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Abstract

We show that a firm may benefit from strategically creating scarcity for

its product, in order to trigger herding behavior from consumers in situa-

tions where such behavior is otherwise unlikely. We consider a setting with

social learning, where consumers observe sales from previous cohorts and up-

date beliefs about product quality before making their purchase. Imposing

a capacity constraint directly limits sales but also makes information coarser

for consumers, who react favorably to a sell-out because they infer only that

demand must exceed capacity. Consumer learning is then limited even with

large cohorts and unbounded private signals, because the firm acts strategi-

cally to influence the consumers’ learning environment. Our results suggest

that in suitable environments capacity constraints can serve as a useful tool

to implement optimal information design in practice: if private signals are

not too precise and capacity can be changed over time, then in large markets

the firm’s optimal choice of capacity delivers the same expected sales as the

Bayesian persuasion solution.
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1 Introduction

This paper shows that firms may want to strategically create product scarcity, to

influence consumer learning in a way that can effectively persuade consumers to

buy. As is standard in the literature on social learning (see foundational papers

by Banerjee (1992) and Bikhchandani et al. (1992)), each consumer receives a noisy

private signal about product quality, but also infers some information from observing

earlier sales. To illustrate the mechanism at work, consider a cohort of ten consumers

who visit a firm, where each buys if and only if her signal was good. A consumer

who then arrives and observes initial sales of three may refuse to buy, even if her

own signal was good, because she infers that only three out of the ten others had a

good signal. But if the firm, without knowing product quality, had initially limited

capacity to three sales per period, then the consumer would observe a sell-out, and

only infer that there were at least three good signals. That may well convince the

consumer to buy even if her own signal was bad, and trigger a positive purchase

cascade.

Now suppose that in our example, one out of ten consumers per period is per-

fectly informed about quality, and that the firm has unlimited capacity. If quality is

low, but say seven consumers in period 1 receive good signals, then everyone will buy

in period 2 except for the informed consumer. Provided that the number of potential

buyers is perfectly understood, the informed consumer’s choice not to buy will per-

fectly reveal low quality and lead to zero sales in later periods. However, this same

choice would not reveal any information if the firm had restricted capacity, because

the informed consumer would be effectively pooled with those who were unable to

buy due to rationing.1

Thus, consumer learning is limited despite large cohort size (as in the ‘guinea

pigs’ considered by Sgroi (2002)) and unbounded private signals (as in Smith and

1In the spirit of Smith and Sørensen (2000), we use the word ‘cascade’ to refer to a situation
where all consumers with boundedly informative signals take the same action regardless of their
private information.
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Sørensen (2000)). The reason is that here, the consumers’ learning environment is

endogenous, and the firm can manipulate this environment by restricting capacity.

The result is that consumers may fail to learn, in particular in situations where

learning would hurt the firm.

The attractiveness of restricting capacity as a tool to manipulate learning can

be understood more broadly in terms of information design. A firm’s choice of

capacity affects the structure of consumers’ public information, analogous to the way

a sender determines the structure of a receiver’s private signal in models of Bayesian

persuasion. Bayesian persuasion mechanisms generally raise two practical concerns:

how the signal space is determined and how a sender can commit to a particular

signal structure. Neither concern is an issue in our setting, as both the signal space

and commitment power follow naturally from the firm’s choice of capacity. In this

sense, our paper brings out a close connection between Bayesian persuasion and

social learning despite apparent differences between the two approaches.

Our focus on sell-outs fits in with evidence that demand for some products seems

to persistently outstrip supply and that suggests a plausible cause is seller strategic

behavior. Examples include restaurants (e.g. ‘Noma’, Damon Baehrel’ or ‘Club

33’), music festivals (tickets for Glastonbury 2016 selling out in just 30 minutes.2),

professional sports (e.g. Real Mardid vs. Juventus match tickets were sold out in

8 minutes3; the Boston Red Socks experienced sell-outs from 2003-2013 in Fenway

Park), concert halls (Courty and Pagliero (2012) argue that concert promoters believe

that empty seats would reveal negative information to consumers, and therefore select

venues and prices to make sellouts more likely), and the infamous ‘Beanie Babies’.

Relatedly, the effect of boosting demand via social learning has been well documented

in environments such as movies (Moretti (2011), Cabral and Natividad (2016)) and

restaurants (Cai et al. (2009)). In all these examples, when demand is high, firms

2See http://www.glastonburyfestivals.co.uk/glastonbury-2016-tickets-sell-out-in-30-minutes/,
accessed on August 18, 2022.

3See https://sport.news.am/eng/news/87567/real-madrid-vs-juventus-tickets-sold-out-in-8-
minutes.html accessed on August 18, 2022.
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may lose out on potential sales as their product is rationed, but nonetheless frequent

price adjustments tend to be the exception rather than the rule.

We start in Section 2 by presenting a simple two-period model of social learning,

in which all consumers have boundedly informative signals. Consumers arrive in

cohorts of size 2n in each period and period-2 consumers observe sales from period 1.

The first period is interpreted as trial sales, and the second period as the continuation

sales in the main market. All social learning takes place in between these two periods,

and the seller looks to maximize period-2 sales.

Our analysis in Section 3 shows that, for any K ≤ n, parameters exist for which

the seller would rather restrict capacity to K in both periods rather than remain

unconstrained. The capacity constraint directly limits period-2 sales and also reduces

willingness to pay via a ‘winner’s curse’ effect, since each consumer realises she is

more likely to be served in the bad state. However, restricting capacity also censors

the true level of demand following a sellout, which affects consumer learning. Sellouts

effectively pool high demand events with events that would otherwise have triggered

a negative purchase cascade, and now instead drive up willingness to pay. We show

that in a large market, holding the value of consumers’ outside option fixed, the seller

prefers to restrict capacity when the prior that the state is good is not too high, but

still makes buying a priori more attractive than the outside option, while the private

signal precision takes intermediate values.

We then proceed in Section 4 to explore how optimal capacity constraints perform

relative to the benchmark of optimal Bayesian persuasion (Kamenica and Gentzkow

(2011)), i.e. an ex ante commitment to a rule that maps product quality to a binary

purchase recommendation, where each consumer decides whether to buy based on the

recommendation and on her private signal. If private signals are relatively imprecise,

then the benchmark is familiar: always recommend that the customer buy when

the state is good, and sometimes when it is bad. We show that in large markets,

where the seller can adjust capacity over time, the optimal capacity constraint can

attain these benchmark payoffs by effectively implementing the Bayesian persuasion
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outcome. Restricting capacity then results in seller-optimal information provision,

where the probability of a period-1 sellout in each state is equal to the corresponding

probability of a buy recommendation under the benchmark.

Finally, Section 5 considers a fully dynamic model with an infinite time horizon

and informed consumers with unbounded private signals, where two new phenomena

arise. First, an infinite time horizon opens a possibility for gradual learning, where

multiple sell-outs are required to trigger a cascade. Second, the presence of informed

consumers can further increase the attractiveness of restricting capacity due to the

possibility of cascade reversal. With unrestricted capacity, an informed consumer’s

decision not to buy will immediately reverse an incorrect positive cascade, where

all boundedly informed consumers buy despite the state being bad. However, when

the seller restricts capacity, an incorrect positive cascade can be maintained, since

consumers cannot distinguish between those in earlier cohorts who chose not to buy

and those who were not served due to rationing.

Our paper contributes to the literature on social learning with imperfect ob-

servability of past actions. Different work has assumed that agents can observe a

random sample of actions that is anonymous (Banerjee and Fudenberg (2004), Smith

and Sorensen (2013), Monzón and Rapp (2014), Monzón (2017)) or non-anonymous

(Acemoglu et al. (2011), Lobel and Sadler (2015)), the aggregate total of all past

actions (Callander and Hörner, 2009), the aggregate total of one particular action

(Guarino et al. (2011), Herrera and Hörner (2013)), or only the choice of an agent’s

immediate predecessor (Çelen and Kariv, 2004). Unlike these papers, the informa-

tion structure in our setting is endogenous, so consumers may fail to learn about

low quality despite two features that the literature suggests should promote learn-

ing: multiple consumers who do not have access to social information (see Banerjee

(1992), Sgroi (2002), Acemoglu et al. (2011), Smith and Sorensen (2013), Golub and

Sadler (2017)); and unbounded private signals (see, e.g., Smith and Sørensen (2000),

Banerjee and Fudenberg (2004)).

Our paper also relates to the recent literature on Bayesian persuasion pioneered by
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Kamenica and Gentzkow (2011). As our seller can only influence consumers’ informa-

tion through its choice of capacity, the paper complements work looking at a sender’s

choice from a restricted set of signal structures: Tsakas and Tsakas (2018) consider

noise that distorts signal realizations, Perez-Richet and Skreta (2022) study sender

manipulation of test results, and Ichihashi (2019) explores which signal-structure re-

strictions are optimal for the receiver. In terms of costly persuasion, Gentzkow and

Kamenica (2016, 2017) and Mensch (2021) assume a direct cost associated with each

experiment, whereas our cost of restricting capacity (i.e. foregone sales) is implicit

and depends on consumer behavior. Other papers share our focus on dynamics (see

Au (2015), Ely (2017), Renault et al. (2017), Best and Quigley (2017), Bizzotto et al.

(2021), Orlov et al. (2018)), but none consider scarcity or social learning.4

Our results also present a novel rationale for firms to strategically restrict ca-

pacity. Work on scarcity strategies has mainly focused on discouraging consumer

strategic delay (DeGraba (1995), Nocke and Peitz (2007), Möller and Watanabe

(2010)). Creating scarcity for low-valuation consumers can also help a monopolist to

price discriminate, and may be optimal if revenues are non-concave (Wilson (1988),

Bulow and Roberts (1989), Ferguson (1994), Loertscher and Muir (2022)). Both

Debo et al. (2012) and Stock and Balachander (2005) consider scarcity and social

learning but in a setting with a privately informed seller, where scarcity does not

help hide information from consumers, but instead may help reveal it.5

The broader literature on influencing consumer learning has mainly focused on

pricing (Welch (1992), Bose et al. (2006), Bose et al. (2008), Sayedi (2018)), which

affects learning differently. The main issue in Bose et al. (2006) and Bose et al.

(2008) is under what conditions the firm will set a low pooling price to stop all

4The signal structure associated with a capacity constraint in our setting involves upper-tail
censoring: revealing precise information about the state if news is sufficiently bad (i.e. demand
below a threshold value), and coarse information otherwise. Kolotilin et al. (2017), Kolotilin and
Zapechelnyuk (2018), and Dworczak and Martini (2019) all show that upper-tail censoring can at
times be optimal in persuasion problems where the state is drawn from a continuous distribution.

5Vikander (2018) considers a privately informed firm that may limit capacity to influence con-
sumer beliefs, but assumes bounded rationality and social image concerns.
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social learning, whereas our seller decides how much information to reveal via its

optimal capacity choice. In terms of results, Bose et al. (2006) and Bose et al. (2008)

show that the best way to maximize expected future profits is to reveal as much

information as possible, which is not the case in our setting. Indeed, the possibility

of increasing future profits is precisely what motivates the firm to hide information by

restricting capacity. We show in Online Appendix D that this motive still prevails

when the firm can choose both capacity and price, provided that neither can be

changed between periods.6

2 Model

Suppose there is a product or service of unknown quality and two possible states of

the world, Ω = {G,B}. In state G, quality is good and each consumer who buys

obtains uG = 1. In state B, quality is bad and each consumer who buys obtains

uB = 0. A consumer who does not buy gets reservation utility r ∈ (0, 1).

The actual state is not initially known, neither to the seller nor to consumers.

Prior beliefs of all players are that P (G) ≡ β and P (B) = 1 − β. There are two

periods in the game and in each period there are 2n potential buyers. Before making

her purchase decision, each consumer receives a noisy private signal, s ∈ {g, b}, where

P (g|G) = P (b|B) ≡ α ∈ (1/2, 1). By α < 1, signals are boundedly informative. We

focus on situations where consumers without further information would follow their

signals, i.e. P (G|s = g) > r > P (G|s = b).

At the start of the game, t = −1, the seller can set a capacity constraint 1 ≤
K ≤ 2n. This capacity choice is irreversible and limits potential sales in each period

(i.e. how many consumers can buy), which cannot exceed capacity.7 The state is

6Other differences in our analysis include the link with optimal Bayesian persuasion, the winner’s
curse effect, and the fact that a firm’s strategic choice of capacity can help an incorrect positive
cascade to be maintained.

7We use irreversible capacity in our main analysis, and later explicitly relax this assumption by
allowing the seller to adjust capacity over time.
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realized at t = 0, so the constraint itself does not reveal any information.8 We will

refer to K = 2n as unrestricted or full capacity, and K < 2n as restricted or limited

capacity.

