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Abstract

We analyze jointly optimal emission taxes and financial regulation in the pres-

ence of environmental externalities and financial frictions. Our model highlights

that climate-related transition and physical risks have opposite implications for how

emission taxes interact with financial constraints. Absent physical risk the socially

optimal emission tax is below the Pigouvian benchmark (equal to the social cost of

emissions) because emission taxes and abatement costs amplify borrowers’ financial

constraints. This implies that emission taxes alone cannot implement a constrained

efficient allocation, as welfare can be improved by introducing capital regulation.

With physical risk the effect of emission taxes on financial constraints may revert

because lower emissions reduce physical risks and thereby loosen borrowers’ finan-

cial constraints. This collateral externality may motivate emission taxes above the

Pigouvian benchmark and underlines the need to coordinate environmental and

financial regulation.
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1 Introduction

Tackling climate change requires large-scale emission reductions and investments in clean

technologies. Absent other frictions such investments can be incentivized through emis-

sion taxes equal to the social cost of emissions, also known as Pigouvian taxes in reference

to the pioneering work by Pigou (1932). However, during the transition to a low-carbon

economy firms and financial institutions may suffer significant losses due to stranded as-

sets that become technologically obsolete. At the same time, physical damages caused

by more frequent extreme weather events may hit asset values. Such losses can aggravate

financing frictions and limit the ability of firms to make the necessary investments in

green technologies.

The risks posed by climate change have moved up the agenda of investors and policy

makers with a mandate for price- and financial stability. For example, the European

Central Bank and the Bank of England now include climate risks in their stress tests and

institutional investors view climate change as an important source of risk that they seek to

mitigate.1 While recent contributions analyze how financing constraints affect Pigouvian

taxation and firm investments in green technology (see Hoffmann et al., 2017; Oehmke

and Opp, 2020; Heider and Inderst, 2022), an analytical evaluation of jointly optimal

environmental and financial regulations in the presence of transition- and physical risk is

still missing from the literature. The goal of this paper is to fill this gap.

We develop a tractable model in which polluters face emission taxes and financing

constraints. The model economy lasts for three dates and is populated by two types of

agents: borrowers and deep-pocketed, risk-neutral lenders. Borrowers enter the game

with an initial endowment and an investment project of a fixed scale. At the initial date,

they finance the project with a mix of inside equity and debt. Equity financing is costly

because borrowers have a quasi-linear utility function and a limited initial endowment.

The borrower’s project generates a pecuniary return as well as carbon emissions at

the final date. The emissions of the project can be reduced through costly abatement

1See Alogoskoufis et al. (2021) for the ECB’s stress testing methodology and results, Brunnermeier
and Landau (2022) for a discussion of climate-related challenges for monetary and financial policy, and
the survey responses by institutional investors in Krueger et al. (2020).
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activities undertaken by borrowers. At the same time, borrowers need to roll-over debt

raised in the initial period. This new debt issuance is limited by a financial constraint

because the project’s returns are not fully pledgeable to outside investors. Borrowers can

also decide to liquidate part of the initial investment at the interim date. Liquidations

can help cash-constrained borrowers to generate resources and at the same time reduce

emissions, yet liquidations are inefficient due to liquidation losses.

In the model borrowers are exposed to two different types of climate-related costs.

First, we consider a planner imposing emission taxes to incentivize abatement activities,

which together with the costs of abatement represent the cost of transitioning to a low-

emissions economy (often referred to as “transition risk” in the literature).2 Second, we

assume that the return of the project may decrease in the level of aggregate emissions

to capture a borrower’s exposure to losses due to environmental damages caused by

a warming climate (often termed as “physical risk”).3 This allows us to explore the

differences in how these two types of climate-related costs interact with financial frictions

and affect optimal environmental and financial policies.

We show that an emission tax equal to the social cost of emissions (i.e., a Pigouvian

tax) implements the first best allocation if financial constraints are slack. In contrast,

in the presence of financial constraints Pigouvian taxes cannot implement the first best

and optimal emission taxes generally differ from the Pigouvian benchmark. With binding

financial constraints borrowers need to liquidate some of the project at the interim date,

and the socially optimal emission tax trades off the benefit of lower emissions against the

costs of higher liquidations. This implies an optimal emission tax below the Pigouvian

benchmark because polluters are “too levered for Pigou”.4

2Consistent with transition risks being priced in financial markets, recent evidence documents that
firm-level carbon emissions are priced in corporate bonds (see Seltzer et al., 2020) and stocks (see Bolton
and Kacperczyk, 2021), and that the risk of stranded fossil fuel assets is priced in bank loans (see Delis
et al., 2019).

3Several contributions document the relevance of physical risk for asset prices and firm financing. For
example, Giglio et al. (2021) find that the value of real estate in flood zones responds more to changes
in climate attention, and Issler et al. (2020) document an increase in delinquencies and foreclosures after
wildfires in California. Evidence in Ginglinger and Moreau (2019) indicates that physical climate risks
affect a firm’s capital structure. For a review discussing climate risks, see Giglio et al. (2021).

4The mechanism behind this result is consistent with recent evidence documenting that financial
constraints affect firm abatement activities and emissions, see Xu and Kim (2022) and Bartram et al.
(2021).
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A key insight from our analysis is that physical climate risk can reverse the relationship

between emission taxes and financial constraints. When borrowers are exposed to physical

risk, they may benefit from an increase in pledgeable income when the aggregate level

of emissions is brought down by a higher emission tax. This additional benefit of lower

emissions is not internalized by borrowers, and therefore optimal emission taxes may

be above the Pigouvian benchmark rate in the presence of physical risk. Generally, the

optimal emission tax is above or below the Pigouvian benchmark depending on whether

transition costs or physical risks dominate.

We next consider the problem of a social planner who jointly sets an emission tax

and financial regulation in the form of a capital mandate that allows the planner to fix

the leverage of borrowers at a given level. Importantly, we establish that the presence

of financial constraints alone does not motivate financial regulation in the model. This

implies that, if there is a rationale for leverage regulation in our model, it results from

the interaction of environmental externalities and financial constraints. Therefore our

model contributes to the debate on whether financial regulation should have a climate

mandate above and beyond the motivation behind current regulatory frameworks, such as

moral hazard issues associated with government guarantees (for example, see Dewatripont

and Tirole, 1994; Hellmann et al., 2000; Martinez-Miera and Repullo, 2010; Bahaj and

Malherbe, 2020), or pecuniary externalities (for example, see Lorenzoni, 2008).

In the absence of physical risk the optimal emission tax is below the Pigouvian bench-

mark rate. This wedge between the social and the private cost of emissions implies that

borrowers make socially inefficient leverage choices, and that there is a role for capital

regulation to improve welfare.

Whether the optimal capital mandate is above or below a benchmark without financial

regulation depends on the direction of the total effect of capital on emissions. On one

hand, laxer financial constraints can result in a higher level of abatement, which lowers

overall emissions. On the other hand, by loosening financial constraints higher capital
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allows for fewer liquidations, which increases emissions.5 If the effect of better capitalized

borrowers on abatement dominates the effect on liquidations, then the optimal capital

mandate is above the equity level privately chosen by borrowers. Such a policy could be

implemented by a leverage ratio requirement as in the Basel III regulatory framework.

Interestingly, we find that the optimal capital mandate can also be below the equity

level chosen by borrowers when a change in capital affects emissions mostly through its

impact on liquidations (in which case higher capital is associated with higher emissions).

Which of the channels dominates generally depends on the sensitivity of emissions and

abatement costs to liquidations. We show that the optimal capital mandate is above the

equity level privately chosen by borrowers if functional forms imply that abatement is

sufficiently more efficient at a higher investment scale.

Physical risk introduces an additional motive for capital regulation. In the presence of

physical risk emissions lower the asset returns and consequently the pledgeable income of

borrowers. This gives rise to a collateral externality, wherein individuals do not internalize

how their choices affect the tightness of the financial constraints of other borrowers. This

effect is similar to collateral externalities in models with pecuniary externalities, where

borrowers do not internalize the effect of their choices on the financial constraints of other

agents through prices (for a detailed discussion see Dávila and Korinek, 2018). In our

setting the collateral externality operates through the physical costs of environmental

damages caused by higher emissions, which reduces a borrowers’ pledgeable income. As

a result, in the presence of physical risk the private choice of equity is socially sub-

optimal even if the emissions tax is equal to the Pigouvian benchmark. This mechanism

underscores the need to correctly account for the two sources of climate risk in both

environmental and financial regulation.

In additional analyses we consider alternative policy tools. While the pledgeable

income of borrowers cannot be lifted by rebating emission taxes (because we assume

borrowers can abscond with any cash at the final date, including rebated taxes), replacing

5This effect is consistent with evidence that carbon emissions drop during economic crises, as exempli-
fied by 10% drop in carbon emissions in 2020 relative to 2019 in the EU, see the European Environmental
Agency).
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the emission tax by a cap-and-trade system such as the EU Emission Trading System

can be beneficial if pollution permits can be allocated to borrowers for free. Freely

allocating pollution permits eliminates the direct effect of emission taxes on financial

constraints. However, we find that this policy cannot undo the interaction between

financial constraints and environmental policy because borrowers still have to incur the

costs of abatement investments. Therefore, the optimal permit price is generally different

from the Pigouvian benchmark and a cap-and-trade system alone cannot implement a

constrained efficient allocation – even when permits can be allocated for free.

Perhaps trivially, effective policy tools create financial slack by transferring resources

from unconstrained investors to constrained borrowers. Such transfers could either be

implemented directly or indirectly by subsidizing abatement rather than taxing pollu-

tion. While combining emission taxes with transfers is generally effective, policies that

imply generous transfers to polluters may not be politically feasible. A problem with

subsidizing abatement rather than taxing pollution is that it requires regulators to de-

cide which technologies to subsidize, which may be difficult in the presence of information

asymmetries.

We relate to several recent contributions that analyze environmental externalities un-

der financing frictions. Oehmke and Opp (2020) study how investors with a non-pecuniary

preference for sustainable investments can ease financing constraints and impact firm be-

havior. Heider and Inderst (2022) show how financial constraints can imply optimal

carbon prices different from a Pigouvian benchmark and derive optimal industry-level

carbon prices in a model with heterogeneity in emissions within and across industries.

Similarly, Hoffmann et al. (2017) find that, in the presence of agency problems and hetero-

geneity in abatement costs, optimal emission taxes are below the Pigouvian benchmark

and optimally non-linear.6 None of these papers analyze the interaction of financial reg-

6Previous literature shows that a Pigouvian solution may be sub-optimal also in the presence of het-
erogeneous exposure to the externalities or interactions between several externality generating activities,
if a targeted policy tool is unavailable (Diamond, 1973; Rothschild and Scheuer, 2014). Moreover, a
wedge between the optimal tax rate and the marginal social cost emerges when the planner seeks to
regulate an externality in the presence of other distortionary taxes (Sandmo, 1975; Lee and Misiolek,
1986; Bovenberg and Goulder, 1997; Bovenberg and De Mooij, 1997) or when consumers have self-control
problems Haavio and Kotakorpi (2011). In these cases, as in our setting, the indirect effects of the policy
motivate the deviation from the Pigouvian solution.
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ulation and emission taxes, which is the main focus of this paper. Another related strand

of literature uses DSGE models with financial frictions to simulate the effect and opti-

mal design of macroprudential and monetary policies in the presence of environmental

externalities (Carattini et al., 2021; Dafermos et al., 2018; Diluiso et al., 2020; Ferrari

and Landi, 2021). We contribute by providing analytical results that allow to pinpoint

the friction motivating financial regulation in this context. Moreover, to the best of our

knowledge our paper is the first to jointly analyze how physical and transition risks in-

teract with financial frictions, which allows us to derive novel insights on how these two

climate-related costs differ in their impact on environmental and financial policies.

