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Abstract

This paper develops a dynamic model of information acquisition, in which the decision maker
lacks control over the timing of their action. It characterizes the optimal dynamic experiment
when the decision maker can flexibly choose all relevant aspects of the information they acquire.
The cost of an experiment depends on the quantity of information it produces. At the optimum,
the decision maker concentrates resources in generating a single piece of breakthrough news,
contradicting their plan of action. In the absence of such news, the decision maker becomes more
confident in their intentions. This leads them to sacrifice the frequency with which breakthroughs
arrive in order to increase their impact on choice behaviour. These are in stark contrast with
the case where the timing of actions is endogenous, in which breakthroughs confirm beliefs, and
the resolution of the trade-off between frequency and precision is reversed.

1 Introduction

Information is an essential resource whose production, dissemination, and acquisition are funda-
mental economic activities. The modern information age presents decision makers with increasingly
more sophisticated sources, from which they can learn about their environment in a granular way.
Importantly, acquiring and processing information takes time, making them inherently dynamic ac-
tivities. It is therefore critical to study how agents learn over time when they are allowed to choose
freely all aspects of the information they acquire. Additionally, it is essential to understand how the
nature of the problem they are facing shapes the information they collect. In many environments
opportunities to act are scarce and uncertain, and decision makers are deprived of control over when
they take actions. The aim of this paper is to shed light on learning behaviour in such cases.
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In particular, this paper considers a Bayesian decision maker whose preferences over actions
depend on an unknown state, and for whom a single opportunity to irreversibly act arrives at some
exogenous random time. The decision maker has access to a rich set of dynamic experiments which
they may employ to learn about the state while waiting to act.

Many economic problems have this flavour. For instance, consider a pharmaceutical company
researching a new vaccine technology over a known existing technology, where they can choose
to market either. Before a pandemic occurs there is little demand for their product and because
of the limited term of patents, they are not eager to market it early. Importantly, the onset of
pandemics cannot be foreseen and will thus try to learn about the efficacy of the new technology in
anticipation of the next outbreak. What kind of research agenda do these firms pursue? How do
their research strategies and R&D expenditures vary with their estimates of the likelihood of success
of new technologies? How do their estimates of the arrival of pandemics affect research output?
As another example, consider an analyst offering expert forecasts on the state of the economy, but
who cannot anticipate when a client will show up, and will collect information about the relevant
variables while waiting. How do the learning strategies of such an analyst differ from one who
actively prospects clients, or regularly publicizes reports? How do the payoff consequences of the
analyst’s reports affect their quality? As illustrated by these examples, understanding information
acquisition in models where the timing of actions is exogenous is crucial; and yet, most of the
literature following Wald (1947) and Arrow, Blackwell and Girshick (1949) has focused on models
where decision makers choose when to act.

Furthermore, control over the timing of actions is an important theoretical dimension along
which information acquisition problems should be distinguished. Choosing ‘information’ amounts
to choosing lotteries over beliefs. Consequently, when the timing of actions is controlled a decision
maker’s preferences over time-lotteries take a central role in shaping their behaviour. As has been
pointed out by DeJarnette et al. (2020), standard discounting generates risk-taking behaviour on
the time dimension. In the present context, Zhong (2019) establishes the qualitative features of
optimal information in an endogenous timing model. The author shows that the result is driven
by the temporal-risk attitudes of the decision maker in the following way: the optimal experiment
generates the maximal mean-preserving spread over decision times.1 In contrast, the exogeneity of
the decision time in this paper eliminates the role of preferences over time-lotteries, and we find
that most qualitative aspects of the optimal experiment reverse.

Ultimately, in any decision problem there will be pieces of information whose timely arrival the
decision maker values more. For instance, in the endogenous timing setting the decision maker
would like to know whether they should stop and take an action as quickly as possible. When
the timing of actions is exogenous, what is of value is whether, and how, they should change their
intended action; and when the opportunity to act is likely to be soon, they want to learn this

1When there are linear delay costs, the decision maker is risk-neutral over time-lotteries, and the type of experiment
becomes irrelevant.
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promptly. An optimal dynamic experiment will try to deliver those relevant pieces of information
as fast as feasibly possible.

Model outline.— We now outline the main ingredients of the model in more detail. An oppor-
tunity to act arrives at some exogenous random time, and the decision maker’s preferences over
actions depend one of two unknown states. The future is discounted at some constant rate. Time
is continuous and the decision maker can flexibly design a dynamic experiment to learn prior to
acting.

A dynamic experiment consists of a standard Blackwell experiment, and an information flow,
which refines knowledge over time. Such experiments can be identified by the posterior process
they induce, given a prior. Subject to some regularity assumptions, any dynamic experiment can
be represented by a pair of characteristics. The first captures the speed at which ‘incremental
information’ arrives. Such pieces of information generate erratic and local changes in the beliefs.
The second characteristic governs the behaviour of ‘breakthroughs’—that is, pieces of information
which can generate abrupt and significant changes in beliefs. The decision maker can set up dynamic
experiments delivering incremental information as well as breakthroughs of varying impact, arriving
at different frequencies. Consequently, the set of experiments is rich enough to accommodate a large
variety of dynamic learning patterns one may wish to explore.

To describe the information costs, we first define the total quantity of information in an experi-
ment as a moment of the final posterior distribution it implements.2 We can then specify a notion
of information increment, or flow-information, generated by a dynamic experiment. As in Zhong
(2019) and Hébert and Woodford (2021b), we specify a capacity constraint on the flow-information
the experiments are allowed to generate.3 Critically, such a constraint forces the decision maker to
‘smooth’ information acquisition over time; in the absence of such motive, the optimal experiment
instantaneously implements a distribution of beliefs, and dynamics are irrelevant.

Preview of Results.—To describe the main results, we define the information gain as the differ-
ence between the decision maker’s optimal payoff—their value, and their payoff from acting without
any further information. The optimal experiment is as follows. The decision maker concentrates
resources in generating a single breakthrough. That is, the optimal experiment is a single-jump
process. It is characterised at each point in time by its frequency—the rate at which breakthrough
news arrive; its precision—the significance of such news, captured by the magnitude of the change in
beliefs they induce; and finally, its direction—whether breakthrough news confirm or contradict the
decision maker’s prior conviction. Close to the location of maximal information gain, the optimal
experiment has high frequency and low precision. In the limit as the belief approaches the location

2In the tradition of the literature on rational inattention, we consider a uniformly posterior separable measure of
information.

3Analyzing a problem with some smooth convex cost function applied to the information increment is similar to
the constrained problem where the capacity is endogenized.
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of maximal information gain, frequency explodes and precision implodes, producing purely incre-
mental information. As the information gain decreases, the frequency of breakthroughs decreases
in favour of more precision. Furthermore, the jumps in beliefs induced by breakthrough news are
in the direction of increasing information gain. They are sufficiently precise so that they capture
a substantial part of the potential gains from learning. That is, along a sequence of breakthroughs
the information gain decreases.

