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Abstract

We propose a new notion of credibility for information design. A disclosure policy
is credible if the sender cannot profit from tampering with her messages while keeping
the message distribution unchanged. We show that the credibility of a disclosure policy
is equivalent to a cyclical monotonicity condition on its induced distribution over states
and actions. We characterize when credibility considerations completely shut down
informative communication, as well as settings where the sender is guaranteed to benefit
from credible persuasion. We apply our results to the market for lemons and bank runs.
In the market for lemons, we show that no useful information can be credibly disclosed by
the seller, even though a seller who can commit to her disclosure policy would perfectly
reveal her private information to maximize profit. In the context of bank runs, whether
the regulator can credibly perform a stress test to forestall a bank run depends on the
welfare cost of a liquidity crisis.
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1 Introduction
When an informed party (Sender; she) discloses information to persuade her audience (Re-
ceiver; he), it is in her interest to convey only messages that steer the outcome in her own favor:
schools may want to inflate their grading policies to improve their job placement records; sim-
ilarly, credit rating agencies may publish higher ratings in exchange for future business. Even
when the Sender claims to have adopted a disclosure policy, she may still find it difficult to
commit to following its prescriptions, since the adherence to such policies is often impossible
to monitor. By contrast, what is often publicly observable is the final distribution of the
Sender’s messages: students’ grade distributions at many universities are publicly available,
and so is the distribution of rating scores from credit rating agencies.

Motivated by this observation, we propose a notion of credible persuasion. In contrast
to standard Bayesian persuasion, our Sender cannot commit to a disclosure policy; however,
to avoid detection, she must keep the final message distribution unchanged. For example, in
the context of schools, if the school had announced a disclosure policy that features a certain
fraction of A’s, B’s, and C’s, it cannot switch to a distribution that gives each student an
A without being detected. Analogously, even if a credit rating agency would like to tamper
with its rating schemes, any change such tampering induces in the distribution of ratings may
be detected. Our notion of credibility closely adheres to this definition of detectability: we
say that a disclosure policy is credible if given how the Receiver reacts to her messages, the
Sender has no profitable deviation to any other disclosure policy that has the same message
distribution.

We ask whether the Sender can persuade the Receiver by using credible disclosure poli-
cies. We find that in many settings, credibility can shut down the possibility for persuasion
altogether. An important special case where this effect is exhibited is the market for lemons
(Akerlof, 1970). Here, we show that the seller of an asset cannot credibly disclose any useful
information to the buyer; this effect arises even though the seller benefits from persuasion
when she can fully commit to her disclosure policy. Conversely, we also provide conditions
for when the Sender is guaranteed to benefit from credible persuasion so that credibility does
not entirely eliminate the scope for persuasion. In general, we show that credibility is char-
acterized by a cyclical monotonicity condition that is analogous to that studied in decision
theory and mechanism design (Rochet, 1987).

We now illustrate our framework with two examples. First, consider a buyer (Receiver)
who is choosing whether to buy a car from a used car seller (Sender). It is common knowledge
that 30% of the cars are of high quality and the remaining 70% are of low quality. To illustrate
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Buy Not Buy
High 2 1

Low 2 0

Seller

Buy Not Buy
High 1 0

Low −1 0

Buyer

Table 1: Used Car Example Payoffs

our results, we assume that all cars are sold at an exogenously fixed price.1 The payoffs in this
example are in Table 1. The seller always prefers selling a car, but the buyer is only willing to
purchase if and only if he believes its quality is high with at least 0.5 probability. Conditional
on a car being sold, the seller obtains the same payoff regardless of its quality; but when a
car is not sold, she receives a higher value from keeping a high quality car.

As a benchmark, let us first see what the seller achieves if she could commit to a disclosure
policy. We depict the optimal disclosure policy in Figure 1. The policy uses two messages,
pass and fail: all high-quality cars pass, along with 3/7 of the low-quality cars; the remaining
4/7 of the low-quality cars receive a failing grade. Conditional on the car passing, the buyer
believes that the car is of high quality with probability 0.5, which is just enough to convince
him to make the purchase. If a car fails, the buyer believes that the car is of low quality for
sure and will refuse to buy. With this disclosure policy, the buyer expects to see the seller
pass 60% of the cars and fail the remaining 40%.

Low

High

Prior Distribution Message Distribution

70%

30%

Fail

Pass

40%

60%
1

3/7

4/7

Figure 1: Optimal Commitment Policy

The policy above is optimal for the seller if she can commit to following its prescriptions.
But suppose the buyer cannot observe how the seller rates her cars. Instead, the buyer only
observes the fraction of cars being passed and failed. In such a setting, the seller can profitably
deviate from the above disclosure policy without being detected by the buyer. Specifically, the
seller can switch to failing all high-quality cars and passing an equal number of low-quality
cars. This disclosure policy, illustrated in Figure 2, induces the same distribution of messages

1In Section 2.5 we study a competitive market for lemons with endogenous prices, and emerge with similar
findings.
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(i.e., 60% pass, 40% fail). Holding fixed the buyer’s behavior, this deviation is profitable for
the seller because she is still selling the same number of cars but now is able to retain more
high-quality cars. Accordingly, we view the optimal full-commitment policy not to be credible:
after having promised to share information according to a disclosure policy, the seller would
not find it rational to follow through and would instead profit from an undetectable deviation.

Low

High

Prior Distribution Message Distribution

70%

30%

Fail

Pass

40%

60%

6/7

1/7

1

Figure 2: An Undetectable Deviation

More generally, we introduce the following notion of credibility for disclosure policies.
Consider a profile consisting of the Sender’s disclosure policy and the Receiver’s strategy
(mapping messages to actions). We say that a profile is Receiver incentive compatible if
the Receiver’s strategy best responds to the Sender’s disclosure policy—this requirement is
standard in Bayesian persuasion problems. We say that a profile is credible if, given the
Receiver’s strategy, the Sender has no profitable deviation to any other disclosure policy
that induces the same message distribution. Together, credibility and Receiver incentive
compatibility require that conditional on the Sender’s message distribution, the Sender and
Receiver best respond to each other.2

We have just argued that in the used car example, the optimal full-commitment disclosure
policy was not credible given the Receiver’s best response. Can any car be sold in a profile
that is both credible and Receiver incentive compatible? We show that the answer is no.
Note that this is what happens when no information is disclosed. In other words, credibility
completely shuts down the possibility for useful information transmission.

To see why, suppose towards a contradiction that the buyer purchases a car after observing
a message m1 that is sent with positive probability. By Receiver incentive compatibility, the
buyer must believe that the car is of high quality with more than 0.5 probability after observing
m1. Since m1 is sent with positive probability, the martingale property of beliefs implies that
there must be another message m2, also sent with positive probability, that makes the buyer
assign less than 0.5 to the car’s quality being high. Necessarily, when the buyer observes the
message m2, he does not make a purchase. This creates an incentive for the seller to tamper

2Our solution-concept is therefore analogous to a Nash equilibrium condition in which the set of feasible
deviations for the Sender is to other disclosure policies that induce the same message distribution.
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with her disclosure policy: by exchanging some of the good cars being mapped into m1 with an
equal number of bad cars being mapped into m2, she can improve her payoff without changing
the distribution of messages.

One may wonder if credibility always shuts down communication entirely. The next ex-
ample features a setting in which the optimal full-commitment disclosure policy is credible.
Consider the disclosure problem faced by a school (Sender) and an employer (Receiver). Just
as in the used car example, a student’s ability is either high with probability 0.3 or low with
probability 0.7. Payoffs are as shown in Table 2. The employer is willing to hire a student if
he believes the student has high ability with at least 0.5 probability. The school would like
all its students to be employed, but derives a higher payoff from placing a good student than
it does from placing a bad one.

Hire Not Hire
High 2 0

Low 1 0

School

Hire Not Hire
High 1 0

Low −1 0

Employer

Table 2: School Example Payoffs

The school’s optimal full-commitment disclosure policy is identical to the one in the used
car example (Figure 1), and so are the employer’s best responses. But unlike the used car
example, the school cannot profitably deviate without changing the message distribution.

To see why, note that without changing the message distribution, any deviation must
involve passing some low ability students while failing an equal number of high ability students.
This would increase the employment of low ability students at the expense of their high
ability counterparts, which makes the school worse off. Since the school cannot profit from
undetectable deviations, the optimal full-commitment policy is credible. In contrast to the
previous example where credibility shuts down all useful communication, the current example
shows that credibility sometimes imposes no cost on the Sender relative to persuasion with
full commitment.

In the two examples above, credibility has starkly different implications for information
transmission. The key difference is that in the used car example, when the car’s quality is
higher, the Sender has a weaker marginal incentive to trade while the Receiver’s marginal
incentive is stronger; in the school example, by contrast, both the Sender and Receiver have
a stronger marginal incentive to trade as the student’s ability increases. Our results formalize
this intuition.

Proposition 1 shows that when the Sender and Receiver’s preferences have opposite mod-
ularities (e.g. when the Sender’s payoff is strictly supermodular and the Receiver’s payoff is
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submodular), credibility completely shuts down communication. When players’ preferences
share the same modularity, the Sender does not always benefit from credible persuasion rel-
ative to the no-information benchmark. Proposition 2 and Proposition 3 provide additional
conditions that guarantee the Sender does benefit from credible persuasion, as well as condi-
tions under which the optimal full-commitment disclosure policy is credible.

Generalizing further, we use optimal transport theory to characterize credibility using a
familiar condition from mechanism design and decision theory—cyclical monotonicity. The-
orem 1 shows that for every profile of Sender’s disclosure policy and Receiver’s strategy, the
credibility of the profile is equivalent to a cyclical monotonicity condition on its induced dis-
tribution over states and actions. As is illustrated in the examples above, credibility requires
that the Sender cannot benefit from any pairwise swapping in the matching of states and
actions. The cyclical monotonicity condition generalizes this idea to cyclical swapping: for
every sequence of state-action pairs in the support, the sum of the Sender’s utility should be
lower after the matchings of states and actions in this sequence are permuted. In Section 4.2,
we discuss the connection of Theorem 1 to Rochet (1987).

We apply our results to two settings: the market for lemons and bank runs. In the market
for lemons, it is well-known that market outcome may be inefficient due to adverse selection
(Akerlof, 1970): despite common knowledge of gain from trade, some cars may not be traded.
If the seller can commit to a disclosure policy to persuade the buyers, she can completely
solve the market inefficiency by perfectly revealing θ to the buyers. However, we show that
if the buyers can only observe the message distribution of the seller’s disclosure policy, but
not exactly how these messages are generated, then the seller cannot credibly disclose any
useful information to the buyer. In another application, we consider a stylized model where
a regulator designs a stress test to persuade two large institutional investors to pledge their
funds to a bank and forestall a bank run. We show that whether the regulator can credibly
disclose information depends on the welfare cost of a liquidity crisis. High welfare costs destroy
the credibility of the regulator’s stress tests.

An ancillary contribution of this paper is to offer foundations for studying Bayesian persua-
sion in a large number of settings, which include when the Sender’s payoff is state-independent.
In these cases, our results imply that all disclosure policies are credible, so the full-commitment
assumption in the Bayesian persuasion approach is nonessential as long as the message dis-
tribution is observable.

The rest of the paper is organized as follows: Section 2 introduces our credibility notion
and results first in the setting of a Sender persuading a single Receiver. We then extend
our framework to a more general model with multiple Receivers, while also allowing the
Sender to take actions. This permits us to apply the model to more applications and in
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particular, markets for lemons where prices are determined by actions taken by the seller
and multiple buyers. Section 3 discusses two applications: the market for lemons and stress
testing for banks. Section 4 provides an extensive-form foundation for our credibility notion,
and discusses how the uS-cyclical monotonicity characterization of credibility relates to similar
conditions that arise from implementation with transfers. Section 5 concludes. All omitted
proofs are in Appendix A. The remainder of this introduction places our contribution within
the context of the broader literature.

Related Literature: Our work contributes to the study of strategic communication. The
Bayesian persuasion model in Kamenica and Gentzkow (2011) studies a Sender who can fully
commit to an information structure.3 In contrast, the cheap talk approach pioneered by
Crawford and Sobel (1982) models a Sender who observes the state privately and, given the
Receiver’s strategy, chooses an optimal (sequentially rational) message. The partial commit-
ment setting that we model is between these two extremes: here, the Sender can commit to a
(marginal) distribution over messages but not the entire information structure.

Our model considers a Sender who can misrepresent her messages as long as the mis-
representation still produces the original message distribution. This contrasts with existing
approaches to model limited commitment in Bayesian persuasion. One approach, pioneered
by Lipnowski, Ravid, and Shishkin (2021) and Min (2021), is to allow the Sender to alter the
messages from her chosen test with some fixed probability. Another approach is to consider
settings where the Sender can revise her test at a cost. Nguyen and Tan (2021) consider a
Sender who can distort the messages from her chosen information structure, whereas Perez-
Richet and Skreta (2021) consider a Sender who can falsify the state, or input, of the infor-
mation structure. A different strand of the literature studies the role of repeated interaction
between a patient Sender and a sequence of short-lived Receivers. Best and Quigley (2020)
considers how coarse feedback of past realizations of states can substitute for commitment;
Mathevet, Pearce, and Stacchetti (2019) allows for the possibility of non-strategic commit-
ment types; Pei (2020) characterizes when Sender’s persistent private information about lying
cost allows her to achieve her full-commitment payoff.

Our approach to credible persuasion is reminiscent of how Akbarpour and Li (2020) model
credible auctions: they study mechanism design problems where the designer’s deviations
are “safe” so long as they lead to outcomes that are possible when she is acting honestly,
and characterize mechanisms that ensure the designer has no safe and profitable deviations.
Although in the same spirit, our approach’s focus is different in that we study persuasion
problems where the Sender’s deviations are undetectable if they do not alter the message

3Also see Rayo and Segal (2010).
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distribution, and characterize information structures where the Sender has no profitable and
undetectable deviation. In this way, our credibility notion also connects with the study of
quota mechanisms in Jackson and Sonnenschein (2007), Frankel (2014), and Ishii (2016). In
both settings, a restriction is placed on the set of feasible deviations. In the context of quota
mechanisms, the designer restricts the agent’s possible deviations by imposing constraints on
the distribution of the agent’s reported types (i.e., reporting quotas). In our setting, the
Sender’s deviations are limited by the distribution of her messages.