Section 2 describes the model setup and derives the first best benchmark. Section 3

solves the competitive equilibrium, and Section 4 analyzes optimal financial and environ-

mental regulation. Section 5 concludes.

2 Model Setup

There are three dates, t = 0, 1, 2, a unit mass of investors and a unit mass of borrowers.

Preferences and Endowments Investors are risk-neutral and deep-pocketed in that

they have a large endowment Ai
t at t = 0 and t = 1. Borrowers have a limited endowment

Ab
0 only at t = 0 and quasi-linear utility over consumption. There is no discounting and

all agents suffer disutility from aggregate carbon emissions Ea at t = 2:

U i = c0 + c1 + c2 − γuE
a,

U b = u(c0) + c1 + c2 − γuE
a,

where γu is a parameter governing the cost of emissions in agent’s utility.

We assume a quasi-linear utility function to introduce a meaningful trade-off for bor-

rowers in how much own funds they contribute. To ensure an interior solution we assume

that u(c0) satisfies the Inada conditions, i.e., that u(c0) is strictly increasing and strictly

convex, and that in the limit u′(0) = ∞ and u′(∞) = 0.
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Technology Borrowers have access to an investment project with fixed scale I0 at t = 0.

At t = 1 borrowers can liquidate some of the initial investment, so that the investment

scale is adjusted to I1 ≤ I0. The project generates a return of R(I1, E
a) = ρI1 − γpE

a at

t = 2, and liquidations generate a payoff µ(I0−I1) at t = 1, with µ ∈ [0, 1). The parameter

γp captures the project’s exposure to physical risk from environmental damages. Thus,

the aggregate social cost of carbon emissions is γ = γu+γp and consists of a direct utility

cost as well as losses in asset values from environmental damages.

The project emits carbon emissions E(X, I1) at t = 2 that may be subject to emission

taxes τ . X are abatement investments that reduce emissions at a cost cx(X, I1) paid at

t = 1. We define the (private) net benefit of emission reductions as

NBE(X, I1, τ) = −τE(X, I1)− cx(X, I1) (1)

and make the following functional form assumptions.

Assumption 1. E(X, I1) and cx(X, I1) satisfy

(i) ∂E(X,I1)
∂X

≤ 0, ∂E(X,I1)
∂I1

≥ 0, ∂cx(X,I1)
∂X

≥ 0, ∂cx(X,I1)
∂I1

≥ 0,

(ii) E(X → ∞, I1) = E(X, I1 = 0) = 0, E(X = 0, I1 = I0) = Ē,

cx(X = 0, I1) = cx(X, I1 = 0) = 0,

(iii) ∂2NBE(X,I1,τ)
∂X2 < 0.

Part (i) of Assumption 1 ensures that higher abatement investment is costly but

reduces emissions, and that a higher investment scale is associated with higher emissions

and abatement costs; (ii) defines boundaries such that costs and emissions are non-

negative and there is an upper bound Ē on emissions. Part (iii) implies that the net

benefit of emission reductions (NBE) is strictly concave in X to ensure that the problem

is well-behaved and NBE has a unique maximum in X.

Agents are sufficiently dispersed, so that they do not internalize the effect of their

decisions on aggregate carbon emissions Ea.
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Financing Borrowers need to finance the investment I0 at t = 0 and abatement X

at t = 1. At t = 0 they can contribute their own funds as equity financing e ≤ Ab
0.

Additionally, borrowers can raise debt financing dt from investors at t = 1, 2,7 but bor-

rowing is limited by a moral hazard problem. We assume that borrowers can abscond

with a fraction θ ∈ [0, 1] of asset returns and any other resources (cash) at t = 2 (as

in Rampini and Viswanathan, 2013). Thus, the pledgeable income of borrowers is given

by R̃(I1, E
a) = (1 − θ)R(I1, E

a) and there is a wedge between the project’s return and

pledgeable income. At t = 1 the liquidation proceeds µ(I0−I1) can be seized by investors

who provided t = 0 financing (that is, liquidation proceeds are pledgeable).8 Investors

can demand liquidation if they choose not to roll over their debt and are not repaid in

full at t = 1. We assume that Ab
0 ≥ (1 − µ)I0 to ensure that borrowers have sufficient

funds to cover liquidation losses.

Financial and Environmental Regulation Throughout we assume that an environ-

mental regulator imposes an emission tax τ per unit of emissions. Emission taxes are

rebated lump-sum to investors (T i) and borrowers (T b) such that T i + T b = τEa. Since

borrowers can abscond with any cash at t = 2, these lump-sum transfers are not pledge-

able. This implies that, even when fully rebating the tax to borrowers, the tax reduces

pledgeable income. In Section 4.4.1 we show that replacing emission taxes by an emission

trading market in which pollution permits are allocated for free can help alleviating the

negative effect of emission taxes on financial constraints but does does not fully overcome

the problem because polluters still have to pay for abatement costs.9

In Section 3 we derive the competitive equilibrium for a given emission tax τ . In

Section 4 we also introduce financial regulation in the form of a capital mandate ē that

requires borrowers to contribute e = ē, which allows us to analyze jointly optimal emission

7Since there is no risk in our model, there is no difference between external debt and external equity
financing. For simplicity we refer to dt as debt.

8One interpretation of this assumption is that a fraction µ of assets are tangible assets that can be
liquidated at t = 1 and pledged to outside investors, while a fraction 1 − µ are intangible assets that
cannot be pledged and have no liquidation value at t = 1.

9Emission taxes are equivalent to setting up a market for tradeable pollution permits (such as the EU
Emission Trading System), in which polluters are forced to purchase permits and the regulator issues an
aggregate number of permits that results in a permit price τ (see Montgomery, 1972). In Section 4.4.1
we analyze an emission trading market in which pollution permits are allocated for free.
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taxes and financial regulation.

Risk Strictly speaking there is no climate risk in the model because we assume that the

social cost of emissions γ is known at t = 0. Our model nevertheless captures the concepts

of transition risk and physical risk discussed in the literature. One interpretation of the

fixed investment scale I0 is that legacy assets from previous investments determine the

investment scale, and that transition risk has materialized as agents have just learnt the

level γ and associated emission taxes.10 Moreover, the parameter γp can be interpreted

as resembling any effects of environmental damages on asset prices, including through

physical risk that has not yet materialized.

Variable Definitions For the further analysis it will be useful to introduce the follow-

ing variable definitions:

Definition 1. The project’s private net marginal return r(τ, Ea, X, I1) and pledgeable net

marginal return r̃(τ, Ea, X, I1) are respectively defined as

r(τ, Ea, X, I1) = ρ−
[
µ+

∂cx(X, I1)

∂I1
+ τ

∂E(X, I1)

∂I1

]
,

r̃(τ, Ea, X, I1) = (1− θ)ρ−
[
µ+

∂cx(X, I1)

∂I1
+ τ

∂E(X, I1)

∂I1

]
.

The following conditions ensure that continuing the investment project has positive

NPV at t = 1 even when the emission tax is equal to the Pigouvian level τ = γ and

emissions are at the highest possible level Ea = Ē. This implies that liquidations are

inefficient. The second condition ensures that, while inefficient, liquidations do relax

financial constraints:

Assumption 2. ρ and θ are sufficiently large such that

(i) r(γ, Ē,X, I1) > 0, ∀X, I1,

(ii) r̃(0, 0, X, I1) < 0, ∀X, I1.
10This can be modelled by introducing a pre-stage t = −1 in which borrowers decide on the investment

scale, while the level of γ is only revealed at t = 0.
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2.1 First Best Benchmark

Before analyzing the competitive equilibrium, the following proposition derives the first

best benchmark:

Proposition 1. In the first best allocation I1 = I0 and optimal t = 0 consumption by

borrowers cb0 and optimal abatement X are defined by the following conditions:

u′(cb0) = 1,

γ
∂E(X, I1)

∂I1
+
∂cx(X, I1)

∂I1
= 0.

Proof. See Appendix A.1.1

In the first best allocation there are no liquidations because liquidations are inefficient

by Assumption 2. The borrower’s consumption is such that the marginal utility is equal-

ized across agents and time. The optimal abatement is at a level at which the marginal

gain from lower emissions is equal to the marginal cost of abatement.

3 Competitive Equilibrium

In this section we solve the problem of borrowers and define a competitive equilibrium

given an emission tax τ but without financial regulation. We compare this allocation to

an equilibrium with financial regulation chosen by a social planner in the next section.

3.1 Borrower Problem

The borrower’s utility is given by

U b = u(c0) + c1 + c2

We can eliminate c0, c1 and c2 and formulate the objective as choosing e, d1, X and I1 so

as to maximize U b, given an emission tax τ and aggregate emissions Ea. The problem is
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subject to non-negativity constraints and a financial constraint:11

c0 = Ab
0 − e ≥ 0, (2)

c1 = (I0 − I1)µ+ d1 − (I0 − e)− cx(X, I1) ≥ 0, (3)

c2 = R(I1, E
a)− τE(X, I1)− d1 + T b ≥ 0, (4)

d1 ≤ R̃(I1, E
a)− τE(X, I1), (5)

e ≥ 0, I1 ∈ [0, I0]. (6)

Equations (2), (3) and (4) are non-negativity constraints on consumption at t = 0, 1,

and 2, respectively. Equation (5) is a financial constraint that ensures borrowing does not

exceed the borrower’s pledgeable income. The non-negativity constraint for c0 is always

satisfied since we assume that u′(0) = ∞. Moreover, due to the financial constraint (5)

c2 is always positive, so that (4) never binds. The non-negativity constraint on e remains

slack too because the following lemma shows that for the project to continue borrowers

need to contribute a minimum amount of equity:

Lemma 1. Borrowers need to contribute at least e ≥ (1 − µ)I0, else the project is not

financed at t = 0.

Proof. See Appendix A.1.2.

Put differently, borrowers cannot borrow more than d0 ≤ µI0. When borrowing more

than µI0 borrowers cannot repay d0 even when liquidating the entire investment at t = 1.

Liquidating less results in an even lower pledgeable income because by Assumption 2

liquidations increase financial slack (since r̃(τ) < 0). This implies that an initial debt

d0 > µI0 cannot be repaid in full. Anticipating this outcome lenders are not willing to

extend a loan d0 > µI0.

Thus, at t = 0 a borrower can follow one of two paths: either put up a minimum level

of equity e ≥ I0(1− µ) to start the project; or consume the full endowment c0 = Ab
0 and

do not fund the project. In what follows we focus on the interesting case in which the

11Note that we eliminate d0 = I0 − e from Eq. (3).
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project is not abandoned at t = 0 and discuss the condition for this to be the case in

Appendix A.1.2.12

Using these insights the borrower’s problem can be formulated as the following La-

grangian:

max
X,I1,d1,e

L = u(Ab
0 − e)− I0(1− µ) + e+R(I1, E

a)− µI1 − cx(X, I1)− τE(X, I1) + T b

+ λ
[
R̃(I1, E

a)− τE(X, I1)− d1

]
+ κII1 + κI [I0 − I1]

+ κc1 [d1 − I0(1− µ)− I1µ+ e− cx(X, I1)] + κe[e− (1− µ)I0],

(7)

where λ is the Lagrange multiplier for the financial constraint and κ’s are the multipliers

for lower and upper bounds on variables. The first order condition w.r.t. d1 implies that

the multiplier on the non-negativity constraint for c1 is equal to λ,

− λ+ κc1 = 0. (8)

Intuitively, if the financial constraint binds, borrowers are at a corner solution and do

not consume at t = 1, so that c1 = 0 and λ = κc1 > 0.