Example.—To illustrate these results and facilitate a comparison with the endogenous timing
models of Zhong (2019), and Hébert and Woodford (2021b), we consider the following example.
An analyst learns about the state of the economy which can be either ‘good’ or ‘bad.’ An investor
in need of advice arrives at some exogenous rate. The analyst is positively compensated if they
correctly advise to invest in the good state, or if they correctly advise to avoid investing in the bad
state. We will call the probability they assign to the state being good, their belief. Payoffs are given
by the matrix:

good bad
invest 1 −1

not invest −1 1

The left panel in Figure 1 below plots the value V (solid) and the expected payoff to the analyst
U (dotted) if they were to quit acquisition forever. The information gain is the gap V −U between
the two, and it is maximized at 1/2.

To the right of 1/2 the information gain is decreasing. Consequently, optimal jumps are in the
opposite direction than the prior—that is, they are contradictory. Moreover, they are sufficiently
precise so that they land at a level where V − U is lower than before the jump (grey areas).
Importantly, as the analyst becomes increasingly more confident in the state, and they substitute
resources away from frequency and into precision. The symmetric properties apply to the left of
1/2.

Now consider the problem where the analyst can actively issue an investment recommendation,
which investors use and based on which they are compensated as above, and we assume they discount
the future. In this setting, they control the timing of their action. The value, V (solid), and the
stopping payoff U (dotted), for that problem are depicted in the right panel of Figure 1. The optimal
experiment has the following features. At the threshold belief 1/2, a signal arrives at some time,
independent of the state, and implements a distribution supported at points within the stopping
region. To the right of 1/2, a single-jump process is optimal, whose jumps are in the direction of
increasing value. That is, they are always confirmatory. Moreover, they are sufficiently informative
to warrant immediate action upon arrival. Finally, as the analyst becomes more confident in the
state, they are acquiring increasingly more frequent signals, at the expense of precision. Again, the
symmetric properties apply to the left of 1/2.
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Figure 1: The horizontal axis measures the belief of the analyst. The left panel shows the exogenous timing
example, and right panel shows the endogenous timing example. Green dashed arrows (success) correspond
to jumps and red solid arrows (failure) indicate the direction of drift in the absence of arrival.

In both environments the optimal experiment is almost everywhere a single-jump process.4

We see however that the qualitative properties are in stark contrast: the analyst always seeks
contradictory evidence in the first case, and confirmatory evidence in the second. In addition, the
preferences between frequency and precision as the belief varies are reversed: an analyst who controls
the timing of their action, prefers frequency over precision when they are confident in the state;
which is exactly when an analyst for whom the opportunity to act is exogenous, prefers precision
over frequency.

To see why the optimal experiment has some directionality, notice that the analyst could set up
an experiment which implements a zero-mean jump distribution upon arrival. This corresponds to
an experiment whose ‘arrival time’ is uninformative about the state. When the analyst is willing
to ‘wait’ for news, they might as well make the arrival time informative—and therefore learn while
waiting. In the extreme case when they are not willing to wait at all, the signal is a diffusion.

Furthermore, this paper clarifies that single-jump processes are optimal since they can be viewed
as extreme points of the set of processes. The objective can be defined to exhibit a form of linearity
and hence the optimum is achieved at some such extreme point.

The other qualitative properties of the optimal experiment are more subtle. At the frontier of the
feasible set, the analyst must trade off frequency for precision, in either jump direction (see Figure
2 below). Frequency and precision are substitutable, but as the analyst becomes less confident in
the validity of their recommendation, frequency becomes more preferable to precision. Indeed, a
more frequent signal is more likely to arrive before the opportunity to act, which the analyst values
more when there is a high chance they are making a mistake. Consequently, the desire to substitute

4Zhong (2019) shows that this result is fairly robust, relying only on a continuity of the information measure.
In a stopping problem with more general information measures, Hébert and Woodford (2021b) further advance the
understanding of this result.
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away from precision and into frequency is monotone in the potential gains from learning.

Figure 2: The shaded region indicates a typical set of feasible single-jump experiments for a prior x ∈ (0, 1).
The horizontal axis corresponds to a jump location y 6= x, and the vertical axis to a frequency ϕ > 0.

Consider a confirmatory experiment. The absence of arrival makes the analyst less confident
and hence more inclined to raise frequency. At the same time, precision must be increasing to make
it possible for them to capture a sufficient portion of the information gain—which is also increasing
along such a path. These competing forces create a tension which is resolved by a contradictory
experiment: absence of arrival makes the analyst optimistic, wanting to decrease frequency and
raise precision, which they can feasibly do.

Searching for contradictory evidence is risky since its arrival is less certain, and it is likely
the analyst will not revise their recomendation quickly. However, the flexibility in designing the
experiment allows them to compensate this risk by an ever more precise signal in the future, should
the experiment be ‘unsuccessful.’ Anticipating this they become willing to acquire a contradictory
experiment. Of course, they have to sacrifice frequency to implement such an increasing precision.
Nevertheless, along a path of no arrival the analyst becomes more confident in the state which
diminishes their desire for frequency.

It is worth noticing that under the optimal experiment, the information gain decreases over
time, with probability 1. Indeed, the absence of a jump drifts beliefs in the direction of decreasing
information gain, while the arrival of a jump directly implements such a reduction. This way the
analyst can capture with certainty the benefits from information, along the entire path of beliefs
they generate.
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Related Research

The question of how to optimally gather information to decide on competing hypotheses about the
world is probably as old as Statistics itself. In a series of seminal papers, Wald (1947) and Arrow,
Blackwell and Girshick (1949) laid out the archetype sequential sampling model, in which a decision
maker faces a dynamic problem of choosing between an irreversible decision whose consequences
depend on an unknown state; or continuing to obtain information, in the form of independent
draws from a distribution depending on the state. Costs are usually proportional to the number of
observations. 5

Although these early models recognize the importance of dynamics in statistical decision-making,
they are limited in an important respect: the kinds of information sources available are beyond the
decision maker’s control.

Parallel to these models, the literature on ‘experimentation’ sought to merge information sources
with payoff-generating activities: a decision maker chooses between competing options (bandits) of
unknown quality whose payoffs are stochastic. The seminal papers in this literature are Robbins
(1952), Weitzman (1979), and Gittins and Jones (1979).6 Importantly, allocation of ‘time’ among
these bandits produces dynamic information, and information costs arise as opportunity costs on the
foregone payoffs of unchosen options. There too, the exogeneity of the structure of bandits limits
the decision maker in the kind of information they can obtain.

