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Abstract

NOTE: THIS IS A WORKING DRAFT AND IS STILL BEING REVISED

A recent literature considers causal inference using two vectors of noisy proxies for

unobserved confounding factors. In this paper we consider linear models in which the

vectors of proxies are potentially high-dimensional and there may be many unobserved

confounders. A key insight is that if each group of proxies is strictly larger than the

number of confounding factors then a matrix of nuisance parameters satis�es a rank

restriction. We can exploit the rank restriction to reduce the number of free parameters

to be estimated. The number of unobserved confounders is not known a priori but

we show that it is identi�ed, and we apply penalization methods to adapt to this

quantity. We develop doubly-robust estimation and inference methods. We examine

the asymptotic properties of these techniques and provide simulation evidence that

they are e�ective.

Introduction

The key challenge for causal inference is the presence of confounding factors: variables that
cause both treatments and outcomes. In observational studies some important confounders
may be absent from the available covariates or crudely mismeasured. For example, suppose
we wish to assess the e�ects of some intervention on a student's educational attainment.
The pupil's academic ability is a potential confounding factor. Even the best measurements
of academic aptitude (test scores, grades, etc.) are likely subject to error. We refer to noisy
and possibly biased measurements of the underlying confounding factors as `proxy controls'.
If some confounders are unmeasured or mismeasured then standard methods that adjust for
observed covariates do not recover a causal e�ect.

The problem of mismeasured confounding can persist even if the data contains a rich set
of high-dimensional covariates. However, the many covariates constitute an ample source
of potential proxies for the unobserved confounders. As such, high-dimensional settings are
particularly apt for methods that can achieve causal inference using noisy proxies.

A class of empirical methods aims to consistently estimate causal e�ects using two vectors
of noisy proxies for the underlying confounders. These two vectors of proxies must satisfy
certain exclusion restrictions and must be su�ciently informative about the confounders.
We refer to this class of methods as the `double proxy' approach. Double proxy methods were
introduced into the economic literature in the context of linear models by Zvi Griliches and
coauthors in the 1970s, beginning with Griliches & Mason (1972). More recently, Miao et al.
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(2018b) initiated a literature on identi�cation and estimation of causal e�ects in nonlinear
and nonparametric models using a double proxy approach. These methods are designed for
use with a small, �xed number of proxies and unobserved confounders.

In this work we consider identi�cation, estimation, and inference in linear models when
there are many proxy controls. That is, when each of the two vectors of proxies is high-
dimensional. In addition, we allow for the possibility that there are many unobserved
confounding factors. We design estimation and inference methods tailored to this case. In
high-dimensional settings standard asymptotic approximations based on a �xed number of
proxies and confounders may be unreliable. Thus our asymptotic analysis allows the number
of proxies and confounders to grow with the sample size.

A key insight in this work is that if there are strictly fewer unobserved confounders
than there are proxies in each of the two vectors, then two matrices of nuisance parameters
have a low-rank structure. We exploit this low-rank structure to reduce the number of free
parameters to be estimated. This allows for more e�cient estimation, particularly when the
number of proxies is large. The number of confounders is generally unknown, and so we
propose model selection methods that adapt to this quantity. The model selection methods
are based on techniques from the literature on reduced-rank regression, particularly Bunea
et al. (2011).

Selecting the correct number of unobserved confounders is important even in low-dimensional
settings. Estimators that fail to adapt to the low-rank structure in the nuisance parame-
ters or apply some kind of regularization may not be asymptotically normal even in �xed
dimensions, leading to invalid inference.

Our proposed procedure is an example of a Double Machine Learning 2 (DML2) esti-
mator of the kind analyzed in section 3.2 of Chernozhukov et al. (2018). Chernozhukov
et al. (2018) shows that DML2 estimators are root-n consistent, asymptotically unbiased,
and asymptotically Gaussian under relatively weak conditions on the nuisance parameter
estimates. Our estimator is based on a doubly-robust score function. The estimator and
corresponding con�dence intervals have a closed-form, which ensures they are easy to com-
pute. We develop asymptotic theory for the estimator and an associated inference method,
and we provide extensive simulation evidence of the e�cacy of our methods.

