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Abstract

A college applicant faces the following risky choice: she applies to a portfolio of colleges while
being uncertain about which school would admit her. Admissions decisions are correlated insofar
as being rejected by a lower ranked school may imply that she is rejected by a higher ranked
school. We show that solutions to this decision problem involve applying to a combination of
reach, match, and safety schools. When application costs decrease, a college applicant broadens the
range of schools to which she applies by including both those that are more selective and those
that are safer options.
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1 Introduction

Ann faces a risky choice with high stakes: she is applying to colleges. There are many colleges but she
can apply only to a few. Ann, like most applicants, is uncertain about which colleges would admit her.
She is advised to apply to a broad range of colleges including (i) some that she is very excited about
even if her chances are low (reaches), (ii) some where she is a good match, and (iii) some safety schools
where she has high odds of being admitted. This strategy hedges not only against the idiosyncratic
risk of each college application but also the correlation across colleges: being rejected from one reach
school may imply her odds are low at another reach school, but may not be all that informative about
her prospects at a safety school. Correlation often looms large in the mind of applicants and is a
reason that applicants diversify their portfolio rather than apply to a large number of reaches.

Why might admissions prospects be correlated? In the US college and graduate school admis-
sions process, applicants are uncertain about admissions criteria, the overall pool of applicants, and
where one stands in that pool. In other contexts, the administrative process of admissions explicitly
correlates admissions decisions. Some admissions processes require that applicants first submit ap-
plications, then take a common exam, and then admissions decisions are based on those exam scores.
Each school has a minimum score for admissions and an applicant at the time of application is un-
certain of the score she will obtain. This process is or has been used (until recently) for high school
and college admissions in a number of countries, including China, Ghana, Kenya, Mexico, Turkey,
and the UK.! Centralized school choice algorithms also correlate admissions prospects if a common
lottery is used to break priority ties for over-demanded seats, as is done in Amsterdam and NYC.

We study the college portfolio problem when admissions prospects are highly correlated. Which
colleges should Ann apply to? How does the composition of her portfolio depend on the number
of colleges to which she applies? If she can apply to more colleges, should she expand the range to
which she applies? Or should she be more aggressive and add only more selective colleges?

This decision problem has an interesting structure. Ann first chooses a portfolio of gambles, each
of which has a single prize (“acceptance”). These gambles award prizes with a specific correlation
structure, corresponding to our discussion above. Ann chooses her favorite prize and there is no
intrinsic value to multiple prizes. We use an elementary and graphical approach that reduces this
decision problem to a “coverage” problem. We characterize features of the optimal solution and
show that it matches the advice of diversifying one’s portfolio by applying to colleges at various
levels of selectivity. We show that if applications become less costly and Ann can apply to more
colleges, she broadens this range further by including both more selective and safer schools.

Our results use two elementary principles of optimal portfolios. The first, formalized in Lemma 1,
is that Ann applies less aggressively if she is less optimistic about her chances in a likelihood-ratio
sense, namely lower relative odds of admissions at higher ranked colleges. We call this a bad news

effect. The second, formalized in Lemma 2, is that Ann applies more aggressively if she is more

1 Ajayi (2013) and Ajayi and Sidibe (2020) study the process for high school admissions in Ghana and Lucas and Mbiti
(2012) study that in Kenya. In the UK, a university applicant applies to at most five universities, receives admissions
offers contingent on a score in a subsequent examination, and of these contingent admissions offers, can mark one as a
preferred choice and another as an insurance option before she learns her score. See Broecke (2012) for details and analysis.



risk loving. This risk loving effect applies, for example, if Ann’s outside option increases in value.
Although these two effects appear distinct, we show that each is the “dual” of the other.

Our main result, Theorem 1, is on the value of diversification. We study how Ann’s optimal port-
folio changes if she can apply to more colleges or faces reduced application costs. We show that she
uses this greater flexibility to diversify her portfolio further, applying to colleges at various levels of
selectivity, including more reach and safety schools. We prove this result by thinking through Ann’s
portfolio choice using the two principles described above. If Ann could add more safety schools to a
portfolio, these schools serve as backup options if she is rejected by more selective colleges. Having
these backup options makes her more risk loving when choosing other colleges, and by the risk lov-
ing effect, we know that she is then more aggressive in those choices. Conversely, if Ann adds more
reaches to her portfolio, she has to think about backup options if she is rejected by those reaches.
Being rejected is bad news, and the bad news effect implies that she should then be less aggressive in
her other choices. Thus, the two effects combined push Ann to diversify her portfolio.

The prediction that candidates should apply to diverse portfolios appears consistent with prac-
tice. Ajayi (2013) and Pallais (2015) find that applicants do indeed diversify their portfolios when
they can apply to more schools. The College Board in their advice to applicants, as seen in How to
Strengthen Your College List, suggests that “Before you start your applications, strengthen your list
to include three reach colleges, two match colleges, and one safety college to ensure you apply to a
balanced list of schools that match your academic abilities.” Our work rationalizes this practice of
diversification.

While it may appear natural for applicants to rationally diversify their portfolio, this prediction
is not shared by existing models. Most models of the college portfolio problem build on the pioneer-
ing work of Chade and Smith (2006), who formulate and study the class of “simultaneous search”
problems. They assume that an applicant’s admissions prospects across schools are stochastically in-
dependent conditional on all information available to her. They characterize the optimal solution via
a greedy algorithm that adds schools to one’s portfolio on the basis of which school adds the high-
est marginal benefit over the existing portfolio. In their model, an applicant does not value safety
schools, and their logic suggests that if application costs decrease, applicants should expand their
portfolios upwards by applying only to more selective schools. This framework has been extended
in a number of directions as well as taken to empirical evidence, maintaining this assumption of
stochastic independence.?

While we view stochastic independence to be plausible for many settings, there are three rea-
sons to study the correlated case that we do here. First, as articulated above, admissions prospects
are indeed highly correlated in a number of settings, and are often perceived to be so even in de-
centralized US College and graduate school admissions. Second, as Chade and Smith (2006) show,
an applicant has no motive to diversify when admissions prospects are independent. These predic-
tions appear at odds with the advice that applicants receive, the choices they make to apply to safety

schools, and how applicants expand their portfolio upwards and downwards when application costs

2See, for example, Card and Krueger (2005), Galenianos and Kircher (2009), Kircher (2009), Chade, Lewis, and Smith (2014),
Fu (2014), Olszewski and Vohra (2016), Larroucau and Rios (2018), and Walters (2018).


https://secure-media.collegeboard.org/CollegePlanning/media/pdf/BigFuture-Strengthen-Your-College-List.pdf
https://secure-media.collegeboard.org/CollegePlanning/media/pdf/BigFuture-Strengthen-Your-College-List.pdf

decrease. Third, the correlated case that we study admits an elementary geometric approach, which
in conjunction with existing approaches may be useful to better understand college portfolio choices.

Similar to us, Avery and Levin (2010) model correlation in their study of early admissions pro-
grams. In their model, colleges value ability and a match-specific enthusiasm with the applicant.
Colleges assess ability in a common way, which generates correlation in admissions decisions. Avery
and Levin focus on how applicants may use early admissions to signal their enthusiasm and colleges
benefit from having early admissions programs. We too study the role of early admissions programs
in Section 6.1, focusing on its role in helping an applicant search for the right college (and abstracting
from the role of signaling). We show that early decision programs offer limited value to Ann in our
model because she is committed to attending the college to which she applies early. By contrast, early
action programs are almost equivalent to doubling the number of applications that she can submit:
because Ann is not committed to attending the school to which she applies early, she can use its

acceptance and rejection decision to direct her future search.

Outline of Paper: Section 2 illustrates our results through a simple example. We describe our model
in Section 3. We study how optimal portfolios respond to beliefs and risk sensitivity in Section 4. We
prove our main result in Section 5. Section 6.1 studies early admissions policies and Section 6.2 offers
a detailed comparison to Chade and Smith (2006). Section 7 concludes. All proofs are in Appendices.

2 Example

Suppose that Ann can apply to a subset of four colleges, {1,2,3,4}. The colleges are ordered in terms
of her preferences so that College i is her i*" favorite. She can attend at most one college and she
prefers attending any of these colleges to her outside option of not attending college at all.

Admissions decisions are based on a score s that Ann obtains. That score may reflect how her
application compares to the pool of all applicants, or correspond to her performance on a common
examination, or be the realization of a common lottery used to break priority ties. Each college i has
its own score threshold 7;. If Ann applies to College i, her application is accepted if and only if her
score weakly exceeds T;. Of the schools that accept her, Ann attends her favorite college. If all her
applications are rejected, she obtains her outside option.

For simplicity, suppose that s is drawn uniformly from [0, 1], and each college’s threshold T; is
in [0,1]. Table 1 summarizes for each college, Ann’s utility from attending the college, its score
threshold, and the admissions probability. The payoff of her outside option (of not attending college)

equals 0.
College1 College2 College3 College 4
Utility (u;) 1 0.45 0.25 0.1
Score Threshold (T;) 0.78 0.5 0.125 0.25
Admissions Probability 0.22 0.5 0.875 0.75

Table 1: Utilities, score thresholds, and admission probabilities for each college.

Ann’s favorite college, College 1, has the highest threshold, and we consider this to be her “reach”
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Figure 1: Single-College Portfolios. Each figure depicts a single-college portfolio with scores and thresholds on the horizon-
tal axis and utility on the vertical axis. If Ann applies to College 7, her application is accepted whenever her score exceeds
T7;, and if accepted, she obtains a utility of u;. The area of the blue rectangle is therefore the expected utility of the portfolio.

school. College 2 has a lower threshold but a lower desirability, and therefore, we refer to it as her
“match” school. College 3 is a “safety” school for Ann. Finally, College 4 has a higher threshold than
College 3 but offers less utility to her; we therefore refer to it as a “dominated” school.