The success of these dynamic models in capturing relevant economic phenomena spurred interest
in moving away from their restrictive assumptions. Moscarini and Smith (2001) study a model of
a decision maker who learns via observations of a Gaussian process whose ‘precision’ they control
at a convex cost. By endogenizing this aspect they uncover a monotonicity between the precision
of learning and the cost of delay. Che and Mierendorff (2019) consider a decision maker who learns
via observing Poisson processes, but who faces a constraint in allocating their time between them.
They are able to study the choice of ‘direction’ in the decision maker’s information by considering
choices between perfectly revealing Poisson signals, and uncover rich patterns of behaviour.7 Ke
and Villas-Boas (2019) study the problem of a decision maker who learns before choosing between
two alternatives by sampling Gaussian processes, at a heterogeneous cost which is linear in the time
spent with each source. Liang, Mu, and Syrgkanis (2021) consider a model where the decision maker
allocates a fixed budget of time among Gaussian signals. In all of these models the decision maker
controls the timing of their action.8

5An interesting generalization of this type of model is pursued in Morris and Strack (2017) who allow for belief-
dependent sampling costs. Their goal is establishing equivalences between such sequential models, and static infor-
mation acquisition models with appropriate cost functions.

6For a survey see Bergemann and Vallimaki (2006). Karatzas (1984), and Bolton and Harris (1999) treat
continuous-time versions of the problem in a diffusion setting, while Keller, Rady, and Cripps (2005) treat the
Poisson framework.

7See also Mayskaya (2020) for a related model.
8A working paper version of Liang, Mu and Syrgkanis (2021), (Mu, Liang and Syrgkanis, 2017) also considers
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The contribution of this paper vis à vis this line of research is two-fold. Firstly, it departs from the
prevalent stopping-problem setting to consider other important environments. Namely: (i) settings
where the timing of actions is exogenous; and (ii) settings with repeated actions and unobservable
payoffs (see Footnote 11, after the presentation of the model, for a discussion of how this model
can be viewed this way.) The former differ from the ‘Wald-type’ models above by shutting down
any timing concerns. This introduces novel considerations orthogonal to the cost of delay in taking
an action—which drives in large part the results in the aforementioned literature. The latter are
distinct from experimentation models in that, although payoffs are generated by repeated actions,
they are unobservable, and thus the decision maker must rely on additional information obtained
elsewhere. This allows the study of information acquisition when decisions have incremental impact
on payoffs, while retaining the flexibility in the design of experiments.

Schneider and Wolf (2020), also recognize the importance of departing from traditional timing
assumptions. They develop a model where a decision maker experiments with exogenous exponential
bandits until a fixed deadline. They show that ‘time pressure’ significantly alters the conclusions of
the existing literature. In this paper, the ‘deadline’ is stochastic so the concept of time pressure is
less pronounced.

Secondly, the present model allows for full freedom in what information the decision maker
can generate, and thus is capable of capturing all subsets of the features of information studied
in the literature. Methodologically, this paper is closely related to Zhong (2019) which studies
flexible dynamic information acquisition in a ‘Wald-type’ model of optimal stopping. The recent
literature on Bayesian Persuasion and Rational Inattention, and the techniques developed therein,9

allow for flexibility in modelling information, which Zhong (2019) introduces to a dynamic model.
In particular, Zhong (2019) associates to each signal a flow-information quantity, as the speed of
reduction in an uncertainty measure. This is then used to specify costs of information, which are,
importantly, super-additive in this flow-information. This forces the decision maker to smooth
information acquisition over time generating non-trivial dynamics. Zhong (2019) characterizes the
optimal signal as an (almost everywhere) single-jump Poisson process, with immediate stopping
after arrival, and confirmatory direction. This paper adopts a similar specification in terms of costs
of information, and the relationship between the results here and the stopping-problem in Zhong
(2019) have been discussed in the Introduction.

Furthermore, this paper shares features with the literature on dynamic rational inattention. In-
deed, the information acquisition problem can be thought of as the ‘information-processing’ problem
of a rationally inattentive agent. Following Sims’ (2003) influential work, a vast literature emerged
on how agents process information in the presence of processing costs. See Máckowiak, Matějka and

a framework which accommodates an exogenous deadline. Their focus is in establishing when myopically optimal
behaviour is equivalent to the dynamically optimal one. Importantly, their exogenous Gaussian framework cannot be
reconciled in the present model, where optimal information is almost never achievable by observing Gaussian sources.

9See Kamenica (2019) for a survey of Bayesian Persuasion, and Bergemann and Morris (2019) for a survey of
Information Design.
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Wiederholt (2021) for an extensive survey. Steiner, Stewart and Matějka (2017) develop a dynamic
rational inattention model where in each period the decision maker obtains arbitrary information
about a non-persistent state, prior to choosing an action. The costs of information are linear in the
reduction of Shannon entropy. However, their flow utilities depend on the entire history of actions
and states. Miao and Xing (2020), also study a dynamic rational inattention model but with more
general uniformly posterior-separable information measures. In the language of the present paper, in
both these models costs are linear in flow-information and hence the DM has no smoothing motive.

Moreover, Hébert and Woodford (2021b) pursue an optimal stopping-problem with flexible in-
formation acquisition as in Zhong (2019), but generalize the functional forms delivering the infor-
mational constraints by considering general divergences. They explore which properties of these
divergences generate diffusion experiments and which pure-jump experiments.

Finally, any model seeking to allow flexibility in information choices must specify a notion of
information quantity or information costs at the required level of generality. Defining a ‘sensible’
quantity of information is a very subtle and deep question, with a long history. Here we will be
content with representing the total quantity of information as a prior-independent moment of the
final posterior distribution. As in, for example, Pomatto, Strack and Tamuz (2020), Mensch (2018),
and Denti, Marinacci, and Rustichini (2021) we view the association between experiments and a
numerical quantity of information as a completion of the Blackwell order, in that it generates a
total order on final experiments, while respecting the Blackwell order. Although a representation as
a prior-dependent moment is a consequence of a form of linearity of the information measure over
Blackwell experiments,10 the prior-independent representation pursued here, and in Zhong (2019),
Hebért and Woodford (2021b), Steiner, Stewart and Matějka (2017), and Miao and Xing (2020), is
harder to motivate—particularly as a ‘physical’ cost of information acquisition. This is the subject
of recent debate in the literature on information costs and particularly the distinction between
posterior-separable and uniformly posterior-separable costs. The specification in this paper falls
in the latter class, which is nevertheless rich enough and includes widely used (or well-motivated)
measures of information, such as Shannon entropy reduction of Sims (2003), Bayesian LLR costs of
Pomatto, Strack and Tamuz (2020) and Bloedel and Zhong (2020), Neighbourhood-based Costs of
Hébert and Woodford (2021a), and many others. Exploring a richer set of information measures is
left for future work.