Related literature

Early papers that apply the double proxy approach in linear models include Griliches &
Mason (1972), Chamberlain & Griliches (1975), and Griliches (1977). These works generally
consider a single scalar unobserved confounder. An exception is Chamberlain & Griliches
(1977) which allows for two scalar confounders.

Miao et al. (2018b) nonparametrically identi�es the average structural function (and
thus average causal e�ects) using double proxies and introduces a statistical test using
proxy controls. Further works including Deaner (2021) and Tchetgen et al. (2020) build
upon these identi�cation results, they establish identi�cation of conditional average causal
e�ects, develop alternative characterizations of objects of interest, and adapt the approach
to settings with panel data.

Nonparametric estimation with proxy controls was considered in Deaner (2019), and
later by Tchetgen et al. (2020), Singh (2020), Cui et al. (2020), Kallus et al. (2021) and
others. Miao et al. (2018a) consider estimation in parametric models when a `confounding
bridge' function is identi�ed. Existing work applies to low-dimensional settings in which the
number of proxies and confounding factors is small and treated as �xed.
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In the context of panel data Imbens et al. (2021) provide a double proxy method in
which the number of proxies can exceed the number of confounders. Imbens et al. (2021)
uses l2 penalization in order to ensure consistency and asymptotic normality when there are
more proxies than confounders.

The analysis of Miao et al. (2018b), Miao et al. (2018a), and the classical works by
Griliches and coauthors either implicitly or explicitly assume that the number of unob-
served confounders is equal to the number of proxies in each group (see Subsection 1.1 for
discussion).

Notation

The notation M† denotes the Moore-Penrose pseudo-inverse of the matrix M . If M is
positive semide�nite then M1/2 denotes the unique positive semide�nite matrix square root
of M and if M is strictly positive de�nite then M−1/2 is the unique positive semide�nite
matrix square root ofM−1. For any matrixM we let σk(M) denote the k-th largest singular
value of M .

For a matrix M we let M[a:b,c:d] be the sub-matrix of M consisting of the entries in rows
a to b and columns c to d. M[a:b,:] is the sub-matrix of M consisting of rows a to b and
M[:,c:d] is the sub-matrix of columns c to d. M[a:b,c] is shorthand for M[a:b,c:c] and similarly
M[a,c:d] = M[a:a,c:d].

If b is a vector then ‖b‖ is the Euclidean norm of b. If M is a matrix then ‖M‖ =
supb∈Rd:‖b‖=1 ‖Mb‖. For sequences an and bn the notation an - bn means that there exists
a constant C so that an ≤ Cbn for all n. an ≺ bn means that an - bn but not bn - an.

For any random column vector H we de�ne ΣH = E[HH ′], however if H is the concate-
nation of two vectors, for example H = (D′, X ′)′, we simply write ΣDX . We de�ne variables
with D and X partialled out as follows. For H = W, V, Z, Y, X we de�ne:

γH,0 = Σ†DE[DH ′]

ωH,0 = Σ†XDE[(X ′, D′)′H ′]

H̃(γ) = H − γ′D
H̄(ω) = H − ω′(X ′, D′)′

For notational convenience we sometimes write H̃ = H̃(γH,0) and H̄ = H̄(ωH,0).

1 Model and Identi�cation

Let Y be an outcome of interest and X a vector of treatments. Let W be a vector of
unobserved confounding factors. We assume the researcher has access to two vectors of
proxies V and Z for the unobserved confounders W . In addition the researcher may have
access to a vector of additional covariates D which could also confound X and Y .

The assumptions on the proxies V di�er from those on the proxies Z. Due to this
asymmetry we follow the existing literature and refer to V as `outcome-aligned' proxies and
Z as `treatment-aligned' proxies, we explain these terms later in this section. Table 1 lists
the relevant variables.

We aim to identify and estimate β0, the coe�cient on X in the �rst regression equation
below. In order to avoid including intercepts we assume throughout that D contains a
constant.
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Table 1: List of Variables

Variable Dimension Description

Y 1 Outcome of interest.
X dX Vector of treatments.
W dW Unobserved confounding factors.
V dV Outcome-aligned proxies for W .
Z dZ Treatment-aligned proxies for W .
D dD Additional conditioning variables.

