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Abstract

We present a model of dynamic trading with exogenous and strategic cancellation

of orders. We define spoofing as strategically placing and canceling orders in order

to move prices and trade later in the opposite direction. We show that spoofing can

occur in equilibrium, slowing price discovery and raising spreads and volatility. A

novel prediction is that the prevalence of equilibrium spoofing is single-peaked in the

measure of informed traders, suggesting that spoofing should be more prevalent in

markets of intermediate liquidity. We also consider cross-market spoofing and discuss

how regulators should allocate resources towards cross-market surveillance.
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1 Introduction

In September of 2020, U.S. regulators levied a $920 million fine on JP Morgan Chase for eight

years of price manipulation in markets for precious metals and treasury bills. The form of

manipulation JP Morgan committed is called “spoofing,” which involves quickly placing and

canceling orders to create an illusion of supply or demand. The size of the fine—comparable

to penalties for rate rigging, corruption, and money-laundering—sets a new record in a series

of increasingly severe regulatory actions against spoofing since the Dodd-Frank Act made

it illegal in 2010.1 Other high profile cases include Navinder Sarao, who was convicted in

2016 of spoofing U.S. futures markets and thereby contributing to the 2010 Flash Crash,

and Michael Coscia, who was fined almost a million dollars for spoofing European futures

markets.

The regulatory crackdown on spoofing has necessitated the creation of a special CFTC

task force on spoofing in 2018. Thomas LaSala, the CFTC director, said “Policing the market

for disruptive trading practices continues to be a huge part of our regulatory investment and

e↵ort.”2 Regulators and other commentators worry that spoofing harms markets by exacer-

bating adverse selection, volatility, and instability, which discourages legitimate traders from

participating.3 However, little scholarship exists to confirm or falsify these e↵ects and guide

regulation; empirical literature on spoofing is scant, and formal theory almost nonexistent.

In this paper, we present a dynamic trading model to better understand the economic

consequences of spoofing. In the model, there is a mixture of informed and unformed traders.

Some traders cancel their orders for exogenous reasons while other traders cancel strategi-

cally. We define spoofing as the strategic placing and canceling of orders with the intent to

move prices and subsequently trade in the opposite direction.4 We ask if spoofing can be

an equilibrium phenomenon (yes!) and how spoofing a↵ects prices, liquidity, and volatility.

We then endogenize the amount of spoofing and ask what markets are most likely to at-

1https://www.ft.com/content/cc598fab-3d6a-4dd9-a91d-cebaa4130d03
2https://www.wsj.com/articles/u-s-market-manipulation-cases-reach-record-1540983720
3See https://www.sec.gov/files/Algo_Trading_Report_2020.pdf, Dalko and M. H. Wang (2019),

and https://www.ft.com/content/cbf0aeaa-76ff-11e5-933d-efcdc3c11c89
4In practice, spoofing takes many forms, but they have in common that a spoofer takes some insincere

action with the intent to move prices and then profit from such manipulation. Our model o↵ers a stylized
and tractable version of such phenomena. We discuss later how our insights apply more broadly to other
forms of spoofing.
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tract such activity. Finally, we employ the model to discuss market regulation, in particular

cross-market surveillance.

First, we show that spoofing can occur in equilibrium, and that it slows price discovery,

raises bid-ask spreads, and raises return volatility. Second, we show that the prevalence of

equilibrium spoofing is non-monotone (single-peaked) in the fraction of informed traders in

the market, suggesting that spoofing should be more prevalent in markets of intermediate

liquidity. Third, we show that traders may profit by spoofing across distinct markets (for as-

sets with correlated returns) and discuss how the regulators should allocate limited resources

between cross-market and within-market surveillance.

Our findings are consistent with the view of regulators and other commentators that

spoofing can have harmful e↵ects on markets. Our findings also imply that spoofing may

not be just an out-of-equilibrium phenomenon that can be completely neutralized by sophisti-

cated traders once understood by all market participants. As a result, a regulation designed

to catch and penalize spoofers, rather than just educating market participants about the

possibility of spoofing, can be beneficial.

In practice, spoofing can take many forms, but they all involve the placing and cancelling

of limit orders. However, models involving limit orders are known to be intractable, usually

requiring either partial equilibrium analysis or numerical solutions.5 Because we seek a

tractable equilibrium model of spoofing, we avoid these di�culties by adapting the market

order framework of Glosten and Milgrom (1985). We add to that model the possibility of

cancellation. We believe that it allows us to capture the main economic forces present in

limit order markets while keeping the analysis tractable. For example, our results that the

returns to spoofing depend non-monotonically on the fraction of informed traders in the

market are likely to hold in more complex environments.

In our setting, there are three dates, a competitive market maker, and a large set of

traders who exchange units of an asset with the market maker. The asset’s value may be

high or low and is not revealed publicly until the final date. At each date, the market maker

posts a bid and an ask price, and a random trader arrives at the market, placing an order

to buy or sell the asset. A fraction of these traders are informed of the asset’s true value,

and the remaining uninformed traders want to buy or sell the asset for liquidity reasons.

To allow for spoofing, we make two modifications to the Glosten and Milgrom (1985)

5See the literature review.
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framework. First, we assume that traders may cancel their order after placing it. Traders

may cancel either because they experience sudden changes to their liquidity needs, or because

they never intended to execute the order in the first place; the market maker cannot tell the

di↵erence. Second, we assume that a subset of informed and uninformed traders may trade

twice in a row anonymously with the market maker; we call these long-term traders.

Spoofing occurs in equilibrium because long-term traders find it profitable to place an

order at date 1, cancel it, and then place the opposite order at date 2. Doing so allows them

to trade at a more favorable price than simply placing and executing an order directly, even

though the market maker is aware that spoofing occurs in equilibrium. For example, suppose

a long-term trader wants to ultimately buy the asset, either for liquidity reasons or because

he is informed that its value is high. If he places a sell order at date 1 and then cancels it,

the market maker cannot tell whether he canceled due to a sudden change in liquidity needs

or because he never intended to sell in the first place. But because there is a chance that the

sell order was sincere, the market maker revises his beliefs about asset quality downward,

posting a lower ask at date 2 than at date 1. The long-term trader can then buy the asset

at a discount. That discount depends on the fraction of spoofers in equilibrium since the

market maker rationally expects some spoofing.

We derive three e↵ects spoofing has on equilibrium prices. First, spoofing inhibits price

discovery. That is, the market maker’s beliefs about the asset value at the end of period

two are, on average, less accurate than in a benchmark equilibrium without spoofing. Intu-

itively, trading is a signal to the market maker of asset value, so orders which are cancelled

exogenously are informative. However, spoofing obscures trading motives and hence reduces

the informativeness of canceled orders. Second, we show that spoofing raises both posted

bid-ask spreads and the spread between average executed bids and asks. Intuitively, because

spoofing inhibits price discovery, the market maker faces more severe adverse selection and

must raise spreads to break even in expectation. Third, we show that spoofing raises return

volatility. Intuitively, spoofers’ canceled orders move prices away from the true value, and

such movements are reversed when the asset value is revealed at the last date. This back

and forth motion in prices raises return volatility.

These three results are consistent with regulator’s concerns about the negative e↵ects

of spoofing. But our model also allows us to derive new predictions about which market

conditions make spoofing more likely. To do this, we endogenize the measure of spoofers.
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We assume an expected penalty for being caught spoofing and let the long-term traders

choose whether to spoof or to trade directly. The more spoofers, the less profitable spoofing

is compared to direct trading, because the market maker regards canceled orders with more

suspicion and therefore moves the price less in the spoofer’s desired direction.6 In equilibrium

the measure of spoofers is such that the gains to spoofing equal the expected penalty for

being caught.

We find that the equilibrium measure of spoofers is single-peaked in the proportion of

informed traders. In the Glosten and Milgrom (1985) framework, a higher proportion of

informed traders corresponds with lower liquidity, in the sense that bid-ask spreads are

larger and that executed trades have greater price impacts. So this result suggests that

spoofing should be most prevalent in markets which are su�ciently illiquid, but not too

illiquid.

The intuition for this non-monotone amount of spoofing is as follows. If the likelihood

of informed traders is low, the market maker regards orders as largely uninformative of

the asset value and therefore adjusts the prices only mildly in response to trades. This

makes it harder for spoofers to move the price in their desired direction, which discourages

spoofing. On the other hand, if the likelihood of informed traders is high, orders in opposite

directions strongly indicate spoofing, because non-spoofing informed traders always place

orders in the same direction. This makes the market maker suspicious of order reversals,

which again discourages spoofing. In addition, we find that the equilibrium measure of

spoofers is increasing in the probability of “legitimate” (exogenous) cancellations, because

the spoofers’ canceled orders are less suspicious to the market maker, making spoofing more

attractive. This result points to one downside of the rise of high-frequency trading: even if

HFTs themselves do not intentionally manipulate the market, their tendency to frequently

cancel orders creates market conditions which attract spoofing.

Finally, we study the optimal regulation of spoofing. In 2012, the SEC ordered the

creation of the Consolidated Audit Trail (CAT), which will aggregate detailed trading data

across many markets into a central database. A major reason for the creation of the CAT is

to enable surveillance of cross-market price manipulation, in which “trading on one market

is used to a↵ect a security’s price while trading on another market is used to take advantage

6If there were no exogenously canceled orders, the market maker would not be influenced by canceled
orders, making spoofing unprofitable.
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of that price change.”7 Inspired by the SEC’s concerns, we expand our setting to allow for

cross-market spoofing and study the extent to which the regulator should allocate resources

to cross-market surveillance versus within-market surveillance.

To allow for cross-market spoofing, we expand our environment to include two assets

with correlated values, so that orders for one asset are informative of the other’s value.

First, we show that traders can profit by spoofing across markets—that is, by placing and

canceling an order for one asset before executing the opposite order on the other asset—

and that cross-market spoofing slows price discovery and raises bid-ask spreads. Second, we

endogenize the measures of within- and cross-market spoofing, assuming regulators allocate

a fixed amount of resources to within- and cross-market monitoring. Finally, we study the

regulator’s optimal allocation of resources between within- and cross-market monitoring that

accounts for its impact on the equilibrium conduct of long-term traders.

We show first that if the regulator is su�ciently constrained in its monitoring resources,

he should allocate a fixed proportion of those resources to cross-market monitoring. That

proportion is constant in his total resources but increasing in the degree of correlation be-

tween assets. Intuitively, as the correlation increases, orders in one market have a stronger

e↵ect on the other market’s prices, making cross-market spoofing more tempting and increas-

ing the need for cross-market monitoring. Second, we show that if the regulator’s monitoring

resources are su�ciently high, he should monitor across markets just enough to eliminate

cross-market spoofing, and allocate the rest to within-market monitoring. Intuitively, the

imperfect correlation between assets makes cross-market spoofing less e↵ective at price ma-

nipulation than within-market spoofing, so it is less tempting to traders. As a result, it

is also cheaper for regulators to deter than within-market spoofing, so if the regulator has

su�cient resources, he should eliminate it.

Literature. To our knowledge, we are the first paper to show in a formal theoretical model

that spoofing may occur in equilibrium, and to study its equilibrium consequences. However,

many papers have modeled other forms of price manipulation, which can be broadly classified

as either information-based or trade-based. Information-based manipulation functions by

directly releasing misleading information (Bagnoli and Lipman 1996; Benabou and Laroque

1992; Van Bommel 2003; Vila 1989), whereas trade-based manipulation functions through

7FINRA/Euronext letter, as quoted in https://www.sec.gov/rules/final/2012/34-67457.pdf.
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buying and selling alone (Fischel and Ross 1991; Hart 1977; Jarrow 1992).8

Our paper is most closely related to papers which study trade-based manipulation in a

Glosten and Milgrom (1985) setting. Compared to these papers, ours is the first to allow

for canceled orders, which is the means by which traders can profitably manipulate prices

in our paper. Allen and Gorton (1992) show that manipulation is possible if more liquidity

traders want to sell rather than buy the asset, or if informed traders only want to buy. Allen

and Gale (1992) show that if good news is revealed later than bad news, uninformed traders

can give the false impression of forthcoming good news by placing large buy orders and

exiting before the market learns that no news will be revealed. In Chakraborty and Yılmaz

(2004a,b), informed traders mimic uninformed traders by initially trading opposite their

information, which incurs a loss, but that loss is recouped if the trader may trade su�ciently

many periods thereafter. In our paper, however, both informed and uninformed traders

manipulate by cancelling orders opposite their desired trade, mimicking traders that cancel

for legitimate reasons. Because cancelled orders manipulate prices without incurring losses,

profit accrues in the trade immediately following the cancelled order, so multiple trading

rounds are not required for manipulation to be profitable. These papers also do not study

the impact of manipulation on volatility, nor do they consider cross-market manipulation

and its optimal regulation.