Optimal Single-College Portfolio: If Ann can apply to only one college, she does so to a college
that maximizes (1 — 7;)u;. Based on the numbers above, Ann’s optimal single-college portfolio is to
apply to her match college, College 2.

Although this logic is obvious, it is useful for our subsequent analysis to see it through the lens
of a coverage problem. Figure 1 shows the expected utility associated with each of the four single-
college portfolios. We depict each college application as a rectangle in score-utility space: Ann is
accepted by College i if her score weakly exceeds 7;, and then she obtains utility #;. The expected
utility of a portfolio corresponds to the area of that rectangle. An optimal portfolio maximizes that
area, or equivalently, coverage of the unit square.

Optimal Two-College Portfolio: Now suppose that Ann can apply to two colleges. Being able to
apply to a second college affects Ann’s reasoning in two ways. First, if both applications are accepted,
she attends her preferred college. Second, her admissions prospects are correlated across the two
colleges in her portfolio, and now there is a question as to how Ann responds to that correlation.

The optimal two-college portfolio is {1,3}. Thus, she is applying to her reach school, College 1,
with College 3 as a backup. The reader may wonder why she no longer applies to College 2 and
instead expands her range both upwards and downwards rather than in a single direction. We use
calculations and pictures to explain why:.

Suppose Ann compares portfolios {1,2} and {1,3}. For each portfolio, if her score exceeds 0.78,
she is accepted by College 1, and chooses to attend that college. So these portfolios generate identical
(ex post) payoffs if her score exceeds 0.78. But what if her score is below 0.78? With portfolio {1,2},
Ann is accepted by College 2 if her score exceeds 0.5. Conditional on being rejected by College 1, her
conditional expected payoff is

Pr(s = 0.5|s < 0.78) x uy ~ 0.16. (1)
By contrast, if she chooses the portfolio {1, 3}, she is admitted into College 3 so long as her score

4
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Figure 2: Comparing portfolios {1,2} and {1,3}. Each figure depicts the marginal benefit of adding a college to College
1. The dashed area depicts regions where Ann is admitted to College 1, the area framed in black is the overlap between
College i and College 1, and the blue area is what remains after removing the overlap.

exceeds 0.125. Therefore, her conditional expected payoff is
Pr(s > 0.125|s < 0.78) x u3z ~ 0.21. (2)

Thus, we see that the portfolio {1, 3} is better than {1, 2}.

Ann’s deliberations here are reminiscent of pivot calculations in auctions and elections: her choice
between portfolios {1,2} and {1, 3} matters only if she is rejected by College 1. In that case, College
3 is a better backup option because being rejected by College 1 is worse news for her prospects at
College 2 than at College 3.

This logic is also seen in Figure 2. If she chooses portfolios {1,2} or {1, 3}, Ann enrolls in College
1 if she is accepted by that college. Therefore she obtains the area of the rectangle from College 1 in
each case. Thus, in comparing the two portfolios, the choice depends on how much area the other
college in that portfolio adds when Ann is rejected by College 1. We see that removing the parts of all
rectangles with scores above 7 takes away a larger part of College 2’s rectangle than that of College
3 making the latter relatively more attractive. Hence, the portfolio {1, 3} attains a higher coverage.

How about if Ann compares portfolio {1, 3} to a less risky portfolio {2,3}? If Ann’s score is below
the threshold for College 3, then both {1,3} and {2,3} would result in her obtaining her outside
option, and so this contingency does not affect her decision. So let’s imagine that her score is above
the threshold for College 3. Conditioning on this event, if Ann chooses portfolio {1,3}, she obtains

uz + Pr(s = 0.78]s = 0.125) x (u1 — u3z) ~ 0.42. 3)

_

Accepted by College 1

By contrast, if she chooses portfolio {2, 3}, her conditional expected payoff is

uz + Pr(s = 0.5|s > 0.125) x (uy — uz) ~ 0.35. 4)

Accepted by College 2

Therefore, Ann is better off choosing portfolio {1, 3}.
Let us interpret why. For Ann’s choice to matter, her score must be sufficiently high that she is

accepted by at least College 3. Once Ann conditions on that event, College 3 effectively becomes her
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Figure 3: Comparing portfolios {1,3} and {2,3}. Each figure shows the benefit of adding a college to College 3. Because
Ann is accepted by College 3 whenever she is accepted by 1 or 2, Ann values each college relative to an outside option of
u3. The dashed area removes outcomes with lower utility. The solid blue area is that of the rectangle above u3.

outside option. We see this reflected in both (3) and (4), where she obtains a payoff of u3 whenever
she is rejected by a better college. Because u3 is strictly positive, this is an increase in the value of
Ann’s outside option. So Ann should ask herself which of College 1 and 2 is better to apply to given
that College 3 is her outside option. Having an increased outside option makes Ann more “risk
loving” (in a sense that we formalize later) and willing to apply more aggressively. This logic can
be seen in Figure 3, where obtaining an outside option of uz removes a larger part of College 2’s
rectangle, making College 1 relatively more attractive. As the figure shows, the increased outside
option removes a bottom slice of each rectangle, but makes College 1 relatively more attractive by
removing a larger part of College 2’s rectangle.

Figures 2 and 3 appear to look at the problem differently. In comparing {1,2} and {1,3}, we
described a bad news effect that leads Ann to be less aggressive and choose 3 as her backup option. By
contrast, in comparing {2,3} and {1,3}, we interpreted matters in terms of an increased outside option
that leads Ann to be more aggressive and apply to College 1. We show that, all else equal, (i) bad
news lead to less aggressive portfolios, and (ii) increased outside options lead to more aggressive
portfolios. While these two effects appear distinct, they are in fact mirror images of each other. We
show how in Figure 4: transposing a figure around the off-diagonal connecting (1,0) and (0, 1), we
see that the choice between two portfolios where one has the bad news effect can be mapped to a
choice in which one has the increased outside options effect (and vice versa). This transposition does

not change the collection of rectangles that cover the biggest area, so showing that bad news lead

Bad News Increased Outside Option

Figure 4: The left figure illustrates the effect of giving Ann the bad news that her score is below 7. Transposing the figure
over the —45° degree line yields an isometric coverage problem, where Ann’s outside option increases from 0 to 1 — 7.



to less aggressive portfolios is equivalent to showing that increased outside options lead to more
aggressive portfolios.

So we see that the optimal two-college portfolio, {1,3}, expands both upwards and downwards
relative to the optimal single-college portfolio. Our main result shows that this is a general property:
the optimal (k + 1)-college portfolio expands both upwards and downwards relative to the optimal k-
college portfolio. The logic combines the two effects described above. By the bad news effect, adding
an additional college at the top makes Ann less aggressive in choosing the remaining k colleges. But
also, by the increased outside option effect, adding an additional college at the bottom makes Ann
more aggressive in optimally choosing the remaining k colleges. Therefore, whenever application

costs reduce and Ann can therefore apply to more colleges, she pursues a more diversified portfolio.

3 Model

Ann is applying to college. There is a finite set of colleges C = {1,2,...,n} with generic element i.
Ann’s utility from attending College i is u;. Colleges are ordered in terms of Ann’s preferences so
thatu; > ur, > --- > uy,.

Here is how the process works. Ann first chooses a portfolio P of colleges, where P is a subset of
C. After this portfolio choice, she obtains a score s in [0, 1]. Each college 7 has a minimal score threshold

€ [0,1] such that if Ann applies to college i, her application is accepted if and only if s > 7;. Ann

can attend at most one college and chooses among the colleges that accept her application. If she
does not attend any college, she obtains her outside option, which generates a payoff of u. The utility
assessment U = (u;uy, . . ., uy,) specifies utilities associated with all of the possible outcomes.

When choosing her portfolio, Ann is uncertain about her score, and her beliefs are represented by
a cumulative distribution function F. Given a distribution F, we denote its left-continuous version
as F~(x) = limy;, F(y). Since Ann chooses her favorite college among those that both accept her and
improve upon her outside option, her expected value of a portfolio P is

V(P,U,F) max max{ul, u}dF. )
0 {iePs>7}

This expression shows that Ann’s score matters only to the extent that it affects colleges” acceptance
and rejection decisions. Thus, we can summarize distribution F by the vector (F~(71),...,F(t)).

Any two distributions that have the same vector will generate identical values for all portfolios.
Applying to colleges is costly. Ann faces application costs that depends on the number of colleges
to which she applies: if she chooses portfolio P, the total cost is ¢(|P|). These application costs
may reflect potentially exogenous limits to how many colleges Ann can apply, the monetary fees
associated with applications, and the time spent completing the application process and learning
about colleges. We normalize costs so that ¢(0) = 0 and assume that ¢ is non-decreasing. Special
cases of this setting include (i) those where Ann can apply to a certain number of colleges for free but
cannot apply to more than that number as well as (ii) those where each application fee is the same.
Ann chooses a portfolio based on its value and its associated application costs: her net utility from



portfolio P is V(P,U, F) — ¢(|P|).

We simplify our exposition through several assumptions. First, we eliminate dominated colleges
and replicas. College j dominates College i if u; > u; and 7; < 7; with at least one inequality being
strict. If College j is in the portfolio, College i adds no value, and if College j is not in the portfolio,
replacing College i by College j increases Ann’s expected payoff. Therefore, there always exists an
optimal portfolio that excludes dominated colleges. Colleges i and j are replicas if u; = u; and 7; = 7.
Ann does not gain from applying to both colleges i and j, since she chooses at most one of them,
and if she is accepted by one college, then she is accepted by the other. We prune away dominated
colleges and replicas.

