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1 Introduction

The 2007–2008 global financial crisis put the spotlight on counterparty risks in over-the-

counter (OTC) markets. To tame these risks, regulators around the world have mandated

clearing of many OTC contracts via Central Counterparties (CCPs).1 For instance, the

fraction of centrally cleared interest rate derivatives rose to 60% in 2018 from 15% in 2009

(FSB, 2018).2 CCPs can manage counterparty risks thanks to collateral requirements, by

monitoring clearing members’ financial soundness, and via loss mutualization. By standing

between every transacting parties (the members), a CCP reduces the impact of any member’s

default by shouldering the losses or reallocating them to other members.

Regulators view the design of this loss allocation process in CCPs, also known as the

default waterfall, as critical to financial stability (Yellen, 2013; FSB, 2020). Yet, practition-

ers disagree about some of its key features. Large institutional investors who are clearing

members often request more “meaningful” capital contribution from CCPs to cover losses

(ABN-AMRO, 2020). CCPs, meanwhile, resist these calls arguing their business is to pool

risks, not to insure them. In this view, members’ financial resources, typically pre-funded as

collateral, should absorb the bulk of the losses, and capital serves primarily to align CCPs’

incentives in risk management (LCH, 2015; CCP12, 2021). Empirically, the ratio of CCP

capital to total pre-funded resources varies substantially across CCPs (Paddrik and Zhang,

2020). How the composition in the default waterfall is determined and which of these roles

CCPs should play remain open questions.

1In the U.S., Section 723 of the Dodd-Frank Act mandates central clearing of interest rate swaps and
credit default swaps. In the EU, the EMIR regulation introduced similar requirements. See Spatt (2017) for
an in-depth discussion on the regulatory changes in swaps and derivative markets in the U.S.

2Another example is the Euro interbank repurchase agreements (repos) market where central clearing has
become the norm. Mancini, Ranaldo, and Wrampelmeyer (2015) show that from 2009 to 2013, the share of
CCP-based repos increased from 42% to 71%, whereas bilateral repos declined from 50% to 19%.
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In this paper, we propose a framework to analyze these design aspects of CCPs. In our

model, investors match in pairs to trade. The bilateral exposure to idiosyncratic counterparty

risk generates benefits from sharing losses. We represent the loss allocation mechanism in

central clearing as a multilateral contract signed by investors (or “members”) and the CCP.

Sharing losses, however, increases the expected liability of investors who can only credibly

promise to pay up to a fraction of their future income. Investors can mitigate this limited

pledgeability problem via counterparty monitoring and by pledging costly cash collateral.

A CCP can add value by enabling loss mutualization, providing insurance with its capital,

or monitoring investors. When the contract has the CCP perform at least one of these roles,

we say it requires central clearing. Our key innovation is to consider the CCP as an agent.

Maintaining the CCP’s incentive is an integral part of the loss allocation mechanism, and

our analysis of its optimal incentive contract thus sheds light on central clearing design.

With these basic ingredients, we achieve three main results. First, central clearing dom-

inates bilateral trading when the cost of collateral is intermediate and market size is large.

Second, under similar conditions, it is efficient to delegate and centralize all monitoring tasks

to a CCP. Third, such a CCP holds a junior equity tranche in the default waterfall to align

its incentives, and contributes capital at members’ request. The equilibrium level of CCP

capital is an outcome of bargaining between the CCP and its members, not necessarily a

measure of CCP’s incentive. Overall, our results have implications for the design of the

default waterfall, the determinant of CCP capital, and the CCP ownership structure.

Our results arise due to two fundamental frictions. The first one is the aforementioned

limited pledgeability. As in Biais, Heider, and Hoerova (2016), it stems from a moral hazard

problem: Investors would shirk for private benefits and default if their expected liability

is too large. The shirking metaphor is meant to capture investors’ concerns in practice
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that their counterparties could under-invest in proper risk management or take actions that

expose them to “wrong-way risk”.3 Investors can expand their capacity to share risks by

liquidating their asset for cash collateral, which is fully pledgeable but has lower returns.

Asset pledgeability can also be improved by counterparty monitoring, but monitoring

requires a costly and unobservable effort. This is the second friction: Monitoring needs to be

incentivized. The monitoring effort corresponds to investors’ and CCPs’ due diligence pro-

cesses in practice to ascertain the financial soundness of their counterparties and members.4

To clearly show how these frictions affect the design of central clearing, we proceed in

three steps. We first analyze the frictionless benchmark in which investors’ asset is fully

pledgeable (and thus monitoring is redundant). We will then add the limited pledgeability

friction (with observable monitoring), and finally the friction of unobservable monitoring.

In the frictionless benchmark, investors achieve insurance against counterparty default

with collateral, CCP capital, or loss mutualization via the CCP. Loss mutualization is limited

by the resources of non-defaulting members. This implies that mutualizing losses can never

provide full hedging and is less efficient in small CCPs. In contrast, with enough CCP capital

or collateral, investors can fully hedge counterparty default risk. Hence, when the cost of

CCP capital or collateral is low, investors hedge with the cheaper of the two. Otherwise,

they rely on loss mutualization. The key insight is that without friction a CCP substitutes

for collateral when collateral is costly, by pledging capital or by enabling loss mutualization.

Collateral becomes instead an input for central clearing when the limited pledgeability

friction is introduced. Central clearing requires additional payments from investors, either

3In Basel III, wrong-way risk is defined as follows: a bank is exposed to “wrong-way risk” if future exposure
to a counterparty is highly correlated with the counterparty’s probability of default. BCBS (2019).

4For example, ESMA (2020) shows that CCPs monitor members with internal credit rating criteria and
examine their books regularly. The rigor and incentive structure behind such processes are first-order issues
to regulators and CCPs (see e.g., Coeuré 2015 and LCH 2015).
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to compensate the CCP for providing capital, or to cover other members’ losses in mutu-

alization. Investors’ payment capacity is constrained due to limited pledgeability and can

be expanded by pledging collateral. This friction also implies that bilateral monitoring is

optimal when monitoring is observable. The CCP has the same technology as investors but

compensating its effort in centralized monitoring requires investors’ collateral.

Our first main result is that central clearing strictly dominates bilateral trading only

when the cost of collateral is intermediate. In this case, investors mutualize losses or, if

capital is cheap enough, use CCP capital as insurance. The intuition is as follows. If the

cost of collateral is high, using collateral to support any insurance either from CCP capital

or from loss mutualization is too expensive. If instead the cost is low enough, full hedging

with collateral is desirable, which can be done bilaterally.

When the second friction of unobservable monitoring is added, loss mutualization gives

rise to the classic “insurance vs. incentive” conflict of Holmström (1979). When more

losses from counterparty default are shared, an investor benefits less from monitoring her

counterparty. Hence, to restore incentives for bilateral monitoring, loss mutualization must

be reduced. That is, investors retain more exposure to counterparty risk.

An alternative scheme to overcome the “insurance vs. incentive” tension is to delegate

and centralize all the monitoring efforts to the CCP. Yet, centralized monitoring is costly

for two reasons. First, we recall that compensating the CCP requires collateral. Second, the

CCP enjoys an agency rent, receiving compensation over and above the effort cost, because

monitoring efforts are unobservable.

Our second main result is that centralized monitoring dominates bilateral monitoring

when the market is large and when collateral is cheap. As in Diamond (1984), economies of

scale arise endogenously because the agency rent for monitoring decreases with the number

5



of members monitored. Moreover, cheap collateral favors delegations because collateral is

needed to support the compensation to the CCP.

Figure 1 summarizes ours results so far by showing the three possible roles of a CCP in the

optimal contract against the cost of collateral. Central clearing can help investors mutualize

losses; the CCP agent can also play an active role by insuring investors or monitoring them.5

0 collateral cost k

Insurance if κ < k.

No role if κ > k

Loss mutualization
and

Central. monitoring

Loss mutualization No role

Figure 1. CCP roles (k: investors’ collateral cost, κ: CCP’s cost of capital)

Our optimal delegation result highlights member monitoring as a key line in CCPs’

playbook to mitigate members’ credit risk, along with collateral requirements. In practice,

CCPs monitor their members’ financial health and their compliance with membership re-

quirements. As we explain below, endogeneizing this monitoring role of CCPs also delivers

additional predictions for the design of the default waterfall.

The analysis of the optimal contract under centralized monitoring delivers our third

main result, which characterizes the compensation and capital contribution of the CCP.

It is optimal to only pay the CCP when no member defaults because such high-powered

compensation minimizes the agency rent.6 The CCP thus holds a junior equity tranche

in the default waterfall, absorbing losses right after defaulters’ collateral. Furthermore,

5We note that cheap CCP capital is a necessary but not sufficient condition for the CCP to be an insurer.
6This result is well-known in contracting (see Tirole 2010).
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members recoup the rent by requiring the CCP to contribute capital. The capital is akin to

skin-in-the-game (SITG) in the sense that the CCP will lose it if any member defaults.

Our results rationalize several key features of the default waterfall of CCPs as observed

in practice (Duffie, 2015). Defaulters pay first as the CCP seizes their collateral. Collateral

in our model represents both Initial Margins and pre-funded Default Fund Contributions.

The remaining losses are next absorbed by the CCP who holds a junior tranche and loses

its capital contribution. Surviving members must then cover any remaining losses with their

own Default Fund Contributions and ex-post transfers.

Our main implications regard CCP SITG, a topic of intense debate for practitioners and

regulators. We argue that small SITG observed in practice needs not imply that CCPs lack

incentives to manage risks, as incentives also come from their equity-like compensation.7

Relatedly, we caution against the use of CCP capital as an insurance tool, echoing the view

that CCPs should be primarily “risk poolers, not insurers” (Coeuré, 2015; CCP12, 2021)

Our analysis gives novel predictions about the size of SITG and hence the composition

of the default waterfall. We show that SITG relative to either total pre-funded resources or

CCP profit decreases with the number of members, due to the decline in CCP’s incentive

rent. In addition, this effect is compounded if larger CCPs have more bargaining power,

thus resisting members’ demand for capital contribution. This observation can explain the

tension between members (ABN-AMRO, 2020) and CCPs (LCH, 2015; CCP12, 2021) about

the desirable size of capital.8 Furthermore, a CCP with more bargaining power would require

7Our novel implication resonates with McPartland (2021) who argues that no capital is needed for CCP’s
incentive purpose because executives of CCPs, who receive stocks and options in their compensation, will
suffer tremendous personal losses when a member is in distress.

8Since such distribution of surplus does not concern a utilitarian social planner while the social costs of
capital and collateral do, the equilibrium levels of capital and collateral are not in general welfare maximizing.
The equilibrium is nonetheless Pareto-efficient. That is, there always exists Pareto weights in the social
planner’s objective such that the planner’s solution coincides with the equilibrium allocation.
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more collateral from members to substitute for reduced capital.

Finally, our analysis points to a new force shaping the optimal CCP ownership structure.

Under centralized monitoring, the CCP is a third-party agent who requires explicit compen-

sation from the members. Under bilateral monitoring, however, the CCP merely channels

transfers among members – an arrangement we interpret as a member-owned CCP. Hence,

a large (small) market favors third-party (member-owned) CCPs.

Literature Review

The premise of our analysis is the ability of CCPs to manage counterparty risks in OTC mar-

kets, as in Koeppl and Monnet (2010) and Biais, Heider, and Hoerova (2016).9 We analyze

the tension between the mutualization of losses and the incentives to identify creditworthy

counterparties, a version of the classic insurance vs. incentive trade-off (Stiglitz, 1974; Holm-

ström, 1979).10 In the context of central clearing, this trade-off is studied in related models

by Biais, Heider, and Hoerova (2012) and Antinolfi, Carapella, and Carli (forthcoming). Our

analysis of member-owned CCPs thus broadly shares some of their conclusions.11 Our key

innovation is to consider the CCP as an agent, rather than a mechanism designer. This

feature allows us to endogenize the default waterfall of CCPs (including SITG), the CCP’s

compensation, and the optimal ownership structure of CCPs. To the best of our knowledge,

endogenizing these various aspects of CCP designs from first principles is new.

Some recent works analyze different elements of the default waterfall of a CCP. Wang,

9Vuillemey (2020) provides an empirical analysis of counterparty risk hedging in a 19th century CCP.
10Koeppl (2013) and Palazzo (2016) analyze other incentive problems associated with central clearing.
11There are however noteworthy differences. While Biais, Heider, and Hoerova (2012) do not consider

collateral, we show it is an important determinant of central clearing benefits. From a methodological point
of view, both models assume a continuum of traders for tractability, while we can perform comparative statics
with respect to the number of clearing members and derive implications for clearing benefits. Empirically,
the number of members varies greatly across CCPs (see Domanski, Gambacorta, and Picillo 2015).
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Capponi, and Zhang (forthcoming) also stress the need to align members’ risk-management

incentives and show that pre-funded contributions to the default fund are superior to initial

margins if covering losses ex-post is costly. As we do not make this assumption, such pecking

order between types of collateral is absent in our analysis. Instead, we endogenize another

key element of the waterfall, CCP SITG capital, as part of a solution to the counterparty

monitoring problem. Huang (2019) argues that for a given loss allocation, for-profit CCPs

under-supply loss-absorbing capital to shift liabilities to surviving members. We highlight

that the CCP’s capital contribution decision is an outcome of bargaining with its members

while its incentive can be properly aligned with the junior tranche in the default waterfall.

In Huang and Zhu (2021) loss mutualization is analyzed as an auction for the defaulting

members’ positions run by the CCP. With our optimal contracting approach, all transfers

via and to the CCP are specified ex-ante.

The ownership structure is considered critical in the CCP design discussion (Board, 2010;

McPartland and Lewis, 2017). It has been argued that for-profit CCPs may allow too much

risk-taking (Huang, 2019) while member-owned utilities in general may deter entry (Hart

and Moore, 1996). We instead emphasize the costs and benefits of delegating monitoring

to the CCP and predict that third-party CCPs dominate member-owned CCPs in large or

opaque markets, thanks to endogenous economies of scale as in Diamond (1984).

Our paper focuses on CCPs’ role in mitigating counterparty risks, which is most relevant

to the default waterfall design. We thus abstract from other important benefits from central

clearing that have been discussed in the literature (see the comprehensive surveys by Pirrong

2011 and Menkveld and Vuillemey 2021). Duffie and Zhu (2011) analyze netting efficiency

for central and bilateral clearing. Zawadowski (2013) and Acharya and Bisin (2014) show
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that central clearing can reduce counterparty risk externalities by increasing transparency.12

Koeppl, Monnet, and Temzelides (2012) show that a CCP can lower trading costs by deferring

settlement and providing credit to clearing members.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

maps our general contracting approach to centrally cleared contracts in practice. In Section

4, we analyze the costs and benefits of central clearing by deriving the optimal contract

when monitoring is observable. Section 5 analyzes the full problem when monitoring needs

to be incentivized and compares bilateral monitoring with centralized monitoring. We gather

practical implications of our model for CCP design in Section 6. Section 7 concludes. All

proofs are in the Appendix.

2 A Model of Central Clearing

2.1 The framework

There are two dates t ∈ {0, 1}. At date 1, there are two equiprobable aggregate states of the

world, A and B. We denote S a generic element of {A,B} and S ′ the other element. The

economy is populated by investors and a CCP agent, called the CCP. All agents consume

one good –“cash”.

Investors Investors belong to two groups indexed by S ∈ {A,B}, and each group has

N homogeneous investors. An S-investor has the following utility function:

US(cS, cS′) =
1

2
E[cS′ ] +

1

2
E [cS + (ν − 1) min{cS, ĉ}] , (1)

12See also Leitner (2011) for related arguments about the benefits of having a central intermediary.
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where cS is the consumption in state S, ν > 1, and ĉ > 0. In words, S-investors strictly

prefer consuming in state S until their consumption reaches ĉ. These preferences imply that

investors from different groups gain from trading consumption across states. Per-unit gains

from trade are equal to the difference in marginal utility ν − 1. To fix ideas, we say these

preferences reflect hedging needs against an aggregate state, with ĉ the hedging demand.13

Each S-investor is endowed with one unit of a non-tradable asset which pays 2R per unit

with an exogenous probability q ∈ (0, 1) in state S ′ and fails to pay anything otherwise,

as shown in Figure 2. The success or failure of the asset is independent across S-investors,

conditional on the realization of state S ′. Since S-investors have assets that pay in the state

in which S ′-investors value consumption more, some gains from trade can be realized. Due

to assets’ idiosyncratic payoff risk, however, an investor who is supposed to pay will fail to

do so with probability 1− q.

S ′

S

1
2

1
2 0

q

1− q

2R

0

Figure 2. Payoff from an S-investor’s asset

Trading is limited by the fact that the asset’s cash flow is not fully pledgeable. An

investor with asset pledgeability β̃ ∈ {0, β} can credibly promise to pay no more than β̃ in

expectation out of the cash flows of the asset. If faced with a larger liability, the investor

13An alternative interpretation of these preferences is that investors have different beliefs across groups.
Then, investors would trade to bet about the realization of the state of the world they think is more likely.
To identify robust principles for clearing, we do not specify a particular hedging/betting instrument. Our
model can accommodate one-sided hedging needs as in the Credit Default Swaps (CDS) market.

11



shirks at date 0 which destroys the asset cash flow, like an asset failure.14 The limited

pledgeability friction captures investors’ concerns for counterparties taking excessive risks or

shirking proper risk management effort when their liability becomes large (see footnote 3).

The limited pledgeability problem can be mitigated with monitoring. If monitored, an

investor’s asset pledgeability is β > 0. If unmonitored, her asset pledgeability is β with

probability 1− α only and 0 otherwise. Monitoring is performed by another investor or the

CCP. It costs ψ > 0 per investor and the monitoring effort is unobservable to third parties.

Monitoring can be seen as a way to ensure an investor’s position does not exceed her financial

capacity and is considered by CCPs as important defense against counterparty risks (see also

footnote 4). It is also relevant in OTC markets where a counterparty’s overall risk exposure

may be difficult to assess due to lack of transparency.