Finally, our results offer a plausible foundation for monotone persuasion, which has been
the focus of a recent literature. The cyclical monotonicity condition in Theorem 1 reduces
to standard monotonicity when the Sender’s payoff is supermodular. Monotone information
structures have attracted much attention in part due to their simplicity and ease of implemen-
tation; for example, see Dworczak and Martini (2019), Goldstein and Leitner (2018), Mensch
(2021), Ivanov (2020), Kolotilin (2018), and Kolotilin and Li (2020). Our credibility notion
provides an additional motive for focusing on monotone information structures.

2 Model

2.1 Setup

We consider an environment with a single Sender (S; she) and a single Receiver (R; he). Both
players’ payoffs depend on an unknown state θ ∈ Θ and the Receiver’s action a ∈ A. Both Θ

and A are finite sets. The payoff functions are given by uS : Θ×A→ R and uR : Θ×A→ R.
Players hold full-support common prior µ0 ∈ ∆(Θ).

Let M be a finite message space that contains A. The Sender chooses a disclosure policy,
which we henceforth refer to as a “test,” to influence the Receiver’s action. A test λ ∈
∆(Θ×M) is a joint distribution of states and messages, so that the marginal distribution of
states agrees with the prior; that is, λΘ = µ0.4 The Receiver chooses an action after observing
each message according to a pure strategy σ :M → A.5

Our interest is in understanding the Sender’s incentives to deviate from her test, which
depends on the Receiver’s strategy. To avoid ambiguity, we refer explicitly to pairs of (λ, σ)—
or profiles—that consist of a Sender’s disclosure policy and a Receiver’s strategy. For each

4For a probability measure P defined on some product space X × Y , we use PX and PY to denote its
marginal distribution on X and Y , respectively.

5We focus on pure strategies to abstract from the Receiver using randomization to deter the Sender’s
deviations, but our analysis can be generalized to allow for mixed strategies. In Section 2.5, we allow the
Receiver’s action space A to be infinite, which can incorporate mixtures over pure actions.
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profile (λ, σ), the players’ expected payoffs are

US(λ, σ) =
∑
θ,m

uS(θ, σ(m))λ(θ,m) and UR(λ, σ) =
∑
θ,m

uR(θ, σ(m))λ(θ,m).

We consider a setting where the Sender cannot commit to her test, and can deviate to
another test so long as it leaves the final message distribution unchanged. This embodies the
notion that the distribution of the Sender’s messages is observable, even though it may be
difficult to observe exactly how these messages are generated. Formally, if λ is a test promised
by the Sender, let D(λ) ≡ {λ′ ∈ ∆(Θ ×M) : λ′Θ = µ0, λ

′
M = λM} denote the set of tests

that induce the same distribution of messages as λ: these test are indistinguishable from λ

from the Receiver’s perspective. Our credibility notion requires that conditioning on how the
Receiver responds to the Sender’s messages, no deviation in D(λ) can be profitable for the
Sender.

Definition 1. A profile (λ, σ) is credible if

λ ∈ argmax
λ′∈D(λ)

∑
θ,m

uS(θ, σ(m)) λ′(θ,m) (1)

Moreover, the Receiver’s strategy is required to be a best response to the Sender’s chosen
test.

Definition 2. A profile (λ, σ) is Receiver Incentive Compatible (R-IC) if

σ ∈ argmax
σ′:M→A

∑
θ,m

uR(θ, σ
′(m)) λ(θ,m) (2)

Together, credibility and R-IC ensure that conditioning on the message distribution of the
Sender’s test, both the Sender and the Receiver best respond to each other.

An immediate observation is that there always exists a profile (λ, σ) that is both credible
and R-IC. This is the profile of a completely uninformative test and a Receiver strategy that
takes the ex ante optimal action after every message. Given the test, the Receiver is taking
a best response and given the Receiver’s strategy, the Sender has no incentive to deviate to
any other test that induces the same message distribution.

Some discussion of our modeling approach is in order. We model the observability of the
Sender’s message distribution as a partial commitment device. In Section 4.1, we present
an extensive-form game in which the Sender is permitted to deviate to any test, and the
Receiver observes the message distribution generated by the chosen test. As we show therein,
if the Sender chooses a test that induces a different message distribution, the Receiver can
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“punish” the Sender by assuming that the chosen test is uninformative. If one focuses on
profiles where the Sender is weakly better off than disclosing no information (as we do in
this paper), the extensive-form analysis rationalizes our focus on deviations that generate the
same distribution of messages as the equilibrium test.

2.2 Stable Outcome Distributions

We characterize credible and receiver incentive compatible profiles through the induced prob-
ability distribution of states and actions. Formally, an outcome distribution is a distribution
π ∈ ∆(Θ×A) that satisfies πΘ = µ0: this is a consistency requirement that stipulates that the
marginal distribution of states must conform to the prior. We say an outcome distribution π is
induced by a profile (λ, σ) if for every (θ, a) ∈ Θ×A, π(θ, a) = λ(θ, σ−1(a)), where σ−1 is the
inverse mapping of σ. We are interested in characterizing outcome distributions that can be
induced by profiles that are both credible and R-IC, and refer to such outcome distributions
as stable.

Definition 3. An outcome distribution π ∈ ∆(Θ × A) is stable if it is induced by a profile
(λ, σ) that is both credible and R-IC.

Our first result characterizes stable outcome distributions.

Theorem 1. An outcome distribution π ∈ ∆(Θ× A) is stable if and only if:

1. π is uR−obedient: for each a ∈ A such that π(Θ, a) > 0,∑
θ∈Θ

π(θ, a) uR(θ, a) ≥
∑
θ∈Θ

π(θ, a) uR(θ, a
′) for all a′ ∈ A.

2. π is uS−cyclically monotone: for each sequence (θ1, a1), . . . , (θn, an) ∈ supp(π) and
an+1 ≡ a1,

n∑
i=1

uS(θi, ai) ≥
n∑

i=1

uS(θi, ai+1);

The first condition is the standard obedience constraint (Bergemann and Morris, 2016;
Taneva, 2019), which specifies that the Receiver finds it incentive compatible to follow the
recommended action given the belief that she forms when receiving that recommendation. The
second condition, namely uS-cyclical monotonicity, is the new constraint that maps directly
to our notion of credibility. Below, we describe this condition and explain why it is both
necessary and sufficient for stability.

To understand the cyclical monotonicity condition, consider an outcome distribution π

and a sequence (θi, ai)
n
i=1 in the support of π. A “cyclical” deviation in this case consists
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of subtracting ε mass from (θi, ai) while adding it to (θi, ai+1) for each n = 1, . . . , n, where
an+1 ≡ a1. Each step of this cyclical deviation changes the Sender’s payoff by ε

[
uS(θi, ai+1)−

uS(θi, ai)
]
, so the total change in the Sender’s payoff is

ε
[ n∑

i=1

uS(θi, ai+1)−
n∑

i=1

uS(θi, ai)
]
.

The cyclical monotonicity condition requires that the Sender can find no profitable cyclical
deviations.

To see why cyclical monotonicity is necessary, observe that cyclical deviations do not
change the distribution of recommended actions. Therefore, any such deviation could not be
detected solely on the basis of the distribution of messages. Because we require that such
undetectable deviations are not profitable, this implies the cyclical monotonicity condition
above.

△ □

⃝

△ □

□⃝

□

□⃝

⇒

Outcome distribution π A deviation π′ A cyclical deviation from π to π′

x
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x
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□ □

□
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□

⃝⃝

△ □

⃝

△ □

□⃝

□

□⃝

1

2

3

4 5

Figure 3: Cyclical Deviation

For sufficiency, the intuition is that any deviation that keeps the marginal distribution on
messages unchanged can either be expressed as or approximated by a convex combination of
cyclical deviations. To see the idea, let us take a look at the graphical representation of an
outcome distribution π in the left panel of Figure 3. In this example, Θ = {□,⃝,△} and
A = {x, y, z}. Each □, ⃝, and △ in the graph is associated with 10% probability mass. The
prior belief assigns 20% to △, which is represented by two △’s; similarly, the prior assigns
30% to ⃝ and 50% to □. The pairing between states and actions pins down the outcome
distribution, as well as its induced distribution of actions. For example, π(△, x) = 10% and
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π(Θ, y) = 40%.
The middle panel depicts a possible deviation π′ that maintains the same distribution of

actions. In particular, the matchings among states and actions are permuted, but the number
of shapes matched to each action remains the same. Our credibility notion requires that
no such deviation can be profitable. The right panel illustrates how this deviation can be
expressed as a 5-step cyclical deviation.

In fact, it is obvious from the graph that every deviation that involves moving integer
numbers of □, ⃝, or △ around can always be written as a cyclical deviation. What is perhaps
less obvious are deviations that involve fractions of shapes. We show in the proof that by
using the Birkhoff-von Neumann theorem, these deviations can be either expressed as or
approximated by cyclical deviations. Therefore, checking cyclical deviations is sufficient for
credibility.

2.3 The Case of Additively Separable Payoffs

If uS(θ, a) is additively separable in θ and a, then uS−cyclical monotonicity is automatically
satisfied. So we have the following observation.

Observation 1. If uS(θ, a) = v(θ) + w(a) for some v : Θ → R and w : A → R, then every
outcome distribution that satisfies uR-obedience is stable.

Therefore, in this case, there is no gap between what is achievable by a sender who can
fully commit to a test relative to a sender who can only partially commit to a distribu-
tion of messages. This observation is relevant to a special and widely studied case of addi-
tively separable preferences, namely that in which the Sender has state-independent payoffs.
State-independent payoffs feature in many analyses of communication and persuasion (e.g.
Chakraborty and Harbaugh, 2010; Alonso and Câmara, 2016; Lipnowski and Ravid, 2020;
Lipnowski, Ravid, and Shishkin, 2021). Our analysis suggests that for these settings, the
Sender can persuade with full commitment power even without committing to a test, merely
by making public (and committing to) her distribution of messages.

2.4 When is Credibility Restrictive?

When the state and action interact in the Sender’s payoff, credibility limits the Sender’s choice
of tests. The goal of this section is to understand how these limits can restrict the Sender’s
ability to persuade the Receiver. As benchmarks, we will often draw comparisons to what
the Sender can achieve when she can fully commit to her disclosure policy, as well as what
is achievable when all or no information is disclosed. We say an outcome distribution π∗
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is an optimal full-commitment outcome if it maximizes the Sender’s payoff among outcome
distributions that satisfy uR-obedience. An outcome distribution π̂ is a fully revealing outcome
if the Receiver always chooses a best response to every state; that is,

a ∈ argmax
a′∈A

uR(θ, a
′) for every (θ, a) ∈ supp(π̂).

Finally, an outcome distribution π◦ is a no-information outcome if the Receiver always chooses
the same action that best responds to the prior belief µ0; in other words, there exists

a∗ ∈ argmax
a∈A

∑
θ∈Θ

µ0(θ)uR(θ, a) such that π◦
A(a

∗) = 1.

We say the Sender benefits from persuasion if an optimal full-commitment outcome gives
the Sender a higher payoff than every no-information outcome. Similarly, we say the Sender
benefits from credible persuasion if there exists a stable outcome distribution that gives the
Sender a higher payoff than every no-information outcome.

We make a few assumptions for ease of exposition. First, suppose every a ∈ A is a
best response to some belief µ ∈ ∆(Θ) for the receiver. This assumption is without loss of
generality, since an action that is never a best response would never be played by the Receiver
in any R-IC profile, and can be removed from the action set A without changing results in this
paper. Second, suppose there exists no distinct a, a′ ∈ A such that uR(θ, a) = uR(θ, a

′) for all
θ ∈ Θ; in other words, from the Receiver’s perspective, there are no duplicate actions. This
second assumption is not without loss, but greatly simplifies the statements of Proposition 1
and Proposition 2.

Modular Preferences: In the examples in Section 1, we see that whether the Sender can
credibly persuade the Receiver depends crucially on the alignment of their marginal incentives
to trade. To understand this logic more generally, we assume that Θ and A are totally ordered
sets, which without loss of generality can be assumed to be subsets of R. Recall that a payoff
function u : Θ× A→ R is supermodular if for all θ ≥ θ′ and a ≥ a′, we have

u(θ, a) + u(θ′, a′) ≥ u(θ, a′) + u(θ′, a).

and submodular if
u(θ, a) + u(θ′, a′) ≤ u(θ, a′) + u(θ′, a).

Furthermore, the function is strictly supermodular or strictly submodular if the inequalities
above are strict for θ > θ′ and a > a′.

The modularity of players’ payoff functions captures how the marginal utility from higher
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actions varies with the state. This generalizes the marginal incentive to trade in the examples
in Section 1: intuitively, the Sender and the Receiver have aligned marginal incentives when
both players’ payoff functions share the same modularity, and opposed marginal incentives
when their payoff functions have opposite modularities. To fix ideas, we will assume that the
Sender’s payoff is supermodular and vary the modularity of the Receiver’s payoff.

We now introduce a lemma that simplifies the uS-cyclical monotonicity condition in
Theorem 1 when the Sender’s payoff is supermodular. Say that an outcome distribution
π ∈ ∆(Θ×A) is comonotone if for all (θ, a), (θ′, a′) ∈ supp(π) satisfying θ < θ′, we have a ≤ a′.
Comonotonicity requires that the states and the Receiver’s actions are positive-assortatively
matched in the outcome distribution. The following lemma, whose variant appears in Rochet
(1987), shows that uS-cyclical monotonicity reduces to comonotonicity when the Sender’s
preference is supermodular.