Assumption 1. For any two colleges i and j, if i < j then u; > ujand T; > T;.

Given Assumption 1, we say that College i is higher ranked than College j if i < j; higher ranked
colleges are strictly more selective and more desirable to Ann.

Our second assumption restricts attention to beliefs such that the selectivity of colleges has impli-
cations for Ann’s beliefs about the likelihood of acceptance.

Assumption 2. Ann believes that less selective colleges are more likely to accept her: we consider distributions
F such that if i < j, then F~(1;) = F~(1;) implies that F~ (7;) € {0, 1}.

Assumption 2 means that if Ann believes that she is equally likely to be accepted by College i and
a less selective College j, then she believes that she is guaranteed to be accepted or rejected by each
college; otherwise, she ascribes strictly positive probability to College j accepting her application and
College i rejecting it. A special case of Assumption 2 is a distribution F that is full support on [0, 1].

Third, we assume that Ann does not make applications that she views to be redundant. In princi-
ple, if the marginal cost of applications is 0, an optimal portfolio could include applications to colleges
that she knows would reject her or that she would surely reject in favor of her outside option. Such
applications add no value to Ann, and so there exist optimal portfolios that exclude such redundant
applications. We focus on portfolios in which no application is redundant.

Assumption 3. Ann does not apply to colleges that would reject her or that she would surely reject: the set of
feasible portfolios is P(U,F) = {P < C : forall P < P, V(P,U,F) < V(P,U,F)}.

Assumption 3 asserts that Ann chooses from portfolios that are minimal in terms of set inclusion:
for any portfolio in the feasible set, removing a college from that portfolio reduces her value.

We impose a genericity assumption that rules out indifference.

Assumption 4. Every pair of feasible portfolios delivers distinct values: V (P, U, F) # V (B, U, F) for distinct
Pand Pin P(U,F).

As mentioned in our discussion after (5), V can be summarized as a function of two finite-
dimensional vectors U and (F~(11),...,F~(1:)). The assumption fails for a non-generic set of pa-
rameters. In those cases, our results apply with the caveat that we are specifying an optimal solution.

Finally, we assume that given her outside option and her beliefs, applying to college is neither

worthless nor hopeless for Ann.

Assumption 5. We consider (U, F) such that there exists at least one College i such that u; > uand F(7;) < 1.

8



Discussion: The modeling assumption of a score may be motivated in at least three ways. First, it
may represent some component of Ann’s ability (relative to the application pool) that is observable
to colleges but not to her, as modeled in Avery and Levin (2010). Second, it may be an explicit test
score that is used to determine admissions, as is done in college or high school admissions in many
parts of the world. Third, it may be the realization of a common lottery used to break ties as has been
done in centralized matching algorithms that use “single tie-breaking” rules.

Although we formulate the problem in terms of a score and thresholds, it is not necessary. Sup-
pose Ann’s (marginal) beliefs about college admissions prospects are represented by (a1, ..., a,), and
Ann believes that if her application is rejected by College i, then it is rejected by every higher ranked
college. This would map to our model with F~(7;) = 1 — «;, and trivially, every vector can be mapped
to a score distribution and thresholds.

Finally, we represent the problem as specifying a set of options, but an equivalent formulation
is that of a rank-ordered list where Ann explicitly ranks the colleges in the set and is automatically

enrolled in the college that she ranks highest among those that accept her.

4 Elementary Properties of College Portfolio Solutions

Here we study how Ann’s portfolio choice is influenced by her beliefs or risk attitudes. We show that
Ann applies less aggressively when she obtains bad news (in the sense of the likelihood ratio domi-
nance order). We also show that she applies more aggressively if she becomes more “risk loving” in
a sense that we formalize. While these two effects may appear to be distinct, we show that each is
the mathematical dual of the other. These elementary results generalize the bad news and increased
outside option effects that we illustrated in Section 2, and are at the core of our subsequent analysis.

We obtain these properties by considering a special case of Ann’s problem. Suppose that Ann can
apply to at most k colleges. Her problem then is

P*(k,U,F)= argmax V(P,U,F).
{PeP(U,F):|P|<k}
One can think of this problem as Ann incurring application costs of 0 if her portfolio includes k or
fewer applications, and a cost of infinity otherwise. But, as we show, this special case is germane for
general costs since Ann’s decisionmaking can be thought of as identifying the optimal portfolio of k
items for each k, and then choosing the utility-maximizing value of k.
Let us formalize what it means for one portfolio to be more aggressive than another, adapting the
definition of Chade and Smith (2006). For a portfolio P, let P® be the it highest ranked element of the
portfolio. By Assumption 1, higher ranked colleges are both more attractive and more selective.

Definition 1. For non-empty portfolios P and P, P is more aggressive than D if any of the following is true:

(@) |P| = |P| and for everyi =1,...,|P|, P < P,
(b) |P| < |P|and for everyi =1,...,|P|, P < P,
(©) |P| > |P| and for every i = 1,...,|P|, PUFIPI=IP) < p),

We denote the aggressiveness order by > 4.



A more aggressive portfolio targets higher ranked schools. Case (a) applies if the portfolios being
compared have the same number of applications. Here, we use the standard vector dominance order,
stipulating that the i best college in P is higher ranked than that in P. The other two cases extend
this definition to portfolios that differ in the number of applications.® Case (b) applies if P has fewer
applications than P. Here, we say that portfolio P is more aggressive than P if P is more aggressive
(according to case (a)) than the portfolio that has the top |P| items of P. One can then view P as taking
a portfolio that is already less aggressive than P by case (a) and expanding downwards to include
colleges that are even less selective. Case (c) applies if P includes more applications than P. Here,
the condition stipulates that even after omitting the top |P| — |P| best colleges from P, we still have
a portfolio that is more aggressive than P. One can then view P as taking a portfolio that is already

more aggressive than P and expanding upwards to include colleges that are even more selective.

4.1 How Beliefs Affect Portfolio Choice

Consider the following hypothetical scenario: Ann is about to submit her applications, but right
before she does so, she obtains bad news that makes her more pessimistic about her admissions
prospects. How should this influence her portfolio choice?

To answer this question, let us first formalize bad news. Given a cumulative distribution function
G, let u(i, G) denote the probability that College i is the best college that would accept an application
from Ann. Setting 19 = 1, notice that College i is the best college that would accept Ann’s application
if her score is in the interval [7;, T;_1). Therefore, u(i,G) = G (1,_1) — G~ (17;) where G~ (-) is the
left-continuous version of G. We say that one distribution has bad news relative to another if it has
relatively lower odds of obtaining entry into more selective colleges.

Definition 2. Distribution H has bad news relative to G if for every College i and less selective College j,

u(j, G)u(i, H) < u(i, G)u(j, H). (6)
In such a case, we write G >1r H.

Definition 2 adapts the standard definition of the likelihood ratio dominance order to our setting:
re-arranging (6) implies that distribution G has a relatively higher likelihood ratio of Ann being ad-
mitted into College i versus the less selective College j than distribution H. Definition 2 is implied by
score distributions being ranked by the standard definition of the likelihood-ratio dominance order;
namely that if G and H have densities, then g(s)h(s") < g(s')h(s) for all s’ > s. The order > is less

stringent because it compares the distributions only at the score thresholds for admissions.*

3Comparing portfolios of different cardinality, as in cases (b) and (c), is necessary for our analysis because Ann may obtain
information that rules out or guarantees admissions at certain colleges. In both cases, by Assumption 3, this news may
shrink the size of her chosen portfolio.

4Because of this distinction, G need not first-order stochastically dominate H. For example, returning to the colleges and
cutoffs of Section 2, suppose that G(s) puts probability 3 on scores {0,1} whereas H is uniform on [0,1]. Even though
G >1r H, neither distribution first-order stochastically dominates the other.
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Figure 5: Illustrating Lemma 1. We depict the value of single-college portfolios, as in Figure 1, but where Ann learns that
her score is lower than 0.875. Bad news reduces the area of the rectangle corresponding to each college, and this reduction

is the black region of each rectangle. The rectangle of College 1 incurs a greater reduction than that of College 2, which in
turn, incurs a greater reduction than that of College 3.

Lemma 1. Bad news leads to a less aggressive portfolio:
G>rH= P*(k, u, G) >A P*(k, u, H)

Lemma 1 shows that shifting Ann’s beliefs downwards (in the sense of likelihood ratios) induces
her to apply less aggressively. We call this the bad news effect. We have already seen it at play in the
example in Section 2. Therein we noted that the optimal single-college portfolio (based on Ann’s
prior) was College 2. What Equations (1) and (2) show is that if Ann were to (hypothetically) obtain
the bad news that her score is below 0.78, the optimal single-college portfolio for her posterior belief
shifts down to College 3. Lemma 1 shows that being less aggressive in response to bad news is a
general property of Ann’s decisionmaking.

Although the argument for Lemma 1 is involved, we can describe the key idea. Consider the
special case where H is a right truncation of G: all that Ann learns is that her score is below some
threshold 7 so that H(s) = G(s|s < 7). We see in Figure 5 that this form of bad news removes more
area from rectangles that correspond to more selective schools, and this makes less selective schools
relatively more attractive (in terms of the area they cover). This logic suggests that with bad news,
Ann should be less aggressive at least in terms of the most selective college to include in her portfolio.
Stepping outside of this special case, the general ranking from the likelihood ratio dominance order
does not correspond to removing slices from the right of each rectangle. But it nevertheless has the
property that more area is removed from the right than from the left. This intuition suggests that Ann
should be less aggressive in terms of the most selective college to include in her portfolio.”

What about the other colleges in the portfolio? Once we have shown that Ann is less aggressive in
terms of her top choice, this downward force propagates to her choice of other colleges to include in
her portfolio. The reason is that Ann chooses these remaining colleges optimally assuming that she
is rejected by the top-ranked college in her portfolio, and these posterior beliefs remain LR-ordered.