In each period t ∈ {1, 2}, 2n consumers arrive. We interpret consumers in period

1 as those in a trial sales round and consumers in period 2 as those from the main

market. The seller receives a fixed profit per consumer who buys in the second pe-

riod, normalized to 1. This profit specification is an approximation of the discounted

stream of future profits in a fully dynamic model with an infinite time horizon, which

we discuss in Section 5.

Consumers arriving in period 2 observe both capacity and total sales from the

consumers in period 1. That is, consumers do not directly observe quantity demanded

in the first period, but only quantity sold. Notice that a sell-out in period 1, where

sales equal capacity, need not imply that demand precisely equaled capacity.

3 Analysis

We start by describing how consumers’ behavior will depend on their private signals,

previously observed sales, and the seller’s capacity choice. Given consumer behavior,

we then examine under what conditions the seller may profit from restricting capacity.

Period-1 consumers facing a seller with full capacity follow their private signals.

The behavior of period-2 consumers will depend on period-1 sales. Sales of at least

n+ 1 out of 2n will trigger a positive purchase cascade where all period-2 consumers

buy, since these sales are sufficiently informative to outweigh a bad private signal.9

Similarly, sales of at most n − 1 will trigger a negative cascade where no period-2

8Parsa et al. (2005) document that about 60% of new restaurants fail within three years, which
suggests that their owners had imprecise information about quality when opening and setting
capacity. We require that the seller and consumers hold the same prior, as is common in the
literature on social learning, see, e.g., Bose et al. (2006), Bose et al. (2008) and Bhalla (2013).

9Since all signals are equally precise, evidence of n+ 1 good signals and n− 1 bad signals from
period 1-consumers, combined with one bad private signal in period 2, is informationally equivalent
to having one single good signal, as (n+ 1)− (n− 1)− 1 = 1.
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consumer buys. Sales of exactly n are uninformative, so period-2 consumers then

follow their private signals.10 This result is formally stated in Lemma B.2 in the

Appendix.

Period-1 consumers facing a seller with limited capacity should take into account

an additional effect: how the probability of being served may depend on the state.

Suppose a consumer who chooses to buy believes she is λ times more likely to be

served in the bad state than in the good one. Let P (G|s, λ) denote the belief of such

a buyer of the state being good, conditional on receiving private signal s and being

served. Then for consumers to follow their private signals, the relevant condition is

P (G|b, λ) < r < P (G|g, λ), where P (G|b, λ) < P (G|g, λ) since signals are informa-

tive. The exact value of λ will depend on capacity K but always satisfies λ > 1,

as long as each consumer believes that others will follow their private signals. Each

consumer understands that others are more likely to receive good signals in the good

state, which then results in higher demand and a lower probability of being served.11

As such, whenever λ > 1, we have P (G|b, λ) < P (G|b) and P (G|g, λ) < P (G|g),

where this winner’s curse effect reduces willingness to pay.

While restricting capacity can reduce willingness to pay via the winner’s curse

effect, and can directly limit sales, it can also lead to a sellout in period 1, which will

increase willingness to pay in period 2. Let Qω(j) denote the probability of exactly

j period-1 consumers receiving good signals,

QG(j) =

(
2n

j

)
αj(1− α)2n−j, QB(j) =

(
2n

j

)
α2n−j(1− α)j. (1)

Now consider a period-2 consumer who receives a bad signal, observes a sellout in

period 1, believes that period-1 consumers followed their private signals, and thinks

that she is λ times more likely to be served in the bad state than in the good one.

This consumer’s willingness to pay is equal to her belief that the state is good,

10In the fully dynamic models discussed in Section 5, consumers might follow their own signals
for a number of periods, but a cascade will eventually occur.

11If all period-1 consumers ignore their private signals, then the probability of being served will
be independent of the state, resulting in λ = 1.
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conditional on being served, which is equal to

γ(K,λ) =
P (G ∩ b, sell-out)

P (G ∩ b, sell-out) + P (B ∩ b, sell-out)
=

1

1 + 1−β
β

α
1−α

[∑2n
j=K QB(j)∑2n
j=K QG(j)

]
λ
. (2)

Clearly a sellout is more likely in the good state than in the bad state if consumers

follow their private signals:
∑2n

j=K QG(j) >
∑2n

j=K QB(j). Thus, for any given λ, we

have γ(K,λ) > P (G|b, λ). The winner’s curse effect of restricting capacity can also

lead to the possibility of multiple equilibria, since the relevant values of λ in P (G|g, λ)

and P (G|b, λ) are not always uniquely defined. In particular, multiple equilibria can

exist in period 2 when γ(K,λ > 1) < r < γ(K,λ = 1), where consumers will then

only ignore their private signals following a sellout if they expect others to do the

same. The following Lemma shows that there is a value of the outside option r such

that there is an equilibrium where (i) all period-1 consumers follow their private

signals and (ii) a sell-out in period-1 triggers a purchase cascade among period-2

consumers. It also shows that this equilibrium is unique when signals are precise.

Lemma 1. For any (α, β) ∈ (1/2, 1)×(0, 1), there exists r such that, for any capacity

constraint K there is an equilibrium in which period-1 consumers follow their private

signals and period-2 consumers buy after observing a sell-out. Moreover, there exists

α̂ < 1 such that, for all α > α̂, this equilibrium is unique.

Given a value of r for which Lemma 1 applies, we consider how restricting capacity

affects seller profits. Let

Q(j) = βQG(j) + (1− β)QB(j),

denote the probability that j consumers receive good signals in period 1. For a seller

with unrestricted capacity, profits are

πu = 2n[βαQG(n) + (1− β)(1− α)QB(n)] + 2n
2n∑

j=n+1

Q(j). (3)
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That is, initial sales of exactly n lead consumers to follow their private signals, giving

period-2 expected sales of 2nα in the good state and 2n(1−α) in the bad state. Initial

sales exceeding n trigger a positive cascade with period-2 sales of 2n, whereas initial

sales less than n trigger a negative cascade with period-2 sales of zero. For a seller

with capacity K ≤ n, profits are

πc(K) = K
2n∑
j=K

Q(j), (4)

where an initial sellout triggers a positive cascade with period-2 sales of K, and any

failure to sell out triggers a negative cascade with period-2 sales of zero. Note that it

is never optimal to restrict capacity to K > n, as sales higher than n would trigger

a positive cascade even if the seller had full capacity (see, e.g., footnote 9). Thus,

the only impact of restricting capacity to K > n would be to limit sales in period 2.

Comparing (3) and (4) gives us the following result.

Theorem 1. For any n > 1, K ≤ n there are (α, β) ∈ (1/2, 1) × (0, 1/2) and

r ∈ (0, 1/2) for which the seller can increase its profits above the full-capacity level

by restricting capacity to K, and where a sellout triggers a positive cascade.

However, if β ≥ 1/2, then the seller prefers not to restrict capacity: πu > πc(K)

for all K ≤ 2n.

The seller faces a tradeoff, as restricting capacity to K ≤ n directly limits sales

but can also increase the probability of a positive cascade. A key difference between

(3) and (4) is that below-average period-1 demand, between K and n−1, will trigger

a negative cascade if the seller has unrestricted capacity, but will trigger a positive

cascade if the seller restricted capacity to K. Intuitively, a capacity constraint will

tend to help the seller when the state turns out to be bad by pooling intermediate

outcomes with moderate demand with more favourable outcomes with high demand.

This obfuscation decreases the probability of an incorrect negative cascade (where no

consumer buys despite the state being good), and can increase the probability of an
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incorrect positive cascade (where all consumers buy despite the state being bad).12

The condition β ≥ 1/2, which is sufficient for restricting capacity to be subop-

timal, is simple and intuitive. When the state is good, initial sales are likely high

enough to trigger a positive cascade regardless of the seller’s choice of capacity, and

a seller with unrestricted capacity then enjoys higher sales. The proof shows that

for β ≥ 1
2
, the good state is sufficiently likely that expected period-2 sales for such a

seller exceed n. These sales are more than the seller could possibly enjoy by restrict-

ing capacity to K ≤ n, which are the only capacity levels that can make a positive

(negative) cascade more (less) likely.

Theorem 1 shows that setting capacity constraint K ≤ n is better than having full

capacity for some parameter values (α, β, r). We now investigate for which parameter

values it is profitable to restrict capacity, first numerically in Figure 1 and then

analytically in large markets, i.e. when n→∞.

When describing Figure 1, we will first focus on the bell-shape (combined areas

A,B and C) which corresponds to the parameter region described in Theorem 1:

the values of (α, β) for which restricting capacity increases profits, for at least one

value of r. We then explain why restricting capacity is not optimal in area A for

the specific value of r considered in the figure. Finally, we turn to areas B and C,

where restricting capacity is optimal for that specific value of r, and describe when

a sellout will trigger a purchase cascade.

The bell-shaped region shows, consistent with Theorem 1, that restricting ca-

pacity cannot be optimal if the prior is too high. It also suggests that for given

β, restricting capacity can only be optimal when signal precision α is moderate.

Intuitively, with very imprecise signals, restricting capacity is unattractive because

a positive cascade is already quite likely in the bad state, even with full capacity.

The same conclusion applies with very precise signals because the very low capacity

required to sell out in the bad state dramatically limits subsequent sales.

12The proof of Theorem 1 establishes existence for sufficiently high α, while Lemma 1 guarantees
that for high enough α, the unique equilibrium of the consumer game involves a purchase cascade
after a single sellout.
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Figure 1: When it is optimal to restrict capacity, for different values of the prior β
and signal precision α, given outside option r = 0.1.

Area A in the bell-shaped region shows where restricting capacity is optimal for

some values of the outside option, but not for the specific value r = 0.1 considered

in the figure. Unsurprisingly, restricting capacity cannot be profitable if the prior is

high enough for all consumers to buy regardless of their private signals, or so low

that nobody buys. More interesting is that for β moderately low, the very fact that

the seller restricts capacity can result in zero sales, as the winner’s curse effect makes

consumers with good signals refuse to buy.13

Restricting capacity is optimal when r = 0.1 in both Area B and Area C, but for

different reasons. In area C, the seller sets capacity sufficiently high for a sellout to

trigger a cascade, and profits are given by (4). In area B, it turns out that the seller

13For more on the winner’s curse effect, please see our discussion of large markets and Figure 2.
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prefers to restrict capacity more aggressively, which makes a sellout more likely but

also less convincing. Period-2 consumers then follow their private signals following a

sellout, giving profits

π̃c(K) = β

(
2n∑
j=K

QG(j)

)
×

(
2n∑
j=0

min{j,K}QG(j)

)
+

(1− β)

(
2n∑
j=K

QB(j)

)
×

(
2n∑
j=0

min{j,K}QB(j)

)
. (5)

Thus, in area B, the seller’s purpose in restricting capacity is not to start a positive

cascade but only to prevent a negative one. We will return to this issue in our fully

dynamic setting in Section 5, where the seller may sometimes set a capacity so low

that a long sequence of sellouts is required to trigger a cascade.

Our numerical results give a sense of the parameter region for which the seller

prefers to restrict capacity. When the market is large, we can describe this region

precisely.

Proposition 1. Consider a tuple of parameters (α, β, r). Then there exists a thresh-

old n(α, β, r), such that for all n > n(α, β, r)

1. for K ≤ n, the maximal profit is achieved by setting a capacity constraint for

which a sell-out does not trigger a cascade, i.e. maxK≤n π̃c(K) > maxK≤n πc(K)

2. restricting capacity yields higher profit than being unconstrained, i.e.

maxK≤n π̃c(K) > πu, if

β(1− α)

β(1− α) + (1− β)α
< r < β < 1− α (6)

and maxK≤n π̃c(K) ≤ πu if any inequality in (6) is reversed.

The key point for the seller’s capacity choice in large markets is that the ratio

of period-1 demand to market size is concentrated around its conditional expected
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values, α in the good state and 1−α in the bad state. As the market size increases,

the seller can let capacity approach a fraction 1−α of the market size from below, in

a way that almost always yields a period-1 sellout. Period-2 consumers then follow

their own signals, giving profits per consumer close to 1 − α.14 By comparison, for

a seller who does not restrict capacity, increased market size makes period-1 sales

increasingly informative about the state, and profits per consumer become close to

β. Restricting capacity can therefore pay off when β < 1− α. The constraint β > r

arises from the winner’s curse effect: for the optimal capacity constraint we have that

λ→ α
1−α as n→∞ and, therefore, P (G|g, λ)→ β. Thus, when the market becomes

large, period-1 consumers with good signals facing a capacity-constrained seller will

only buy if β > r. Condition β(1−α)
β(1−α)+(1−β)α < r simply ensures that consumers all

follow their signal given full capacity.15

Figure 2 shows for what points (α, β) the seller will restrict capacity in a large

market, given r = 0.1. The area between the dashed curves is where period-1

consumers facing a seller with unrestricted capacity would follow their own signals.

The seller will restrict capacity in the dotted part of this area, which lies both above

the horizontal line β = r and below the downward-sloping line β = 1−α. Restricting

capacity would also be optimal in the grey part of this area if period-1 consumers

followed their private signals, but they refuse to buy due to the winner’s curse effect.