Lemma 1. If uS is supermodular, then every comonotone outcome distribution is uS-cyclically
monotone. Furthermore, if uS is strictly supermodular, then every uS-cyclically monotone
outcome distribution is also comonotone.

Combined with Theorem 1, Lemma 1 implies that when the Sender’s preference is strictly
supermodular, the credibility of a profile (λ, σ) is equivalent to the comonotonicity of its
induced outcome distribution.

When Credibility Shuts Down Communication: The next result generalizes the used-
car example in Section 1.

Proposition 1. If uS is strictly supermodular and uR is submodular, then every stable outcome
distribution is a no-information outcome.

Proposition 1 says that when the players have opposed marginal incentives, credibility
considerations completely shut down information transmission. The logic generalizes that
which we saw in the example: if two distinct messages resulted in different actions from the
Receiver, the Sender and Receiver have diametrically opposed preferences as which action to
induce in which state. Therefore, if a profile satisfies R-IC and is even partially informative,
the Sender would have a profitable deviation to another test that swaps states and induces
the same marginal distribution of messages.

One might expect that credibility does not limit the Sender’s ability to persuade the
Receiver when their marginal incentives are aligned. Perhaps surprisingly, this may be false
without further assumptions. We illustrate this point using Example 1 in Appendix C. In that
example, both the Sender and Receiver have supermodular payoffs. The Sender benefits from
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persuasion when she can fully commit to her disclosure policy. However, no stable outcome
distribution can give her a higher payoff than the best no-information outcome.

When the Sender Benefits from Credible Persuasion: We impose sufficient conditions
that guarantee that the Sender benefits from credible persuasion. Let a ≡ maxA and a ≡
minA denote the highest and lowest Receiver actions, and let θ ≡ maxΘ and θ ≡ minΘ

denote the highest and lowest states.

Proposition 2. Suppose both uS and uR are supermodular.

1. If the highest action is dominant for the Sender, that is, if uS(θ, a) > uS(θ, a) for all θ
and a ̸= a, then for generic priors,6 the Sender benefits from credible persuasion as long
as she benefits from persuasion.

2. If the Sender favors extreme actions in extreme states, that is, if uS(θ, a) > uS(θ, a)

for all a ̸= a and uS(θ, a) > uS(θ, a) for all a ̸= a, then for generic priors, the Sender
benefits from credible persuasion.

3. If the Sender is strictly better off from a fully revealing outcome than from every no-
information outcome, then the Sender benefits from credible persuasion.

The first condition in Proposition 2 is satisfied in settings like the school example, where
the school would always want to place a student regardless of the student’s ability. The second
condition is applicable in environments where both parties have agreement on extreme states.
For example, both doctors and the patients favor an aggressive treatment if the patient’s
condition is severe, and both favor no treatment if the patient is healthy, but they might
disagree in intermediate cases. Lastly, a special case of the third condition are quadratic loss
preferences as commonly used in models of communication (e.g. Crawford and Sobel, 1982).

The first two parts of Proposition 2 rely on belief-splitting. Let us briefly describe the
proof under the first condition; the proof for the second part follows similar arguments. Note
that if a is a dominant action for the Sender, and the Sender can benefit from persuasion
(under full commitment), then a must not already be a best response for the Receiver under
the prior µ0. The Sender can then split the prior into a point mass posterior δθ and some
other posterior µ̃ that is close to µ0. At δθ, the Receiver is induced to choose a since his payoff
is supermodular. In addition, for generic priors the Receiver’s best response to µ̃ remains the
same as his best response to µ0. The Sender benefits from this belief-splitting since the same
action is still played most of the time, but in addition her favorite action is now played with

6Formally, by generic we mean a set of priors T ⊂ ∆(Θ) with the same Lebesgue measure as ∆(Θ).
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positive probability. Moreover, the resulting outcome distribution matches higher states with
higher actions, so it is stable due to the supermodularity of uS and Lemma 1.

The intuition for the third part of Proposition 2 is straightforward to see when the Sender’s
payoff is strictly supermodular. Consider (θ, a) and (θ′, a′) in the support of a fully revealing
outcome distribution π, so a and a′ best respond to θ and θ′, respectively. From Topkis
(2011), it follows that a ≥ a′ if θ > θ′. Therefore, π is comonotone and satisfies uS-cyclical
monotonicity by Lemma 1. By construction, π also satisfies obedience, so π is stable by
Theorem 1.

When Credibility Imposes No Cost to the Sender: In Observation 1, we see that
when the Sender’s payoff is additively separable, credibility does not restrict the set of stable
outcomes. Proposition 3 provides a condition which guarantees that credibility imposes no loss
on the Sender’s optimal value, even when credibility does restrict the set of stable outcomes.

Proposition 3. Suppose |A| = 2. If both uS and uR are supermodular, then at least one
optimal full-commitment outcome is stable; if in addition uS is strictly supermodular, then
every optimal full-commitment outcome is stable.

Proposition 3 says that in setting where both players have supermodular payoffs and the
Receiver faces a binary decision, such as “accept” or “reject”, then credibility imposes no
cost to the Sender. This result follows from combining our Theorem 1 and Lemma 1 with
Theorem 1 in Mensch (2021). He shows that under the assumptions in our Proposition 3,
there exists a optimal full-commitment outcome that is comonotone. The intuition is that
for any outcome distribution π that is uR-obedient but not comonotone, the Sender can
weakly improve her payoff by swapping the non-comonotone pairs in the support of π, so
that they become matched assortatively. Such swapping also benefits the Receiver due to
the supermodularity of uR, so uR-obedience remains satisfied. As a result, the Sender can
always transform a non-comonotone outcome distribution into one that is comonotone without
violating uR-obedience, while weakly improving her own payoff. Therefore, there must be an
optimal full-commitment outcome that is comonotone, which is also stable by Theorem 1 and
Lemma 1.

2.5 Credible Persuasion in Games

In this section we generalize the framework in Section 2.1 to a setting with multiple Receivers,
where the Sender can also take actions after information is disclosed. We also allow the state
space and action space to be infinite.
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Consider an environment with a single Sender (she) and k Receivers (each of whom is a
he). The Sender has action set AS while each Receiver i ∈ {1, . . . , k} has action set Ai. Let
A = AS × A1 × . . . × Ak denote the set of action profiles. Each player has payoff function
ui : Θ × A → R, i = S, 1, . . . , k, respectively. The state space Θ and action spaces Ai are
Polish spaces endowed with their respective Borel sigma-algebras. Players hold full-support
common prior µ0 ∈ ∆(Θ). We refer to G =

(
Θ, µ0, AS, uS, {Ai}ki=1, {ui}ki=1

)
as the base game.

Let M be a Polish space that contains A. The Sender chooses a test λ ∈ ∆(Θ×M) where
λΘ = µ0: note that this formulation implies that the test generates public messages observed
by all Receivers. Together the test and the base game constitute a Bayesian game G = ⟨G, λ⟩,
where:7

1. At the beginning of the game a state-message pair (θ,m) is drawn from the test λ;

2. The Sender observes (θ,m) while the Receivers observe only m; and

3. All players choose an action simultaneously.

A strategy profile σ : Θ×M → A in G consists of a Sender’s strategy σS : Θ×M → AS and
Receivers’ strategies σi : M → Ai, i = 1, . . . , k. For each profile of Sender’s test and players’
strategies (λ, σ), players’ expected payoffs are given by

Ui(λ, σ) =

∫
Θ×M

ui(θ, σ(θ,m)) dλ(θ,m) for i = S, 1, . . . , k.

We now generalize the notion of credibility and incentive compatibility in Section 2 to the
current setting. For each λ, let D(λ) ≡

{
λ′ ∈ ∆(Θ ×M) : λ′Θ = µ0, λ

′
M = λM

}
denote the

set of tests that induce the same distribution of messages as λ. Definition 4 is analogous to
Definition 1, which requires that given the players’ strategy profile, no deviation in D(λ) can
be profitable for the Sender.

Definition 4. A profile (λ, σ) is credible if

λ ∈ argmax
λ′∈D(λ)

∫
uS(θ, σ(θ,m)) dλ′(θ,m). (3)

In addition, Definition 5 generalizes Definition 2, and requires players’ strategies to form
a Bayesian Nash equilibrium of the game ⟨G, λ⟩.

Definition 5. A profile (λ, σ) is incentive compatible (IC) if σ is a Bayesian Nash equi-
7The test λ can be viewed as “additional information” observed by both the Sender and the Receivers, on

top of the base information structure where the Sender observes the state and the Receivers do not observe
any signal.
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librium in G = ⟨G, λ⟩. That is,

σS ∈ argmax
σ′
S :Θ×M→AS

US(λ, σ
′
S, σ−S) and σi ∈ argmax

σ′
i:M→Ai

Ui(λ, σ
′
i, σ−i) for i = 1, . . . , k. (4)

We say a distribution π ∈ ∆(Θ×A) is an outcome distribution if πΘ = µ0. A profile (λ, σ)

induces an outcome distribution π if for all measurable subsets X ⊂ Θ and Y ⊂ A, we have
π(X,Y ) = λ(σ−1(Y ) ∩ (X ×M)). We say an outcome distribution π ∈ ∆(Θ× A) is stable if
it is induced by a profile (λ, σ) that is both credible and IC.

In Appendix B.2 we provide an extensive-form game foundation and show that our credi-
bility notion corresponds to the Perfect Bayesian Nash equilibria in that game.

For each state θ and Receivers’ action profile a−S, we use vS(θ, a−S) ≡ maxaS∈AS
uS

(
θ, aS, a−S

)
to denote the Sender’s indirect utility function. The next result generalizes Theorem 1 to char-
acterize stable outcome distributions in games.

Theorem 2. An outcome distribution π is stable if and only if:

1. π is obedient: there exists a set E ⊂ Θ × A, such that π concentrates on E, and for
every (θ̂, â) ∈ E, π satisfies both uS-obedience

uS(θ̂, â) ≥ uS(θ̂, a
′
S, â−S) for all a′S ∈ AS,

and ui-obedience for each Receiver i = 1, . . . , k∫
Θ

ui(θ, â−i, âi)dπ(θ|â) ≥
∫
Θ

ui(θ, â−i, a
′
i)dπ(θ|â) for all a′i ∈ Ai.

2. π is vS−cyclically monotone: there exists a set E ⊂ Θ×A, such that π concentrates on
E, and for any (θ1, a1), . . . , (θn, an) ∈ E and an+1 ≡ a1,

n∑
i=1

vS(θ
i, ai−S) ≥

n∑
i=1

vS(θ
i, ai+1

−S ).

The key difference between Theorem 2 and Theorem 1 is that credibility is now charac-
terized by vS-cyclical monotonicity instead of uS-cyclical monotonicity. This reflects the fact
the Sender is privately informed about the state, so when she deviates to a different test, she
is able to best respond to Receivers’ actions in every state in the new outcome distribution.
As a result, when computing the Sender’s payoff from cyclical deviations, the indirect utility
function vS is used in place of uS.
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3 Applications

3.1 The Market for Lemons

Having introduced the framework for credible disclosure in games, we now apply the setting
to study the market for lemons by adapting the formulation in Mas-Colell, Whinston, and
Green (1995). In particular, consider a seller who values an asset she owns (say, a car) at
θ ∈ Θ ⊂ [0, 1]. There are two buyers (1 and 2) both valuing the car at v(θ) where v(θ) is
increasing. We assume v(θ) > θ for all θ ∈ Θ so there is common knowledge of gain from
trade. Buyers share a common prior belief µ0 ∈ ∆(Θ).

Without information disclosure, it is well-known that markets may lead to inefficient out-
comes because of adverse selection (Akerlof, 1970): despite common knowledge of gain from
trade, some cars may not be traded. If the seller can commit to a test to persuade the buyers,
she can completely solve the market inefficiency by choosing a test that perfectly reveals θ
to the buyers. Since v(θ) > θ for all θ ∈ Θ, all cars are traded under full disclosure. It also
maximizes the seller’s profit when the buyer-side market is competitive, because she captures
all the surplus from trade. However, we will show that if the buyers can only observe the
message distribution of the seller’s test, but not how exactly her test is conducted, then the
seller cannot credibly disclose any useful information to the buyers.

Below we first describe the base game without information disclosure. We then augment
the base game to allow the seller choosing a test to influence the buyers’ trading decisions,
and show that despite this, no stable outcome distribution can give the seller a higher profit
(or be more efficient) compared to the no-information benchmark.

The Base Game G: The seller and buyers move simultaneously. The seller learns her value
and chooses an ask price as ∈ AS = [0, v(1)]; each buyer i = 1, 2 chooses a bid bi ∈ Ai =

[0, v(1)]. If the ask price is lower than or equal to the highest bid, the car is sold at the highest
bid to the winning buyer, and ties are broken evenly. If the ask price is higher than the highest
bid, the seller keeps the car and receives the reserve value θ, while both buyers get 0. More
formally, the seller’s payoff function is

uS(θ, aS, b1, b2) =

max{b1, b2} if aS ≤ max{b1, b2}

θ if aS > max{b1, b2}
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and buyer i’s payoff is

ui(θ, aS, b1, b2) =


v(θ)− bi if bi > b−i and bi ≥ aS

1
2
[v(θ)− bi] if bi = b−i and bi ≥ aS

0 otherwise.

The Game with Disclosure: Before the base game is played, the seller can choose a
test λ to disclose information to the buyers. Together the test λ and the base game G

defines a Bayesian game ⟨G, λ⟩. Every message m from the test λ induces a posterior belief
µm ≡ λ(·|m) ∈ ∆(Θ) for the buyers. The buyers i = 1, 2 choose their respective bids bi(m),
while the seller choose an ask price aS(θ,m).

