)A(p′, p).

At each step in the chain, a new partition p′ is proposed with probability q̃(p′|p), and it
gets accepted according to the acceptance ratio A(p′, p).

To define the proposal distribution q̃, we use a symmetric relation R on the space P.
This relation can be one of the previously defined relations Rmerge, Rpermute, and Rtransfer

or a combination of them. Importantly, this relation should connect the entire outcome
space ; therefore, Rpermute should not be used without at least one of the other two, because
it maintains the size structure. For our analyses, we use Rmerge for purely structural
models, and a combination of the three relations when covariate effects are included. To
know how often each relation should be used, one can try different combinations and pick
the one that leads to the better mixed chain.

For a given partition p, we propose to only move to a partition p′ such that p and p′

are linked by a given relation R, with a uniform probability:

q̃(p′|p) =
1

#{p̃ | (p, p̃) ∈ R}
.

By using the detailed balance equation q(p′|p)Pr(p) = q(p|p′)Pr(p′) that ensures the con-
vergence of the Markov chain to the desired distribution (Metropolis et al., 1953; Hastings,
1970; Chib & Greenberg, 1995), we get:

A(p′, p) = min

(
1,

Pr(P ′) #{p̃ | (p, p̃) ∈ R}
Pr(P ) #{p̃ | (p′, p̃) ∈ R}

)
.

As evident from Figure 2, the proposal distribution defined for relations such as Rmerge

is not symmetric. In other words, for some pairs (p, p′) ∈ R it is the case that q̃(p′|p) 6=
q̃(p|p′). Therefore, it is necessary to calculate the proposal probabilities at each step of
the chain to find the acceptance ratio. Deciding on which relation to use depends on
how fast these calculations can be made and on how efficiently the algorithm covers the
sampled space. Moreover, the proposal distribution has to be adapted when the set of
allowed partitions is restricted, to make sure only and every correct partition is reached.
In certain cases, it might be well advised to design a chain that covers a larger space and
only retain correct partitions.

5.2 Estimation procedure

The estimation procedure used in this study implements the Robbins-Monro algorithm
(Robbins & Monro, 1951) in a similar way as used in Snijders (2001, 2002) for the esti-
mation of ERGMs. The Robbins-Monro algorithm is a variant of the Newton-Raphson
optimisation algorithm for objective functions obtained via Monte Carlo methods. It was
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shown to be a useful tool for a large range of stochastic approximation problems (Lai et
al., 2003), in particular for the maximum-likelihood estimation of models that can only
be analyzed by simulations (Cappé et al., 2005; Gu & Kong, 1998; Gu & Zhu, 2001).
Although this algorithm was chosen for our study, we note that various other algorithms
were designed for similar problems, among which notably the Geyer-Thompson algorithm
(Geyer & Thompson, 1992) and the stepping algorithm by Hummel and colleagues (2012).

The aim of the Robbins-Monro algorithm is to solve the moment equation:

Eα[s] = sobs, (11)

where Eα[s] is the expected vector of sufficient statistics for the model with parameter α
and sobs = s(pobs) is the vector of statistics in the observed partition pobs. The original
N th iteration step of the algorithm consists in drawing a variable sN from the distribution
of the statistics for the model with parameter αN and updating the model parameter to:

αN+1 = αN − aND−1N (sN − sobs). (12)

In this equation, (aN ) is called the gain sequence and controls the magnitude of the
optimisation steps and DN is the scaling matrix. A classic choice for the gain is aN = 1/N
and for DN the derivative matrix ∂EαN [s]/∂αN .

Using the arguments developed by Snijders (2001), our algorithm uses in place of the
matrices DN only one scaling matrix D0 calculated once for all. This scaling matrix is the
covariance matrix of a sample of the model parametrized by some starting parameters,
and represents an estimation of the sensitivity of the sufficient statistics to the parameters’
variations. This is based on a result from Polyak (1990) implying that the use of this
matrix, or also its diagonal matrix, will lead to an optimal rate of convergence, as long
as the sequence (aN ) converges at the rate N−c, with 0.5 < c < 1. This procedure also
requires to use the tail average of the sequence (αN ) as the solution to the optimisation
problem (11).

Regarding the gain sequence, we use the idea from Pflug (1990) that it is better to
keep a constant value aN as long as the sequence sN has not crossed the observed values
sobs yet. The algorithm is therefore divided in R subphases within which the value ar is
kept constant while the sequence (αr,N ) is updated with the adapted steps (12):

αr,N+1 = αr,N − arD−10 (s(pN )− sobs), (13)

with pN drawn from the model parametrized by αr,N . Importantly, the lengths of the
subphases must ensure the convergence of (aN ) at the rateN−c, and the starting parameter
value for the subphase r should be the average of the previous sequence (αr−1,N ), in order
to satisfy the convergence conditions mentioned earlier.

In practice, the algorithm is implemented in three phases. The first phase is used to es-
timate the matrix D0 by sampling M1 partitions p1, p2, ..., pM1 from the model defined for
the starting parameters α0, with the Metropolis-Hastings algorithm presented in Section
5.1. A good choice for α0 usually is a vector containing zeros except for parameters that
can be calculated with the equations shown in Equation 4. We only retain partitions after
a burn-in period and with a certain thinning interval as to ensure a low auto-correlation
between the sampled statistics (below 0.4 is an efficient rule of thumb). A value of a few
hundreds for M1 usually sufficed. We obtain an estimation of the expected statistics and
of the covariance matrix:

sα0 =
1

M1
(s(p1) + s(p2) + ...+ s(pM1))
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ˆcov(α0) =
1

M1

M1∑
m=1

(s(pm)s(pm)T )− sα0sα0
T

The scaling matrix D0 is defined1 defined as D0 = diag
(

ˆcov(α0)
)
. Its inverse D−10 provides

the new starting estimates:
α0 − aD−10 (sα0 − sobs).