Clearly, allowing r to vary in the spirit of Theorem 1 implies that restricting capacity

will be optimal whenever β < 1 − α for at least one value of r. That is, the large

triangular region in Figure 2 is the limiting case of the bell-shaped region from Figure

1 when markets are large.

Figure 2 also highlights that for given outside option r, restricting capacity will

be optimal in large markets when both signal precision α and the prior β take

on intermediate values.16 Signal precision should not be so high that a very low

14These are the same profits the seller would earn if the sellout had triggered a positive cascade.
15The winner’s curse is severe under the optimal capacity in large markets, since the probability

of being served in the bad state is close to one.
16This conclusion is also consistent with Figure 1, where we assumed market size 2n = 30.
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Figure 2: When it is optimal to restrict capacity in large markets, for different values
of the prior β and signal precision α, given outside option r = 0.1.

capacity is required to generate sellouts in the bad state, which would strongly limit

period-2 sales. Signal precision should also not be so low that consumers ignore

their private signals, which would leave no scope for capacity constraints to influence

social learning. Relatedly, the prior should not be so high that a positive cascade is

likely even in the absence of capacity constraint, or so low that the winner’s curse

effect prevents consumers from buying. The fact that the ratio of capacity to market

size equals 1 − α in the limit n → ∞ also implies that the size of the optimal

capacity constraint, when the seller chooses to restrict capacity in large markets, will

be decreasing in signal precision and insensitive to changes in the prior.

We now continue to look at large markets but assume flexible capacity, where
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the seller can freely adjust its capacity constraint in period 2 after observing sales in

period 1. The seller’s optimal strategy given flexible capacity will serve as a useful

benchmark for the subsequent section on information design.

Proposition 2. Consider a tuple of parameters (α, β, r). Then there exists a thresh-

old n(α, β, r), such that for all n > n(α, β, r)

1. for K ≤ n, the maximal profit is achieved by setting a capacity constraint for

which a sell-out triggers a cascade, i.e. maxK≤n πc(K) > maxK≤n π̃c(K)

2. restricting capacity yields higher profit than being unconstrained, i.e.

maxK≤n πc(K) > πu if

β(1− α)

β(1− α) + (1− β)α
< r < β (7)

and maxK≤n πc(K) ≤ πu if either inequality in (7) is reversed.

The seller now prefers to restrict capacity for a wider range of parameter values

than in Proposition 1, corresponding to both the dotted and the grid regions in Figure

2, because the proportion of period-2 consumers who buy following a sellout is no

longer bounded by (1 − α). Moreover, when restricting capacity, the seller always

sets K high enough for a sellout to trigger a positive cascade, γ(K, 1) > r. Thus, in

the dotted region of Figure 2, the seller now restricts capacity less aggressively than

under Proposition 1, even though restricting capacity no longer directly limits period-

2 sales. Triggering a cascade yields a larger reward when capacity is flexible, 2n

instead of K, so the seller prefers to set capacity large enough to convince consumers

to ignore their private signals upon a sell-out, even though doing so makes a sellout

less likely.

As limn→∞
∑2n

j=K QG(j) = 1, the seller’s per-consumer profit at the optimal ca-

pacity in a large market approaches

π = β + (1− β)

[
β

1− β
1− r
r

1− α
α

]
, (8)
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provided that period-1 consumers follow their private signals. These limiting profits

exceed both those under full capacity, β, and those under a capacity that would not

trigger a positive cascade, βα + (1− β)(1− α).

4 Optimal Information Design

Having shown that the seller may want to restrict capacity, we now compare the

resulting profits to those from the benchmark of optimal information design. We

consider the limiting case of large markets, n → ∞, to facilitate comparison with

the profits that follow from Proposition 1 and Proposition 2.

There is a close connection between the seller’s choice of capacity in our setting

and Bayesian Persuasion. Our seller (sender) chooses capacity without knowing the

state, and each consumer (receiver) then receives information that depends on the

realized state and on capacity. In this sense, capacity constraints serve as a natural

example of a Bayesian persuasion mechanism that can be easily implemented in

practice. As capacity is chosen ex ante, and market participants do not observe

excess demand, any commitment problem in implementing the desired information

structure is avoided. The seller simply cannot serve demand that exceeds capacity.

Consumers then directly observe the resulting sell-out; if they did not, the seller

could easily disclose that a sell-out occurred.

To derive the ‘persuasion mechanism’ in our setting, and find the associated

profits, we assume the seller commits to a rule that maps the binary state into

a purchase recommendation. The state is realized, and each consumer receives a

recommendation according to the chosen rule. Each consumer then makes a purchase

decision based on the recommendation and her own private signal, and the seller

serves all consumers who want to buy. Thus, consumers do not learn from one another

but rather from the seller’s recommendation. The seller’s persuasion mechanism

therefore substitutes for the social learning process studied in the previous section.

When the receiver is privately informed, the optimal persuasion mechanism can
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take one of two forms: either obedient, where consumers all follow the seller’s rec-

ommendation; or non-obedient, where consumers with good private signals always

buy. Let pω be the probability of a buy-recommendation in state ω.

Proposition 3. For any r ∈ [0, 1], there exist values β(r), β(r), α(r) and a function

α(r, β) such that if β ∈ [β(r), β(r)] and α ∈ [α(r, β), α(r)] then the optimal persuasion

mechanism is obedient, with

pG = 1, pB =
β(1− α)(1− r)

(1− β)αr
. (9)

Otherwise, the optimal persuasion mechanism is non-obedient, with both pG, pB < 1,

as long as α ≥ α(r, β).17

Proposition 3 says that as long as signal precision is not too high, i.e. α ≤ α(r),

then a no-buy recommendation under the optimal mechanism fully reveals the state,

and all consumers follow the seller’s recommendation. The restriction α ≥ α(r, β)

corresponds to our initial condition that consumers follow their own signals in the

absence of any other information. Finally, the restriction β ∈ [β(r), β(r)] guarantees

that the interval [α(r, β), α(r)] is non-empty.18

In contrast, if signal precision is high, α > α(r), then a no-buy recommendation

under the optimal mechanism is sufficiently noisy for consumers with good signals to

ignore it, whereas consumers with bad signals always follow the seller’s recommen-

dations. Compared to the obedient mechanism, the seller experiences higher sales

from consumers with good signals, but lower sales from consumers with bad signals,

who may now receive (and follow) a no-buy recommendation in the good state. The

higher the signal precision, the less likely a no-buy recommendation must be sent

in the good state for consumers with good signals to ignore it, which makes the

non-obedient mechanism more attractive.

17Expressions for these probabilities can be found in the proof of the Proposition in the Appendix.
18Proposition 3 is similar to the result obtained in Kolotilin (2018), the only difference being

that he also allows for the case α(r) < α < α(r, β). This case is ruled out in our setting by the
assumption that consumers follow their private signals in the absence of any other information.
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The seller’s expected profits per consumer under the obedient mechanism are

π = β + (1− β)

[
β

1− β
1− r
r

1− α
α

]
. (10)

These profits coincide with (8), which are the profits the seller may achieve by re-

stricting capacity in a large market, if capacity can be adjusted over time.

In general, restricting capacity can underperform relative to the Bayesian Persua-

sion benchmark for two reasons: the direct effect from limiting period-2 sales, and

the indirect effect of using potentially suboptimal information design. The direct ef-

fect is enough to push expected profits below those from the benchmark if capacity,

once set, is fixed. That is, the limiting profits from restricting capacity according to

Proposition 1, namely 1− α, are strictly lower than (10).

The direct effect from limiting period-2 sales vanishes if capacity is flexible, in

which case restricting capacity in large markets performs equally well to mechanism

(9) under the conditions described in Proposition 2. The seller sets capacity so that

in the good state a sell-out almost surely occurs, and in the bad state it occurs with

a probability equal to pB from (9), i.e. the probability of a no-buy recommendation

under the obedient mechanism.

We conclude that restricting capacity can result in optimal information design

in large markets if the optimal mechanism is obedient. If the optimal mechanism is

non-obedient, where consumers with good private signals always buy, then restricting

capacity will underperform relative to the benchmark. The reason is that capacity

then gives the seller too few degrees of freedom.19 For the obedient mechanism,

the seller need only approximate the buy-recommendation probability in the bad

state, by setting capacity close to the conditional expected level of demand. The

probability of a sellout in the good state then approaches one due to the Law of

Large Numbers.

We formally state our result in the following proposition.

19Both buy and non-buy recommendations under the non-obedient mechanism should be noisy,
so both probabilities pG, pB < 1 must be approximated, which cannot be done with one instrument.
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Proposition 4. If market size is large and the seller can adjust capacity in period

2 after observing sales in period 1, then for any r ∈ [0, 1], if β ∈ [r, β(r)] and

α ∈ [α(r, β), α(r)], the seller can implement optimal persuasion through its choice of

capacity constraint.

α11
2

0

1
2

α(r)

r

β Obedient Mechanism

Restrict Capacity

Non-Obedient Mechanism

Restrict Capacity

Non-Obedient Mechanism

Winner’s Curse, Full Capacity

Winner’s Curse, Full Capacity

Obedient Mechanism

Figure 3: Optimal persuasion and restricting capacity in large markets, for different
values of the prior β and signal precision α, given outside option r = 0.25.

Figure 3 illustrates the scope of Proposition 4, for when restricting capacity can

result in optimal information provision. The obedient mechanism is optimal in the

region where α < α(r) (note that α > α(r, β) holds in the region to the right of

either dashed line). However, this mechanism can only be implemented by restricting
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capacity if β > r (dotted area), as for β < r (grey area) the winner’s curse results in

zero sales. In the gridded area where α > α(r) and β > r, the seller chooses to restrict

capacity but earns lower profits than under the Bayesian persuasion benchmark,

where the mechanism is not obedient.

While these results suggest that restricting capacity may result in seller-optimal

information design when the optimal mechanism is obedient, the broader point is

that the mechanism should consist of two recommendations (buy or don’t buy, cor-

responding to a sellout or no sellout), where one recommendation perfectly reveals

the state.20 A non-obedient mechanism might take this form and still be optimal

in a setting with a binary state but a richer signal structure than considered here.

For example, a buy recommendation under the optimal mechanism might then con-

vince some consumers to buy, but not those with very accurate and negative private

signals, just as the latter group might refuse to buy after observing a sellout.

5 General Case

In this section we consider whether restricting capacity can also be optimal in a

fully dynamic setting with potentially unbounded signals. This setting allows us to

examine how consumer beliefs evolve over time, including after multiple sellouts, and

explore whether sellouts now always trigger purchase cascades. It also allows us to

address how the presence of ‘informed’ consumers affects the seller’s incentives to

restrict capacity, including via their ability to reverse incorrect cascades.

The results show that the main insights from our two-period model carry over

to this new setting: if consumers arrive in cohorts of equal size in each period and

observe previous sales, while the seller cares about the discounted value of future

sales, it can still optimal for some parameter values to restrict capacity. Moreover,

20In sufficiently large markets, demand will be concentrated in the neighbourhoods of two values.
The seller can therefore set capacity such that a sell-out occurs with probability one in the good state
and with optimal intermediate probability in the bad state, and implement the recommendation
probabilities under the optimal mechanism, provided consumers are willing to buy despite the
winner’s curse.
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although the seller may set capacity low enough so that consumers follow their private

signals after an initial sellout, a sufficiently long sequence of sellouts will always

trigger a cascade. Informed consumers’ choices always eventually reveal the state,

but their presence generates another advantage to restricting capacity, namely to

extend the length of an incorrect purchase cascade, with repeated sellouts in the bad

state.

The first change we make in order to proceed with a fully-fledged dynamic analysis

is that we consider an infinite time horizon, where 2n consumers arrive in each period.

Consumers observe sales from previous cohorts, make their purchase decisions, and

then leave the market.21 The seller is interested in the net present value of future

sales and discounts them with discount factor δ.

The second change is that we allow for unbounded private signals. There are

two types of consumers: ‘uninformed’ and ‘informed’. Uninformed (or boundedly

informed) consumers are identical to those in the two-period model from Section

2, whereas informed consumers receive unbounded signals that effectively reveal the

state. We assume that each of the 2n consumers is informed with probability ε > 0.22

We now use the term cascade to refer to a situation where all uninformed consumers

either buy or do not buy, regardless of their private signals.

Cascades are triggered in a similar way as in Section 3. If the seller does not

restrict capacity, then sales of over (under) n will immediately trigger a positive

(negative) cascade. If the seller restricts capacity, then a failure to sell out once at

capacity K ≤ n will trigger a negative cascade, whereas multiple consecutive sellouts

may now be required to trigger a positive cascade.

Specifically, uninformed consumers’ beliefs following sellouts evolve according to

21It does not matter how long a history is observed, provided that consumers observe sales from
at least two previous cohorts.