3.2 Borrower Decisions at t = 1

The first order conditions with respect to X and I1 are given by, respectively,

(1 + λ)

(
τ
∂E(X, I1)

∂X
+
∂cx(X, I1)

∂X

)
= 0, (9)

ρ(1 + λ(1− θ))− (1 + λ)

[
µ+

∂cx(X, I1)

∂I1
+ τ

∂E(X, I1)

∂I1

]
− κI + κI = 0. (10)

12One way to ensure that the project is never abandoned at t = 0 is to assume that borrowers receive
a private benefit B from starting the project that is sufficiently large such that u′(Ab

0 − (1− µ)e) +B >
u′(Ab

0), which implies that borrowers prefer starting the project even when they have to fully liquidate
it at t = 1.
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Together with the following condition that combines the complementary slackness con-

ditions of the financial constraint (5) and the non-negativity constraint (3),

λ [(1− θ)ρI1 − τE(X, I1)− I0(1− µ) + e− cx(X, I1)− µI1] = 0, (11)

these equations define the optimal t = 1 allocations I1, X, and λ for a given e (the

optimality condition for equity is derived below). In Eq. (9) borrowers choose abatement

trading off the tax bill associated with carbon emissions against the cost of abatement.13

Eq. (10) is the first order condition with respect to I1. Using the definitions for private

net return and net pledgeable return, r(τ, Ea, X, I1) and r̃(τ, E
a, X, I1) from Definition 1

we can rewrite this first order condition as

λ = −r(τ, E
a, X, I1)− κI + κI
r̃(τ, Ea, X, I1)

(10’)

If the financial constraint is slack, then λ = 0 and the pledgeable return r̃(τ, Ea) does

not affect the first order condition (10). In this case the optimal liquidation depends only

on the investment’s net marginal return r(τ, Ea). The first condition in Assumption 2

implies that the net marginal return is positive and therefore it is optimal to continue

the project without any liquidations, i.e., there is a corner solution with I1 = I0 and

κI = r(τ) > 0:

Lemma 2. If τ ≤ γ, borrowers do not liquidate any investment if the financial constraint

(5) is slack. That is, if λ = 0, then I1 = I0.

Proof. Equation (10) evaluated at λ = 0 is r(τ, Ea, X, I1)−κI+κI = 0. By Assumption 2

r(τ, Ea, X, I1) > 0, which implies that the solution requires κI > 0 (i.e., I0 = I1).

The second condition in Assumption 2 implies that the pledgeable net marginal return

13Note that dividing by (1 + λ) removes any direct dependence of the borrower’s abatement decision
on the tightness of the financial constraint. This is because emission taxes have the same seniority as
debt and therefore reduce pledgeable income as much as total (pledgeable plus non-pledgeable) income,
in contrast to the wedge R − R̃ between total asset returns and pledgeable returns. This implies that
the financial constraint affects abatement only indirectly through I1, which is important to understand
our results on optimal financial regulation in Section 4. We show in Appendix B.1 that λ would enter
the borrower’s abatement first order condition directly if we instead assumed taxes were junior to debt.
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from investment is negative. Put differently, the liquidation proceeds µ exceed the loss

in pledgeable income and therefore liquidating investments eases financial constraints. In

case of a binding financial constraint (λ > 0), the borrower may liquidate some investment

to generate financial slack.

3.3 Borrower Decisions at t = 0

At t = 0 borrowers decide on their capital structure by choosing the optimal inside equity

e (debt financing follows as the residual d0 = I0 − e). The first order condition of the

Lagrangian (7) w.r.t. e is

u′(Ab
0 − e)− κe = 1 + λ (12)

This condition shows that borrowers contribute equity trading off the utility cost of lower

t = 0 consumption on the left-hand side against loosening a potentially binding financial

constraint as indicated by the multiplier λ on the right-hand side.

The first order conditions and complementary slackness condition together define the

competitive equilibrium:

Definition 2. Given a carbon tax τ , the competitive equilibrium is the set of allocations

Ice1 (τ), Xce(τ), λce(τ), ece(τ) defined by Equations (9), (10), (11), and (12), and aggregate

emissions are given by Ea = E(Xce, Ice1 ). The allocations cce0 (τ), c
ce
1 (τ), c

ce
2 (τ), and d

ce
0 (τ)

follow as residuals from Eqs. (2), (3), (4), and d0 = I0 − e.

Using this equilibrium definition, the following lemma characterizes the conditions

under which the financial constraint binds in the competitive equilibrium:

Lemma 3. If u′(Ab
0 − (1 − µ)I0) > 1, then the financial constraint binds for any τ ≥ 0

in the competitive equilibrium.

If u′(Ab
0 − (1 − µ)I0) < 1, then there exists a threshold ê(τ) such that, for e ≤ ê(τ), the

financial constraint binds (λ ≥ 0) in the competitive equilibrium. If u′(Ab
0 − ê(τ)) ≤ 1,

then the optimal level of equity is ece ≥ ê(τ) and the financial constraint is slack in the

competitive equilibrium. The threshold ê(τ) is weakly increasing in τ .

Proof. See Appendix A.1.3.
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Lemma 3 shows that, if the borrower’s endowment is sufficiently small such that at

the minimum level e = (1 − µ)I0 the marginal utility from consumption exceeds 1 (i.e.,

u′(Ab
0−(1−µ)I0) > 1), then the financial constraint binds in the competitive equilibrium.

Intuitively, if inside equity is relatively scarce, then the level of debt borrowers want to

take on to smooth consumption is so high that the financial constraint binds.

In contrast, if the borrower’s endowment is relatively large, such that u′(Ab
0 − (1 −

µ)I0) ≤ 1, then the financial constraint may be either slack or binding depending on the

size of a borrower’s endowment relative to the threshold ê(τ) (defined in Appendix A.1.3).

If the endowment is sufficiently large that even u′(Ab
0 − ê(τ)) ≤ 1, then the constraint

is slack at the optimum. Importantly ê(τ) increases in τ . This shows that higher emis-

sion taxes lower financial slack. This interaction between emission taxes and financial

constraints may motivate welfare-improving financial regulation, as we show in Section 4.

3.4 Pigouvian Tax

If the second case in Lemma 3 applies and the financial constraint is slack, then by

Lemma 2 borrowers can avoid inefficient liquidations for any emission tax τ ≤ γ. Conse-

quently, the optimal Pigouvian emission tax can implement the first best allocation, as

shown in the following proposition:

Proposition 2. If λce(γ) = 0, then the competitive equilibrium with τ = γ is equivalent

to the first best allocation.

Proof. With λ = 0, it follows from Lemma 2 that I1 = I0 under Assumption 2. In this

case the FOCs of borrowers w.r.t. X and e in Eqs. (9) and (12) are equivalent to those

in the first best given in Proposition 1.

Proposition 2 established an important benchmark and implies that, with a slack fi-

nancial constraint, there is no case for additional regulation because an emission tax equal

to the social cost of emissions γ can implement the first best. Accordingly, throughout

we refer to a tax τ = γ as the Pigouvian benchmark. In the next section we analyze how

optimal emission taxes change when the financial constraint binds and ask whether there
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is a rationale to combine emission taxes with financial regulation in this case.

4 Optimal Emission Taxes and Financial Regulation

We consider the problem of a utalitarian social planner who maximizes welfare by setting

the optimal emission tax τ ∗. Given that emission taxes may interact with financial

constraints we also analyze whether it is welfare-improving to combine emission taxes

with financial regulation in the form of a capital mandate that requires borrowers to

contribute equity e = ē.

To be able to compare the competitive equilibrium to an allocation with a capital

mandate, we define a financial regulation equilibrium as an equilibrium in which borrowers

choose abatement and liquidations given an emission tax τ , but e is mandated by a

regulator rather than chosen by borrowers according to their first order condition (12):

Definition 3. Given an emission tax τ and a capital mandate ē that requires the bor-

rower to contribute e = ē, a financial regulation equilibrium is a set of allocations

Ir1(τ, ē), X
r(τ, ē), λr(τ, ē) defined by Equations (9), (10), and (11), and aggregate emis-

sions are given by Ea = E(Xr, Ir1). The allocations cr0(τ), c
r
1(τ), c

r
2(τ), and d

r
0(τ) follow

as residuals from Eqs. (2), (3), (4), and d0 = I0 − e. The optimal financial regulation

equilibrium is defined as the financial regulation equilibrium with τ = τ ∗ and ē = ē∗ that

maximize social welfare W (τ, e) = U i(τ, e) + U b(τ, e).

To derive τ ∗ and ē∗ we solve the problem of a planner choosing the optimal tax and

capital mandate. This problem can be written as the following Lagrangian with κe the

multiplier lower bound constraint ē ≥ (1− µ)I0 (see Lemma 1) and κτ multiplier on the

non-negativity constraint on τ :

max
τ,ē

W = u(Ab
0 − ē) +R(I1, E

a)− µIr1 − γE(Xr, Ir1)− (1− µ)I0 + ē− cx(X
r, Ir1),

+ κe(ē− (1− µ)I0) + κττ.

In analyzing this problem we proceed in steps and initially abstract from physical
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risk, i.e., we focus on the case γp = 0. The case γp > 0 is covered in Section 4.3

As we show in Appendix A.1.5 and A.1.6, the first order conditions with respect to τ

and ē can be written as, respectively,

r(γ, ē)
∂Ir1
∂τ

− (γ − τ)
∂E(Xr, Ir1)

∂X

∂Xr

∂τ
+ κτ = 0 (13)

u′(Ab
0 − ē)− κe = 1 + r(τ, ē)

∂Ir1
∂ē

− (γ − τ)

(
∂E(Xr, Ir1)

∂Ir1

∂Ir1
∂ē

+
∂E(Xr, Ir1)

∂Xr

∂Xr

∂ē

)
(14)

where we denote the net marginal income evaluated at the optimal abatement and in-

vestment scale in the regulation equilibrium by r(τ, ē) = r(τ, Ea(τ, ē), Xr(τ, e), Ir1(τ, ē))

(and accordingly r̃(τ, ē) can be used for the net pledgeable marginal income).

Note that the investment scale Ir1 and abatement Xr are optimal choices by private

agents in the financial regulation equilibrium and functions of τ and ē. The following

lemma clarifies how the equilibrium allocations Ir1 and Xr respond to the policy instru-

ments τ and ē.

Lemma 4. Consider the case when γp = 0. If λr(τ, ē) = 0, then dIr

dτ
= dIr

dē
= dXr

dē
= 0. If

λr(τ, ē) > 0, then

∂Ir1
∂τ

=
E(Xr, Ir1)

r̃(τ)
< 0,

∂Ir1
∂ē

=
−1

r̃(τ)
> 0.

The derivatives of Xr with respect to ē and τ are given by, respectively,

∂Xr

∂τ
=

∂E(X,I1)
∂Xr − ∂2NBE(Xr,Ir1 )

∂Xr∂Ir1

∂Ir1
∂τ

∂2NBE(Xr,Ir1 )

∂(Xr)2

,
∂Xr

∂ē
= −

∂2NBE(Xr,Ir1 ,τ)

∂Xr∂Ir1
∂2NBE(Xr,Ir1 ,τ)

∂(Xr)2

∂Ir1
∂ē

,

where NBE(Xr, Ir1 , τ) is the net benefit of emission reductions as defined in Eq. (1).