Y = β′0X +A0W + L0D + ε, E[ε(X ′,W ′, D′)] = 0 (1)

V = B0W +R0D + υ, E[υ(W ′, D′)] = 0 (2)

The regression models above are without loss of generality in the sense that they must
hold for some coe�cients β0, A0, B0, etc. If the regressors are not linearly dependent then
(1) and (2) uniquely de�ne these coe�cients.1

We cannot estimate β0 from (1) directly because W is not observed. However, we
leverage Assumption 1.1 below in order to derive moment conditions that do not involve W
and thus allow us to identify β0.

Assumption 1.1 (Model and Exclusion restrictions). i. (1) and (2) hold. ii. E[εZ ′] =
0 and E[υ(X ′, Z ′)] = 0.

Assumption 1.1.ii imposes that Z is uncorrelated with the residual in regression model
(1), and both Z and X are uncorrelated with the residual in (2). Note that the assumption
is asymmetric in the two vectors of proxies Z and V . Unlike Z, V can be correlated with
the residual from (1). X must be exogenous with respect the model (2) for V , but no such
restriction need apply for the relationship between X and Z.

Assumption 1.1 is stated in terms of regression residuals, and the assumption de�nes
β0 not as a causal e�ect but as a vector of regression coe�cients. In order to better assess
when Assumption 1.1 is credible and β0 has a causal interpretation, it is helpful to consider
fully speci�ed structural (i.e., causal) models that imply Assumption 1.1 holds with β0 an
average causal e�ect.

On the right in Figure 1.1.a is a linear structural equations model with uncorrelated
residuals and coe�cients that represent average causal e�ects. This model implies that
Assumption 1.1 holds with β′0 = aY X , where aY X is the matrix of coe�cients on X in the
structural equation for Y . The directed graph on the left encodes the exclusion restrictions
in the model: there is an arrow from one variable to another if and only if the variable
appears in the other's structural equation. Thus arrows represent the possible presence of a
causal e�ect. That the residuals are uncorrelated indicates that there are no omitted joint
causes.2. In Figure 1.1.a we omit any additional observables D for the purpose of legibility
but one could allow D to cause all the other variables.

In Figure 1.1.a, W is a confounding factor: it appears in the equations for both Y and
X. The proxies V and Z are excluded from all other equations which suggests they have no

1Our results continue to hold even if ε and υ are correlated with W , but we maintain this assumption
because it provides a simple interpretation of β0. We discuss this further in Appendix A.

2For further discussion of linear causal models see e.g., Pearl (2009)
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Figure 1.1: Causal Structure of Proxy Controls

(a) Simple Structural Model
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Y=aY XX + aYWW + UY

X=aXZZ + aXWW + UX

V=aVWW + UV

Z=aZWW + UZ
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UY , UX , UV , UZ , UW all uncorrelated.

(b) Richer Structural Models
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a�ect on treatments and outcomes. In addition, X and Y are excluded from the equations
for V and Z.

The model in Figure 1.1.a is rather restrictive in that the proxies do cause treatments
and outcomes. Suppose treatment is an educational intervention and the outcome is say,
acceptance into university. In this case we can think of W as academic ability at the time
of treatment and use test scores as proxies. The exclusion restrictions on Z and V in Figure
1.1.a are plausible in this setting if the tests are taken prior to treatment and the scores
are privately observed by researchers with no impact on any student's life or education.
However, if the scores in Z are from tests taken after treatment, then treatment may a�ect
Z. In other settings the tests may determine eligibility for treatment. If the test scores in
V determine whether a student receives extra tuition, then V could a�ect the outcome.

An advantage of the double proxy approach is that it can accommodate rich, direct
causal interactions between the proxies, treatments and outcomes. The graphs for a number
of additional linear causal models are given in Figure 1.1.b. Some of the causal diagrams
in Figure 1.1.b are also featured in Miao et al. (2018b), Deaner (2021), and elsewhere. All
of these models imply Assumption 1.1 holds with β0 the causal e�ect of X on Y (that is,
the matrix of coe�cients on X in the structural equation for Y ). These models in Figure
1.1 are not exhaustive: there are other linear structural models that imply Assumption 1.1.
These models in Figure 1.1 are not exhaustive: there are other linear structural models that
imply Assumption 1.1. In all of these models V does not directly cause nor is it caused by,
X. Moreover, Z does not directly cause nor is it caused by Y . However, Z may cause or be
caused by X (so Z is `treatment aligned'), and V can cause Y (hence `outcome-aligned').