Our approach of adding cancellations to the Glosten-Milgrom market order setting is a

stylized way of capturing spoofing, which in practice usually takes place with limit orders

rather than market orders. There are many papers which model limit orders explicitly,9 but

we have not found any that enable tractable modeling of equilibrium limit order spoofing,

which requires dynamics, endogenous prices, and the ability of informed traders to place

limit orders so that such orders a↵ect market beliefs about fundamentals. For example,

in most static and dynamic limit order models, only uninformed traders place limit orders

(Foucault 1999; Foucault, Kadan, and Kandel 2005; Glosten 1994; Goettler, Parlour, and

Rajan 2005; Parlour 1998; Rock 1996; Roşu 2009; Seppi 1997). Chakravarty and Holden

(1995) and Seppi and Kumar (1994) allow for informed limit orders, but the models are

static, so limit orders do not a↵ect future prices. Goettler, Parlour, and Rajan (2005, 2009)

present dynamic equilibrium limit order models, but only the 2009 paper allows for informed

8See Putniņš (2012) for a comprehensive survey.
9See Parlour and Seppi (2008) for a survey.
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limit orders, and both papers require numerical solutions. One exception is Kaniel and Liu

(2006), but their paper, like ours, also adapts the Glosten-Milgrom market order setting.

There are several papers in the computer science and applied math literature which use

numerical simulations to study spoofing. Cartea, Jaimungal, and Y. Wang (2020) study

the optimal policy of a trader seeking to liquidate shares, showing that spoofing may be

optimal and that it moves prices away from fundamentals. Mart́ınez-Miranda, McBurney,

and Howard (2016) use simulations to study the optimal actions of a spoofer, finding that

regulators can reduce the incentive to spoof by imposing fees and altering liquidity. X.

Wang, Hoang, and Wellman (2019) and X. Wang and Wellman (2019) assume traders adopt

heuristic-based learning strategies, numerically simulate equilibrium, and find that spoofing

can coexist with sophisticated traders. In contrast to these papers, our simple model allows

us to analytically demonstrate the equilibrium existence, market consequences, and optimal

regulation of spoofing.

Empirical literature on spoofing is scant. However, Lee, Eom, and Park (2013) use

Korean stock data to study the relationship between platform price disclosure and spoofing.

They find that the absence of price disclosure makes spoofing more profitable. They also

show that spoofing is more common in more volatile stocks, though they do not identify

the direction of causation. Y.-Y. Wang (2019) studies spoofing in Taiwan futures markets,

finding that spoofing is more likely during periods of high volume and volatility, and that

both spreads and volatility tend to rise rise after spoofing takes place. Although they do

not identify causation, these results are consistent with our prediction that spoofing raises

spreads and volatility.

2 Environment

There are three dates: 1, 2, and 3. There is a market maker and a large set of traders who

exchange units of an asset with the market maker. The fundamental value of the asset is

a random variable, normalized to have mean zero. In particular, the normalized value V

takes value 1 or �1 with equal probability, and this distribution is common knowledge. The

value of the asset is realized at the beginning of date 1, but the realization v is not revealed

publicly until date 3.

The market maker is competitive and risk-neutral. At dates 1 and 2, the market maker
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posts a bid and ask price, with the interpretation that he is willing to buy one unit of the

asset at the bid price and sell one unit at the ask price.

There are also a large number of risk-neutral traders. At dates 1 and 2, a single trader is

randomly chosen from the pool of all traders and meets anonymously with the market maker.

Fraction ↵ of traders are informed—they know the realization v of the asset’s value—whereas

fraction 1� ↵ of traders are uninformed. Among the uninformed traders, half of them want

to buy the asset and half of them want to sell; their reasons for trade are left unmodeled, as

in Glosten and Milgrom (1985).

Unlike Glosten and Milgrom (1985), we assume that a fraction � of traders are long-term

traders, and 1 � � are short-term. If a long-term trader meets the market maker at date

1, then this same trader also meets the market maker at date 2; we assume that he can

execute at most one order with the market maker. In contrast, if a short-term trader meets

the market maker at date 1, then a di↵erent short-term trader meets the market maker at

date 2. Whether a trader is short- or long-term is independent of whether he is informed or

uninformed. A trader’s type j is therefore an element of the set {l, s} ⇥ {i, ub, us}, where
l is “long-term”, s is “short-term”, i is “informed”, ub is “uninformed buyer” and us is

“uninformed seller”.

When a trader arrives at the market, he chooses an order ot 2 {B, S,N} to place with

the market maker, where B is a buy order, S is a sell order, and N is no order. In another

departure from Glosten and Milgrom (1985), we assume that the trader may strategically

cancel his placed order before it is executed. We denote by ct 2 {C,E} his cancellation

decision, where C means “cancel” and E means “execute.” So the short-term traders’

strategy is a pair (ot, ct) 2 {B, S}⇥{C,E}, and the long-term traders’ strategy is a sequence

(o1, c1, o2, c2) 2 {{B, S}⇥ {C,E}}2.
If a short-term trader chooses not to cancel, we assume that the order is canceled anyway

(exogenously) with probability � 2 (0, 1); we denote the exogenous cancellation random

variable by c
e

t
2 {C,E}. The exogenous cancellation represents unmodeled “legitimate”

cancellations.10 For simplicity, we assume that long-term traders are not subject to exogenous

10In Coscia v. United States (2018), the Supreme Court a�rmed the 7th circuit’s distinction between
legitimate cancellations, such as fill-or-kill or stop-loss orders, and illegitimate cancellations involved in
spoofing. See also former SEC Chairman Mary Shapiro’s comment that “There may, of course, be justifiable
explanations for many canceled orders to reflect changing market conditions.” https://www.sec.gov/news/
speech/2010/spch090710mls.htm. In practice, traders accused of spoofing often say “that they had a

9
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cancellations. We denote the ultimate status of the order by st 2 {C,E}, where C means

“canceled” and E means “executed.” Formally, if ct = C or c
e

t
= C then st = C , and

otherwise st = E.

We assume the market maker is competitive, so he sets prices in such a way that his

expected profits are zero. That is, he sets each bid and ask equal to the expected value of

the asset, where the expectation conditions on both the prior order history and on execution

at the posted price. So the date 1 price is a function of the order o1 placed at date 1, and

the date 2 price is a function of the date 1 history (o1, s1) and the date 2 order o2.

Definition 1. An equilibrium is a set of short-term trading strategies (o1, c1)(j), long-term

trading strategies (o1, c1, o2, c2)(j), and pricing strategies p1(o1) and p2(o1, s1, o2) such that

1. The short-term strategies are optimal for the short-term traders.

2. The long-term strategies are optimal for the long-term traders.

3. The pricing strategies are such that the market maker breaks even, conditional on

order execution: p1(o1) = E[V |o1, s1 = E] and p2(o1, s1, o2) = E[V |o1, s1, o2, s2 = E].

Short-term traders have only a single opportunity to trade with the market maker, so

they have no incentive to strategically cancel their orders. Long-term traders, however, may

try to mislead the market maker by placing orders which they never intend to execute. We

formally describe this kind of manipulation as follows.

Definition 2.

1. A long-term trader spoofs if he places an order at date 1, cancels it strategically, and

places the opposite order at date 2.

2. A trader places a direct order if he submits an order and does not strategically cancel

it.

legitimate reason for canceling orders, such as a client suddenly deciding not to participate.” https://www.
ft.com/content/cbf0aeaa-76ff-11e5-933d-efcdc3c11c89. The CME said that “Market participants
may enter stop orders as a means of minimising potential losses with the hope that the order will not be
triggered. However, it must be the intent of the market participant that the order will be executed if the
specified condition is met. Such an order entry is not prohibited by this Rule.” https://www.fi-desk.
com/what-the-regulators-dont-know-about-spoofing
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We are interested in whether spoofing can occur in equilibrium. So suppose that there

exists an equilibrium in which every short-term trader places a direct order, and every long-

term trader spoofs. We consider the payo↵ of a long-term trader who ultimately wants to

buy the asset, either because he knows it is high value or due to liquidity reasons.

First, consider the price a long-term trader pays by deviating from the candidate equilib-

rium strategy and placing a direct buy order. The ask price charged by the market maker is

equal to the expected value of the asset conditional on executing that buy order: E[V |BE].

In the candidate equilibrium, the probability of an executed buy order occuring at date 1

may be decomposed into two subcases: (1) a short-term informed trader who knows the asset

is high value arrives and executes a buy order, which occurs with probability (1��)↵0.5; or

(2) a short-term uninformed liquidity trader arrives and executes a buy order, which occurs

with probability (1��)(1�↵)0.5. Furthermore, conditional on an informed trader placing a

buy order, the expected value of the asset must be 1, whereas conditional on an uninformed

liquidity trader placing a buy order, the expected value of the asset must be zero, because

uninformed trades convey no information. So by the law of iterated expectations, the price

paid to execute a direct buy order at date 1 is

E[V |BE] = E[V |i, BE]P (i|BE) + E[V |ub, BE]P (ub|BE)

=
E[V |i, BE]P (i, BE) + E[V |ub, BE]P (ub, BE)

P (i, BE) + P (ub, BE)

=
(1)(1� �)↵0.5 + (0)(1� �)(1� ↵)0.5

(1� �)↵0.5 + (1� �)(1� ↵)0.5

= ↵.

Next, consider the price a long-term buyer pays for following the candidate equilibrium

strategy of spoofing; that is, placing a sell order at date 1, canceling it, and executing a

buy order at date 2. The ask price charged by the market maker at date 2 is equal to the

expected value of the asset conditional on the date 1 order history SC and execution of

the buy order BE at date 2. However, the market maker understands that in equilibrium,

the order history SCBE could have come from either a single long-term spoofer, an event

we denote by l, or two short-term direct traders, an event we denote by ¬l. By the law

of iterated expectations, the price is a weighted sum of the conditional expectations that
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correspond to these two events:

E[V |SCBE] = E[V |l, SCBE]P (l|SCBE) + E[V |¬l, SCBE]P (¬l|SCBE).

If the market maker knew that the order history SCBE came from a long-term spoofer,

the order history would be just as informative for asset value as a direct buy order BE: in

either case, the market maker is faced with a single trader who wants to buy the asset. So

conditional on the order history SCBE coming from a long-term spoofer, the expected value

of the asset is E[V |l, SCBE] = E[V |BE] = ↵.

On the other hand, conditional on the order SCBE coming from two short-term direct

traders, the expected value of the asset E[V |¬l, SCBE] must be zero. To see this, note

that because the orders are in opposite directions, the two short-term traders cannot both

be informed. Furthermore, if only the date 1 seller is informed, any negative information

conveyed by that possibility is exactly o↵set by the possibility that only the date 1 buyer

is informed. Therfore, E[V |¬l, SCBE] = 0, and the price paid for executing the spoofing

strategy SCBE is

E[V |SCBE] = E[V |l, SCBE]P (l|SCBE) + E[V |¬l, SCBE]P (¬l|SCBE)

= E[V |BE]P (l|SCBE) + 0 · P (¬l|SCBE)

= E[V |BE]P (l|SCBE).

which is strictly less than the price E[V |BE] paid for directly buying the asset at date 1. As

a consequence, the long-term trader strictly prefers spoofing to direct trading, even if the

market maker knows that spoofing may occur. This leads to our first result.

Proposition 1. There exists an equilibrium in which all long-term traders spoof.

Spoofing occurs in equilibrium because it allows long-term traders to trade at a more

favorable price than by simply placing and executing an order directly, even though the

market maker is aware that spoofing occurs in equilibrium. The reason is that the market

maker cannot tell whether the date 1 trader canceled exogenously or never intended to trade

at date 1 in the first place. Because there is a chance that the first order was sincere, the

market maker revises his beliefs about asset quality away from the truth, posting a more

favorable price at date 2 than at date 1. As a result, spoofing leads to better prices for the
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spoofer than direct trading.

Remark 1. Our model’s definition of spoofing is a simplification of the many ways in which

spoofing can occur in practice. For example, spoofers might place limit orders far away from

the best bid and ask in order to have a low chance of execution, but still mislead other traders.