Proof. See Appendix A.1.4

If borrowers are financially unconstrained (λr(τ, ē) = 0), liquidations are not affected

by emission taxes, and neither liquidations nor abatement are affected by the capital

mandate ē. As shown in Proposition 2, in this case the competitive equilibrium with a

Pigouvian tax τ = γ is already equivalent to the first best allocation.
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By contrast, if the financial constraint binds, borrowers need to liquidate investments

to be able to roll-over their debt. An increase in emission taxes tightens financial con-

straints and induces borrowers to liquidate more (i.e.,
∂Ir1
∂τ

< 0). An increase in equity has

the opposite effect. By relaxing the financial constraint it enables borrowers to liquidate

less (i.e.,
∂Ir1
∂ē

> 0).

The effect on abatement is more complex. The direct effect of higher emission taxes

on abatement is positive because emission taxes increase the cost of polluting, captured

by the term ∂E(X,I1)
∂Xr in the numerator of the derivative ∂Xr

∂τ
. But there is also an indirect

effect through the impact on the tightness of the financial constraint and thus the level of

liquidations, captured by the term −∂2NBE(Xr,Ir1 )

∂Xr∂Ir1

∂Ir1
∂τ

. This indirect effect can be positive

or negative, depending on the functional forms of E(X, I1) and cx(X, I1).
14 The direction

of the overall effect of taxes on abatement depends on the direction and relative magnitude

of the two effects. In the plausible case in which the direct effect of emission taxes on

abatement dominates higher taxes result in lower emissions, so that ∂Xr

∂τ
> 0. But

theoretically it is also possible that the indirect effect of emission taxes on liquidations

dominates. In this case, emission taxes can have a perverse effect and decrease abatement

due to tightening financial constraints.

Similarly, capital affects abatement indirectly by reducing liquidations. From the

derivative ∂Xr

∂ē
in Lemma 4 it can be seen that, because

∂Ir1
∂ē

> 0, abatement increases in

the capital mandate if the functional forms of E(X, I1) and cx(X, I1) are such that the

net marginal benefit of emission reductions is higher at a greater investment scale, i.e., if

∂2NBE(Xr,Ir1 )

∂Xr∂Ir1
> 0.15

With the effect of emission taxes and capital mandates on abatement and liquidations

understood, we are ready to analyze how τ and ē are set optimally in the following

subsections.

14Recall from the Eq, (1) that NBE(Xr, Ir1 , τ) = −τE(Xr, Ir1 ) − cx(X
r, Ir1 ) is the net benefit of

emission reductions. By Assumption 1
∂2NBE(Xr,Ir

1 ,τ)
∂(Xr)2 < 0. This implies that the direct effect of

emission taxes on abatement is positive. The direction of the indirect effect depends on the sign of the

cross-derivative of the net benefit of emission
∂2NBE(Xr,Ir

1 )
∂Xr∂Ir

1
. If it is positive, then abatement is more

efficient at a larger investment scale I1 and the indirect effect of emission taxes on abatement is negative.
15Since

∂Ir
1

∂ē > 0 and
∂2NBE(Xr,Ir

1 ,τ)
∂(Xr)2 < 0, the derivative ∂Xr

∂ē is positive if and only if
∂2NBE(Xr,Ir

1 )
∂Xr∂Ir

1
> 0.
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4.1 Socially Optimal Emission Tax

When emission taxes interact with financial constraints a social planner needs to trade

off the desired effect of taxes on emissions against the undesired side-effect of forcing

borrowers to inefficiently liquidate investments (since ∂Ir

∂τ
< 0, see Lemma 4).

Proposition 3. Consider the case γp = 0 and γu > 0. The optimal emission tax for a

given capital mandate ē is:

• τ ∗ = γ if λr(τ ∗, ē) = 0,

• τ ∗ < γ if λr(τ ∗, ē) > 0 and (13) evaluated at κτ = 0 has a unique solution.

Proof. See Appendix A.1.5

If the capital mandate ē is sufficiently high so that the financial constraint is slack,

then the negative effect of emission taxes on liquidations can be avoided altogether and

it is optimal to set the Pigouvian emission tax τ ∗ = γ. This result mirrors Proposition 2.

However, if the borrower’s endowment is small it may be too costly to set such a high

capital mandate. In this case optimal emission taxes are strictly below the Pigouvian

level γ because higher emission taxes would result in too much liquidations given the

high leverage of borrowers. Put differently, borrowers are “too levered for Pigou”.16

These results clarify how optimal emission taxes are set for a given ē. The following

subsection complements these results by deriving implications for the optimal capital

mandate.

4.2 Socially Optimal Capital Mandate

The trade-off faced by the social planner when choosing the optimal capital mandate

depends on the effect of equity on emissions. As a first step, Lemma 5 establishes how

higher borrower equity affects emissions through its impact on the final investment scale

I1 and abatement X. The overall effect of equity on emissions can be either positive or

16In the proposition we focus on the case in which Eq. (13) has a unique solution when evaluated at
κτ = 0 because, if the equation has multiple solutions, we cannot determine analytically whether the
maximum is global.
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negative depending on whether equity has a greater effect on abatement or liquidations,

which in turn depends on the functional forms of E(X, I1) and cx(X, I1). This interme-

diate result is important to understand why the optimal capital mandate can be above

or below the level of equity chosen by borrowers in the competitive equilibrium, as we

establish below in Proposition 4.

Lemma 5. In the financial regulation equilibrium with γp = 0 the total effect of the

capital mandate on emissions is given by Z(τ, ē)
∂Ir1
∂ē

, where

Z(τ, ē)
∂Ir1
∂ē

=
dE(Xr, Ir1)

dIr
∂Ir1
∂ē

=
∂E(Xr, Ir1)

∂Ir1

∂Ir1
∂ē︸ ︷︷ ︸

direct effect of ē on E

− ∂E(Xr, Ir1)

∂Xr

∂2NBE(Xr,Ir1 ,τ)

∂Xr∂Ir1
∂2NBE(Xr,Ir1 ,τ)

∂(Xr)2

∂Ir1
∂ē︸ ︷︷ ︸

indirect effect of ē on E

is the total effect of the final investment scale Ir1 on emissions E(Xr, Ir1).

Proof. Follows from totally differentiating E(Xr, Ir1) with respect to ē and using Lemma 4.

Equity relaxes the financial constraint and thus affects emissions through two chan-

nels. First, the direct effect of a laxer financial constraint is an increase in the investment

scale, which leads to an increase in emissions. The second effect operates through the

change in the optimal abatement by borrowers. This effect is indirect since abatement

depends on equity only through the effect that it has on the investment scale. As dis-

cussed in Lemma 4, a higher investment scale results in more abatement if and only if the

marginal net benefit of emission reductions is higher at a higher investment scale, i.e., if

∂2NBE(Xr,Ir1 ,τ)

∂Xr∂Ir1
> 0. Overall, these effects are collected in the term Z(τ, ē) in Lemma 5,

which captures the total effect of increasing the investment scale on emissions.

Since
∂Ir1
∂ē

> 0, higher equity leads to lower emissions whenever Z(τ, ē) < 0. This is the

case when the effect of a higher investment scale on the optimal abatement is sufficiently

large. By contrast, if Z(τ, ē) > 0 higher equity leads to higher emissions. In this case

a stronger capitalization of borrowers mostly leads them to avoid liquidating polluting

assets, while the effect on abatement is limited.
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Using the insights from Lemma 5, Proposition 4 below shows that, if λce > 0, then the

socially optimal capital mandate can be either above or below the level of equity chosen

by borrowers in the competitive equilibrium, depending on the total impact of the final

investment scale on emissions.

Proposition 4. Consider the case γp = 0. If λr(τ ∗, ē∗) > 0 and Z(τ ∗, ē∗) ̸= 0, then

the competitive equilibrium is not constrained efficient for any τ . The optimal capital

mandate is

• ē∗ > ece if Z(τ ∗, ē∗) < 0,

• ē∗ < ece if Z(τ ∗, ē∗) > 0.

Proof. See Appendix A.1.6

Proposition 4 shows that, if the financial constraint binds at the optimal carbon tax

and leverage mandate (λr(τ ∗, ē∗) > 0), then the competitive equilibrium is generally

not constrained efficient because a planner can improve welfare by imposing a capital

mandate ē ̸= ece. The optimal capital mandate can be above or below ece depending on

the effect of a higher investment scale on emissions, Z(τ, ē).

To understand this result recall that the optimal carbon tax is below the Pigouvian

level γ if the financial constraint binds (see Proposition 3). When choosing leverage bor-

rowers internalize the effect of higher equity on easing financing constraints and thereby

avoiding liquidations (higher I1). But borrowers value the marginal effect of emissions

according to the tax rate τE(X, I1), yet from a welfare perspective the cost of emissions

is γE(X, I1). This drives a wedge between the leverage choice by private agents and the

socially optimal leverage because τ < γ.

This wedge can be seen when comparing the borrower’s first order condition w.r.t. ē

in Eq. (12) to the planner’s first order condition w.r.t. ē in Eq. (14), which are re-stated
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for convenience below (for the case of an interior solution of I1):

u′(Ab
0 − e)− κe = 1− r(τ, e)

r̃(τ, e)
, (12)

u′(Ab
0 − ē)− κe = 1− r(τ, ē)

r̃(τ, ē)
+ (γ − τ)

Z(τ, ē)

r̃(τ, ē)
, (14)

where we use shorthand notation r(τ, e) = r(τ, Ea(τ, e), Xce(τ, e), Ice1 (τ, e)) (and accord-

ingly for r̃(τ, e)).

With τ < γ, the wedge pulls the optimal leverage above or below the level in the

competitive equilibrium depending on whether the total effect of capital on emissions is

positive or negative, i.e., on the sign of Z(τ, ē)
∂Ir1
∂ē

.

If Z(τ, ē) < 0, then higher capital results in lower emissions because the impact of

equity on emissions through abatement dominates the effect through liquidations. The

marginal benefit of equity from the perspective of the borrower, τ
dE(Xr,Ir1 )

dτ
, is lower than

the social benefit γ
dE(Xr,Ir1 )

dτ
. Thus, the planner opts for a capital mandate that is above

the privately optimal level of equity, ē∗ > ece.

By contrast, if Z(τ, ē) > 0, then higher capital implies higher emissions. In this case

the wedge between the private and social cost of emissions τ − γ implies the marginal

cost of equity is lower from the perspective of the borrower than it is for the planner. As

a result, the planner sets a capital mandate below a borrower’s optimal choice of equity

in the competitive equilibrium, ē∗ < ece

A motive to include climate risks in financial regulation. The finding in Propo-

sition 4 that capital regulation can improve welfare may not seem surprising given the

large body of literature that shows how financial constraints can motivate financial regu-

lation (for an overview, see Dewatripont and Tirole, 1994). Yet the following proposition

shows that the financial constraint in itself does not motivate a capital mandate in our

model:

Proposition 5. If γ = 0, then ē∗ = ece regardless of whether λce = 0 or not.

Proof. In Appendix A.1.6
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Proposition 5 implies that, in the absence of environmental externalities, the competi-

tive equilibrium coincides with the optimal financial regulation equilibrium – irrespective

of whether the financial constraint binds or not. This is important because it implies

that financial constraints alone are not enough to motivate capital regulation in our

model. Instead, the motive for implementing a capital mandate ē comes from the in-

teraction between environmental externalities and financial constraints because binding

financial constraints imply that the optimal emission tax is below the Pigouvian bench-

mark. Therefore, the model provides a rationale for including environmental externalities

in the mandate of financial regulators and more broadly that there is a case to coordinate

environmental and financial regulations.

A related insight that follows from Propositions 2 and 3 is that it is never optimal for

the planner to set a capital mandate to achieve a slack financial constraint if it binds in

the competitive equilibrium:

Corollary 1. Consider the case γp = 0. If λce(τ ∗, ece) > 0 then also λr(τ ∗, ē∗) > 0.