Collateral At date 0, any fraction of an investor’s asset can be liquidated one to one for

cash. Asset payoff risk and limited pledgeability give a role for cash to be used as collateral as

cash is safe and fully pledgeable. First, by holding cash, an investor can use it to consume in

her favorite state, thereby reducing her hedging needs. Second, when trading with investors

from the other group, cash collateral can protect against counterparty default. Third, as

we will show, cash collateral expands investors’ aggregate risk-sharing capacity, due to the

limited pledgeability friction. Using collateral, however, is costly as we assume the expected

payoff of the asset qR is higher than 1. In what follows, we call k ≡ qR − 1 the cost of

collateral. This cost captures the foregone return on high-return assets compared to assets

widely accepted as collateral such as cash or government bonds.15

14Limited pledgeability is often motivated with moral hazard, as in Holmström and Tirole (1997). Suppose
the investor can shirk for a private benefit B̃ per unit of asset held. Then, an investor with private benefit

B̃ = q
(
R− β̃

2

)
can credibly promise to repay no more than β̃.

15In practice, CCPs require members to post a fraction of collateral as cash (Armakolla and Bianchi 2017)
and their cash reinvestment policy is limited to safe low-return vehicles (e.g. Article 47 of regulation EMIR).
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CCP The CCP agent is risk-neutral and competitive, and has no hedging need. Its

utility function is given by

UC = c0 + c1 (2)

The CCP agent has a large endowment E of asset with per-unit payoff κ+ 1 at date 1 where

κ > 0. Its asset is non-pledgeable but each unit can be liquidated for a unit of cash at date 0.

The CCP can thus contribute cash to help satisfy investors’ hedging needs. To distinguish

from investors’ collateral, we call this cash contribution CCP capital, with κ representing

the cost of capital.16 Besides contributing capital, the CCP can also monitor investors but

its monitoring effort is as costly as the investors and it is also unobservable.

2.2 Contracting

At date 0, each S-investor matches with an S ′-investor, called her counterparty. In practice,

these investors would sign a bilateral contract which can then be novated to and cleared by

a CCP. In addition to bilateral payments, a cleared contract implicitly specifies contingent

transfers among all investor pairs and the CCP. We follow the literature (e.g. Biais, Heider,

and Hoerova 2012) in saying such multilateral transfers require central clearing, even if the

CCP agent neither insures nor monitors investors. A role of the CCP is thus to enable

multilateral transfers allowing investors to mutualize losses due to counterparty risk.17

In the model, we consider a general multilateral contract between all investors and the

16We could alternatively assume that the CCP has a cash endowment E at date 0 but marginal utility κ+1
for consumption at this date. Our specification hints at the similarity between CCP capital and investors’
collateral. A natural case to consider is κ = k, in which CCP capital is as costly as investors’ collateral. For
generality, however, we do not impose this equality and show that CCP capital can be used even when it is
more expensive than collateral, that is, when κ > k.

17One could formally give the CCP agent an active role in loss mutualization by assuming that a pair of
investors has to pay an infinitesimal cost to the CCP agent in order to communicate and thus sign contracts
with other pairs of investors. This modeling change would not have any impact on our analysis.
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CCP. We discuss the mapping to a cleared contract in pratice in Section 3.1. A contract

specifies transfers, and if necessary, a monitoring scheme: bilateral (counterparty) monitoring

or centralized (CCP) monitoring. To streamline the expositions, we focus on contracts with

monitoring in the main text. The optimal contract without monitoring is derived in the

proof of Proposition 4 when we characterize conditions for monitoring to be optimal.

With monitoring, all investors have the same asset pledgeability β and thus, a single

contract is offered to all investors.18 The contract specifies state-contingent transfers, and

an aggregate state in general is defined by {S, d}, where d is the number of payers who

default or whose asset has zero pledgeability, henceforth defaulting payers for short, with d ∈

{0, 1, .., N}. As the environment is symmetric, we focus on symmetric contracts. Moreover,

S-investors should receive payments and S ′-investors should pay only in states {S, d} when

the former have high marginal utility of consumption. We thus drop the reference to S

and label investors by their ex post role: receiver or payer. An investor’s transfer can be

contingent on the idiosyncratic outcome o ∈ {s, f} for the payer in the pair, where s stands

for success and f for failure (of the asset).19 CCP’s date-1 transfer is indexed by state d

only. A contract can thus be defined as follows.

Definition 1. A contract C = {x, po(d), ro(d), e, π(d)} with o ∈ {s, f} and d ∈ {0, ..., N}

is a set of non-negative transfers. At date 0, investors post an amount of collateral x and

the CCP contributes capital Ne. At date 1, a payer pays po(d), a receiver gets ro(d) and

the CCP gets compensation Nπ(d). The contract also specifies a monitoring scheme by the

18As we show in Proposition A.1 in the Appendix, even in the case without monitoring, a single (pooling)
contract will be offered to investors with heterogeneous asset pledgeability. Separating contracts are not
feasible because the single-crossing property fails. In particular, all investors have the same cost of collateral.

19It can be argued that in practice, a cleared contract’s payments would not be contingent on some (id-
iosyncratic) outcome of the original counterparty because the counterparty is the CCP after novation. Such
restriction on the contract severely undermines investors’ incentives to monitor each other, thus strengthening
our result that the CCP emerges as a centralized monitor (see Proposition 7).
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indicator function 1cm, which is equal to 1 when the CCP monitors all investors (centralized

monitoring) and 0 when each investor monitors her own counterparty (bilateral monitoring).

Transfers rs(N), ps(N) and rf (0), pf (0) are set to 0 as they are not well-defined. For

instance, there cannot be N defaulting payers if a payer succeeds.

We are now ready to formally define the investors’ problem.

Investors’ Problem.

max
{C,1cm}

U = qR +
ν − 1

2
E[min{ro(d), ĉ}]− xk − (1− 1cm)ψ − 1

2
(E[π(d)]− e) (3)

s. to ∀ d, ps(d) ≤ x+ (1− x)2R, (4)

∀ d, pf (d) ≤ x (5)

∀ d, (N − d)rs(d) + drf (d) +Nπ(d) = N(x+ e) + (N − d)ps(d) + dpf (d) (6)

E[π(d)] ≥ (κ+ 1)e+ 1cm2ψ (PCCCP )

Es[po(d)]− Ef [po(d)] ≤ (1− x)β (LP)

If 1cm = 1, 2ψ ≤ E[π(d)|m = 1]− E[π(d)|m = 0]; (MICcm)

If 1cm = 0,
ψ

q(1− α)
≤ 1

2

(
Es[ro(d)]− Ef [ro(d)]

)
+
ν − 1

2

(
Es[min{ro(d), ĉ}]− Ef [min{ro(d), ĉ}]

)
(MICbm)

where the expectation operator E[·] is taken over the state d and Eo′ [·] is the expectation

conditional on an outcome o′ ∈ {s, f} for the payer (a receiver’s counterparty).

Investors’ problem is to maximize their expected utility (3), subject to resource con-

straints (4)-(6), CCP’s participation constraint (PCCCP ), investors’ limited pledgeability

constraint (LP), monitoring incentive constraint under centralized monitoring (MICcm) or

bilateral monitoring (MICbm). We discuss each elements of the Investors’ Problem below.
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The objective function, given by equation (3) represents an investor’s expected utility.

To obtain (3) from (1), we substitute for expected payment using an expected version of (6),

E[po(d)] = E[ro(d)] + E[π(d)]− x− e, (7)

for which we provide a derivation in the Appendix. The first term of (3) is an investor’s

utility under autarky when she uses no collateral, and the remaining terms capture the

net benefits of the contract: the expected gain from transferring consumption to investors’

preferred state less the collateral cost, the cost of monitoring in a bilateral scheme 1cm = 0

and the CCP compensation net of its capital contribution.

A feasible contract satisfies individual resource constraints (4) and (5) for payers and

aggregate resource constraint(s) (6). The latter say that in any state, the sum of receivers’

transfers and the CCP compensation must equal total resources available: those committed

at date 0 by receivers (collateral) and the CCP (capital), and payments by payers at date 1.

The CCP’s participation constraint is formalized by equation (PCCCP ). The CCP partic-

ipates in the contract if its expected payoff exceeds its cost per investor pair, which includes

the cost of the capital contribution and the monitoring cost when it monitors.

The first key constraint is investors’ Limited Pledgeability constraint (LP). The pledge-

ability problem implies that the additional expected liability upon success relative to that

upon failure cannot exceed an investor’s pledgeable income from the 1− x units of asset.20

The second key constraints are the Monitoring Incentive Constraints, (MICcm) or (MICbm),

imposed because monitoring efforts are unobservable. Under the centralized monitoring

20If a payer’s expected liability increases with the number of defaulting payers d, a coordination problem
arises as an investor’s decision to shirk depends on her expectations about other investors’ behavior. We
abstract from this coordination problem here to focus on the welfare-maximizing outcome, that is, we only
impose that equation (LP) holds under the expectation that other investors behave.
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scheme, the CCP monitors all investors. Equation (MICcm) ensures that the CCP prefers

monitoring everyone to no one. We verify later this is the relevant deviation even if the CCP

could also deviate by monitoring a subset of the 2N investors. Under the bilateral monitor-

ing scheme, each investor monitors her counterparty and the constraint is then (MICbm).21

It says that the utility loss for an investor from the default of her counterparty must be

greater than the monitoring cost ψ weighted by its efficacy in reducing the probability of

counterparty default [q(1− α)]−1.

2.3 Assumptions

In this section, we describe our main assumptions and explain how they affect the analysis.

Assumption 1 (Collateral needs). 2 > ĉ > β.

Assumption 1 ensures that cash collateral is both necessary and sufficient to satisfy

investors’ hedging needs. Without any collateral (x = 0), by constraint (LP), each payer can

pay at most β which is less than each receiver’s hedging need ĉ. If instead each investor posts

ĉ
2
< 1 units of cash collateral, a receiver’s hedging needs can always be met with collateral

from herself and her counterparty.

Assumption 2 (Monitoring cost). ψ ≤ ψ̄ ≡ min
{

(1−q)(ν−1)
ν(2−βαq)(1−αq) ,

1
2

}
βq(1− α)

(
1− ĉ

2

)
.

The first part of Assumption 2 ensures that there are parameters such that monitoring

is optimal and the CCP plays a role. The expression for this upper bound will be derived in

21The bilateral monitoring constraint applies to any scheme in which each S-investor monitors exactly one
S′-investor. We focus on reciprocal monitoring within each matched investor pair because it is natural and
realistic. In practice, the identity of an investor pair who clears a trade may only be known to themselves and
the CCP. For robustness, in Internet Appendix B, we consider an alternative bilateral scheme in which each
S-investor monitors another S-investor rather than a S′-investor. We show that this alternative scheme is
vulnerable to a collective deviation such that all S-investors do not monitor in order to reduce their expected
liability. Instead, bilateral schemes with S-investors monitoring S′-investors are robust to such deviation.
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Proposition 7. The second part of Assumption 2 plays a technical role.

Assumption 3 (Resources). N ≤ 2R
ĉ

.

Assumption 3 ensures that the hedging demand Nĉ of all receivers can be satisfied even

if only one payer’s asset succeeds, as the asset pays out 2R in this case. This implies the

resource constraint (4) is slack for all d ≤ N − 1. Assumption 3 simplifies our analysis in

that the only aggregate risk receivers must bear is that of all payers’ joint default.22

3 Cleared contract and frictionless benchmark

We first provide a result to restrict the set of relevant contracts for our analysis. The following

proposition allows us to map our general contract to a centrally cleared contract in practice.

3.1 Sufficient contracts as cleared contracts in practice

Proposition 1. Contracts with the following properties are optimal

1. A receiver with a successful payer gets rs(d) = rs. Otherwise, rf (d) = rf ≤ rs if at

least one (other) payer survives (d < N) and rf (N) = 2x+ e ≤ rf if all payers default.

2. A defaulting payer’s collateral is seized: pf (d) = x. A successful payer’s transfer is

ps(d) = rs − x− e︸ ︷︷ ︸
Bilateral transfer

+
d

N − d
(rf − 2x− e)︸ ︷︷ ︸

Loss Mutualization transfer

+
N

N − d
π(d)︸ ︷︷ ︸

CCP compensation

(8)

22We derive the optimal contract when Assumption 3 fails in Internet Appendix C for the case N = 3.
Then, risk sharing is further limited because receivers’ hedging needs cannot be satisfied when too few payers
survive. We show, however, that the key trade-off identified in the main text continues to hold .
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Proposition 1 says that given a collateral amount x and a CCP contract {e, π(d)}, in-

vestors’ transfers can be parametrized with two scalars rf and rs only. The intuition for

this result is as follows. As shown by expression (3), receivers are risk-averse and thus wish

to minimize the variability of their transfers. Yet, transfers may be state-contingent for

two reasons. First, receivers are exposed to the aggregate risk of a joint payer default. In

this state of the world, by budget constraint (6), their transfer rf (N) cannot exceed pre-

committed resources 2x + e as no payer survives. Second, investors may optimally retain

some counterparty risk exposure (rs > rf ) to satisfy the bilateral monitoring constraint

(MICbm). For payers now, it is optimal to set pf (d) = x because a larger payment in default

relaxes investors’ pledgeability constraint (LP). This makes larger payments sustainable in

case of success. This payment ps(d) is pinned down residually by budget constraint (6).

Proposition 1 offers an interpretation of the general multilateral contract as a cleared

OTC contract. A receiver with a successful payer gets rs which can be viewed as the face

value of the contract. When the payer defaults, the resources available directly to the pair

are 2x units of collateral and the capital e pledged by the CCP per investor pair. These

resources pin down the receiver’s consumption rf (N) when all payer defaults. When some

(other) payers survive, they can transfer resources to the receiver whose consumption rf

lies above rf (N). We call loss mutualization the feature that an investor’s loss when her

counterparty defaults is reduced by transfers across investor pairs. This loss mutualization

transfer is captured by the second term of a successful payer’s transfer in (8). It corresponds

to investors’ contributions to a default fund in practice. The first and the third terms of (8)

are respectively the purely bilateral transfer and the contribution to CCP compensation.
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3.2 Frictionless benchmark

To see how frictions affect outcomes, it is useful to characterize the frictionless benchmark.

We derive below the solution to the Investors’ Problem when the asset is fully pledgeable

(β̃ = 2R). We are interested in the role of the collateral cost k and capital cost κ. Note that

monitoring is redundant when the asset is fully pledgeable. In particular,

Proposition 2 (No Friction). The solution to the Investors’ Problem with β̃ = 2R is

1. if min{k, κ} ≤ (ν − 1)(1− q)N , a full-hedging contract with rs = rf = ĉ and

(a) (x, e) =
(
ĉ
2
, 0
)

if k ≤ κ (cheap collateral),

(b) (x, e) = (0, ĉ) if k > κ (cheap CCP capital),

2. otherwise, a complete loss mutualization contract with rs = rf = ĉ and x = e = 0.

Any CCP compensation schedule {π(.)} such that (PCCCP ) binds is optimal.

The intuition for the result is as follows. Absent frictions and under Assumption 3,

one successful payer can credibly cover the hedging needs of all receivers. It is thus always

optimal to set rf = rs = ĉ to realize all gains from trade when one or more payers survive.

To further hedge the joint-default state, safe resources, either collateral or CCP capital,

need to be pre-committed. Full hedging with the cheaper of the two safe resources is optimal

when one resource is cheaper than the benefits of hedging the joint-default state, measured by

(ν− 1)(1− q)N . When this condition is not met (Case 2), neither CCP capital nor collateral

is used and counterparty risk is only dealt with mutualization. We say loss mutualization is

complete because a receiver’s transfer is not affected by the default of her counterparty as

long as at least one other payer survives.
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Proposition 2 shows that the contract assigns two roles to the CCP in the frictionless

benchmark. When investors desire full hedging and capital is cheaper than collateral, the

CCP uses its capital to hedge investors’ joint default risk. Alternatively, the CCP provides

hedging by enabling loss mutualization among investors when both capital and collateral are

too costly. In both cases, the CCP substitutes for collateral. In the next section, we show

how limited pledgeability changes the relationship between clearing and collateral.

4 Clearing with observable monitoring

Limited pledgeability and the unobservability of monitoring are the two key frictions in our

model. To isolate the effect of the former, in this section we assume away the monitoring

friction and solve the Investor’s Problem without constraints (MICbm) or (MICcm).

The limited pledgeability friction gives collateral a new function beyond hedging against

the joint-default state. Collateral now helps satisfy receivers’ hedging needs when payers

survive. To see this, let us consider an investor pair. If each investor pledges x units of

collateral ex ante, a non-defaulting payer can credibly pay x+ (1−x)β in expectation, using

Proposition 1 to substitute pf (d) = x in (LP). Also the receiver can use her own collateral

x for consumption, thereby reducing her hedging need to ĉ− x. Together, a non-defaulting

payer’s payment capacity in excess of her receiver’s needs is

x+ (1− x)β − (ĉ− x) (9)

Without collateral, this excess payment capacity is negative because β < ĉ, that is, an

investors payment capacity β already falls short of her counterpartys hedging needs ĉ. Hence,

without collateral, central clearing cannot improve upon a simple contract that features
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neither loss mutualization, nor CCP capital.23 Equation (9) shows that pledging collateral

increases excess payment capacity at the investor-pair level because β < 2. Therefore,

collateral is needed to support any payment for loss mutualization or to compensate the

CCP for providing capital.

We begin the analysis by showing that the limited pledgeability problem also affects the

choice of monitoring scheme.

Lemma 1. If monitoring is observable, the optimal monitoring scheme is bilateral.

Lemma 1 states that monitoring by investors dominates monitoring by the CCP. The rea-

son is that when investors’ pledgeable income is limited, CCP monitoring entails a collateral

cost. Intuitively, to compensate the CCP for the monitoring costs, each payer is expected

to pay an additional 2ψ at t = 1. These additional payments require costly collateral to be

pledged when constraint (LP) binds. Since the CCP has no intrinsic technological advantage

as a monitor, bilateral monitoring is superior. As we will show in Section 5, this conclusion

can be overturned when monitoring is not observable.