We restrict attention to Bayesian Nash equilibria where the seller plays her weakly domi-
nant strategy σS(θ,m) = θ. As we show in Lemma 5, such equilibria exist in ⟨G, λ⟩ for every
λ. In these equilibria, buyers’ bids satisfy

σ1(m) = σ2(m) = Eµm [v(θ)|θ ≤ σ1(m)]

Fix an arbitrary message m0 ∈ M , and let λ0 ≡ µ0 × δm0 be a null information structure.
Let R0 denote the supremum of the seller’s payoffs among such Bayesian Nash equilibria in
⟨G, λ0⟩, so R0 represents the highest equilibrium payoff the seller can achieve when providing
no information.

Proposition 4. In every stable outcome distribution, the seller’s payoff is no more than R0.

Proposition 4 implies that any information that can be credibly disclosed is not going
to improve the seller’s payoff compared to the no-information benchmark. This is in sharp
contrast to the full-commitment case, where the seller would like to fully reveal the car’s
quality, and all car types θ are sold at v(θ), which would allow the seller to capture all surplus
from trade.

Let us describe the intuition behind the proof for Proposition 4. For each message m

from the seller’s test λ, let Θ(m) denote the support of the buyer’s posterior belief after
observing m. A key step in proving Proposition 4 is to show that there exists a common
trading threshold τ such that for each message m, a car of quality θ ∈ Θ(m) is traded if and
only if θ ≤ τ . To see why, suppose towards a contradiction that the trading threshold in
message m is higher than the threshold in another message m′. We show in the proof that the
seller would then have a profitable deviation by swapping some of the cars slightly below the
higher threshold in message m with an equal amount of cars from m′ that are slightly above
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its lower threshold.8 Because this deviation does not change the seller’s message distribution,
it is also undetectable. Therefore, credibility demands a common threshold τ that applies
across messages. Given this common threshold τ , we then apply Tarski’s fixed-point theorem
to show that when no information is disclosed, there is an equilibrium that features a higher
trading threshold τ ′ ≥ τ . Since a higher threshold means more cars are being traded, which
in turn increases the seller’s payoff, the seller’s payoff under every stable outcome is therefore
weakly dominated by her payoff from a no-information outcome, and this proves our result.

3.2 Bank Runs and Credible Stress Tests

Following the financial crisis of 2008, central banks around the world conduct periodic stress
tests for financial institutions to assess their ability to withstand future shocks. Since the
results of these tests are disclosed publicly, they are also used as information policies aimed at
influencing market beliefs. However, the regulator’s interests are often not perfectly aligned
with those of the investors, so a key question for investors is whether such disclosure can
indeed be credible. In this section, we consider a benevolent regulator whose objective is
to maximize the investment returns generated by the banking system while minimizing the
risk of a liquidity crisis. We model a stylized bank run game between the regulator and two
institutional investors, and evaluate the credibility of the regulator’s stress tests.

The Base Game G: A regulator (Sender) designs a stress test that evaluates the solvency
of banks, which are parameterized by an unknown state θ ∈ Θ ⊂ [0, 1] with |Θ| < ∞, and
publicly communicates the results of the test to the market. Two large institutional investors
i = 1, 2 (Receivers) decide whether to pledge their funds to a bank. Each investor has two
actions ai ∈ {0, 1}, where ai = 1 represents extending a loan to the bank and ai = 0 represents
withdrawal. Investors hold a common prior µ0 ∈ ∆(Θ). The bank defaults with probability
ϕ(θ) unless both investors choose ai = 1, where ϕ(θ) is a decreasing function in θ.

The regulator’s payoff is

uS(θ, a1, a2) = η(θ)(a1 + a2)− ϕ(θ)(1− a1a2)L,

where η(θ) is the rate of return the bank can generate with its funds. We assume η(θ) is
increasing in θ since the bank can more effectively pursue profitable ventures when its balance
sheet is healthy, as opposed to using the funds to meet only its short-term obligations when
θ is close to 0. L is the welfare cost of a liquidity crisis.

8This deviation is profitable because it allows the seller to replace the higher-quality cars traded in m with
the lower-quality, untraded cars in m′. After this swapping, the lower-quality cars are now sold at the price
for the higher-quality cars in m, while the higher-quality cars are now retained by the seller in m′.
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The investors’ payoffs are as given in Table 3, where r(θ) is strictly increasing in θ and
satisfies r(1) > 0 and r(0) < 0. To understand the investors’ payoff structure, note that the
bank is guaranteed to remain solvent when both investors pledge their funds, so the investors
can secure a normalized payoff of 1 from the interest payment on their funds. When an
investor withdraws, he is guaranteed zero return regardless of θ. When only one investor
remains pledged to the bank, the interest payment outweighs the prospect of a potential
default when θ = 1 (so r(1) > 0), but not when θ = 0 (so r(0) < 0).

a2 = 1 a2 = 0
a1 = 1 1, 1 r(θ), 0
a1 = 0 0, r(θ) 0, 0

Table 3: Investors’ Payoffs

The Game with Disclosure: The regulator designs a stress test λ and publicly discloses
the results to the market. The investors form a posterior belief µm ≡ λ(·|m) ∈ ∆(Θ) based
on the message m from λ. Together the test λ and the base game G defines a Bayesian game
⟨G, λ⟩. We focus on the pure-strategy Bayesian Nash equilibria in ⟨G, λ⟩.

Note that if following a message m the induced posterior belief satisfies Eµm [r(θ)] > 0, then
the investors have a unique Nash equilibrium a1 = a2 = 1; if Eµm [r(θ)] ≤ 0, then there are two
pure strategy Nash equilibria, a1 = a2 = 1 and a1 = a2 = 0. The regulator does not trust the
market to follow her recommendations. Instead, she adopts a robust approach and evaluates
a test λ under the worst-case scenario. So whenever there are multiple equilibria following a
message m, the regulator expects the investor to play the worst equilibrium a1 = a2 = 0. We
say a profile (λ, σ) satisfies adversarial receiver incentive compatibility if

• σ1(m) = σ2(m) = 1 for every m ∈M such that Eµm [r(θ)] > 0.

• σ1(m) = σ2(m) = 0 for every m ∈M such that Eµm [r(θ)] ≤ 0.
An outcome distribution is adversarial if it is induced by a profile that satisfies the adversarial
IC.

Suppose the investors observe only the distribution of the regulator’s stress-testing evalua-
tions, but not the details of how these stress tests are carried out. The next result characterizes
how credibility affects the regulator’s ability to disclose information about the banks’ solvency
to the market.

Proposition 5. There exist L,L ∈ (0,∞) such that when 0 ≤ L ≤ L, the adversarial
optimal full commitment outcome is stable; when L ≥ L, the only adversarially stable outcome
distribution is a no-information outcome.
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Proposition 5 says that when the welfare loss from a liquidity crisis L is sufficiently low,
credibility does not restrict the regulator’s optimal stress testing design. However, as the
welfare loss L increases, credibility eventually destroys the regulator’s ability to disclose in-
formation on banks’ solvency to the market.

To see why, note that compared to (0, 0), the regulator is always better off when the
receivers play (1, 1). In fact, the regulator’s payoff improves by 2η(θ) + ϕ(θ)L when the
receivers switch from playing (0, 0) to (1, 1). When L is small, this difference is increasing in
θ so the regulator has a stronger marginal incentive to induce (1, 1) when θ is high, which
makes her marginal incentives aligned with those of the investors. However, if the welfare loss
from a liquidity crisis L is sufficiently large, the payoff difference 2η(θ) + ϕ(θ)L is decreasing
in θ. The regulator now has a stronger marginal incentive to induce (1, 1) when the bank is
likely to be insolvent, so her marginal incentives are now opposed to those of the investors.
The result then follows from arguments similar to those for Proposition 1 and Proposition 3.

4 Discussion

4.1 An Extensive-Form Foundation

Our solution concept analyzes credible persuasion through the lens of a partial-commitment
model. The goal of this section is to provide an extensive-form foundation for this formulation.
We propose an extensive-form game between the Sender and the Receiver where we formalize
the idea that the Receiver observes the marginal distribution of each test. We show that the
set of pure-strategy subgame perfect Nash equilibria of this extensive-form game correspond
to the set of profiles (λ, σ) that are credible, R-IC, and give the Sender higher than her worst
no-information payoff. We focus in this section on the single-Receiver environment introduced
in Section 2.1, but using the same idea, we also provide an extensive-form foundation for the
multiple-Receivers setting of Section 2.5 in Appendix B.2.

Consider the following game between the Sender and the Receiver:
1. The Sender chooses a test λ ∈ ∆(Θ×M) which satisfies λΘ = µ0;
2. Nature draws a pair of state and message (θ,m) according to λ;
3. The Receiver observes m, as well as the distribution of messages induced by λ, λM ∈

∆(M), then chooses an action a ∈ A.
The Sender’s strategy set is Λ ≡ {λ ∈ ∆(Θ×M) : λΘ = µ0}, and the Receiver’s strategy

set is Ξ = {ρ : ∆(M) ×M → A}, where the first argument is the distribution of messages
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and the second argument is the message. The Sender’s payoff is

US(λ, ρ) =
∑
θ

∑
m

λ(θ,m)uS
(
θ, ρ(λM ,m)

)
while the Receiver’s payoff is

UR(λ, ρ) =
∑
θ

∑
m

λ(θ,m)uR
(
θ, ρ(λM ,m)

)
The solution concept is pure-strategy subgame perfect Nash equilibrium (SPNE). Notice

that in the extensive-form game above, after the Sender chooses a degenerate test that always
sends the a single message, the decision node for Nature forms the initial node of a proper
subgame. In fact, these are also the only proper subgames in the extensive-form game, where
subgame perfection has bite.

We call a profile (λ, σ), as defined in Section 2.1, a pure-strategy SPNE outcome of the
extensive-form game above if there exists a pure-strategy SPNE (λ, ρ) of the extensive-form
game such that ρ(λM ,m) = σ(m) for all m ∈ M . The following result relates the SPNE of
this extensive-form game to our solution concept.

Proposition 6. A profile (λ, σ) is a pure-strategy SPNE outcome of the extensive-form game
if and only if

1. (λ, σ) is credible and R-IC; that is, (λ, σ) satisfies Definitions 1 and 2.

2. The Sender’s payoff from (λ, σ) is greater than her lowest no-information payoff:∑
θ

∑
m

λ(θ,m)uS(θ, σ(m)) ≥ min
a∈A0

∑
θ

µ0(θ)uS(θ, a),

where A0 = argmaxa∈A
∑

θ µ0(θ)uR(θ, a) is the Receiver’s best-response set to the prior
belief µ0.

Proposition 6 shows that if one focuses on profiles where the Sender is weakly better off
than disclosing no information (as we do in this paper), the extensive-form game rationalizes
our definition for credibility. The reason that the Sender’s payoff must be higher than her
no-information payoff in the extensive-form game is that in any equilibrium, if she deviates
to a no-information test λ = µ0 × δm0 , the ensuing decision node forms the initial node of a
proper subgame. Subgame perfection then demands that the Receiver plays a best response
to his prior, which in turn ensures that the Sender obtains a no-information payoff following
this deviation. Therefore, the Sender’s equilibrium payoff must be weakly higher than her
worst no-information payoff.
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4.2 Relationship to Rochet (1987)

The uS-cyclical monotonicity condition in our characterization closely resembles the cyclical
monotonicity condition for implementing transfers in Rochet (1987). The reader might wonder
why cyclical monotonicity arises in our setting despite the lack of transfers. The connection is
best summarized by the following three equivalent conditions from optimal transport theory
(see, for example, Theorem 5.10 of Villani (2008)).

Kantorovich Duality. Suppose X and Y are both finite sets, and u : X × Y → R is a
real-valued function. Let µ be a probability measure on X and ν be a probability measure on
Y , and Π(µ, ν) be the set of probability measures on X × Y such that the marginals on X and
Y are µ and ν, respectively. Then for any π∗ ∈ Π(µ, ν), the following three statements are
equivalent:

1. π∗ ∈ argmaxπ∈Π(µ,ν)

∑
x,y π(x, y)u(x, y);

2. π∗ is u-cyclically monotone. That is, for any n and (x1, y1), ..., (xn, yn) ∈ supp(π∗),

n∑
i=1

u(xi, yi) ≥
n∑

i=1

u(xi, yi+1)

3. There exists ψ : Y → R such that for any (x, y) ∈ supp(π∗) and any y′ ∈ Y ,9

u(x, y)− ψ(y) ≥ u(x, y′)− ψ(y′).

Our Theorem 1 and Theorem 2 build on the equivalence between 1 and 2 in the Kan-
torovich duality theorem above to show the equivalence between credibility and uS-cyclical
monotonicity.

Rochet (1987)’s classic result on implementation with transfers follows from the equivalence
between 2 and 3. To see this, consider a principal-agent problem where the agent’s private
type space is Θ with full-support prior µ0, and the principal’s action space is A. The agent’s
payoff is u(θ, a) − t, where t is the transfer she makes to the principle. Given an allocation
rule q : Θ → A, let vq(θ, θ′) ≡ u(θ, q(θ′)) denote the payoff that a type-θ agent obtains from
the allocation intended for type θ′. Let X = Y = Θ and µ = ν = µ0 in the Kontorovich
Duality theorem above, and consider the distribution π∗ ∈ Π(µ, ν) defined by

π∗(θ, θ′) =

µ0(θ) if θ = θ′

0 otherwise
9This statement can also be equivalently written as: there exists ϕ : X → R and ψ : Y → R, such that

ϕ(x) + ψ(y) ≥ u(x, y) for all x and y, with equality for (x, y) in the support of π∗.
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By the equivalence of 2 and 3 in the Kantorovich duality theorem, π∗ is vq-cyclically monotone
if and only if there exists ψ : Θ → R such that for all θ, θ′ ∈ Θ, vq(θ, θ)−ψ(θ) ≥ vq(θ, θ

′)−ψ(θ′).
That is,

u(θ, q(θ))− ψ(θ) ≥ u(θ, q(θ′))− ψ(θ′),

so the allocation rule q can be implemented by the transfer rule ψ : Θ → R. The vq-cyclical
monotonicity condition says that for every sequence θ1, ..., θn ∈ Θ with θn+1 ≡ θ1,

n∑
i=1

u(θi, q(θi)) ≥
n∑

i=1

u(θi, q(θi+1)).