Theorem 1.1 below refers to C0 and G0 which are the matrices of coe�cients on Z and
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X respectively from population regression of W on Z, X, and D.3 Recall that variables
with tildes have had D partialled out.

Theorem 1.1. Under Assumption 1.1.i and 1.1.ii the following moment conditions hold:

E

[((
Ṽ

Ỹ − β′0X̃

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃

X̃

))
(Z̃ ′, X̃ ′)

]
= 0 (3)

Theorem 1.1 states that under Assumption 1.1 a matrix of moment conditions hold.
Assumptions 1.2-1.4 below ensure that the moment conditions in Theorem 1.1 identify β0

as well as the number of confounding factors dW .

Assumption 1.2 (V is su�ciently informative about W ). B0 has full column rank.

Assumption 1.3 (Z is su�ciently informative about W ). C0 has full row rank.

Assumption 1.4 (Full support). The matrix E[(X ′, Z ′, D′)′(X ′, Z ′, D′)] is non-singular.

Assumptions 1.2 and 1.3 require that the proxies V and Z are su�ciently informative
about the confoundersW . In particular, each vector of proxies must be relevant instruments
forW in the sense of linear Instrumental Variables (IV). More precisely, under Assumptions
1.1 and 1.4, Assumption 1.2 is equivalent to the `rank condition for identi�cation' in an IV
model whereW is a vector of endogenous regressors, D and X are exogenous regressors, and
V is a vector of instruments. The same is true of Assumption 1.3 but with Z the vector of
instruments. Note that Assumptions 1.2 and 1.3 imply an order condition: Z and V must
each have weakly larger dimension than W .

Suppose Assumptions 1.1 and 1.4 hold, then 1.2 and 1.3 are equivalent to the following
condition:

σdW
(
E[V̄ W̄ ′]E[W̄W̄ ′]†E[W̄ Z̄ ′]

)
> 0 (4)

We refer to the quantity on the left-hand side of the inequality as the `measure of proxy
informativeness'. We denote this quantity by σn and it plays an important role in our
asymptotic analysis.

Assumption 1.4 is a very mild condition that none of the components of X, Z, and D
are perfectly co-linear.

Theorem 1.2. Under Assumptions 1.1-1.4, β0 and dW are identi�ed. More precisely,
suppose that for some r, β ∈ RdX , A ∈ R1×r, B ∈ RdV ×r, C ∈ Rr×dZ , and G ∈ Rr×dX
satisfy the moment conditions below, and that B has full column rank:

E

[((
Ṽ

Ỹ − β′X̃

)
−
(
BC BG
AC AG

)(
Z̃

X̃

))
(Z̃ ′, X̃ ′)

]
= 0 (5)

Then β = β0, dW = rank(BC) = rank
(
B(C,G)

)
= rank

(
(B′, A′)′C

)
. Moreover,

BC = B0C0, BG = B0G0, AC = A0C0, and AG = A0G0.

3Formally, C0 and G0 are of dimensions dW × dZ and dW × dX and are given by:

(C0, G0) = E[W̃ (Z̃′, X̃′)]Σ†
Z̃X̃
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Theorem 1.2 shows that under Assumptions 1.1-1.4 the object of interest β0 and the
number of confounders dW are identi�ed from the moment conditions in Theorem 1.1. In
addition, the nuisance parameters B0C0, B0G0, A0C0, and A0G0 are also identi�ed. Note
that it is only these products that are identi�ed: A0, B0, C0, and G0 are not themselves
identi�ed.4

The number of confounding factors dW determines the rank of some matrices of nui-
sance parameters. If dW is small then this constraint on the rank constitutes a substantial
dimension reduction, which is useful for estimation. The number of unobserved confounders
is generally unknown, but since it is identi�ed this suggests we can adapt to this quantity
using model selection methods.