A more elaborate form of spoofing, known as layering, involves placing a sequence of limit

orders at prices increasingly close to the best bid or ask, giving the illusion of swelling supply

or demand. Spoofers may also choose to cancel their fake limit orders only after executing

their desired trade, rather than before, as in our simplified setting. However, models in

which privately informed traders place limit orders are complicated, typically allowing for

only numerical solutions (Goettler, Parlour, and Rajan 2009). To maintain tractability,

instead of modelling a limit order book, we extend the simple market order setting of Glosten

and Milgrom (1985) to allow cancellations. So in our setting, orders that can be canceled

function as a metaphor for limit orders, permitting analytical characterization of equilibrium

spoofing. We believe that the forces driving manipulation in our setting would extend to

more elaborate settings that allow traders to place limit orders at multiple price points. In

particular, as long as some orders that contain information about the distribution of future

prices happen to be cancelled with positive probability even without spoofing, traders will

have the incentive to spoof; such spoofing will reduce the informativeness of equilibrium

prices by diluting the information content of cancelled orders.

3 Consequences of Spoofing

Regulators have expressed concern that spoofing may create adverse market conditions which

discourage legitimate traders from participating. Two major functions of markets are to

provide price discovery, the process by which information about fundamental values are

incorporated into prices, and liquidity, the ease with which traders can buy and sell assets

(O’Hara 2003). So in this section, we examine the impact of spoofing on price discovery

and liquidity, which we measure with bid-ask spreads. In addition, we study the e↵ect that

spoofing has on return volatility.

To examine the impact of spoofing, we compare the prices in the spoofing equilibrium to

a benchmark equilibrium without spoofing. The benchmark setting is identical to our main

setting in every way except that long-term traders are disallowed from spoofing. Instead, if
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a long-term trader arrives at the market at date 1, he must wait until date 2 to place an

order. So if a long-term trader arrives at the market at date 1, no order at all is placed at

date 1, and the market maker learns nothing about the asset value until date 2. We use N

to signify the event that no order was placed at date 1.

The results are the same if we assume that long-term traders trade immediately with the

market maker and no trader arrives at date 2. The important thing is that direct trades by

the long-term trader do not open up opportunities for other traders to arrive at the market.

This guarantees that the number of traders faced by the market maker is the same as in our

main spoofing setting, so that any e↵ects of spoofing cannot be attributed simply to there

being a smaller number of traders.

In the benchmark equilibrium, because each trader has only a single opportunity to trade

with the market maker, no trader strategically cancels, instead placing a direct order which

reflects his true information and preferences. As a result, order cancellations convey no

special information, so the market maker updates his beliefs in response to executed and

canceled orders in the same way. That is, the market maker’s pricing strategy is the same

as in the standard Glosten and Milgrom (1985) setting.

3.1 Price Discovery

The first proposition establishes that spoofing inhibits the market’s discovery of the true

value of the asset. We denote prices in the benchmark equilibrium by pb and denote the

expectation with respect to the distribution of benchmark orders by Eb.

Proposition 2 (Price Discovery). Given any initial prior ⇡0, the average executed price at

date 2 in the spoofing equilibrium is further from the true asset value v than in the benchmark

equilibrium:

|v � E[p(h)|v]| > |v � Eb[pb(h)|v]| for v 2 {�1, 1}.

Intuitively, spoofing obscures trading motives by pooling long-term traders with short-

term traders. As a result, the market maker cannot tell whether canceled orders at date

1 were sincere or intending to lead him away from the truth, so trading histories involving

canceled orders are less informative of the asset’s value than under the benchmark.

More formally, viewing trading as a signal of the underlying state V , trading in the

spoofing equilibrium is a Blackwell garbling of trading under the benchmark equilibrium. To
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see this, recall that in the spoofing equilibrium, the history SCB can result from either a

single long-term spoofer or two short-term traders. But in the benchmark equilibrium, the

corresponding histories are NB for a long-term trader and SCB for two short-term traders.

So the spoofing equilibrium collapses the two benchmark histories NB and SCB into the

single history SCB, and is therefore a Blackwell garbling of benchmark trading.

Because the proposition holds for each state realization v 2 {�1, 1}, rather than only in

expectation over the state V , the proof requires more than a direct application of Blackwell’s

Theorem. We show that the market maker’s posterior belief ⇡(h)—and therefore, price

p(h)—is a decreasing convex function of the likelihood ratio P (h|v = �1)/P (h|v = 1). If

v = 1, then under spoofing, the likelihood ratio of a spoofer’s order such as h = SCB is a

weighted average of the likelihood ratios of the corresponding benchmark orders SCB and

NB. So by convexity, the average benchmark price is higher than the average spoofing price.

3.2 Bid-Ask Spreads

A common measure of liquidity is the spread between the bid and the ask. The next propo-

sition shows that spoofing raises bid-ask spreads.

Proposition 3. Given v 2 {�1, 1}, the spoofing equilibrium exhibits a higher spread between

average executed date 2 bids and asks than the benchmark equilibrium.

Proposition 3 is closely related to Proposition 2. Because spoofing obscures trading

motives, the market maker’s beliefs are less accurate (Proposition 2) at the end of date 2;

the greater information asymmetry between the market maker and informed traders means

the market maker faces greater adverse selection, and must therefore raise spreads compared

to the benchmark in order to break even in expectation.11

The Proposition is illustrated in Figure 1. If the asset value is high (v = 1), then

under spoofing, average asks and bids are lower than under the benchmark, because the

market maker doesn’t update as accurately under spoofing (Proposition 2). However, under

spoofing, average bids are much lower than under the benchmark, whereas average asks are

only slightly lower than under the benchmark. This is because if v = 1, date 2 sell orders

are placed only by uninformed traders, which amplifies the mispricing of sell orders (that

11Lemma 4 in the appendix shows that not only executed but also posted spreads are higher under the
spoofing equilibrium.
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is, bids) in the spoofing equilibrium. As a result, the spread between average bids and asks

is larger under spoofing. Similar intuition applies to the case where v = �1, except that

average bids and asks are higher under spoofing, and the mispricing is worse for asks, because

buy orders are placed only by uninformed traders.

Spoofing Benchmark

1

-1

0

A
ve
ra
ge

E
xe
cu
te
d
P
ri
ce
s

Ask 0.75

Bid -0.44

Ask 0.77

Bid -0.31

Figure 1: Given v = 1, the average executed bids (o2 = S) and asks (o2 = B) for each
equilibrium, assuming � = 0.3, ↵ = 0.7, and � = 0.6. The spread between average executed
bids and asks is higher under spoofing.

3.3 Volatility

We next examine the impact of spoofing on return volatility, defined as the variance of

log returns to bid-ask midpoints. For each order history, we compute the volatility along

that history, average over all order histories, and then compare the average volatility in the

spoofing and benchmark equilibria.

Recall that the asset value V is normalized to have expected value 0. As a result, the

prices pt derived in previous sections are also normalized. When computing log returns, we

use midpoints of non-normalized bids and asks. In addition, we assume that price movements
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are small relative to price levels, so that first di↵erences pt+1�pt approximate non-normalized

log returns.12

Recall that at date 1, the posted bid is �↵ and the posted ask is ↵, so the midpoint

p1 equals zero and is uncontingent on order history. At date 2, the posted bid and ask are

contingent on the date 1 order history h1 = (o1, c1); We denote the midpoint between the

date 2 bid and ask by p2(h1). Because the value v is publicly known at date 3, the date 3

bid, ask, and midpoint are simply v.

The return achieved between date 1 and date 2 is p2(h1) � p1, and the return achieved

between date 2 and date 3 is v � p2(h1). The return volatility is the variance of these two

returns:

⌃(h1, v) =

✓
(p2(h1)� p1)2

2
+

(v � p2(h1))2

2

◆
�
✓
(p2(h1)� p1)

2
+

(v � p2(h1))

2

◆2

.

The following result shows that volatility is higher in the spoofing equilibrium.

Proposition 4. Returns on midpoints are more volatile in expectation in the spoofing equi-

librium than in the benchmark:

E[⌃(h1, v)] > Eb[⌃b(h1, v)].

Intuitively, spoofing leads to a greater likelihood that traders place orders in a direction

opposite to the natural order given the value of the asset. For example, suppose the true

value of the asset is v = 1. Then all informed traders ultimately want to place a buy order

with the market maker. But under the spoofing equilibrium, there is a higher probability

that traders will place a canceled sell order at date 1. This leads the market maker to post

lower bids and asks at date 2, following which the price rises to v = 1 at date 3. It is this

tendency of spoofing to lead the market maker away from the true value which leads to

higher return volatility.

12If the non-normalized expected value of the asset is µ, then non-normalized prices at date t are pt + µ.

As µ gets large, (scaled) log returns µ ln
⇣

pt+1+µ
pt+µ

⌘
converge to pt+1 � pt.
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4 Endogenous Measure of Spoofers

We now endogenize the measure of spoofers � in the market. Suppose that �̄ 2 (0, 1) traders

are long-term traders and therefore have the opportunity to spoof if they wish. Also suppose

that if an trader chooses to spoof, there is some chance that a regulator may catch him and

impose some penalty. We let k > 0 be the expected penalty of being caught spoofing.

A long-term trader that arrives at the market can choose to either place his order directly

or spoof. If he places his order directly, we assume for consistency with the previous section

that he places no order at date 1, and places a direct order at date 2; this is without loss

of generality. So for example, if he executes a direct buy order, the market maker would

observe history NBE.

To see how the incentive to spoof relates to the measure of spoofers in the market, suppose

that � traders choose to spoof. If the long-term trader executes a direct buy order NBE,

he pays price

E[V |NBE] = E[V |BE] = ↵.

If he instead spoofs, he pays price E[V |SCBE] = E[V |BE]P (l|SCBE) = ↵P (l|SCBE), as

established in Section 2. The appendix shows that P (l|SCBE) = �/(�+(1��̄)�0.5(1�↵
2)),

so the trader pays price

E[V |SCBE] = ↵
�

� + (1� �̄)�0.5(1� ↵2)

for spoofing. Therefore, his gains to spoofing are

G(�) ⌘ E[V |NBE]� E[V |SCBE] = ↵

✓
1� �

� + �(1� �̄)0.5(1� ↵2)

◆
,

which strictly decreases from ↵ to G(�̄) in the number of spoofers � 2 [0, �̄]. Similarly,

if the trader wishes to ultimately sell the asset, the gains to spoofing are E[V |BCSE] �
E[V |NSE] = (�E[V |SCBE]) � (�E[V |NBE]) = G(�). A potential spoofer will find it

profitable to spoof if and only if the gains G(�) from spoofing exceed the expected penalty

k of being caught.

Definition 3. Given (↵, �, �̄, k) 2 (0, 1)4, an equilibrium is a quantity �
⇤ 2 [0, �̄] of spoofers
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that satisfies 8
>>><

>>>:

G(�⇤)  k if �⇤ = 0.

G(�⇤) = k if �⇤ 2 (0, �̄)

G(�⇤) � k if �⇤ = �̄.

(1)

Observe that the gains G(�) from spoofing are decreasing in the number of spoofers �,

because a prevalence of spoofing makes the market maker suspicious of canceled orders, so

his beliefs update less in the spoofers’ desired direction. This leads to a unique equilibrium

quantity of spoofing.

Proposition 5. There exists a unique pure-strategy equilibrium in which the number of

traders �⇤ who spoof is single-peaked in the number of informed traders ↵.

In particular, the equilibrium �
⇤ satisfies

�
⇤ =

8
>>><

>>>:

0 if �̂(↵, �, �̄, k)  0

�̂(↵, �, �̄, k) if �̂(↵, �, �̄, k) 2 (0, �̄)

�̄ if �̂(↵, �, �̄, k) � �̄,

(2)

where

�̂(↵, �, �̄, k) ⌘ �

2k
(1� �̄)(↵� k)(1� ↵

2). (3)

Moreover, for parameters such that �
⇤ is interior, the number of spoofers �

⇤ is strictly

increasing in the probability � of legitimate cancellation, strictly decreasing in the expected

penalty k of spoofing, and strictly decreasing in the proportion �̄ of potential spoofers.