In the second phase, we implement the iterative steps of (13) within R subphases. At
each N th iteration, only one partition pN is drawn from the distribution with parameter
αr,N , with the Metropolis-Hastings algorithm starting at the previously drawn partition
pN−1. Each r subphase lasts until its length is above the minimum length of the subphase
and all sampled statistics have crossed the observed values. Alternatively it stops when
N is above the maximal length of the subphase. In this study, we used the values R = 4,
a = 0.1, ar = a/(2r−1), and kept lengths of subphases of the order 24r/3 that ensured the
crossing of statistics.

Finally, phase 3 is used to sample M3 partitions from the final distribution in order to
approximate the expected sufficient statistics with the sample mean sαf

and the covariance
matrix of these statistics with the sample covariance matrix. We used large values of M3,
typically between 1000 and 2000. Model convergence is assessed by calculating the sample
standard deviation for each statistic separately. It is considered excellent for the kth
statistic when the convergence ratio ck:

ck =
sαf ,k − sobs,k

SDαf
(sk(p1), ..., sk(pM3))

remain between −0.1 and 0.1, with SDαf
(s(p1), ..., s(pM3)) being the sample standard de-

viations. This value is aligned to the one chosen for ERGM estimation (see (Snijders,
2002)). Furthermore, we assume that parameter estimates have an approximate multi-
variate normal distribution, similarly to ERGMs (Lusher et al., 2013). We can therefore
test significance of the model parameters from a simple Wald test considering whether the
ratio between the elements of αf and their standard errors (calculated from the inverse of
the sample covariance matrix) are smaller than −2 or larger than 2.

5.3 Model diagnostics

The goodness of fit of a model can be assessed by the calculation of auxiliary statistics
(i.e., not included in the sufficient statistics of the model), similarly to ERGMs (Hunter
et al., 2008). By sampling from the estimated model, we can test whether the obtained
distribution of such auxiliary statistics correspond to those in the observed data.

In order to compare different model specifications, we further calculate log-likelihoods,
in a similar way to the one proposed by Hunter and Handcock (2006) for ERGMs. This
calculation is done through path-sampling as presented by Gelman and Meng (1998) to
estimate the log-likelihood of a model for an estimated parameter α when its normalizing
constant κ(α) is intractable. First, we calculate the log-likelihood `(α0, pobs) of the model
parametrized by α0 in which statistics are identical to the ones in the model of interest but
all parameters except the one for the statistic s1(P ) = #P are set to zero. The value of α0

is calculated using the equations of Section 4. We can then estimate the difference between

1To achieve a more stable algorithm, the non-diagonal elements of D0 can be multiplied by a constant
between 0 and 1 (in our examples, 0.2 was used).
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the normalizing constants λ(α0, α) = κ(α)−κ(α0) by sampling M models with parameters
αm = m

Mα+ 1−m
M α0) that produce large overlaps between the sampled distributions:

λ̂(α, α0) =
1

M

M∑
m=1

(α− α0)
T sαm .

We finally estimate the log-likelihood of our model of parameter α with:

ˆ̀(α, pobs) = `+ (α− α0)
T sobs − λ̂(α, α0).

Implemented code, documentation (including UML charts), an example script, and the
script used for all the presented analyses can be found in the supplementary materials
and the repository github.com/marion-hoffman/ERPM.The results of the Robbins-Monro
algorithm were compared to a simple Newton-Raphson estimation in the case of a simple
model for which the likelihood can directly be calculated.

6 Case study: the composition self-formed teams during
hackathons

6.1 Data

Hackathons were defined as ”problem-focused computer programming events” by Topi
and Tucker (2014). They are often designed for participating teams to solve a digital
problem in a short period of time. Such events provide companies, universities, or non-
profit organizations the opportunity of harnessing the ideas of volunteers in exchange for
rewards and funding for the winning teams (Lara & Lockwood, 2016; Briscoe & Mulligan,
2014). Hackathons have recently developed to tackle an increasingly broad range of topics,
including education, marketing, and arts (Lara & Lockwood, 2016).

We collected data during two editions of a hackathon at a technical university. The
events welcomed 60 and 58 participants respectively, who divided themselves into 14 teams
in both cases. Individual attributes of participants as well as their prior acquaintances
were gathered during the registration process via online questionnaires. The events were
scheduled as follows. The registered participants were invited to the venue on a Saturday
at 9:00 and were introduced to the tasks proposed to them. They were later asked to mingle
and define teams until 13:00. Organizers only allowed teams including 2 to 5 individuals in
the first edition and 3 to 5 members in the second. These teams collaborated until Sunday
afternoon on designing and implementing their solution to the hackathon challenge. The
teams’ compositions and their performances as assessed by a jury of experts were collected
at the end.

In the first edition, 1 team of 2, 1 team of 3, 5 teams of 4, and 7 teams of 5 were
formed. The 14 teams in the second edition were divided into 1 team of 3, 9 teams of 4,
and 3 teams of 5. Descriptives for the participants’ attributes used in our analyses are
presented in Table 1. Additionally, 22 pairs of participants reported already knowing each
other in the first edition, and 23 such pairs were reported in the second edition.