Proof. Suppose that λce(τ ∗, ēce) > 0 in the competitive equilibrium and the planner sets

a leverage mandate ē′ > ēce sufficiently strict for the financial constraint to turn slack,

λr(τ ∗, ē′) = 0. Then, by Proposition 3 the optimal tax is equal to the social cost of

carbon, τ ∗ = γ. But if τ ∗ = γ, then by Proposition 2 the allocation is already at the

first best and there is no reason to impose capital regulation. This implies ē′ cannot be

optimal, which contradicts λr(τ ∗, ē∗) = 0.

Corollary 1 highlights that the goal of capital regulation is not to ensure that bor-

rowers never become financially constrained. This again underlines the insight from

Proposition 5 that the motive for capital regulation is a result of the interaction be-

tween environmental externalities and financial constraints that drive a wedge between

the private and social cost of emissions. Without this wedge there is no case for financial

regulation in the model in the absence of physical risk.
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4.3 Physical Risk

This section analyzes the case in which γp > 0, so that emissions affect asset values

through physical risk. Throughout this section we focus on the interesting case of a

binding financial constraint. We also introduce additional parameter assumptions in

order to streamline the discussion of the equilibrium in this case.

Assumption 3. We assume that the parameters satisfy:

(i) Z(τ, ē) < 0, ∀τ, ē

(ii) r̃(τ, ē) < γuZ(τ, ē),∀τ, ē

By Assumption 3 (i) the effect of equity on abatement dominates the effect on liquida-

tions. In this case ē∗ > ece in the absence of physical risk (the first case in Proposition 4).

We also replace part (ii) of Assumption 2 by Assumption 3 (ii), which ensures liquidations

can increase financial slack also when the indirect effect of liquidations on pledgeable re-

turns through physical risk is internalized. Without this assumption borrowers would not

face a meaningful trade-off between inefficient liquidations and easing financial constraints

in the presence of physical risk.

The presence of physical risk can change how emission taxes interact with financial

constraints. To see this, consider a hypothetical borrower who is exposed only to physi-

cal risk and has no polluting assets. Such a borrower would unambiguously benefit from

higher emission taxes that result in lower emissions and increase the borrower’s (pledge-

able) income. For borrowers that are exposed to both physical and transition risk the

net effect of emission taxes on financial constraints depends on whether physical risk is

sufficiently large, as shown in the following lemma:

Lemma 6. Let S(I1, e, τ) be a measure of a borrower’s financial slack for a given I1, e

and τ , defined as

S(I1, e, τ) = R̃(I1, E
a)− µI1 + e− I1(1− µ)− τE(Xce, I1)− cx(X

ce, I1).
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There exists a threshold γ̂p(I1, τ) such that, if γp > γ̂p(I1, τ), an increase in emission

taxes τ increases financial slack, i.e., ∂S(I1,e,τ)
∂τ

∣∣
I1,e

> 0 if and only if γp > γ̂p(I1, τ).

Proof. See Appendix A.2.1.

When emission taxes increase rather than decrease financial slack the trade-offs faced

by a social planner change fundamentally, as highlighted in the following proposition:

Proposition 6. If the financial constraint binds (λr > 0) and (13) evaluated at κτ = 0

has a unique solution, the optimal emission tax in the financial regulation equilibrium is

• τ ∗ > γ, if γp > γ̂p(I
r
1(τ

∗, e), τ ∗),

• τ ∗ < γ, if γp < γ̂p(I
r
1(τ

∗, e), τ ∗),

where γ̂p is defined in Lemma 6.

Proof. See Appendix A.2.2.

If physical risk is sufficiently high such that γp > γ̂p(I
r
1(τ

∗, e∗), τ ∗), then higher emis-

sion taxes ease financial constraints. This changes the trade-offs faced by a social planner

and implies optimal emission taxes above the social cost of emissions γ. Intuitively, if the

emission reductions achieved through taxes have the additional benefit of easing financial

constraints, then this benefit is taken into account in setting the optimal tax rate. Such a

case may apply to economies that are heavily exposed to the risk of environmental dam-

ages from floodings and other weather disasters that have a negative effect on economic

output and asset values and become increasingly likely as the planet warms up.

By contrast, if physical risk is relatively small such that γp < γ̂p(I
r
1(τ

∗, e∗), τ ∗), then

the direct effect of emission taxes on polluters’ financial constraints dominates and opti-

mal taxes are below the social cost of emissions. This case applies where transition risks

dominate physical risks, for example in economies with large polluting industries.

The following proposition complements these results and shows how the optimal cap-

ital mandate is set depending on the optimal emission tax.

Proposition 7. Consider the case γp > 0 (physical risk) and λr > 0 (binding financial

constraint).
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• If τ ∗ = γ then the socially optimal capital mandate is higher than the privately

optimal level of equity, i.e., ē∗ > ece.

• There exists a threshold τ̂ > γ such that the socially optimal capital mandate is

higher than the privately optimal level of equity, ē∗ > ece, whenever τ ∗ < τ̂ .

Proof. See Appendix A.2.3

According to Proposition 7 the optimal capital mandate ē∗ exceeds the level of equity

chosen in the competitive equilibrium ece even if the emission tax is equal to the Pigouvian

benchmark τ ∗ = γ. This is in stark contrast to the benchmark model without physical

risk, in which there is no motive for capital regulation if emission taxes are equal to the

Pigouvian benchmark (see Proposition 2).

To understand this result note that borrowers do not internalize the effect of emissions

on the tightness of other borrower’s financial constraints. In the presence of physical risk

lower emissions increase asset values and therefore ease financing constraints. Higher

equity is associated with more abatement and consequently lower emissions. As a result,

even when τ ∗ = γ borrowers’ choice of equity is socially inefficient. The optimal capital

mandate is ē∗ > ecb even for τ ∗ > γ, as long as τ ∗ does not exceed the threshold τ̂

defined in Proposition 7. The threshold τ̂ coincides with the tax rate at which borrowers

correctly internalize the effect of more equity on lower emissions and other borrower’s

financial constraints.

A collateral externality The mechanism at play here can be referred to as a collateral

externality because borrowers do not internalize the negative effect of emissions on other

borrowers’ pledgeable income and financial constraints. Collateral externalities can also

emerge in models with pecuniary externalities, where borrowers do not internalize how

their choices affect the financial constraint of other agents through their impact on prices

(for a detailed discussion, see Dávila and Korinek, 2018). As in these settings, here bor-

rowers choose a socially sub-optimal leverage because they do not internalize their impact

on financial constraints. Unlike in the pecuniary externality literature, in our setting the

collateral externality operates through physical costs from environmental damages, which
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reduce other borrowers’ pledgeable income. Via this collateral externality physical risk

provides a rationale for capital regulation even if the tax is set at the Pigouvian bench-

mark (see Proposition 7). The collateral externality is also the mechanism that explains

why the optimal emission tax may be above the Pigouvian benchmark if physical risk is

sufficiently high (the case γp > γ̂p in Proposition 6).

4.4 Other Policies

4.4.1 Pollution Permits

An alternative policy available to the planner is to issue a limited quantity Q of tradeable

pollution permits (such as the EU Emission Trading Scheme). For each unit of emissions

the borrower needs to surrender a permit to the planner. Remaining permits can be sold

at the market price p.

Absent other frictions such pollution permit markets are equivalent to emission taxes

(see Montgomery, 1972). The emission tax policy we study in the baseline model is

equivalent to a pollution permit scheme in which borrowers need to purchase permits

from the planner at the market price p at t = 2. In this case it is optimal for the planner

to set the quantity of permits such that the equilibrium price equals the optimal emissions

tax rate p = τ ∗.

Due to the negative effect of emission taxes on financial constraints a more desirable

policy may be to distribute permits for free. Yet, focusing on the baseline case of no

physical risk we show below that even when using such a policy the presence of financial

constraints still implies the planner may prefer to implement emission permit prices below

the Pigouvian benchmark and that there is still a motive for capital regulation.17

With a free endowment of tradeable permits the problem of the borrower can be

restated by reformulating the financial constraint and the non-negativity constraints on

17Introducing physical risk would have the same directional effects on the optimal emission tax and
capital mandate as discussed in Section 4.3. The key insight here that even with a pollution permit
market with freely allocated permits financial frictions inhibit a Pigouvian tax from implementing the
first best is therefore not affected by the presence of physical risk and we focus on the case without
physical risk for simplicity.
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consumption at t = 1 and t = 2 as:

c1 = I0(1− µ)− I1µ+ d1 + e− cx(X, I1) + p(Q− E(X, I1)) ≥ 0 (3’)

c2 = R(I1, E
a)− d1 ≥ 0 (4’)

d1 ≤ R̃(I1, E
a) (5’)

The first order conditions of the borrower remain the same as in the benchmark (with p

taking the place of τ) but the complementary slackness condition (11) is now given by

λ[R̃(I1, E
a)− µI1 + e− cx(X, I1) + p(Q− E(X, I1)]. (11’)

Pollution permit market clearing requires that Q = E(Xr(p, ē), Ir1(p, ē)), which implies

that the planner can choose the quantity of permits so that to implement the preferred

market price p. The planner’s first order conditions are:

r(γ, ē)
∂Ir1
∂p

− (γ − p)
∂E(Xr, Ir1)

∂Xr

∂Xr

∂p
+ κp = 0 (13’)

u′(Ab
0 − ē)− κe = 1 + r(γ, ē)

∂Ir1
∂ē

− (γ − p)

(
∂E(Xr, Ir1)

∂Ir1

∂Ir1
∂p

+
∂E(Xr, Ir1)

∂Xr

∂Xr

∂p

)
(14’)

Market clearing in permits also implies that the tightness of a borrower’s financial

constraint is not affected by the extra cost associated with buying the permits (equivalent

to the cost of tax payment in the benchmark model). However, since the shadow cost of

permits still induces the borrower to engage in abatement the financial constraint is still

affected by the costs of abatement. As a consequence, also in this case the planner may

prefer to set a quantity that implements a market price that is lower than the Pigouvian

benchmark p < γ.

Proposition 8. Let γp = 0. If the net pledgeable marginal return is sufficiently low such

that r̃(p, ē) < −τZ(p, ē) for all p < γ and ē ∈ (I0(1 − µ), Ab
0), then the optimal price of

pollution permits is

• p∗ = γ if λr(p∗, ē∗) = 0,
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• p∗ < γ if λr(p∗, ē∗) > 0 and (13’) has a unique solution at κp = 0.

The optimal capital mandate generally differs from the equity choice in the competitive

equilibrium, ē∗ ̸= ece, whenever Z(p, ē) (θρp+ r̃(γ, ē)) ̸= 0.

If the net pledgeable marginal return is sufficiently low liquidations generate financial

slack also in the case of freely allocated permits. In this case, the optimal price of the

permit set by the planner trades off the benefits of lower emissions against the cost of

triggering more inefficient liquidations. The latter effect is driven by the impact of rising

costs of abatement on the tightness of the financial constraint.

In this case the planner again has motive for regulating capital. As in the baseline

model with emission taxes the planner and the borrower differ in their assessment of the

marginal value of equity on liquidations. The borrower’s choice of abatement trades off the

marginal cost of abatement against the shadow price of the permit, so that she disregards

the effect that equity has through these channels due to the Envelope Theorem. At the

same time, the planner internalizes the fact that the permit endowment and surrender

have a net zero effect on the financial constraint. Thus, the social benefit of equity

accounts only for the marginal cost of abatement and disregards any impact through

changes in emissions. The result is that the private choice of equity generally does not

coincide with the optimal capital mandate.