Intuitively, if the proportion of informed traders ↵ is low, then trades are not informative

of the asset’s value, so the spoofer has di�culty moving the price in his desired direction,

which makes spoofing less attractive. If ↵ is high, orders in opposite directions strongly in-

dicate spoofing, resulting in a similar price as for a direct order, which again makes spoofing

less attractive. It ↵ is intermediate, then spoofers can move the price substantially without

being easily identified as spoofers, making spoofing very attractive. Because higher ↵ cor-

responds with lower liquidity, in the sense of higher spreads and greater price impacts from

executed trades, this result suggests that spoofing should be most prevalent in markets of

intermediate liquidity.
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The conventional wisdom is that manipulation of various kinds is more common in illiquid

markets, because illiquidity enables manipulators to more easily move the price. Indeed,

Aggarwal and Wu (2006) document that most SEC litigated manipulation cases occur in

small, illiquid markets. However, conditional on this set of illiquid markets, their regressions

indicate that manipulation is more likely when such markets are more liquid. The authors

point out that this positive correlation is likely understated, given that higher liquidity

enables manipulators to avoid detection by blending in with the trading activity of others.

Our model of spoofing captures both forces, showing that spoofers are attracted to markets

which are illiquid enough to allow spoofers to move prices, but not so illiquid as to make

their behavior stand out from the crowd.13

If the number of legitimate cancellations � is high, spoofers’ canceled orders are less

suspicious to the market maker and therefore move the price more in the spoofer’s desired

direction, making spoofing more attractive. If the expected penalty k for being caught

spoofing is high, then only high gains G(�) can justify spoofing, which is possible only if

few traders spoof so that the market maker trusts that canceled orders are informative of

value. Finally, if the number of potential spoofers �̄ is high, then the market maker knows

that relatively few canceled orders come from sincere, direct traders. He therefore distrusts

canceled orders, updating his beliefs only slightly in the spoofers’ desired direction, making

spoofing unattractive.

5 Cross-Market Spoofing

Suppose there are two assets a and b with fundamental values va 2 {�1, 1} and vb 2 {�1, 1}.
Each asset has equal probability of having value -1 or 1. Asset values are correlated: P (va =

vb) = � > 1/2, so their correlation coe�cient is ⇢ ⌘ 2� � 1 > 0. Each asset is traded in a

separate submarket, but both submarkets together constitute the market.

There is a competitive market maker who posts bids and asks for each asset. There are

also a large number of risk-neutral traders. A fraction ↵/2 know the value va of asset a

but not of asset b, and fraction ↵/2 know the value vb of asset b, but not of asset a. The

13In a non-equilibrium numerical simulation with exogenous prices, Withanawasam, Whigham, and Crack
(2018) show that pump-and-dump manipulation is easiest in markets of intermediate liquidity, though the
mechanism is di↵erent from our setting.
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remaining 1�↵ fraction of traders are uninformed, half of whom want to buy or sell asset a

with equal probability and half of whom want to buy or sell asset b with equal probability.

A fraction �w of traders are within-market long-term traders; if they arrive at the market

at date 1, they can trade twice in a row within the same submarket. A fraction �c of traders

are cross-market long-term traders; if they arrive at the market at date 1, they can trade

once in one submarket and then again in the opposite submarket. We let � ⌘ �w+�c denote

the total fraction of long-term traders. The remaining 1 � � traders are short-term; as in

Section 2, if they arrive at the market, that is their only opportunity to trade. Whether a

trader is within–market long-term, cross-market long-term, or short-term is independent of

his private information and liquidity preferences.

At date 1, a trader is randomly drawn from the total pool of traders and arrives at the

market. He can choose which asset to trade. As in Section 2, a trader may choose to cancel

his order after placing it, and may also get canceled exogenously with probability �. So a

short-term trader’s strategy is a pair (ot, ct) 2 {Ba, Sa, Bb, Sb} ⇥ {C,E}, a within-market

long-term trader’s strategy is a sequence (o1, c1, o2, c2) 2 {{Bi, Si}⇥{C,E}}2, i 2 {a, b}, and
a cross-market long-term trader’s strategy is a sequence (o1, c1, o2, c2) 2 {Bi, Si}⇥ {C,E}⇥
{B�i, S�i}⇥ {C,E}, i 2 {a, b}.

The market maker observes trades in both markets, using the order history to update

his beliefs about the values of both assets. The equilibrium definition is nearly identical to

that in Section 2, except that the pricing strategy for each asset conditions on execution of

an order for that asset. That is, for each asset i 2 {a, b}, pricing strategies satisfy p1i(o1) =

E[Vi|o1, s1 = E], o1 2 {Bi, Si}, and p2i(o1, s2, o2) = E[Vi|o1, s1, o2, s2 = E], o2 2 {Bi, Si}.
To see whether there exists an equilibrium with cross-market spoofing, suppose that all

cross-market long-term traders spoof, and consider the payo↵ of a cross-market long-term

trader who ultimately wants to buy the asset.

If the trader places a direct trade, he pays price E[Va|BaE]. If he spoofs across markets,

by first placing a canceled sell in market b, the market maker knows that the order history

SbCBaE could have arisen from two events: either a cross-market long-term trader spoofed,

an event we denote with lc, or two short-term traders placed direct trades, an event we

denote with ¬lc. The price paid by the cross-market spoofer is therefore a weighted average
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of the expectations which condition on these two events:

E[Va|SbCBaE] = E[Va|lc, SbCBaE]P (lc|SbCBaE) + E[Va|¬l, SbCBaE]P (¬l|SbCBaE). (4)

As in Section 2, if the market maker knew that the order history SbCBaE came from

a cross-market spoofer, the order history would be just as informative for asset value as a

direct buy order BE. So E[V |lc, SbCBaE] = E[V |BaE].

On the other hand, conditional on the order SbCBaE coming from two short-term direct

traders, the expected value of the asset E[V |¬lc, SbCBaE] must be strictly between E[V |BaE]

and zero. Similar to the within-market reasoning of Section 2, it is strictly less than the price

E[V |BaE] of a direct order because there is some chance that the date 1 trader who placed

the cancelled sell SbC is informed that the asset is of low value. In contrast to the within-

market reasoning of Section 2, it is strictly greater than zero because the assets are only

imperfectly correlated, so the negative information about asset a conveyed by an informed

seller of the alternative asset b is small compared to the positive information conveyed by an

informed buyer of asset a.

By (4), the price paid for cross-market spoofing is a weighted average of the price

E[V |lc, SbCBaE] = E[V |BE] for a direct order and a value E[V |¬lc, SbCBaE] strictly less

than the price E[V |BE] for a direct order, so the price E[V |SbCBa, E] for cross-market

spoofing must also be strictly less than that for a direct order. This means that cross-market

spoofing may be profitable in equilibrium, leading to our next result.

Proposition 6. There exists an equilibrium in which within-market long-term traders always

spoof within-market, and cross-market traders always spoof across markets.

We next confirm that cross-market spoofing has similar adverse market consequences

as within-market spoofing. We compare the equilibrium of Proposition 6 to a benchmark

without cross-market spoofing but with within-market spoofing. In this benchmark, we

assume that if a cross-market long-term trader arrives at the market at date 1, he places no

order at date 1 and places a direct order at date 2. The next two propositions demonstrate

that cross-market spoofing has similarly negative e↵ects on the market as those demonstrated

for within-market spoofing in Section 3.
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Proposition 7. The market maker’s beliefs about asset i 2 {a, b} are more accurate at the

end of date 2 in the benchmark equilibrium than in the cross-market spoofing equilibrium:

|vi � E[⇡i(h)|vi]| > |vi � Ê[⇡̂i(h)|vi]| for vi 2 {�1, 1}.

Proposition 8. Given asset i 2 {a, b} and value vi 2 {�1, 1}, the cross-market spoofing

equilibrium exhibits a higher spread in market i between average executed bids and asks than

the benchmark equilibrium.

The intuition for the negative e↵ects of cross-market spoofing is the same as for within-

market spoofing: they both obscure trading motives, which gives the market maker less

information about fundamentals, and necessitates that he raise bid-ask spreads to compen-

sate for the worsened adverse selection. The results are not surprising, but we present them

before studying optimal regulation in order to confirm that regulators have the incentive to

discourage not only within-market but also cross-market spoofing.

5.1 Endogenous Cross-Market Spoofing

We now endogenize the measure of within- and cross-market spoofers, (�w, �c). Suppose that

�̄ 2 (0, 1) traders are long-term traders and therefore have the opportunity to spoof if they

wish. When such an trader arrives at the market, he can choose not only which submarket

to trade in, but also whether to place a direct trade, to spoof within a particular submarket,

or to spoof across submarkets.

A regulator monitors the market for spoofing, assigning some resources to monitoring

trade in asset a, some resources to trade in asset b, and some resources to cross-market

monitoring. The regulator’s monitoring implies an expected penalty kwi for being caught

spoofing within market i 2 {a, b}, and expected penalty kci for cross-market spoofing of asset

i 2 {a, b}.
Taking into account the expected penalty of being caught, the trader’s expected cost

of buying, for example, asset a directly is ↵, of spoofing within market a is Ca(�a) ⌘
E[Va|SaCBa] + ka, and of spoofing across markets is Cca(�ca) ⌘ E[Va|SbCBa] + kc. The

trader takes an action which minimizes his expected costs. This leads to the following

equilibrium definition.

23

Electronic copy available at: https://ssrn.com/abstract=3742327



Definition 4. Given (↵, �, �̄, k) 2 (0, 1)4, an equilibrium is a vector (�⇤
a
, �

⇤
b
, �

⇤
ca
, �

⇤
cb
) 2 [0, 1]4,

with �
⇤
i
+ �

⇤
ci
 �̄i for i 2 {a, b} that satisfies

8
>>><

>>>:

�
⇤
i
= 0 if Ci(�⇤

i
) > min{↵, Cci(�⇤

ci
)}

�
⇤
ci
= 0 if Cci(�⇤

ci
) > min{↵, Ci(�⇤

i
)}

�
⇤
i
+ �

⇤
ci
= �̄i if ↵ > min{Ci(�⇤

i
), Cci(�⇤

ci
)}.

(5)

The appendix shows that the cost Ci(�i) of within-market spoofing is strictly increasing

in the measure �i of within-market spoofers, and the cost Cci(�ci) of cross-market spoofing

is strictly increasing in the measure �ci of cross-market spoofers. So in equilibrium, the

measure of both kinds of spoofing is such that their costs are equal to the cost of a direct

trade. The following proposition gives closed form expressions for the equilibrium measure

of both kinds of spoofing.

Proposition 9. There exists a unique pure-strategy equilibrium. For high enough ki and kci,

this equilibrium takes the following form for i 2 {a, b}:

�
⇤
i
= max

⇢
0, (1� �̄i)

�

2

✓
↵

ki
� 1

◆
(1� ↵

2)

�

�
⇤
ci
= max

⇢
0, (1� �̄i)

�

2

✓
⇢
↵

kci
� 1

◆
(1� ↵

2)� (1� ⇢)↵2

��
.

The main thing to note is that if the penalties ki and kci for both forms of spoofing are

equal, there is less cross-market spoofing �ci than within-market spoofing �i. Intuitively,

cross-market spoofing is less tempting than within-market spoofing because the assets are

imperfectly correlated, which implies that a cancelled order for the opposite asset one intends

to trade moves the price of the target asset less than a canceled order for the target asset

itself. So for example, if the measures �i and �ci of both forms of spoofing were equal, the

ask paid by a cross-market spoofer would be higher than the ask paid by a within-market

spoofer. This makes cross-market spoofing less attractive than within-market spoofing, so if

the penalties for both are equal, there must be less cross-market spoofing in equilibrium.
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5.2 Optimal Regulation

We now consider how a regulator optimally allocates monitoring resources between within-

and cross-market spoofing. In practice, regulators do not have su�cient resources to monitor

every possible trade, so in our setting we assume that each order is examined only with some

probability.

The regulator adopts the following monitoring protocol. With some exogenous prob-

ability, he first examines an executed order. For simplicity, we assume that he examines

executed orders in markets a and b with equal probability  2 [0, 1]. He then checks to see if

the same trader previously placed a canceled order, but he must decide whether to check the

same or the opposite market as that in which the executed order was placed. Conditional on

examining the executed order, the regulator commits to a probability of checking within the

same market and the remaining probability of checking the opposite market. We denote the

unconditional probability of within-market monitoring by w 2 [0,] and of cross-market

monitoring by c = � w.