22Our approach of modeling unboundedly informative signals, through the presence of fully in-
formed consumers, differs from the more common approach of assuming continuous signals, and
dramatically helps with tractability. The analysis of a setting when 0 ≤ m ≤ n consumers are
informed about the state leads to qualitatively similar results, as demonstrated in Online Appendix
C.
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a Bayesian updating process. Let Qω(j) again denote the probability of having j out

of 2n good signals in state ω. Then, in a similar way to Section 3, we can define the

belief of uninformed consumers with bad private signals who observe a sequence of

l consecutive sell-outs at capacity K, and conjecture all others have followed their

signals, as

γ(l,K, λ) =
P (G ∩ b, l sell-outs, served)

P (G ∩ b, l sell-outs, served) + P (B ∩ b, l sell-outs, served)
=

1

1 + 1−β
β

α
1−α

[∑2n
j=K QB(j)∑2n
j=K QG(j)

]l
λ,

(11)

where λ is again the relative probability of being served in the bad state compared

to the good one. A sufficiently long sequence of sell-outs will eventually trigger a

positive cascade: γ(l,K, λ) is increasing in l and approaches 1 as l → ∞, so it

eventually exceeds r.23

An additional issue in our fully dynamic setting, that could not be addressed in a

two-period model, is that not all cascades once started will be maintained. An incor-

rect negative cascade, where no uninformed consumer buys despite the state being

good, will be reversed by any subsequent period with positive sales, since these sales

reveal that informed consumers chose to buy. However, an incorrect positive cas-

cade, where all uninformed consumers buy despite the state being bad, will only be

reversed when sales drop below capacity K, i.e. if at least 2n−K + 1 informed con-

sumes arrive in the same period. The implication is that incorrect negative cascades

are quickly reversed, but incorrect positive cascades, though eventually reversed, are

long-lived if the seller restricts capacity.

In order to derive the profit functions for when the seller restricts capacity, sup-

pose that period-1 consumers follow their signals given capacity K. Let L denote

the smallest value of l such that γ(l, k, 1) > r, where γ(l, k, 1) is given by (11) for

23See Lemma B.3 in the Appendix.
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λ = 1. That is, L consecutive sellouts at capacity K will trigger a purchase cascade.

Moreover, let ηω denote the probability of a sell-out, and Sω denote expected sales as

of a period where a sellout does not occur, given state ω ∈ {G,B}. Then expected

profits given capacity K and L ≥ 1 are

πc(K) = β

[
1− (δηG)L

1− δηG
(SG + ηGK) + (δηG)L

K

1− δ

]
+

(1− β)

[
1− (δηB)L

1− δηB
(SB + ηBK) + (δηB)LR

]
, (12)

where R are expected sales in the bad state in the event of a purchase cascade.24 The

first term in each of the square brackets, which correspond to the good and the bad

state, represents the expected sales if the sellers fails to sell-out for L consecutive

periods. The second term represents expected sales when the sellers sells out for

L periods, where it keeps receiving K per period in the good state, and receives

expected discounted sales of R < K/(1 − δ) in the bad state (where the arrival of

2n−K + 1 informed consumers will eventually reverse the positive cascade).

Although it might be optimal to set a capacity such that multiple sell-outs are

required to trigger a cascade, our existence result focuses on an equilibrium where

period-1 consumers follow their private signals and a cascade occurs after a single

sellout. Similar to Section 3, we show that this equilibrium exists for sufficiently high

signal precision α, and is unique when α is even higher.

Lemma 2. There are thresholds α̂0 ≤ α̂1 < 1 (possibly functions of parameters) and

a value of the outside option r ∈ (0, 1) such that for any capacity constraint K ≤ n:

1. for α > α̂0, consumers follow their private signals in the first period;

2. for α > α̂0, there is an equilibrium in which one sell-out triggers a cascade;

24Explicit expressions for R, ηω, and Sω, for ω ∈ {G,B}, are presented in the proof of Theorem
2 in Appendix B.
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3. for α > α̂1, there is a unique equilibrium in which one sell-out triggers a

cascade.

Lemma 2 allows us to set L = 1 in (12) and show that the result of Theorem 1

can be extended to a fully dynamic setting with informed consumers.

Theorem 2. For any n > 1, K ≤ n and δ >
√

2n−K
2n

, there are (α, β, ε) ∈ (1/2, 1)×
(0, 1/2) × (0, 1) and r > 0 for which the seller can increase its profits above the

full-capacity level by restricting capacity to K.

Intuitively, restricting capacity can help the seller by increasing the probability

of a positive cascade and by helping incorrect positive cascades (once triggered) to

be maintained. The former channel works in a similar way to our two-period model,

where a period-1 sellout can induce subsequent cohorts to buy regardless of their

private signals. The latter channel follows from the presence of informed consumers,

whose actions will quickly reverse an incorrect positive cascade if the seller operates

at full capacity.

Incorrect positive cascades are also eventually reversed if the seller restricts capac-

ity, but typically only after a substantially longer time. Formally, given an incorrect

positive cascade, the expected number of periods until the bad state is revealed is

1/P , where P = 1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−i if the seller sets capacity constraint K,

and P = 1− (1− ε)2n if the seller has unrestricted capacity. For example, if 2n = 6

and ε = 0.1, and if initial sales trigger an incorrect positive cascade, then it requires

on average of two periods to reveal the bad state under full capacity, but 787 periods

if K = 3 and about one million periods if K = 1.

The result from our two-period model that the seller sometimes set capacity in

such a way that period-2 consumers followed their private signals following a period-

1 sellout, has a natural counterpart in our fully dynamic setting. The purpose of

restricting capacity to such a low level in Section 3 was to reduce the probability

of revealing bad news, i.e. to prevent a negative cascade rather than triggering

a positive one. Here, selling out at a particularly low capacity may not trigger a
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Figure 4: Seller profits and optimality of delaying consumer learning to postpone a
cascade, ε = 0.

positive cascade immediately, but it can still serve to hide potentially low demand.

In contrast to Section 3, however, a cascade will eventually occur, either a positive

cascade after a sufficiently long sequence of sellouts or a negative cascade in the

first period without a sellout. Figure 4 shows that such a strategy of setting low

capacity, in order to delay consumer learning and postpone the start of a cascade, is

indeed optimal for certain parameters values. For the parameter values assumed in

the Figure, the seller finds it optimal to set capacity K = 1, so that L = 34 sellouts

are required to trigger a cascade.

Finally, we numerically investigate how the presence of informed consumers affects

the seller’s incentive to restrict capacity. Figure 5 compares two parameter regions:

the set of points (α, β) for which there exists some outside option r and capacity K

such that it is profitable to restrict capacity when there are no informed consumers,

ε = 0; and the corresponding set of points (α, β) when each consumer is informed

with probability ε = 0.1. In the former case restricting capacity is optimal in the

bell-shaped region comprised of areas A and C. In the latter case restricting capacity

is optimal in areas B and C, but is no longer optimal in area A.

The presence of informed consumers means that demand is now more likely to
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reflect the true state, which has an ambiguous effect on the seller’s incentive to restrict

capacity. The bell-shape in Figure 5 shifts to the left, in a way that is broadly similar

to a change in signal precision, so it is optimal to remain unconstrained in area A.

However, the presence of informed consumers also means that incorrect positive

cascades are more quickly reversed under full capacity than under capacity K ≤ n,

which unambiguously makes restricting capacity more attractive. This latter effect

is particularly important if signals are imprecise, because incorrect cascades are then

more likely, leading the seller to restrict capacity in area B.

Figure 5: When it is optimal to restrict capacity, for different values of the prior β
and signal precision α, given r = 0.1, with and without informed consumers

Our analysis in this section has considered an infinite-time horizon and un-

bounded private signals but continues to not explicitly consider pricing. Pricing

is markedly different than restricting capacity in that it simultaneously serves two
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functions, namely influencing consumer learning and extracting surplus. In terms

of influencing learning, pricing is a very coarse tool for a seller with full capacity

in a binary-signal setting, as sales will then either reveal all information (separating

price) or reveal nothing (pooling price). A seller who could freely adjust its price over

time, as in Bose et al. (2006) and Bose et al. (2008), would have a strong temptation

to first reveal information and then extract surplus. In particular, fully revealing

the state would eliminate any difference in willingness to pay based on consumer

private information, and fully flexible pricing would then allow the seller to capture

all surplus. Naturally, hiding information via capacity constraints, or any other form

of information design, would then be suboptimal. That being said, our analysis in

Online Appendix D shows that restricting capacity can still increase profits when the

seller has discretion over the initial price but cannot adjust it over time, i.e. when the

surplus extraction function of the price is limited. In this sense, restricting capacity

can be seen as a tool for information management in situations like those described

in the Introduction, where sellers cannot capture all surplus via dynamic pricing.

6 Conclusion

In this paper, we show that a seller may benefit from restricting capacity, so as to

create scarcity for its product and increase future sales. Limiting capacity results

in coarser information, as consumers who observe a sell-out attach positive proba-

bility to all levels of demand that exceed capacity. The results show that two main

mechanisms the literature suggests may help avoid pathological social learning out-

comes, ‘guinea pigs’ and unbounded private signals, can fail to do so, if the seller is

able to manipulate the learning environment by a simple instrument such as limiting

capacity. We also show that this simple instrument can serve a practical tool for

persuading consumers, in the sense of implementing optimal information design in

large markets.

Although we assume throughout our analysis that the seller can strategically set
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capacity, our mechanism can also shed light on situations where capacity is exoge-

nous. Our main results will then have a slightly different interpretation; namely,

that a seller that must limit production, or use a small venue, may do just as well

(or better) than a seller that is not similarly constrained. In particular, this outcome

will tend to occur in situations where the exogenous capacity happens to be close to

the optimal level.

Our results rely on the idea that consumers can observe sales and capacity, which

is reasonable in many markets, e.g. restaurants, sports and concert tickets, and

limited edition products. In these markets, sales and capacity are often widely known,

but the extent of any excess demand is not. Product scarcity should also affect

learning in other settings, but in a way that depends precisely on what consumers

can observe. For example, it will matter if precise sales figures for certain products

are only observed by consumers if a sellout occurs, say due to the sellout being widely

reported in the press. A common point is that seller may still have an incentive to

act strategically to influence the social learning process.

Relatedly, the key point for our mechanism is that firms cannot costlessly claim to

sell out regardless of the true level of sales. If sell-out claims were simply cheap talk,

then consumers would fully discount them, and sellouts would not affect willingness

to way. These type of false claims are generally not feasible in relation to restaurants,

sports events, or limited edition products, where consumers can directly observe very

low sales figures. For performances, there are longstanding reports of ‘papering the

house’, where promoters quietly give away a limited number of tickets to inflate

attendance figures, but there are limits to the effectiveness of this strategy. That is,

it is not feasible to fill up a large venue for a concert that nobody wants to attend.

Moreover, even attempting to do so would be costly, both directly and indirectly,

due to the danger that consumers may learn what the seller is up to.

Our mechanism can also apply more broadly to non-market settings, where one

party wants others to take an action with positive externalities, but where there is

uncertainty as to whether this action is privately optimal. For example, a government
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may want to promote vaccine uptake amongst its citizens, who have some sense of

how their private benefits from vaccination compare to the costs associated with side

effects. A small-scale vaccine roll-out, with high-take up rates to limited groups, may

then convince others to take the vaccine when it is rolled out more broadly.25

25A small-scale roll-out may be largely due to production and distribution issues, rather than
strategic behavior. Nonetheless, the link between early take-up and vaccine confidence is a
matter of interest for both commentators and policy makers. For example, for the case of
France, see https://www.euronews.com/2021/01/18/why-do-so-few-people-in-france-want-to-take-
the-covid-19-vaccine, accessed on August 18, 2022.
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Appendix A: Proofs for Two-Period Setting

Proof of Lemma 1. We first show that period-1 consumers follow their private signals

for some r. We start with demonstrating that

P (G|b) =
(1− α)β

(1− α)β + α(1− β)
<

1

1 + 1−β
β

1−α
α
λ

= P (G|g, λ),

or equivalently

λ <

(
α

1− α

)2

, (13)

given

λ =
P (served|B)

P (served|G)
=

∑2n−1
i=0

(
2n−1
i

)
(1− α)iα2n−1−i min

{
1, K

i+1

}∑2n−1
i=0

(
2n−1
i

)
αi(1− α)2n−1−i min

{
1, K

i+1

} , (14)

which is the relevant value of λ if period-1 consumers follow their private signal. To

establish (13), it is sufficient to show

λ <
α

1− α
,

since α > 1/2. Moreover, as the distribution of sales in the good state first order

stochastically dominates the distribution of sales in the bad state, λ < α/(1 − α)

must hold for all K if it holds for K = 1. For K = 1 we get

αP (served|G) =
2n−1∑
i=0

(2n− 1)!

i!(2n− i− 1)!

1

i+ 1
αi+1(1− α)2n−i−1

1

2n

2n−1∑
i=0

2n!

(i+ 1)!(2n− i− 1)!
αi+1(1− α)2n−i−1 =

1

2n
[1− (1− α)2n].