In Section 4.1 we solve for the optimal contract under observable monitoring, called the

OM-contract. We provide conditions such that monitoring is optimal in Section 4.2.

4.1 Optimal contract under observable monitoring (OM-contract)

Proposition 3 (Optimal clearing with observable monitoring). There exists two thresholds

of collateral cost k̄ = 1
2
(ν − 1)(2− qβ) and kN ≤ k̄ a continuous function of κ such that the

23Such a contract will later be called a bilateral contract (see Definition 2). Central clearing without
collateral cannot add value under limited pledgeability because investors have constant marginal utilities in
consumption until ĉ. If instead we had assumed that investors had continuously decreasing marginal utilities,
loss mutualization would have added value even without collateral because receivers would then be able to
spread their consumption across states of the world. This does not change our conclusion, however, that
collateral increases pledgeability and thus becomes necessary to support large transfers from central clearing.
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contract solving the Investors’ Problem without (MICbm) and (MICcm) is as follows:

1. For k ≤ kN , it features full hedging with rOMs = rOMf = ĉ, and

(a) (eOM , xOM) =
(
0, ĉ

2

)
if k < κ, with, in this case, kN = (ν − 1)(1− q)N ,

(b) (eOM , xOM) =
(

qβ(2−ĉ)
2(κ+1)−qβ ,

ĉ−eOM
2

)
if k ≥ κ.

In this case, kN is strictly decreasing with κ and limκ→0 kN = k̄.

2. For k ∈ [kN , k̄], there is complete loss mutualization: rOMs = rOMf = ĉ, eOM = 0 and

xOM ≡
[
1− (1− q)N

]
ĉ− βq

2 [1− (1− q)N ]− βq
∈
(

0,
ĉ

2

)
, (10)

3. For k ≥ k̄, the contract is uncollateralized with rOMs = β, rOMf = xOM = eOM = 0.

Proposition 3 shows how the limited pledgeability friction changes the economics of a

CCP. In the frictionless benchmark (Proposition 2), the CCP’s function is to substitute for

collateral when collateral is costly enough, either with capital or loss mutualization. Here in

contrast, when investors’ asset is not fully pledgeable, the CCP can only play a role with the

help of collateral. Investors must now pledge collateral to tap into the CCP capital (Case

1b) or to mutualize losses (Case 2). The intuition is that investors must be able to pay to

the default fund with loss mutualization or to compensate the CCP for pledging capital with

full hedging. Their excess payment capacity can only be expanded by pledging collateral.

When collateral is needed for central clearing, Proposition 3 shows that loss mutualization

is no longer optimal if the collateral cost is too high. Above a threshold k̄, no collateral is

used, receivers do not fully satisfy their hedging needs (rs < ĉ), and they are fully exposed to

counterparty risk (rf = 0). This threshold k̄ measures the total hedging value of collateral

starting from the contract in Case 3. A unit of collateral provides one unit of self-hedging,
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1 − q expected units of counterparty risk-insurance and q(1 − β) extra units from relaxing

the pledgeability constraint (LP), thus increasing the expected incentive-compatible transfer

to receivers by 2− qβ. When k > k̄, hedging and thus loss mutualization are too costly.24

Proposition 3 sheds light on the benefits of having a CCP. We say that a CCP is essential

if the OM -contract cannot be implemented via a bilateral contract, defined as follows.

Definition 2. A contract is bilateral if it satisfies ro(d) = po(d) + x for all d ∈ {0, 1, .., N}.

Intuitively, with a bilateral contract, an investor pair does not receive transfers from or

make payments to other investors or the CCP.25 Notably, the contracts in Case 1a and Case

3 can be implemented bilaterally. In both cases, CCP capital is too expensive to be used for

insurance. In addition, loss mutualization is not used for different reasons. When collateral is

cheap (Case 1a), the payer’s transfer is fully backed by collateral (pOMo = x) and the receiver

is fully hedged (rOMo = 2x = ĉ), which leaves no counterparty risk to mutualize. When

collateral is expensive (Case 3), loss mutualization, which requires collateral, is too costly.

Receivers then optimally remain fully exposed to counterparty risk (rOMf = rOMf (N) = 0).

These observations imply that clearing benefits are hump-shaped in the cost of collateral.

Corollary 1 (Essentiality of CCP). A CCP is essential, that is, the OM-contract cannot

be implemented bilaterally, for k ∈ [kess, k̄] with kess = min{kN , κ}. The threshold kess is

weakly decreasing in N .

Corollary 1 implies that in the intermediate region of collateral cost, clearing with a

CCP strictly dominates bilateral trading as the contract cannot be implemented bilaterally.

24A similar logic explains why the full-hedging region with CCP capital (Case 1b) shrinks relative to is
counterpart in Proposition 2. Full hedging with CCP capital now requires collateral, so the collateral cost
becomes a limiting factor: the condition k ≤ kN is thus needed in addition to κ ≤ (ν − 1)(1− q)N .

25By the resource constraint (6) and (PCCCP ), a bilateral contract implies that the CCP posts no capital
(e = 0) and gets no compensation (π(d) = 0 for all d).
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In addition, this region expands when market size becomes larger.26 When there are more

investors to share idiosyncratic default risks, the joint-default state becomes less likely and

thus full hedging is less desirable relative to loss mutualization.27

As central clearing also changes collateral requirements, we compare the demand of col-

lateral in the multilateral contract of Proposition 3 to that in the optimal bilateral contract,

which satisfies Definition 2.

Corollary 2 (Bilateral Contract vs. CCP). When a CCP is essential for some N ≥ 2, the

bilateral contract requires strictly more (less) collateral when k is low (k is high).

Corollary 2 shows that mandating central clearing of OTC contracts has an ambiguous

effect on the demand for collateral. The intuition for the high-k part of Corollary 2 is that

a complete loss mutualization contract requires more collateral the more investors can share

counterparty risk. When k is close to the upper bound k̄, complete loss mutualization is

optimal for any N by Proposition 3. The collateral amount increases with N , as shown by

(10), to sustain larger loss mutualization transfers. In a bilateral contract, less collateral is

needed because it only protects an investor against the default of her counterparty.

When the collateral cost is close to the lower bound kess of the essential CCP region,

however, a bilateral contract requires more collateral. This result arises for two different

reasons. First, suppose investors require full hedging both with a bilateral and a multilateral

contract. Trading via a CCP lowers the need for collateral if CCP capital is cheaper as a

26For this result, it is assumed that investors are monitored. The proof of Corollary 1 also characterizes the
lower bound of the essential CCP region when we account for the optimal monitoring decision (see Section
4.2). This lower bound is higher than kess, but the comparative statics with respect to N remains valid.

27This result does not account for the netting gains – a potentially important benefit of central clearing.
When investors have off-setting positions with others for a given contract, multilateral netting via clearing
reduces collateral needs. As Duffie and Zhu (2011) argue, however, netting benefits for a given contract
in clearing have to be compared with bilateral netting benefits across different contracts. This trade-off is
absent in our model as there is a single contract and each investor has one position.
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hedging tool. The second reason is a consequence of Corollary 1. As N increases, the lower

bound kess of the essential CCP region decreases due to larger gains from loss mutualization.

Hence, when k is low, investors require full hedging if they can only trade bilaterally while

with a CCP, they (only) mutualize losses, which requires less collateral. Intuitively, investors

use more collateral when it is the only tool against counterparty risk, as in a bilateral contract.

To summarize, central clearing can reduce the need for collateral to protect against

counterparty risk because CCPs provide alternative tools for insurance: their own capital

or loss mutualization. The very mutualization of losses, however, requires collateral because

CCPs need to make sure investors will deliver when asked to cover other members’ losses.

Hence, the effect of central clearing on collateral demand is ambiguous.

4.2 Optimal Monitoring

So far, we assumed investors should be monitored. To conclude this section, we provide

conditions for monitoring to be optimal. It is clear that monitoring can be suboptimal.

Consider for instance the case in which investors fully hedge with collateral (Case 1a of

Proposition 3). Monitoring is wasteful because any investor, monitored or not, can post

collateral. More generally, monitoring plays the same role as collateral in enhancing the

investors’ total pledgeable income. In other words, monitoring is a substitute of collateral

and it is optimal when the collateral cost is high enough (relative to the cost of monitoring).

Proposition 4. Monitoring is optimal (when observable) if and only if k ≥ k̂m with k̂m an

increasing function of ψ. The threshold satisfies k̂m ∈ [kess, k̄].

The lower bound of k̂m confirms the intuition that monitoring is suboptimal when the

contract is fully hedged with collateral, that is, when k < kess. The upper bound on the
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Figure 3. Optimal OM-contract with N = 2. The x-axis is the cost of CCP capital k and the
y-axis is the cost of collateral κ. Parameter values: ĉ = 0.8, ν = 2, β = 0.6, α = 0.4,
ψ = 3.7× 10−3. FH=Full Hedging. CLM=Complete Loss Mutualization.

monitoring cost in Assumption 2 ensures that limψ→ψ̄ k̂
m < k̄, that is, there always exists

a region of collateral costs in which monitoring is optimal and the CCP is essential. In the

next section, we will restrict our analysis to this parameter region k ∈ [k̂m, k̄] to show how

the incentive problem in monitoring affects the contract design and the role of the CCP.

We illustrate results from this section in Figure 3. The figure shows the parameter regions

which map into the different contracts of Proposition 3. The threshold kN is the frontier

between the yellow region on the one hand and the blue and red regions on the other hand.

The dashed line represents the monitoring threshold k̂m of Proposition 4. For a higher value

of N , the full-hedging regions in Figure 3 would shrink together with (ν − 1)(1− q)N .
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5 Clearing with Monitoring Incentives

In this section, we add back the friction of unobservable monitoring and analyze the Investors’

Problem in full. The main new insight is that clearing conflicts with investors’ incentives to

monitor their counterparty and, consequently, the CCP can emerge as the efficient monitor.

The analysis also sheds lights on the role of CCP capital as skin-in-the-game and provides

new implications about the design of the CCP loss allocation process.

Monitoring incentives matter for the investors’ problem only if the OM-contract of Propo-

sition 3 is not incentive-compatible with bilateral monitoring. The following lemma describes

the parameter region for such a case.

Lemma 2. The OM-contract violates (MICbm) for k ≤ kN , and for k ∈ (kN , k̄) when

N > N∗, where N∗ is the largest value of N such that

ψ

q(1− α)
≤ ν(1− q)N−1

(
ĉ

2
− xOM

)
, with xOM given by (10) (11)

The intuition for Lemma 2 is as follows. When k > k̄, the OM-contract is bilateral and

uncollateralized. Investors are exposed to sufficient counterparty risk to induce monitoring,

provided that monitoring is not too costly (which is guaranteed by Assumption 2). The

case k ≤ kN is the opposite: The OM-contract features full hedging. As investors receive

the same transfer irrespective of the payer’s outcome, monitoring is privately suboptimal.

Finally, the case k ∈ (kN , k̄) with loss mutualization is intermediate as investors retain some

exposure to counterparty risk. This exposure and thus investors’ incentives to monitor are

captured by the right-hand-side of (11), which decreases with N for two reasons. First, the

loss given counterparty default is more likely to be mutualized because the state when all

payers default becomes less likely. Second, as loss mutualization improves when N increases,
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the amount of collateral xOM also increases. This reduces the “loss given joint default”

ĉ− 2xOM , which again lowers an investor’s expected loss from a counterparty default.

In order to clearly study the consequences of monitoring incentives, we impose some

parametric restrictions in Assumption 4. The assumption first ensures that bilateral moni-

toring in the OM-contract is not incentive compatible, but that monitoring can be optimal

(k > k̂m). Furthermore, we impose the condition k > kN and relegate the analysis of the

full-hedging case to Internet Appendix D. Our motivation for this additional assumption is

twofold. First, the full-hedging region k < kN shrinks exponentially as N increases, as shown

by Proposition 3. Second, the new rationale for CCP capital and insights about the design

of CCP capital structure arise primarily in the case with loss mutualization (k > k̄N).28

Assumption 4. k ∈ [max{k̂m, kN}, k̄] and N > N∗. That is, monitoring is optimal when

observable, the OM-contract features complete loss mutualization, and it violates (MICbm).29

The rest of Section 5 proceeds as follows. We derive the optimal contract under bilateral

monitoring in Section 5.1 and under centralized monitoring in Section 5.2. We compare the

two schemes to show when the CCP emerges as the efficient monitor in Section 5.3. Section

5.4 discusses the equilibrium level of CCP capital.

5.1 Bilateral Monitoring

We first consider the bilateral monitoring scheme. The main tension under this scheme is

that counterparty risk insurance via loss mutualization reduces an investor’s incentive to

28Internet Appendix D shows our key findings are robust. The high-powered compensation contract for the
CCP characterized in Proposition 6 remains (weakly) optimal. Second, the result that the CCP can emerge
as the efficient monitor (Proposition 7) is strengthened as it always holds with the full-hedging contract.

29Assumption 4 only implies that monitoring is optimal when it is observable. When monitoring is un-
observable, it becomes more expensive because the monitor(s) must be incentivized. When we characterize
the optimal monitoring scheme in Section 5.3, we derive the new (higher) monitoring threshold.
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monitor her counterparty. This is the classic risk exposure and incentive trade-off extended

to a multilateral contracting context. To incentivize monitoring, an investor must suffer large

enough losses when her counterparty defaults. This can be achieved by distorting the OM-

contract via either increasing the payoff an investor receives when her counterparty succeeds

or decreasing the payoff conditional on counterparty default. We characterize the optimal

distortion in the proposition below, in which we use the superscript ∗ for the equilibrium

variables of the optimal contract with unobservable monitoring.

Proposition 5 (Optimal contract under bilateral monitoring). Let k̄bm = 1−q
1−q+νq k̄. Under

Assumption 4, the optimal contract with incentive-compatible bilateral monitoring is

1. if k ≤ k̄bm, a contract with a higher payoff upon counterparty success, that is, r∗s > r∗f = ĉ,

no CCP capital, e∗ = 0 and more collateral than in the OM-contract, x∗ > xOM ,

2. if k ∈ [k̄bm, k̄], a contract with lower payoff upon counterparty default, that is, r∗s = ĉ > r∗f ,

no CCP capital, e∗ = 0 and less collateral than in the OM-contract, x∗ < xOM .

Proposition 5 shows how to efficiently preserve enough counterparty risk exposure to

restore incentives for bilateral monitoring. Increasing the transfer received by an investor

conditional on counterparty success (r∗s > ĉ) is more efficient than decreasing the transfer

conditional on counterparty default (r∗f < ĉ) when the collateral cost is low enough (k < k̄bm).

This is intuitive because a larger transfer to receivers requires more collateral to increase

investors’ excess payment capacity.

The main take-away from the analysis of bilateral monitoring is that counterparty risk

cannot be mutualized completely because counterparty risk insurance conflicts with moni-

toring incentives. This result motivates our analysis of CCP monitoring in the next section
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5.2 Centralized Monitoring by the CCP

In this section, we analyze clearing with centralized monitoring. As all monitoring tasks are

delegated to the CCP, the incentive problem associated with monitoring no longer interferes

with investors’ risk-sharing needs. Compensating the CCP for its monitoring service is,

however, costly as it increases investors’ liability and hence requires additional collateral

(see Lemma 1). The CCP contract is then designed with the aim to minimize the cost borne

by investors while ensuring the CCP has incentives to exert effort. We derive below the

optimal amount of capital e and the optimal compensation schedule π(d) for the CCP.

Proposition 6 (Centralized monitoring contract). Under Assumption 4, the optimal con-

tract with centralized monitoring features complete loss mutualization with r∗s = r∗f = ĉ and

x∗ > xOM . The CCP breaks even; its compensation and capital contribution are given by

π∗(0) =
2ψ

qN(1− αN)
, π∗(d) = 0 for d > 0, and (12)

e∗ = e ≡ 1

(κ+ 1)

2ψαN

(1− αN)
. (13)

Proposition 6 shows first that investors must post additional collateral x∗− xOM to sup-

port the compensation to the CCP. However, investors can still completely mutualize losses

as in the OM contract (r∗o = rOMo ). This is made possible by the separation of monitoring

and risk-sharing incentives when the CCP monitors. This result contrasts with Proposition 5

in which we showed loss mutualization is distorted to satisfy bilateral monitoring incentives.

Proposition 6 delivers two new insights for the CCP compensation and capital contribu-

tion when it plays a monitoring role. Regarding compensation, the CCP should only get paid

when no investor defaults. The intuition is as follows. Due to unobservable monitoring and

limited liability, the CCP always receives a compensation above its monitoring costs. This
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agency rent, E[π(d)]− 2ψ, is minimized when all compensation is concentrated in the state

where no payer defaults (π∗(d) > 0 only if d = 0). This is optimal because the no-default

state is most indicative of CCP monitoring efforts. The optimal compensation is then the

minimum value of π(0) that satisfies (MICcm). As the CCP loses all of its promised compen-

sation when one or more payer default, it effectively holds a junior tranche and absorbs losses

right after the defaulters’ pre-committed resources (i.e., collateral) have been exhausted.30

The second insight is a new rationale for CCP capital, beyond its role as counterparty

risk insurance. In the OM-contract, for the same parameter values, the CCP does not pledge

capital. Here, it is required to do so by the investors, who have the bargaining power, to

capture the agency rent the CCP earns from monitoring. Indeed, (PCCCP ) binds at e∗ = e.

We also note that its contributed capital is akin to skin-in-the-game in the sense that the

CCP will lose it when one or more members default. In the proof of Proposition 6, we show

that by requiring CCP capital, investors economize on collateral. This result thus implies

that when a CCP’s outside option or bargaining power improves, it contributes less capital

and demand more collateral from investors.

Our results also reveal endogenous economies of scale in centralized monitoring. As the

number of investors N grows, the no-default state becomes more indicative of efforts and

hence the rent dissipates.31 These economies of scale can be seen in the reduction of total

CCP capital contribution (Ne∗ decreases with N). As we discuss in Section 5.3, this is a

crucial force in making the CCP a superior monitor.