This is exactly the cyclical monotonicity condition in Rochet (1987).
When X = Θ is interpreted as the set of an agent’s true types and Y = Θ interpreted as

the set of reported types, the distribution π∗ constructed in the previous paragraph can be
interpreted as the agent’s truthful reporting strategy. Based on this interpretation, Rahman
(2010) uses the duality between 1 and 3 to show that the incentive compatibility of truthful
reporting subject to quota constraints is equivalent to implementability with transfers.

5 Conclusion
This paper offers a new notion of credibility for information disclosure. We model a Sender
who can commit to a test only up to the details that are observable to the Receiver. The
Receiver does not observe the chosen test but observes the distribution of messages. This
leads to a model of partial commitment where the Sender can undetectably deviate to tests
that induce the same distribution of messages. Our framework characterizes when, given the
Receiver’s best response, the Sender has no profitable deviation.

We show that this consideration eliminates the prospects for credible information disclo-
sure in settings with adverse selection. In other settings, we show that the requirement is
compatible with the Sender still benefiting from persuasion. More generally, we show that
our requirement translates to a cyclical monotonicity condition on the induced distribution of
states and actions taken by players.

In addition to the theoretical findings above, our work has several applied implications.
The first is that the commitment assumption commonly made in the Bayesian persuasion

literature may be innocuous in some applications. For example, Xiang (2021) uses a Bayesian
persuasion framework to empirically study information transmission in the physician-patient
relationship, where the physician is assumed to commit to a recommendation policy that is
observable to patients. But in practice, patients observe the distribution of recommendations
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and not the recommendation policy. Our results imply that in her context, this is enough:
knowing the distribution of recommendations suffices because both the physician and the
patients’ payoffs are supermodular, and the patients face a binary decision, so the optimal
full-commitment policy is credible according to our Proposition 3.

Our work also speaks to why certain industries (such as education) can effectively disclose
information by utilizing their own rating systems, while some other industries (such as car
dealership) must resort to other means to addressing asymmetric information, such as third
party certification or warranties. Our results provide a rationale: in industries that exhibit
adverse selection, the informed party cannot credibly disclose information through its own
ratings even if it wishes to do so.

Let us also highlight a number of caveats to our work.
In some settings, the Receiver may observe more than the distribution of messages; for

example, she may observes some further details of the test, such as how some states of the
world map into messages. In other settings, the Receiver may observe less; e.g., she may see
the average grade, but not its distribution. To capture these various cases, one would then
formulate the problem of “detectable” deviations differently. We view it to be important and
interesting to understand how different notions of detectability map into different conditions
on the outcome distribution.

In multi-agent settings, we have restricted attention to public messages. There is an
additional credibility concern when messages can be sent privately: each Receiver may observe
his message but does not observe the messages sent to others. In this setting, the Sender may
have a motive to deviate to tests that shift the correlation in messages while keeping the
marginal distribution of messages unchanged.

Finally, we have analyzed settings in which the underlying payoff relevant state is exoge-
nous. Many settings feature a moral hazard problem in which the underlying state is an
action or effort choice made by the Sender (and hence endogenous). One may envision al-
leviating the Sender’s (effort) incentive constraint by having her first commit to a test that
discloses information about her effort choice to the Receiver (e.g., a “monitoring structure”).
This would be a case where persuasion is used to mitigate moral hazard. Our results suggest
that such a use of persuasion is not credible. If the Receiver responds to messages from the
chosen test, the Sender could profitably deviate to a test that induces the same marginal
distribution of messages independent of her actions. This would allow the Sender to choose
the least-costly action and nevertheless benefit from the responsiveness of the Receiver. As
with adverse selection, every credible test would then be uninformative. This suggests that
credibility considerations may impede the ability for persuasion to mitigate issues of both
moral hazard and adverse selection.
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A Appendix

A.1 Proof of Theorem 1

The following lemma is a finite version of Theorem 5.10 of Villani (2008), where the more
general version is proved by exploiting duality. In the special case of finite-support proba-
bility distributions, we present a direct proof using the Birkhoff-von Neuman theorem, which
provides better intuition for why cyclical deviations can be viewed as extreme points of all
possible deviations.

Lemma 2. Suppose both X and Y are finite sets, and u : X × Y → R is a real function. Let
p ∈ ∆(X) and q ∈ ∆(Y ) be two probability measure on X and Y respectively, and Π(p, q) be
the set of joint probability measure on X × Y such that the marginals on X and Y are p and
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q. The following two statements are equivalent:
1. π∗ ∈ argmaxπ∈Π(p,q)

∑
x,y π(x, y)u(x, y);

2. π∗ is u-cyclically monotone. That is, for any n and (x1, y1), ..., (xn, yn) ∈ supp(π∗),

n∑
i=1

u(xi, yi) ≥
n∑

i=1

u(xi, yi+1)

where yn+1 ≡ y1.

Proof. (1 ⇒ 2): Suppose π∗ ∈ argmaxπ∈Π(p,q)

∑
x,y π(x, y)u(x, y), then for any π′ ∈ Π(p, q),∑

x,y π
∗(x, y)u(x, y) ≥

∑
x,y π

′(x, y)u(x, y). If π∗ is not u-cyclically monotone, there exists
(x1, y1), ..., (xn, yn) ∈ supp(π∗), such that

∑n
i=1 u(xi, yi) <

∑n
i=1 u(xi, yi+1). Without loss of

generality, we can assume all pairs (x1, y1), ..., (xn, yn) are distinct, otherwise the sequence can
be broke into two shorter sequences. Let ε = mini=1,...,n π(xi, yi) > 0. Construct π̂(xi, yi) =
π∗(xi, yi)− ε, π̂(xi, yi+1) = π∗(xi, yi) + ε for i = 1, ..., n. For any other x, y, π∗(x, y) = π̂(x, y).
Since

∑
x∈X π̂(x, y) =

∑
x∈X π

∗(x, y) for all y and
∑

y∈Y π̂(x, y) =
∑

y∈Y π
∗(x, y) for all x, we

have π̂ ∈ Π(p, q). But by construction,

∑
x,y

π̂(x, y)u(x, y)−
∑
x,y

π∗(x, y)u(x, y) = ε[
n∑

i=1

u(xi, yi+1)−
n∑

i=1

u(xi, yi)] > 0,

which contradicts to π∗ ∈ argmaxπ∈Π(p,q)

∑
x,y π(x, y)u(x, y).

(2 ⇒ 1): We prove the contraposition. Suppose there exists π′ such that
∑

x,y π
′(x, y)u(x, y) >∑

x,y π
∗(x, y)u(x, y). We want to show that there exists (x1, y1), ..., (xn, yn) ∈ supp(π∗) and a

permutation t : {1, ...n} → {1, ..., n}, such that10

n∑
i=1

u(xi, yi) <
n∑

i=1

u(xi, yt(i)).

First we prove that the statement assuming π∗(x, y) and π′(x, y) are all rational numbers
for all x, y. Let N be an integer such that Np(x) and Nq(y) are both integers. Let {Sx}x∈X
be partition of {1, ..., N} indexed by x such that |Sx| = Np(x), and similarly {Ty}y∈Y be a
partition such that |Ty| = Nq(y). Define the following matrix:

Mij = N
π∗(x, y)

|Sx||Ty|
if i ∈ Sx, j ∈ Ty.

10Proving for permutations is sufficient because one can relabel so that t(i) = i+ 1.
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Notice that Mij is doubly stochastic: for any x and any i ∈ Sx

∑
j

Mij =
∑
y

(
N
π(x, y)

|Sx||Ty|
· |Ty|

)
=
Np(x)

|Sx|
= 1.

Similarly, for any y and j ∈ Ty,
∑

iMij = 1.
Let X(i) = {x|i ∈ Sx} and Y (j) = {x|j ∈ Ty}. Then∑

i,j

Miju(X(i), Y (j)) = N
∑
x,y

π∗(x, y) u(x, y)

We can similarly define M ′
ij so that∑

i,j

M ′
iju(X(i), Y (j)) = N

∑
x,y

π′(x, y) u(x, y)

Since ∑
x,y

π′(x, y) u(x, y) >
∑
x,y

π∗(x, y) u(x, y),

we have ∑
i,j

M ′
iju(X(i), Y (j)) >

∑
i,j

Miju(X(i), Y (j)).

From Birkhoff-von Neumann theorem, there exist permutation matrices Pij and P ′
ij such that∑

i,j

P ′
iju(X(i), Y (j)) >

∑
i,j

Piju(X(i), Y (j)).

Notice that a permutation matrix is equivalent to a mapping t : {1, ..., n} → {1, ..., n}
such that Pij = 1 if and only if j = t(i). So

∑
i,j Piju(X(i), Y (j)) =

∑
i u(X(i), Y (t(i))).

Now we consider a sequence (xi, ai)ni=1 =
(
X(i), Y (t(i))

)n
i=1

. Every element of the sequence
is in the support of π∗ because Pij = 1 only if Mij > 0. Similarly, let t′ denote the permutation
matrix P ′

ij. So
∑

i u(X(i), t′(Y (i))) >
∑

i u(X(i), Y (t(i))). Then there exists a permutation
s : {1, ..., n} → {1, ..., n} such that s(t(i)) = t′(i). Now

n∑
i=1

u(xi, ai) <
n∑

i=1

u(xi, as(i))

which contradicts to cyclical monotonicity.
Now we consider the case where π∗(x, y) or π′(x, y) might be irrational number for some

x, y. Since rational numbers are dense, for any ε, there exists π̃∗(x, y) and π̃′(x, y) that are all
rational numbers, and |π̃′(x, y)− π′(x, y)| < ε, |π̃∗(x, y)− π∗(x, y)| < ε. Pick ε small enough
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so that π̃ and π has the same support.
Moreover, since

N
∑
x,y

π′(x, y) u(x, y) > N
∑
x,y

π∗(x, y) u(x, y),

for ε small enough,
N

∑
x,y

π̃′(x, y) u(x, y) > N
∑
x,y

π̃∗(x, y) u(x, y),

Then the rest of the proof follows from the same argument as the rational numbers case.

Proof of Theorem 1. For the “if” direction, suppose π is uR-obedient, uS-cyclically monotone,
and satisfies πΘ = µ0. The proof is by construction.

Recall that M ⊇ A, so we can construct a test (M,λ∗) by letting λ∗(θ,m) = π

Since πΘ = µ0, we can construct a test (M,λ∗) by setting M = A and λ∗ = π; furthermore,
let σ∗ be the identity map from M to A. It is straightforward to see that the profile (λ∗, σ∗)

induces the outcome distribution π. We show that (λ∗, σ∗) is credible. First, since π is
uR-obedient, we have that for each a ∈ A,

a ∈ argmax
a′

∑
Θ

uR(θ, a
′) π(θ, a).

Since σ∗ is an identity map, it follows that for each m ∈M ,

σ∗(m) ∈ argmax
a′

∑
Θ

uR(θ, a
′) π(θ, σ∗(m)).

Furthermore, since λ∗ = π and σ∗ is injective, we have λ∗(θ,m) = π(θ, σ∗(m)) for all θ ∈ Θ

and m ∈M . So
σ∗ ∈ argmax

σ:M→A

∑
Θ×M

uR(θ, σ(m)) λ∗(θ,m),

which means σ∗ is a best response to λ∗.
It remains to show that the Sender does not benefit from choosing any other test in

Λ(µ0, λ
∗
M). Observe that since π is uS−cyclically monotone, every sequence (θ1, a1), . . . , (θn, an)

in supp(π) where an+1 ≡ a1 satisfies

n∑
i=1

uS(θi, ai) ≥
n∑

i=1

uS(θi, ai+1).
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Since λ∗ = π and σ∗ is the identity mapping, this further implies

n∑
i=1

uS(θi, σ
∗(mi)) ≥

n∑
i=1

uS(θi, σ
∗(mi+1));

for every sequence (θ1,m1), . . . , (θn,mn) ∈ supp(λ∗) with mn+1 = m1. In addition, λ∗θ = µ0

and λ∗M = λ∗M by construction. By Lemma 2, λ∗ satisfies

λ∗ ∈ argmax
λ∈Λ(µ0,λ∗

M )

∑
Θ×M

uS(θ, σ(m)) λ(θ,m)

which means λ∗ is Sender optimal conditional on its message distribution.

For the “only if” direction, suppose π is stable and thus induced by a credible and R-
IC profile (λ∗, σ∗). Since σ∗ best responds to the messages from λ∗, the uR-obedience of π
follows from Bergemann and Morris (2016). It remains to show that π is uS-cyclical monotone.
Suppose by contradiction that π is not uS-cyclically monotone, which implies that there exists
a sequence (θ1, a1), . . . , (θn, an) ∈ supp(π) such that

n∑
i=1

uS(θi, ai) <
n∑

i=1

uS(θi, ai+1),

where an+1 = a1. Since π is induced by (λ∗, σ∗), for each i = 1, . . . , n there exists mi such that
mi ∈ σ∗−1(ai) and (θi,mi) ∈ supp(λ∗), so we have a sequence (θ1,m1), . . . , (θn,mn) ∈ supp(λ∗)
that satisfies

n∑
i=1

uS(θi, σ
∗(mi)) <

n∑
i=1

uS(θi, σ
∗(mi+1)), (5)

where mn+1 = m1. Define v(θ,m) ≡ uS(θ, σ
∗(m)). Since (λ∗, σ∗) is credible, we have

λ∗ ∈ argmax
λ∈Λ(µ0,λ∗

M )

∑
Θ×M

v(θ,m)λ(θ,m).

Lemma 2 implies that λ∗ is v-cyclically monotone. Since (θ1,m1), . . . , (θn,mn) is in supp(λ∗),
the v-cyclical monotonicity of λ∗ implies

n∑
i=1

uS(θi, σ
∗(mi)) ≥

n∑
i=1

uS(θi, σ
∗(mi+1))

where mn+1 = m1, which is a contradiction to (5). So π must be uS-cyclically monotone.
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A.2 Proof of Lemma 1

Lemma 3. Let t : {1, . . . , n} → {1, . . . , n} be a bijection. Suppose t is not the identity
mapping, then there exists k such that t(k) > k and t(t(k)) < t(k).