Similarly (1−α)P (served|B) = 1
2n

[1−α2n], so since α > 1/2 we get αP (served|G) >
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(1 − α)P (served|B), or equivalently λ < α/(1 − α). Thus, we obtain P (G|b) <
P (G|g, λ). This means we can find r for which P (G|b, λ) ≤ P (G|b) < r < P (G|g, λ),

and period-1 consumers follow their private signal for any λ ≥ 1, i.e. for any capacity

1 ≤ K ≤ 2n.

Now we look at period-2 consumers. We show that there are values of α such

that, for some r, consumers follow their private signals in the first period regard-

less of capacity, and one sell-out at capacity K triggers a cascade in any equilib-

rium. To show this we establish that γ(K,λ) > P (G|b), as then choosing r ∈
(P (G|b),min{P (G|g, λ), γ(K,λ)}) would deliver the result. Note that γ(K,λ) >

P (G|b) is equivalent to ∑2n
j=K QB(j)∑2n
j=K QG(j)

λ < 1, (15)

which holds for any α > 1/2 when λ = 1, i.e. consumers expect everyone else to herd

after a sellout in the first period. Thus, we get γ(K, 1) > P (G|b), so the required

value of r exists.

For uniqueness, notice that λ ≤ 2n must hold regardless of capacity K ≥ 1 or

signal precision α, since P (served|B) ≤ 1 and P (served|G) ≥ K/2n. Moreover,

since

lim
α→1

2n∑
j=K

Qi
B(j) = 0,

there is α high enough such that (15) holds for any λ ≤ 2n, so all period-2 consumers

buy regardless of their beliefs about others’ behavior.

Proof of Theorem 1. From (1), we have QG(n) = QB(n), so that (3) gives

πu = 2n[βα + (1− β)(1− α)]Qn + 2n
2n∑

j=n+1

Q(j).

Moreover, for K ≤ n we have πc(K) = K
∑2n

j=K Q(j) ≥ K
∑2n

j=nQ(j). Thus, a
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sufficient condition for πc(K) > πu is

Q(n)[K − 2n(βα + (1− β)(1− α))] > (2n−K)
2n∑

j=n+1

Q(j). (16)

The left-hand side of (16) is positive if β < [K/2n− (1− α)]/(2α− 1). Define

β̂(α) ≡
K
2n
− (1− α)

2α− 1
.

Now we show that there are parameters (α, β) such that (16) holds. In order to

do that we show that for any number M there are parameter values (α, β) such that
Q(n)∑2n

j=n+1Q(j)
> M . This can be rewritten as

Aα − CαM
M(Bα − Cα)

> β,

where

Aα =

(
2n

n

)
αn(1−α)n, Bα =

2n∑
i=n+1

(
2n

i

)
αi(1−α)2n−i, Cα =

2n∑
i=n+1

(
2n

i

)
α2n−i(1−α)i.

Now take some sequence αs → 1. Then, lims→∞
Aαs
Cαs

=∞ and therefore there exists

T0 such that for all s > T0 we get Aαs > MCαs . Moreover, there exists T1 such that

β̂(αs) > 0 for all s > T1. Choose βs = min
{
β̂(αs),

1
2
Aαs−CαsM
M(Bαs−Cαs )

}
(note that Bαs >

Cαs as αs > 1/2). Then the sequence {αs, βs}∞s=0 yields lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

=∞ and

therefore for s > max{T0, T1} inequality (16) holds. To complete the proof note that

due to Lemma 1 there is r such that consumers follow their private signals and for

αs large enough there is a unique equilibrium in which one sell-out triggers a positive

cascade.

Now consider the second-period profits of a seller who does not restrict capacity.

First, notice that (1) directly implies QB(j) = QG(2n− j). Combined with Q(j) =
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βQG(j) + (1− β)QB(j), we can write

Q(j)−Q(2n− j) =

βQG(j) + (1− β)QB(j)− βQG(2n− j)− (1− β)QB(2n− j)

= βQG(j) + (1− β)QG(2n− j)− βQG(2n− j)− (1− β)QG(j)

= (2β − 1)[QG(j)−QG(2n− j)]. (17)

Moreover, (1) implies

QG(j)

QG(2n− j)
=
QG(j)

QB(j)
= α2(j−n)(1− α)2(n−j),

which equals 1 when j = n and which is increasing in j by α > 1/2. Thus, Q(j) −
Q(2n− j) > 0 for all j ≥ n+ 1, by β ≥ 1/2, yielding

2n∑
j=n+1

2nQ(j) ≥ n

[
n−1∑
j=0

Q(j) +
2n∑

j=n+1

Q(j)

]
= n[1−Q(n)].

We now combine with (3) to obtain

πu = 2n[βα + (1− β)(1− α)]Q(n) + 2n
2n∑

j=n+1

Q(j) ≥

2n[βα + (1− β)(1− α)]Q(n) + n[1−Q(n)],

which implies πu ≥ n by βα + (1− β)(1− α) > 1/2.

Turning to profits when the seller restricts capacity, note that setting capacity

K ≥ n can never be optimal, since it will neither increase the probability of a positive

cascade nor decrease the probability of a negative cascade. For any K ≤ n, we have

πc(K) ≤ K ≤ n < πu, which completes the proof.
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Proof of Proposition 1. First, note that the condition β(1−α)
β(1−α)+(1−β)α < r simply im-

plies that consumers with bad private signals do not buy in period 1. If this condition

is violated, then the seller prefers not restricting capacity, as consumers always buy.

Now assume that consumers follow their private signals in period 1 (we verify

this later) and capacity is restricted to K. Let ηω be first period sales in state ω.

Fix some p ∈ (0, 1). Let Kp be the largest K such that ηB(K) ≡
∑2n

j=K QB(j) > p.

Let zωp =
∑2n

j=0 min{j,Kp(n)}Qω(j). Applying the Law of Large Numbers we have

that for any p limn→∞
Kp
2n

= 1− α. Therefore, we have limn→∞
zωp
2n

= 1− α for both

ω ∈ {G,B}. Thus,

lim
n→∞

π̃c(Kp)

2n
= lim

n→∞

[
βηG(Kp)z

G
p + (1− β)ηB(Kp)z

B
p

]
= (1− α)[β + (1− β)p].

Profits are therefore maximized when p→ 1, which implies that for sufficiently large

n, a cascade is not triggered at the optimal capacity26. Thus, we get limn→∞
π̃c(K∗(n))

2n
=

1−α, where K∗(n) is the optimal capacity. Similarly, by applying the Law of Large

Numbers we get limn→∞
πu
2n

= β. This gives

lim
n→∞

π̃c(K
∗(n))− πu

2n
= 1− α− β,

which is positive if and only if 1− α > β.

Now we check the fact that consumers follow their private signals given the opti-

mal capacity constraint. We have limn→∞ λ(K∗(n)) = α
1−α . This gives the expected

value conditional on being served

lim
n→∞

P (G|g, λ(K∗(n))) = lim
n→∞

1

1 + 1−β
β

1−α
α
λ(K∗(n))

= β.

It follows that consumers follow their good signals for sufficiently large n if β > r,

and will not buy if β < r and n is sufficiently large, which completes the proof.

26This is due to limn→∞
πc(Kp)

2n = (1−α)[β+ (1− β)p] and the fact that p must be less than one
in order to trigger a cascade.
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Proof of Proposition 2. Similarly to Proposition 1, we have that β(1−α)
β(1−α)+(1−β)α < r <

β must hold for consumers to follow their private signals in period 1.

The Law of Large Numbers implies limn→∞
πu
2n

= β. Now, for any capacity

constraint such that period-2 consumers follow their private signals after a sellout,

we have

lim
n→∞

π̃c
2n
≤ βα + (1− β)(1− α).

Now consider the set of capacity constraints which trigger a cascade upon a sell-

out. This requires that ηB(K) ≡
∑2n

j=K QB(j) ≤ β(1−α)(1−r)
(1−β)αr . Let K∗ be smallest K

that this condition is satisfied. Then

lim
n→∞

πc(K
∗)

2n
= β +

β(1− α)(1− r)
αr

,

which is larger than β and βα + (1− β)(1− α).

Proof of Proposition 3. We first consider a mechanism where all consumers follow

the seller’s recommendation. Suppose the seller sends a buy recommendation with

probability pG in a good state and with probability pB in bad state, and otherwise

sends a no-buy recommendation. The belief of a consumer with a bad signal upon

receiving a buy recommendation is

γ(s = b, buy) =
β(1− α)pG

β(1− α)pG + (1− β)αpB
≥ r,

which implies

β(1− α)(1− r)pG ≥ (1− β)αrpB. (18)

Clearly, if (18) is satisfied, then consumers with s = g prefer to buy. Both pG and

pB enter opposite sides of (18) with positive signs, so sales are maximized by

pG = 1, pB =
β(1− α)(1− r)

(1− β)αr
,
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Our assumption that a consumer would not buy, given only a bad private signal,

P (G|s = b) < r, implies pB < 1, since

pB < 1⇔ β(1− α)(1− r) < (1− β)αr ⇔ β(1− α)

β(1− α) + (1− β)α
< r.

The optimal profit in this case is

π∗ = β + (1− β)pB = β +
(1− α)(1− r)β

αr
. (19)

Now consider a mechanism where only consumers with bad signals follow the seller’s

recommendation, and again let (pG, pB) denote the probabilities of buy recommen-

dations. The incentive compatibility constraint for a consumer with a good signal

who receives a no-buy recommendation is

γ(s = g, not buy) =
βα(1− pG)

βα(1− pG) + (1− β)(1− α)(1− pB)
≥ r,

or

βα(1− r)(1− pG) ≥ (1− β)(1− α)r(1− pB). (20)

Both (20) and (18) must bind at the optimum, which implies values

pG =
α(αβ − r(α(2β − 1)− β + 1))

(2α− 1)β(1− r)
, pB =

(1− α)(αβ − r(α(2β − 1)− β + 1))

(2α− 1)(1− β)r
.

(21)

under the optimal such mechanism. The probability pB is well-defined as long as

pG ∈ [0, 1]. This is the case if α ≥ α(r, β) ≡ max{(1−r)β,r(1−β)}
r+β−2rβ , which is equivalent to

P (G|b) < r < P (G|g), that consumers follow their private signals in the absence of

other information. The profits from this persuasion mechanism are

π̃ = β[α + (1− α)pG] + (1− β)[αpB + (1− α)]. (22)

with pG, pB given by (21). As long as pG, pB > 0, these profits exceed βα + (1 −
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β)(1−α), which is what the seller would earn if all consumers followed their private

signals. Thus, the optimal mechanism either leads all consumers to follow the seller’s

recommendation, or only those with bad signals to do so.

To compare π̃ and π∗, define

∆ ≡ π∗ − π̃ =
(1− α) (α2 + α− 2αr + r − 1) (β − αβ − r(α(1− 2β) + β))

α(2α− 1)(1− r)r

The equation ∆ = 0 has four roots:

α1 =
(1− r)β

r + β − 2βr
, α2,3 =

1

2

(
2r − 1±

√
4r2 − 8r + 5

)
, α4 = 1.

Note that α2 = 1
2

(
2r − 1−

√
4r2 − 8r + 5

)
< 0, α3 ≡ α(r) ≤ 1 = α4 and ∆ < 0 in

a left neighbourhood of α = 1. Moreover, α3 ≥ 1/2 for all r.

Suppose that β ≥ r. Then we have α(β, r) = α1 ≥ 1/2. It is straightforward to

verify that α1 > α(r) if and only if β > r
1−r [α(r) + 1 − 2r] ≡ β(r), where β(r) > r.

Since in the absence of any recommendation consumers follow their private signals,

we require that α ≥ α1. Thus, we have ∆ > 0 if r ≤ β < β(r) and α1 < α < α(r);

we have ∆ < 0 if r ≤ β < β(r) and α > α(r), or if β > β(r) and α > α1.

Now suppose that β < r. Then we have α(β, r) = r(1−β)
r+β−2rβ >

1
2
> α1. Moreover,

α(β, r) < α(r) if and only if β > r
[
2r−α(r)
3r−1

]
≡ β(r), where β(r) < r. Thus, we have

∆ > 0 if β(r) < β < r and α(β, r) ≤ α < α(r); we have ∆ < 0 if β(r) < β < r and

α > α(r), or if β < β(r) and α ≥ α(β, r).

As for β ≥ r, we have α1 = α(β, r), so combining cases β ≥ r and β < r gives

the result in the proposition.

Proof of Proposition 4. As we already established the equivalence of profits from

the obedient mechanism and profits in large markets with flexible capacity, we now

proceed by comparing the conditions in Propositions 2 and 3. First, note that β(r) <
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r < β(r) for all r ∈ (0, 1). Moreover, if β > r we have

α(r, β) =
(1− r)β

r + β − 2βr
.

Thus, condition α > α(r, β) is equivalent to condition β(1−α)
β(1−α)+(1−β)α < r < β in

Proposition 2, which completes the proof.