Remark 1. As π∗(0) increases exponentially with N , it would violate the resource constraint

30In practice, for-profit CCPs also collect noncontingent fees from members. In our model, if instead the
CCP has bargaining power, it would charge such fees to extract members’ benefits from central clearing (for-
mal results are available upon request). In contrast, the high-powered compensation described in Proposition
6 does not depend on bargaining power as it is used to efficiently sustain the CCP’s monitoring incentives.

31This result is known as “cross-pledging” (see Cerasi and Daltung 2000 and Laux 2001).
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(4) for d = 0 if N is large enough. Still, the insight from Proposition 6 that the CCP holds a

junior tranche is robust in the following way: after exhausting all the available resources in

state d = 0 to compensate the CCP, the remaining compensation is paid in the states most

indicative of effort, i.e., d = 1, then d = 2, and so on.

5.3 Optimal monitoring scheme

Figure 4. Optimal Monitoring Scheme. Parameter values: ĉ = 0.8, β = 0.4, v = 2, q = 0.7,
κ = 0.9, ψ = 5.6× 10−3.

Having characterized the optimal contract under both monitoring schemes, we now an-

swer the question: Who should monitor? To illustrate the relevant economic forces, we

begin with a numerical example. Figure 4 shows the range of collateral cost and market

size in which centralized monitoring is optimal (green region) for two different values of α,

a measure of the monitoring incentive friction.

In both panels, we observe that central monitoring tend to be optimal when the cost of
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collateral is intermediate. The intuition is as follows. If collateral is cheap enough, any form

of monitoring is wasteful because counterparty risk can be better dealt with collateral. If

collateral is very expensive, bilateral monitoring (blue region) is more efficient than central-

ized monitoring: although loss mutualization is reduced, it requires less collateral (Case 2 of

Proposition 5). Therefore, centralized monitoring can only be optimal in the intermediate

range of collateral cost.

We further observe that market size N and the severity of the monitoring friction α

favor centralized monitoring with respect to bilateral monitoring. A larger N and α require

more reduction in loss mutualization to maintain incentives in bilateral monitoring. At the

same time, the economies of scale in centralized monitoring becomes more relevant. We

note, however, that when N or α increase, loss mutualization also becomes more efficient

without monitoring (red region expanded). Hence, the overall effect of these variables on

the optimality of centralized monitoring is ambiguous.

To provide analytical support for these observations, we characterize the conditions in

which centralized monitoring is optimal when N →∞. This analysis is subject to the caveat

that Assumption 3 cannot hold when N becomes large. We present this result because it is

also informative for small values of N : the terms that depend on N in the general condition

decrease exponentially (see the proof for details).

Proposition 7. At the limit N → ∞, when α > 0, centralized monitoring is optimal with

complete loss mutualization for k ∈ [k̂cm, k̄cm] where k̂cm > k̂m and k̄cm < k̄. This region is

non-empty as k̂cm < k̄cm is implied by ψ < ψ̄ (Assumption 2).

Proposition 7 first supports the claim that centralized monitoring is optimal in an inter-

mediate range of collateral. We also confirm the ambiguous effect of monitoring friction by

showing that k̂cm and k̄cm both increase with α in the proof.
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5.4 Bargaining over CCP capital

When they have the bargaining power, investors require CCP capital to capture the CCP’s

rent from monitoring. In this section, we show that the CCP would never voluntarily pledge

capital if it had the bargaining power.

Proposition 8. Under Assumption 4, the CCP would not pledge capital if it had the bar-

gaining power.

Proposition 8 is intuitive. Investors require the CCP to pledge capital only to capture its

monitoring rent. If instead the CCP had the bargaining power, it would not take an action

to decrease its profit. Hence, investors and the CCP are likely to disagree about the right

amount of CCP capital. As we discuss later, this finding echoes the ongoing debate between

members and CCP about the suitable amount of capital contribution (see Section 6.5).

We note that both investors’ and the CCP’s privately optimal choice of CCP capital are

Pareto efficient. As we show in the proof of Proposition 8, however, these capital levels, may

not maximize total welfare, the objective of a utilitarian planner. The reason is that utility

is not transferrable and investors request costly capital in order to capture the CCP rent.

6 Implications for CCP design

In this section, we relate our results to practical questions about CCP design. We first dis-

cuss CCP roles and the impact of central clearing on collateral demand. We then show our

model rationalizes key elements of the typical CCP default waterfall, and provides implica-

tions for ownership structure. Finally, we state empirical predictions regarding CCP capital

contribution, which is at the heart of the regulatory debate.
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6.1 CCP roles and determining factors

By studying the efficient management of counterparty risks, our model rationalizes three

potential roles of a CCP. First, a CCP can use its capital as insurance against the extreme

event of many members defaulting. Second, a CCP can play the role of risk pooler. By ex-

ante arranging a loss mutualizing scheme, a CCP pools idiosyncratic member default risks.

Third, a CCP can monitor its members to reduce counterparty risks in the first place.

Overall, our results are in line with the view that CCPs are primarily risk poolers, not

insurance providers—a view widely shared among regulators (Coeuré, 2015; FSB, 2020) and

CCPs (LCH, 2015; CCP12, 2021). While we show that CCPs can function as insurance

providers, it is only efficient when the CCPs are small and have a lower cost of capital than

that of members’ collateral. We view the last condition as very restrictive. Instead, we

emphasize the CCP’s role in facilitating loss mutualization and show that this function is

particularly valuable when collateral cost is intermediate and the market size for the cleared

contract is large. As we discuss in Section 6.5, however, members will ask the CCP to

contribute capital, even when capital is inefficient as an insurance tool.

The monitoring role of CCPs is another emphasis of our paper. Our analysis shows that

monitoring is a valuable substitute of costly collateral in mitigating counterparty risk, and

that CCPs emerge as efficient monitors of members to facilitate large-scale loss mutualization.

Adequate monitoring of members is indeed often cited by many CCPs in practice as their

first line of defense against counterparty risks.32 Monitoring effort in our model represents

the costs associated with sound risk management. ESMA (2020) reports that CCPs use

32For example, in ICE (2019) the CCP writes “The first two levels of protection is the clearing houses’ initial
and ongoing conservative membership standards... Our clearing houses have developed and implemented a
sophisticated review and internal credit rating process that assesses and monitors each clearing member’s
initial and ongoing credit worthiness.”
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internal credit classifications, send mandatory due diligence questionnaires and carry out

onsite visits of their members. These tasks require significant investment in data collection

and processing capacity as well as in hiring experienced and capable personnel (Pirrong

2011). The provisions of incentives for adequate monitoring is thus paramount and, as we

discuss below, have implications for the loss allocation process. Therefore, the two key roles

of CCP in our paper are intertwined.

6.2 Collateral requirement in cleared contracts

Our model highlights the role of collateral in supporting loss mutualization in central clearing.

An important concern raised by market participants about the shift from OTC to central

clearing is that it can substantially increase collateral requirements. Corollary 2 shows this

needs not be the case as the result depends on collateral cost.

Empirical prediction 1. Bilateral contracts require more (less) collateral than cleared con-

tracts when collateral is cheap (expensive).

On one hand, bilateral contracts tend to use more collateral because there is no other way

to mitigate counterparty risks. On the other, central clearing requires collateral to perform

loss mutualization. The former effect dominates when collateral is cheap. Our result thus

suggests collateral costs to be a control variable in the estimation of changes in collateral

demands caused by the shift to central clearing. This observation could rationalize the

ambiguous findings in empirical studies. Duffie, Scheicher, and Vuillemey (2015) find that

clearing reduces collateral demands whereas Heller and Vause (2012) and Sidanius and Zikes

(2012) argue the opposite. We note that our mechanism, which stems from counterparty

risk mitigation, is orthogonal to the netting effects emphasized in Duffie and Zhu (2011).
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6.3 Default waterfall design

Our analysis of the loss mutualization role of CCPs explains some important features of

the loss allocation process, also known as the default waterfall of a CCP. First, due to the

limited pledgeability friction, our model endogenizes the commonly observed defaulter-pay

principle. Seizing the pledged collateral of defaulting members (akin to initial margin and

default fund contribution) efficiently discourages risk taking. Then, the remaining loss will

be allocated among surviving members. Their resources pledged in the default fund are thus

useful to absorb losses and guarantee further contingent payments at the request of the CCP.

The analysis of monitoring incentives endogenizes the relatively junior position of CCP

in the default waterfall. A CCP’s incentives to monitor its members is best preserved when

it holds a equity tranche, which would be wiped out when members default. Regulators

and practitioners recognize the importance of this equity tranche in the default waterfall to

preserve the CCP’s incentives.33 The incentive rent associated with the CCP compensation

induces members to request capital contribution from the CCP to recoup this rent. As the

CCP receives nothing when its members default, this capital effectively absorbs losses after

the defaulters’ resources are exhausted and before surviving members’ contributions. This

default waterfall structure is indeed very common among CCPs in practice (Duffie, 2015).

6.4 CCP ownership structure

The discussion of default waterfall would be incomplete without considering CCP ownership

structure. In practice, private CCPs are either owned by their members or by a third-party,

for-profit corporation. By considering the CCP as an agent, our model sheds light on CCP

33For instance, the Japan Securities Clearing Corporation states that “JSCC should compensate losses
before Survivors’ Pay, in order to keep incentive for appropriate risk management” (See https://www.jpx.

co.jp/jscc/en/risk/default.html). See also Coeuré (2015) and FSB (2020) for regulators’ views.
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optimal ownership structure. In a member-owned CCP, all ex-ante contribution and ex-post

transfers are made and received by members. This blurs the line between CCP capital and

members’ collateral in the default waterfall (McPartland and Lewis, 2017). In contrast, a

third-party CCP contributes its own capital ex ante and retains profit from clearing ex post.

Thus the seniority of CCP’s claims vis-à-vis members’ in the default waterfall is relevant.

To see how our analysis relates to ownership structure, consider the case in which the

CCP functions as a loss mutualization mechanism.34 Under bilateral monitoring, the CCP

takes transfers from some members and redistributes to others. It neither pledges capital nor

receives compensation from members. This arrangement thus resembles a member-owned

CCP.35 Under centralized monitoring, however, the CCP contributes capital ex ante and

receives an equity-like compensation paid by members ex post. The CCP thus resembles

a third-party agent.36 Our results in Proposition 7 regarding monitoring scheme thus yield

the following prediction regarding a CCP’s optimal ownership structure.

Empirical prediction 2. A third-party CCP is preferable to a member-owned CCP when

the number of clearing members is large.

Our analysis stresses efficient credit risk mitigation via monitoring as a determinant of

ownership structure. In larger CCPs, discipline is better maintained by a third-party agent

who is liable for any default. In smaller CCPs, members prefer a “mutualization-light”

regime with discipline maintained via bilateral counterparty exposure.37

34As we showed, the CCP can also act as an insurance provider in the restrictive case where CCP capital
is cheaper than members’ collateral. In this case, however, the discussion of ownership structure becomes
trivial in our model because a member-owned CCP cannot have a lower cost of capital than its members.

35Several commentators including McPartland and Lewis (2017) use the terminology “mutualized CCP”
for the arrangement without a third-party owner. Since there is also loss mutualization between members
in our third-party CCP, we refer to the former CCPs as member-owned.

36While the equity-like compensation could be given to CCP managers, it is the fact that the CCP commits
capital in this case which motives our interpretation as a third-party financial institution.

37We believe this insight may be relevant beyond CCPs, and apply to the comparison of third-party vs
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6.5 The determinants of CCP capital

Our analysis can shed light on the intense debate about the size of CCP capital, the so-called

skin-in-the-game (SITG). SITG is in general small as a fraction of total pre-funded resources,

which some commentators take as evidence that SITG is either unimportant or insufficient.

We argue that SITG is a consequence of bargaining between members and the CCP and is

related to the incentive rent paid to the CCP for its monitoring role. It needs not be large

as incentives come in the form of the equity tranche held by the CCP or by its management

team. Similarly, CCPs in practice make executive compensation contingent on the actual

usage of SITG to induce risk management effort.38

While SITG is on average small as a fraction of total pre-funded resources, there is

substantial heterogeneity across asset classes and jurisdictions of the CCPs.39 Our model

can generate such variations provided that asset pledgeability β differs across assets (e.g.

constructing a portfolio with “wrong-way” risk is easier for some assets than others) and

jurisdictions (e.g. some courts enforces contracts better than others). In addition, we predict

that market size (number of members) is also a determinant of such ratio.

Empirical prediction 3. The ratio of CCP capital to total pre-funded resources e∗

x∗+e∗

strictly decreases with N and increases with β.

The first result follows directly from Proposition 6, which characterizes a third-party

CCP. We provide a proof of the second result in the Appendix.

member-owned utilities (see Hart and Moore 1996).
38For instance, OCC, a CCP for equity derivatives, says that “OCC will contribute the unvested funds held

under its Executive Deferred Compensation Plan (EDCP), on a pro rata basis pari passu with non-defaulting
clearing members’ default fund contributions.” (OCC, 2020) LCH, another CCP, states that besides SITG,
“LCH has further strengthened this incentive structure by linking management compensation directly to
usage of the SITG layer.” (LCH, 2015)

39The ratio of CCP capital to total funded resources varies from 1.6% in Interest rate CCPs to 9.1% in
Commodity CCPs and from 0.1% in CCPs in South America to 12.2% in Asia (Paddrik and Zhang, 2020).
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There is also substantial variation in the ratio of SITG capital to CCP profit, another

key metrics considered by market participants. The European Association of CCP Clearing

Houses reports an average ratio of 1.6 for EU and UK CCPs, and our own calculations based

on regulatory reports from ESMA for 16 CCPs show this number can vary from 0.3 to 9.51.

In particular, the ratio of SITG capital to CCP profit is larger for small CCPs, which is in

line with our model predictions.40

Empirical prediction 4. The CCP capital to profit ratio e∗

E[π∗]−2ψ
strictly decreases with N .

The result follows directly from Proposition 6. When investors have the bargaining power,

this result arises because the agency rent, and thus the CCP capital contribution decreases

with the number of members. In practice, a large CCP may also have more bargaining power

vis-à-vis its members. Our analysis in Section 6.5 is also consistent with the explanation

that a large CCP with a strong bargaining position would contribute less capital. The view

that SITG is an outcome of bargaining is acknowledged by market participants.41 Recently,

a group of twenty major institutional investors and investment banks issued a discussion

paper (ABN-AMRO, 2020) to request more substantial capital contribution from CCPs.

7 Conclusion

In this paper, we characterized the optimal allocation of losses in a CCP when contracts

are subject to counterparty risk. The mutualization of losses hedges investors against their

40The ratios for large CCPs such as ICE, LCH SA, BME Clear, and SIX x-clear are respectively 0.3, 0.394,
0.56, and 0.74. For smaller CCPs such as Keler, ATHX, CCP.A, and OMI-Clear, the figures are 1.41, 3.94,
4.66, and 9.51. The data is self-collected from the CCPs’ disclosure and reports in 2020.

41In a discussion paper written by the International Swap and Derivative Association (ISDA, 2019), for
example, ISDA concedes that “The level of SITG is ultimately a judgement call and is still debated between
many CCPs and clearing members. We believe that the optimum level of SITG is difficult to agree between
CCPs and clearing participants and ask global regulators to develop standards and guidelines as to sizing
SITG for CCPs.”
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counterparty’s default, but this protection lowers market discipline because investors’ incen-

tives to trade with creditworthy counterparties become weaker. When the market is large,

we show that a third-party CCP can mitigate these inefficiencies by acting as a centralized

monitor. Our model endogenizes the typical default waterfall of a CCP with defaulter’s

collateral, a CCP junior equity tranche and surviving members’ default fund contributions.

Members and the CCP disagree about the size of the skin-in-the-game capital.

To understand the basic determinants of the default waterfall, we assumed one CCP clears

all trades. In practice, several third-party CCPs may compete for the market. Introducing

several CCPs would allows us to analyze the relationship between competition and CCP

stability. Relatedly, we also believe that competing CCPs may cater to different clienteles

in a model with heterogeneous investors (see e.g., Santos and Scheinkman (2001)). We leave

these venues for future research.
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Appendix

A Proofs

A.1 Derivation of Equation (3)

We first derive relationship (7). As a payer succeeds with probability q, and default is idiosyncratic
the number of defaulting payers among k payers is a random variable with a binomial distribution
B(k, 1− q). Taking expectations over (6), we thus obtain

Es[po(d)] =
N−1∑
d=0

(1− q)dqN−1−d
(
N − 1
d

)[
rs(d) +

d

N − d
(rf (d)− pf (d))− N

N − d
(x+ e− π(d))

]

= Es[ro(d)] +

N−1∑
d=1

(1− q)dqN−1−d
(
N − 1
d− 1

)
(rf (d)− pf (d))− (x+ e)

N−1∑
d=0

(1− q)dqN−1−d
(
N
d

)

+

N−1∑
d=0

(1− q)dqN−1−d
(
N
d

)
π(d)

= Es[ro(d)] +
1− q
q

N−2∑
l=0

(1− q)lqN−1−l
(
N − 1
l

)
(rf (l + 1)− pf (l + 1))

− (x+ e)

q

[
1− (1− q)N

]
+

1

q

[
E[π(d)]− (1− q)Nπ(N)

]
= Es[ro(d)] +

1− q
q

(Ef [ro(d)]− Ef [po(d)])− x+ e

q
+

E[π(d)]

q

where to obtain the last line, we used (6) for d = N . The last line is equivalent to (7).
Using equation (1), we can now derive equation (3). We have

U =
1

2

(
q(1− x)2R+ x− E[po(d)]

)
+

1

2

(
E[ro(d)] + (ν − 1)E

[
min{ro(d), ĉ}

])
− (1− 1cm)ψ (A.1)

Substituting E[po(d)] thanks to equation (7), we obtain

U = qR+
1

2
x− qRx+

1

2
(x+ e)− 1

2
E[π(d)] +

ν − 1

2
E
[

min{ro(d), ĉ}
]
− (1− 1cm)ψ

which is equivalent to equation (3).