To see why, suppose that College i is the most selective college in her optimal k-portfolio when her

5This intuition is partial because Ann may conceivably choose to be more aggressive in her second or third top choice when
her beliefs are lowered in the sense of Definition 2. This would then create a countervailing force that could conceivably
push her to be more aggressive in her top choice. Addressing this potential complication is a significant component of our
proof where we show that indeed Ann’s top choice is less aggressive when her beliefs are lowered.
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distribution is G and College j is that when her distribution is H. Suppose that, as argued above,
College i is more selective than College j, i.e., T; > 7;. In each portfolio, Ann chooses the remaining
colleges optimally conditional on being rejected by the top-ranked college in the portfolio (since her
choice matters only when rejected by the top-ranked college in the portfolio). But because G >z H
and 7; > Tj, it follows that Ann’s posterior beliefs conditional on rejection from each top choice are
also LR-ordered:

G(-[s <) =1r H(:[s < T)).

Therefore, by induction, the remainder of Ann’s optimal portfolio when her beliefs are described by
G is more aggressive than that when her beliefs are described by H.

4.2 How Risk Attitudes Affect Portfolio Choice

Now consider an alternative hypothetical scenario: right before applying, Ann obtains a better job
with her high school diploma so that the value of her outside option increases. How does this change
influence her portfolio choice?

We think of this more broadly as a change in Ann’s risk sensitivity. Improving her outside option
makes her more willing to take risks since being rejected by all of the colleges in her portfolio is less
costly. We formalize this idea by adapting standard notions of risk sensitivity.

Definition 3. Utility assessment U' = (u';u},...,u}) is more risk loving than utility assessment U =

(1;uy, ..., uy) if there exists a convex non-decreasing transformation v : ® — R such that for every College i,
max{u;, 7'} = v(max{u;, u}). 7)

In such a case, we write U’ >g; U.

Definition 3 adapts a standard notion of being risk-loving to Ann having an outside option. If
in U and U’, each college were to be better than the outside option, and the outside options were
identical, Definition 3 is the usual Arrow—Pratt definition of being risk loving.

Lemma 2. Being more risk loving leads to a more aggressive portfolio:
U >gp U= P*(k,U,G) =4 P*(k,U,G).

Lemma 2 shows that being more risk loving induces Ann to apply more aggressively. We have
already seen a version of this exhibited in our example in Section 2 where we discussed how having
a better outside option induces Ann to shoot for College 1 rather than College 2. An increase in
Ann’s outside option naturally makes her more risk loving: keeping all of Ann’s utilities from each
college the same but increasing her outside option from % to %’ implies that when thinking about her
portfolio, the utility of being admitted to College i is max{u;, '} = max{max{u;, i}, u’'}, which reflects

a convex non-decreasing transformation of max{u;, u}. Therefore, the increased outside option effect
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that we alluded to in Section 2 is a special case of the risk-loving effect established in Lemma 2.°

We prove Lemma 2 by using a “duality” between risk sensitivity and beliefs, which we alluded to
in Section 2. To see the connection, let us consider two utility assessments U and U’ where U’ is more
risk loving, and a fixed probability distribution F. Let us normalize each outside option to 0 and each
utility to be a number in [0, 1], reflecting the proportional gain over the outside option relative to the
gain from Ann’s favorite college.” As illustrated in Figure 4 on p. 6, we can transpose this problem
over the off-diagonal of the unit square (the —45 degree line) to flip utilities into probabilities and
probabilities into utilities. Let T[U] and T[U'] be distributions that are the transposed versions of U
and U’ respectively. We show that

u’ >rr U = T[U’] <IR T[U]

In other words, if U’ is more risk loving than U, then the distribution T[U’] has bad news relative
to the distribution T[U].> Lemma 1 shows that bad news induces Ann to choose a less aggressive
portfolio, which implies that in the isometric transposed problem, she chooses a more aggressive
portfolio when she is more risk loving.

5 Optimal Diversification

In this section, we prove our main result that Ann should diversify her portfolio when application
costs reduce. We do this in two steps. First, we show that if she can apply to more colleges, she should
expand the range of colleges to which she can apply in a particular way. Second, it then follows that
she pursues a more diversified portfolio when the marginal costs of each application is lowered.

Given a portfolio P whose cardinality weakly exceeds k, let [P]*¥ and |P|¥ denote the set of the
best and worst k colleges in P. If the cardinality of P is less than k, then [P]* = |P|¥ = P. Using this
notation, we state our result.

Theorem 1. Larger optimal portfolios are more diverse: if k > k, then

[P*(k, U, F)|* =4 P*(k, U, F), 8)
|P*(k, U, F)|* <4 P*(k,U,F). )

Theorem 1 asserts that being able to apply to more colleges induces Ann to be both more aggres-
sive at the top and less aggressive at the bottom. This implies that Ann is “spreading out” her pool
of applications. We illustrate this property in Figure 6 where we see how Ann’s portfolio depends on

®This increased outside option effect may be germane to the role of unequal outside options in segregation. If colleges
represent public schools whose admissions is determined by a centralized examination or matching procedure, the outside
option may reflect Ann’s value from attending a private school outside that system. Lemma 2 implies that if Ann and Bob
have the same preferences and beliefs about their admissions prospects, but differ in that Bob is richer and more easily able
to attend a private school, then he will apply more aggressively. Unequal outside options therefore lead to segregation
whereby poorer students apply less aggressively and therefore are more likely to attend less selective schools.

7For utility U = (7; uy,...,Uy), we use the normalization (0;1,..., Wy =B
y U —1

8The converse is also true but we prove and use only one direction of this implication.
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Figure 6: Illustrating Theorem 1. Ann expands the ranges of colleges to which she applies both upwards and downwards
when she can apply to more colleges. The horizontal axis shows the number of colleges in a portfolio and the vertical axis
shows the rank / selectivity / desirability of colleges.

the number of colleges to which she applies. When she can apply to more colleges, she expands this
range by including both higher and lower ranked colleges.

To further interpret Theorem 1, suppose that k = k 4 1 so that we are studying how Ann’s optimal
portfolio choice expands when she can apply to just one more college. The ordering shown in (8)
says that the k best colleges in Ann’s optimal (k + 1)-portfolio is more aggressive than her optimal
k-portfolio. So apart from her least preferred college in her optimal (k + 1)-portfolio, all of Ann’s
colleges have shifted up relative to the optimal k-portfolio. The ordering shown in (9) pushes in
the opposite direction: except for the top ranked alternative in the optimal (k + 1)-portfolio, Ann’s
optimal (k + 1)-portfolio is less aggressive than her optimal k-portfolio.

How can these two conclusions be mutually consistent? The only way is that (i) Ann’s highest
ranked college in her optimal (k + 1)-portfolio is more of a reach than her highest ranked college in
her optimal k-portfolio, (ii) Ann’s lowest ranked college in her optimal (k + 1)-portfolio is more of
a safety than her lowest ranked college in her optimal k-portfolio, and (iii) the remaining colleges
“refine” the grid from her optimal k-portfolio.

Although we have illustrated this when Ann can apply to only one more college, the idea gener-
alizes to when she can apply to k — k more colleges. As we see in Figure 6, as one moves from the
optimal k-portfolio to the optimal Iz-portfolio where k > k, the highest ranked k items in the optimal
k-portfolio are higher ranked than the optimal k-portfolio. Analogously, the lowest ranked k items in
the optimal k-portfolio are lower ranked than the optimal k-portfolio. Ann uses greater flexibility to
diversify her portfolio in both directions.

We prove Theorem 1 by combining ideas from Lemmas 1 and 2. Let us argue why the result
is true for k = k + 1 because the general analysis will then follow by induction. Ann’s selection of
an optimal (k + 1)-portfolio can be viewed as reflecting a two-stage optimization process: first, she
picks which college is the highest ranked college in her portfolio (her “first choice”), and second, an
optimal portfolio of k backup options. Notice that these k backup options matter only if she is rejected
by her first choice, and so she should choose this portfolio of k backup options conditioning on that
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event. But conditioning on that event generates posterior beliefs that are likelihood-ratio dominated
by her prior. The bad-news effect (formalized in Lemma 1) implies that the optimal portfolio of k
backup options must be less aggressive than the optimal k-portfolio she would have chosen based on
her prior alone, which corresponds to (9).

To see why (8) must also be true, she could have viewed the selection of an optimal (k + 1)-
portfolio through the lens of a different two-stage optimization process: first, she picks which college
is the lowest ranked in her portfolio (her “safety school”), and second, an optimal portfolio of k
colleges that are more selective (“improvements”). Suppose she chooses College i to be her safety
school; by Assumption 3, going to this college generates a utility of u; that exceeds that of her outside
option u. Her choice of the other k colleges to include in her portfolio matters only if her score
guarantees that she is at least admitted into College i because otherwise she obtains u regardless
of her choice. Conditioning on this event—namely s > T,—implies that if she is rejected by the
remaining k colleges, she obtains u;. Choosing these remaining k colleges is therefore isomorphic to
a modified optimal k-portfolio problem in which her outside option is now u;. Because this modified
problem has a better outside option than that of the original problem, the increased outside option
effect (formalized in Lemma 2) implies that the optimal portfolio of k improvements over College i is
more aggressive than the optimal k-portfolio.

These results have implications for Ann’s behavior when her application costs reduce for a gen-
eral cost function. Recall that ¢(|P|) denotes the total application cost incurred for Ann to have the
portfolio P. The marginal cost of the m" application is ¢(m) — ¢(m — 1). Marginal costs are lower in
cost function ¢ relative to ¢ if the marginal cost for each m is lower in ¢ relative to ¢. The following

describes how reductions in application fees influence Ann’s behavior.