If the penalty for being caught spoofing is z > 0, then the expected penalty for being

caught spoofing within-market is kw = wz and across-market is kc = cz = ( � w)z =

z � kw. So selecting the monitoring probablities w and c is equivalent to selecting the

expected penalties kw and kc, subject to the constraint that kw + kc = k ⌘ z.

Suppose the regulator wishes to minimize the total measure of spoofers �⇤
a
+ �

⇤
b
= �

⇤
wa

+

�
⇤
ca

+ �
⇤
wb

+ �
⇤
cb
. Because we assume that the regulator adopts a symmetric policy when

examining markets a and b, long-term traders will also adopt symmetric strategies, so it

is su�cient to consider the policy (w,c) which minimizes the total measure of spoofers

�
⇤
i
= �

⇤
iw

+ �
⇤
ic
for either asset i. In the following proposition, we assume that the regulator

has enough resources  so that Proposition 9 holds. Furthermore, we say that the regulator

is constrained if he does not have su�cient resources  to eliminate spoofing altogether.

Proposition 10. If the regulator is constrained, there exists a unique threshold ̄ such that

(i) If  < ̄, there is a positive measure of both within- and cross-market spoofing. Fur-

thermore, the regulator allocates monitoring in a fixed proportion between within- and

cross-market spoofing:

⇤
c

⇤
w

=
p
⇢.
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(ii) If  > ̄, the regulator monitors across markets just enough to eliminate cross-market

spoofing, and spends his remaining resources on within-market monitoring:


⇤
c
=

↵(1� ↵)2

z(⇢�1 � ↵2)

⇤
w
= � 

⇤
c
.

Part (i) states that if the regulator is su�ciently constrained in its monitoring resources,

he should allocate a fixed proportion of those resources to cross-market monitoring. That

proportion
p
⇢ is constant in his total resources  but increasing in the degree of correlation

⇢ between assets. Intuitively, as the correlation increases, orders in one market have a

stronger e↵ect on the other market’s prices, making cross-market spoofing more tempting

and increasing the need for cross-market monitoring. The intuition for part (ii) is that

the imperfect correlation between assets makes cross-market spoofing less e↵ective at price

manipulation than within-market spoofing, so it is less tempting to traders. As a result, it

is also cheaper for regulators to deter than within-market spoofing, so if the regulator has

su�cient resources, he should eliminate it.

Remark 2. The analysis in this section assumes that regulators aim to minimize the measure

of spoofers in the market. In practice, regulators may have di↵erent objectives, such as

minimizing average spreads or volatility, which may imply di↵erent optimal regulation. For

example, because cross-market spoofing has a smaller impact on prices than within-market

spoofing, it is both less tempting to traders and has a smaller impact on spreads. As a result,

a regulator seeking to minimize average spreads may choose to never eliminate cross-market

spoofing: it may be cheaper to eliminate than within-market spoofing, but its small impact

on spreads makes it less important to eliminate.

6 Conclusion

In this paper, we have presented a dynamic model of trading in which traders may cancel

orders strategically. Our paper extends the market order setting of Glosten and Milgrom

(1985) by allowing canceled orders, which enables us to capture the main forces driving

spoofing in practice, while avoiding the tractability challenges of information-based limit

order models.
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We show that in this setting, spoofing may occur in equilibrium, despite the full aware-

ness of other market participants that spoofing may occur. We show that spoofing slows

price discovery, raises bid-ask spreads, and raises return volatility, consistent with regulator

concerns that spoofing threatens market stability and discourages legitimate traders from

participating.

We also endogenize the measure of spoofers, showing that spoofing is more prevalent when

the proportion of informed traders is not too high and not too low. Finally, we show that

spoofers can profit from spoofing across markets, and that more cross-market surveillance

should occur when markets are highly correlated.

While we have presented the economic logic using a simple market order model, we believe

that the intuitions are much more robust. We expect incentives to spoof to exist in any model

as long as it satisfies three conditions: 1) some traders make legitimate cancellations (for

example, traders sometimes cancel limit orders outside current bid and ask for reasons other

than an attempt to manipulate the market); 2) legitimately canceled orders a↵ect prices (for

example, because they contain information about the fundamental as in our model, or about

relative demand and supply by liquidity traders, or about the depth of the market, which

entices large traders to execute trades); 3) the ability of the regulator to detect and punish

spoofing is somewhat limited. We expect that spoofing would happen in equilibrium in any

such model, and spoofing would a↵ect prices, making them less informative and the market

less liquid. That said, additional analysis of spoofing (theoretical and empirical) would help

us assess the quantitative costs of spoofing and appropriate regulatory responses.
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Appendix

Proof of Proposition 1. We claim that the following is an equilibrium: all short-term

traders place direct trades, all long-term traders spoof, and prices are such that the market

maker breaks even.

First consider short-term traders. If a short-term trader is selected to meet with the

market maker at date 1, he has only an infinitesimal chance of also being selected at date 2;

that is, he has e↵ectively one chance to trade, so he has no incentive to strategically cancel

the order. Therefore, an uninformed short-term trader wishing to buy (sell) the asset will

place a buy (sell) order and attempt to execute it. A short term trader informed that the

asset is good (bad) will place a buy (sell) order and attempt to execute it, as long as the

price of the asset is less (greater) than the asset’s fundamental value. We show below that

this is always the case in our candidate equilibrium. Similarly, because date 2 is the final

trading date of the game, a short-term trader meeting the market maker at date 2 has no

incentive to strategically cancel, so he employs the same strategy as if he had met the market

maker at date 1.

Next, consider the pricing strategy of the market maker, summarized in the following

lemma.

Lemma 1 (Pricing Strategies). If the market maker expects that all long-term traders spoof,

he sets the following bids and asks:

(i) At date 1,

p1(B) = ↵, p1(S) = �↵.

(ii) At date 2,

p2(NB) = ↵ p2(NS) = �↵

p2(SEB) = 0 p2(BES) = 0

p2(BEB) = p2(BCB) =
2↵

1 + ↵2
p2(SES) = p2(SCS) =

�2↵

1 + ↵2

p2(SCB) =
�↵

� + (1� �)�0.5(1� ↵2)
p2(BCS) =

��↵

� + (1� �)�0.5(1� ↵2)
.
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Proof. Given some history h, the market maker assigns a price equal to his expected value

of the asset. A variety of trader types may yield a particular order history h. Recall that a

trader’s type consists of the horizon of his trading (long- or short-term) and his motive for

trade (informed, uninformed buying, uninformed selling). Let M ⌘ {i, ub, us} denote the set

of motives for trade.

We first derive prices for date 1 order histories h1. Given an order history h1, the market

maker sets the price conditional on order execution. The probability of order history h1 may

be decomposed as

P (h1) =
X

m2M

P (h1,m), (6)

so by the Law of Iterated Expectations, the market maker’s expected value given order h1

may be decomposed as:

E[V |h1] =
X

m2M

E[V |m,h1]P (m|h1) =
X

m2M

E[V |m,h1]
P (m,h1)

P (h1)

=

P
m2M E[V |m,h]P (m,h1)P

m2M P (m,h1)
. (7)

For example, what price does the market maker set for a buy order executed at date

1? The buy order could have been placed by an informed trader who knows the asset is

high value, which occurs with probability ↵0.5 or by an uninformed liquidity trader, which

occurs with probability (1�↵)0.5. Furthermore, conditional on an informed trader placing a

buy order, the expected value of the asset must be 1, whereas conditional on an uninformed

liquidity trader placing a buy order, the expected value of the asset must be zero, because

uninformed trades convey no information. So applying (7), the price set for an executed buy

order at date 1 is

E[V |BE] =
E[V |i, BE]P (i, BE) + E[V |ub, BE]P (ub, BE)

P (i, BE) + P (ub, BE)
=

(1)↵0.5 + (0)(1� ↵)0.5

↵0.5 + (1� ↵)0.5
,

which simplifies to

E[V |BE] = ↵.
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A symmetric argument shows that

E[V |SE] = �↵.

We next consider the prices the market maker sets for date 2 order histories h. Any order

history h was placed either by one long-term trader or by two short-term traders, so letting

l denote the event of a long-term trader, and ¬l denote the event of two short term traders,

we can decompose the probability of order h as follows:

P (h) = P (h, l) + P (h,¬l) =
X

m2M

P (h, l,m) +
X

m2M2

P (h,¬l,m). (8)

Similarly, the market maker’s expected value given order h may be decomposed as follows:

E[V |h] =
X

m2M

E[V |l,m, h]P (l,m|h) +
X

m2M2

E[V |¬l,m, h]P (¬l,m|h)

=
⇣ X

m2M

E[V |l,m, h]P (l,m, h) +
X

m2M2

E[V |¬l,m, h]P (¬l,m, h)
⌘
/P (h)

=

P
m2M E[V |l,m, h]P (l,m, h) +

P
m2M2 E[V |¬l,m, h]P (¬l,m, h)P

m2M P (h, l,m) +
P

m2M2 P (h,¬l,m)
. (9)

For example, what ask does a market maker set at date 2, if he observed a canceled sell

order at date 1? The ask is the expected value of the asset, conditional on the date 1 history

SC and on the execution of a buy order BE at date 2: E[V |SCBE]. In our hypothesized

equilibrium, no traders strategically cancel at date 2, so whether the order is executed or not

at date 2 contains no information. As a result, E[V |SCBE] = E[V |SCBC], and we drop

the date 2 E in the conditional expectation to simplify notation in the rest of the proof.

If the market maker observes history SCB, he knows that it could have come from either

a spoofing long-term trader with probability � or two short-term traders with probability

(1 � �)�. If the history came from a long-term trader, then his ultimate intention is to

buy the asset, in which case there are two subcases: (1) with probability ↵0.5, the trader

is informed that the asset is good, in which case the expected asset value is 1; (2) with

probability (1 � ↵)0.5, the trader is uninformed and wants to purchase only for liquidity

reasons, in which case the expected asset value is 0. If the history came from two short-term
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traders, then there are three subcases: (1) with probability ↵(1 � ↵)0.52, the first trader

is informed that the asset is good (in which case the expected asset value is 1) and the

second trader is an uninformed buyer; (2) with probability ↵(1 � ↵)0.52, the first trader

is an uninformed seller, and the second trader is informed that the asset is bad (in which

case the expected asset value is -1); (3) with probability (1� ↵)20.52, the first trader is an

uninformed seller, and the second trader is an uninformed buyer (in which case the expected

asset value is 0). Of course, the two traders cannot both be informed, because they place

orders in opposite directions.

Applying Equation (9), we have

E[V |SCB] =
�((1)↵0.5 + (0)(1� ↵)0.5) + (1� �)�((1� 1)↵(1� ↵)0.52 + (0)(1� ↵)20.52)

�(↵0.5 + (1� ↵)0.5) + (1� �)�(2↵(1� ↵)0.52 + (1� ↵)20.52)
,

which simplifies to

E[V |SCB] =
�↵

� + (1� �)�0.5(1� ↵2)
.

A symmetric argument shows that

E[V |BCS] = � �↵

� + (1� �)�0.5(1� ↵2)
.

Consider the price the market maker sets on observing history BEB. In the proposed

equilibrium, long-term traders always spoof, so this order history could not have come from

a long-term trader; therefore, this history must have arisen from two short-term traders,

which occurs with probability (1��)2(1��). This event can further be composed into three

possible events: (1) with probability ↵
20.5, the two traders are informed that the asset is

good, in which case the expected asset value is 1; (2) with probability 2↵(1 � ↵)0.52, one

trader is informed that the asset is good, and the other is an uninformed buyer, in which

case the expected value is 1; (3) with probability (1 � ↵)20.52 both traders are uninformed

buyers, in which case the expected value is zero. Applying (9), we have

E[V |BEB] =
(1� �)2(1� �)[↵20.5(1) + 2↵(1� ↵)0.52(1) + (1� ↵)20.52(0)]

(1� �)2(1� �)[↵20.5 + 2↵(1� ↵)0.52 + (1� ↵)20.52]
,
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which simplifies to

E[V |BEB] =
2↵

1 + ↵2
.

Symmetric reasoning shows that

E[V |SES] = � 2↵

1 + ↵2
.

Note that order history BCB could also have come only from two short term traders, and

with probability (1 � �)2�. As in the case of BEB, this decomposes into the same three

events and conditional expectations, and applying (9) shows that (1� �)2� cancels, so that

E[V |BCB] = E[V |BEB].