Beyond the scope of our model, a challenge to such a policy may be that freely allo-

cating pollution permits may be difficult in the presence of heterogeneity. For example, it

would be difficult for regulators to correctly allocate permits if polluters were privately in-

formed about heterogeneous abatement costs. This may imply that financial constraints

are tightened for some polluters and slackened for others, with potentially undesirable

distributional consequences.

4.4.2 Transfers

We next consider policies that transfer resources from investors to borrowers. Such poli-

cies may be helpful because they can ease financial constraints of borrowers.
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Transfers Consider a transfer T to borrowers financed by raising lump-sum taxes from

investors. Note that this transfer needs to be paid at t = 1 because at t = 2 borrowers

can abscond with cash. With this transfer the complementary slackness condition (11)

becomes

λ
[
R̃(I1, E

a)− τE(X, I1) + T − I0(1− µ) + e− cx(X, I1)− µI1

]
= 0.

Clearly if T is sufficiently large, then the financial constraint becomes slack. As shown

in Proposition 2, this implies that an emission tax equal to the Pigouvian benchmark

can implement the first best. Complementing Pigouvian emission taxes with transfers

to polluters can therefore (almost trivially) overcome the problems caused by financial

constraint. Whether generous transfers to polluters are politically feasible in the real

world is less clear.

Abatement Subsidy A politically less contentious policy option could be to subsidize

abatement. To analyze such a policy in the context of our model suppose that τ = 0

and consider instead a subsidy s on abatement financed by lump-sum taxes such that

−sX = T b+T i. Again, it is better to pay the subsidy at t = 1 because at t = 2 borrowers

can abscond with cash. The first order condition with respect to X in Eq. (9) becomes

(1 + λ)

(
s− ∂cx(X, I1)

∂X

)
= 0.

This equation is equivalent to the original first order condition (9) when setting s =

τ ∂E(X,I1)
∂X

. Whether the subsidy can implement the first best allocation or needs to be

complemented with capital regulation therefore depends on whether the financial con-

straint binds. To see if this is the case note the complementary slackness condition (11)

now becomes

λ
[
R̃(I1, E

a) + sX − T b − I0(1− µ) + e− cx(X, I1)− µI1

]
= 0,
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If the subsidy is (partially) financed by investors, then T b < −sX and the subsidy

constitutes a net transfer of resources from investors to borrowers and can therefore ease

financial constraints. As shown in Proposition 2, with a slack financial constraint a

subsidy that mirrors an emission tax equal to the Pigouvian benchmark can implement

the first best.

While subsidies for abatement investments are likely politically less controversial,

in practice subsidies may be more difficult to implement than emission taxes for other

reasons. A key challenge to subsidies is that abatement investments need to be verifiable

and may be subject to other asymmetric information problems. Moreover, this solution

requires the government to be able to correctly identify which technologies to support.

Arguably, a technology-neutral policy is more flexible because it allows the market to

pick the most efficient emission-reduction technology.

5 Conclusion

Climate change is one of the biggest challenges in recent history and has moved up the

agenda of policy makers and investors. This paper provides an analytical framework to

understand how to best design and coordinate environmental regulation in the form of

emission taxes and financial regulation in the form of capital mandates.

The model shows that in the presence of financial constraints emission taxes alone

cannot implement a constrained efficient allocation and welfare can be improved when

complementing emission taxes with leverage regulation. This result provides a rationale

for including climate risks in financial regulatory frameworks and motivates coordinating

environmental and financial regulation.

Another important insight is that the way in which financial constraints interact with

emission taxes critically depends on whether transition risks or physical risks dominate.

Higher emission taxes tighten the financial constraints of borrowers exposed to transition

risk because polluters bear the cost of emission taxes and abatement. By contrast, higher

emission taxes can ease the financial constraints of borrowers with assets that are exposed
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to physical risk because lower emissions have a positive effect on their pledgeable income

and financial constraints. This collateral externality provides an additional motive for

capital regulation even if emission taxes are equal to the Pigouvian benchmark. The

optimal emission tax may be above or below a Pigouvian benchmark, depending on

whether the effect of transition risk or physical risk dominates.

Other policies that help slacken constraints may be desirable. For example, replacing

emission taxes by a pollution permit market with ex-ante freely allocated permits can

alleviate the direct effect of taxes on financial constraints. However, because the shadow

cost of permits induces borrowers to engage in abatement financial constraints are still

affected by the costs of abatement and inhibit the permit scheme alone to implement

a constrained efficient allocation. Subsidies to abatement may be superior to emission

taxes from a welfare perspective if the subsidy constitutes a net transfers to polluters and

thereby slackens financial constraints. A challenge is that, in contrast to emission taxes,

subsidies require abatement investments to be verifiable and regulators to know which

emission-reducing technologies are the most efficient.
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A Proofs

A.1 Benchmark Economy

A.1.1 First Best (Proposition 1)

Proof. The first best allocation can be found by the abatement, investment and consump-

tion levels that maximize social welfare defined by the sum of agent’s utilities

max
I1≤I0,X,cbt≥0,cit≥0

W = u(cb0) + ci0 + cb1 + ci1 + cb2 + ci2 − γE(X, I1),

subject to the aggregate resource constraints

cb0 + ci0 = Ab
0 + Ai

0 − I0,

cb1 + ci1 + cx(X, I1) = Ai
1 + µ(I0 − I1),

cb2 + ci2 = ρI1 − ψγE(X, I1).

Eliminating ci0, c
b
1, c

i
1, c

b
2 + ci2 the problem can be formulated as follows:

max
I1,X,cb0

W = u(cb0) + Ab
0 + Ai

0 − I0 − cb0 + Ai
1 + µ(I0 − I1)− cx(X, I1)

+ Ai
2 + ρI1 − (1 + ψ)γE(X, I1) + κ̄I1(I0 − I1),

with κ̄I1 the Lagrange multiplier on the constraint that I1 ≤ I0. The first order conditions

w.r.t. cb0, I1 and X are given by, respectively,

u′(cb0) = 1,

ρ− µ− (1 + ψ)γ
∂E(X, I1)

∂I1
− ∂cx(X, I1)

∂I1
− κ̄I1 = 0,

(1 + ψ)γ
∂E(X, I1)

∂I1
+
∂cx(X, I1)

∂I1
= 0.

By Assumption 2 liquidations are inefficient, which implies κ̄I1 > 0 and I1 = I0.
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A.1.2 Proof of Lemma 1

Proof. The maximum t = 1 consumption that the borrower can achieve for a given e is

e − I0(1 − µ). For the borrower to obtain external financing the consumption at t = 1

must be non-negative as required by (3). Thus, the borrower needs to contribute at least

e = I0(1− µ) of equity. By Assumption 2 liquidating less cannot generate more financial

slack. Therefore, a higher level of equity e > I0(1 − µ) is needed for the borrower to

continue the project without full liquidation.

Discussion: Note that if the project is fully liquidated at t = 1, the borrower is better

off not continuing the project and instead consuming Ab
0 at t = 0. Since r(τ, Ea, X, I1) >

0, the payoff from continuation increases in the final investment scale I1. When the

financial constraint binds, the optimal investment scale, abatement and equity levels are

pinned down jointly by Equations (12), (9) and (11). This yields Ice1 (τ), Xce(τ) and

ece(τ). The borrower finds it optimal to continue the project if and only if

u(Ab
0) < u(Ab

0 − ece(τ)) + e+R(Ice1 , E
a)− µIce1 (τ)− cx(X

ce(τ), Ice1 (τ))− τE(Xce(τ), Ice1 (τ)) + T b

A.1.3 Proof of Lemma 3

Proof. Represent the complementary slackness condition (11) as:

λS(I1, e, τ) = λ[R̃(I1, E
a)− τE(Xce(I1, τ), I1)− I0(1− µ)− I1µ+ e− cx(X

ce(I1, τ), I1)]

where Xce(I1, τ) follows from (9). Note that S(I1, e; τ) = c1 is a measure of t = 1 financial

slack for a given I1 and e. Higher carbon taxes lower financial slack and equity increases
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slack:

∂S(I1, e, τ)

∂τ

∣∣∣∣
I1,e

= −E(Xce, I0)−
(
τ
∂E(Xce, I0)

∂Xce
+
∂cx(X

ce, I0)

∂Xce

)
︸ ︷︷ ︸

= 0 by Eq. (9)

∂Xce

∂τ

= −E(Xce, I0) ≤ 0,

∂S(I0, e, τ)

∂e

∣∣∣∣
I1

= 1 > 0.

(i) With e < (1− µ)I0 it is not possible to finance the project by (i), implying κe = 0.

u′(Ab
0 − (1 − µ)I0) > 1 implies u′(Ab

0 − e) > 1 for e > (1 − µ)I0 because u′′(.) > 0.

It follows from Eq. (12) that it must be that λ > 0 for e ≥ (1− µ)I0, which in turn

implies that the financial constraint binds irrespective of the level of τ .

(ii) The financial constraint is slack (λ = 0) if equity and tax are such that S(I0, e, τ) >

0. In this case, there are no liquidations Ice1 = I0 (κI > 0).

Consider the threshold ê(τ) such that S(I0, ê(τ), τ) = 0. If the initial endowment is

high enough so that u′(Ab
0 − ê(τ)) ≤ 1, then the borrower chooses equity that is at

least equal to the threshold e ≥ ê(τ), so the financial constraint is slack.

Totally differentiation of S(I0, ê(τ), τ) = 0 with respect to τ yields:

dê

dτ
= E(Xce(I1, τ), I1) > 0

A.1.4 Proof of Lemma 4

Recall that if the financial constraint is binding, λr(τ, ē) > 0, then Xr(τ, ē) and the

interior solution of Ir1(τ, ē) are pinned down by:

τ
∂E(Xr, Ir1)

∂Xr
= −∂cx(X

r, Ir1)

∂Xr
, (9)

R̃(Ir1 , E
a)− I0(1− µ) + ē− cx(X

r, Ir1)− µIr1 − τE(Xr, Ir1) = 0 (11)
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Totally differentiating (9) with respect to τ and ē allows us to find dXr

dτ
= ∂Xr

∂τ
and

dXr

dē
= ∂Xr

∂ē
. The respective total derivatives are:

[
τ
∂2E(Xr, Ir1)

∂(Xr)2
+
∂2cx(X

r, Ir1)

∂(Xr)2

]
dXr

dτ
+

[
τ∂2E(Xr, Ir1)

∂Xr∂Ir1
+
∂2cx(X

r, Ir1)

∂Xr∂Ir1

]
dIr1
dτ

+
∂E(Xr, Ir1)

∂Xr
= 0[

τ
∂2E(Xr, Ir1)

∂(Xr)2
+
∂2cx(X

r, Ir1)

∂(Xr)2

]
dXr

dē
+

[
τ
∂2E(Xr, Ir1)

∂Xr∂Ir1
+
∂2cx(X

r, Ir1)

∂Xr∂Ir1

]
dIr1
dē

= 0

Which can be re-arranged to yield:

dXr

dτ
=

∂E(Xr,Ir1 )

∂Xr − ∂2NBE(Xr,Ir1 )

∂Xr∂Ir1

dIr1
dτ

∂2NBE(Xr,Ir1 )

∂(Xr)2

(15)

dXr

dē
=−

∂2NBE(Xr,Ir1 )

∂Xr∂Ir1
∂2NBE(Xr,Ir1 )

∂(Xr)2

dIr1
dē

(16)

Likewise, totally differentiating (11) with respect to τ and ē allows us to find
dIr1
dτ

=
∂Ir1
∂τ

and
dIr1
dē

=
∂Ir1
∂ē

. The respective total derivatives are:

− ∂cx(X
r, Ir1)

∂Xr

dXr

dτ
− ∂cx(X

r, Ir1)

∂Ir1

dIr1
dτ

− (µ− ρ(1− θ))
dIr1
dτ

− τ
∂E(Xr, Ir1)

∂Xr

dXr

dτ
− τ

∂E(Xr, Ir1)

∂Ir1

dIr1
dē

− E(Xr, Ir1) = 0

− ∂cx(X
r, Ir1)

∂X

dXr

dē
− ∂cx(X

r, Ir1)

∂Ir1

dIr1
dē

− (µ− ρ(1− θ))
dIr1
dē

− τ
∂E(Xr, Ir1)

∂Xr

dXr

dē
− τ

∂E(Xr, Ir1)

∂Ir1

dIr1
dē

+ 1 = 0

Which can be re-arranged to yield:

dIr1
dτ

=
E(Xr, Ir1)

r̃(τ)
(17)

dIr1
dē

=
−1

r̃(τ)
(18)

Where dI1
de

=
∂I∗1
∂e

> 0 and dI1
de

=
∂I∗1
∂τ

< 0, since r̃(τ) < 0 and E(X, I1) > 0 ∀X <∞.
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A.1.5 Proof of Proposition 3

The first order condition of the social planner with respect to τ is given by:

(
ρ− µ− γ

∂E

∂I1
− ∂cx
∂I1

)
∂Ir1
∂τ

−
(
γ
∂E

∂X
+
∂cx
∂X

)
∂Xr

∂τ
+ κτ = 0 (19)

Using (9) and definitions of ∂Xr

∂τ
and

∂Ir1
∂τ

in (15) and (17) we can rewrite (19) as:

r(γ, ē)
∂Ir1
∂τ

− (γ − τ)
∂E(Xr, Ir1)

∂X

∂Xr

∂τ
+ κτ = 0 (13)

If λr(γ, ē) > 0 the LHS of (13) at τ = γ is negative, since
∂Ir1
∂τ

< 0 and r(γ, ē) > 0. The

first term of (13) is negative for all τ such that λr(τ, ē), since r(γ, ē)
∂Ir1
∂τ

< 0.

If ∂Xr

∂τ
> 0, then −(γ−τ)∂E(Xr,Ir1 )

∂X
∂Xr

∂τ
is positive if and only if τ < γ, since

∂E(Xr,Ir1 )

∂X
<

0. Thus, if an interior solution of (13) exists it is τ ∗ < γ.

If ∂Xr

∂τ
< 0, then −(γ − τ)

∂E(Xr,Ir1 )

∂X
∂Xr

∂τ
is positive if and only if τ > γ. In this case,

if (13) evaluated at κτ = 0 has a unique interior solution, it is τ ∗ > γ. However, since

LHS of (13) is negative at τ = γ, we must have that LHS of (13) is crossing zero from

below at the solution τ ∗ > γ. This implies that τ ∗ > γ represent a minimum of the social

welfare function and is thus not the optimum. Therefore, if ∂X∗

∂τ
< 0, then κτ > 0 and

the planner sets τ = 0.

Thus, whenever (13) has a unique solution when evaluated at κτ = 0 and λr(τ ∗, ē) > 0

the planner sets a tax below the Pigouvian rate τ ∗ < γ.

If λr(τ, ē) = 0, then
∂Ir1
∂τ

= 0. Thus (13) simplifies to:

− (γ − τ)
∂E

∂X

∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1 )

∂(Xr)2

+ κτ = 0 (20)

which is solved at τ = γ and κτ = 0. This represents the maximum of the social welfare

function because
∂2NBE(Xr,Ir1 )

∂(Xr)2
< 0. For this to be the optimal tax rate we need that

λr(γ, ē) = 0

So far we focused on the case of interior solution for Ir(τ, ē). If liquidations are at
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the corner solution Ir1(τ, ē) = 0 with κI > 0, we have that
dIr1
dτ

= 0. Thus the optimal tax

solves:

(γ − τ)
−
(
∂E
∂X

)2
∂2NBE(Xr,Ir1 )

∂X2

+ κτ = 0

It implies that when liquidations are in the corner solution, planner sets τ ∗ = γ.

A.1.6 Proof or Proposition 4 and Proposition 5

The first order conditions of the social planner with respect to ē is:

(
ρ− µ− γ

∂E

∂I1
− ∂cx
∂I1

)
∂Ir1
∂ē

−
(
γ
∂E

∂X
+
∂cx
∂X

)
∂Xr

∂ē
− u′(Ab

0 − ē) + 1 + κe = 0 (21)

Using definition of r(τ, Ea) we and the fact that r(γ, ē) = r(τ, ē) + τ
∂E(Xr,Ir1 )

∂Ir1
−

γ
∂E(Xr,Ir1 )

∂Ir1
, we can rewrite (21) as:

u′(Ab
0 − ē)− κe = 1 + r(τ, ē)

∂Ir1
∂ē

− (γ − τ)

(
∂E(Xr, Ir1)

∂Ir1

∂Ir1
∂ē

+
∂E(Xr, Ir1)

∂Xr

∂Xr

∂ē

)
(14)

Using (11) and definitions of ∂Xr

∂e
and

∂Ir1
∂e

in (16) and (18) we can further rewrite (14) as:

u′(Ab
0 − ē)− κe = 1− r(τ, ē)

r̃(τ, ē)
− τ − γ

r̃(τ, ē)

∂E(Xr, Ir1)

∂Ir1
− ∂E(Xr, Ir1)

∂Xr

∂2NBE(Xr,Ir1 )

∂Xr∂Ir1
∂2NBE(Xr,Ir1 )

∂(Xr)2


Which can be readily compared to FOC wrt. e of the private problem when Ice1 (τ, e) is

at the interior solution, which is given by:

u′(Ab
0 − e)− κe = 1− r(τ, ē)

r̃(τ, ē)
(12’)

If γ = τ (which is optimal when γ = 0 or λr = 0) the planner’s FOC (14’) is identical to

the borrower’s FOC (12’), so the planner does not regulate leverage.

If γ > τ the RHS of planner’s FOC (14’) is higher than the RHS of borrower’s FOC (14’)
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if and only if:

∂E(Xr, Ir1)

∂Ir1
− ∂E(Xr, Ir1)

∂Xr

∂2NBE(Xr,Ir1 )

∂X∂Ir1
∂2NBE(Xr,Ir1 )

∂(Xr)2

< 0 (22)

If the RHS of planner’s FOC (14’) is higher than the RHS of borrower’s FOC (14’) then

the planner prefers a higher level of equity than the borrower. In this case, social planner

implements binding leverage regulation.

A.2 Physical Risk

A.2.1 Proof of Lemma 6

Recall that the complementary slackness condition (11) is given by:

λS(I1, e, τ) = λ[R̃(I1, E
a)− τE(Xce(I1, τ), I1)− I0(1− µ)− I1µ+ e− cx(X

ce(I1, τ), I1)]

where Xce(I1, τ) follows from (9). In the presence of physical risk γp > 0, R̃(I1, E
a) =

(1 − θ)(ρI1 − γpE
a(Xa, Ia1 )). In this case, the derivative of S(I1, e; τ) with respect to τ

when holding I1 and e fixed is:

∂S(I1, e, τ)

∂τ

∣∣∣∣
I1,e

= −γp
∂Ea(Xa, Ia1 )

∂Xa

∂Xa

∂τ

∣∣∣∣
I1,e

− E(Xce, I1)−
(
τ
∂E(Xce, I0)

∂Xce
+
∂cx(X

ce, I0)

∂Xce

)
︸ ︷︷ ︸

= 0 by Eq. (9)

∂Xce

∂τ

= −γp
∂Ea(Xa, Ia1 )

∂Xa

∂Xa

∂τ

∣∣∣∣
I1,e

− E(Xce, I1)

Equation (9) pins down Xce(I1, τ). Taking the total derivative of (9) when holding I1

and e fixed yields:

∂Xce

∂τ

∣∣∣∣
I1,e

=
∂E(Xce,I1)

∂Xce

∂2NBE(Xce,I1)
∂X2
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Thus, for a given I1 an increase in tax generates financial slack ∂S(I1,e,τ)
∂τ

∣∣
I1,e

> 0 if and

only if

γp > −
E(Xce, I1)

∂2NBE(Xce,I1)
∂X2(

∂E(Xce,I1)
∂Xce

)2 ≡ γ̂p(I1, τ) (23)

Thus, there exists a threshold γ̂p(I1, τ) such that if γp > γ̂p(I1, τ) higher tax results

in more slack in the financial constraint.

A.2.2 Proof of Proposition 6

If γp > 0, the first order condition of the planner’s problem with respect to τ is given by:

(
ρ− µ− (γu + γp)

∂E(Xr, Ir1)

∂Ir1
− ∂cx(X

r, Ir1)

∂Ir1

)
∂Ir1
∂τ

−
(
(γu + γp)

∂E(Xr, Ir1)

∂Xr
+
∂cx(X

r, Ir1)

∂Xr

)
∂Xr

∂τ
+ κτ = 0

(24)

Using the above and (9) we can represent planner’s FOC as:

r̂(γ, ē)
∂Ir1
∂τ

− (γu + γp − τ)
∂E(Xr, Ir1)

∂Xr

∂Xr

∂τ
+ κτ = 0 (24’)

As in the benchmark model total differentiation of (9) yields:

∂Xr

∂τ
=

∂E(Xr,Ir1 )

∂Xr − ∂2NBE(Xr,Ir1 )

∂Xr∂Ir1

dIr1
dτ

∂2NBE(Xr,Ir1 )

∂(Xr)2

(15)

If the financial constraint is slack, then
∂Ir1
∂τ

= 0, in this case the FOC of the planner

simplifies to:

−(γu + γp − τ)
∂E(Xr, Ir1)

∂Xr

∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1 )

∂(Xr)2

+ κτ = 0 (25)

Thus the optimal tax in the case of a slack financial constraint is Pigouvian, τ = γ.

If the financial constraint binds, then we can find
∂Ir1
∂τ

by totally differentiating (11),
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which yields:

(
ρ(1− θ)− µ− (τ + γp)

∂E(Xr, Ir1)

∂Ir1
− ∂cx(X

r, Ir1)

∂Ir1

)
∂Ir1
∂τ

− E(Xr, Ir1)− γp
∂E(Xr, Ir1)

∂Xr

∂Xr

∂τ
= 0

where we use the fact that τ ∂E(Xce,I0)
∂Xce + ∂cx(Xce,I0)

∂Xce = 0 by (9). Using the definition of ∂Xr

∂τ

this can be represented as:

(r̃(τ, ē)− γpZ(τ, ē))
∂Ir1
∂τ

= E(Xr, Ir1) + γp

(
∂E(Xr,Ir1 )

∂Xr

)2
∂2NBE(Xr,Ir1 )

∂(Xr)2

(26)

If the pledgeable net income is sufficiently low, so that:

r̃(τ, ē) < γpZ(τ, ē) (27)

then the LHS of (26) is negative. The RHS of (26) is negative if and only if (23) is

satisfied. Thus, if conditions (23) and (27) are satisified
∂Ir1
∂τ

> 0.

If
∂Ir1
∂τ

> 0, then the first term of RHS of (24’) is positive. Throughout our discussion

of the physical risk we assume that Z(τ, ē) < 0 for all τ and ē. This requires that

∂2NBE(Xr,Ir1 )

∂Xr∂Ir1
> 0, which implies that ∂Xr

∂τ
> 0 whenever

∂Ir1
∂τ

> 0. Thus the second term

of RHS of (24’) is negative if and only if τ > γu + γp.