6.2 Theoretical mechanisms of team formation

Self-assembled teams for short projects are ubiquitous to organizational, educational, or
recreational contexts (Falk-Krzesinski et al., 2010; Guimera et al., 2005; Contractor, 2013;
Zhu et al., 2013). Scholars investigating the motivations for individuals to form a team
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First edition Second edition

Gender Male (N = 60) 49 (N = 58) 55

Female 11 3

Age < 20 (N = 43) 11 (N = 54) 12

20-25 13 25

25-30 10 13

> 30 9 4

First language Swiss German (N = 49) 16 (N = 56) 16

German 10 10

Others 23 30

Major Engineering (N = 60) 14 (N = 58) 34

Computer Science, IT 23 10

Physics 6 3

Mathematics 2 2

Chemistry 3 5

Environmental sciences 4 3

Other 8 1

Table 1: Counts of gender, age, language, degree, and major attributes among participants
of the first and second hackathon editions.

in various settings generally identify four types of mechanisms as classified by (Bailey &
Skvoretz, 2017), namely, homophily, competence, familiarity, and affect.

First, homophily, as reviewed by (McPherson et al., 2001), is commonly observed in
dyadic collaboration and teams (Kalleberg et al., 1996; Ruef et al., 2003; McPherson
& Smith-Lovin, 1987; Gompers et al., 2017), and denotes that similar individuals tend
to collaborate. In our context, being of a similar age or sharing the same language could
enable communication within the teams and could have therefore contributed to the choice
of teammates. Other attributes, such as gender or personality traits could have also been
relevant for this context but were discarded because of a lack of variation or simply because
of a lack of explanatory power of the models.

Second, the competence of team members is central in teams whose aim is to achieve a
given task. The difficult endeavor of forming performing teams is to find the right balance
between optimizing the number of skills within team members and reducing overhead costs
of combining different ways of thinking or working. Previous research on self-assembled
teams found evidence for complementarity of skills (Zhu et al., 2013), as well as skill
homophily (Gómez-Zará et al., 2019). During the hackathons, organizers strongly rec-
ommended participants to form teams with as diverse skills and knowledge as possible.
Consequently, we tested whether participants were more likely to form teams with indi-
viduals coming from different majors.

Third, familiarity describes that individuals are more comfortable teaming up with
others with whom they have collaborated in the past, because of shared practices or
values (Bailey & Skvoretz, 2017; Lungeanu et al., 2018; Gómez-Zará et al., 2019). Since
some participants knew each other prior to the event and reported participating together,
we expected to find a high number of prior acquaintance ties within the teams.

Finally, interpersonal affect, or on the opposite dislike, can be a strong predictor in
the choice of team partners, arguably even more important than competence (Casciaro &
Lobo, 2008). However, since our data did not contain such information, we did not test
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any related mechanism.

6.3 Results

Three models are presented for each dataset. The first two models include effects related to
group sizes and individual attributes, and are used to explore the specification of statistics
related to age and language. The third models are shown as final models and include the
additional effect of previous acquaintances. All models are reported in Table 2.

The group size distribution is modeled by the number of groups and the sum of squared
sizes in the first dataset. In the second dataset, the second statistic is excluded because
of degeneracy issues (see Section 3.1.1) and replaced by the number of groups of size 4
(since participants were advised, although not obligated, to form specifically groups of this
size). In both cases, we limit the allowed group sizes to a minimum of 2 and a maximum
of 5 in the estimation procedure. Regarding attribute effects, three homophily effects are
included for age, language, and major. Age homophily is modeled using the sum of age
ranges in the groups (except in Model 1 of the first dataset). Homophily for language and
major uses the sum of different attributes present in each group (except in Model 1 of the
second dataset in the case of language). Finally, the influence of previous acquaintances
is captured by the count of such ties within all teams.

In Models 1 and 2 for the first dataset, we compare two specifications for age homophily,
using respectively the sum of absolute differences in age among teammates (i.e, dyadic
homophily effect) and the sum of age ranges in each team (i.e., group homophily effect).
In both models, the age-related parameter is negative, indicating a tendency to form
groups with low age differences. However, only the parameter of Model 2 is significant
and the log-likelihood of −124.2 in Model 1 is also higher than the one of −123.7 Model
1 (these log-likelihoods can directly be compared because the number of parameters is

Model 1 Model 2 Model 3

Sufficient statistic Est. Sig. S.e. Est. Sig. S.e. Est. Sig. S.e.

First edition Number of groups –4.67 (4.98) –4.73 (4.85) –4.62 (4.73)

Sum of squared sizes 0.05 (0.35) –0.06 (0.34) –0.07 (0.34)

Age differences –0.027 (0.021)

Age ranges –0.16 * (0.08) –0.10 (0.08)

Number of languages –0.10 (0.51) –0.09 (0.51) 0.29 (0.50)

Number of majors 0.05 (0.47) 0.02 (0.48) 0.29 (0.50)

Number of acquaintances 2.90 *** (0.46)

Log-likelihood –124.2 –123.7 –102.1

Second edition Number of groups –4.00 (2.44) –3.85 (2.65) –3.74 (2.44)

Number of groups size 4 2.02 *** (0.59) 2.03 *** (0.61) 2.02 *** (0.62)

Age ranges –0.29 * (0.12) –0.27 * (0.12) –0.18 (0.12)

Same language pairs 0.72 *** (0.21)

Number of languages –1.54 *** (0.43) –1.23 ** (0.46)

Number of majors –0.33 (0.58) –0.49 (0.61) –0.07 (0.60)

Number of acquaintances 2.41 *** (0.39)

Log-likelihood –106.8 –105.9 –89.8

Table 2: Estimated parameters for the models of the two hackathon editions. Convergence
ratios for each parameter are below 0.12.
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constant across models). These points altogether suggest that the age range specification
might better explain the data at hand.

A similar exploration is carried out for the language specification in Models 1 and
2 of the second dataset, where language homophily is either specified by the number of
same language ties within teams or the number of different languages in each team. This
time, both parameters are strongly significant, and respectively indicate a tendency to
form groups with a high number of same language ties or a small number of different
languages. However, the slightly better log-likelihhood of Model 2 (−105.9 instead of
−106.8) indicates that the second specification explains better these particular data.