Appendix B: Proofs for General Setting

This appendix contains formal results for the fully dynamic setting outlined in section

5. We start with a sequence of Lemmas describing sales probability distributions and

the consumer learning process, see Lemmas B.1-B.3 and Lemma 2. We then turn

to profit comparisons and the proof that restricting capacity can be beneficial, see

Lemma B.4 and Theorem 2.

Lemma B.1. Let Qω(j) be the probability of having j out of 2n good signals in state

ω ∈ {G,B}. Then,

QG(j) =

(
2n

j

)
[1− (α + ε− αε)]2n−j (α + ε− αε)j, (23)

QB(j) =

(
2n

j

)
[1− (α + ε− αε)]j (α + ε− αε)2n−j. (24)

Moreover,

(i) QB(j)
QG(j)

is non-increasing in j.

(ii) QB(n)
QG(n)

= 1, QB(n−1)
QG(n−1)

≥
(

α
1−α

)2
and QB(n+1)

QG(n+1)
≤
(
1−α
α

)2
.

(iii) QB(j) = QG(2n− j) for all j ≤ 2n.

(iv) QG(j) > QG(2n− j) if j ≥ n+ 1.
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Proof of Lemma B.1. The expressions for probabilities are obtained directly by com-

puting the number of good signals in each state of the world. Let ξ ≡ α + ε − αε,
and note that ξ ∈ (1/2, 1). Then we have

QB(j)

QG(j)
= ξ2(n−j)(1− ξ)2(j−n),

which is decreasing in j and equals to 1 when j = n. Moreover, for j = n− 1 we get

QB(n− 1)

QG(n− 1)
=

ξ2

(1− ξ)2
>

α2

(1− α)2
,

and for j = n+ 1 we get

QB(n+ 1)

QG(n+ 1)
=

(1− ξ)2

ξ2
<

(1− α)2

α2
.

Now,

QG(2n− j) =

(
2n

2n− j

)
ξ2n−j(1− ξ)j =

(
2n

j

)
ξ2n−j(1− ξ)j = QB(j).

Finally,
QG(j)

QG(2n− j)
=
QG(j)

QB(j)
> 1,

for all j > n+ 1 as the ratio QG(j)/QB(j) is increasing in j and QG(n)
QB(n)

= 1.

Lemma B.2. Suppose the seller does not restrict capacity and consider an unin-

formed consumer A acting in period t ≥ 2, given sales (S1, . . . , St−1).

1. If t = 2 or t > 2 and Sτ = n for all τ ≤ t− 1:

(a) if St−1 > n then A buys regardless of her own signal;

(b) if St−1 = n then A follows her own signal;
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(c) if St−1 < n then A does not buy regardless of her own signal.

2. If t > 2 and maxτ≤t−2 Sτ > n:

(a) if St−1 = 2n, then A buys regardless of her own signal;

(b) if St−1 < 2n then A does not buy regardless of her own signal.

3. If t > 2 and maxτ≤t−2 Sτ < n:

(a) if St−1 > 0, then A buys regardless of her own signal;

(b) if St−1 = 0 then A does not buy regardless of her own signal.

Proof of Lemma B.2. We denote the belief that the state is ω, conditional on past

sales (S1, . . . St) and a private signal s, by P (ω|S1, . . . St, s). Consider t = 2. Note

that

P (G|n+ 1, b) =
1

1 + 1−β
β

α
1−α

QB(n+1)
QG(n+1)

≥ 1

1 + 1−β
β

1−α
α

= P (G|g) > r,

where the first inequality follows from QB(n+1)
QG(n+1)

≤
(
1−α
α

)2
. Thus, the belief of a

consumer that quality is good after observing S1 ≥ n + 1 and s = b is better than

P (G|g), so the consumer should buy regardless of her private information. In a

similar way we get

P (G|n− 1, g) =
1

1 + 1−β
β

1−α
α

QB(n−1)
QG(n−1)

≤ 1

1 + 1−β
β

α
1−α

= P (G|b) < r,

due to QB(n−1)
QG(n−1)

≥
(

α
1−α

)2
. Finally, P (G|n, b) = P (G|b) and P (G|n, g) = P (G|g) due

to QB(n)
QG(n)

= 1, so if S2 = n then a consumer should follow her own signal. Now

consider t > 2. Suppose that for all t′ < t − 1, St′ = n holds. Due to QB(n)
QG(n)

= 1,

this implies that in all cohorts consumers have followed their own signals. Thus, if

St−1 = n, then consumers in cohort t must also follow their signals. Suppose that
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St−1 > n. In this case

P (G|S1, . . . , St−1; b) =
β(1− α)QG(St−1)[QG(n)]t−2

β(1− α)QG(St−1)[QG(n)]t−2 + (1− β)αQB(St−1)[QB(n)]t−2
=

1

1 + 1−β
β

α
1−α

QB(St−1)
QG(St−1)

> r,

so consumers should buy. Similarly, if St−1 < n we get P (G|S1, . . . , St−1; g) < r and

consumers should not buy.

Now, suppose there exists a first t′ < t − 1 such that St′ 6= n. If St′ < n

consumers in the next cohort should not buy and a negative cascade starts. If for

all τ ∈ [t′ + 1, t − 1] Sτ = 0, then consumers in cohort t do not gain any additional

information, and should also refuse to buy. If for some τ ∈ [t′+ 1, t− 1] Sτ > 0 then

the purchase must come from an informed consumer and consumers in later cohorts

should buy. In a similar vein if St′ > n then a positive cascade starts, it persists if

for all τ ∈ [t′ + 1, t− 1] Sτ = 2n. It is otherwise reversed, as the decision not to buy

comes from an informed consumer, so consumers in later cohorts should not buy.

Lemma B.3. If λ > 0, then for all 1 ≤ K ≤ n, consumer beliefs γ(l,K, λ) given by

(11) are increasing in l, with liml→∞ γ(l,K, λ) = 1.

Proof of Lemma B.3. From (11) it is sufficient to show that
∑2n

j=K QB(j) <
∑2n

j=K QG(j).

For all j ≥ n + 1, we have QG(j) > QG(2n − j), which implies
∑K−1

j=0 QG(j) <∑2n
j=2n−K+1QG(j). By adding

∑2n−K
j=K QG(j), we obtain that

∑2n−K
j=0 QG(j) <

∑2n
j=K QG(j).

Changing the summation order on the left-hand side gives
∑2n

j=K QG(2n − j) <∑2n
j=K QG(j). Finally, due to QB(j) = QG(2n − j), we obtain

∑2n
j=K QB(j) <∑2n

j=K QG(j).

Proof of Lemma 2. First we show that
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P (G|b) =
(1− α)β

(1− α)β + α(1− β)
<

1

1 + 1−β
β

1−α
α
λ

= P (G|g, λ),

given

λ =

∑K−1
j=0 QB(j) +

∑2n−1
j=K QB(j) K

j+1∑K−1
j=0 QG(j) +

∑2n−1
j=K QG(j) K

j+1

. (25)

This is the relevant value of λ if period-1 consumers follow their private signal.

To establish P (G|b) < P (G|g, λ), we require that the following condition holds27

λ <

(
α

1− α

)2

. (26)

Recall that λ = P (served|B)/P (served|G). Denote ξ = α+ ε−αε and write out

α2P (served|G) =
α2

ξ

2n−1∑
i=0

(2n− 1)!

i!(2n− i− 1)!

1

i+ 1
ξi+1(1− ξ)2n−i−1

1

2n

α2

ξ

2n−1∑
i=0

2n!

(i+ 1)!(2n− i− 1)!
ξi+1(1− ξ)2n−i−1 =

1

2n

α2

ξ
[1− (1− ξ)2n],

and

(1− α)2P (served|B) =
1

2n

(1− α)2

1− ξ
[1− ξ2n].

Then, a sufficient condition for (26) is

α2

ξ
>

(1− α)2

1− ξ
,

27Note that it is exactly the same as condition (13) for period one in our two-period setting.
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which always holds provided that

α > α̂0(ε) ≡
1− 2ε+

√
1 + 4ε− 4ε2

4(1− ε)
.

It is straightforward to check that α̂(ε) is an increasing function with α̂0(0) = 1/2

and limε→1 α̂0(ε) = 1, which completes this part of the proof. We have shown that

P (G|b) < P (G|g, λ). Thus, we can find r for which P (G|b) < r < P (G|g, λ): period-1

consumers follow their private signals.

One sell-out is sufficient to trigger a cascade if γ(1, K, λ) > r. Thus, an appro-

priate choice of r is possible if

P (G|b) < min {P (G|g, λ), γ(1, K, λ)} .

Note that if λ = 1, then γ(1, K, 1) > P (G|b) will hold for any α > 1/2. This implies

that if α > α̂0(ε), there is an equilibrium where period-1 consumers follow their

private signals and a single sell-out triggers a cascade.

For uniqueness, notice that λ ≤ 2n must hold regardless of capacity K ≥
1 or signal precision α, since P (served|B) ≤ 1 and P (served|G) ≥ K/2n. By

limα→1

∑2n
j=K Q

i
B(j) = 0, we have

∑2n
j=K QB(j)∑2n
j=K QG(j)

λ < 1,

and, as λ ≤ 2n, there is α1(ε) < 1 such that, if α > α1(ε), then P (G|b) < γ(1, K, λ).

It is then optimal for a consumer to ignore her private signal and always buy after

one sell-out, even if she expects others to follow their own signals. To complete the

proof, set α̂1(ε) = max{α̂0(ε), α1(ε)}.
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Lemma B.4. Let

πQu =
1

1− δQ(n)

(
2n∑
j=0

jQ(j) +
2nδ

1− δ

2n∑
j=n+1

Q(j)

)
, (27)

and

πQc (K) =
2n∑
j=0

min{j,K}Q(j) +
Kδ

1− δ

2n∑
j=K

Q(j), (28)

with δ ∈ (0, 1).

Consider a sequence of probability measures {Qs}∞s=0 such that lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

=

∞ and Qs(n) is uniformly bounded below 1: Qs(n) ≤ Q < 1. Then, there exist δ and

T0, such that for all s > T0, n > 1, K ≤ n

πQ
s

u < πQ
s

c (K)

Suppose furthermore that lims→∞Q
s(n) = 0. Then, for any δ ∈

(√
2n−K
2n

, 1
)

, there

exists T1 such that for all s > T1 we have πQ
s

u < πQ
s

c (K).

Proof. For simpler notation we omit the s superscript in our preliminary steps and

work with generic Q. Rewrite (27) as

[1− δQ(n)]πQu = S1 +
δ

1− δ
2nS2, (29)

where S1 =
∑2n

j=1 jQ(j) and S2 =
∑2n

j=n+1Q(j). Note that as long as Q(n) < 1, the

term [1− δQ(n)] is bounded away from 0 for δ < 1. In a similar way,

πQc (K) = S1 −
2n∑
j=K

(j −K)Q(j) +
δ

1− δ
K[

n−1∑
j=K

Q(j) +Q(n) + S2] >

S1 − (2n−K)[
n−1∑
j=K

Q(j) +Q(n) + S2] +
δ

1− δ
K[

n−1∑
j=K

Q(j) +Q(n) + S2],

where the inequality follows from replacing all terms (j − K) with the larger term
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2n−K. Moreover, for δ > 2n−K
2n

the penultimate term is smaller than the last one,

and thus

πQc (K) > S1 +
δK − (2n−K)(1− δ)

1− δ
[Q(n) + S2].

This implies that πQc (K) > πQu if{
S1 +

δK − (2n−K)(1− δ)
1− δ

[Q(n) + S2]

}
[1− δQ(n)] ≥ S1 +

δ

1− δ
2nS2,

which can be rewritten as

− δQ(n)S1 +
δK − (2n−K)(1− δ)

1− δ
Q(n)[1− δQ(n)] ≥

S2

1− δ
{2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)]} .

As S1 ≤ 2n, the above inequality holds as long as

Q(n)

1− δ
{[δK − (2n−K)(1− δ)][1− δQ(n)]− 2nδ(1− δ)} ≥

S2

1− δ
{2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)]} .

Now note that for all δ ∈ (0, 1), the expression

fR ≡ 2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)] = δ2KQ(n) + (2n−K)[1− δQ(n)],

is strictly positive. Moreover, the expression

fL ≡ [δK − (2n−K)(1− δ)][1− δQ(n)]− 2nδ(1− δ),

is also strictly positive if δ >

√
[(2n−K)Q(n)]2+8n(2n−K)[1−Q(n)]−(2n−K)Q(n)

4n−4nQ(n)
≡ δ∗(Q(n);n,K),

where the critical value δ∗(Q(n);n,K) is increasing in Q(n), equals
√

2n−K
2n

at

Q(n) = 0, and approaches 1 as Q(n) → 1. Moreover, as Q(n) ≤ Q < 1, we

have that δ∗(Q(n);n,K) < 1. Note that
√

2n−K
2n

> 2n−K
2n

, and therefore the condi-
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tion we used for the approximation of πQc (K) is automatically satisfied as long as

δ >
√

2n−K
2n

. Thus, for any Q(n) < 1, there exists δ ∈
(√

(2n−K)/2n, 1
)

such that

the right-hand-side of
Q(n)

S2

=
Q(n)∑2n

j=n+1Q(j)
≥ fR
fL
, (30)

is positive and finite. Thus, if lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

=∞, there exists T0 such that for

all s > T0 the left-hand-side of (30) is larger than the right-hand-side and therefore

πQ
s

u < πQ
s

c (K). Moreover, δ can be chosen arbitrarily close to
√

2n−K
2n

, as long as

Q(n) is sufficiently close to zero, which proves the second statement of the lemma.