Finally, consider history SEB. Because the first order was executed, it could not have

come from a long-term spoofer, so the order history must have come from two short-term

traders, with probability (1 � �)2(1 � �). Because the orders are in opposite directions,

the two traders cannot both be informed, so there are three events to consider: (1) with

probability ↵(1 � ↵)0.52, the first trader is informed that the asset is bad and the second

trader is an uninformed buyer, in which case the conditional expected value is -1; (2) with

probability ↵(1 � ↵)0.52, the first trader is an uninformed seller, and the second trader is

informed that the asse tis good, in which case the conditional expected value is 1; (3) with

probability (1 � ↵)20.52, the first is an uninformed seller and the second is an uninformed

buyer, in which case the conditional expected value is 0. Applying (9) shows

E[V |SEB] =
(1� �)2(1� �)[↵(1� ↵)0.52(1� 1) + (1� ↵

2)0.52(0)]

(1� �)2(1� �)[2↵(1� ↵)0.52 + (1� ↵2)0.52]

= 0.

Symmetric reasoning shows that E[V |BES] = 0 as well.

Finally, we consider the strategy of the long-term trader. If date 2 is the first time a

long-term trader is selected to meet with the market maker, then because date 2 is the last

trading date of the game, it is also the trader’s only opportunity to trade; as a result, he

trades directly, the same as short-term traders.

Suppose that a long-term trader meets the market maker at date 1. We assume that

he can execute only one order, so we can rule out all strategies that entail two executions.
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Without loss of generality, suppose the trader seeks to ultimately buy the asset, either for

informational or liquidity reasons. So his optimal strategy must entail executing a buy order

either at date 1 or date 2; if he executes the buy order at date 1, he pays p1(B) = ↵. If he

executes the buy order at date 2, the price he pays depends on his order at date 1. If he

places no order at date 1, he pays price p2(NB) = ↵; if he places a cancelled buy, he pays

price p2(BCB) = 2↵/(1 + ↵
2), which is strictly greater than p2(NB) = ↵. If he places a

cancelled sell, he pays price p2(SCB) = �↵/(� + (1� �)�0.5(1� ↵
2)), which is strictly less

than p1(B) = p2(NB) = ↵ and therefore also strictly less than p2(BCB). That is, he gets

the lowest price by placing a cancelled sell followed by an executed buy (that is, spoofing),

so that strategy must be optimal. A symmetric argument shows that a long-term seller finds

it optimal to place a cancelled buy followed by an executed sell order. So there exists an

equilibrium in which long-term traders always spoof, and the proposition is proved.

Proof of Proposition 2. Without loss of generality, assume v = 1. By Bayes’ Rule,

the market maker’s posterior belief ⇡(h) is equal to P (v = 1|h) = P (h|v = 1)⇡/[P (h|v =

1)⇡ + P (h|v = �1)(1 � ⇡)]. Let H
� = {SCB,BCS} and H

�
b

= H
� [ {nS, nB}. For all

h 2 H \ H�
b

and v 2 {�1, 1}, we have that P (h|v) = Pb(h|v), and therefore ⇡(h) = ⇡b(h).

As a result,

Eb[⇡b(h)|v = 1]� E[⇡(h)|v = 1] =
X

h2Hb

⇡b(h)Pb(h|v = 1)�
X

h2H

⇡(h)P (h|v = 1)

=
X

h2H�
b

⇡b(h)Pb(h|v = 1)�
X

h2H�

⇡(h)P (h|v = 1)

=⇡b(SCB)Pb(SCB|v = 1) + ⇡b(BCS)Pb(BCS|v = 1)

+ ⇡b(nB)Pb(nB|v = 1) + ⇡b(nS)Pb(nS|v = 1)

� ⇡(SCB)P (SCB|v = 1)� ⇡(BCS)P (BCS|v = 1).

(10)

For notational convenience, define

a ⌘ P (SCB|sp, v = 1) = P (BCS|sp, v = �1) = �0.5(1 + ↵),

b ⌘ P (SCB|sp, v = �1) = P (BCS|sp, v = 1) = �0.5(1� ↵)),

c ⌘ P (h|nsp, v) = (1� �)�0.52(1� ↵
2), h 2 H

�
, v 2 {�1, 1}
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Then P (SCB|v = 1) = P (BCS|v = �1) = a+c, P (BCS|v = 1) = P (SCB|v = �1) = b+c,

Pb(nB|v = 1) = Pb(nS|v = �1) = a, and Pb(nS|v = 1) = Pb(nB|v = �1) = b, and

Pb(h|v) = c for all h 2 H
�, v 2 {�1, 1}. Also let f(x) ⌘ ⇡/(⇡ + x(1 � ⇡)). Applying the

above, we can rewrite (10) as follows:

Eb[⇡b(h)|v = 1]� E[⇡(h)|v = 1]

=
c⇡

c⇡ + c(1� ⇡)
c+

c⇡

c⇡ + c(1� ⇡)
c+

a⇡

a⇡ + b(1� ⇡)
a+

b⇡

b⇡ + a(1� ⇡)
b

� (a+ c)⇡

(a+ c)⇡ + (b+ c)(1� ⇡)
(a+ c)� (b+ c)⇡

(b+ c)⇡ + (a+ c)(1� ⇡)
(b+ c)

=f(1)c+ f(1)c+ f

✓
b

a

◆
a+ f

⇣
a

b

⌘
b

� f

✓
b+ c

a+ c

◆
(a+ c)� f

✓
a+ c

b+ c

◆
(b+ c)

=(a+ c)


f(1)

c

a+ c
+ f

✓
b

a

◆
a

a+ c
� f

✓
b+ c

a+ c

◆�

+ (b+ c)


f(1)

c

b+ c
+ f

⇣
a

b

⌘
b

b+ c
� f

✓
a+ c

b+ c

◆�
. (11)

By Jensen’s inequality, the bracketed sums are strictly positive, so Eb[⇡b(h)|v = 1] >

E[⇡(h)|v = 1]. Because prices p and pb are linearly increasing in posteriors ⇡(h) and ⇡b(h),

respectively, this implies E[p|v = 1] < Eb[pb|v = 1]  1 = v.

Proof of Proposition 3. We wish to show that for v 2 {�1, 1},

E[p|o2 = B, v]� E[p|o2 = S, v] > Eb[pb|o2 = B, v]� Eb[pb|o2 = S, v], (12)

where we have suppressed the dependence of prices p and pb on history h.

As a preliminary, we first establish two lemmas.

Lemma 2. Unconditional on v, the spoofing and benchmark equilibria exhibit the same

average executed bids and asks:

E[p(h)|o2 = S] = Eb[pb(h)|o2 = S] and E[p(h)|o2 = B] = Eb[pb(h)|o2 = B].
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Proof. Let the set of date 2 histories h be denoted by H ⌘ H1 ⇥ {B, S}. Consider the

average ask in the spoofing equilibrium:

E[p(h)|o2 = B] = E[E[V |h]|o2 = B] = E[V |o2 = B].

Rewrite the expectation by conditioning on whether or not the trader who places the date

2 order is informed:

E[V |o2 = B] = E[V |o2 = B, i]P (i|o2 = B) + E[V |o2 = B,¬i]P (¬i|o2 = B)

= 1 · P (i|o2 = B) + 0 · P (¬i|o2 = B)

= P (i|o2 = B).

Unconditional on v, an trader’s type and date 2 order are independent, so E[V |o2 = B] =

P (i|o2 = B) = P (i) = ↵.

For the benchmark equilibrium, identical reasoning shows that Eb[pb(h)|o2 = B] = ↵.

And by symmetry, E[p(h)|o2 = S] = Eb[pb(h)|o2 = S] = �↵.

The next lemma implies that conditional on v, mispricing in the spoofing equilibrium

(relative to the benchmark) is worse for orders that occur less often.

Lemma 3. For v 2 {�1, 1},

P (o2 = B|v)
⇣
E[p|o2 = B, v]� Eb[pb|o2 = B, v]

⌘

=P (o2 = S|v)
⇣
E[p|o2 = S, v]� Eb[pb|o2 = S, v]

⌘
. (13)

Proof. By the Law of Iterated Expectations,

E[p|o2] = E[p|o2, v]P (v|o2) + E[p|o2,¬v]P (¬v|o2). (14)

By symmetry, E[p|o2,¬v] = �E[p|¬o2, v], and P (¬v|o2) = P (v|¬o2). Furthermore, by Bayes’

Rule,

P (v|o2) =
P (o2|v)P (v)

P (o2|v)P (v) + P (o2|¬v)P (¬v) =
P (o2|v)P (v)

P (o2|v)P (v) + P (¬o2|v)P (v)
= P (o2|v).
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Use these facts to rewrite (14):

E[p|o2] = E[p|o2, v]P (v|o2)� E[p|¬o2, v]P (v|¬o2)

= E[p|o2, v]P (o2|v)� E[p|¬o2, v]P (¬o2|v). (15)

Similar reasoning shows that

Eb[pb|o2] = Eb[pb|o2, v]Pb(o2|v)� Eb[pb|¬o2, v]Pb(¬o2|v). (16)

By Lemma 2, E[p|o2] = Eb[pb|o2], and by construction, the probability of a particular date 2

order under spoofing is the same as under the benchmark: P (o2|v) = Pb(o2|v). Combining

(15) with (16), replacing Pb(o2|v) with P (o2|v), and rearranging gives:

P (o2|v)
⇣
E[p|o2, v]� Eb[pb|o2, v]

⌘
= P (¬o2|v)

⇣
E[p|¬o2, v]� Eb[pb|¬o2, v]

⌘
. (17)

Setting o2 = B, which implies ¬o2 = S, results in (13) .

If v = 1, then P (o2 = B|v) > P (o2 = S|v). Furthermore, applying the proof of Proposi-

tion 2 to o2 = S shows that E[p|o2 = S, v] < Eb[pb|o2 = S, v]. On the other hand, if v = �1,

then P (o2 = B|v) < P (o2 = S|v), and E[p|o2 = S, v] > Eb[pb|o2 = S, v]. So whether v = 1 or

v = �1, by Lemma 3,

E[p|o2 = B, v]� Eb[pb|o2 = B, v] =
P (o2 = S|v)
P (o2 = B|v)

⇣
E[p|o2 = S, v]� Eb[pb|o2 = S, v]

⌘

> E[p|o2 = S, v]� Eb[pb|o2 = S, v], (18)

which implies (12) for v 2 {�1, 1}, completing the proof of Part (ii).

Lemma 4. The average spread between posted bids and asks is higher under the spoofing

equilibrium than the benchmark equilibrium.

Proof. Let the set of date 1 histories h1 be denoted by H1 = {BE, SE,BC, SC,N}, where
N means no one arrives at date 1. Given some history h1, the bid-ask spread is E[V |h1, B]�
E[V |h1, S] under spoofing and Eb[v|h1, B] � Eb[v|h1, S] under the benchmark. We wish to

show that

E[E[V |h1, B]� E[V |h1, S]] > Eb[Eb[v|h1, B]� Eb[v|h1, S]].
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We first show that E[E[V |h1, B]] > Eb[Eb[v|h1, B]]; i.e., average posted asks are higher

under the spoofing equilibrium. Note that because a spoofer would never place orders

h1 2 {BE, SE}, posted asks and probabilities are equal in both equilibria for those or-

ders: E[V |h1, B] = Eb[v|h1, B], and P (h1) = Pb(h1). So it remains to compare asks and

probabilities for h1 2 {BC, SC,N}. In particular, it su�ces to show that

E[V |BCB]P (BC) + E[V |SCB]P (SC)

> Eb[v|BCB]Pb(BC) + Eb[v|NB]Pb(N) + Eb[v|SCB]Pb(SC). (19)

Because a spoofer would never place the order BCB, it must be that E[V |BCB] = Eb[BCB].

Also, letting sp denote the event that a spoofer arrives at date 1, observe that P (BC) =

P (sp, BC) + P (¬sp, BC) = P (sp, BCS) + P (¬sp, BC) = Pb(NS) + Pb(BC). Se we have

E[V |BCB]P (BC) = Eb[v|BCB]
⇣
Pb(NS) + Pb(BC)

⌘
. (20)

Next, observe that

E[V |SCB] = E[V |sp, SCB]P (sp|SCB) + E[V |¬sp, SCB]P (¬sp|SCB)

=
1

P (SCB)

⇣
E[V |sp, SCB]P (sp, SCB) + E[V |¬sp, SCB]P (¬sp, SCB)

⌘
.