A.2 Proof of Proposition 1

We prove the results in several steps. Step 1 proves that resource constraint (5) binds. Step 2
proves that for all d < N , rs(d) is constant. Step 3 proves that for all d < N , rf (d) is a constant
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lower than ĉ and rs. In Step 4, we prove that we can focus on contract with 2x + e ≤ ĉ without
loss of generality. Finally, in Step 5, we prove rf > rf (N). For some arguments in this proof, we
will refer to certain contracts introduced later in the main text.

Step 1. Resource constraint (5) binds: pf (d) = x
From equation (6), increasing pf (d) for d < N allows investors to increase rs(d) in this state.

Such a change may only relax constraints (LP) and (MICbm). Because investors’ utility (3) is
weakly increasing with rs(d), it is thus optimal to set pf (d) = x for all d < N .

For state d = N , suppose (5) is slack and consider increasing pf (N) by ∆pf (N) ∈ (0, x −
pf (N)]. Denote ∆Ef [po(d)] the corresponding increase in Ef [po(d)]. Let us also increase Es[po(d)]
by ∆Es[po(d)] = ∆Ef [po(d)] in order to ensure limited pledgeability constraint (LP) still holds.
Consider then a joint increase in rf (N) and Es[ro(d)] such that

∆rf (N) ≤ ∆pf (N), ∆Es[ro(d)] ≥ ν∆Ef [ro(d)], ∆Es[ro(d)] ≤ ∆Es[po(d)]

The first constraint ensures that resource constraint (5) is still satisfied following the perturba-
tion. The second constraint ensures that bilateral monitoring constraint (MICbm) is satisfied after
the perturbation if needed. The last constraint ensures that budget constraint (6) is still satis-
fied. Since ∆pf (N) > 0 and ∆Es[ro(d)] > 0, by construction, such a perturbation exists and it is
weakly optimal because investors’ utility weakly increases with ro(d). Hence, pf (N) = x is optimal.

Step 2. rs(d) = rs for all d < N
Suppose instead there are two states (d, d′) such that rs(d) > rs(d

′). We argue that the follow-
ing perturbation weakly increases investors’ utility: decrease rs(d) and ps(d) and increase rs(d

′)
and ps(d

′) such that Es[ro(d)] and Es[po(d)] are unchanged. This perturbation is feasible because
it does not affect constraint (LP) and it weakly relaxes bilateral monitoring constraint (MICbm)
(strictly if rs(d) > ĉ > rs′(d

′)). It is (weakly) profitable because objective function (3) is concave
in rs(d) and rs(d

′).

Step 3. rf (d) = rf ≤ min{rs, ĉ} for all d < N
We first show that setting rf (d) = rf for all d < N is optimal. Suppose instead there are

two states (d, d′) such that rf (d) > rf (d′). The argument used in Step 2 above also applies here
if rf (d) > rf (d′) ≥ ĉ or if rf (d′) < rf (d) ≤ ĉ. Hence, we are left to analyze the case in which
rf (d′) < ĉ < rf (d). For ε > 0 small enough, consider the following perturbation

(∆rf (d′),∆rf (d)) =

(
ε,−f(d′)

f(d)
νε

)
with f(d) the probability that d payers default among N − 1. The perturbation is designed such
that the right-hand side of incentive constraint (MICbm) is unchanged. To satisfy budget constraint
(6) in state d and d′, set ∆ps(d) = 1−q

q ∆rf (d) and ∆ps(d
′) = 1−q

q ∆rf (d′). The limited pledgeability
constraint (LP) still holds after the perturbation as the expected payment Es[po(d)] increases by

∆Es[po(d)] = −1− q
q

(ν − 1)f(d′)ε
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The perturbation strictly increases the objective function (3) which is concave in rf .
We then show that rf ≤ min{rs, ĉ} is optimal. The result rf ≤ ĉ follows from two observations.

First, the objective function (3) is independent of rf when rf > ĉ and increasing rf does not relax
any constraint but it tightens constraint (MICbm).

For the second part of the result, suppose rf > rs and consider the following perturbation:

∆rf < 0, ∆rs = −1− q − (1− q)N

q
∆rf , such that rf + ∆rf = rs + ∆rs

Let ∆ps(d) be the perturbation to ps(d) needed in state d < N to satisfy the budget constraint (6)
while keeping other variables constant. The perturbation is designed such that E[ps(d)] does not
change, as can be seen from (7). This implies constraint (LP) still holds. Hence, the perturbation
is feasible under constraint (LP) and (MICbm) because the right-hand side of the latter constraint
is increasing with rs and decreasing with rf . With this perturbation, E[ro(d)] is unchanged, which
means investors’ utility is unchanged. Hence, it is weakly optimal to set rs ≥ rf and it can be
strictly optimal if it relaxes (MICbm).

Step 4. Proof that rf (N) = 2x+ e ≤ ĉ
To prove this statement, we first rely on properties of the CCP’s compensation contract shown later
in the text. Proposition 6 shows that it is optimal not to compensate the CCP in state d = N .
Hence, we set π(N) = 0. Using the result in Step 1, we can rewrite budget constraint (6) in state
d = N as rf (N) ≤ 2x + e. Setting rf (N) ≤ ĉ is weakly optimal by the same argument used in
Step 3 for rf . Hence, we are left to show that we can focus on contracts such that 2x+ e ≤ ĉ. We
proceed by contradiction considering a “candidate” contract such that 2x+ e > ĉ.

Case 1. k ≤ κ
In this case, the candidate contract is dominated by the full-hedging contract described in

Proposition 2. Because this contract does not require monitoring, it is enough to show that the
candidate contract is more costly since hedging benefits are lower. The combined cost of collateral
and CCP capital with the candidate contract is given by

xk +
1

2
eκ >

ĉ

2
k +

1

2
e(κ− k) >

ĉ

2
k

The last expression is the cost for the the full-hedging contract. Hence, the candidate contract
cannot be optimal.

Case 2. k > κ
We first rewrite the limited pledgeability constraint (LP) using the result from Step 1, 2 and 3,

the participation constraint of the CCP (PCCCP ) and the budget constraint (6)

qrs+(1−q)
[
1−(1−q)N−1

]
rf ≤ qβ+

(
2−qβ−2(1−q)N

)
x−
[
kappa+ 1−

{
1− (1− q)N

}]
e−2ψ1cm

(A.2)
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By assumption about our candidate contract, rf (N) satisfies rf (N) ≤ ĉ < 2x+ e. In what follows,
we treat separately the two monitoring schemes.

Consider first the bilateral monitoring scheme. Consider a perturbation to the candidate con-

tract with ∆x < 0 and ∆e = 2−qβ−2(1−q)N
κ+1−{1−(1−q)N}∆x. By construction, this perturbation leaves the

right-hand-side of (A.2) unchanged. Hence, the same levels for rs and rf as in the candidate con-
tract can be financed. Besides, because ĉ < 2x+e, it is also possible to finance any receiver transfer
rf (N) ≤ ĉ for a small enough changes in x and e. Because CCP capital and collateral are costly, it
is feasible and optimal to decrease e and rf until either 2x+ e = ĉ, e = 0 or x = 0. In the first case,
the desired result follow directly. In the second case, the candidate contract is dominated by the
full-hedging contract described above. In the third case, a contract with x = 0 and e > 0 is domi-
nated by a contract with x = 0 and e = 0 because CCP capital is costly and reduces pledgeability,
as shown formally in Lemma 1. This proves the result with bilateral monitoring.

We now consider the centralized monitoring scheme. In Proposition 6, we show that the CCP

capital should be no lower than e = 2ψαN

1−αN . This implies that the candidate contract satisfies e ≥ e
by definition of e, as it could be improved otherwise. We now prove that the candidate contract
is dominated by the (optimal) contract characterized in Proposition 6 which has the following
features: e = e such that rs = rf = ĉ and 2x + e ≤ ĉ. Hence, this optimal contract fully satisfies
investors’ hedging needs except in the joint payer default state. The candidate contract can only
dominate that contract if it provides full hedging or if it is cheaper.

In the first case, however, starting from the optimal contract, it is better to satisfy 2x+ e = ĉ
in order to provide full hedging, because collateral and CCP capital are costly. In the second case,
because e > e for the candidate contract, it can only be cheaper than the optimal contract if it uses
less collateral. But then start again from the optimal contract for which the limited pledgeability
constraint (A.2) binds. Reducing x and increasing e thus implies lowering the expected transfer to
receivers. If this change increases investors’ utility, x should be lowered to 0 by linearity. But then
a contract with x = 0 and e > e is dominated by a contract with x = 0 and e = ē because CCP
capital is costly and tightens constraint (A.2). This proves the result with centralized monitoring.

Step 5. Proof that rf ≥ rf (N)
We consider again the centralized monitoring scheme and the bilateral monitoring scheme in turn.
Consider first the centralized monitoring scheme. Either rs = rf = ĉ or limited pledgeability
constraint (LP) binds. In the first situation, rf (N) = 2x + e ≤ ĉ = rf by Step 4. In the second
situation, two cases are again possible. If ν−1

2 (2 − qβ) ≥ k, then increasing x to increase rs and
rf until they are equal to ĉ is optimal. The result follows again. If instead ν−1

2 (2 − qβ) > k, it is
optimal to decrease x until it reaches 0 so that

E[r] = qβ − κe− 2ψ

But then, it should be optimal to switch to bilateral monitoring with e = 0 because it increases
the right-hand side and thus the transfers of the left-hand-side of the equality above. Bilateral
monitoring is incentive-compatible with contract rs = β, rf = 0 and x = 0 under Assumption 2 as
we will show in Lemma 2. Again, the desired result holds.
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Consider now the bilateral monitoring scheme. With a similar argument, we can focus on the
case in which the limited pledgeability constraint binds. The argument when ν−1

2 (2 − qβ) > k is
similar to that above. Suppose then ν−1

2 (2 − qβ) ≤ k. This implies that x should be increased
until rs = ĉ. Increasing rf , however, entails an additional cost because the monitoring constraint
(MICbm) needs to be satisfied. Hence, to increase rf , one must also increase rs. Two cases are
possible. First, if the cost of collateral is low, rf should be increased until it reaches ĉ and the
proof follows by Step 4. Otherwise, rf should be set such rs = ĉ and (LP) and (MICbm) hold as
equality. This contract is the contract considered in Case 2 of Proposition 5 and, as we show there,
it satisfies rf ≥ 2x+ e under Assumption 2. This concludes the proof.

A.3 Proof of Proposition 2

Using Lemma 1, we derive a simplified version of the investor’s problem in the absence of friction.
Recall that monitoring is redundant if the asset is fully pledgeable. The investors solve

max
x,e,rs,rf

ν − 1

2

[
qmin{rs, ĉ}+ (1− q)

([
1− (1− q)N−1

]
min{rf , ĉ}+ (1− q)N−1(2x+ e)

)]
− x(qR− 1)− 1

2
eκ (A.3)

The objective function is strictly increasing with rs and rf for all rs ≤ ĉ and rf ≤ ĉ and it is
constant otherwise. Hence, it is optimal to set rs = rf = ĉ. To determine the optimal values of x
and e, compute the derivative of the objective function with respect to these variables:

U ′(e) =
1

2
(ν − 1)(1− q)N − 1

2
κ (A.4)

U ′(x) = (ν − 1)(1− q)N − k (A.5)

It is thus optimal to set rf (N) = 2x + e equal to ĉ if and only if min{k, κ} ≤ (ν − 1)(1− q)N . In
this condition holds, investors choose (x, e) =

(
c
2 , 0
)

if k ≤ κ and (x, e) = (0, ĉ) otherwise. This
concludes the proof.

A.4 Proof of Proposition 3

Step 1. Limited Pledgeability Constraint
We first rewrite the limited pledgeability constraint (LP). We showed in Proposition 1 that

Ef [po(d)] = x, and in Lemma 1 that 1cm = 0. Using these results together with the binding
participation constraint of the CCP (PCCCP ) and equation (7), we obtain

q
(
Es[po(d)]− Ef [po(d)]

)
= Es[ro(d)]− 2x+ κe

= qrs + (1− q)
[
1− (1− q)N−1

]
rf −

[
1− (1− q)N

]
(2x+ e) + κe

47



We can thus rewrite (LP) as a function of (rs, rf , e, x).

qrs + (1− q)
[
1− (1− q)N−1

]
rf ≤ qβ +

(
2− qβ − 2(1− q)N

)
x−

[
κ+ 1

{
1− (1− q)N

}]
e (A.6)

Investors thus solve the problem described in (A.3) under constraint (A.6).

Step 2. Analysis
We first show two results about CCP capital e. First, CCP capital may be used only if k < κ. If

this condition does not hold, we showed in Proposition 2 that collateral is preferred to CCP capital
in the frictionless benchmark. This conclusion still applies under limited pledgeability because x
(resp. e) relaxes (resp. tightens) constraint (A.6). Second, if CCP capital is used, it must be that
(A.6) binds. Otherwise, it is optimal to increase e and decrease x while keeping rf (N) = 2x + e
constant. With a small enough change, constraint (A.6) still holds and the objective function
increases because k < κ must hold if CCP capital is used, as we just showed.

We now argue we can consider two different cases for the analysis: Either rs = rf = ĉ or
constraint (A.6) binds. This observation follows from Proposition 2 where we showed rs = rf = ĉ
is optimal in the absence of constraint (A.6). Besides, the relative weight on these two variables is
the same in the objective function (A.3) and in constraint (A.6).

Suppose first that rs = rf = ĉ. We now derive conditions such that rf (N) = 2x+ e = ĉ.
Optimality of rf (N) = ĉ
Case 1a. k ≤ (ν − 1)(1− q)N
Increasing x until rf (N) = 2x+e = ĉ is then optimal by (A.5) and because increasing x relaxes

constraint (A.6). If in addition k < κ, CCP capital should not be used as shown above. In this
case, the contract is given by rOMs = rOMf = ĉ, xOM = ĉ

2 and eOM = 0. This corresponds to Case
1a of Proposition 3.

If instead k > κ, CCP capital should be used and, as shown above, constraint (A.6) should
bind. Hence, the contract is given by rOMs = rOMf = ĉ and xOM and eOM such that rOMf (N) =

2xOM + eOM = ĉ and (A.6) binds. This corresponds to Case 1b of Proposition 3.
Case 1b. k > (ν − 1)(1− q)N
Then, it is optimal to decrease x until constraint (A.6) binds because U ′(x) < 0. Equation

(A.4) shows that increasing e until rf (N) = 2x+ e = ĉ can still be optimal if κ ≤ (ν − 1)(1− q)N .
To determine the sufficient condition, we need to account for the effect of e on constraint (A.6)
when computing the total derivative of the objective function with respect to e. Maintaining rs
and rf constant in equation (A.6), we have

∂x

∂e |rf=rs=ĉ, (A.6) binds
=

κ+ (1− q)N

2− qβ − 2(1− q)N
(A.7)
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We thus obtain

U ′(e)|rf=rs=ĉ, (A.6) binds =
∂U

∂e
+

∂U

∂x

∂x

∂e |rf=rs=ĉ, (A.6) binds

=
1

2

[
(ν − 1)(1− q)N − κ

]
+
[
(ν − 1)(1− q)N − k]

κ+ (1− q)N

2− qβ − 2(1− q)N

This term is positive if

k ≤ kN ≡ (ν − 1)(1− q)N +
1

2

2− qβ − 2(1− q)N

κ+ (1− q)N
max

{
(ν − 1)(1− q)N − κ, 0

}
(A.8)

If this inequality holds, rf (N) = ĉ is optimal, and thus the OM-contract is given by rOMs = rOMf = ĉ

and xOM and eOM such that rOMf (N) = 2xOM +eOM = ĉ and (A.6) binds. Hence, we characterized
all cases in which rf (N) = ĉ is optimal.

Optimality of rs = rs = ĉ and rf (N) < ĉ
Suppose now that condition (A.8) does not hold while still assuming rs = rf = ĉ. Then the

analysis above shows that setting e = 0 is optimal. Since k > kN and thus k > (ν − 1)(1 − q)N ,
the collateral amount x is pinned down by saturating constraint (A.6) with e = 0. In addition, a
contract with the conjectured properties is optimal if decreasing x when (A.6) binds decreases the
objective function. We have in this case

U ′(x) =
ν − 1

2

∂E[ro(d)]

∂x |e=0,(A.6) binds
− k =

ν − 1

2
(2− qβ)− k ≡ k̄ − k (A.9)

The conjecture is thus optimal if k ∈ [kN , k̄]. This corresponds to Case 2 of Proposition 3.
Optimality of rs, rf < ĉ
Suppose finally that k ≥ k̄. Then, again setting e = 0 is optimal because k̄ ≥ kN with equality

only for κ = 0. But in this case, it is also optimal to set x to 0 since the marginal benefit of
collateral is given by (A.9). The optimal contract is then characterized by eOM = 0, xOM = 0. The
values of rs and rf are pinned down by the binding pledgeability constraint (A.6), that is,

rs +
1− q
q

[
1− (1− q)N−1

]
rf = β

In particular the contract such that rs = β and rf = 0 is optimal, which corresponds to Case 3 of
Proposition 3. This concludes the proof.

A.5 Proof of Corollary 1

We prove the result here in the case where monitoring is imposed. The proof for the case where
investors can choose whether to monitor is in Internet Appendix E.1. We verify that the OM-
contracts of Proposition 3 satisfy Definition 2 only in Cases 1a and 3.

For Case 1a, we have ro(d) = 2x = po(d) + x for all d. For Case 3, we have rs(d) = ps(d) = β
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and rf (d) = 0 = pf (d). Hence, both contracts satisfy Definition 2.
The contract in Case 1b requires CCP capital and thus cannot bee implemented bilaterally.

Indeed, the bilateral restriction in Definition 2 and the CCP’s participation constraint (PCCCP )
imply e = 0. For Case 2, we have rOMf (d) = ĉ > pOMf (d) + xOM for all d < N , and thus this
contract also violates Definition 2.

It follows that the upper bound for the essential CCP region is given by k̄. The lower bound
kess corresponds to the upper bound of the region for Case 1a and it is thus given by kess =
min{(ν − 1)(1− q)N , κ}. This concludes the proof.

A.6 Proof of Corollary 2

The optimal bilateral contract is obtained from Proposition 3 with monitoring and A.1 without
monitoring respectively, setting N = 1 and imposing e = 0.