We finally turn to the interpretation of the final models (Models 3). We first dis-
cuss one-by-one the direction and significance of the parameters. Interpreting the size of
parameter values beyond its sign follows the same principles as interpretations for other
exponential family models. We can use the binary relations merge/split, permute, and
transfer introduced in Section 2.3 to define pairs of partitions that exhibit a unit change
for a given statistic, ceteris paribus. Using these operations we can formulate log proba-
bility ratios between partitions that are related through one of those relations and attach
a quantitative interpretation to exact parameter values.

In the first dataset, the negative parameter for the number of groups of −4.62 indi-
cates a tendency to form fewer and, therefore, larger groups. Here, we can interpret this
parameter with the log probability ratio between two partitions linked by the merge/split
relation. Specifically, Model 3 predicts a partition to be around exp(4.62) ≈ 101 times
more likely compared to the same partition with one group split into two, given that all
other statistics remain constant and group sizes stay in the allowed range. This applies,
for example, to the comparison of having one group of four participants compared to two
groups of two participants, ceteris paribus. The negative parameter for squared sizes of
−0.07 shows a concentration of sizes around large sizes (i.e., 4 and 5). However, these two
effects are not significant (potentially because of the small size of the dataset). All effects
related to individual attributes are also insignificant (including the effect of age that be-
comes explained away by the effect of previous acquaintances from Model 2 to 3). Their
directions however suggest a tendency to form groups with low age differences, diverse
languages, and diverse majors. Finally, we find a positive and strongly significant effect of
previous acquaintances. For this statistic, it is more useful to invoke the permute relation
to calculate log probability ratios. Its parameter indicates that a partition obtained from
a permutation of two actors that would add one acquaintance tie in a group, leaving other
statistics equal, is around exp(2.90) ≈ 18 times more likely than before permutation.

Regarding the second dataset, the negative parameter for the number of groups of
−2.04 in Model 3 shows a tendency to form fewer groups, but this effect is not signif-
icant either. The significant parameter of 2.02 for groups of size 4 indicates however a
tendency of individuals to form more groups of this size than others. The directions of
the parameters for attribute-related effects suggest a tendency to form groups with low
age differences and diverse majors, as in the other dataset, but with a low diversity in
terms of languages. This significant effect for languages can be interpreted again with a
log-odds ratio: A partition reached through the transfer of an actor that would add a new
language to a group is exp(1.23c) ≈ 3.4 times less likely than the partition before this
transfer. Once again, the effect of previous acquaintances is strongly significant, with a
similar magnitude as in the first dataset.

All in all, individual attributes seemed to have little influence on the composition of
teams during the first edition. In particular, we do not find evidence for any homophily
effect and the parameter related to majors even suggests that participants tried to diversify
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Figure 6: Group size distributions from Models 3 of the first (a) and second (b) datasets.

their teams as the organizers recommended (although this effect is not significant). On
the other hand, we see that forming teams with similar languages was probably important
during the second edition. For both editions, previous acquaintances seem to have been
the strongest driver of team formation.

It is important to note that the probabilities in the log probability ratios mentioned
above factorize for the models presented here because theses models respect the neutrality
property defined by Section 3.2. This means that the impact of the change of a statistic
between two partitions can be interpreted net of the groups that are exactly equal between
the two partitions. However, the ceteris paribus condition is still not trivial to invoke, since
it is not always possible to find partition changes that only affect one statistic at a time.
Such log probability ratios should therefore be interpreted with caution.

6.4 Model fit

In this section, we further investigate the distribution of auxiliary statistics in the esti-
mated models to assess goodness of fit, following similar procedures as the ones recom-
mended for network models (Hunter et al., 2008). These distributions are represented by
the violin plots proposed by Hintze and Nelson (1998).

We first examine in Figure 6 the distribution of group sizes in the final models (Models
3). We see in Figure 6a that the distribution of group sizes is well recovered for the first
dataset, with the observed counts falling within the confidence intervals of the simulated
models with a slight overestimation of groups of 3 and a slight underestimation of groups
of 4. Sizes are also well recovered in the second dataset (6b), for which the number of
groups of size 4 is perfectly estimated as it was a sufficient statistic of the model.

To understand better the specification of age homophily, we examine in Figure 7 statis-
tics related to the distribution of ages within the teams and compare their observed values
to the values simulated by Models 1 and 2 for the first dataset. First, Figure 7a shows
that both proposed specifications recover equally well the distribution of age difference
within ties. To assess the homogeneity of groups in terms of age, we further calculate the
intraclass correlation coefficient of ages within groups (Figure 7b). Again, both models
provide a very satisfactory fit. Finally, examination of the correlation between individuals’
ages and the size of their teams (Figure 7c) helps assessing how well the models reproduce
the tendency of certain ages to be present in larger groups, which is not an effect included
in the model. This shows that Model 2 provides a slightly better fit than Model 1, which
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Figure 7: Distribution of auxiliary statistics related to age in simulated partitions from
Models 1 and 2 for the first dataset: (a) number of ties with given age differences; (b)
intraclass correlation coefficient for age; (c) Correlation between actors’ age and their
group size.

might explain the better log-likelihood previously mentioned. This observation could be
interpreted as the result of the first specification (sum of age differences) being dependent
on group sizes while the second (sum of age ranges) is not, but this interpretation might
only be valid for this particular data.