Proof of Theorem 2. We start by providing explicit expressions for the different terms

in the profit function (12). Let ηω =
∑2n

j=K Qω(j) denote the probability of a sell-out,

given state ω ∈ {G,B}. Let SB =
∑K−1

j=0 jQB(j) denote expected sales as of a period

where a sellout does not occur and the state is bad. Let SG denote the corresponding

expected sales when the state is good, where

SG ≡
K−1∑
j=0

QG(j)

(
j + δ

∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(min{i,K}+ Kδ

1−δ )

1− (1− ε)2nδ

)
,

since a negative cascade in the good state is reversed in the first subsequent period

that an informed consumer arrives. Let R denote expected discounted sales in the

bad state in the event of a purchase cascade, where

R =
K

1− δ
−
∑2n

i=2n−K+1

(
2n
i

)
εi(1− ε)2n−i(i− 2n+K + Kδ

1−δ )

1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−iδ

,

where the cascade will be reversed upon the arrival of 2n−K+1 informed consumers.
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If the seller does not restrict capacity, then its profit can be rewritten as:

πu =
2n∑
j=0

jQ(j) + δQ(n)πu + δ

2n∑
j=n+1

Q(j)
2n

1− δ

+ (2β − 1)δ
n−1∑
j=0

QG(j)

(∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(i+ 2nδ

1−δ )

1− (1− ε)2nδ

)
. (31)

Thus, for β < 1/2 we have πu < πQu .

From Lemma 2 it follows that for α large enough there is a value of r such that

a single sell-out triggers a cascade. Thus, by setting L = 1 in (12) and using the

expressions for R, ηB, ηG, SB, and SG, we can rewrite the profit function (12) as

πc(K) =
2n∑
j=0

min{j,K}Q(j) +
2n∑
j=K

Q(j)
K

1− δ

+ βδ
K−1∑
j=0

QG(j)

[∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(min{i,K}+ Kδ

1−δ )

1− (1− ε)2nδ

]

− (1− β)δ
2n∑
j=K

QB(j)

[∑2n
i=2n−K+1

(
2n
i

)
εi(1− ε)2n−i(i− 2n+K + Kδ

1−δ )

1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−iδ

]
. (32)

Thus, πc(K) > πQc (K) if and only if

(
β

1− β

)(∑K−1
j=0 QG(j)∑2n
j=K QB(j)

)
>

[∑2n
j=2n−K+1 (2n

j )εj(1−ε)2n−j(j−2n+K+ Kδ
1−δ )

1−
∑2n−K
j=0 (2n

j )εj(1−ε)2n−jδ

]
[∑2n

j=1 (2n
j )εj(1−ε)2n−j(min{j,K}+ Kδ

1−δ )

1−(1−ε)2nδ

] . (33)

Notice that min{j,K} ≥ 0 and j − 2n + K ≤ K. Thus, to establish (33), it will be
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enough to show that

(
δβ

1− β

)(∑K−1
j=0 QG(j)∑2n
j=K QB(j)

)
>[ ∑2n

j=2n−K+1

(
2n
j

)
εj(1− ε)2n−j

1−
∑2n−K

j=0

(
2n
j

)
εj(1− ε)2n−jδ

]
/

[∑2n
j=1

(
2n
j

)
εj(1− ε)2n−j)

1− (1− ε)2nδ

]
. (34)

Note that
∑K−1

j=0 QG(j) > QG(0) = (1− ξ)2n > (1−α)2n where ξ ≡ α+ ε−αε. Also,∑2n
j=K QB(j) < 1. This implies that

(
δβ

1− β

)(∑K−1
j=0 QG(j)∑2n
j=K QB(j)

)
>

δβ

1− β
(1− α)2n.

For all α < 1, β ∈ (0, 1), the right-hand-side is strictly positive and independent

from ε.

For δ < 1, both 1 −
∑2n−K

j=0

(
2n
j

)
εj(1 − ε)2n−jδ and 1 − (1 − ε)2nδ are strictly

positive for all ε ∈ [0, 1]. Moreover,

lim
ε→0

∑2n
j=2n−K+1

(
2n
j

)
εj(1− ε)2n−j∑2n

j=1

(
2n
j

)
εj(1− ε)2n−j

=

lim
ε→0

ε2n−K
∑2n

j=2n−K+1

(
2n
j

)
εj−2n+K(1− ε)2n−j∑2n

j=1

(
2n
j

)
εj(1− ε)2n−j

=

lim
ε→0

ε2n−K
(

2n
2n−K+1

)
2n

= 0.

Thus, for all α and β there exists ε0(α, β)28 small enough, such that the inequality

(34) is satisfied for all ε < ε0(α, β).

Therefore, πc(K) ≥ πu if for all ε there is a sequence {αs, βs} such that {Qs
ω(j)}∞s=0

satisfies the requirements of Lemma B.4. That is, we have to show that there is a

28We omit other arguments for simpler notation.
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sequence such that, for any number M , there is T0 such that

Qs(n)

/(
2n∑

j=n+1

Qs(j)

)
= Qs(n)

/(
βs

2n∑
j=n+1

Qs
G(j) + (1− βs)

2n∑
j=n+1

Qs
B(j)

)
> M,

or

βs <
Qs(n)−M

∑2n
j=n+1Q

s
B(j)

M
(∑2n

j=n+1Q
s
G(j)−

∑2n
j=n+1Q

s
B(j)

) .
for all s > T0.

Because of the properties of Qω(j) established in Lemma B.1, we have that for

all (αs, βs), Q
s(n) is bounded away from 1 and

∑2n
j=n+1Q

s
G(j) −

∑2n
j=n+1Q

s
B(j) > 0

holds. Now, take a sequence αs → 1. Note, that for any bounded sequence εs we

have that limαs→1 ξs = 1. Then,

lim
s→∞

Qs(n)∑2n
j=n+1Q

s
B(j)

= lim
s→∞

(
2n
n

)∑2n
j=n+1

(
2n
j

)
ξn−js (1− ξs)j−n

=∞.

Then choose βs = 1
2

Qs(n)−M
∑2n
j=n+1Q

s
B(j)

M(
∑2n
j=n+1Q

s
G(j)−

∑2n
j=n+1Q

s
B(j))

, which is positive for s large enough.

Therefore, for such a sequence (αs, βs), we have lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

=∞. Moreover,

lims→∞Q
s(n) = 0 (which also implies that for sufficiently large s we have βs < 1/2).

Thus, all conditions of Lemma B.4 are satisfied, i.e. there is a sequence αs → 1

and corresponding sequence βs such that πQ
s

u < πQ
s

c starting from some s. Choose

εs = 1
2
ε0(αs, βs). For such εs, starting from some s, we have πc(K) > πu.

Finally, we verify that for (αs, βs, εs), starting at some s, we can find r such

that the following holds: period-1 consumers all follow their private signal regardless

of K, and a single sell-out triggers a positive cascade. The relevant condition is

P (G|b) < P (G|g, λ). Lemma 2 shows that it holds for any value of ε if α > α̂1.

It is straightforward to verify that limε→0 α̂1 < 1 and thus there is a sequence

(αs, βs, εs) and s0 such that period-1 consumers follow their private signals, one sell-

out triggers a cascade and the firm prefers to be constrained with capacity constraint
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K if s > s0.
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Online Appendix C: Deterministic Model

In this Appendix we consider a setting similar to that in Section 5, with an infi-

nite time horizon and potentially unbounded signals. The only modification is that

instead of assuming each consumer is perfectly informed about the state with prob-

ability ε, we now assume that a fixed number of consumers m < n in each cohort of

size 2n is perfectly informed, where m is a model parameter. The following Lemma,

analogous to Lemma B.1, defines the probability distribution of signals in each cohort

and establishes its properties in this deterministic setting.

Lemma C.1. Let Qdet
ω (j) be the probability of having j out of 2n good signals in

state ω ∈ {G,B}. Then,

Qdet
G (j) =

(
2n−m
j −m

)
αj−m(1− α)2n−j, (35)

if j ≥ m, and Qdet
G (j) = 0 if j < m, along with

Qdet
B (j) =

(
2n−m

j

)
α2n−m−j(1− α)j, (36)

if j ≤ 2n−m and Qdet
B (j) = 0 if j > 2n−m.

Moreover,

(i)
QdetB (j)

QdetG (j)
is non-increasing in j.

(ii)
QdetB (n)

QdetG (n)
= 1,

QdetB (n−1)
QdetG (n−1) ≥

(
α

1−α

)2
and

QdetB (n+1)

QdetG (n+1)
≤
(
1−α
α

)2
.

(iii) Qdet
B (j) = Qdet

G (2n− j) for all j ≤ 2n.

(iv) Qdet
G (j) > Qdet

G (2n− j) if j ≥ n+ 1.

Proof of Lemma C.1. Consider Qdet
G (j) given by (35) and Qdet

B (j) given by (36).
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Clearly,
QdetB (j)

QdetG (j)
= 0 if 2n− j ≤ m− 1. For 2n− j ≥ m we have

Qdet
B (j)

Qdet
G (j)

=

[
(j −m)!

(2n−m− j)!

] [
(2n− j)!

j!

]
α2(n−j)(1− α)2(j−n),

which is decreasing in j and equals to 1 when j = n. Moreover, for j = n− 1 we

get
Qdet
B (n− 1)

Qdet
G (n− 1)

=
n(n+ 1)

(n−m+ 1)(n−m)

α2

(1− α)2
>

α2

(1− α)2
,

and for j = n+ 1 we get

Qdet
B (n+ 1)

Qdet
G (n+ 1)

=
(n−m+ 1)(n−m)

n(n+ 1)

(1− α)2

α2
<

(1− α)2

α2
.

Now,

Qdet
G (2n−j) =

(
2n−m

2n− j −m

)
α2n−j−m(1−α)j =

(
2n−m

j

)
α2n−j−m(1−α)j = Qdet

B (j).

Finally,
Qdet
G (j)

Qdet
G (2n− j)

=
Qdet
G (j)

Qdet
B (j)

> 1,

for all j > n+ 1 as the ratio Qdet
G (j)/Qdet

B (j) is increasing for j > m and
QdetG (n)

QdetB (n)
= 1.

As the essential properties of Qdet
ω coincide with the properties of Qω established

in Lemma B.1, it follows that Lemma B.2 also holds in the deterministic setting.

Moreover, the evolution of beliefs is still described by expression (11), i.e.

2



γ(l,K, λ) =
P (G ∩ b, l sell-outs, served)

P (G ∩ b, l sell-outs, served) + P (B ∩ b, l sell-outs, served)
=

1

1 + 1−β
β

α
1−α

[∑2n
j=K QB(j)∑2n
j=K QG(j)

]l
λ

,

which implies that Lemma B.3 holds. This allows us to prove a result analogous to

Lemma 2 for the deterministic setting.

Lemma C.2. There are thresholds α̂det0 ≤ α̂det1 < 1 (possibly functions of parameters)

and a value of the outside option r ∈ (0, 1) such that for any capacity constraint

K ≤ n:

1. for α > α̂det0 , consumers follow their private signals in the first period;

2. for α > α̂det0 , there is an equilibrium in which one sell-out triggers a cascade;

3. for α > α̂det1 , there is a unique equilibrium in which one sell-out triggers a

cascade.

Proof.

P det(G|b) =
(1− α)β

(1− α)β + α(1− β)
<

1

1 + 1−β
β

1−α
α
λ

= P det(G|g, λ),

given

λ =

∑K−1
j=0 Qdet

B (j) +
∑2n−1

j=K Qdet
B (j) K

j+1∑K−1
j=0 Qdet

G (j) +
∑2n−1

j=K Qdet
G (j) K

j+1

. (37)

This is the relevant value of λ if period-1 consumers follow their private signal.

To establish P det(G|b) < P det(G|g, λ), we require that the following condition

holds
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λ <

(
α

1− α

)2

. (38)

Now consider the probabilities of being served conditional on the realisation of

the state.