We first show that when k is close to the upper bound k̄ of the essential CCP region, the
bilateral contract requires strictly less collateral. By Proposition 3, for k lower but close to k̄, the
optimal contract is given by Case 2 of Proposition 3 for all N ≥ 1. Equation (10) shows that the
collateral requirement xOM is increasing in N because ĉ ≤ 2 under Assumption 1. This proves that
a bilateral contract requires less collateral for k close to k̄.

We now show that for k above but close to kess the bilateral contract requires strictly more
collateral. Remember that kess = min{κ, (ν − 1)(1 − q)N}. If kess = κ, the optimal multilateral
contract is given by Case 1b of Proposition 3 while the optimal bilateral contract is given by Case
1a. The latter requires strictly more collateral, which proves the result in this case. Suppose instead
that kess = (ν−1)(1−q)N . Then, there exists a range of collateral cost [(ν−1)(1−q)N , (ν−1)(1−q)]
such that the optimal multilateral contract is given by Case 2 of Proposition 3 while the optimal
bilateral contract is given by Case 1a. Again, the latter contract requires strictly more collateral,
which concludes the proof.

A.7 Proof of Proposition 4

We first derive the optimal contract without monitoring in Section A.7.1 and then derive the optimal
monitoring decision in Section A.7.2.

A.7.1 Optimal Contract without Monitoring

We first establish that a single (pooling) contract is offered although investors may have different
ex-post types. Without monitoring, each investor has pledgeability β with probability α or 0 with
probability 1−α. With unobservable types, a menu of contracts could be used to screen investors.
In our environment, however, screening is not possible due to a failure of the Mirrless-Spence
sorting condition. The investor type changes the asset pledgeability but investors’ utility (3) does
not depend on the type. This implies that investors always agree on the best contract in a menu
and separation is not possible.

The result above greatly simplifies the analysis of the optimal contract without monitoring. As
only one contract is offered, we can consider investors ex-ante, that is before their pledgeability
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type is realized. It follows that lack of monitoring simply increases the probability of default of an
investor from 1−q to 1−αq. The collateral cost k, however, is the same because the asset succeeds
with probability q, independently of the investor type.

If follows from these observations that we can derive the optimal contract without monitoring by
adapting Proposition 3 substituting q with αq (while keeping k = qR− 1). We use the superscript

ZZm to indicate that investors are not monitored.

Proposition A.1. Suppose investors are not monitored. There are two thresholds of collateral cost

kZmN = (ν − 1)(1− αq)N +
1

2

2− αqβ − 2(1− αq)N

κ+ (1− αq)N
max

{
(ν − 1)(1− αq)N − κ, 0

}
,

k̄Zm =
1

2
(ν − 1)(2− αqβ)

such that

1. if k ≤ kZmN , a fully collateralized contract is optimal with

(a) no CCP capital and collateral xOM,Zm = ĉ
2 if κ < k

(b) CCP capital eOM,Zm
C = αqβ(2−ĉ)

2(κ+1)αqβ and collateral xOM,Zm = (κ+1)ĉ−αqβ
2(κ+1)−αqβ if κ ≥ k

2. if k ∈ [kZmN , k̄Z
m], a complete LM contract is optimal with rOMs = rOMf = ĉ and

xOM,Zm ≡
[
1− (1− αq)N

]
ĉ− βq

2 [1− (1− αq)N ]− βαq
∈
(

0,
ĉ

2

)
, (A.10)

3. if k ≥ k̄Zm, the contract in Case 3 of Proposition 3 is optimal.

A.7.2 Optimal monitoring decision

We first prove that monitoring is optimal if the collateral cost is above a threshold k̂m, if it exists.
We then characterize k̂m to prove the properties listed in Proposition 4.

Step 1. Threshold condition
The argument relies on three claims.
The first claim is that for a given monitoring choice, the difference in investor’s utility across

consecutive contracts is strictly increasing with k. A contract is consecutive to a reference contract
if it is the next optimal contract when increasing k. For example, with monitoring the contract
consecutive to the Case 1a contract is the Case 1b contract if κ ≤ (ν − 1)(1− q)N , and the Case 2
contract if κ > (ν−1)(1−q)N (see Figure 3). We only present the argument when investors monitor
because the argument without monitoring is similar. For each Case of Proposition 3, the contract
terms do not depend on k. Hence to prove the claim, it is enough to show that a consecutive
contract uses strictly less collateral. This result is straightforward for all cases except for Case 1b
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contract, with consecutive contract the Case 2 contract. Using Proposition 3 to compare collateral
requirements, the desired result also holds for this case because

(κ+ 1)ĉ− qβ
2(κ+ 1)− qβ

≥ ĉ− qβ
2− qβ

>
ĉ
[
1− (1− q)N

]
− qβ

2
[
1− (1− q)N

]
− qβ

where the leftmost (rightmost) term is xOM for Case 1b (Case 2). Both inequalities follow from
the observation that the mapping x 7→ xĉ−qβ

2x−qβ is strictly increasing because ĉ < 2.
The second claim is that for a given contract type, the collateral requirement is lower when

investors monitor. A direct comparison between Proposition 3 and A.1 shows the desired inequality
holds strictly in all cases except Case 1a when both contracts are the same and thus require the
same amount of collateral.

The third claims is that the thresholds between consecutive contracts are strictly higher under
no monitoring. The comparison between k̄ and k̄Zm shows immediately that k̄ < k̄Zm. We now
compare kN to kZmN . First, if κ ≥ (ν − 1)(1− αq)N , we have

kN = (ν − 1)(1− q)N < (ν − 1)(1− αq)N = kZmN

Next, if κ ∈ [(ν − 1)(1 − q)N , (ν − 1)(1 − αq)N ], we have kN = (ν − 1)(1 − q)N while kZmN ≥
(ν − 1)(1 − αq)N . Finally, when κ ≤ (ν − 1)(1 − q)N ,, observe that both thresholds are linearly
decreasing functions of κ. Besides,

lim
κ→0

kN = k̄ < k̄Zm = lim
κ→0

kZmN

This proves the result in all possible cases.
These three claims together imply that the benefit from monitoring is strictly increasing with k

except when k ≤ kess where it is constant and equal to −ψ. Indeed, in this latter case, the contract
is the same with or without monitoring.

Step 2. Characterization of threshold k̂m

The results in Step 1 show that, if it exists, the collateral cost threshold k̂m above which
monitoring is optimal satisfies k̂m > kess for ψ > 0. For the degenerate case ψ = 0, any value in
[0, kess] is admissible.

Since kess < k̄ by Corollary 1, to show that the threshold exists, it is enough to show that
monitoring is optimal for k = k̄. When k = k̄, by Proposition A.1, the optimal contract without
monitoring is given by Case 1b or 2. In the first case, that is when kZmN ≥ k̄, investors’ utility is
given by

UZm|k=k̄
= qR+

[
(ν − 1)− k̄

] ĉ
2

+
1

2

[
k̄ − κ

]
eOM,Zm

= qR+ qβ
ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ

2(κ+ 1)− qαβ
max

{
0, (2− qβ)− 2κ

ν − 1

}
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An upper bound for UZm|k=k̄
is obtained by letting κ→ 0. We get

UZm|k=k̄
≤ qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

When kZmN ≤ k̄, the optimal contract without monitoring is the Case 2 contract, and

UZm|k=k̄
= qR+

[
(ν − 1)− k̄

] ĉ
2

+ (k − kZmN )

(
ĉ

2
− xOM,Zm

)
= qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

2− qβ − 2(1− αq)N

2
[
1− (1− αq)N

]
− βαq

βαq

(
1− ĉ

2

)
The second term of the last expression is increasing in N . Hence, an upper bound for UZm|k=k̄

is

obtained by letting N →∞, that is,

UZm|k=k̄
≤ qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

which is the same upper bound we obtained in the first case.
Hence, the utility without monitoring is lower for k = k̄ if

0 ≤ Uk=k̄ −
{
qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

}
≤ qR+

ν − 1

2
qβ − ψ −

{
qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

}
≤ ν − 1

2
qβ

(
1− ĉ

2

)
− ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ
− ψ

≤ βq(1− α)(ν − 1)

2− βαq

(
1− ĉ

2

)
− ψ

It is easy to verify that the first term on the right-hand-side of the last inequality is strictly above
the upper bound ψ̄ for the monitoring cost. Hence, under Assumption 2, monitoring is optimal for
k = k̄, and thus the monitoring threshold k̂m exists and it lies strictly below k̄. This concludes the
proof.

A.8 Proof of Lemma 2

Suppose first k ∈ [k̂m, kN ]. In this case, by Proposition 3, the OM-contract is given by Case 1,
with rOMs = rOMf = rOMf (N). This implies the bilateral monitoring constraint (MICbm) is violated.
Suppose now that k ≥ kN . Under Assumption 4, the OM-contract is given by Case 2 of Proposition
3, with rOMs = rOMf = ĉ, eOM = 0 and xOM given by equation (10). Plugging these variables into
the bilateral monitoring constraint (MICbm), we obtain condition (11).
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A.9 Proof of Proposition 5

We first rewrite the bilateral monitoring constraint (MICbm) using the results from Proposition 1.

ψ

1− α
≤ 1

2

[
rs − rf + (1− q)N−1 (rf − (2x+ e))

]
+
ν − 1

2

[
min{rs, ĉ} −

( [
1− (1− q)N−1

]
min{rf , ĉ}+ (1− qN−1)((2x+ e))

)]
(A.11)

The optimal contract under bilateral monitoring solves problem (A.3) under limited pledgeabil-
ity constraint (A.6) and constraint (A.11) which correspond respectively to constraints (LP) and
(MICbm) in the Investor’s Problem. In Step 1, we show that constraints (LP) and (MICbm) bind.
In Step 2, we derive the threshold k̄bm. Finally in Step 3, we characterize the optimal distortion to
the OM-contract of Proposition 3.

Step 1. (LP) and (MICbm) bind
Under Assumption 4, constraint (A.11) binds because the OM-contract in Proposition 3 violates

(A.11). The limited pledgeability constraint (LP) must also bind. If it does not, decrease x while
keeping rs and rf constant. This change relaxes constraint (A.11). Hence, the marginal effect on
investors’ utility from this perturbation is given by −U ′(x) in equation (A.5), which is positive
because k > k̄N by Assumption 4.

Step 2. Threshold k̄bm and optimal contract
We now derive the optimal distortion to the Case 2 contract of Proposition 3. By Proposition

3, it is optimal to set rs ≥ ĉ under Assumption 4 when constraint (A.11) is not imposed. Hence, it
is still optimal under additional constraint (A.11) because increasing rs relaxes this constraint. It
is also optimal to increase rf until (A.11) binds. Under Assumption 4, this value denoted rf must
lie strictly below ĉ.

The optimal value of rf , and thus the optimal contract itself, depend on the marginal value of
increasing rf when rf ∈ [rf , ĉ]. From (A.6) and (A.11), we have (for given x and e).

qrs + (1− q)
[
rf − (1− q)N−1(rf − 2x− e)

]
= (2− qβ)x+ qβ − κe (A.12)

rs − v
[
rf − (1− q)N−1(rf − 2x− e)

]
=

2ψ

q(1− α)
− (ν − 1)ĉ (A.13)

Hence, we obtain

(1− q)
[
rf − (1− q)N−1(rf − 2x− e)

]
=

(1− q)
[
(2− qβ)x+ qβ − κe

]
− q(1− q)

[
2ψ
1−α − (ν − 1)ĉ

]
qv + (1− q)

We can plug this relationship into the expression for investors’ utility in (A.3). Because rs ≥ ĉ, the
utility U is then a function of x and e only. It follows that increasing x to increase rf above rf is
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profitable if and only if

k ≤ ν − 1

2

1− q
1− q + νq

(2− qβ) =
1− q

1− q + νq
k̄ ≡ k̄bm < k̄

Step 3. Optimal distortion
CCP capital e tightens monitoring constraint (A.11). This observation implies that setting

e = 0 remains optimal when k > kN , as in the observable monitoring case. The analysis in Step 2
then shows that only two contracts are possible depending on the ranking between k and k̄bm.

Case i) k ≤ k̄bm
In this case, r∗f = ĉ. Setting e∗ = 0 and solving for x using (A.12) and (A.13), we obtain

ĉ
[
1− q − (1− q)N + q − νq(1− q)N−1

]
− qβ +

2ψ

1− α
=
(

2− 2(1− q)N−1
[
νq + 1− q

]
− βq

)
x

Hence,

x∗ =
ĉ
(

1− (1− q)N−1
[
νq + 1− q

])
− qβ + 2ψ

1−α

2− 2(1− q)N−1
[
νq + 1− q

]
− βq

> xOM (A.14)

It can easily be verified that the conjecture 2x∗ ≤ ĉ holds under Assumption 2.
Case ii) k ≥ k̄bm
In this case, r∗s = ĉ. We then use equations (A.12) and (A.13) to solve for r∗f and x∗ setting

again e∗ = 0. We obtain

x∗ =
ĉ− qβ − 2ψ(1−q)

qν(1−α)

2− qβ
< xOM (A.15)

r∗f =
ĉ− 2(1− q)N−1x∗ − 2ψ

νq(1−α)

1− (1− q)N−1
(A.16)

This concludes the proof.

A.10 Proof of Proposition 6

We first show the results related to the CCP compensation (Step 1). We then derive the optimal
contract (Step 2).

Step 1. CCP compensation schedule
We first show that the CCP should only be compensated in state d = 0. Define the incentive

power of a state d ∈ {0, 1, ...N} as

IC(d) = 1− P[d| shirk]

P[d| effort]
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with P[d| a] the probability of state d under action a. We have P[d| effort] =

(
N
d

)
(1 − q)dqN−d)

while the term P[d| shirk] depends on the number of investor pairs the CCP does not monitor. If
it deviates by monitoring only nm ∈ [|0, N − 1|] investors,

P[d| shirk] =
d∑

dm=0

(
nm
dm

)(
N − nm
d− dm

)
(1− q)dmqnm−dm(1− αq)d−dm(αq)N−nm−d+dm

After some manipulation, we obtain

P[d| shirk]

P[d| effort]
=

∑d
dm=0

(
nm
dm

)(
N − nm
d− dm

)[
1−αq
α(1−q)

]d−dm
(
N
d

) =

d∑
dm=0

wnm(dm)

[
1− αq
α(1− q)

]d−dm

where
∑d

dm=0wnm(dm) = 1 by Vandermonde’s identity. Because 1−αq
α(1−q) > 1, the ratio above is

minimized by setting d = 0 and the minimum is strict. Hence, IC(d) is maximized for d = 0.
We will now define π(0) as the incentive payment such that (MICcm) holds as an equality. It is

defined by
NqNπ(0)− 2Nψ = max

nm∈[|0,..N−1|]

{
NqNαN−nmπ(0)− 2nmψ

}
(A.17)

where on the right-hand-side, nm is the number of investor pairs the CCP monitors when it deviates.
The relevant deviation, however, is to monitor no investor. To prove this statement, we need to
show that the mapping g : y → y(1− eylog(α))−1 is increasing with y for y ≥ 1. We have

g′(y) ∝ 1− αy + yαylog(α) ≥ 1− α(1− log(α))

The inequality obtains because y ≥ 1 and α ≤ 1. We thus have g′(y) ≥ 0 because α 7→ α(1−log(α))
is increasing and limα→1 α(1 − log(α)) = 1. Setting nm = 0 on the right-hand side of (A.17), we
find that π(0) is given by (12). With π(0), e given by (13) is the amount of capital such that
(PCCCP ) binds.

Step 2. Optimal Contract
Observe first that the expected compensation to the CCP is a fixed cost. Hence, under Assump-

tion 4, the complete loss mutualization contract of Proposition 3 is still optimal under unobservable
monitoring. We thus have r∗s = r∗f = ĉ, and we are left to determine x∗ and e∗.

Step 2.i) e∗ = e
Building on the proof of Proposition 3, we need to determine the marginal value of e on the

investors’ utility function when r∗s = r∗f = ĉ and constraint (LP) binds. The key observation is that
the CCP’s participation constraint (PCCCP ) is slack for any e ∈ [0, e] when using the minimum
compensation contract given by (12). When e is increased over e, however, (PCCCP ) is tight, and
any increase in CCP capital requires an increase in expected compensation by a factor κ+1. Using
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formulation (A.6) of constraint (LP), we obtain the following result

U ′(e)|r∗s=r∗f=ĉ, (LP)binds =
∂U

∂e
+
∂U

∂x

∂x

∂e

=


ν−1

2 (1− q)N − [(ν − 1)(1− q)N − k] 1−(1−q)N
2−2(1−q)N−βq if e ≤ e

[kN − k] κ+(1−q)N
2−qβ−2(1−q)N if e > e

Since k > kN , U ′(e) ≥ 0 if and only if e ≤ e. It follows that the optimal choice of CCP capital is
e∗ = e. Note that ∂x

∂e < 0, that is, the amount of collateral decreases with e for e < e, as claimed
in the main text.

We are thus left to determine the optimal collateral amount. To solve for x∗, we saturate the
limited pledgeability constraint (LP) to obtain

ĉ
[
1− (1− q)N

]
+ (1− q)N (2x∗ + e∗) + E[π∗] = qβ + (2− qβ)x∗ + e∗ (A.18)

We obtain

x∗ =
ĉ
[
1− (1− q)N

]
− βq

2 [1− (1− q)N ]− βq
+

(
κ+ 1−

[
1− (1− q)N

] )
e∗ + 2ψ

2 [1− (1− q)N ]− βq
(A.19)

= xOM +
2ψ

(κ+ 1)(1− αN )

κ+ 1− αN
[
1− (1− q)N

]
2 [1− (1− q)N ]− βq

(A.20)

Finally, we need to verify our conjecture that 2x∗+ e∗ ≤ ĉ. Using the first expression for x∗ above,
this inequality is equivalent to

ψ ≤ 1− αN

2− βqαN

κ+1

βq

(
1− ĉ

2

)
The right-hand side is increasing with N . Hence, the condition above holds for all N if it holds for
N = 1. This latter condition is implied by Assumption 2.