Moving on the specification of language homophily, Figure 8 presents a similar type of
auxiliary statistics, this time adapted to the categorical nature of the language attribute,
for Models 1 and 2 of the second dataset. We first see in Figure 8a that the number of

Figure 8: Distribution of auxiliary statistics related to language in simulated partitions
from Models 1 and 2 for the second dataset: (a) number of ties with a given lamguage
combination; (b) proportion of same-language ties; (c) Average group size of a native
German speaker.
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ties with certain language combinations are rather well reproduced by the models, with
the exception of ties between Swiss German speakers and other language speakers. The
homogeneity of groups is assessed by the proportion of same-language ties within groups
(Figure 7b). The fit of this statistic is less satisfying, but equally so for both models.
Finally, the average group size of a native German speaker is shown in Figure 8c to
understand the link between language and group sizes. Again, Model 2 provides a better
fit than Model 1, which could explain the better log-likelihood of the model.

7 Conclusion

The present paper introduces the statistical framework of exponential partition models
and presents its main mathematical properties. Building upon the rich literature on ex-
ponential families of distributions, stochastic networks, and stochastic partitions, we show
that this model can uncover regularities in observations of self-assembled exclusive groups
while taking into account structural dependencies between these observations. Exponential
partition models can be applied to various contexts in which individuals sort themselves
into groups based on social preferences, opportunities, and exogenous constraints. Spec-
ifications are proposed to investigate a variety of mechanisms that can be situated at an
individual, relational, and group level. An example study case illustrating some of the ca-
pabilities of the model using the self-formation of hackathon teams is provided. All code
and documentation for further use of this framework can be found at github.com/marion-
hoffman/ERPM. Data for replication are available on request.

This work bridges two branches of the statistics literature, one representing systems
as networks and the other as partitions. On the one hand, we augment network methods
by introducing the possibility of modeling social mechanisms at the level of groups rather
than dyads. By re-thinking the mathematical representation of groups, the proposed
framework allows researchers to investigate group formation as coordination processes
between individuals rather than an aggregation of dyadic ties to group entities. On the
other hand, we contribute to the stochastic partition modeling literature by extending the
use of such models to studying complex structural properties of social communities. In
particular, the model allows to study the influence of mechanisms related to individual
and relational covariates on group formation processes.

The presented methodological developments aim to further our understanding of mech-
anisms driving the formation of social groups. First, they allow social scientists to model
and explain observations of self-assembled groups and potentially expand the range of
social contexts that could be investigated. Moreover, some social processes widely stud-
ied at the dyadic level, such as homophily, can now be investigated at the group level.
This modeling framework offers the possibility to explore different operationalizations of
such mechanisms and assess which ones give a better representation of real-life processes,
through the use of model diagnosis techniques described in this paper. Finally, by moving
from the dyad to the group perspective, mechanisms that have been suggested for group
processes can be statistically tested.

Much remains to be discovered about the formation of self-assembled groups. A current
limitation of the presented framework is its inability to model observations of overlapping
groups. Since such groups are encountered in many social contexts, future research should
extend the modelling framework to more general data representations, such as hyper-
graphs. Modeling group overlaps opens up the possibility of representing new dependen-
cies between group memberships and to analyse, for example, what leads individuals to
belong to multiple groups at the same time. A second limitation lies in its cross-sectional
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nature. Dynamic or longitudinal data offering rich insights on the processes driving social
systems, an extension of this framework to a dynamic group representation would greatly
further our understanding of social groups dynamics.

Acknowledgement(s)

The authors thank the members of the Chair of Social Networks at ETH Zürich, and the
members of the Duisterbelt, for useful comments and feedbacks. P.B. was supported by
the Leverhulme Centre for Demographic Science.

Disclosure statement

The authors report no conflict of interest.

References

Allport, G. W., Clark, K., & Pettigrew, T. (1954). The nature of prejudice. Cambridge, MA:
Addison-Wesley.

Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian nonparametric
problems. The Annals of Statistics, 2 (6), 1152–1174.

Bailey, J. L., & Skvoretz, J. (2017). The social-psychological aspects of team formation: new
avenues for research. Sociology Compass, 11 (6), 1-12.

Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 2 (35), 258–277.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the

Royal Statistical Society: Series B (Methodological), 36 (2), 192–225.
Block, P. (2018). Network evolution and social situations. Sociological Science, 5 , 402–431.
Briscoe, G., & Mulligan, C. (2014). Digital Innovation: The Hackathon Phenomenon. Creative-

works London Working Paper No. 6 .
Butts, C. T. (2007). Models for generalized location systems. Sociological Methodology , 37 (1),

283–348.
Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in hidden markov models. Springer-Verlag:

Berlin, Germany.
Casciaro, T., & Lobo, M. S. (2008). When competence is irrelevant: The role of interpersonal

affect in task-related ties. Administrative Science Quarterly , 53 (4), 655–684.
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The Amer-

ican Statistician, 49 (4), 327–335.
Connor, R. J., & Mosimann, J. E. (1969). Concepts of independence for proportions with a

generalization of the Dirichlet distribution. Journal of the American Statistical Association,
64 (325), 194–206.

Contractor, N. (2013). Some assembly required: leveraging web science to understand and enable
team assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 371 (1987), 1–14.

Crane, H., et al. (2016). The ubiquitous Ewens sampling formula. Statistical science, 31 (1), 1–19.
Creel, S., & Creel, N. M. (1995, January). Communal hunting and pack size in african wild dogs,

Lycaon pictus. Anim. Behav., 50 (5), 1325–1339.
Deuflhard, P. (2011). Newton methods for nonlinear problems: affine invariance and adaptive

algorithms (Vol. 35). New York, NY: Springer.
Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoretical population

biology , 3 (1), 87–112.
Falk-Krzesinski, H. J., Börner, K., Contractor, N., Fiore, S. M., Hall, K. L., Keyton, J., . . . Uzzi,

B. (2010). Advancing the science of team science. Clinical and translational science, 3 (5),
263–266.

25



Feld, S. L. (1982). Social structural determinants of similarity among associates. American
Sociological Review , 47 (6), 797–801.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The annals of
statistics, 1 (2), 209–230.