Corollary 1. If marginal costs are reduced, Ann applies to a larger and more diverse portfolio: she applies to
more colleges, and by Theorem 1, she is more aggressive in her selection of the highest ranked college to include

in her portfolio and less aggressive in her selection of the lowest ranked college to include in her portfolio.

These results illustrate why applicants should diversify their portfolios when they can apply to
more colleges. In practice, it has been seen that reductions to application costs or allowing students
to apply to more colleges does expand the range of colleges to which they apply (Ajayi, 2013; Pallais,
2015).” Our model also predicts that Ann may apply to a safety school: in our example in Section 2,
College 3 is not only less selective than Colleges 1 and 2 but is also dominated by each in terms of
ex ante expected utility as a single college. Nevertheless Ann includes College 3 in her optimal two-
college portfolio as her backup if she is rejected by College 1.1 Our analysis matches the common
wisdom that when applicants can apply to several colleges, they should include some reaches, some
matches, and some safety schools.

9Moreover, an important friction that applicants face is informational, and one way to reduce application costs is by pro-
viding applicants with information. Hoxby and Avery (2013) find that providing low-income applicants with information
about selective colleges also induces them to apply to more selective colleges.

10As Chade and Smith (2006) show, this would not happen if college admissions decisions were stochastically independent.
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6 Other Results

6.1 Early Admissions Policies

Many colleges have early admissions programs: applicants can send in a single early application and
obtain a decision prior to applying to other colleges. These programs are either early decision where a
student is committed to enroll if her application is accepted or early action where a student obtains an
admissions decision but is not committed to enroll if her application is accepted. In this section, we
study how this affects Ann’s portfolio choice.

We consider a stylized setting: Ann can apply to a single college ahead of time, and then following
that application, she can apply to k colleges in the regular admissions process. To focus on the effect
most relevant to our work, we assume that each college has the same score threshold for both early
and regular decisions. We first see what Ann would do if every early admissions program is early
decision, namely if she is accepted by the college to which she applies early, she is committed to
enrolling in that college.

Theorem 2. If Ann can apply to a single college early decision and to k colleges in the reqular cycle, she obtains
the same distribution over outcomes as applying to (k + 1) colleges simultaneously:

e she applies early to the highest ranked college in P*(k +1,U, F);
e if rejected by that college, she applies to the remaining colleges in that portfolio.

Theorem 2 illustrates that early decision offers limited informational value to Ann. Here is why:
suppose Ann chooses to apply early decision to College i. She enrolls in that college if she is accepted.
If she is rejected, she infers that her score is lower than 7;. Therefore, her posterior belief for the
regular cycle is F(-|s < T;), and she would choose the remaining k colleges that are optimal for those
beliefs. But notice that this is isomorphic to her choice when formulating her optimal (k + 1)-portfolio:
she chooses the highest ranked college to which she applies and the best k colleges conditional on
being rejected by that college.

By contrast, early action programs convey significant advantages.

Theorem 3. If Ann can apply to a single college early action and to k colleges in the regular cycle, she obtains

the same distribution over outcomes as applying to (2k + 1) colleges simultaneously:

o she applies early to the (k + 1) ranked college in P*(2k + 1, U, F);
e if accepted by that college, she applies to the (at most) k colleges in that portfolio that are ranked higher;
e if rejected by that college, she applies to the (at most) k colleges in that portfolio that are ranked lower.

The logic of Theorem 3 is that because Ann is not committed to enrolling in a college that admits
her early, she can use its admissions decision to direct her future search. Suppose she applies early
action to College i. If she is rejected, matters are identical to that of an early decision program where
she learns the bad news that she is rejected. By contrast, if she is accepted, she can apply to k more
colleges knowing that if she is rejected by those k colleges, she has an outside option of attending

College i. The increased outside option effect means that she should choose the remaining k colleges
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aggressively with this outside option. These deliberations are isomorphic to the choice that Ann
would make when choosing her optimal (2k + 1)-portfolio: that problem can be broken down into
optimally choosing which is the best college for the median position in the portfolio, followed by the
selection of k colleges above and below that median college.

Our comparison of early action and early decision illustrates a broader point: when college
prospects are correlated, early action allows an applicant to direct her search and so she may not
wish to apply to any of her k favorite colleges under early action. By contrast, with an early decision
program, the fact that Ann is committed to enrolling in a college that admits her early implies that
she cannot use this to help guide her applications process.

We should mention a caveat to our analysis: we omit the idea that applying early offers a signal to
a college of an applicant’s interest and can therefore boost admissions prospects. This effect has been
modeled by Avery and Levin (2010) (and also discussed by Avery, Fairbanks, and Zeckhauser 2009) as
a rationale for colleges to have early admissions programs. To see how this admissions boost would
affect our results, suppose that if Ann applies early to College i, she is accepted if her score exceeds
T; — b, where b > 0. For early decision processes, if this boost is moderate, then it does not change
the college to which Ann applies to early. Now if Ann is rejected, she learns that her score is below
T; — b, which is worse news than without the boost. Therefore, the remaining k colleges to which she
applies are less aggressive than without the boost. For an early action program, the admissions boost
has a similar effect if she is rejected by the college to which she applies early without having an effect
on the colleges to which she applies if she is accepted (since the admissions boost does not interact
with the increased outside option effect). Thus, if applying early boosts one’s admissions prospects

moderately, it may induce applicants to apply less aggressively than they would otherwise.!!

6.2 A Comparison with Chade and Smith (2006)

Chade and Smith (2006) offer the first analysis of simultaneous search. In this section, we highlight
how our work complements their study and the new forces that it introduces.

They study the case of independent admissions probabilities.!?> Each college is characterized by
a pair (u;,«;), which denote the payoff of attending College i and the probability with which an
application from Ann is accepted by College i, independently of whether her application would be
accepted by other colleges. Suppose the value of the outside option, u, is 0. For a portfolio P, we
order its elements in descending order on the basis of the payoff of attendance so that P() is the i
best element (in terms of payoffs). Then the value of a portfolio P in their setting is

|P| i—

1
VCS(P) = ZIXP({)MP({) H(l — DCP(/')).
i

j

11 A second, more subtle, effect is on the degree to which colleges can infer an applicant’s interest from her choice to apply
early. Theorem 2 shows that for an early decision program, a college that receives an early application would know that
the applicant is applying early to her top choice. By contrast, for an early action program, a college that receives an early
application would know that it is not this applicant’s first choice.

12Their results extend to slight degrees of correlation sufficiently close to stochastic independence.
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Figure 7: Illustrating optimal portfolios in Chade and Smith (2006). Ann expands the ranges of colleges to which she
applies only upwards when she can apply to more colleges.

The idea is that Ann attends the i best college in portfolio P (obtaining utility up) if:

¢ sheis accepted by that college, which occurs with probability apq), and
¢ she is rejected by all better colleges, which occurs with probability ]_[;71 (1—apg)-

They derive a number of elegant results in this setting. We summarize those that most easily com-
pare with ours. Their Theorem 2 argues, as they interpret, that applicants should not apply to safety
schools: the optimal k-portfolio is more aggressive than the portfolio of the k items that maximize
a;u;.'3 Their Theorem 1 identifies a “marginal improvement algorithm" that generates the optimal k-
portfolio, and shows that the optimal k-portfolio is nested within the optimal (k + 1)-portfolio. They
suggest that this nesting should take the form of expanding the set only in an upwards direction (i.e.,
more aggressively), and we formalize this logic in our Supplementary Appendix. Figure 7 illustrates
this form of nesting. Therefore we see that an applicant would not use greater flexibility to diversify
her portfolio, in contrast to the predictions of our model.

We can use our decomposition of choice behavior into the bad news and increased outside option
effects to explain why the correlation structure of our model generates a preference for diversification
while independent admissions probabilities would lead someone to expand only upwards. As we
discussed in Section 5, the bad news effect of being rejected by top schools motivates Ann to expand
downwards and the increased outside option effect of applying to more colleges at the bottom in-
duces Ann to expand upwards. If admission decisions are stochastically independent, then there is
no bad news in being rejected by one’s top ranked schools and so the first effect disappears. But the
second effect remains, and hence as depicted in Figure 7, an applicant would expand only upwards.

These results show the relationship of our work to Chade and Smith (2006). Their work intro-
duces the idea that one obtains the prize of attending a college only if one is rejected by all better
colleges in one’s portfolio. They suggest (and we agree) that the independent admissions framework

13GSection 2 shows that this property does not hold in our model: the optimal two-college portfolio in our model includes
College 3 even though azuz < min{aquq, apun}.
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depicts settings in which an applicant knows her true caliber (and where she lies on the distribution
of applicants) and colleges obtain conditionally i.i.d. signals of her caliber. But it generates conclu-
sions about the rationale of safety schools and diversification that are difficult to reconcile with the
observed practice of applicants and the advice commonly given to them. Moreover, in some settings,
college admissions processes are either highly correlated by design or perceived to be so.

7 Discussion

This paper offers an elementary treatment of a stylized college portfolio problem. A student applies
to a set of colleges knowing that her admissions probabilities are correlated in a specific way across
colleges. This correlation may arise because (i) her admissions prospects are determined by a com-
mon examination (as in many countries), or (ii) different colleges use very similar scoring methods
and the student is uncertain about the exact criteria, or (iii) a common lottery is used to break priority
ties in a centralized algorithm. We show that the student pursues a diversified portfolio in which she
applies to a mix of reach, match, and safety schools. Reducing application costs induces her to diver-
sify her portfolio even further. This pattern appears to match diversification strategies that applicants
pursue in practice, and how applicants have behaved when application fees have decreased.