A.11 Proof of Proposition 7

We first compare centralized monitoring to no monitoring. To avoid confusion, we add a superscript
cm to variables for the optimal centralized monitoring contract. For large N , Proposition A.1 shows
that the OM-contract without monitoring is given by Case 2. This is because, the condition k ≤ k̄
in Assumption 4 implies k ≤ k̄Zm, and the lower bound of the region kZmN converges to 0 as N grows
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large. Using Proposition 6 and A.1, we derive the following expressions for investors’ utility:

U∗,cm = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− q)N

]( ĉ
2
− x∗,cm

)
− 1

2

[
(νcm − 1)− (ν − 1)(1− q)N−1

]
e∗ − ψ (A.21)

UOM,Zm = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− αq)N

]( ĉ
2
− xOM,Zm

)
(A.22)

From Proposition 6 and A.1 again, we have

ĉ

2
− x∗,cm =

βq
(
1− ĉ

2

)
2
[
1− (1− q)N

]
− βq

− 2ψ

(κ+ 1)(1− αN )

κ+ 1− αN
[
1− (1− q)N

]
2
[
1− (1− q)N

]
− βq

ĉ

2
− xOM,Zm =

βαq

2
[
1− (1− αq)N

]
− βαq

(
1− ĉ

2

)
When N → ∞, e∗ converges to 0 at an exponential rate by Proposition 6. The second term
of ĉ

2 − xcm,∗ above also converges at an exponential rate as N → ∞. In the limit, centralized
monitoring dominates no monitoring, that is, U∗,cm ≥ UOM,Zm if and only if

k

2− βq

[
βq

(
1− ĉ

2

)
− 2ψ

]
− ψ ≥ k

2− βαq
βαq

(
1− ĉ

2

)
Under Assumption 2,

ψ ≤ βq(1− α)

2− βαq

(
1− ĉ

2

)
Hence, the condition can be expressed as a lower bound k̂cm on k with

k̂cm =
2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

We now turn to the comparison between centralized monitoring and bilateral monitoring. We
first consider Case 1 of Proposition 5. In this case, investors’ utility can be written as

U∗ = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− q)N

]( ĉ
2
− x∗

)
− ψ (A.23)

Using equations (A.21) and (A.23), centralized monitoring dominates Case 1 of bilateral mon-
itoring if and only if(
k−(ν−1)(1−q)N

)(
xcm,∗−xOM

)
+

1

2

(
(νcm−1)−(ν−1)(1−q)N

)
e∗ ≤

(
k−(ν−1)(1−q)N

)(
x∗−xOM

)
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Using the expression for the collateral requirement in (A.14), we obtain

x∗ − xOM =
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
(ĉ− 2x∗)

=
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
βq(2− ĉ)− 4ψ

1−α
2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

We thus obtain the following condition

1

2

(
(νcm − 1)− (ν − 1)(1− q)N

)
e∗ ≤

[
k − (ν − 1)(1− q)N

]
(x∗ − x∗,cm) (A.24)

1

2

(
(νcm − 1)− (ν − 1)(1− q)N

)
e∗ ≤ k − (ν − 1)(1− q)N

2(1− (1− q)N )− βq

[
2ψ

1− α
− 2ψ

1− αN

−
vq(1− q)N−1

(
βq(2− ĉ)− 4ψ

1−α

)
2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

]
(A.25)

Observe that the terms which depend on N are exponential in N . Taking the limit N → ∞, the
left-hand side converges to 0, while the right hand side converges to a strictly positive number if
and only if α > 0. If α = 0, the right-hand side converges to 0.

Finally, we turn to the comparison between centralized monitoring and Case 2 of Proposition
5 for bilateral monitoring. Centralized monitoring dominates if and only if(
k−(ν−1)(1−q)N

)(
xcm,∗−xOM

)
+

1

2

(
(νcm−1)−(ν−1)(1−q)N

)
e∗ ≤

[
ν − 1

2
(2− qβ)− k

] (
xOM − x∗

)
Using equation (10) for xOM and equation (A.15) for x∗, we obtain

xOM − x∗ =
2ψ(1− q)

vq(1− α)(2− qβ)
− βq(2− ĉ)(1− q)N[

2− qβ]
[
2(1− (1− q)N )− βq

]
We observe again that the terms which depend onN are exponential inN . Taking the limitN →∞,
the condition for centralized monitoring to dominate Case 2 of bilateral monitoring becomes

ν−1
2 (2− qβ)− k

2− qβ
2ψ(1− q)
vq(1− α)

≥ k

2− βq
2ψ

This condition holds if and only if k ≤ k̄cm with

k̄cm ≡ 1− q
1− q + vq(1− α)

k̄ < k̄

Finally, we are left to derive the maximum value of the monitoring cost ψ such that the interval
[k̂cm, k̄cm] is non-empty. Observe that k̄cm is independent of ψ while k̂cm is strictly increasing with
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ψ. Solving for the value of ψ such that k̂cm = k̄cm, we get

0 =
1− q

1− q + vq(1− α)

ν − 1

2
(2− qβ)− 2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

0 = (1− q)(ν − 1)
βq(1− α)

2− βαq
− (1− q)(ν − 1)ψ − ψ

[
1− q + vq(1− α)

]
ψ =

βq(1− q)(1− α)(ν − 1)

v(2− βαq)(1− αq)

(
1− ĉ

2

)
This is the first argument of the min in the expression for the upper bound on ψ given by Assumption
2. Hence for any ψ < ψ̄, the interval [k̂cm, k̄] is non-empty.

A.12 Proof of Proposition 8

We first prove that a CCP would never pledge capital if it had the bargaining power. We then
show that an utilitarian planner maximizing total surplus may choose a lower level of capital than
investors.

The first result follows from our analysis of the OM-contract in Proposition 3 and the contracts
with unobservable monitoring in Proposition 5 and 6. We showed that under Assumption 4 the
net value of CCP capital to investors is negative when its cost is κ+ 1. Suppose then the CCP has
the bargaining power and consider an allocation without CCP capital. For every unit it pledges,
the CCP must earn an extra profit at least equal to κ+ 1 which is above the investors’ willingness
to pay for capital. Hence, the CCP prefers not to pledge capital.

To prove the second result, consider the allocation in the proof of Proposition 6, indexed by the
amount of capital e ∈ [0, e∗] with e∗ the investors’ choice. By linearity, it is enough to compare the
allocations with e = 0 and e = e∗. Let U(e) denote the investor’s utility as a function of e ∈ [0, e∗],

U(e) = qR+
ν − 1− k

2
ĉ− 1

2
E[π∗] +

[
k − (ν − 1)(1− q)N

]( ĉ
2
− x− e

2

)
+

1

2

[
1 + k

]
e

where x is a function of e given implicitly by equation (A.18) replacing e∗ with e ∈ [0, e∗]. With
e = e∗ the CCP breaks even, while with e = 0, the CCP’s profit is equal to N(κ+ 1)e∗. Hence, for
a planner maximizing total surplus, the allocation with e = e∗ dominates if and only if

0 ≤ 2NU(e∗)− (2NU(e = 0) +N(κ+ 1)e∗C)

⇔ 0 ≤
[
k − (ν − 1)(1− q)N

](
x(e = 0)− x∗ − e∗

2

)
−
[
κ− k

]e∗C
2

⇔ 0 ≤
{
k − (ν − 1)(1− q)N

k̄ − (ν − 1)(1− q)N
βq(ν − 1)−

[
κ− k

]} e∗C
2

When κ is high enough, this condition does not hold, which implies the planner’s choice is e = 0.
This is lower than the investors’ choice who always prefer e = e∗.
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B Proof of Empirical Prediction 3

CCP capital is given by equation (13) and collateral x∗ in a third-party CCP is given by equation
(A.20) in the proof of Proposition 6. We have

rxe(N) ≡ 2Nx∗

Ne∗
=

2x∗

e∗
= 2

κ+ (1− q)N +
ĉ[1−(1−q)N ]−βq+2ψ

e∗(N)

2 [1− (1− q)N ]− βq

Taking the first-order derivative with respect to N , we obtain

r′xe(N) = −2
∂e∗

∂N

(e∗)2

ĉ
[
1− (1− q)N

]
− βq + 2ψ

2 [1− (1− q)N ]− βq

− 2 log(1− q)(1− q)N
(
ĉ
e∗ − 1

)
(2− βq)− 2

(
ĉ−βq+2ψ

e∗ + κ
)

(2 [1− (1− q)N ]− βq)2

The term in the first line is positive because ∂e∗

∂N < 0, that is, CCP capital per investor is decreasing
in N . Hence to show that r′xe(N) > 0, it is enough to show that the numerator of the second term,
call it A, is positive. Indeed − log(1− q)(1− q)N > 0. We have

e∗A = (ĉ− e∗)(2− βq)− 2(ĉ− βq + 2ψ + κe∗)

= βq(2− ĉ)− 4ψ − 2(κ+ 1)e∗ + βqe∗

= βq(2− ĉ)− 4ψ

1− αN
+ βq

2ψαN

(κ+ 1)(1− αN )
= βq(2− ĉ)− 2ψ

1− αN

[
2− βqαN

κ+ 1

]
Assumption 2 implies this expression is positive. Hence rxe is increasing with N which implies
e∗

x∗+e∗ is decreasing with N . This concludes the proof.
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Internet Appendix

B General Bilateral Monitoring Scheme

In this section, we contrast two bilateral monitoring schemes. With counterparty monitoring, each
S-investor monitors one S′-investor, as in the main text. With peer monitoring, each S-investor
monitors another S-investor. In both cases, each investor is only monitored once.

We first show in Section B.1 that peer monitoring is vulnerable to a collective deviation in which
all investors of the same type, say, S-investors, shirk. Collective shirking is very attractive under
peer monitoring because it allows S-investors’ to default on their liability vis-a-vis S′-investors,
without jeopardizing the hedging benefits they receive from S′-investors. We then argue in Sec-
tion B.2 that unlike peer monitoring, counterparty monitoring can be designed to rule out these
deviations.

B.1 Peer monitoring

Consider a bilateral peer monitoring scheme in which each S-investor is monitored by another S-
investor. Monitoring needs not be reciprocal, that is, an investor needs not be the monitor of her
monitor. We show that a wide class of contracts including the optimal contract under observable
monitoring cannot be implemented under peer monitoring when monitoring is unobservable and
investors can collectively deviate.

Proposition B.1. No contract such that the average receiver transfer r̄(d) ≡ 1
N

∑N
i=1 ri(d) is

decreasing in the number d of failing payers can be implemented under peer monitoring if investors
can collectively shirk.

Proposition B.1 is a powerful result for two reasons. First, as we will show, the result holds even
if we allow for the general payer transfers such that an S-investor payment depends on the outcome
of the S-investor she monitors. Second, contracts for which total receiver transfers decrease in the
number of failing payers are sensible: less resources should be available for receiver transfers if
more payers fail.42 In particular, this class of contracts include the loss mutualization contract of
Proposition 3, which is optimal when monitoring is observable for k ∈ [k̂m, k̄]. To see this, observe
that for the OM-contract,

r̄(d) =

{
ĉ if d = 0, ..., N − 1

2xOM if d = N
, (B.1)

which is decreasing in d because 2xOM < ĉ by Proposition 3. We note that [k̂m, k̄] is the relevant
range of collateral cost because monitoring is suboptimal if k < k̂m by Proposition 7, while if k > k̄
there is no loss mutualization by Proposition 3.

42We note that this effect is muted under Assumption 3 because one surviving payer has enough resources
ex-post to cover the hedging needs of all receivers. When we relax this assumption, however, as in Internet
Appendix C, the optimal contract has this property.
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We provide some intuition for the result before the formal proof. Whether investors jointly
monitor or jointly shirk, they are all symmetric as they succeed idiosyncratically with a common
probability qf ∈ {αq, q}. We thus show that the collective deviation under peer monitoring by,
say, S-investors, can be seen as the deviation of a single representative S-investor who must pay
N(r̄(d)− x) to S′-investors when d payers default. By deviating, the representative agent draws d
from a binomial distribution B(N, 1− αq) instead of B(N, 1− q). The former puts higher weights
on large values of q. Hence, if the average receiver transfer r̄(d) decreases in d, the representative
S-investor’s expected liability is lowest when she shirks. By shirking, S-investors thus save the
monitoring cost and reduce their expected liability vis-à-vis S′-investors. This explains why such
an allocation cannot be implemented under peer monitoring if investors can collectively shirk.

The formal proof of Proposition B.1 relies on an equivalence result. We show in Claim B.1
that we can consider a representative agent to assess the benefits of collective deviations. Then we
show that the representative agent prefers shirking when the average payer transfer satisfies the
conditions in Proposition B.1.

Claim B.1. Let {r̄(d)}d=0,..,N an average receiver transfer schedule be given. Incentives to jointly
deviate under peer monitoring are identical for all contracts with payer transfers financing {r̄(d)}d=0,..,N .

Proof. We first define the average payer transfer schedule {p̄(d)}d=0,..,N that finances {r̄(d)}d=0,..,N .
From aggregate budget constraint (6), we get

p̄(d) = r̄(d)− x (B.2)

Next, define the collective monitoring choice m ∈ {0, 1} such that all (no) investors monitor
if m = 1 (m = 0). We also let q(m) be the probability of success of each investor for a given m,
with q(0) = αq andq(1) = q. A sufficient statistic to assess the benefits of a deviation for each
investor is the expected payment. This observation follows from equation (A.1) and the fact that
when S-investors deviate, their receiver transfers are not affected under peer monitoring.

We now show that for any contract that finances {r̄(d)}d=0,..,N , the expected liability of each
investor is equal to the expected liability of a representative investor with payment schedule p̄(d).
We make this point considering the most general payment schedules. Assign an arbitrary rank
i ∈ {1, .., N} to each investor and denote 1 (0) for success (failure). Define Od the set of realizations
such that d investors default. Formally,

Od =

{
o ∈ {0, 1}N

∣∣∣ N∑
i=1

o(i) = N − d

}
, with |Od| =

(
N
d

)
The binary variable o(i) ∈ {0, 1} is the status of investor i for outcome o. For a given d, an
investor’s payment as a function p(i,o) may depend on the identity i of the payer and the outcome
o ∈ Od. This notation allows us to extend Definition 1. In particular, an investor’s payment may
depend on the outcome of the investor she monitors.

The first observation is that for all od ∈ Od, the sum of payer transfers only depends on d. We
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have for all od ∈ Od,
N∑
i=1

p(i, od) = N(r̄(d)− x) = Np̄(d) (B.3)

with p̄(d) the representative investor’s payment define in (B.2). The first equality in (B.3) follows
from aggregate budget constraint (6).

Next, by symmetry, for a given d, a payer’s expected payment across all outcomes in Od does
not depend on the identity of the payer. This result arises because all outcomes od ∈ Od are equally
likely since default is idiosyncratic and all investors default with the same probability. We have

Eod [p(i, od) | od ∈ Od] =
1(
N
d

) ∑
od∈Od

p(i, od)

The right-hand-side is independent of i. To see this, consider investor j 6= i. By symmetry, there
exists a one-to-one mapping hij : Od 7→ Od such that for all od ∈ Od, p(i, od) = p(j, hij(od)). Hence,

∑
od∈Od

p(i, od) =
∑
od∈Od

p(j, hij(od)) =
∑
od∈Od

p(j, od) =

(
N
d

)
p̄(d) (B.4)

The second equality follows from re-arranging outcomes od ∈ Od. The last inequality follows from
(B.3) and the fact that the left-hand-side of (B.4) is independent of i.

We can thus prove the result that the expected liability of each investor is equal to the expected
liability of the representative investor, that is,

Ed,od [p(i, od)] =
N∑
d=0

Eod [p(i, od) | od ∈ Od]
(
N
d

)
q(m)N−d(1− q(m))N−1

=

N∑
d=0

q(m)N−d(1− q(m))N−1

(
N
d

)
p̄(d) (B.5)

This proves our claim. Any contract with payer transfers financing some given receiver transfer
schedule {r̄(d)}d=0,..,N has the same representative-investor payment p̄(d) by equation (B.3). The
expected liability of each investor is the expected liability of the representative investor. Finally, be-
cause investors’ incentive to deviate depend only on the expected payer transfer (and the monitoring
cost), these incentives to deviate are the same for any contract that finances {r̄(d)}d=0,..,N

We can now prove the second part of our result using the representative-investor equivalence
developed in the proof of Claim B.1. Adapting equation (A.1), an S-investor’s utility under a joint
deviation for a given contract is

E[U |m = 0] =
1

2

(
q(1− x)2R+ x− Ẽ[po(d)]

)
+

1

2

(
E[ro(d)] + (ν − 1)E

[
min{ro(d), ĉ}

])
(B.6)

Hence, a joint deviation is profitable if E[U |m = 0] in (B.6) is higher than investors’ utility E[U |m =
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1] when monitoring given by (A.1). Subtracting (A.1) from (B.6), this condition writes

0 ≤ ψ +
1

2

[
E[po|m = 1]− E[po|m = 0]

]
(B.7)

Hence, to show that a deviation is profitable, it is enough to show that the second term is positive.
We show in the proof of Claim B.1 that for E[po] is equal to E[p̄(d)] with p̄(d) defined in (B.3).

Equation (B.3) further shows that p̄ decreases in d if and only if r̄ decreases in d. Besides, the
binomial distribution B(N, 1− q(0)) first-order stochastically dominates B(N, 1− q(1)). Hence, if p̄
decreases in d, we have E[p̄(d)|m = 0] ≤ E[p̄(d)|m = 1]. This proves that the second term of (B.7)
is positive under the assumptions of Proposition B.1, and, thus, that a deviation to collectively
shirk is strictly profitable. This concludes the proof.