P det(served|G) =
2n−m−1∑
i=0

(2n−m− 1)!

i!(2n−m− 1− i)!
αi(1− α)2n−m−1−i min

{
1,

K

m+ i+ 1

}

P det(served|B) =
2n−1∑
i=0

(2n−m− 1)!

i!(2n−m− 1− i)!
(1− α)iα2n−m−1−i min

{
1,

K

i+ 1

}
The required inequality must hold for all K if it holds for K = 1, for which we get

(1−α)2P det(served|B) = (1−α)
2n−1∑
i=0

(2n−m− 1)!

(i+ 1)!(2n−m− 1− i)!
(1−α)i+1α2n−m−1−i =

1− α
2n−m

[1− α2n−m],

and

α2P det(served|G) = α2

2n−m−1∑
i=0

(2n−m− 1)!

i!(2n−m− 1− i)!
αi(1−α)2n−m−1−i

1

m+ i+ 1
·i+ 1

i+ 1
≥

α
2n−m−1∑
i=0

(2n−m− 1)!

(i+ 1)!(2n−m− 1− i)!
αi+1(1− α)2n−m−1−i

1

m+ 1
≥

α
2n−m−1∑
i=0

(2n−m− 1)!

(i+ 1)!(2n−m− 1− i)!
αi+1(1− α)2n−m−1−i

1

n
=

1

n

α

2n−m
[1− (1− α)2n−m].

Thus, a sufficient condition for (38) is

α

n
[1− (1− α)2n−m] > (1− α)[1− α2n−m].
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Note that this inequality holds for all m provided that α > n/(n + 1). Thus, there

must exist α̃det(m) < n/(n + 1) such that period-1 consumers follow their private

signals for all capacity constraints.

One sell-out is sufficient to trigger a cascade if γ(1, K, λ) > r. Thus, an appro-

priate choice of r is possible if

P det(G|b) < min
{
P det(G|g, λ), γ(1, K, λ)

}
.

Note that if λ = 1, then γ(1, K, 1) > P det(G|b) will hold for any α > 1/2. This

implies that if α > α̂det0 ≡ max{α̃det(m), 1/2}, there is an equilibrium where period-1

consumers follow their private signals and a single sell-out triggers a cascade.

For uniqueness, notice that λ ≤ 2n must hold regardless of capacity K ≥ 1

or signal precision α, since P det(served|B) ≤ 1 and P det(served|G) ≥ K/2n. By

limα→1

∑2n
j=K Q

det
B (j) = 0, we have

∑2n
j=K Q

det
B (j)∑2n

j=K Q
det
G (j)

λ < 1,

and, as λ ≤ 2n, there is α1 < 1 such that, if α > α1, then P (G|b) < γ(1, K, λ). It

is then optimal for a consumer to ignore her private signal and always buy after one

sell-out, even if she expects others to follow their own signals. Thus, for α > α̂det1 ≡
max{α̃det(m), α1}, the equilibrium in which one sell-out triggers a cascade is unique.

We now turn from consumer behavior to firm profits in this deterministic setting.

Let ηdetω =
∑2n

j=K Q
det
ω (j) denote the probability of a sell-out, given state ω ∈ {G,B}.

Let SdetB =
∑K−1

j=0 jQdet
B (j) denote expected sales as of a period where a sellout does

not occur and the state is bad. Let SiG denote the corresponding expected sales when

5



the state is good, where

SdetG ≡
K−1∑
j=0

Qdet
G (j)

(
j + δm+

δ2K

1− δ

)
,

since the arrival ofm informed consumers immediately reverses any incorrect negative

cascade.

Expected profits given capacity K and L ≥ 1, in the deterministic setting, are

πdetc (K) = β

[
1− (δηdetG )L

1− δηdetG

(SdetG + ηdetG K) + (δηdetG )L
K

1− δ

]
+

(1− β)

[
1− (δηdetB )L

1− δηdetB

(SdetB + ηdetB K) + (δηdetB )L
K

1− δ

]
. (39)

Finally, we can formulate a result similar to Theorem 2. The main difference

with the stochastic case considered in Section 5 is that incorrect positive cascades

are never reversed, as setting K ≤ n guarantees that the choice of the m informed

consumers not to buy in the bad state is hidden.

Theorem C.3. In the deterministic setting, for any n > 1, 1 ≤ m < n, K ≤ n and

δ >
√

2n−K
2n

, there are (α, β) ∈ (1/2, 1)× (0, 1/2) and r > 0 for which the seller can

increase its profits above the full-capacity level by restricting capacity to K.

Proof. According to Lemma C.2, for α > α̂det0 there is a value of r such that con-

sumers follow their private signals in the first period and a single sell-out triggers a

cascade. Thus, by setting L = 1 in (39) we can rewrite the profit as

πdetc =
2n∑
j=0

min{j,K}Qdet(j) + δ

2n∑
j=K

Qdet(j)
K

1− δ
+

βδ

[
K−1∑
j=0

Qdet
G (j)

(
min{m,K}+

Kδ

1− δ

)]
. (40)

Note that πdetc (K) ≥ πQ
det

c (K) where πQ
det

c (K) is defined by (28). The profit of a full

6



capacity firm can be written as

πdetu =
2n∑
j=0

jQdet(j) + δQdet(n)πdetu + δ
2n∑

j=n+1

Qdet(j)
2n

1− δ
+

(2β − 1)δ
n−1∑
j=0

Qdet
G (j)

(
m+

2nδ

1− δ

)
, (41)

and therefore for β < 1/2 we have πdetu ≤ πQ
det

u with πQ
det

u defined by (27) and

probabilities Qdet defined by (35) and (36). Therefore, πdetc (K) ≥ πdetu if for all m

there is a sequence {αs, βs} such that {Qdet,s
ω (j)}∞s=0 satisfies the requirements of

Lemma B.4. That is, we have to show that there is a sequence such that, for any

number M , there is T0 such that

Qdet,s(n)

/(
2n∑

j=n+1

Qdet,s(j)

)
= Qdet,s(n)

/(
βs

2n∑
j=n+1

Qdet,s
G (j) + (1− βs)

2n∑
j=n+1

Qdet,s
B (j)

)
> M,

or

βs <
Qdet,s(n)−M

∑2n
j=n+1Q

det,s
B (j)

M
(∑2n

j=n+1Q
det,s
G (j)−

∑2n
j=n+1Q

det,s
B (j)

) ,
for all s > T0.

Because of the properties of Qdet
ω (j) established in Lemma C.1, we have that for all

(αs, βs), Q
s(n) is bounded away from 1 and

∑2n
j=n+1Q

det,s
G (j)−

∑2n
j=n+1Q

det,s
B (j) > 0

holds. Now, take a sequence αs → 1. Then,

lim
s→∞

Qdet,s(n)∑2n
j=n+1Q

det,s
B (j)

= lim
s→∞

(
2n−m
n

)∑2n
j=n+1

(
2n−m
j

)
αn−js (1− αs)j−n

=∞.

Then choose βs = 1
2

Qdet,s(n)−M
∑2n
j=n+1Q

det,s
B (j)

M(
∑2n
j=n+1Q

det,s
G (j)−

∑2n
j=n+1Q

det,s
B (j))

, which is positive for s large

enough. Therefore, for such a sequence (αs, βs), we have lims→∞
Qdet,s(n)∑2n

j=n+1Q
det,s(j)

=∞.

Moreover, lims→∞Q
det,s(n) = 0 (which also implies that for sufficiently large s we

7



have βs < 1/2). Thus, all conditions of Lemma B.4 are satisfied.

Finally, we verify that for (αs, βs), starting at some s, we can find r such that

the following holds: period-1 consumers all follow their private signal regardless

of K, and a single sell-out triggers a positive cascade. The relevant condition is

P (G|b) < P (G|g, λ). Lemma C.2 shows that it was sufficient to have α > α̂det0 . This

inequality indeed holds for (αs, βs), starting at some s, since αs → 1.
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Online Appendix D: Pricing

In this appendix we briefly discuss how pricing can affect our results. The seller’s

optimization problem, seen only as a function of capacity, is complicated by the

fact that profits are not necessarily quasi-concave in K. Considering both capacity

and price complicates matters further still since the seller’s optimal price is directly

linked to its capacity choice. To illustrate the main features of the optimal pricing

problem, and maintain tractability, we proceed as follows. First, we assume the

seller sets a price and capacity at t = −1 that are fixed for all periods. Second, we

continue to denote consumers’ outside option by r, and consider the seller’s problem

of choosing the optimal price q. Third, we focus on the deterministic case with

informed consumers, m ≥ 1, and we compute the optimal price for a seller that

restricts capacity numerically.

In line with Bose et al. (2008), a seller with fully capacity can choose a pooling

price such that all uninformed consumers want to buy regardless of their signal:

qpu =
β(1− α)

β(1− α) + α(1− β)
− r.

The resulting profits are

Πp
u =

[
β

2n

1− δ
+ (1− β)(2n−m)

]
qpu.

Consumers always buy if the state is good, and refuse to buy as of period 2 if the state

is bad, as the state is immediately revealed by the choices of informed consumers.

Any lower pooling price q < qpu would not affect demand and would result in lower

profits.

Alternatively, a seller with full capacity can charge a separating price such that

only consumers with good signals want to buy:

qsu =
αβ

αβ + (1− α)(1− β)
− r,
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yielding profits

Πs
u = πdetu qsu,

with πdetu given by (41) in Appendix C. Any higher price q > qsu would lead to zero

sales, whereas any lower separating price qpu < q ≤ qsu would not increase demand.

The optimal pricing problem is solved by a direct comparison of Πp
u and Πs

u.

For a seller with capacity K ≤ 2n−m, the highest possible pooling price is

qpc =
β(1− α)

β(1− α) + α(1− β) 2n
2n−m

− r,

which is lower than qpu due to the winner’s curse effect, i.e. because the probability

of being served in the bad state, K/(2n−m), exceeds that in the good state, K/2n.

Seller profits, given capacity K ≤ 2n−m and pooling price qpc , are

Πp
c =

K

1− δ
qpc ,

since the capacity constraint masks the choice of informed consumers, the state is

never revealed, and all uninformed consumers want to buy in all periods. Profits Πp
c

are monotone in K, so the optimal choice of capacity is K = 2n−m.

For a seller that restricts capacity, the highest possible separating price that can

convince all consumers with good signals to buy for sure, given capacity K, is

qsc =
1

1 + 1−β
β

α
1−αλ

− r,

with λ given by (37) in Appendix C. Since λ > 1 for any K < 2n, we have qsc < qsu,

again due to the winner’s curse effect.

Profits given capacity K and separating price q are

Π = πdetc (K)q, (42)

with πdetc (K) given by (39). The higher the separating price q, the more sell-outs L
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are required to trigger a positive cascade, so πdetc (K) depends on q.

To say more about optimal pricing given capacity K, define Lmax as the largest

value of L for which γ(L − 1, K) − r < qsc , given (11). That is, all consumers

with good signals in the first cohort will want to buy at price q = γ(L,K) − r

if and only if L ≤ Lmax − 1.29 Demand is independent of price whenever q ∈
(γ(L,K) − r, γ(L + 1, K) − r), so in our simulation we will consider prices q ∈
{qpc , γ(1, K)− r, . . . , γ(Lmax − 1, K)− r, qsc}.30

Panel 6(a) depicts the optimal separating prices as a function of signal precision.

It shows that the separating price for a seller that restricts capacity is lower than the

optimal full-capacity price, as it must be due to the winner’s curse effect. It also shows

that both prices are generally increasing in signal precision. Higher signal precision

increases the willingness to pay of consumers with good signals, allowing the seller

to charge a higher price. However, in a few cases increased signal precision leads the

seller to reduce capacity, which strengthens the winner’s curse effect and pushes the

price down. The winner’s curse effect also explains why the difference between the

two prices is generally increasing in signal precision, as high precision makes rationing

more likely in the good state if the seller restricts capacity. Moreover, our simulation

results show that the optimal pooling prices are lower than these separating prices

and are decreasing in signal precision, because high precision decreases the willingness

to pay of consumers with bad signals.

Panel 6(b) compares profits for a seller that restricts capacity and a seller with

full capacity, given the optimal pooling and separating prices. Looking at separating

prices, the seller finds it profitable to restrict capacity as long as signal precision

is not too high. This despite the fact that the winner’s curse effect reduces the

price the seller can charge when it restricts capacity. The seller sometimes finds it

even more attractive to restrict capacity and charge the pooling price; this is what

happens if signal precision is relatively low. The separating and pooling prices are

29Such a value Lmax exists by Lemma B.3.
30Notice that Lmax sell-outs are required to trigger a cascade at price q = qsc , which is the highest

possible separating price.
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Figure 6: Pricing
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(a) Prices as a function of signal precision α
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(b) Profit comparison for different values of signal precision α

12



then similar, where the latter combined with capacity K = 2n − m induces all

uninformed consumers to buy in all periods. In contrast, a seller with full capacity

will not want to set the pooling price, because the choice of informed consumers may

immediately reveal that the state is bad. Thus, the simulation shows that restricting

capacity can sometimes increase profits even if sellouts are not necessary to generate

a cascade, simply because it helps the cascade (generated by the pooling price) to

be maintained.
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