Under Assumptions 1.1-1.4, β0 could be estimated directly from the moment conditions
in Theorem 1.1 using the Generalized Method of Moments (GMM) (Hansen (1982)). How-
ever, implementing such an estimator may be impractical in this setting. Suppose that dW
were known and we apply GMM enforcing one or more of the rank constraints, for example
rank(B0C0) = dW . If dW < min{dV , dZ} then the GMM minimization problem does not
have a closed-form solution and the problem is non-convex. Thus full GMM estimation
would require a numerical optimization routine which may be computationally demanding
and may not converge to a global minimum.

In light of the di�culties posed by full GMM estimation, we estimate β0 by sequential
method of moments. The sequential method also allows us to use existing penalized reduced-
rank regression methods to estimate and adapt to the number of unobserved confounders.
In a �rst-stage one estimates the relevant nuisance parameters, then in a second-stage one
estimates β0 by inverting a moment condition with the nuisance parameter estimates plugged
in. The sequential method allows for estimates with a closed-form solution, even in the case
with dW unknown.

Corollary 1 states the moment conditions that we use for the sequential estimator. The
corollary �rst provides an alternative set of moment conditions that identify β0. We prove in
Lemma 1 that (under Assumptions 1.1-1.4) this characterization of β0 is in fact equivalent to
that in Theorem 1.2. The alternative moment conditions depend on two nuisance parameters
M0 and ξ0. The corollary then states that these nuisance parameters can be identi�ed from
moment conditions that do not involve β0 and which are linear in parameters.

It is of note that, unlike the moment conditions in Theorem 1.1, which hold under
Assumption 1.1 alone, the moment conditions in Corollary 1 need not hold (for any M0 and
ξ0) without some of the remaining assumption 1.2-1.4.

Corollary 1. Under Assumptions 1.1-1.4 β0 is identi�ed from (6) below:

E
[
(Ỹ − β′0X̃ − ξ′0Ṽ ′)(Z̃ ′, X̃ ′)

]
= 0 (6)

E
[(
Ṽ −M0(Z̃ ′, X̃ ′)′

)
(Z̃ ′, X̃ ′)

]
= 0 (7)

E
[(

(V̄ ′, Ȳ ′)′ −Q0Z̄
)
Z̄ ′
]

= 0 (8)

M0 = B0(C0, G0) is the unique solution to (7). Q0 = (B′0, A
′
0)′C0 is the unique solution

to (8). rank(M0) = rank(Q0) = dW . (6) is satis�ed by any ξ0 that solves ξ′0B0C0 = A0C0,
and there exists a solution with ‖ξ0‖0 ≤ dW .

4A0, B0, C0, and G0 are only identi�ed up to non-singular transformations. More precisely, if A, B, C,
and G satisfy (5) then so do matrices Ã, B̃, C̃, and G̃ of the same dimensions where (B̃, Ã′)′ = (B′, A′)′Ω
and (C̃, G̃) = Ω−1(C,G) for any non-singular matrix Ω.
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The �rst moment condition in Corollary 1, (6) su�ces to identify β0, but the other two
conditions (7) (8) help to identify dW . Moreover, ξ0 can be written in terms of M0 and Q0

and thus ξ0 can be obtained from (7) and (8), which motivates the sequential estimation
strategy.

Corollary 1 suggest three di�erent means of adapting to the number of confounding
factors dW . Firstly, dW is the rank of M0, secondly it is the rank of Q0. Thirdly, there is a
ξ0 that satis�es (6) with at most dW non-zero entries.

1.1 Comparison to Previous Results

Our analysis is related to that of Miao et al. (2018a) and a much older line of work surveyed
in Griliches (1977). However, our results di�er in important respects. Perhaps most impor-
tant for our subsequent analysis, we link the ranks of nuisance parameter matrices to the
number of unobserved confounders dW , and we show this is identi�ed. The rank restrictions
can result in a substantial dimension reduction which may greatly reduce estimation error,
particularly when there are many available proxies. Furthermore, the rank restrictions have
important implications for inference even in when the number of available proxies is small.

Moreover, our identi�cation results clarify the sense in which the proxies must be infor-
mative about the confounders in the linear model. Assumptions 1.2 and 1.3 appear absent
from Griliches (1977) and related works, which implicitly assume the relevant moment con-
ditions are invertible. This absence could be explained by the focus of those works on a
single scalar unobservable in which case the rank conditions reduce to a simpler condition
that the proxies are partially correlated with the confounder.