We have interpreted this portfolio problem in the context of college applications but it may be
relevant to other settings too. Firms often face a choice between multiple marketing or organizational
strategies and can adopt only one. These strategies may be correlated in higher return strategies
succeed only if medium return strategies would also succeed. Such a firm may wish to do small-
scale experiments on a diversified set of strategies before picking one. Closer to home, an early-stage
researcher or PhD student may choose a set of research problems to work on simultaneously but
will have time to write only one. Some projects are low risk and low return whereas others are high
risk and high return. Success in these problems may depend on the researcher’s ability, and early-
stage researchers may be uncertain about their ability, which introduces correlation into the perceived
chances of success. Our analysis suggests that such researchers benefit from starting problems across
the spectrum of difficulty, and pushing to completion the best project that bears fruit.

Although we do not view this kind of decision problem to be special, we have not seen a gen-
eral treatment. A close parallel is the study of rank-dependent expected utility (henceforth RDEU)
introduced by Quiggin (1982). Therein, a decisionmaker uses a probability weighting function that
is rank-dependent. In our model, the value of a portfolio can also be seen as weighting utilities by
changes in a rank-dependent cumulative probability. To see how, suppose that the outside option
equals 0. The value of a portfolio P then is

|P|
Z Up(i) (F_ (Tp(i—l)) —F (Tp(i))) ,
i=1

where P() denotes the i best college and we set F~(Tpo) = 1. Notice that Ann obtains the utility

from the i*" ranked item with a change in a rank-dependent cumulative probability. In formalizing
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the connection between LR-dominance and being risk loving, we rewrite the above expression as

|P|

2(1 — F~(tp»))) (upty — Upin) ,
i—1

where we set upp+1 = 0. In making this switch, we are effectively treating the probability (1 —
F~(7pw)) as the utility and (upi) — upi+1)) as a change in probability (if utilities are suitably normal-
ized). The similarity in functional form with that of RDEU models suggests a similar duality between
probability and utility may be useful for that setting. And indeed, Yaari (1987) and Segal (1989, 1993)
approach RDEU models with that focus and also study the induced coverage problem.

It would be interesting to compare this simultaneous portfolio problem with a fully sequential
procedure similar to Weitzman (1979) but in which prospects are correlated as we have modeled
them. Our analysis of early action programs suggests that with sequential search, Ann may sample
an option not merely because she might choose it but also because it offers information that guides
her future search. It may be fruitful to study how Ann would optimally sample and search.
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A Main Appendix

A1 Proof of Lemma 1 on p. 10

Proof. The proof of this argument involves three cases, and a double induction argument.

Case 1: |P*(k, U, G)| < k.

Our assumptions guarantee that |P*(k, U, G)| is then of the form {j,j+1,...,j + m} for some
m < k — 1.1 Furthermore, 1(i,G) = 0 for each i < j. Since G >;r H, we have that (i, H) = 0 for
each i < j. Furthermore, if (i, H) > 0 for some i < j + m, then (7', H) > 0 for each i’ € {i,...,j + m}.
Hence, P*(k, U, G) >4 P*(k,U, H), as the latter portfolio either consists of a bottom part of the former
portfolio — potentially with some additional collegesin {j + m +1,...,n} —or of k colleges that include
a subset of the colleges in the former portfolio in addition to collegesin {j + m +1,...,n}.

Case 2: |P*(k,U,H)| < |P*(k,U,G)| =k.

Asin the previous case, our assumptions guarantee that |P*(k, U, H)| takes the form {j,j +1,...,j+
m} for some m < k —1, and that u(i, H) = 0 for each i > j 4+ m (otherwise adding i to the portfolio
would be beneficial). Since G > g H, we have u(i,G) = 0 for each i > j + m. Thus, by the same
argument as above, P*(k, U, G) >4 P*(k, U, H).
Case 3: |P*(k,U,H)| = |P*(k,U,G)| =k

We prove that P*(k, U, G) >4 P*(k, U, H) by induction on k.

Base Step: (k = 1)

4By Assumption 5 the portfolio is nonempty, by Assumption 3 all the colleges on the portfolio strictly contribute to its
value, and by Assumption 2 they must form a consecutive interval.
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If P(k,U,H) = {i} then because i is the uniquely optimal single-college portfolio, it follows that

for every college j,
Vi, U H) —u=(1-H () wj—u)>(1-H (1)) (uj—u)=V({j},UH) -u (10)
Consider a College j that is lower ranked than i. Therefore, j > i. Observe that

1-G (W) (1-H (5)) = > ul,Gulp.H)+ > u(l,G)u(p,H)

Lp<i I<i<p<j
> > ul,Gulp,H)+ Y. wp,Gu(l,H)
Lp<i I<i<p<j

=(1-H (w) (1-G"(g)),

where the first line follows by definition, the second follows from G >;r H, and the third follows by
definition. Multiplying (10) with the inequality above yields

(1-G (@) (L—H (1)) (L— (@) (=) > (1= H (1) (1= G (5)) (1~ H~ (5) (),

We note that (1 — H™ (7;)) > 0 (otherwise the empty portfolio is optimal, contradicting Assump-
tion 5), and that (1 - H™ (7)) = (1 - H™ (1)), since 7j < 7;. Hence, we can divide both sides of the
inequality by the positive term (1 — H™ (7;)) (1 — H™ (7;)) and obtain

(1 -G~ (Ti)) (uj—u) = (1 -G~ (T])) (u; — 1),
and therefore P*(k, U, G) # {j} for any j > i. Hence, P*(k, U, G) must be at least as aggressive as {i}.

Inductive Step: (k > 1)
Suppose that the statement holds for all portfolio sizes strictly smaller than k. We show that this

implies that it also holds for portfolios of size k.
We begin by noting that if P*(M (k, U, G) < P*() (k, U, H) then the result follows from the induc-
tive hypothesis. This follows from two observations. First,

P* (k, U, G) = {p*<1> (k U, c)} Ul (k ~1,4,G ( s < TP*<1>(k,u,G))) :

The reason is that a student applying to P attends P() whenever accepted to P(), and so the rest of
her portfolio must be optimal conditional on being rejected from P(}). More generally,

P*(k,U,G) = {P*D (6, U,G),.., PV (k, U, )} P* (k= o0, G (- |5 < Tpeoru)) ) -

Second, if T > T/ then G(- |s < T) >1r H(-|s < 7’). This follow by the transitivity of >rg, since
G(|s<t)>rG(|s<T)and G(-|s<T)>r H(-|s<T).

Therefore, it suffices to show that P*() (k,U,G) < P*Y) (k, U, H), which is what we do in the
remainder of this proof.
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Suppose otherwise. Let m > 1 be the maximal index with P*(") (k,U,G) > P*") (k,U, H). By
the inductive hypothesis and the two observations above, p*0) (k,U,G) < p*() (k,U,H) forall j > m
(this condition may be vacuous if m = k), and P*() (k, U, G) > P*) (k,U, H) for all j < m

We now create a chain of portfolios Qo,...,Q,. To simplify notation, for a general portfolio
Q, we sometimes write Q' instead of Q) to denote the i*" ranked college. To simplify notation,
we denote P = P*(k,U,G) and R = P*(k,U, H). Let Qo, Q1,...,Qn be portfolios such that Q; =
{R(l), ..., R0 pl+l) .,P(k)}. In other words, Q; selects the top i colleges from portfolio R and
the remaining k — i colleges from P.°> Observe that for each j < i < m we have QZQ ) = RO and
Qj >4 Qj-1. It also follows that Q;; >4 P and Qy >4 R.

For D € {G,H} and j < m we have

V(Q;,U,D) - V(Qo U, D) = ﬁ V(Q;, U, D)~ V(Qi-1,U, D).
i=1
Next, we note that fori < m,
V(Qi,U,D) - V(Qj_1,U,D) = (D™ (tgi-1) — D™ (i) (ugi —upi) — (D™ (Tgi) — D™ (7pi)) (utpi — upis1).'®
Since Qo = P = P*(k, U, G), we have
V(Q;,U,G)—V(Qou,U,G)<0. (11)
We prove by induction on j that this implies
V(Qj,U,H) - V(Qo, U, H) <0.
Base Step (j = 1): Observe that
V(Qu,U,G) = V(Qo,U,G) = (1 -G (1)) (g1 — ttp1) — (G~ (tg1) = G~ (tp1)) (tpr — up2),
where the inequality is (11) and the equality is computation. Therefore,
(1- G (tr1)) (g1 — upr) < (G~ (Tr1) = G~ (Tp1)) (up1 — ttp2).

Additionally, since G >1r H

(Gf(TRl) — Gi(Tpl)) (1 — Hf(TR1)) < (1 — Gf(TRl)) (Hf(TRl) — Hi(Tpl)) .

15Since |P| = |R| = k, the definition of m guarantees that for each i < m we have |Q;| = k.
16e use the notational convention that for a portfolio Q of size k, Uk =1 and 7 = 1.
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Since all terms in the two inequalities above are nonnegative, we can multiply them to obtain

(G (tp1) =G (tm)) (1= H (tp1)) (1= G (1)) (g1 — 1) <
(1-G (tr)) (H (tr)) = H (tp)) (G (tg1) — G (tp1)) (up1 — up2).

Since R! is in P*(k,u, H) we have (1 — H™(tg1)) > 0 and so (1 — G~ (tx1)) > O since G > g H. Addi-
tionally, (G~ (tg1) — G~ (tp1)) > 0, as otherwise V(Qq, U, G) > V(P, U, G), contradicting the optimal-
ity of P. We can therefore divide both sides of the inequality by (1 — G~ (tx1)) (G~ (tg1) — G~ (1p1))
and obtain

(1-H (tg1)) (ugr —up) < (H (tg1) — H (tp1)) (up1 — up2)

which implies
V(Qi, U H)—-V(QoU,H) = (1 — Hf(TR1)) (g —up1) — (Hf(TRl) — Hi(Tp])) (upr —up2) <O0.