Fischer, C. S. (1982). To dwell among friends: Personal networks in town and city. Chicago, IL:
University of Chicago Press.

Frank, O., & Strauss, D. (1986). Markov Graphs. Journal of the American Statistical Association,
81 (395), 832–842.

Geiger, D., Heckerman, D., et al. (1997). A characterization of the Dirichlet distribution through
global and local parameter independence. The Annals of Statistics, 25 (3), 1344–1369.

Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling
to bridge sampling to path sampling. Statistical science, 13 (2), 163–185.

Geyer, C. J., & Thompson, E. A. (1992). Constrained monte carlo maximum likelihood for
dependent data. Journal of the Royal Statistical Society: Series B (Methodological), 54 (3),
657–683.

Gittleman, J. L. (1989). Carnivore group living: Comparative trends. In J. L. Gittleman (Ed.),
Carnivore behavior, ecology, and evolution (pp. 183–207). Boston, MA: Springer US.
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Appendix A. Partition sets with restricted group sizes: extension of the Bell
numbers and Stirling numbers of the second kind

Extended Bell numbers. Bell numbers can famously be derived through the recur-
sive relation (1) (Bell, 1934), and a similar formula can express the size of the space P ′
containing all partitions whose group sizes belong to the interval [[σmin, σmax]].

To initialize the recurrence, we first know that the sets P ′([[1, n]]) are empty when n is
smaller then σmin. The minimal size n required for one correct partition to exist, therefore
we have:

B′n = 0 for 0 < n < σmin and B′σmin
= 1

The Bell recursion at (n + 1) formula enumerates, for i varying from 0 to n, the
partitions with node (n + 1) in a group of size (n + 1 − i) and the i remaining nodes
covering all possible partitions given by Bi. Here, we can enumerate the same partitions
but the size (n+ 1− i) can only take values between σmin and σmax, therefore i can only
vary from imin and imax defined as:

imin = max(0, n+ 1− σmax) and imax = min(n, n+ 1− σmin). (14)

If we note Pi([[1, n+1]]) the sets containing all partitions P ∈ P ′([[1, n+1]]) such that node
(n+ 1) belongs to a group of size (n+ 1− i):

Pi([[1, n+ 1]]) = {P ∈ P ′([[1, n+ 1]]) | #gP (n+ 1) = n+ 1− i}, (15)

we can write:

P ′([[1, n+ 1]]) =

imax⋃
i=imin

Pi([[1, n+ 1]])

For partitions in Pi([[1, n + 1]]), we first know that there are
(
n
i

)
ways to choose the

group of (n+1) and B′i ways to choose how to arrange the remaining i nodes. This is true
for any i except when (n+ 1− i) corresponds to the whole set size (n+ 1) (i.e., i = 0). In
that case, we use for convenience:

B′0 = 1.

We can therefore write B′n+1 as the sum:

B′n+1 =

imax∑
i=imin

#Pi([[1, n+ 1]]) =

imax∑
i=imin

(
n

i

)
B′i

and this establishes the recursive relation for n > σmin.

Extended Stirling numbers. The Stirling number
{
n
m

}
is the number of partitions of

n nodes in m blocks. Its calculation follows the relations (Nielsen, 1906):{
0

0

}
= 1,

{
0

n

}
=

{
n

0

}
= 0 for n > 0,

{
n+ 1

m+ 1

}
=

n∑
i=m

(
n

i

){
i

m

}
for m > 0. (16)

Similarly, we can calculate ψσmin,σmax(n,m), the number of partitions in m blocks when
blocks sizes belong to [[σmin, σmax]]. First, there is no possible partition for n < mσmin,
therefore:

ψσmin,σmax(n,m) = 0 for 0 < n < mσmin
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The recursion then starts when there can be m blocks of minimal size (i.e., n = mσmin).
To count possible partitions in this case, we first order all nodes in n! different ways, and
take each time the first group of σmin nodes, then the second group, and so on. Some
partitions are counted several times as we have m possible ways to order these groups and
σmin! ways to order the nodes inside each group. The final count is:

ψσmin,σmax(n,m) =
n!

m!(σmin!)m
for n = mσmin

The terms in the sum of (16) are the numbers of partitions where the node (n+ 1) is
in a group of size (n+ 1− i) and the i remaining nodes are partitioned in m groups. As
for B′n numbers, we can adapt the original recursive relation with the indexes (14):

ψσmin,σmax(n+ 1,m+ 1) =

imax∑
i=imin

(
n

i

)
ψσmin,σmax(i,m) for n > mσmin.

Finally, for the extreme case when the group of node (n + 1) is of size (n + 1) (i.e.,
i = 0) and there are no left groups to form (i.e., m = 0), we have to set for convenience:

ψσmin,σmax(0, 0) = 1.
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Appendix B. Translation of the Ewens distribution

In this section, we demonstrate that the Ewens distribution (Ewens, 1972), as defined
by Equation (4), can be expressed in the form of the exponential family introduced in this
paper with the following definition:

Prλ(P = p) =
exp

(
log(λ) #p+

∑
G∈p log

(
(#G− 1)!

))
κP
(
(log(λ), 1)

) (17)

To prove that this definition is equivalent to (4), we develop its numerator and denom-
inator. Following properties of the exponential and logarithm functions, the numerator
can be expressed for any partition P :

exp(log(λ)#P +
∑
G∈P

log((#G− 1)!) = λ#p
∏
G∈P

Γ(#G− 1)! (18)

Once this is established, proving the equivalence of the two definitions requires to prove
that the normalizing constant of our model simplifies to:

κP
(
(log(λ), 1)

)
=

Γ(n+ λ− 1)

Γ(λ− 1)
(19)

Proving (19) can be achieved by induction on n the number of nodes. The distribution
(17) is defined for statistics that are functions of the group sizes, we can therefore define
the sequence κn relations found in Equations (25) and (27) of Appendix D.