10Versions of this result appear in characterizations of posterior-separable information costs in Caplin, Dean and
Leahy (forthcoming); of cardinal measures of information in Mensch (2018), and Azrieli and Lehrer (2008); and most
generally in the characterization of monotone affine functionals of experiments in Torgersen (1991).
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2 Model

The Decision Problem.— There is a set of unknown states Θ = {θ0, θ1}, and a Bayesian decision
maker (DM) with prior belief π = Pr(θ = θ1) ∈ (0, 1). A perishable opportunity to act arrives
at some exogenous random time τ ∼ exp(ρ).11. Optimal learning behaviour for such a problem is
covered by the solution characterized here. The DM has state-dependent preferences over their
actions, described by some payoff function u : Θ × A → R, where u(θ, a) is the payoff from action
a ∈ A in state θ ∈ Θ. We assume A is compact and u(·, a) continuous in a, so that the maximum
value function U : [0, 1]→ R, with:

U(µ) = max
a∈A

Eµ[u(θ, a)] = max
a∈A

µ · u(θ1, a) + (1− µ) · u(θ0, a)

is well-defined, and continuous. U is convex as the maximum of linear functions. The DM discounts
the future are rate r > 0, so if they act at time t their payoffs are given by e−rt · U(µt).

Information Strategies.— While waiting for the opportunity to act, the DM may acquire infor-
mation about the unknown state θ in the form of dynamic experiments, which we now describe. We
identify a dynamic experiment by the posterior process (µt)t≥0 it induces, and in particular we will
consider (time-homogeneous) Markov experiments so that the choice of an experiment corresponds
to a choice of transition semigroup (Pt)t≥0. The interpretation of Pt, is that for any f ∈ C[0, 1],
and x ∈ (0, 1), Ptf(x) = Ex[f(µt)]. Furthermore, to be able to apply dynamic programming tech-
niques, we would like to have a way to translate the choice of the posterior process to a choice of
some local characteristics of this process. For this reason we restrict attention to Feller processes.12

Such processes can be described by their infinitesimal generators, A : DA → C[0, 1] where we write
formally:

Af = lim
h→0+

1

h
(Phf − f)

The subset DA ⊆ C[0, 1], for which this limit exists and is continuous, is called the domain of A.
The operator A allows us to approximate changes in the expected value of functions of the posterior
as: Ex[f(µh)− f(x)] = Af(x) · h+ o(h).

Under some regularity assumptions, the generator can be represented as:13

11Given the exponential assumption on τ , this model has an alternative interpretation. It captures the problem
of a decision maker enjoying flow payoff from repeatedly taking an action, but who cannot learn from these payoffs.
Such problems are economically meaningful. For example, consider a patient who has to take one of two life-saving
treatments every day. In such a situation it is unlilkely they are able to observe the gradual effects of their choice, and
will inevitably have to rely on other sources to learn about which treatment is best. This contrasts such an example
to the ‘experimentation’ literature, where decision makers learn purely by choosing among different options yielding
stochastic payoffs. See e.g. Gittins and Jones (1979), Bolton and Harris (1999) and Keller, Rady, and Cripps (2005).

12That is, for f ∈ C[0, 1]: (i) Ptf ∈ C[0, 1], and (ii) limt→0 Ptf(x) = f(x), for all x ∈ (0, 1). For further definitions
see Applebaum (2009) Chapter 3.2.

13In particular we insist that C∞[0, 1] ⊆ DA. This is the Courrége Representation Theorem (Applebaum, 2009,
Theorem 3.5.3)
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Af(x) = α(x) · f ′′(x) +

∫
f(y)− f(x)− f ′(x) · (y − x)dF (y|x)

for any f ∈ C∞[0, 1], where α(x) > 0 is a positive diffusion coefficient, and F (·|x) ∈M(x) where:

M(x) =
{
F positive measure

∣∣ F ({x}) = 0, and
∫

min{1, (y − x)2}dF (y|x) <∞
}

is a measure describing the jumps of the process. Given such A, we refer to the mapping x 7→
(α(x), F (·|x)) as the characteristics of A, or of the corresponding posterior process.

Such posterior processes and the distributions over paths they induce are called admissible
information strategies. We introduce a piece of notation to aid the exposition. For f ∈ C1[0, 1], let
Lf(·, x) be the deviation of f from its tangent line at x: Lf(y, x) = f(y) − f(x) − f ′(x) · (y − x).
With this notation we have for any f ∈ C∞[0, 1]:

Af(x) = α(x) · f ′′(x) +

∫
Lf(y, x)dF (y|x)

Ultimately, the optimal experiment will be constructed by choosing a pair (α, F ) ∈ R+ ×M(x)

optimally at each belief x ∈ (0, 1).
Information Costs.— We now describe the information costs which will depend on a notion

of flow-information generated by an admissible information strategy. For this, we start from a
uniformly posterior-separable measure of information, so that over a period of length h, and starting
from belief x, the quantity of information generated by A is:

Ex[G(µh)−G(x)] = AG(x) · h+ o(h)

for some convex function G : [0, 1]→ R+. From the above, the term:

AG(x) = α(x) ·G′′(x) +

∫
LG(y, x)dF (y|x)

can be interpreted as the information increment, or flow-information. Following Zhong (2019) and
Hébert and Woodford (2021b), we use this quantity to formulate the flow-costs of information.

We make the following assumption:

Assumption 1. G ∈ C∞[0, 1] with G′′(x) > 0 for all x ∈ [0, 1]. Moreover, limx→0G
′(x) = −∞,

and limx→1G
′(x) = +∞.

The first two conditions impose smoothness on the problem and guarantee that the increment
AG is well-defined, while the third and fourth prevent the DM from choosing a strategy which
jumps to the boundaries, 0 or 1.

For dynamics to matter in this problem, we need the flow-costs of information to exhibit strict
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super-additivity, which introduces an ‘information-smoothing’ motive. If flow-costs are sub-additive
in the information increment, the DM acquires the optimal amount of information instantaneously.

To keep matters simple we consider a capacity constraint on the flow-information an experiment
can generate. This allows for an analysis of the key trade-offs at play, in a relatively straightforward
framework.14 In particular, we define the set of feasible information strategies by specifying a set of
feasible characteristics, I(x) at each x ∈ (0, 1), where:

I(x) =

{
(α, F ) ∈ R+ ×M(x)

∣∣ α ·G′′(x) +

∫
LG(y, x)dF (y) ≤ κ

}
for a capacity κ > 0. We will say that a process is feasible if the characteristics of its generator are
feasible, and denote the set of feasible information strategies by:

I =
{
A generator

∣∣ (α(x), F (·|x)
)
∈ I(x) ∀x ∈ (0, 1)

}
We will denote by Π(I) the set of distributions over paths induced by feasible information strategies.