Inductive Step (j > 1): We assume that the statement holds for all // < j. The following notation
will be useful. For D € {G,H} and | < m, denote W}, := (D~ (tgi-1) — D™ (1)) (g — tp) and
LY = (D~ (tp)) — D™ (tp1)) (upt — tpis1). W (respectively LL) represent the gains (losses) for an
agent whose beliefs are given by D from the changing her portfolio from Q;_; to Q; (she gains if she

ends up attending the Q;l) — R! and she loses if her score suffices for Ql(?l — P! but not for Ql(l) = R)).

_ w(RLH) 17
u(R,G)"

Because Qp is optimal under distribution G, we know that Z;Zl LZG > {:1 WlG for all j < m.
Observe that

Additionally, denote gy :

J o1 g1 j—1
DLy = Ly + 3 (L = Wiy + W) = Ly + > Wi+ 3 (L — W)
=1 =1

I=1 I1=1
o1 j-1
> gLl S Wh+ e (L - W),
=1 =1

where the inequality follows from WL /WL = (H™ (tgi1) — H (1)) / (G~ (tgi-1) — G~ (1)) being
bounded above by ggi, and L% /LL = (H™ (tx) — H™ (tp1)) / (G~ (Tgt) — G~ (7pt)) being bounded be-

17This expression is well defined as y(Rl ,G) > 0 since otherwise R = P*(k, U, G) is not optimal (as it would be beneficial
for the agent to replace R! with a more aggressive option) or not minimal (the agent can drop R’ from her portfolio).
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low by qg: for all I < m. By rewriting the RHS of the above inequality, it then follows that

=1 1]

j —1
Z L quLG + Z WH + Z qri — W Z (9re — qge+1) (LZG - Wé;)
I=1 I=1 b=I

>—IH

j—1

6)+.
_qRJLG+ZWH+ZqR] LIG W) (e = o) Z< )
)

<

=1 =1

._.H

j—1

(6
(

= QRJLG+ZWH+ZQRJ (LZG W
(K-

st
> gL +ZWH+ZqR]

(CIR” - CIRb+1) (V(QOI u, G) - V(Qb/ u, G))

H
»—n»—\

j ,
> Z Wi + Z IR (Llc - W(l;> +qriWE
I=1 1=1
-1 o1 g
= qp (V(Qo, U,G) — V(Q;, U,G)) + Z Wi+ qpW5s = > Wh +qg W5 = Y Wi

I=1 I=1 I=1
where the second inequality follows from gz» being increasing in b, and V(Qo, U, G) = V(Q,, U, G).
The third inequality uses the optimality of V(Qo, U, G) again, and that g; is nonnegative. The fourth
and final inequality follows from W', /WL being bounded above by g

To complete the proof, we note that
1% ({Pl,PZ, ..., P" R RN U, H) ~V(R,U,H) =

(Lér_l — WII_I> + (Hi (TRm) —H (Tpm)) (Llpm+1 - I/lRm+1) >0

T

contradicting the optimality of P*(k, U, H) = R. The expression is nonnegative since we have shown
above that the first term is nonnegative, and the second expression is the product of two nonnegative
terms (Upmi1 = Ugmtr by the definition of m, and H™ (tgn) = H™ (Tpn) since ugm > upm and so
Trm > Tpm by Assumption 1). It must be strictly positive by Assumption 4. O
A.2 Proof of Lemma 2 on p. 12

Proof. Our argument proceeds in multiple steps.

Step 1: There is no loss of generality in normalizing utilities.

For utility assessment U = (u; uy, ..., u,), we denote its normalization by

N[U] = (0; 1y, ...,1,) where i; Emax{zi_z,o}‘ (12)
|-

We argue that there is no loss of generality in making this normalization. Consider a utility assess-
ment U, distribution G, and a portfolio P. Recall that P denotes the i best item in the portfolio.
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Using G~ (tpo) = 1, we can write the value of a portfolio as

V(P,U,G) J max max{u;, u}dG

{ieP:s>1;}
|P|
= Z max{#, upw } (G~ (Tpi-n) — G (Tp»))

|P|
=u+ Z max{0, upw — u} (G_ (tpi—ny) — G~ (Tp(f)))
i=1
|P|
U+ (uy —u) Z Up(j) (G~ (tpi-n) — G (p))
i=1

7+ (w —mWV(P,N[U],G),

where the first equality is the definition of a portfolio’s value (Equation 5 on p. 7), the second equality
is calculating the integral, the third equality is algebra, the fourth equality substitutes (12), and the
final equality uses the definition of V(P, N[U], G). Hence, normalizing utilities does not affect the
relative ranking of the value of portfolios: for portfolios P and P/,

V(P,U,G) = V(P,U,G)< V(P,N[U],G) = V(P',N[U],G).
The normalization also maintains the same risk-loving order:
U > U= N[U’] >rr N[U].

In light of the above, we restrict attention to normalized utility assessments. Note that in a normal-
ized utility assessment, U, the utility of each College i, u;, is in [0, 1], the utility of the best college, u1,
is equal to 1, and the value of the outside option, i, equals 0.

Step 2: We define the transposition.

In this step, we show how to transpose utilities and probabilities, formalizing the idea of Figure 4.
Conceptually, the transposition does two flips. First, for each college, it flips the utility and the
acceptance probability so that a college with a high utility and low acceptance probability flips into
being a college with low utility and high acceptance probability, (ii) to order colleges descending in
the order of Ann’s preferences, we also flip the order of colleges.

Given a distribution of scores G, let A(G) = (G~ (11),...,G(7,)) denote a vector of rejection
probabilities for the 1 colleges. Analogously, given a vector A € [0,1]" where A; < A;, let (-, A) be
any CDF such that 77 (7;,A) = A;. In other words, 77(, A) selects a probability distribution on scores
that generates the vector of rejection probabilities A.'8

We transpose utilities into probabilities as follows. For a vector x € [0,1]", let T[x] be the

transposed vector (1 — x,,,...,1 — x1). Given a normalized utility assessment, U = (0;u1,...,u,), let

181t suffices to consider a discrete probability distribution that puts positive probability only on scores in {1, ..., Ty, 0}.
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w(U) = (uy,...,u,) represent the utility of prizes. For a normalized utility assessment U, we define
the transposed distribution of scores Gr(U) as the CDF G such that for every score s,

G(s) =t (s, T[w(U)]) .

Therefore, Gr(U) is a score distribution that generates the vector of rejection probabilities (1 —u,,...,1—
uq ) .

Analogously, let us transpose probabilities into utilities. Given a distribution of scores G, we say
that a utility assessment U = (0; 1, ..., uy) is its transposition Ur(G) if

In other words, in Ur(G), the value of the outside option is 0, and the utility of being accepted by
Colleges 1 through n is respectively 1 — G (1),...,1 — G (10).

Notice that transposition flips the order of colleges. The transposition maps the i ranked college,
College i, that offers utility u; and rejection probability G~ (T;) to the college ranked (1 + 1 — i) with
utility 1 — G~ (7;) and rejection probability 1 — u;. Accordingly, we map portfolios in the original

problem to those in the transposed problem using the operator 7 : 2N — 2N where
T[Pl={ieC:n+1—ieP}.

Because transposition flips the order of colleges, it follows that if P >4 D, then T[P] <4 T[P].
We also note that if a utility assessment U and distribution G satisfy our assumptions, so does the
transposed model with utility assessment Ur(G) and distribution Gr(U).

Step 3: Transposition leads to an isomorphic problem.
In this step, we prove that transposing utilities and acceptance probabilities leads to a problem
that is isomorphic to the original problem. Specifically, we show that

V(P,U,G) = V(T[P],Ur(G),Gr(U)). (13)

Therefore for every k, P*(k, U, G) = T [P*(k, Ur(G), Gr(U))].
Consider a normalized utility profile U and a distribution G. Consider a portfolio P where as
usual, P() denotes the i*" ranked item in the portfolio P. Let |P| = k. Observe that we can write the

value of a portfolio as

k
V(P,U,G) = upn) (1= G (tpm)) + D upe (1= G () — (1= G (Tp-n))) - (14)
%/_J . . ~ _/
Accepted by P() =2 Accepted by P() but not by P(i=1)

The above expression computes the value of a portfolio based on Ann obtaining the payoff of College
P if she is accepted by that college but rejected by every higher ranked college in portfolio P. Re-
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arranging the RHS of the above expression yields

k=1
(Z (1 -G (tpw)) (upi — ”P(i+1))> + (1= G (tpw ) )upw - (15)
i=1

Let U = Ur(G) be the transposition of the distribution and G = Gr(U) be a transposition of the
utilities. Finally, let P = T[P] be the “transposed” portfolio. Observe that by construction, |P| = k,
ipsy =1— G (Tpa+1-»), and G‘(Tp(,-)) =1 — upr+1-». These substitutions in (15) yield

k
Apay(1 =G (Tp))) Z Ap (1= G (1p0)) — (1= G (1p6-1)))) ,

A A

which by comparison to (14) is equal to V (P, U, G).

Step 4: Being more risk loving implies bad news in the transposed problem."

We show that for normalized utility assessments U and U’,
u’ >rL U = GT(U/) <LR GT(U).