Proof. Suppose by contradiction that for every k such that t(k) > k, t(t(k)) ≥ t(k). Notice
that since t is a bijection, t(t(k)) ̸= t(k) (otherwise t(k) = k contradicting t(k) > k), so for
every k such that t(k) > k, t(t(k)) ≥ t(k) + 1.

Since t is not the identity mapping, there exists k1 such that t(k1) > k1 or equivalently
t(k1) ≥ k1 + 1. Define iteratively that kj = t(kj−1) for j = 2, . . . , n, we have kj − kj−1 ≥ 1.
Then we have kn ≥ k1 + n > n, which is contradiction. So there exists k such that t(k) > k

and t(t(k)) < t(k).

First, we show that comonotonicity implies uS-cyclical monotonicity when uS is super-
modular. Suppose an outcome distribution π ∈ ∆(Θ × A) is comonotone, then supp(π) is
totally ordered. Take any sequence (θ1, a1), . . . , (θn, an) ∈ supp(π) and assume without loss of
generality that (θi, ai) is increasing in i ∈ {1, . . . , n}. We will show that for any permutation
t : {1, . . . , n} → {1, . . . , n},

uS(θ1, a1) + . . .+ uS(θn, an) ≥ uS(θ1, at(1)) + . . .+ uS(θn, at(n)),

which then proves the statement. In particular, for each permutation t, let v(t) ≡ uS(θ1, at(1))+

. . . + uS(θn, at(n)) denote the value obtained from summing uS according to the state-action
pairings in t and let I denote the identity map. We show that v(I) ≥ v(t) for every permutation
t.

To this end, take any permutation t that is not an identity mapping, and let l(t) denote
the number of fixed points of t (which may be zero). By Lemma 3, there exists k∗ such that
t(k∗) > k∗ and t(t(k∗)) < t(k∗). The supermodularity of uS implies

uS(θt(k∗), at(k∗)) + uS(θk∗ , at(t(k∗))) ≥ uS(θk, at(k∗)) + uS(θt(k∗), at(t(k∗))). (6)

Define a new permutation t̂ so that k is mapped to t(t(k)) while t(k) is mapped to t(k), while
all other pairings remain unchanged. Formally,

t̂(k) =


t(k) for all k ̸= k∗, t(k∗)

t(t(k∗)) if k = k∗

t(k∗) if k = t(k∗)
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By (6), we have

uS(θ1, at̂(1)) + . . .+ uS(θn, at̂(n)) ≥ uS(θ1, at(1)) + . . .+ uS(θn, at(n)),

so we have constructed another permutation t̂ with v(t̂) ≥ v(t) and l(t̂) = l(t) + 1. Each time
we iterate the process above, v(.) weakly increases while the number of fixed points increases
by one. Since n <∞, the iteration terminates at the identity map I, so v(I) ≥ v(t) for every
permutation t.

Next, suppose uS is strictly supermodular. We will show that uS-cyclical monotonicity
implies comonotonicity. Towards a contradiction, suppose that an outcome distribution π is
uS-cyclically monotone but not comonotone. Then there exists (θ, a), (θ′, a′) ∈ supp(π) such
that θ < θ′, a > a′. Since uS is strictly supermodular,

uS(θ, a) + uS(θ
′, a′) < uS(θ, a

′) + uS(θ
′, a)

which is a contradiction to the uS-cyclically monotonicity of π when (θ1, a1) = (θ, a) and
(θ2, a2) = (θ′, a′).

A.3 Proof of Proposition 1

Let π be a stable outcome distribution, and suppose by contradiction that there exists two
distinct actions a1, a2 ∈ supp(πa), say a1 < a2. Let I1 ≡ {θ ∈ Θ|π(θ, a1) > 0} and I2 ≡ {θ ∈
Θ|π(θ, a2) > 0} be the states associated with a1 and a2 in the support of π, respectively. By
Theorem 1, since π is stable, it must be uR-obedient, which implies

∑
θ∈I1

[uR(θ, a1)− uR(θ, a2)]
π(θ, a1)

πa(a1)
≥ 0 ≥

∑
θ′∈I2

[uR(θ
′, a1)− uR(θ

′, a2)]
π(θ′, a2)

πa(a2)
(7)

Furthermore, since uS is strictly supermodular, π is also comonotone by Theorem 1 and
Lemma 1, so any θ ∈ I1 and θ′ ∈ I2 satisfies θ ≤ θ′. Since uR is submodular, we have
uR(θ, a1)− uR(θ, a2) ≤ uR(θ

′, a1)− uR(θ
′, a2) for all θ ∈ I1 and θ′ ∈ I2, which implies

max
θ∈I1

{
uR(θ, a1)− uR(θ, a2)

}
≤ min

θ′∈I2

{
uR(θ

′, a1)− uR(θ
′, a2)

}
.
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So ∑
θ∈I1

[uR(θ, a1)− uR(θ, a2)]
π(θ, a1)

πa(a1)
≤ max

θ∈I1

{
uR(θ, a1)− uR(θ, a2)

}
≤ min

θ′∈I2

{
uR(θ

′, a1)− uR(θ
′, a2)

}
≤

∑
θ′∈I2

[uR(θ
′, a1)− uR(θ

′, a2)]
π(θ′, a2)

πa(a2)

(8)

Combining (7) and (8), we have

∑
θ∈I1

[uR(θ, a1)− uR(θ, a2)]
π(θ, a1)

πa(a1)
= max

θ∈I1

{
uR(θ, a1)− uR(θ, a2)

}
= 0

and ∑
θ′∈I2

[uR(θ
′, a1)− uR(θ

′, a2)]
π(θ′, a2)

πa(a2)
= min

θ′∈I2

{
uR(θ

′, a1)− uR(θ
′, a2)

}
= 0

So uR(θ, a1) = uR(θ, a2) for all θ ∈ I1 ∪ I2.
Since the argument above works for any a1, a2 ∈ supp(πa), it implies uR(θ, a) = uR(θ, a

′)

for all θ ∈ Θ and all a, a′ ∈ supp(πa). However, this is a contradiction since by assumption,
there exists no a, a′ ∈ A such that a ̸= a′ and uR(θ, a) = uR(θ, a

′) for all θ.
Therefore supp(πa) must be a singleton, denoted by a∗. Then uR-obeidence implies a∗ ∈

argmaxa∈A
∑

θ µ0(θ)u(θ, a). So π is a no-information outcome.

A.4 Proof of Proposition 2

Proof of statement 1. For each a ∈ A, let

Pa ≡ {µ ∈ ∆(Θ)|
∑
θ

µ(θ)uR(θ, a) >
∑
θ

µ(θ)uR(θ, a
′), ∀a′ ̸= a}

which denotes the set of beliefs such that a is the Receiver’s strict best response. We prove
our claim under the assumption that there exists a◦ ∈ A such that µ0 ∈ Pa◦ (i.e. a◦ is the
unique best response to µ0). Later we will show that this assumption holds for generic priors.

When the Sender’s test is uninformative, the Receiver best responds to the Sender’s mes-
sages by choosing a◦. The Sender’s payoff is

v0 ≡
∑
θ∈Θ

µ0(θ)uS(θ, a
0).

We will show that there exists a stable outcome distribution that gives the Sender a higher
payoff than v0.
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We consider the case where the sender benefits from persuasion, so a◦ ̸= a, otherwise the
Receiver is already choosing the sender’s favourite action under the prior. For ε sufficiently
small, consider the outcome distribution πε ∈ ∆(Θ× A) defined by

πε(θ, a) =



µ0(θ) if θ ̸= θ, a = a◦

µ0(θ)− ε if (θ, a) = (θ, a◦)

ε if (θ, a) = (θ, a)

0 otherwise .

We will show that for ε sufficiently small, πε is stable and gives the Sender higher payoff
than v0.

It can be easily seen that the support of πε is comonotone. Since uS is supermodular, πε

is uS-cyclically monotone by Lemma 1.
Next we verify that for ε sufficiently small, πε satisfies uR-obedience at the two actions

{a, a◦}. For a◦, note that since µ0 ∈ Pa◦ , we have∑
θ∈Θ

µ0(θ)u(θ, a
◦) >

∑
θ∈Θ

µ0(θ)π(θ, a
′) for all a′ ∈ A,

so for ε sufficiently small,∑
θ∈Θ

µ0(θ)u(θ, a
◦)− εu(θ, a◦) ≥

∑
θ∈Θ

µ0(θ)π(θ, a
′)− εu(θ, a′) for all a′ ∈ A.

which means πε satisfies uR-obedience at a◦.
For a, note that since every Receiver action is a best response to some belief (recall that

this was assumed without loss of generality as explained in Section 2.4), there exists µ ∈ ∆(Θ)

such that a ∈ argmaxa
∑

θ µ(θ)uR(θ, a). So for every a′ ̸= a,∑
θ

µ(θ)[uR(θ, a)− uR(θ, a
′)] ≥ 0

Since uR is supermodular, uR(θ, a) − uR(θ, a
′) is increasing in θ, so if a belief µ′ first order

stochastically dominates µ, then∑
θ

µ′(θ)[uR(θ, a)− u(θ, a′)] ≥
∑
θ

µ(θ)[uR(θ, a)− u(θ, a′)] ≥ 0 for all a′ ̸= a.

In particular, the Dirac measure δθ first order stochastically dominates µ, so the inequality
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above implies
uR(θ, a)− uR(θ, a

′) ≥ 0 for all a′ ̸= a.

So a ∈ argmaxa uR(θ, a), and πε is uR-obedient at action a.

Finally, we show that the Sender obtains higher payoff from πε than v0. Note that since
by our assumption, uS(θ, a′) < uS(θ, a) for all a′ ̸= a, we have∑

θ,a

πε(θ, a)uS(θ, a) =
∑
θ ̸=θ

µ0(θ)uS(θ, a
◦) + (µ0(θ)− ε)uS(θ, a

◦) + εuS(θ, a)

>
∑
θ ̸=θ

µ0(θ)uS(θ, a
◦) + (µ0(θ)− ε)uS(θ, a

◦) + εuS(θ, a
◦)

=
∑
θ

µ0(θ)uS(θ, a
◦) = v0.

Therefore, Sender receives a strictly higher payoff from πε than v0. This completes the proof.
The rest of the proof shows that the set ∆(Θ)/{∪a∈APa} is negligible in ∆(Θ).
Define Ha,a′ = {µ ∈ ∆(Θ)|

∑
θ µ(θ)(uR(θ, a) − uR(θ, a

′)) = 0} for any j ̸= k. Since by
assumption, uR(·, a) − uR(·, a′) ̸= 0, which implies Ha,a′ is a hyperplane in the space ∆(Θ).
By the definition of a hyperplane, Ha,a′ has measure 0, so ∪a ̸=a′Ha,a′ also has measure 0 in
∆(Θ).

For any µ ∈ ∆(Θ)/{∪a∈APa}, since the maximizer of
∑

θ µ(θ)uR(θ, a), there exists a, a′

such that
∑

θ µ(θ)(uR(θ, a) − uR(θ, a
′)) = 0. So ∆(Θ)/{∪a∈APa} ⊂ ∪a ̸=a′Ha,a′ , which implies

∆(Θ)/{∪a∈APa} is a negligible set in ∆(Θ).

Proof of statement 2. For any generic prior µ◦ ∈ ∪a∈APa, either µ◦ /∈ Pa or µ◦ /∈ Pa. We
consider the case µ◦ /∈ Pa, and the other case can be shown symmetrically. Similar as the
previous argument, for ε sufficiently small, consider the outcome distribution πε ∈ ∆(Θ×A):

πε(θ, a) =



µ0(θ) if θ ̸= θ, a = a◦

µ0(θ)− ε if (θ, a) = (θ, a◦)

ε if (θ, a) = (θ, a)

0 otherwise

As we have shown in the proof of statement 1, for ε sufficiently small, πε is stable, and gives
the Sender higher payoff than v0. Therefore, the sender benefits from credible persuasion.
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Proof of statement 3. Consider any fully revealing outcome distribution π∗ ∈ ∆(Θ×A) which
gives a strictly higher payoff to the Sender than every no-information outcome. Let A∗(θ) ≡
argmaxa∈A uR(θ, a) denote the Receiver’s best response correspondence. By definition, for
every (θ, a) ∈ supp(π∗), a ∈ A∗(θ). If π∗ is comonotone, then then from Theorem 1 and
Lemma 1, π∗ is credible so the result follows. If π∗ is not comonotone, then there exists (θ, a),
(θ′, a′) in the support of π∗ where θ > θ′ and a < a′. Let d = max{θ′ − θ|(θ, a), (θ′, a′) ∈
supp(π∗), θ > θ′, a < a′} denote the largest distance of states between those “non-monotone”
pairs. Suppose (θ1, a1), (θ2, a2) is a pair that induces the largest distance, where θ1 < θ2 and
a1 > a2.

Let ε = min{π∗(θ1, a1), π
∗(θ2, a2)}, and construct the following outcome distribution π′:

• π′(θ1, a1) = π∗(θ1, a1)− ε, π′(θ2, a2) = π∗(θ2, a2)− ε

• π′(θ1, a2) = π∗(θ1, a2) + ε, π′(θ2, a1) = π∗(θ2, a1) + ε

• π′(θ, a) = π∗(θ, a) for any other (θ, a)

For any a /∈ {a1, a2}, the obedient constraint under π′ is the same as under π∗, so the
obedient constraint still holds. For a ∈ {a1, a2}, we show that the obedient constraint is still
satisfied.