Furthermore, by construction of the benchmark, E[V |sp, SCB] = Eb[v|NB], P (sp, SCB) =

Pb(NB), E[V |¬sp, SCB] = Eb[v|SCB], and P (¬sp, SCB) = Pb(SCB), which implies

E[V |SCB]P (SC) =
P (SC)

P (SCB)

⇣
Eb[v|NB]Pb(NB) + Eb[v|SCB]Pb(SCB)

⌘
.

> Eb[v|NB]Pb(NB) + Eb[v|SCB]Pb(SCB). (21)
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Summing (20) and (21) gives

E[V |BCB]P (BC) + E[V |SCB]P (SC)

> Eb[v|BCB]
⇣
Pb(NS) + Pb(BC)

⌘
+ Eb[v|NB]Pb(NB) + Eb[v|SCB]Pb(SCB)

= Eb[v|BCB]Pb(NS) + Eb[v|BCB]Pb(BC) + Eb[v|NB]Pb(NB)

+ Eb[v|SCB]Pb(SCB).

(22)

Observe that because Eb[v|SCB] = 0, we have Eb[v|SCB]Pb(SCB) = Eb[v|SCB]Pb(SC).

Also note that Eb[v|BCB] = 2↵/(↵2 + 1) > ↵ = Eb[NB]. So (22) implies

E[V |BCB]P (BC) + E[V |SCB]P (SC)

> Eb[v|NB]Pb(NS) + Eb[v|BCB]Pb(BC) + Eb[v|NB]Pb(NB)

+ Eb[v|SCB]Pb(SC)

= Eb[v|BCB]Pb(BC) + Eb[v|NB]
⇣
Pb(NS) + Pb(NB)

⌘
+ Eb[v|SCB]Pb(SC)

= Eb[v|BCB]Pb(BC) + Eb[v|NB]Pb(N) + Eb[v|SCB]Pb(SC),

which establishes (19). As a result, average posted asks are higher under spoofing than

under the benchmark. A symmetric argument shows that average posted bids are lower

under spoofing than under the benchmark. So the average spread between posted bids and

asks is higher under spoofing than under the benchmark.

Proof of Proposition 4. Tedious calculations show that for midpoints, the di↵erence

in expected volatility between the two equilibria is:

E[Var(h)]� Eb[Varb(h)]

=
2↵2

�

⇣
(1� ↵

2)2 �2(1� �)2 + (1� ↵)(3 + ↵)�2 + (↵6 + 2↵4 � 3↵2 + 4) ��(1� �)
⌘

(↵2 + 1)2 ((1� ↵2) �(1� �) + 2�)2
.

The term ↵
6 + 2↵4 � 3↵2 + 4 is strictly positive for all ↵ 2 [0, 1], as it has only one real

root, which root is strictly negative. All other terms are clearly positive, so E[Var(h)] �
Eb[Varb(h)] > 0.
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Proof of Proposition 5. For each case, we first show that the quantity �
⇤ presented

in the proposition is an equilibrium, and then show that it is unique. Throughout the proof,

we suppress the dependence of �̂(↵, �, �̄, k) on ↵, �, �̄, and k. As a preliminary, observe for

all (↵, �, �̄, k) 2 (0, 1)4, G(�) is strictly decreasing in � and G(�̂) = k.

Case 1: �̂  0. If �⇤ = 0 � �̂, then because G(·) is decreasing in �, we have G(�⇤) 
G(�̂) = k, which satisfies the equilibrium conditions (1). Furthermore, if � were strictly

positive, then � > 0 � �̂, so G(�) < G(�̂) = k, contradicting equilibrium.

Case 2: �̂ 2 (0, �̄). If �⇤ = �̂, then G(�⇤) = G(�̂) = k, satisfying (1). If � < �̂  1,

then G(�) > G(�̂) = k, contradicting (1), and if � > �̂ � 0, then G(�) < G(�̂) = k, also

contradicting (1).

Case 3: �̂ � �̄. If �⇤ = �̄  �̂, then G(�⇤) � G(�̂) = k, satisfying (1). If � < �̄  �̂,

then G(�) > G(�̂) = k, contradicting (1).

The comparative statics with respect to �, k, and �̄ follow directly from (3), so we

conclude the proof by showing that �⇤ is single-peaked in ↵.

If ↵  k, then �̂  0, so �
⇤ = 0. As ↵ ! 1, �̂ ! 0, so �

⇤ ! 0. If ↵ 2 [k, 1), then

�
⇤ = min{�̂, �̄}. The derivative of �̂ with respect to ↵ has the same sign as

@

@↵

⇥
(↵� k)(1� ↵

2)
⇤
= �3↵2 + 2k↵ + 1. (23)

When ↵ = k, expression (23) is �k
2 + 1 > 0, and when ↵ = 1, (23) is 2(k � 1) < 0. By

the intermediate value theorem, there exists a root of (23) in (k, 1), and because (23) is

quadratic, there is only one root in (k, 1), implying that �̂ is single-peaked in ↵ over the

range [k, 1). Therefore, �⇤ is constant at 0 over the range ↵ 2 (0, k], converges to 0 as ↵

converges to 1, and is single-peaked (equal to min{�̂, �̄}) over the range ↵ 2 [k, 1).

Proof of Proposition 6. The proposition states that the strategies of short-term traders

and within-market long-term traders is the same as in Proposition 1. Furthermore, Given

the proposed equilibrium, the proof that those strategies are optimal is the same as in

Proposition 1. So it remains to derive the market maker’s prices for cross-market order

histories, and then show that cross-market long-term traders find it optimal to spoof across

markets.

Lemma 5. If the order history occurs within a single market, the market maker prices

according to Lemma 1. Otherwise, the market maker sets the following prices for asset a:
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p2(SbEBa) =
↵(1� ⇢)

1� ⇢↵2
p2(BbESa) =

�↵(1� ⇢)

1� ⇢↵2

p2(BbEBa) = p2(BbCBa) =
↵(1 + ⇢)

1 + ⇢↵2
p2(SbESa) = p2(SbCSa) =

�↵(1 + ⇢)

1 + ⇢↵2

p2(SbCBa) =
�c↵ + (1� �)�0.5↵(1� ⇢)

�c + (1� �)�0.5(1� ⇢↵2)
p2(BbCSa) = ��c↵ + (1� �)�0.5↵(1� ⇢)

�c + (1� �)�0.5(1� ⇢↵2)
.

Exchanging indices a and b gives prices for asset b.

Proof. The derivation of the market maker’s within-market pricing strategies is the same as

in Lemma 1.

Any cross-market order history h was placed either by one long-term cross-market trader

or by two short-term traders, so we can use (9) to derive prices for cross-market histories.

Throughout the proof, we suppress the index a on �wa, �ca, and �a = �wa + �ca.

If the market maker observes history SbCBa, it could have come from either a cross-

market long-term trader with probability �c/2 or two short-term traders with probability

(1 � �)�/2. If the history came from a cross-market long-term trader, then his ultimate

intention is to buy asset a, in which case there are two subcases: (1), with probability ↵0.5,

the trader is informed that asset a is good, in which case the value of asset a is 1; (2) with

probability (1 � ↵)0.5, the trader is uninformed and wants to purchase only for liquidity

reasons, in which case the expected asset value is 0. If the history came from two short-term

traders, then there are four subcases: (1) with probability ↵
20.5(1 � �), the first trader

is informed that asset b is bad and the second trader is informed that asset a is good, in

which case asset a’s expected value is 1; (2) with probability ↵(1 � ↵)0.52, the first trader

is informed that asset b is bad, and the second trader is uninformed, in which case the

expected asset value is E[Va|Vb = �1] = 1 · P (Va = 1|Vb = �1) + (�1) · P (Va = �1|Vb =

�1) = 1 · (1 � �) + (�1) · � = 1 � 2� = �⇢; (3) with probability ↵(1 � ↵)0.52, the first

trader is an uninformed seller, and the second trader is informed that asset a is good, in

which case the expected value of asset a is 1; (4) with probability (1� ↵)20.52, both traders

are uninformed, in which case the expected value of asset a is 0.

Applying Equation (9), we have
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E[Va|SbCBa] =

�c[↵0.5(1) + (1� ↵)0.5(0)]+
(1� �)�[↵20.5(1� �)(1) + ↵(1� ↵)0.52(1� ⇢) + (1� ↵)20.52(0)]

�c[↵0.5 + (1� ↵)0.5] + (1� �)�[↵20.5(1� �) + 2↵(1� ↵)0.52 + (1� ↵)20.52]

=
�c↵ + (1� �)�0.5↵(1� ⇢)

�c + (1� �)�0.5(1� ⇢↵2)
.

By symmetry, E[Va|BbCSa] = �E[Va|SbCBa].

If the market maker observes order history SbEBa, it could only have come from two

short-term traders. In that case, the four possible events and conditional expectations are

the same as in the previous paragraph, implying that

E[Va|BbCSa] =
(1� �)�[↵20.5(1� �)(1) + ↵(1� ↵)0.52[(1� 2�) + 1] + (1� ↵)20.52(0)]

(1� �)�[↵20.5(1� �) + 2↵(1� ↵)0.52 + (1� ↵)20.52]

=
↵(1� ⇢)

1� ⇢↵2
.

If the market maker observes order history BbCBa, it could only have come from two

short-term traders, which occurs with probability (1 � �)�. In that case, there are four

possible events: (1) with probability, ↵20.5�, both traders are informed that both assets are

good, in which case the expected value of asset a is 1; (2) with probability ↵(1�↵)0.52, the

first buyer is informed that asset b is good and the second trader is uninformed, in which

case the expected value of asset a is E[Va|Vb = 1] = 1 · � + (�1) · (1� �) = 2�� 1 = ⇢; (3)

with probability ↵(1�↵)0.52, the first buyer is uninformed and the second buyer is informed

that asset a is good, in which case the expected value of asset a is 1; (4) with probability

(1� ↵)20.52, both traders are uninformed, in which case the expected value of asset a is 0.

Appying Equation (9) gives

E[Va|BbCBa] =
(1� �)�

(1� �)�
· ↵

20.5�(1) + ↵(1� ↵)0.52(1 + ⇢) + (1� ↵)20.52(0)

↵20.5�+ 2↵(1� ↵)0.52 + (1� ↵)20.52

=
↵(1 + ⇢)

1 + ⇢↵2
.

41

Electronic copy available at: https://ssrn.com/abstract=3742327



The price for BbEBa is the same. Symmetry gives the remaining prices, and exchanging

indices for a and b gives prices for asset b.

We now show that in the proposed equilibrium, a cross-market long-term trader finds it

optimal to spoof across markets. Without loss of generality, suppose a cross-market long-

term trader wants to ultimately buy asset a, either because he knows it is good or for liquidity

reasons. If he buys it directly, either at date 1 or date 2, he pays price p1(Ba) = p2(NBa) = ↵.

If he spoofs across markets, by first placing a sell order for asset b and then cancelling it, he

pays price

p2(SbCBa) = ↵
�c + (1� �)�0.5(1� ⇢)

�c + (1� �)�0.5(1� ⇢↵2)
< ↵,

so it is strictly optimal for him to spoof across markets.

Proof of Proposition 7. Without loss of generality, we establish the result for asset

a. Let H be the set of histories that are possible under the spoofing equilibrium, and

Ĥ = H[{NBa, NSa, NBb, NSb} be the set of histories that are possible under the benchmark

equilibrium. Given some history h 2 Ĥ, Bayes’ rule gives the market maker’s posterior belief

that asset a has value va = 1 :

⇡a(h) =
P (h|va = 1)⇡

P (h|va = 1)⇡ + P (h|va = �1)(1� ⇡)
.