3 Optimization Problem

With all the ingredients at hand we are ready to state the optimization problem. Given a problem
with data (r, ρ̃, Ũ) we consider the value Ṽ : [0, 1]→ R+ be defined by:

Ṽ (x) = sup
P∈Π(I)

ExP
[
e−rτ̃ Ũ(µτ̃ )

]
where τ̃ ∼ exp (ρ̃), is the exogenous time at which the DM gets to act. The DM chooses an
admissible law over belief paths subject to the information constraint, to maximize their expected
discounted payoff at the time of decision. It is easy to see that this problem is equivalent to a
problem with no discounting, where τ ∼ exp (ρ̃+ r) and the decision payoff is given by U = ρ̃

ρ̃+r · Ũ .
Hence, in what follows we will dispense with discounting and solve the general problem with

data (0, ρ, U):

V (x) = sup
P∈Π(I)

ExP
[
U(µτ )

]
= sup

P∈Π(I)
ExP

[∫ +∞

0
e−ρtρU(µt) dt

]
(V)

where τ ∼ exp (ρ), is the exogenous time at which the DM gets to act.
The second equality above follows from the independence of τ and the belief process, as well as

the exponential distribution assumption. It reveals an alternative interpretation of this model: this
is the objective of a DM who repeatedly acts receiving flow payoff ρU , but who does not learn from
these payoffs. The two models are behaviourally equivalent in terms of the optimal information

14Indeed, the case of smooth convex flow costs, can be analyzed in a similar manner by endogenizing the ‘capacity
constraint.’
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strategies they generate.

Characterization

Before we give the characterization we collect some properties of the value function.

Lemma 1. The value function V is convex, and continuously differentiable on (0, 1).

Proof. Appendix A.

Convexity of V is unsurprising since the DM strictly values any free experiment which generates
a spread over their beliefs. Convexity also establishes the right- and left-differentiability of V , and
to prove that it is continuously differentiable, it suffices to show that V ′− = V ′+. This is accomplished
by constructing a simple dominated experiment and using the definition of the value.

We now proceed to characterize V and the optimal experiment.

Proposition 1. The value function V is a viscosity solution to:

ρ(V − U)(x) = sup
y 6=x

LV (y, x)

LG(y, x)
· κ (HJB)

with V (1) = U(1) and V (0) = U(0).

Proof. Appendix B.

Beyond giving an equation for the value function, this characterization shows that optimal
experiments can be found among single-jump processes.15 To see this we will argue heuristically,
and derive the Hamilton-Jacobi-Bellman (HJB) equation as:16

ρ(V − U)(x) = sup
A
AV (x) subject to AG(x) ≤ κ (I)

We now consider the optimization problem on the RHS, and construct the Langrangian:

sup
A
AV (x)− λ∗(x)AG(x) + λ∗(x)κ

This objective is linear in the choice variableA so for this problem to have a finite solution (necessary
to stay below the capacity constraint),

AV (x)− λ∗(x)AG(x) ≤ 0, ∀A ⇒ λ∗(x) ≥ sup
A

AV (x)

AG(x)

15This is so when the supremum is achieved; when the supremum is strict, the optimal signal is a diffusion.
16This is not justified in general without a priori knowledge about the smoothness of the value; this is why one

needs to work within the viscosity solution framework.
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One can show that in fact the inequality holds as an equality and consequently, supAAV (x) −
λ∗(x)AG(x) = 0, which we substitute in Equation (I) to get:

ρ(V − U)(x) = λ∗(x) · κ = sup
A

AV (x)

AG(x)
· κ (II)

We now explain why it is enough to consider single-jump processes. As the ratio of two linear
functionals of A, the objective maximized on the RHS is quasi-convex. We re-write it as:

sup
(α,F )

αV ′′(x) +
∫
LV (y, x)dF (y)

αG′′(x) +
∫
LG(y, x)dF (y)

· κ = sup
(0,F )

∫
LV (y, x)dF (y)∫
LG(y, x)dF (y)

· κ

where the second equality holds because the diffusion term can be approximated by jump measures.17

Finally, the value of this ratio is independent of the total mass of F , and one can just consider
probability measures on ∆(Sx) where Sx = [0, x) ∪ (x, 1]. Quasi-convexity then yields:

sup
P∈∆(Sx)

∫
LV (y, x)dP (y)∫
LG(y, x)dP (y)

· κ = sup
P∈ext∆(Sx)

∫
LV (y, x)dP (y)∫
LG(y, x)dP (y)

· κ

The set of extreme points ext∆(Sx) = {δy : y 6= x}, are the point-masses at points other than x.
Operators built from such point-masses correspond to single-jump processes.

Plugging in Equation (II), gives:

ρ(V − U)(x) = sup
y 6=x

LV (y, x)

LG(y, x)
· κ

which is the (HJB) equation we were after.
We can recognize in the LHS as the difference between the optimal payoff, V , and the payoff

from taking the optimal action in the absence of further information, U . Their difference V − U
captures how much the DM gains from having the ability to learn optimally. We term this quantity
the information gain.18 It accrues at rate ρ > 0 which is the frequency at which the DM gets to
take an action. The RHS proportional to the ratio between the expected change in the value and
the flow-information, optimized over single-jump signals.19 That ratio coincides with the shadow-
cost of information. The HJB equation necessitates that, at the optimum, the information gain is

17Indeed, by setting F ε = α
ε2
· δx+ε, we have for any f ∈ C2[0, 1],∫

Lf(y, x)dF ε(y) = α

ε2
·
(
f(x+ ε)− f(x)− f ′(x) · ε

)
= αf ′′(x) +

o(ε2)

ε2
→ αf ′′(x) as ε→ 0

18Interpreting the solution to the original problem with data (r, ρ, Ũ) with discounting in terms of the solution
to the transformed problem, amounts to simply recognizing that the payoff in the absence of further information is
given by U(µ) = E[e−rτ̃ ]Ũ(µ) = ρ

ρ+r
Ũ(µ).

19Of course, when the supremum is strict no single-jump experiment is optimal in which case the signal collapses
to a diffusion.
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exactly proportional to the shadow-cost. This monotonicity between the information gain and the
shadow-cost of information is a key driver of the results.

Finally, the local characteristics of the optimal experiment are identified as follows. If supy 6=x
LV (y,x)
LG(y,x) >

V ′′(x)
G′′(x) then a pure-jump is optimal, and we recover it from:

y∗(x) ∈ argmax
y 6=x

LV (y, x)

LG(y, x)
6= ∅

and specify its frequency by the binding information constraint:

ϕ∗(x) =
κ

LG(y∗(x), x)

If supy 6=x
LV (y,x)
LG(y,x) = V ′′(x)

G′′(x) then a diffusion is optimal, and is characterized by binding the infor-
mation constraint: α∗(x) = κ

G′′(x) .