Since uR(θ, a) is supermodular, by Lemma 2.8.1 of Topkis (2011), A∗(θ) is increasing in
θ in the induced set order. That is, for any θ > θ′, a ∈ A∗(θ), and a′ ∈ A∗(θ′), we have
max{a, a′} ∈ A∗(θ) and min{a, a′} ∈ A∗(θ′). Since a1 ∈ A∗(θ1) and a2 ∈ A∗(θ2), we have
a1 ∈ A∗(θ2) and a2 ∈ A∗(θ1). Therefore, π′ also satisfies obedient. Moreover, the Sender’s
payoff from π′ is greater than from π∗, because uS is supermodular.

Now we can iterate the process until d = 0, and we construct an outcome distribution which
is comonotone, obedient, and gives the Sender a higher payoff than π∗. Since the Sender’s
payoff from π∗ is strictly greater than any no-information outcome, the Sender benefits from
credible persuasion.

A.5 Proof of Proposition 3

From Theorem 1 of Mensch (2021), if both uS and uR are supermodular and |A| = 2, there
exists a KG optimal outcome distribution that is comonotone. Then by Theorem 1 and
Lemma 1, such an outcome distribution is stable. Moreover, if in addition uS is strictly
supermodular, any KG optimal outcome distribution is comonotone. So any KG optimal
outcome distribution is stable.
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A.6 Proof of Theorem 2

We first formalize the setup. There is a probability space (Ω,F , P ), and complete separable
metric spaces Θ, M , and A.

The sender chooses an information structure, which is an integrable X : Ω → Θ × M

that induces a joint distribution λ ∈ ∆(Θ ×M) such that the marginal distribution on Θ is
µ0. Sender’s strategy is a measurable function σS : Θ ×M → A, and Receiver i’s strategy
is a measurable function σi : M → Ai. A strategy profile is σ = (σS, σ1, ..., σr) : Θ ×M →
AS × A1 × ... × Ar. For each σ, define Y σ : Ω → Θ× A such that Y σ(ω) = (θ, a) iff X(ω) =

(θ,m) for some (θ,m) ∈ σ−1(a). The random variable Y σ induces an outcome distribution
π ∈ ∆(Θ× A).

The sender’s payoff function is uS : Θ × A → R and the receiver i’s payoff function is
ui : Θ× A→ R. Define Uσ

S = uS ◦ Y : Ω → R and Uσ
i = ui ◦ Y : Ω → R be random variables

that representing the players’ payoffs., Then sender and receiver i’s expected payoff under
strategy profile σ are E[Uσ

S ] and E[Uσ
i ]. Let FM be the σ-algebra induced by M , and FA be

the σ-algebra induced by A. Clearly FM is finer than FA, i.e., FA ⊂ FM .
A strategy profile σ∗ is a BNE in G = ⟨G, λ∗⟩ if and for any i = S, 1, ..., r,

E[U
σi,σ−i

i |FM ] ≥ E[U
σ′
i,σ−i

i |FM ]

for any σ′
i.

Now we are ready to prove the theorem.

(⇐): Suppose an outcome distribution π∗ ∈ ∆(Θ × A) with πΘ = µ0 satisfies vS−cyclically
monotone and obedient. Then clearly a message space M = A with λ∗ = π∗ and σ∗ being
the identity mapping induces outcome distribution π. Moreover, the profile λ, σ∗ is trivially
a BNE from the obedient constraint. Now from Theorem 5.10 of Villani (2008), π∗ satisfies
vS−cyclically monotone implies

π∗ ∈ arg max
π∈Π(µ0,π∗

A)

∫
vS(θ, a)dπ,

where Π(µ0, π
∗
A) denotes the set of joint distribution on (Θ×A) such that the marginal on Θ

and A are µ0 and π∗
A respectively. Since σ∗ is an identity mapping,

λ∗ ∈ arg max
π∈Λ(µ0,λ∗

M )

∫
vS(θ, σ(m))dλ.

Therefore, we have constructed a credible profile (λ∗, σ∗) which induces π∗.
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(⇒): Suppose a credible profile (λ∗, σ∗) induces an outcome distribution π∗. Clearly πΘ = µ0.
We first show that π is obedient. Since σ∗ is a BNE in G = ⟨G, λ∗⟩, for any i = S, 1, ..., r,

E[U
σ∗
i ,σ

∗
−i

i |FM ] ≥ E[U
σ′
i,σ

∗
−i

i |FM ]

for any σ′
i. By taking conditional expectation w.r.t. FA for both side, we have

E[E[U
σi,σ−i

i |FM ]|FA] ≥ E[E[U
σ′
i,σ−i

i |FM ]|FA]

for any σ′
i. Since FA ⊂ FM , E[E[U |FM ]|FA] = E[U |FA] for any random variable U . (See,

e.g., Theorem 4.1.13 of Durrett (2019)). Therefore, for any i,

E[U
σi,σ−i

i |FA] ≥ E[U
σ′
i,σ−i

i |FA]

for any σ′
i, which is the obedience constraint.

Moreover, (λ∗, σ∗) being credible requires

λ∗ ∈ arg max
λ∈Λ(µ0,λ∗

M )

∫
uS(θ, σ

∗(θ,m))dλ.

From Theorem 5.10 of Villani (2008), λ∗ is ũ−cyclically monotone, where ũ(θ,m) ≡ uS(θ, σ
∗
S(θ,m), σ∗

−S(m)).
That is, there exists a set E such that (Θ × M)\E is negligible, and for every sequence
(θ1,m1), ..., (θn,mn) ∈ E,

n∑
i=1

uS(θi, σ
∗
S(θi,mi), σ

∗
−S(mi)) ≥

n∑
i=1

uS(θi, σ
∗
S(θi,mi+1), σ

∗
−S(mi+1)).

Consider a set D ⊂ Θ × A such that (θ, a) ∈ D if and only if there exists (θ,m) ∈
σ∗−1(a) such that (θ,m) ∈ E. Since E is a full measure set, so is D. Then for any sequence
(θ1, a1), ..., (θn, an) ∈ D, there exists sequence (θ1,m1), ..., (θn,mn) ∈ E such that aS,i =

σ∗
S(θi,mi) and a−S,i = σ∗

−S(mi). So

n∑
i=1

uS(θi, aS,i, a−S,i) =
n∑

i=1

uS(θi, σ
∗
S(θi,mi), σ

∗
−S(mi))

≥
n∑

i=1

uS(θi, σ
∗
S(θi,mi+1), σ

∗
−S(mi+1))

(9)

Notice that from the uS−obedience, we have that with probability 1, uS(θ, aS, a−S) = maxaS uS(θ, aS, a−S) =

vS(θ, a−S). Similarly from the requirement of BNE, with probability 1, uS(θ, σ∗
S(θ,m), σ∗

−S(m)) =
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maxaS uS(θ, aS, σ
∗
−S(m)). So (9) can be rewritten as

n∑
i=1

vS(θi, a−S,i) =
n∑

i=1

uS(θi, aS,i, a−S,i)

≥
n∑

i=1

uS(θi, σ
∗
S(θi,mi+1), σ

∗
−S(mi+1))

=
n∑

i=1

vS(θi, σ
∗
−S(mi+1))

=
n∑

i=1

vS(θi, a−S,i+1)

which proves that π∗ is vS−cyclically monotone.

A.7 Proof of Proposition 4

To simplify notations, for each µ ∈ ∆(Θ), let ϕµ(x) = Eµ[v(θ)|θ ≤ x].11 That is, ϕµ : [0, 1] → R
represents buyer’s expected value of those goods whose quality is lower than the bid. Clearly,
ϕµ is increasing and ϕµ(1) = Eµ[v(θ)].

Lemma 4. For any µ, there exists a largest θ∗µ ∈ (θµ, 1) such that

ϕµ(θ
∗
µ) = θ∗µ.

Moreover, for any θ ∈ (θ∗µ, 1), ϕµ(θ) < θ.

Proof. Since ϕµ(θµ) = v(θµ) > θµ and ϕµ(1) = Eµ[v(θ)] < 1, from Tarski’s fixed point
theorem, there exists a largest fixed point θ∗µ ∈ (θµ, 1) such that ϕµ(θ

∗
µ) = θ∗µ. Suppose there

exists θ ∈ (θ∗µ, 1) such that ϕµ(θ
∗
µ) ≥ θ∗µ, again from Tarski’s fixed point theorem, there exists

a fixed point θ′ ∈ (θ∗µ, 1), which contradicts to θ∗µ being the largest fixed point.

Lemma 5. For any λ, a BNE exists in ⟨G, λ⟩.

Proof. We show that the strategy profile aS(θ,m) = θ, b1(m) = b2(m) = θ∗µm
forms an

equilibrium. For every message m, since ϕµm(θ
∗
µm

) = θ∗µm
, each buyer’s expected payoff is 0.

Any deviation to a lower bid also gives a payoff of zero. From Lemma 4, for any θ ∈ (θ∗µm
, 1],

ϕµm(θ) < θ, so any deviation to a bid higher than θ∗µm
would lead to a negative payoff.

Therefore no buyer has incentive to deviate.
11For x less than θµ, the smallest θ in the support of µ, we define ϕµ(x) = v(θµ).
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Lemma 6. In any obedient outcome π,

ϕπ(·|b1,b2)(max{b1, b2}) = max{b1, b2}

Proof. Clearly ϕπ(·|b1,b2)(max{b1, b2}) ≥ max{b1, b2}, otherwise the winning bidder can prof-
itably deviate to bid bi = 0, which violates the obedient constraint. Now suppose ϕπ(·|b1,b2)(max{b1, b2}) >
max{b1, b2}. We will show that at least one buyer has an incentive to bid a higher price, and
this violates the obedient constraint.

First if b1 ̸= b2, then the losing bidder can profitably deviate. Since ϕπ(·|b1,b2)(·) is
an increasing function, there exists small enough ε such that ϕπ(·|b1,b2)(max{b1, b2} + ε) >

max{b1, b2} + ε. So the losing bidder can increase his bid to max{b1, b2} + ε and receive a
strictly positive payoff.

If b1 = b2 = b, then both bidders have an incentive to deviate. Let K ≡ ϕπ(·|b1,b2)(b) − b.
Each bidder’s expected payoff is 1

2
Pπ(·|b1,b2)(θ ≤ b)K. By letting ε < K

2
, we have

ϕπ(·|b1,b2)(b+ ε)− b− ε ≥ ϕπ(·|b1,b2)(b)− b− ε

= K − ε

>
K

2
.

So if either of the bidder deviates to bid b+ ε, he receivers an expected payoff of Pπ(·|b1,b2)(θ ≤
b + ε)[ϕπ(·|b1,b2)(b + ε) − b − ε] > 1

2
Pπ(·|b1,b2)(θ ≤ b)K, so the obedient constraint is violated.

Therefore, ϕπ(·|b1,b2)(max{b1, b2}) = max{b1, b2} in any obedient outcome.

Lemma 7. For any π that is vS−cyclically monotone, for any (θ, b1, b2), (θ
′, b′1, b

′
2) ∈ supp(π)

where θ > θ′ and max{b1, b2} > max{b′1, b′2},

vS(θ, b1, b2) + vS(θ
′, b′1, b

′
2) = vS(θ

′, b1, b2) + vS(θ, b
′
1, b

′
2).

Proof. First notice that vS(θ, b1, b2) = max{θ, b1, b2} is continuous. So in statement 2 of
Theorem 2, the set E can be replaced with the support of π. So vS-cyclical monotonicity
implies for any (θ, b1, b2), (θ

′, b′1, b
′
2) ∈ supp(π) where θ > θ′ and max{b1, b2} > max{b′1, b′2},

vS(θ, b1, b2) + vS(θ
′, b′1, b

′
2) ≥ vS(θ

′, b1, b2) + vS(θ, b
′
1, b

′
2).

On the other hand, since max{b1, b2} > max{b′1, b′2}, max{x, b1, b2} −max{x, b′1, b′2} is weakly
decreasing in x, so for θ > θ′, max{θ, b1, b2}−max{θ, b′1, b′2} ≤ max{θ′, b1, b2}−max{θ′, b′1, b′2},
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which is equivalent to

vS(θ, b1, b2) + vS(θ
′, b′1, b

′
2) ≤ vS(θ

′, b1, b2) + vS(θ, b
′
1, b

′
2).

Combining the two inequalities, we conclude that

vS(θ, b1, b2) + vS(θ
′, b′1, b

′
2) = vS(θ

′, b1, b2) + vS(θ, b
′
1, b

′
2).

Let b ≡ min{max{b1, b2} : (θ, b1, b2) ∈ supp(π)} denote the smallest winning bid in the
support of the outcome distribution, and for each b in the supoprt, let Θ(b) ≡ {θ : b =

max{b1, b2}, (θ, b1, b2) ∈ supp(π)} denote the states that are associated with a winning price
b under π.

Lemma 8. If π is obedient, then b ≥ θ ≡ minΘ(b).

Proof. Consider any (b1, b2) in the support such that max{b1, b2} = b. Then from Lemma 6
and the definition of ϕ,

b = ϕπ(·|b1,b2)(b) ≥ v(θ) ≥ θ.

Lemma 9. Suppose π is obedient and vS−cyclically monotone. For any b > b, Θ(b)∩(b,∞) =

∅.

Proof. Suppose by contradiction that there exists b > b, θ ∈ Θ(b) so that θ > b. Let
θ = minΘ(b) ≤ b from Lemma 8. Suppose (θ, b1, b2) ∈ supp(π) such that b = max{b1, b2},
and (θ, b1, b2) ∈ supp(π) such that b = max{b1, b2}.

Then from

vS(θ, b1, b2) + vS(θ, b1, b2) = max{θ, b}+max{θ, b}

= b+max{θ, b}

< b+ θ

= max{θ, b}+max{θ, b}

= vS(θ, b1, b2) + vS(θ, b1, b2).

where the strict inequality holds because both b+ θ < b+ θ and b+ b < b+ θ. However, this
leads to a contradiction to Lemma 7.
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Lemma 10. Suppose π is obedient and vS−cyclically monotone. Then

ϕµ0(b) ≥ b.