Let H
� ⌘ {SbCBa, SaCBb, BbCSa, BaCSb} denote the set of histories in the spoofing

equilibrium which could have come from a cross-market spoofer and let Ĥ
� ⌘ H

� [
{NBa, NBb, NSa, NSb} denote the corresponding set of histories in the benchmark equi-

librium. By construction of the benchmark, all histories which could not have come from a

cross-market spoofer in the spoofing equilibrium are just as likely to occur in the benchmark

equilibrium. That is, usingˆto denote benchmark probabilities P̂ and posteriors ⇡̂, for all

h 2 H \H� and v 2 {�1, 1}2, we have that P (h|v) = P̂ (h|v) and therefore ⇡(h) = ⇡̂(h). As

a result,

Ê[⇡̂(h)|v]� E[⇡(h)|v]

=
X

h2Ĥ

⇡̂(h)P̂ (h|v)�
X

h2H

⇡(h)P (h|v) =
X

h2Ĥ�

⇡̂(h)P̂ (h|v)�
X

h2H�

⇡(h)P (h|v). (24)

42

Electronic copy available at: https://ssrn.com/abstract=3742327



Letting Y ⌘ {B, S} ⇥ {a, b} and f(x) ⌘ ⇡/(⇡ + x(1 � ⇡)), so that ⇡(h) = f(P (h|va =

�1)/P (h|va = 1)), we can rewrite (24) as follows:

Ê[⇡̂a(h)|va = 1]� E[⇡a(h)|va = 1]

=
X

(o,i)2Y

f

 
P̂ (Noi|va = �1)

P̂ (Noi|va = 1)

!
P̂ (Noi|va = 1)

+
X

(o,i)2Y

f

 
P̂ ((¬o)¬iCoi|va = �1)

P̂ ((¬o)¬iCoi|va = 1)

!
P̂ ((¬o)¬iCoi|va = 1)

�
X

(o,i)2Y

f

✓
P ((¬o)¬iCoi|va = �1)

P ((¬o)¬iCoi|va = 1)

◆
P ((¬o)¬iCoi|va = 1)

=
X

(o,i)2Y

1

P ((¬o¬iCoi|va = 1))

"
f

 
P̂ (Noi|va = �1)

P̂ (Noi|va = 1)

!
P̂ (Noi|va = 1)

P ((¬o¬iCoi|va = 1))

+ f

 
P̂ ((¬o)¬iCoi|va = �1)

P̂ ((¬o)¬iCoi|va = 1)

!
P̂ ((¬o)¬iCoi|va = 1)

P ((¬o¬i)Coi|va = 1)

�f

✓
P ((¬o)¬iCoi|va = �1)

P ((¬o)¬iCoi|va = 1)

◆�
(25)

By construction of the benchmark, for all (o, i, va) 2 Y ⇥ {1,�1},

P ((¬o)¬iCoi|va) = P ((¬o)¬iCoi|sp, va) + P ((¬o)¬iCoi|¬sp, va)

= P̂ (Noi|va) + P̂ ((¬o)¬iCoi|va),

which implies

P̂ (Noi|va = �1)

P̂ (Noi|va = 1)

P̂ (Noi|va = 1)

P ((¬o¬iCoi|va = 1))
+

P̂ ((¬o)¬iCoi|va = �1)

P̂ ((¬o)¬iCoi|va = 1)

P̂ ((¬o)¬iCoi|va = 1)

P ((¬o¬i)Coi|va = 1)

=
P̂ (Noi|va = �1) + P̂ ((¬o)¬iCoi|va = �1)

P ((¬o¬i)Coi|va = 1)
=

P ((¬o¬i)Coi|va = �1)

P ((¬o¬i)Coi|va = 1)
.

So by the convexity of f(·) and Jensen’s inequality, the bracketed di↵erences in (25)

are strictly positive, which establishes Ê[⇡̂a(h)|va = 1] > E[⇡a(h)|va = 1]. Because prices
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pa and p̂a are linearly increasing in posteriors ⇡a(h) and ⇡̂a(h), respectively, this implies

E[pa|va = 1] < Ê[p̂a|va = 1]  1 = va.

Proof of Proposition 8. The proof is identical to Proposition 3, part (ii).

Proof of Proposition 9. Without loss of generality, we establish the proposition for

asset a, and drop the index a throughout the proof. Lemmas 1 and 5 imply that

Cw(�w) = E[Va|SaCBa] + kw =
�w↵

�w + (1� �̄)�0.5(1� ↵2)
+ kw

Cc(�c) = E[Va|SbCBa] + kc =
�c↵ + (1� �̄)�0.5↵(1� ⇢)

�c + (1� �̄)�0.5(1� ⇢↵2)
+ kc.

As �w increases from 0 to �̄, Cw(�w) strictly increases from 0 to C(�̄). As �c increases from

0 to �̄, Cc(�c) strictly increases from Cc(0) > 0 to Cc(�̄) > Cw(�̄).

Let �̂w be the unique �w 2 R that solves Cw(�w) = ↵, and let �̂c be the unique �c 2 R
that solves Cc(�c) = ↵. Then

�̂w = (1� �̄)
�

2

✓
↵

kw
� 1

◆
(1� ↵

2)

�̂c = (1� �̄)
�

2

✓
⇢
↵

kc
� 1

◆
(1� ↵

2)� (1� ⇢)↵2

�
.

By assumption, �
⇤
w
+ �

⇤
c
 �̄. We first show that for high enough kw and kc, the

inequality is strict. So suppose that �
⇤
w
+ �

⇤
c
= �̄. Then by the equilibrium definition,

↵ � min{Cw(�w), Cc(�c)}, which implies that �w  �̂w or �
⇤
c
 �̂c. But for high enough

kw and kc, �̂w < 0 and �̂c < 0, contradicting �
⇤
w

� 0 and �
⇤
c
� 0. This establishes

that �
⇤
w
+ �

⇤
c
< �̄, ruling out case (3) in the equilibrium definition, so it must be that

↵  min{Cw(�⇤
w
), Cc(�⇤

c
)}. It also implies that �⇤

w
< �̄ and �

⇤
c
< �̄.

The proposition claims that �⇤
w
= max{0, �̂w}. For each case below, we first show that

�
⇤
w

= max{0, �̂w} is compatible with the equilibrium definition, and then show that it is

necessary.

Case 1: �̂w  0. For this case, if �⇤
w

= 0, then because Cw(·) is strictly decreasing,

Cw(�⇤
w
) � Cw(�̂w) = ↵, which satisfies (5), so �

⇤
w
= 0 is compatible with equilibrium. If

�
⇤
w
> 0 � �̂w, then Cw(�⇤

w
) > Cw(�̂w) = ↵, so then (5) implies �

⇤
w
= 0, a contradiction.

Therefore, it must be that �⇤
w
= 0 whenever �̂w  0.

Case 2: �̂w > 0. If �⇤
w

= �̂w > 0, then Cw(�⇤
w
) = Cw(�̂w) = ↵, which satisfies (5),

44

Electronic copy available at: https://ssrn.com/abstract=3742327



so �
⇤
w

= �̂w is compatible with equilibrium. If �⇤
w

< �̂w, then Cw(�⇤
w
) < Cw(�̂w) = ↵,

contradicting ↵  min{Cw(�⇤
w
), Cc(�⇤

c
)}. If �⇤

w
> �̂w > 0, then Cw(�⇤

w
) > Cw(�̂w) = ↵,

contradicting case 1 of (5). So �
⇤
w
= 0 whenever �̂w > 0, establishing �

⇤
w
= max{0, �̂w}.

Identical reasoning shows that �⇤
c
= max{0, �̂c} is compatible with the equilibrium defi-

nition, and also necessary. Therefore, �⇤
w
= max{0, �̂w} and �

⇤
c
= max{0, �̂c} is the unique

equilibrium for high enough kw and kc. This completes the proof.

Proof of Proposition 10. By assumption, the regulator has su�cient resources  such

that Proposition 9 holds. Let k̂w ⌘ min{kw : �⇤
w

= 0} and k̂c ⌘ min{kc : �⇤
c
= 0} be

the minimum resources a regulator must allocate to within- and cross-market monitoring,

respectively, in order to completely eliminate them. Therefore, the assumption that the

regulator is constrained amounts to k < k̂w + k̂c. Proposition 9 gives:

k̂w = ↵ and k̂c =
⇢↵(1� ↵

2)

1� ⇢↵2
.

Given total resources k, the regulator selects kc and kw to minimize �
⇤
c
+ �

⇤
w
, subject to

the constraint that kc + kw  k. Proposition 9 gives piecewise expressions for �⇤
c
and �

⇤
w
, so

we first simplify these expressions by showing that kc > k̂c or kw > k̂w are never optimal.

Observe that for i 2 {c, w}, �⇤
i
is positive and strictly decreasing in ki for ki < k̂i and

zero otherwise. Without loss of generality, suppose that kc > k̂c, so that �
⇤
c
= 0. Then

because kc + kw  k < k̂c + k̂w, we must have kw < k̂c + k̂w � kc < k̂w, so �
⇤
w
> 0. If the

regulator reduced kc by small � and raised kw by �, then �
⇤
c
would remain unchanged at

zero, but �⇤
w
would strictly decrease. This improves the regulator’s payo↵, so kc > k̂c cannot

be optimal. A similar argument shows that kw > k̂w cannot be optimal.

Moving forward, we restrict attention to the region kc  k̂c and kw  k̂w, which by

Proposition 9 implies that the total measure of spoofers �⇤ is

�
⇤
w
+ �

⇤
c
= (1� �̄w)

�

2

✓
↵

kw
� 1

◆
(1� ↵

2) + (1� �̄w)
�

2

✓
⇢
↵

kc
� 1

◆
(1� ↵

2)� (1� ⇢)↵2

�

= (1� �̄w)
�

2

✓
↵

✓
1

kw
+ ⇢

1

kc

◆
� 2

◆
(1� ↵

2)� (1� ⇢)↵2

�
.

The total measure of spoofers �⇤
w
+�

⇤
c
depends on kw and kc only through the term k

�1
w

+⇢k
�1
c
,
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so the regulator’s problem reduces to

max
kw2[0,k̂w],kc2[0,k̂c]

�(k�1
w

+ ⇢k
�1
c
)

kw + kc  k.

(26)

The derivatives with respect to the Lagrangian are

@L
@kw

= k
�2
w

� � and
@L
@kc

= ⇢k
�2
c

� �,

where � is the Lagrange multiplier on the resource constraint.

We begin by relaxing the constraints kw  k̂w and kc  k̂c while leaving the objective

function as �(k�1
w

+ ⇢k
�1
c
). We then give conditions such that the solution to the relaxed

problem satisfies the constrained problem.

The objective function is strictly increasing in kw and kc, so the resource constraint binds.

The objective function equals �1 if kw or kc are equal to zero, so both kw and kc must be

strictly positive, and therefore @L /@kw = @L /@kc = 0. This implies k�2
w

= � = ⇢k
�2
c
, and

therefore kc/kw =
p
⇢. Combining this with the binding resource constraint gives the unique

solution (k̃c, k̃w) to the relaxed problem:

k̃w =
k

1 +
p
⇢

and k̃c =
k
p
⇢

1 +
p
⇢
.

We claim that (k̃c, k̃w) solves the constrained problem (26) if and only if k̃c  k̂c. First,

if k̃c > k̂c, then k̃c falls outside the constraint set and therefore (k̃c, k̃w) cannot solve the

constrained problem. Second, suppose that k̃c  k̂c and observe that

k̂c

k̂w

=
⇢(1� ↵

2)

1� ⇢↵2
< ⇢ <

p
⇢ =

k̃c

k̃w

.

Therefore, k̃c  k̂c implies k̃w  k̂w · k̃c/k̂c < k̂w. Thus, (k̃c, k̃w) satisfy the relaxed constraints

and therefore solves (26). That is, if k̃c  k̂c, then (k⇤
c
, k

⇤
w
) = (k̃c, k̃w). Computing the ratio

of k⇤
c
to k

⇤
w
, we see that k⇤

c
/k

⇤
w
= k̃c/k̃w =

p
⇢, establishing part (i) of the proposition.

Finally, we show that if k̃c > k̂c, then k
⇤
c
= k̂c. If k̃c > k̂c, then by the previous paragraph,

the unconstrained solution (k̃c, k̃w) cannot be optimal. So suppose to the contrary that
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k
⇤
c
< k̂c. Then k

⇤
w
= k̂w, as otherwise (k⇤

c
, k

⇤
w
) is interior and solves the relaxed problem,

contradicting the suboptimality of (k̃c, k̃w). If k⇤
c
< k̂c and k

⇤
w
= k̂w, then @L /@kc = 0 while

@L /@kw  0, implying ⇢(k⇤
c
)�2 = � � (k⇤

w
)�2, which we can rewrite as k

⇤
c
/k

⇤
w

� p
⇢ >

k̂c/k̂w = k̂c/k
⇤
w
. But this implies k

⇤
c
> k̂c, a contradiction. So if k̃c > k̂c, then k

⇤
c
= k̂c,

and the binding resource constraint gives k⇤
w
= k � k

⇤
c
= k � k̂c, establishing part (ii) of the

proposition.
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