Properties

We will now examine the key features of the optimal experiment, in terms of the frequency of jumps,
their direction, and their location.

Proposition 2 (diffusion signal at the max). Diffusion is optimal if and only if the information
gain is maximal:

ρ(V − U)(x) =
V ′′(x)

G′′(x)
· κ ⇐⇒ x is a local maximum of V − U

Proof. Appendix C.

This result establishes when a pure-jump process is not optimal, which occurs only at the local
maxima of the information gain. At every other point, the optimal experiment generates a single
jump.

We can illustrate this by considering a binary action setting. There, the information gain is
maximal at the belief for which the DM is indifferent between the two actions. At that belief the
DM is eager to rapidly break their indifference, and this desire leads them to substitute all impact
for frequency. Such points are non-generic and only play a role if it so happens that the prior
exactly coincides with such a point. If the DM has a prior different than a local maximizer of the
information gain, their posterior will never visit any local maximizer along the optimal path.

Next, we establish two important properties of the optimal experiment.

Proposition 3 (direction). Any optimal jump is in the direction of increasing information gain:

ρ(V − U)′(x) > 0 ⇐⇒ y∗(x)− x > 0

15



Proof. Appendix D.

This result states that any optimal jump is in the direction of increasing information gain. Stated
differently, it necessitates that the information gain drifts downwards absent a breakthrough. In
binary action examples, there will be a belief x̂ ∈ (0, 1) where they are indifferent among actions
and the information gain is maximal. This belief provides a payoff-adjusted threshold against which
to measure the DM’s ‘conviction,’ and we can say that the DM is more confident about state 1,
if µ > x̂, and vice versa. For instance, in the introductory example where payoffs were symmetric
across states, x̂ = 1/2, and hence it coincided with the most uncertain belief. There, the notion of
conviction was what we would naturally think. In general, one needs to adjust for discrepancies in
payoffs across states, since they generate a degree of ‘bias’ for the DM.

With this in mind, Proposition 3 states that optimal jumps are contradictory in the sense that
they counter the DM’s conviction: when to the right of x̂ the DM is more confident about state 1,
and yet seeks evidence which would contradict this; and vice versa.

Moreover, we have the following:

Proposition 4 (location). The information gain decreases along the sequence of optimal jumps:

ρ(V − U)(y∗(x)) ≤ ρ(V − U)(x)

Proof. Appendix E.

This result establishes the location and, by extension, the impact of optimal jumps. In particular,
it states that optimal jumps are sufficiently significant so that the information gain decreases after
a jump. The idea is that the DM consolidates any potential intermediate jumps until sufficient
precision is accumulated into one big breakthrough. More specifically, starting from x, one can
show that if there was an intermediate jump y∗(x) to a location of strictly larger information gain,
(V − U)(y∗(x)) > (V − U)(x), then the DM could profitably jump to the destination of the next
jump, x→ y∗(y∗(x)).

To gain some intuition on the properties above we focus again on a binary action setting. There
are two ways by which the DM can be induced to change their plan of action. They can seek
evidence whose arrival reaffirms their intentions, and the absence of arrival slowly induces them to
change their action. This is a ‘confirmatory’ information strategy. Alternatively, they can use a
‘contradictory’ strategy in which they seek evidence whose arrival generates a substantial decrease in
confidence in their plan of action, and the absence of arrival slowly affirms their intentions. Notice
that for a contradictory strategy to be valuable it must be possible for the DM to accumulate
sufficient evidence against their plan, via potentially repeated jumps.

Proposition 3 states that the DM would never jump in a direction which makes them more
convinced of the validity of their current intentions. That is, they find the contradictory information
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strategy optimal. Moreover, Proposition 4 states that they would never attempt to change their
action through jumping repeatedly in the opposite direction. That is, they concentrate resources to
generate a single convincing signal. Proposition 4 also quantifies how convincing this contradictory
signal is: it causes the information gain to decrease.

Finally, we have the following:

Proposition 5 (frequency vs impact). Let ϕ∗(x) be the optimal frequency. Then ϕ∗ is increasing
in the information gain:

(V − U)(x1) ≤ (V − U)(x2)⇒ ϕ∗(x1) ≤ ϕ∗(x2)

Proof. Appendix F.

This result establishes that the frequency of the optimal experiment increases in the information
gain. In binary action examples, this describes a key qualitative feature of the optimal experiment:
the DM trades off frequency for impact as they become more confident in the state.

Conclusion

This paper characterizes the optimal dynamic experiment in an environment where the decision
maker lacks control over the timing of actions. The decision maker can flexibly choose all aspects
of the experiment but faces a capacity constraint on the flow-information it can generate. The
key properties of learning in this environment are that resources are concentrated into generating
single breakthroughs, which counter the decision maker’s prior intentions. Consequently, absence
of breakthroughs make the decision maker more confident in their action plan which leads them to
sacrifice frequency in the arrival of breakthroughs, to increase their significance.
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Appendix

A Proof of Lemma 1

Convexity follows from the fact that in a hypothetical scenario where the DM observes some free
information generating a spread λx1 + (1− λ)x2 over their beliefs, the DM can still wait to observe
which belief materializes and implement the optimal experiment then. Hence, V

(
λx1 +(1−λ)x2

)
≥

λV (x1) + (1− λ)V (x2)
We now prove differentiability. Fix some x ∈ (0, 1). Consider the following experiment: a

signal arrives at some time σ independently of the state, and implements a 50:50 spread: F =
1
2 · δx+ε + 1

2 · δx−ε. The frequency of ϕ(x, ε) of the arrival time σ is selected to bind the constraint,
that is:

ϕ(x, ε) =
κ

1
2

[
G(x+ ε)−G(x)

]
+ 1

2

[
G(x− ε)−G(x)

]
Call the resulting distribution of beliefs Q. For any time interval h > 0, we have:

V (x) ≥ EQ

[∫ h

0
e−ρtρU(µt) dt+ e−ρhV (µh)

]
since implementing this experiment until h time passes and then following the optimal experi-

ment must be unprofitable. We re-arrange and expand to get for h small enough:

0 ≥
∫ h

0
e−ρtρU(x)− ρV (x) + ϕ(x, ε) ·

(
1

2
· V (x+ ε) +

1

2
· V (x+ ε)− V (x)

)
dt

Now dividing by h and sending h→ 0, and substituting for ϕ(x, ε) we have:

ρ

κ
(V − U)(x) ·

[
G(x+ ε)−G(x) +G(x− ε)−G(x)

]
≥
[
V (x+ ε)− V (x) + V (x− ε)− V (x)

]
Dividing by ε > 0 we get:

ρ

κ
(V − U)(x) ·

[
G(x+ ε)−G(x)

ε
+
G(x− ε)−G(x)

ε

]
≥
[
V (x+ ε)− V (x)

ε
+
V (x− ε)− V (x)

ε

]
We take limits ε→ 0 on both sides to get:

ρ

κ
(V − U)(x) ·

[
G′+(x)−G′−(x)

]
≥
[
V ′+(x)− V ′−(x)

]
where we notice that the limits exist by convexity of V and G.