From Equation (25) and the property Γ(1) = 1, we have for the basic case n = 1:

κ1 = exp(log(λ) + log(1!) = λ

Besides, we know from properties of the Gamma function that Γ(λ+ 1) = λΓ(λ), we can
therefore validate the relation (19) for n = 1:

κ1 =
Γ(λ)

Γ(λ− 1)

Let us now use the previously demonstrated formula (27) for higher values of n.

κn+1 =
n∑
i=0

(
n

i

)
exp

(
log(λ) + log

(
(n− i)!

))
κi =

n∑
i=0

(
n

i

)
λ(n− i)!κi (20)

We then separate this sum into two parts, one containing the term corresponding to i = n
and one containing the other terms:

κn+1 = λκn +
n−1∑
i=0

(
n

i

)
λ(n− i)!κi

Finally, we develop the binomial coefficients and re-arrange them in order to find the
definition of κn corresponding to the definition (20) for (n+ 1):

κn+1 = λκn +
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
n

(n− i)
λ(n− i)!κi

= λκn + n

( n−1∑
i=0

(
n− 1

i

)
λ
(
(n− 1)− i

)
!κi

)
= (λ+ n)κn
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If we assume that (19) holds for a given n > 0, we therefore also have for (n+ 1):

κn+1 = (λ+ n)
Γ(n+ λ− 1)

Γ(λ− 1)
=

Γ((n+ 1) + λ− 1)

Γ(λ− 1)

This proves that the relation (19) holds for any integer n and that the model defined
by (17) is the same as the Ewens model defined by (4).
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Appendix C. Independence properties of the distribution

Consistency. Let P be a random partition over A following the distribution (2) and P ′ a
random partition over A′ following the same distribution with identical sufficient statistics
and parameters. We pose π(P ) the projection of P over the subset A′, and π−1(P ′) the
set of partitions over the nodeset A whose projection is P ′.

Consistency of the distribution then implies equality between the marginal distribution
of the random partition P over A′ and the distribution of P ′. In other words, the family
of projections of a partition model on A on the subset A′ is a partition model with the
same sufficient statistics and same parameters. This property translates to:

Prα
(
P ∈ π−1(p′)

)
= Prα

(
P ′ = p′

)
.

Here we present some counter-examples of distributions used in this paper for which
this property does not hold. Let us use the space A = {1, 2, 3}, its subset A′ = {1, 2}, and
the projection π from P(A) to P(A′).

Uniform model. Let us use the uniform distribution over P(A). There are 5 different ways
of partitioning this set, hence 1/5 is the probability of any of these partitions. If we take
a partition p′ =

{
{1, 2}

}
, we can calculate the marginal probability:

Pr
(
P ∈ π−1(p′)

)
= Pr

(
P =

{
{1, 2, 3}

})
+ Pr

(
P =

{
{1, 2}, {3}

})
=

2

5

and the probability of observing
{
{1, 2}

}
over A′:

Pr
(
P ′ = p′

)
= Pr

(
P ′ =

{
{1, 2}

})
=

1

2

The uniform distribution is therefore not consistent.

Model with one statistic s1(P ) = #P . We can use again the same example on the same
sets and p′ =

{
{1, 2}

}
. We have as marginal probability:

Prα1

(
P ∈ π−1(p′)

)
= Prα1

(
P =

{
{1, 2, 3}

})
+ Prα1

(
P =

{
{1, 2}, {3}

})
=

exp(α1) + exp(2α1)

exp(α1) + 3 exp(2α1) + exp(3α1)

and:

Prα1

(
P ′ = p′

)
= Prα1

(
P ′ =

{
{1, 2}

})
=

exp(α1)

exp(α1) + exp(2α1)

Having these two terms equal is equivalent to the equation exp(2α1) = 0, which has no
solution in R. Again the consistency condition cannot be fulfilled for such models.

Neutrality. We show in this section that the neutrality property defined by Equation (6)
holds for any model defined for a set of statistics of the form:

sk(P ) =
∑
G∈P

fk(G)

with (fk) defined as real functions of the groups in the partition (i.e. representing any char-
acteristic of the group). This definition covers all statistics used in this article, however,
other types of statistics could also lead to neutral distributions.
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Let P be a random partition defined for such a model with parameter vector α. Fur-
thermore, let p be the observed partition that has the property of being the union of its
projections over the subsets A and Ac. We can write:

Prα

(
P = p | P = π(P ) ∪ πc(P )

)
=

Prα

(
P = p, p = π(p) ∪ πc(p)

)
Prα

(
P = π(P ) ∪ πc(P )

)
Since the observed partition verifies p = π(p) ∪ πc(p), the numerator simplifies to:

Prα

(
P = p, p = π(p) ∪ πc(p)

)
= Prα

(
P = p

)
and since summing over all groups of p is equivalent to summing over the groups in π(p)
and πc(p), this probability factorizes as follows:

Prα

(
P = p

)
=

1

κP(A)(α)
exp

(∑
k∈K

αk

( ∑
G∈π(p)

fk(G) +
∑

G∈πc(p)

fk(G)
))

=
1

κP(A)(α)
exp

(∑
k∈K

αk
∑

G∈π(p)

fk(G)

)
exp

(∑
k∈K

αk
∑

G∈πc(p)

fk(G)

)
. (21)

The denominator expresses the probability of having the random partition P verifying
P = π(P ) ∪ πc(P ). It is the sum of probabilities of all partitions in P(A) with this
property. If we define Q(A,A′) the set of these partitions, we can define a bijection
b : Q(A,A′)→

(
P(A′),P(A′c)