B.2 Robustness of Counterparty Monitoring

We showed that collective deviations undermine peer monitoring. To argue that bilateral counter-
party monitoring is preferable, however, we must show that it can be made robust to such joint
deviations. Note first that reciprocal counterparty monitoring, a particular case of counterparty
monitoring, is fragile to a joint deviation in which investors in a pair collude not to monitor each
other. The intuition is that an investor benefits from not being monitored because she reduces her
expected liability. A joint deviation allows both investors in a pair to benefit in a quid-pro-quo.43

We now explain how to make bilateral counterparty monitoring robust to joint deviations. As
observed in footnote 21, bilateral counterparty monitoring needs not be reciprocal. Let us then rank
S-investors with an arbitrary index iS ∈ {1, ...N}. Consider a bilateral counterparty monitoring
scheme such that investor iS monitors investor iS′ , but investor iS′ monitors investor (i+1)S , and so
on. This monitoring scheme blocks the pairwise deviation that undermines reciprocal monitoring.
An investor cannot bribe her monitor to shirk as she cannot return the favor by shirking. Because
an investor’s monitor is now N positions away in the monitoring chain, a collective deviation can
only be implemented if all investors shirk. Hence, the joint deviation is blocked if and only if
investors prefer monitoring to no monitoring. We refer to Proposition 4 for conditions such that
monitoring is optimal.

C Contract with binding resource constraint

We relax Assumption 3 to analyze the situation in which the resource constraint (4) may bind.
To clearly highlight the effect of this assumption, we focus on the parametric case in which CCP
capital is not used, that is, we impose κ ≥ k. As shown in Proposition 3, this implies that e = 0
and π(·) = 0. We further assume monitoring is costless (ψ = 0), which means it is optimal and

43Unlike with peer monitoring, it can be shown that this deviation is not always profitable for the OM-
contract of Proposition 3. However, the incentive constraint at the pair level is tighter than the unilateral
deviation constraint(MICbm).
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(bilaterally) incentive-compatible. This implies we can set rs(d) = rf (d) for all d ∈ {1, ..., N − 1}
without loss of generality (see the discussion following Lemma 1).

We first define r̄N (d, x) as the maximum receiver transfer given a collateral amount x and a
state d ∈ {0, 1, ..N − 1}. Using budget constraint (6) and the resource constraints (4)-(5), we have

r̄N (d, x) ≡ 2x+
N − d
N

(1− x)2R

Assumption 3 is equivalent to r̄N (N−1, 0) ≥ ĉ. We also note that r̄N (N−1, 0) ≥ ĉ implies r̄N (d, 0) ≥
ĉ for all d ∈ {0, 1, ..N − 1} because r̄N (d, x) is decreasing with d. When Assumption 3 does not
hold, that is, when r̄N (N − 1, 0) < ĉ, define x̂N (N − 1) ∈

(
0, ĉ2
)

such that r̄(N − 1, x̂N (N − 1)) = ĉ.
This threshold exists because r̄N (d, x) is increasing with x and r̄N (d, 1) = 2 > ĉ by Assumption 1.

Observe next that Assumption 3 is only sufficient for resource constraint (4) to be slack at the
optimal contract of Proposition 3. In fact, in Cases 1 and 3, the resource constraint (4) holds even
without Assumption 3. In Case 2, constraint (4) still holds for d = N − 1 even when Assumption
3 fails if x̂N (N − 1) < xOM with xOM the optimal collateral requirement in (10). Hence, our
analysis will only differ from that in the main text if both Assumption 3 and this latter condition
are relaxed.

In what follows, we consider the case N = 3, which is the smallest value of N such that the re-
source constraint may bind at the optimal contract. We thus impose r̄3(2, 0) < ĉ and x̂3(2) ≥ xOM|N=3
which can be written in a compact form as

R <
3

2
min

{
ĉ,

βq

1− (1− q)3

}
(A3n)

We now derive the optimal contract for N = 3 under (A3n). The possibility that resource
constraint (4) binds has two effects. First, as the maximum receiver transfer r̄3(2, x) increases with
x, collateral has an additional hedging value in the state of the world with two payers defaults. By
the pledgeability constraint, however, if transfers from payers are reduced due to a lack of resources,
less collateral is needed for incentives. The result below shows how these two effects interact.

Proposition C.1. Let N = 3, ψ = 0 and κ > k. Under Assumption (A3n), there exists a threshold

k3(2) = k3 + (ν − 1)q(1− q)2(3−R) ∈ (k3, k̄)

such that the optimal contract is

1. the contract of Proposition 3 if k < k3 or k > k̄,

2. if k ∈ [k3, k3(2)], the optimal amount of collateral is given by x̃OM = x̂3(2) > xOM , and if
k ∈ [k3(2), k̄], it is given by

x̃OM =

[
q3 + 3q2(1− q)

]
ĉ− qβ + 2q(1− q)2R

2 [1− (1− q)3]− 2q(1− q)2(3−R)− qβ
< xOM (C.1)
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Proof. As explained above, the resource constraint in state d = 2 may only bind in Case 2 of
Proposition 3. Hence, the optimal contract is the same as in Proposition 3 for k 6∈ [k3, k̄].

For the case k ∈ (k3, k̄), we need to determine the collateral amount xIC such that constraint
(LP) binds. By construction, under condition (A3n), this level satisfies xIC < x̂3(2). Building on
the argument in Proposition 3, it is optimal to set the receiver transfer to its maximum value when
the pledgeability constraint (LP) is slack. Hence, we can determine xIC by saturating (LP) and
setting r(0) = r(1) = ĉ, r(2) = r̄3(2, x) and r(3) = 2x. Using budget constraint (6), we obtain

E[ro(d)] =
[
q3 + 3(1− q)q2

]
ĉ+ 3q(1− q)2r̄3(2, x) + (1− q)32x = x(2− qβ) + qβ (C.2)

Solving for x in (C.2), we find xIC as given by equation (C.1). The inequality xIC < xOM obtains
because the proof of Proposition 3 shows that xIC solves the same equation as xOM substituting
r̄3(2, x) for ĉ > r̄3(2, x).

The optimal amount of collateral x̃OM when k ∈ [k3, k̄] is given either by xIC or x̂3(2) because
the marginal value of collateral is piecewise constant, and it jumps only at these points. Totally
differentiating (3) with respect to x, we obtain

U ′(x) =

{
(ν − 1)

[
(1− q)3 + q(1− q)2(3−R)

]
− k if x ∈ [xIC , x̂2(3)]

k2 − k if x ∈ [x̂2(3), ĉ2 ]

To obtain the derivative ∂E[ro(d)]
∂x for the first expression, we use the middle term of equation

(C.2). By definition of k3(2), this first term is equal to k3(2) − k. Hence, as stated in the result,
x̃OM = x̂2(3) is optimal when k ∈ [k3, k3(2)] while x̃OM = xIC is optimal when k ∈ [k3(2), k̄]

Case 2 of Proposition C.1 shows the effect of the resource constraint on the optimal contract.
When Assumption 3 does not hold, a single payer cannot cover the hedging needs of three receivers
if no collateral is pledged. Hence, collateral has a hedging value in the states where all 3 payers
default and 2 out of 3 payers default. By contrast, when Assumption 3 holds, this insurance value is
only enjoyed in the worst default state. This explains why investors optimally post more collateral
than in the optimal contract of Proposition 3 when collateral is relatively cheap.

When the collateral cost is higher, however, that is when k ∈ [k2(3, k̄] investors post less
collateral than in the benchmark. If collateral is expensive, investors forgo this hedging value(s)
of collateral. The collateral requirement is then determined by the pledgeability constraint. Since
payers’ transfers are lower when the resource constraint binds, less collateral is needed.
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D Optimal Monitor with Full Hedging

In this section, we analyze the optimal monitoring scheme when monitoring is unobservable and
the OM-contract features full hedging with CCP capital, that is when k ∈ [k̂m, k̄N ]. In this case,
as shown by Lemma 2, the OM-contract is not incentive-compatible under bilateral monitoring.

The analysis proceeds in three steps, as in the main text. First, we derive the optimal contract
under bilateral monitoring in Section D.1. Section D.2 then characterizes the optimal contract
under centralized monitoring. Finally, we compare these two schemes in Section D.3 to show that
centralized monitoring dominates.

D.1 Bilateral Monitoring

Proposition D.1 (Optimal contract under bilateral monitoring). When k ∈ [k̂m, k̄N ], there exists
a threshold kbmN such that the optimal contract with incentive-compatible bilateral monitoring is

1. if k ∈ [k̂m, kbmN ], r∗s = ĉ+ 2ψ
q(1−α) , r∗f = ĉ, e∗ = eOM −

4ψ
1−α

2(κ+1)−qβ and x∗ = xOM +
2ψ
1−α

2(κ+1)−qβ ;

2. if k ∈ [kbmN , kbmN ], the loss mutualization contract of Proposition 5.

Proof. The proof is in two Steps. First, we show that when monitoring is unobservable, the frontier
between the full-hedging contract and the loss mutualization contract shifts from kN to kbmN . This
explains the second case of Proposition D.1. Second, we characterize the full-hedging contract of
case 1 under unobservable monitoring.

Step 1. Threshold kbmN
By arguments similar to that of Proposition 3 and 5, we can establish that both constraints (LP)

and (MICbm) must bind. Like kN in Proposition 3, the threshold kbmN is the value of k such that
the total marginal effect of CCP capital on investors’ utility is equal to 0 when rf = ĉ. Consider
then a perturbation ∆e. Equations (A.12) and (A.13) imply that the following relationships must
hold for (LP) and (MICbm) to hold:

q∆rs + (1− q)N (2∆x+ ∆e) = (2− qβ)∆x− κ∆e,

∆rs + ν(1− q)N−1 (2∆x+ ∆e) = 0

We thus obtain the following relationship between ∆x and ∆e

∆e =
2− qβ − 2(1− q)N−1

[
νq + 1− q

]
κ+ (1− q)N−1

[
νq + 1− q

] ∆x (D.1)

Hence, the total derivative of U with respect to e is given by

U ′(e) =
1

2

[
(ν − 1)(1− q)N − κ

]
+
[
(ν − 1)(1− q)N − k

]∆x

∆e
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which is positive if and only if

k ≤ kbmN ≡ (ν − 1)(1− q)N +
1

2

2− qβ − 2(1− q)N−1
[
νq + 1− q

]
κ+ (1− q)N−1

[
νq + 1− q

] max
{[

(ν − 1)(1− q)N − κ
]
, 0
}

The claim kbmN ≤ kN follows from the observation that the ration ∆x
∆e in equation (D.1) is higher

that that in equation (A.7)under observable monitoring. As one unit of CCP capital requires more
collateral when monitoring is unobservable, the maximum collateral cost for which CCP capital is
profitable must be lower.

Step 2. Optimal contract
When k > kbmN , it is optimal to set e∗ = 0 and the optimal contract is thus given by Proposition

5. When k ≤ kbmN , the optimal contract features full hedging. It is obtained by setting rs = rf = ĉ
and 2x+e = ĉ in constraints (A.12) and (A.13). From the second equation, we obtain the expression
for r∗s . Solving for e∗ and x∗, we obtain the expression in case 1 of Proposition D.1. Finally, we
need to verify e∗ ≥ 0. This requires

ψ <
βq(1− α)

2

(
1− ĉ

2

)
which follows from Assumption 2. This concludes the proof.

D.2 Centralized Monitoring

Proposition D.2 (Centralized monitoring contract). When k ∈ [k̂m, kN ], an optimal contract with
centralized monitoring is a full-hedging contract with x∗ > xOM , e∗ = ĉ− 2x∗ ∈ (e, eOM ), and any
{π∗(d)} such that (PCCCP ) binds and (MICcm) holds.

Proof. By the same argument as that in the proof of Proposition 6, the full hedging remains optimal
with unobservable monitoring in this parameter region. This is again because the compensation
cost to the CCP is a fixed cost which affects each contract symmetrically.

We show in Proposition 6 that investors achieve less than full hedging with the minimum
incentive compatible CCP capital e. Hence, given full-hedging is desirable when k ∈ [k̂m, kN ], the
optimal level of CCP capital satisfies e∗ > e. The amount of CCP capital and collateral are pinned
down by the condition r∗f (N) = 2x∗ + e∗ = ĉ and the binding pledgeability constraint (LP)

ĉ+ 2ψ = qβ + (2− qβ)x∗ − κe∗
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We obtain

x∗ =
(κ+ 1)hatc− qβ + 2ψ

2(κ+ 1)− qβ
> xOM (D.2)

e∗ =
qβ(2− ĉ)− 4ψ

2(κ+ 1)− qβ
< eOM (D.3)

We are left to characterize the compensation of the CCP. Let π∗(d) = 0 for d > 0 and set π∗(0)
such that (PCCCP ) binds with e = e∗, that is

π∗(0) =
2ψ + (κ+ 1)e∗

qN
>

2ψ + (κ+ 1)e

qN
= π(0) (D.4)

where e and π(0) are here the expressions derived in Proposition 6. The inequality follows from the
result above that more capital is used in this case than in the contract of Proposition 6. Equation
(D.4) shows that (MICcm) is slack with the contract such that π∗(d) = 0 for d > 0 and π∗(0)
given by (D.4). Hence, since it saturates (PCCCP ), this contract is weakly optimal. The slack in
(MICcm) implies that there exist other optimal contracts with π(d) > 0 for d > 0.

D.3 Optimal Monitor

We are now equipped to characterize the optimal monitor when k ∈ [k̂m, kN ], that is, when the
OM-contract of Proposition 3 under observable monitoring features full hedging with CCP capital.

Proposition D.3. When the optimal contract features full hedging under both monitoring schemes,
that is, when k ∈ [k̂m, kbmN ], centralized monitoring is optimal.

Proof. Investors realize the same hedging benefits under these monitoring schemes. Hence, the
optimal scheme is that which minimizes the combined cost of collateral and CCP capital, given by
xk+ eκ. Furthermore, because they feature full hedging, each contract satisfies 2x+ e = ĉ. Hence,
because κ ≤ k when k ∈ [k̂m, kbmN ], the best contract is that which uses more CCP capital. The
result the follows from the comparison between equation (D.3) and its counterpart in Proposition
D.1.

Proposition D.3 shows the CCP is always the efficient monitor when investors desire full hedging.
This result complements and strengthens our finding about optimality of centralized monitoring
in the main text. The intuition is as follows. With full hedging, investors have no exposure to
counterparty risk. Hence, in order to monitor, they must receive an incentive payment equal to the
full agency rent from monitoring 2ψ

1−α . This incentive payment materializes as an extra collateral
cost as the payers’ liabilities increase. Under centralized monitoring, the agency rent is given to the
CCP. Because the CCP pledges capital, however, investors can recoup part of this rent and lower
their collateral requirement under centralized monitoring. This explains the result.
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E Additional Proofs

E.1 Proof of Corollary 1 with optimal monitoring

We prove Corollary 1 accounting for the optimal monitoring decision analyzed in Section A.7 below.
This proves our claim in the main text that the comparative statics with respect to N in Corollary
1 remains valid in this case.

The upper bound of the essential CCP region is again given by k̄. For k > k̄, monitoring is
optimal as shown in Section A.7.2, and the optimal contract without monitoring can be implemented
bilaterally. For k lower than but close to k̄, monitoring and loss mutualization are optimal, which
means the upper bound is k̄. This observation also implies there exists a lower bound kess,m < k̄
of the essential CCP region.

By Proposition 3 and A.1, we have kess,m ≥ kess because the region with full hedging and
without CCP capital in which a CCP is not essential is larger without monitoring. We now
characterize the threshold kess,m by considering three different cases. Statements about optimality
of contracts below are always conditional on k ∈ [kess, k̄].

Case 1. (ν − 1)(1− q)N > κ
Proposition 3 shows that the optimal contract with monitoring features either CCP capital or

complete loss mutualization Because 1−αq > 1− q, the same result holds for the contract without
monitoring by Proposition A.1. Hence, in this case, a CCP is always essential and kess,m = κ.

Case 2. κ ∈ [(ν − 1)(1− q)N , (ν − 1)(1− αq)N ]
In this region, complete loss mutualization is optimal with monitoring by Proposition 3. With-

out monitoring, CCP capital or complete loss mutualization is optimal for k ≥ κ and full hedging
with only collateral is optimal otherwise. This leaves two possibilities: either kess,m = κ or if
k̂m < κ then kess,m = k̂m. In the latter case, k̂m is the value of the collateral cost such that
investors are indifferent between the complete LM contract with monitoring and the full-hedging
contract without monitoring. Hence, k̂m solves

0 = Uk=k̂m − UZ
m

|k=k̂m

= qR+
[
ν − 1− k̂m

] ĉ
2
− (k̂m − kN )

(
ĉ

2
− xOM

)
− ψ −

{
qR+

[
ν − 1− k̂m

] ĉ
2

}
= βq

(
1− ĉ

2

)
k̂m − kN

2
[
1− (1− q)N

]
− βq

− ψ (E.1)

Case 3. κ ≥ (ν − 1)(1− αq)N
Proposition 3 shows that complete loss mutualization is optimal with monitoring. Without

monitoring the optimal contract features complete loss mutualization for k ≥ (ν − 1)(1 − αq)N ,
and full hedging with collateral only otherwise. Hence, by an argument similar to that in Case 2,
kess,m = min{k̂m, (ν − 1)(1− αq)N}.

Monotonicity of kess,m
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Combining the results above, we obtain

kess,m = min
{
κ, k̂m, (ν − 1)(1− αq)N

}
, with k̂m given by (E.1)

The third argument of the min strictly decreases with N . We also show that k̂m strictly decreases
with N when it is given by (E.1). For this, define g : (y, k) 7→ k+y(ν−1)

2+2y−βq and apply the Implicit
Function Theorem to equation (E.1). We obtain

∂k

∂N
= −

∂g
∂y

∂ȳ
∂N

∂g
∂k

with y = −(1− q)N . As ∂g
∂k > 0 and ∂ȳ

∂N > 0, the derivative is negative if and only if

0 <
∂g

∂y
⇔ 0 <

(ν − 1)(2− βq)− 2k

[2 + 2y − βq]2
=

2(k̄ − k)

[2 + 2y − βq]2

The last inequality holds because by Proposition 4, k̂m lies below k̄.
When kess,m is equal to the second or third argument, it strictly decreases with N . Besides, for

N large enough, kess,m is equal to the second or third argument as limN→∞(ν − 1)(1− αq)N = 0.
This proves that the result in Corollary 1 is robust when investors can choose whether to monitor.
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