Since G is differentiable the LHS is zero and we have:

V ′−(x) ≥ V ′+(x)

Consequently, V is differentiable at x. As a convex function we have that it is also continuously
differentiable, which completes the proof.
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B Proof of Proposition 1

Before we begin we give the definition of a viscosity solution to:

ρ(v − U)(x)− sup
A∈I(x)

Av(x) = 0 and V = U on {0, 1}

A continuous function V : [0, 1]→ R+ is a viscosity solution to the above if:20

• For all v ∈ C∞[0, 1], such that V ≥ v and V − v has a global minimum of 0, at x̂ ∈ (0, 1):

ρ(v − U)(x̂)− sup
A∈I(x)

Av(x̂) ≥ 0 (super)

• For all v ∈ C∞[0, 1], such that V ≤ v and V − v has a global maximum of 0, at x̂ ∈ (0, 1):

ρ(v − U)(x̂)− sup
A∈I(x)

Av(x̂) ≤ 0 (sub)

Firstly, we prove the following:

Lemma 2. For any test-function v ∈ C∞[0, 1],

sup
A∈I(x)

Av(x) = sup
y 6=x

Lv(y, x)

LG(y, x)
· κ

Proof. To prove this we first appeal to the saddle-point characterization of the optimal solution to
this problem. First, A → Av(x) and A → AG(x) are linear and the set E(x) is convex. Moreover,
there is clearly an element A ∈ E(x) for which AG(x) < κ, and the cone in R is closed with
non-empty interior. By the Langrange Multiplier Theorems in Luenberger (1997, p.219 and 221),

sup
A∈I(x)

Av(x) = L(A∗, λ∗, x)

where (A∗, λ∗) forms a saddle-point of the functional over the domain E(x)× R+:

L(A, λ, x) = Av(x)− λAG(x) + λ · κ

That is,
L(A, λ∗, x) ≤ L(A∗, λ∗, x) ≤ L(A∗, λ, x) for all A ∈ E(x), λ ≥ 0

Next, we provide such a saddle-point. Firstly, define λ∗(x) = supA∈E(x)
Av(x)
AG(x) . We will show that:

λ∗(x) = sup
y 6=x

Lv(y, x)

LG(y, x)

that is, the supremum can be taken over single-jump processes. Firstly, because we can always
20See Fleming and Soner (2006), Chapter II.4.
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approximate a diffusion by an appropriate choice of jump measures, we have:

λ∗(x) = sup
(0,F )∈E(x)

∫
Lv(y, x)dF (y)∫
LG(y, x)dF (y)

= sup
(0,P )∈E(x)

∫
Lv(y, x)dP (y)∫
LG(y, x)dP (y)

where P are probability measures. The second equality holds because the value of the ratio is
independent of the total mass of the measures F .

Next, let Sx = [0, x)∪ (x, 1], and ∆(Sx) the set of Borel probability measures on Sx. The space
Sx is Polish as a Gδ subset of a Polish space. The extreme points are given by ext∆(Sx) = {δy :
y 6= x}.21 Since the ratio above is a quasiconvex, lower semicontinuous functional of P ∈ ∆(Sx),
we have by Theorem 3.2 in Stenger, Gamboa, and Keller (2021):

sup
P∈∆(Sx)

∫
Lv(y, x)dP (y)∫
LG(y, x)dP (y)

= sup
P∈ext∆(Sx)

∫
Lv(y, x)dP (y)∫
LG(y, x)dP (y)

= sup
y 6=x

Lv(y, x)

LG(y, x)

which proves the claim.

Next, define:

A∗ =


ϕ∗ · δ∗y with y∗ ∈ argmaxy 6=x

Lv(y,x)
LG(y,x) and ϕ∗ = κ

LG(y∗,x) , if λ∗(x) > v′′(x)
G′′(x)

α∗ = κ
G′′(x) , if λ∗(x) = v′′(x)

G′′(x)

Notice that A∗G(x) = κ and A∗v(x)−λ∗(x)A∗G(x) = 0.22 Therefore, L(A∗, λ∗, x) = λ∗(x) ·κ. We
argue that (A∗, λ∗) is a saddle-point.

For arbitrary A, from the definition of λ∗ (we omit the dependence on x for clarity):

L(A, λ∗) = Av − λ∗ · AG+ λ∗κ ≤ λ∗ · κ = L(A∗, λ∗, x)

Moreover, for arbitrary λ:

L(A∗, λ) = A∗v − λAG+ λ · κ = A∗v − λ∗AG+ λ · (κ−A∗G) + λ∗A∗G
= λ · (κ−A∗G) + λ∗A∗G
= λ∗κ

Consequently, the pair (A∗, λ∗) defined above is a saddle-point for L.

We now prove that the value V is a viscosity solution to:

ρ(V − U)(x) = sup
A∈I(x)

AV (x)

The claim then follows since the sub- and super-solution properties are tested on test-functions
v ∈ C2[0, 1], and we can apply Lemma 2.

21See Stenger, Gamboa, and Keller (2021), Theorem 2.1. Here we are taking the trivial moment class.
22Note that the constructed A∗ achieves the supremum defining λ∗.
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We check the conditions for Theorem 5.1 in Fleming and Soner (2006). In fact, we only need to
check the continuity in x of supA∈I(x)Av(x) for v ∈ C∞[0, 1]. This follows from the compactness
of I(x) which is implied by the strict convexity G′′ > 0.

Lemma 3. For v ∈ C∞[0, 1], the mapping x 7→ supA∈I(x)Av(x) is continuous.

Proof. Online Appendix.

C Proof of Proposition 2

(⇐): Suppose (V − U)(x) is maximal but an optimal jump exists; that is the supremum in (HJB)
is achieved. The envelope theorem applies and we have:

0 = ρ(V − U)′(x) = ϕ∗(x) ·
(
λ∗(x) ·G′′(x)− V ′′(x)

)
· (y∗(x)− x)

where λ∗(x) = supy 6=x
LV (y,x)
LG(y,x) . The first equality holds since V − U has a local maximum at x,

and the maximizer is interior. By the hypothesis that an optimal jump exists, λ∗(x) > V ′′(x)
G′′(x) , and

the above implies y∗(x)− x = 0, a contradiction.

D Proof of Proposition 3

Suppose an optimal jump y∗(x) exists at x, and let λ∗(x) = supy 6=x
LV (y,x)
LG(y,x) . Then, this supremum

is achieved by y∗(x). Consequently, the envelope theorem applies and from (HJB) we have:

ρ(V − U)′(x) =
κ

LG(y∗(x), x)
·
(
λ∗(x) ·G′′(x)− V ′′(x)

)
· (y∗(x)− x)

The first two terms in the RHS are strictly positive, and thus ρ(V −U)′(x) > 0 ⇐⇒ y∗(x)−x > 0.