)
such that b(P ) = (πA′(P ), πA′c(P )). We deduce:

Prα

(
P = π(P ) ∪ πc(P )

)
=

∑
P̃∈Q(A,A′)

1

κP(A)(α)
exp

(∑
k∈K

αk

( ∑
G∈πA′ (P̃ )

fk(G) +
∑

G∈πA′c (P̃ )

fk(G)
))

=
∑

P̃1∈P(A′)

∑
P̃2∈P(A′c)

1

κP(A)(α)
exp

(∑
k∈K

αk

( ∑
G∈P̃1

fk(G) +
∑
G∈P̃2

fk(G)
))

=
1

κP(A)(α)

( ∑
P̃1∈P(A′)

exp

(∑
k∈K

αk
∑
G∈P̃1

fk(G)

))( ∑
P̃2∈P(A′c)

exp

(∑
k∈K

αk
∑
G∈P̃2

fk(G)

))

and we can simplify:

Prα

(
P = π(P ) ∪ πc(P )

)
=
κP(A′)(α)κP(A′c)(α)

κP(A)(α)
. (22)

By dividing the terms (21) and (22), the term κP(A) simplifies and we finally have:

Prα

(
P = p | P = π(P ) ∪ πc(P )

)
=

1

κP(A′)(α)
exp

(∑
k∈K

αk
∑

G∈π(p)

fk(G)

)
× 1

κP(A′c)(α)
exp

(∑
k∈K

αk
∑

G∈πc(p)

fk(G)

)
= Prα

(
π(P ) = π(p)

)
× Prα

(
πc(P ) = πc(p)

)
and this demonstrates the property of neutrality as defined by (6).
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Appendix D. Calculation of the normalizing constant when statistics are func-
tions of block sizes

Here, we demonstrate that the normalizing constant κ as expressed by Equation (3)
can be calculated with a recursive formula when sufficient statistics

(
sk
)
k∈K are of the

form:
sk(P ) =

∑
G∈P

fk(#G) (23)

with (fk) defined as functions from the set of possible group sizes to R. In the rest of the
proof, we also pose:

f(P ) = exp
(∑
k∈K

αk
∑
G∈P

fk(#G)
)
. (24)

In such cases, the probability distribution defined by (2) is said to be exchangeable
(McCullagh, 2011), as it is invariant under any permutation of the nodes. The normalizing
constant κ then only depends on n and is noted κn.

For the sake of conciseness, we demonstrate the relation (10) for the constant κ′n defined
over the set P ′([[1, n]]) with groups sizes between σmin and σmax. The relation (9) for the
general case directly follows.

The proof is based on a similar logic to the one used in Appendix A. To initialize the
recursion, we know that there are no possible partitions for smaller sizes, and that there
is only one partition with one group for n = σmin. Therefore:

κ′n = 0 for n < σmin

κ′n = exp
(∑
k∈K

αkfk(σmin)
)

for n = σmin (25)

For n > σmin, we can use the subsets Pi([[1, n+ 1]]) defined by (15) and write:

κ′n+1 =
∑

P̃∈P ′([[1,n+1]])

f(P̃ ) =

imax∑
i=imin

( ∑
P̃∈Pi([[1,n+1]])

f(P̃ )

)
.

Let us define Gi([[1, n + 1]]) the set of all possible groups of nodes in [[1, n + 1]] that
include the node (n+ 1) and whose size is equal to (n+ 1− i). To enumerate all possible
partitions of Pi([[1, n + 1]]), we enumerate all groups in Gi([[1, n + 1]]) and all possible
partitions over the remaining i nodes. With this notation, we have:

κ′n+1 =

imax∑
i=imin

( ∑
g∈Gi([[1,n+1]])

∑
P̃∈P ′([[1,n+1]]\g)

f(P̃ ∪ g)

)
.

Since the definition of the function f is invariant under permutations of the nodes, we
can re-order the i remaining nodes from 1 to i. From this we deduce that for any group
g ∈ Gi([[1, n+ 1]]) there is a bijection bg : P ′([[1, n+ 1]]\ g)→ P ′([[1, i]]) such that partitions
over remaining nodes are defined for these re-ordered nodes. We can therefore replace the
sum indices in the previous expression:

κ′n+1 =

imax∑
i=imin

( ∑
g∈Gi([[1,n+1]])

∑
P̃∈P ′([[1,i]])

f(P̃ ∪ g)

)
.
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We can the use the definition (23) of the statistics sk to derive:

f(P̃ ∪ g) = exp

(∑
k∈K

αk

(∑
G∈P̃

fk(#G)

)
exp

(∑
k∈K

αkfk(#g)
))

= f(P̃ )f(g)

and factorize:

κ′n+1 =

imax∑
i=imin

( ∑
g∈Gi([[1,n+1]])

f(g)
∑

P̃∈P ′([[1,i]])

f(P̃ )

)
.

By definition, the following term simplifies to one of the previously calculated normal-
izing constants: ∑

P̃∈P ′([[1,i]])

f(P̃ ) = κ′i,

except in the case of i = 0 for which we set:

κ′0 = 1. (26)

Moreover, we know that for any g ∈ Gi([[1, n+ 1]]), fk(#g) = fk(n+ 1− i). Developing
f(g) then removes any term depending on g. The size of Gi([[1, n+ 1]]) being the number
of ways to choose n− i elements (or i elements) among n nodes, we deduce:

κ′n+1 =

imax∑
i=imin

(
n

i

)
exp

(∑
k∈K

αkfk(n+ 1− i)
)
κ′i. (27)

These expressions show that we can recursively construct the sequence κ′n, using the
initialization (25) and the recursive relation (27). Given that the relation is linear and its
factors are easy to calculate for a reasonable number of nodes, these normalizing constants
can be directly calculated.
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