Proof. From Lemma 9, for any b > b, Θ(b) ∩ (b,∞) = ∅. So for any b1, b2 in the support,

ϕπ(·|b1,b2)(max{b1, b2}) = Eπ(·|b1,b2)[v(θ)|θ ≤ max{b1, b2}] = Eπ(·|b1,b2)[v(θ)|θ ≤ b]

So for any b1, b2 in the support, Eπ(·|b1,b2)[v(θ)|θ ≤ b] = max{b1, b2} ≥ b. Take expectation
over b1, b2 yields

Eµ0 [v(θ)|θ ≤ b] ≥ b.

Proof of Proposition 4. From Lemma 9, for any stable outcome π, the seller’s value is∫
max{θ, b1, b2}dπ(θ, b1, b2) =

∫ 1

0

max{θ, b}dµ0(θ).

From Lemma 10, ϕµ0(b) ≥ b. Since ϕµ0(1) < 1 and ϕµ0(·) is an increasing function, Tarski’s
fixed point theorem implies there exists a largest fixed point b∗ ∈ (b, 1) such that ϕµ0(b

∗) = b∗.
From the same argument as in the proof of Lemma 5, under the null information structure
λ0 = µ0 × δ{m0}, the strategy profile aS(θ,m0) = θ, b1(m0) = b2(m0) = b∗ is an equilibrium.

In this equilibrium, the seller receives a payoff of
∫ 1

0
max{θ, b∗}dµ0(θ) in this equilibrium.

Therefore,

R0 ≥
∫ 1

0

max{θ,= b∗}dµ0(θ) ≥
∫ 1

0

max{θ, b}dµ0(θ).

A.8 Proof of Proposition 5

Notice that only two strategy profiles, (a1, a2) = (1, 1) and (a1, a2) = (0, 0), can be induced in
any equilibrium. From our equilibrium selection rule, for any belief µ such that Eµ[r(θ)] > 0,
(1, 1) will be played, and otherwise (0, 0) will be played.

This is equivalent to consider a single representative receiver with two actions {I,NI},
who has payoff function

uR(θ, a) =

r(θ) if a = I,

0 if a = NI.
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and the Sender’s payoff function is

uS(θ, a) =

[R(θ) + Lϕ(θ)]− Lϕ(θ) if a = I,

−Lϕ(θ) if a = NI.

We define an order on {I,NI}, such that NI ≺ I, then the Receiver’s payoff is supermodular
in (θ, a). For large enough L, R(θ) + Lϕ(θ) is strictly decreasing, so the Sender’s payoff is
strictly submodular. From Proposition 1, the only stable outcome distribution is the no-
information outcome. For small enough L, R(θ)+Lϕ(θ) is strictly increasing, so the Sender’s
payoff is strictly supermodular. From Proposition 3, every optimal full-commitment outcome
is stable.

B Extensive-Form Foundations

B.1 Proof of Proposition 6

Proof. The “only if” direction: Suppose (λ, σ) is a pure-strategy SPNE outcome of the
extensive-form game induced by a pure-strategy SPNE (λ, ρ). Then under (λ, ρ), the Sender
should have no profitable deviation to any other λ′ ∈ Λ and in particular, any λ′ that main-
tains the same marginal distribution on M . So for every λ′ ∈ Λ such that λ′M = λM , we
have ∑

θ

∑
m

λ(θ,m)uS(θ, ρ(λM ,m)) ≥
∑
θ

∑
m

λ′(θ,m)uS(θ, ρ(λ
′
M ,m)).

Since ρ(λM ,m) = ρ(λ′M ,m) = σ(m) for all m ∈M , the equation above becomes∑
θ

∑
m

λ(θ,m)uS(θ, σ(m)) ≥
∑
θ

∑
m

λ′(θ,m)uS(θ, σ(m))

for all λ′ ∈ Λ such that λ′M = λM . This is the definition of a credible profile in Definition 1.
In addition, the Receiver should have no profitable deviation at every information set

(λM ,m) on the equilibrium path. So for every ρ′ ∈ Ξ and every m ∈M such that λM(m) > 0,
we have ∑

θ

λ(θ,m)uR(θ, ρ(λM ,m)) ≥
∑
θ

λ(θ,m)uR(θ, ρ
′(λM ,m)).

Note that σ(m) = ρ(λM ,m) for all m ∈M , so by summing over all m ∈M , we have∑
θ

∑
m

λ(θ,m)uR(θ, σ(m)) ≥
∑
θ

∑
m

λ(θ,m)uR(θ, σ
′(m))
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for all σ′ ∈ Σ. This is the definition of a R-IC profile in Definition 2. Therefore, the profile
(λ, σ) is both credible and R-IC.

Moreover, notice that after the Sender chooses the uninformative test λ◦ = µ0 × δm◦ for
some m◦, the information set (δm◦ ,m◦) forms the initial node of a proper subgame. Subgame-
perfection at this subgame then requires the Receiver to choose an action a ∈ A0. Since
the Sender always has the option to choose λ◦, her equilibrium payoff cannot be less than
mina∈A0

∑
θ µ0(θ)uS(θ, a), so

∑
θ

∑
m λ(θ,m)uS(θ, σ(m)) ≥ mina∈A0

∑
θ µ0(θ)uS(θ, a).

The “if” direction: Suppose that the profile (λ, σ) is credible and suppose that the Sender’s
payoff from this profile is greater than the lowest possible no-information payoff. Consider
the strategy profile (λ, ρ) where ρ(λM ,m) = σ(m) for all m ∈ M , but for every λ′M ̸= λM ,
ρ(λ′M ,m) ∈ argmina∈A0

∑
θ µ0(θ)uS(θ, a) for all m ∈ M . That is, the Receiver chooses the

worst (w.r.t. the Sender’s payoff) best response to prior belief after observing an off-path
marginal distribution on M . We claim that (λ, ρ) is an SPNE.

We first show that ρ best responds to λ in every subgame. We start with the extensive-
form game itself. Note that from R-IC, the Receiver best responds to his on-path information
sets (λM ,m); that is,∑

θ

λ(θ,m)uR(θ, ρ(λM ,m)) ≥
∑
θ

λ(θ,m)uR(θ, ρ
′(λM ,m)) for all ρ′ ∈ Ξ

at every λM ,m such that λM(m) > 0. So ρ best responds to λ in the extensive-form game
itself.

Next we consider proper subgames of the extensive-form game. Note that among all
information sets, the only ones that form the initial node of a proper subgame are those in the
form of (δm◦ ,m◦), which is induced by the Sender choosing an uninformative test λ◦ = µ0×δm◦

for some m◦ ∈ M . By our construction, the Receiver chooses the worst (w.r.t. the Sender’s
payoff) best response to prior belief, so the Receiver’s strategy is a best response in these
proper subgames. Lastly, for any off-path information set (λ′M ,m) that does not define a
subgame, SPE has no requirement on the Receiver’s strategy. So ρ best responds to λ in
every subgame.

We now turn to the Sender’s strategy λ and show that it best responds to ρ. From the
credibility of (λ, σ), the Sender has no incentive to deviate to any λ′ with λ′M = λM . For any
other deviation, her payoff is mina∈A0

∑
θ µ0(θ)uS(θ, a0), which is her lowest no-information

payoff. Since
∑

θ

∑
m λ(θ,m)uS(θ, σ(m)) ≥ mina∈A0

∑
θ µ0(θ)uS(θ, a), such deviations are not

profitable. Therefore λ best responds to ρ, so (λ, ρ) is a pure-strategy SPNE and (λ, σ) is the
corresponding pure-strategy SPNE outcome.
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B.2 An extensive-form foundation for Section 2.5

Consider a game of two players, a Sender and k Receivers. State space Θ, message space M ,
and action space A are all finite and exogenously given, where |M | ≥ |A|. Let Λ = {λ ∈
∆(Θ×M)|λθ = µ◦} and ΣS = {σS : Θ×M → AS} and Σi = {σi :M → Ai} for i = 1, ..., k.

The timeline is as follows:

1. The Sender chooses λ ∈ Λ;

2. The Sender (observes λ) chooses σS ∈ ΣS; The Receivers observe λM and choose σi ∈ Σi;

The terminal nodes of this extensive-form game can be represented by the tuple (λ, σS, σ1, ...σk).
To simplify notations, we let σR = (σ1, ...σk). Players’ payoffs are:

US(λ, σS, σR) =
∑
θ

∑
m

λ(θ,m)uS(θ, σS(θ,m), σR(m))

UR(λ, σS, σR) =
∑
θ

∑
m

λ(θ,m)uR(θ, σS(θ,m), σR(m))

Let κ = {ρS : ∆(Θ ×M) → ΣS}. The Sender’s strategy space is Λ × κ and Receiver i’s
strategy space is Ξi = {ρi : ∆(M) → Σi}. We consider the Perfect Bayesian Equilbria (PBE)
of this game.12

Proposition 7. A tuple (λ, σS, σR) is a pure-strategy PBE outcome of the extensive-form
game if and only if

1. (λ, σS, σR) is credible and IC; that is, (λ, σS, σR) satisfies (3) and (4);

2. The sender’s value under (λ, σS, σR) is greater than her lowest equilibrium payoff under
no information.

Proof. “Only if”:
Suppose (λ, σS, σR) is a PBE outcome induced by PBE (λ× ρS, ρR).
First, the Sender must maximize her expected payoff after information set λ, so

ρS(λ) ∈ arg max
σ′
S :Θ×M→A

∑
θ

∑
m

λ(θ,m)uS(θ, σ
′
S(θ,m), ρ1(λM)(m), ..., ρk(λM)(m))

Since ρS(λ) = σS and ρi(λM) = σi, we have

σS ∈ argmax
σ′
S

US(λ, σ
′
S, σR)

12Our definition of PBE is the one used in Mas-Colell, Whinston, and Green (1995). That is, a strategy
profile is a PBE if it induces a weak PBE in every subgame.
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which is the IC condition for the Sender.
Sequential rationality requires the Receiver to maximize his expected payoff given his

belief. Since on-path belief follows Bayes’ rule, the Receiver correctly believes that the Sender
chooses λ and σS, so for any i = 1, ..., k,

ρi(λM) ∈ argmax
σ′
i

∑
θ

∑
m

λ(θ,m)uS(θ, σS(θ,m), σ′
i(m), σ−i(m))

which is the IC condition for the Receivers.
Moreover, the Sender should have no profitable deviation to λ′ × ρ′S such that λ′M = λM

and ρ′S(λ
′) = σS for all λ′. This requires∑

θ

∑
m

λ(θ,m)uS(θ, ρS(λ)(θ,m), ρR(λM)(m)) ≥
∑
θ

∑
m

λ′(θ,m)uS(θ, σS(θ,m), ρR(λM)(m))

which is the credibility condition.
Next we show that the Sender’s value under (λ, σS, σR) can be no less than the lowest

equilibrium payoff under no information. Notice that any λ̂ = µ0 × δm̂ for some m̂ defines
a proper subgame. PBE implies the players’ strategies in this subgame must be an equilib-
rium. So (ρS(λ̂), ρ1(λ̂M), ..., ρk(λ̂M)) must form an equilibrium under no information. Since
the sender can always deviate to λ̂, her equilibrium payoff must be higher than her lowest
equilibrium payoff under no information.

“If”: Suppose (λ, σS, σR) is credible and IC, and the Sender’s payoff is greater than her low-
est equilibrium payoff under no information. We construct a strategy profile (λ×ρS, ρ1, ..., ρk)
that is a PBE of the extensive form game. Suppose (aS, a1, ..., ak) is the worst equilibrium for
the Sender under no information.

Let ρS(λ) = σS and ρi(λM) = σi for i = 1, ..., k. For any λ′ ̸= λ such that λ′M = λM , let
ρS(λ) = σS. For any λ′ such that λ′M ̸= λM , let (ρS(λ

′)(θ,m), ρ1(λ
′
M)(m), ..., ρk(λ

′
M)(m)) =

(aS, a1, ..., ak) for any θ,m.
Under this strategy profile, from credibility, the Sender has no incentive to deviate to any

λ′ such that λ′M = λ. She also has no incentive to deviate to λ′ such that λ′M ̸= λM , because it
at most gives her the lowest equilibrium payoff under no information. At every information set
λ′ for the sender and λ′M for the receiver, each player’s strategy is sequentially rational from
the IC condition. Therefore, (λ × ρS, ρ1, ..., ρk) constructed above is a PBE of the extensive
form game.
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C Omitted Example
Example 1. Consider Θ = {0, 1} with prior µ0 = P (θ = 1) = 0.7 and A = {a1, a2, a3, a4}.
The Receiver’s payoffs are

a1 a2 a3 a4

θ = 0 1 0.8 0.6 0

θ = 1 0 0.6 0.8 1

The Sender’s payoffs are

a1 a2 a3 a4

θ = 0 0 1 0.5 −1

θ = 1 −1 1 1 0

Both players’ payoffs are strictly supermodular. The Receiver’s best response â(µ) is a1, a2, a3, a4
respectively when µ ∈ [0, 0.25], [0.25, 0.5], [0.5, 0.75],[0.75, 1].

Using the concavification approach from Kamenica and Gentzkow (2011), the Sender’s
indirect utility function v̂(µ) can be visualized by the blue lines in Figure 4. The red line
depicts the concave envelope, so at µ0 = 0.7, the Sender strictly benefits from persuasion if
she can fully commit.

10

1

µ0 = 0.7

Figure 4: Concavification

Now consider any stable outcome distribution. Suppose the outcome distribution has at
least two actions in the support, then Lemma 1 implies at most one of the actions is matched
with more than one state, otherwise comonotonicity is violated. Therefore, in any stable
outcome distribution, the induced posterior’s support must be included at µ = 0, µ = 1, and
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only one intermediate posterior. For any posterior distribution that induces more than two
actions, it can be viewed geometrically that the signal induced by the green dashed line, inducing
posteriors µ = 0.5 and µ = 1, is the optimal one. However, such information structure gives
a lower payoff to the sender than the no-information outcome.
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