Thus if (24’) evaluated at κτ = 0 has a unique solution it is τ > γu + γp

If
∂Ir1
∂τ

< 0, then the LHS of (24’) is negative. In this case, if (24’) evaluated at κτ = 0

has a unique solution it is τ < γu + γp. The proof is the same as in Proposition 3 (see

Appendix A.1.5).

A.2.3 Proof of Proposition 7

If γp > 0, the first order condition of the planner’s problem with respect to ē is given by:

−u′(Ab
0 − ē) +

(
ρ− µ− (γu + γp)

∂E(Xr, Ir1)

∂Ir1
− ∂cx(X

r, Ir1)

∂Xr

)
∂Ir1
∂ē

−(γu + γp − τ)
∂E(Xr, Ir1)

∂Xr

∂Xr

∂ē
+ 1 + κr = 0

(28)
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where we use the fact that τ ∂E(Xce,I0)
∂Xce + ∂cx(Xce,I0)

∂Xce = 0 by (9).

As in the benchmark model total differentiation of (9) yields:

∂Xr

∂τ
=−

∂2NBE(Xr,Ir1 )

∂Xr∂Ir1
∂2NBE(Xr,Ir1 )

∂(Xr)2

dIr1
dτ

(16)

If the financial constraint is slack λr(τ, ē) = 0, then
∂Ir1
∂ē

= 0, in this case the FOC of the

planner simplifies to:

u′(Ab
0 − ē)− κr = 1 (29)

In this case, the leverage mandate corresponds to the privately optimal equity level, so

the economy is constrained efficient.

If the financial constraint is binding λr(τ, ē) > 0, then liquidations are pinned down

by (11). By total differentiation of this equation we get:

(
ρ(1− θ)− µ− (τ + γp)

∂E(Xr, Ir1)

∂Ir1
− ∂cx(X

r, Ir1)

∂Ir1

)
∂Ir1
∂ē

+ 1− γp
∂E(Xr, Ir1)

∂Xr

∂Xr

∂ē
= 0

(30)

where we use the fact that τ ∂E(Xce,I0)
∂Xce + ∂cx(Xce,I0)

∂Xce = 0 by (9).

Using the definition of ∂Xr

∂ē
we find:

∂Ir1
∂ē

=
−1

r̃(τ, ē)− γp

(
∂E(Xr,Ir1 )

∂Ir1
− ∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1)

∂Xr∂Ir1
∂2NBE(Xr,Ir1)

∂(Xr)2

) (31)

If condition (27) is satisfied, then
∂Ir1
∂ē

> 0.

Using this in the FOC of the social planner with respect to ē, gives:

u′(Ab
0 − ē)− κe = 1 + λSP (32)
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where λSP is defined as:

λSP = −
r(τ, ē) + (τ − γu − γp)

(
∂E(Xr,Ir1 )

∂Ir1
− ∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1)

∂Xr∂Ir1
∂2NBE(Xr,Ir1)

∂(Xr)2

)

r̃(τ, ē)− γp

(
∂E(Xr,Ir1 )

∂Ir1
− ∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1)

∂Xr∂Ir1
∂2NBE(Xr,Ir1)

∂(Xr)2

) (33)

Recall, that private FOC with respect to e is:

u′(Ab
0 − ē)− κe = 1 + λce

To compare the privately optimal equity level to the optimal leverage mandate set by the

planner, we define the wedge between λSP and that the λce of the private problem (in

the interior solution).

L(τ, ē) = λSP − λce =
−r(τ, ē)− Z(Xr, Ir1)(τ − γu − γp)

r̃(τ, ē)− γpZ(Xr, Ir1)
+
r(τ, ē)

r̃(τ, ē)
(34)

Where we defined Z(Xr, Ir1) =

(
∂E(Xr,Ir1 )

∂Ir1
− ∂E(Xr,Ir1 )

∂Xr

∂2NBE(Xr,Ir1)

∂Xr∂Ir1
∂2NBE(Xr,Ir1)

∂(Xr)2

)
to simplify the expo-

sition. Rearranging (34) yields:

−Z(Xr, Ir1)(τ − γu − γp)r̃(τ, ē)− r(τ, ē)γpZ(X
r, Ir1)

(r̃(τ, ē)− γpZ(Xr, Ir1)) r̃(τ, ē)
(35)

Notice that the denominator of (35) is positive if condition (27) is satisfied. The nu-

merator evaluated at τ = γu + γp, is positive if Z(Xr, Ir1) < 0. This implies that when

τ = γu + γp planner’s λSP is larger than that of the borrower, λce,. Thus, the planner

sets a leverage mandate above the borrower’s choice of equity: ē∗ > ece.

Notice that the first term of the numerator −Z(Xr, Ir1)(τ − γu − γp)r̃(τ, ē) is negative

for τ > γu + γp and positive for τ < γu + γp. Moreover, since ∂r(τ,ē)
∂τ

< 0, there exists a

threshold τ ′ defined in r(τ ′, ece) = 0, such that if τ < τ ′ then r(τ, ece) > 0 and if τ > τ ′

then r(τ, ece) > 0. Thus, r(τ, ece)γpZ(X
r, Ir1) > 0 if and only if τ < τ ′. Therefore, there

exists a level of emissions tax: τ ′ > τ > γu + γp such that λSP = λce and ē = ece .

Thus there exists a threshold τ ′ > τ̂ > γu + γp such that if τ < τ̂ then the optimal
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leverage mandate is above the borrower’s choice of equity: ē∗ > ece.

B Extensions and Additional Results

B.1 Carbon Taxes Junior to Debt

In this appendix we derive the borrower’s first order condition with respect to abatement

X for the case in which carbon taxes are junior to debt. In this case τE(X, I1) does not

enter the financial constraint (5) and the constraint becomes

d1 ≤ R̃(I1, E
a).

The borrower’s problem (7) is given by

max
X,I1,d1,e

L = u(Ab
0 − e)− I0(1− µ) + e+R(I1, E

a)− µI1 − cx(X, I1)− τE(X, I1) + T b

+ λ
[
R̃(I1, E

a)− d1

]
+ κII1 + κI [I0 − I1]

+ κc1 [d1 − I0(1− µ)− I1µ+ e− cx(X, I1)] + κe[e− (1− µ)I0].

The first order conditions with respect to X, (9) is now

τ
∂E(X, I1)

∂X
+ (1 + λ)

∂cx(X, I1)

∂X
= 0.

Importantly, λ does not drop out from the equation in this case, which implies that in

this case the tightness of the financial constraint has a direct effect on abatement.

B.2 Cap-and-trade with Free Permits

B.2.1 Optimal Price of Permits

The first order conditions of the social planner are given by Equations (13) and (14). To

find the effect of τ on liquidations we totally differentiate the complementary slackness
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constraint which in the case of cap-and-trade framework reads as:

λ[(ρ(1− θ)− µ)I1 − I0(1− µ)− cx(X, I1) + e] = 0 (36)

By total differentiation we get:

(
ρ(1− θ)− µ− ∂cx(X, I1)

∂I1

)
∂I1
∂τ

− ∂cx(X, I1)

∂X

∂X

∂p
= 0 (37)

Using the expression for ∂X
∂τ

from Lemma 4 this simplifies to

(
ρ(1− θ)− µ− ∂cx(X, I1)

∂I1

)
∂I1
∂p

− ∂cx(X, I1)

∂X

∂E(X,I1)
∂X

− ∂2NBE(X,I1,p)
∂X∂I1

∂I1
∂p

∂2NBE(X,I1,p)
∂X2

= 0

∂I1
∂p

=
∂E(X,I1)

∂X
∂cx(X,I1)

∂X

R̃− µ− ∂cx(X,I1)
∂I1

+ ∂cx(X,I1)
∂X

∂2NBE(X,I1,p)
∂X∂I1

∂2NBE(X,I1,p)

∂X2

1
∂2NBE(X,I1,p)

∂X2

Using the FOC of the borrower with respect to X, this can be represented as:

∂I1
∂p

=
∂E(X,I1)

∂X
∂cx(X,I1)

∂X

r̃(p, ē) + p

(
∂E(X,I1)

∂I1
− ∂E(X,I1)

∂X

∂2NBE(X,I1,p)
∂X∂I1

∂2NBE(X,I1,p)

∂X2

) 1
∂2NBE(X,I1,p)

∂X2

=
∂E(X,I1)

∂X
∂cx(X,I1)

∂X

r̃(p) + pZ(p, e)

1
∂2NBE(X,I1,p)

∂X2

The problem of the planner is equivalent to that discussed in the benchmark case if

∂I1
∂p

< 0, which holds whenever r̃(p, ē)+pZ(p, ē) < 0. In this case the planner sets p∗ < γ,

by the same argument as the one used to prove that planner sets τ ∗ < γ in the benchmark

model.

B.2.2 Optimal Capital Mandate

In a setting with free emission permits, the impact of equity on liquidations can be found

by total differentiation of the adjusted complementary slackness constraint in Equation
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36, which yields:

(
ρ(1− θ)− µ− ∂cx(X, I1)

∂I1

)
∂I1
∂e

− ∂cx(X, I1)

∂X

∂X

∂e
+ 1 = 0 (38)

(39)

The sensitivity of abatement to equity is the same as in the benchmark setting and thus

corresponds to the one given in Lemma 4. Using this the above can be rewritten as:

(
ρ(1− θ)− µ− ∂cx(X, I1)

∂I1
+
∂cx(X, I1)

∂X

∂2NBE(X,I1,p)
∂X∂I1

∂2NBE(X,I1,p)
∂X2

)
∂I1
∂e

+ 1 = 0

Using the FOC of the borrower with respect to X, this can be represented as:

∂I1
∂e

=
−1

r̃(p) + p

(
∂E(X,I1)

∂I1
− ∂E(X,I1)

∂X

∂2NBE(X,I1,p)
∂X∂I1

∂2NBE(X,I1,p)

∂X2

) =
−1

r̃(p) + pZ(p, e)
(40)

Thus, the first order condition of the planner with respect to e can be rewritten as:

u′(A− ē)− κe =1− r(p, ē)

r̃(p, ē) + pZ(p, ē)
+

(γ − p)

r̃(p, ē) + pZ(p, ē)
Z(p, ē)︸ ︷︷ ︸

=λSP

(41)

To see whether the planner prefers a higher or lower equity than the private agent, we

compare λSP with λb:

λSP − λb =
−r(p, ē) + (γ − p)Z(p, ē)

r̃(p, ē) + pZ(p, ē)
+
r(p, ē)

r̃(p, ē)

=
−r(p, ē)r̃(p, ē) + (γ − p)Z(p, ē)r̃(p, ē) + r(p, ē)r(p.ē) + r(p, ē)pZ(p, ē)

(r̃(p, ē) + pZ(p, ē))r(p, ē)

= Z(p, ē)
r(p, ē)p+ (γ − p)r̃(p, ē)

(r̃(p, ē) + pZ(p, ē))r(p, ē)

Generally, the private agent prefers a different level of equity than the socially optimal

level.

If r̃(p, ē) + τZ(p, ē) < 0, then the denominator of the fraction is positive. It also

implies that in equilibrium p∗ < γ. If Z(p∗, ē) (r(p∗, ē)p∗ + (γ − p∗)r̃(p∗, ē)) > 0 then
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λSP − λb > 0 and the planner chooses equity above the privately optimal level ē∗ > ece.

If Z(p∗, ē) (r(p∗, ē)p∗ + (γ − p∗)r̃(p∗)) < 0 then λSP − λb < 0 and the planner chooses

equity above the privately optimal level ē∗ < ece.
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