E Proof of Proposition 4

We prove this by contradiction. Suppose this is not the case, so that for some x ∈ (0, 1):

sup
y 6=y∗(x)

LV (y, y∗(x))

LG(y, y∗(x))
= λ∗

(
y∗(x)

)
> λ∗(x) = sup

y 6=x

LV (y, x)

LG(y, x)

We will show that the original jump to y∗(x) was not optimal. First, there exists some ŷ 6= y∗(x)
such that:

LV (ŷ, y∗(x))

LG(ŷ, y∗(x))
> λ∗

(
y∗(x)

)
− ε > λ∗(x) (*)

We will show that ŷ constitutes a profitable deviation to y∗(x) starting from x.
Indeed, for any f ∈ C2[0, 1]:

Lf(ŷ, x) = Lf(ŷ, y∗(x)) + Lf(y∗(x), x) +
(
f ′(y∗(x))− f ′(x)

)
· (ŷ − y∗(x))
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and therefore:

LV (ŷ, x)

LG(ŷ, x)
=
LV (ŷ, y∗(x)) + LV (y∗(x), x) +

(
V ′(y∗(x))− V ′(x)

)
· (ŷ − y∗(x))

LG(ŷ, y∗(x)) + LG(y∗(x), x) +
(
G′(y∗(x))−G′(x)

)
· (ŷ − y∗(x))

(**)

Next, we consider optimizing:

max
y 6=x

LV (y, x)

LG(y, x)

The FOC necessitates that the maximizer y∗(x) satisfies:

(
V ′(y∗(x))− V ′(x)

)
−
(
G′(y∗(x))−G′(x)

)
· LV (y∗(x), x)

LG(y∗(x), x)
= 0⇒

(
V ′(y∗(x))− V ′(x)

)
= λ∗(x) ·

(
G′(y∗(x))−G′(x)

)
Consequently, we can re-write (**) as:

LV (ŷ, x)

LG(ŷ, x)
=

LV (ŷ,y∗(x))
LG(ŷ,y∗(x)) · LG(ŷ, y∗(x)) + λ∗(x) · LG(y∗(x), x) + λ∗(x)

(
G′(y∗(x))−G′(x)

)
· (ŷ − y∗(x))

LG(ŷ, y∗(x)) + LG(y∗(x), x) +
(
G′(y∗(x))−G′(x)

)
· (ŷ − y∗(x))

>
λ∗(x) · LG(ŷ, y∗(x)) + λ∗(x) · LG(y∗(x), x) + λ∗(x)

(
G′(y∗(x))−G′(x)

)
· (ŷ − y∗(x))

LG(ŷ, y∗(x)) + LG(y∗(x), x) +
(
G′(y∗(x))−G′(x)

)
· (ŷ − y∗(x))

= λ∗(x)

where the inequality follows from (*). This contradicts the optimality of y∗(x).

F Proof of Proposition 5

In each region where an optimal jump exists, the FOC holds and we get:(
V ′(y∗(x))− V ′(x)

)
= λ∗(x) ·

(
G′(y∗(x))−G′(x)

)
and using the Implicit Function Theorem we differentiate to obtain:

V ′′(y∗(x)) · dy
∗(x)

dx
− V ′′(x) = λ∗(x) ·

(
G′′(y∗(x))

dy∗(x)

dx
−G′′(x)

)
+ (λ∗)′(x) ·

(
G′(y∗(x))−G′(x)

)
which we re-arrange to get:

dy∗(x)

dx
·
(
V ′′(y∗(x))−λ∗(x) ·G′′(y∗(x))

)
= V ′′(x)−λ∗(x)G′′(x)+(λ∗)′(x) ·

(
G′(y∗(x))−G′(x)

)
(*)

Moreover, from the envelope theorem:

(λ∗)′(x) =
1

LG(y∗(x), x)
·
(
λ∗(x) ·G′′(x)− V ′′(x)

)
· (y∗(x)− x)⇒
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V ′′(x)− λ∗(x) ·G′′(x) = −(λ∗)′(x) · LG(y∗(x), x)

y∗(x)− x
Substituting into (*) yields:

dy∗(x)

dx
·
(
V ′′(y∗(x))− λ∗(x) ·G′′(y∗(x))

)
= (λ∗)′(x) ·

(
G′(y∗(x))−G′(x)− LG(y∗(x), x)

y∗(x)− x

)
⇒

dy∗(x)

dx
·
(
V ′′(y∗(x))− λ∗(x) ·G′′(y∗(x))

)
· (y∗(x)− x) = (λ∗)′(x) ·

(
G′(x)−G′(y∗(x))−G′(y∗(x)) ·

(
x− y∗(x)

))

Re-arranging, and using the expression of λ∗ in terms of the information gain we get:

−dy
∗(x)

dx
·
(
y∗(x)− x

)
=
ρ

κ
(V − U)′(x) · LG

(
x, y∗(x)

)
·
(
λ∗(x) ·G′′(y∗(x))− V ′′(y∗(x))

)−1

The term LG
(
x, y∗(x)

)
> 0 by convexity of G. Additionally, the SOC necessitates:

V ′′(y∗(x))− λ∗(x) ·G′′(y∗(x)) ≤ 0

Hence, we express the derivative as:

−dy
∗(x)

dx
=

(V − U)′(x)

y∗(x)− x
·K(x, y∗(x)) (**)

with K(x, y∗(x)) > 0.
From Proposition 3, (V − U)′(x) has the same sign as y∗(x)− x. Therefore, the RHS in (**) is

always positive, which implies that:
dy∗(x)

dx
< 0

We use this to show that precision |y∗(x) − x| is increasing in the distance from the maximal
information gain. Let x̂ be a local maximum of (V − U). Consider, x1 < x2 < x̂. We have
y∗(x1) > y∗(x2), and:

|y∗(x1)− x1| = y∗(x1)− x1 > y∗(x2)− x1 > y∗(x2)− x2 = |y∗(x2)− x2|

where the first equality follows from Proposition 3. Similarly, for x̂ < x2 < x1, y∗(x2) > y∗(x1),
and

|y∗(x1)− x1| = x1 − y∗(x1) > x1 − y∗(x2) > x2 − y∗(x2) = |y∗(x2)− x2|

This proves the assertion. Since frequency and impact are inversely related at the optimum we have
that:

(V − U)(x1) < (V − U)(x2)⇒ |x̂− x1| > |x̂− x2| ⇒ ϕ∗(x1) < ϕ∗(x2)

which completes the proof.

26


	Introduction
	Model
	Optimization Problem
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