Observe that U’ >g; U implies that there exists a convex nondecreasing function v : & — R such
that v(0) = 0, v(1) = 1, and for every i € {1,..., N}, u; = v(u;). We argue that for every i and j > i,

(ipq — ) (Ujsn — 1) = (Uipr — ;) (U — 1)) (16)

To see why the above inequality holds, consider the following two cases. First, if u;; = u; then the
right hand side is equal to 0 and since both sides are nonnegative we are done. Second, if uj 1 = u;

then u;- +1 = uj and both sides are equal to 0. Otherwise, (16) can be rewritten as

j
/ / Ay
Uign — Wi Hip1 — 1
=
Uipr — U Ujp1 — U

or equivalently

v (uip1) — v (1) SV (uj41) —v (u))
=
Uiyl — U Ujpq — Uj

which follows from the convexity of v.
We use (16) to argue that Gr(U’) <rgr Gr(U). Let Gr(U’) = H and Gr(U) = G. Note that

ui, H) = H (ti1) = H (%) = Uy 1 — Uyio i (17)

where the first equality is the definition of (i, H) and the second follows from H = Gr(U). Therefore,

9The converse is also true, but we do not use that direction.
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it follows that for i < j,

u(j, G)ui, H) = (”n+1—j - un+2—j)(u;1+l—i - u;’l—&-Z—i)
< (Unga—j = o) (Unr1—i — Unso—i)

u(i, G)u(j, H),

where the first equality uses (17), the second uses (16), and the third uses (17). Therefore, we see that
GT(LI’) <LR GT(U).

Step 5: We now combine these steps to complete the proof.

Suppose that U’ >gy U. As noted in Step 1, it is without loss of generality to treat U and U’ as
normalized utility assessements. For a distribution G, let P’ = P*(k,U’, G) and P = P*(k, U, G). By
Step 4,

U' > U= Gr(U') <rr Gr(U).
Therefore, by Lemma 1, for every k,
P*(k, Ur(G), Gr(U)) >4 P*(k, Ur(G), Gr(U')). (18)
It then follows that
P*(k, U, G) = T[P*(k,Ur(G),Gr(U))] <a T[P*(k,Ur(G), Gr(U"))] = P*(k, U, G),
where the equalities follow from Step 3 and the ordering follows from (18). O

A.3 Proof of Theorem 1 on p. 13

Proof. We first prove the result for P*(k + 1, U, F) and P*(k, U, F).

We observe that for all k, |P*(k, U, F)| < |P*(k+ 1, U, F)|. If |P*(k, U, F)| = |P*(k+1,U, F)|, then
|P*(k+1,U, F)| <k, and therefore P*(k, U, F) = P*(k+ 1, U, F), in which case we are done.

Now suppose that |P*(k+1,U,F)| = k+ 1. Let College i denote the highest ranked college in
P*(k+1,U, F) and let G(s) = F(s|s < 7;) be Ann’s belief about her score conditional on being rejected
by College i. Observe that G < F.

Since Ann should choose the colleges in P*(k + 1, U, F) other than College i assuming she is re-
jected from College i, it follows that

P*(k+1,U,F) = {i}| JP*(k,U,G). (19)
Therefore,

|P*(k+1,U,F)|F = P*(k,U,G) <4 P*(k,U,F),
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where the equality follows from (19) and the ordering follows from G <;r F and Lemma 1.

Similarly, let College j be the lowest ranked college in P*(k+ 1, U, F). Let U’ be a utility assessment
that is identical to U but the outside option is u;. Note that U’ >gy U. Since Ann choose all colleges
other than j in the portfolio assuming that she is accepted by College j (since it is her lowest ranked
college), it follows that

P*(k+1,U,F) = {j}|_JP*(k, U, F). (20)
Therefore,
[P*(k+1,U,F)|* = P*(k,U’,F) =4 P*(k,U,F),

where the equality follows from (20) and the ordering follows from U’ >g; U and Lemma 2.
Therefore, we have shown that Theorem 1 holds for k = k + 1. The argument follows for general

k and k > k by induction, using the transitivity of > 4. O

A.4 Proofs for Section 6.1

Proof of Theorem 2 on p. 16. Ann can apply to a single college ahead of time, and may apply to an
additional k colleges if she is rejected by that college. A strategy for Ann involves no more than
k + 1 schools. Therefore, an optimal strategy cannot achieve more utility than applying to all these
colleges simultaneously and choosing the best one. Hence, the strategy specified in the statement

must be optimal since it achieves the highest utility among all all portfolios of up to k + 1 schools. [

Proof of Theorem 3 on p. 16. Ann can apply to a single college ahead of time, and may apply to an
additional k colleges if she is rejected by that college and to (potentially different) k colleges if she
is accepted by that college. Altogether, a strategy for Ann involves no more than 2k + 1 schools.
Therefore, an optimal strategy cannot achieve more utility than applying to all these colleges simul-
taneously and choosing the best one. Hence, the strategy specified in the statement must be optimal
since it achieves the highest utility among all all portfolios of up to 2k + 1 schools. O
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B Supplementary Appendix (Not for Publication)

Below, we provide the analysis supporting our discussion in Section 6.2. We show that when ad-
missions probabilities are independent, Ann should expand her portfolio only upwards. Chade and
Smith (2006) suggest this result under certain conditions, and using the logic they outline, we prove
it more generally.

So as to be self-contained, the set of college types C = {1,...,n} comprises n colleges. Being
admitted into a college ot type i generates utility u;. If Ann applies to college of type i, then she is
admitted by that college with probability «; independently of her admissions at any other college.
As before, we assume that higher indices yield lower utility. However, with independent admissions
probabilities, and unlike our framework, “replicas” are valuable for an applicant: if Colleges a and
b are replicas, being rejected by College a is no longer informative about the probability with which
one is accepted by College b. As in Chade and Smith (2006), we allow colleges to have replicas, and
denote the replicas of type i college by iy,ip,.... We also remove Assumptions 1 and 2 and relax
Assumption 4 to require uniqueness up to replacing replicas.

We begin with a preliminary lemma that considers a setting with independent admissions prob-
abilities and stochastic outside options. Analyzing this setting facilitates our analysis of the indepen-
dent simultaneous search problem studied by Chade and Smith (2006).

Lemma 3. Let {i;}7_, be independent random variables taking the value L; with probability p; and 0 other-
wise, and let (uy,...,uy,) denote the student’s utilities from attending colleges of each types. Then, for each
' < 1, if the student has access to the stochastic outside option max;< il;, then there exists a (determinis-
tic) utility assessment (IE[max;<, @], v ,...,0}) that attributes the same expected utility for each portfolio.

Furthermore, (IE[max;<, ﬁj],vf, ., 00) =R (E[max;<, 1 ﬁj],vg/_l, Lol

Proof. Denote by G” the CDF of maxX;<, ;. A direct calculation shows that the profile

Q0
v =B (u;) = u; +J 1-G" (2)dz
Ui
attributes the same expected utility for each portfolio. This formulation illustrates the idea that the
student only benefits from admission to school i if the realized outside option is lower than u;, and
that when its realization is lower, the student only benefits from the marginal improvement over the
outside option.

Next, we denote

§o'1—G"(z)dz if x < {1-G"Y(z2)dz

fx) =40 o
XA+ Sinvpr -1 G (z) = G" (z)dz else;

and? note that
vf/ =¢ (v;/’1> .

20The inverse of 8”1 () exists for values greater than Sgo 1— G"~1(2)dz since " ~1(-) is increasing for values greater than
S 1— G"(2)dz.
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By the Leibniz rule and the implicit function theorem, for values of x greater than {;’ 1 — G"'(z)dz,
we have

G Minvg" ! (x)) = G"(invp" ! (x)) _ G (invp" ! (x))
G"~1(invB"~1(x)) G"~(invf"~1(x))

¢ () =1-

r'—1

Since the step function G /G
lower than {° 1 — G"~1(z)dz, this implies that ¢ is convex. O

is non-decreasing from 0 to 1, and since ¢ is constant for values of x

Theorem A.1. If each school has m replicas, then for each k < m, P(k+1,U,I) >4 P(k, U, I).

Proof. We prove the stronger claim that if PO (k, U, I) has a replica that is not included in P(k, U, I),
then P(k+1,U,I) >4 P(k,U,I). Chade and Smith (2006) have shown that there exists an optimal
portfolio of size k + 1, P(k +1,U, I), such that P(k +1,U,I) = P(k,U, I) u {x}, unless we are in the
trivial case that P(k +1,U,I) = P(k,U,I). Let x denote a college such that P(k,U,I) u {x} is an
optimal size k + 1 portfolio. Let y denote a replica of P(V)(k, U, I) that is not included in P(k, U, I).
By the weak axiom of revealed preferences P(k, U, I) continues to be optimal if we constrain Ann to
include P(k, U, I)\ {P(l) (k,U,I)} in her portfolio and to only choose additional schools from the set
{x,y, PV (k, U, I)}. We can equivalently think of the constrained problem as the problem of choosing
a singleton portfolio from {x,y, P Mk, U, 1 )} with a stochastic outside option distributed as the utility
from the portfolio P(k, U, I)\ {PW(k, U, 1)} (we always assume that stochastic outside options are
independent from schools admissions decisions). Since p® (k,U,I) e P(k,U,I) and y is a replica of
PW(k, U, I) that does not belong to P(k, U, I), we have that {y}, like { PV (k, U, I)}, is an optimal size-
1 portfolio in this problem. By the weak axiom of revealed preferences, it is also optimal when the
set of available schools is only {x, y}.

The argument above shows that {x} is an optimal size-1 portfolio from the menu {x,y} with an
outside option that is distributed as the utility from the portfolio P(k, U, I). By Lemma 3, Ann is more
risk loving when making this latter choice. Since she is choosing a size-1 portfolios in both cases (from
the menu {x, y}), the correlation structure between colleges” admissions decisions is irrelevant, and
so by Lemma 2 and the definition of x, {x} >4 {y},and so P(k+1,U,I) > P(k, U, I). O
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