Let us compare our results with Miao et al. (2018a). For simplicity let us assume there
are no observed confounders D. Miao et al. (2018a) assume the existence of a function that
they call a `confounding bridge' which then plays a key role in their analysis. This is a
function b with the property that for each x in the support of X, with probability 1:

E[Y |W,X = x] = E[b(V, x)|W,X = x]

Suppose our Assumptions 1.1-1.4 hold and ε and υ are mean independent ofW (rather than
just uncorrelated withW ), then under Assumptions 1.1-1.4 our model admits a confounding
bridge of the form b(v, x) = β′0x+ ξ′0v, where ξ0 is any solution to ξ′0B0C0 = A0C0 (just as
in Corollary 1).

Miao et al. (2018a) impose assumptions that imply the confounding bridge is unique
and point identi�ed. In our model it may be neither unique nor point identi�ed. In fact,
under Assumptions 1.1-1.4 the confounding bridge is generally not unique unless dV = dW ,
otherwise it is generically true that there are multiple solutions to ξ′0B0C0 = A0C0.

5 Even
if the confounding bridge is unique, in order to identify the bridge, Z must be a vector of
relevant instruments for V after controlling for X (see Assumption 5 in Miao et al. (2018a)).
Again, under our assumptions this is only possible when dV = dW . Thus the analysis of
Miao et al. (2018a) can only apply in our model when there are the same number of negative
outcome proxies as instruments.

Applying the methods of Miao et al. (2018a) in our model amounts to using GMM to esti-
mate solutions β0 and ξ0 to the moment condition (6) without any of the constraints related

5Under Assumptions 1.1-1.4 C0 has full row rank and so there is a unique solution if and only if A0 is
in the row space of B0. Since the row space of B0 is of dimension dW and A0 is a row vector of length
dV > dW , this is generically false.
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to dW .6 Griliches (1977) suggests estimation using instrumental variables that amounts to
the use of the moment condition (6), again without any dimension reduction.

When dW < dV , estimation without any rank constraints can lead to invalid inference.
The reason is that the nuisance parameter ξ0 that satis�es (6) is not unique (and thus
not identi�ed). Method of moments estimates of ξ0 that do not incorporate rank-selection
generally do not converge in probability to any �xed limit. As we show in Appendix C, this is
generally not a problem for consistency (at least in �nite dimensions) because the resulting
estimates of ξ0 are stochastically bounded. However, this typically leads to estimates of
β0 that are not asymptotically normal, in which case standard inference methods can be
misleading. Imbens et al. (2021) avoids problems of inference by using l2 penalization rather
than rank selection.

2 Estimation and Inference

We now present an estimator motivated by the results in Corollary 1. Our estimator is an
example of a DML 2 (Double Machine Learning 2) estimator as developed in Chernozhukov
et al. (2018). In order to apply DML 2 estimation in our setting, we must orthogonalize the
moment condition (6). The score function in (6) is denoted by g(β, ξ) and is given below:

g(β, ξ) = (Ỹ − β′X̃ − ξ′Ṽ )(Z̃ ′, X̃ ′)′

For notational convenience we leave the dependence of the score on the nuisance parameters
involved in partialling out D (that is, γY,0, γX,0 etc.) implicit.

In order to orthogonalize the moment condition (6), we pre-multiply the score function
by a matrix µ0 with the following formula:

µ0 = G′βΩ−1/2
(
I − Ω−1/2Gξ(Ω

−1/2Gξ)
†)Ω−1/2 (9)

In the above Gβ and Gξ are the matrices of derivatives of E[g(β0, ξ0)] with respect to β0

and ξ0 respectively. They have formulas Gβ = −E[(Z̃ ′i, X̃
′
i)
′X̃ ′i] and Gξ = −ΣZ̃X̃M

′
0. The

matrix Ω is the variance-covariance of g(β0, ξ0).
pre-multiplication by µ0 results in a doubly-robust moment condition:

µ0E[
(
Ỹ − β0X̃ − ξ0Ṽ ′

)
(Z̃ ′, X̃ ′)] = 0 (10)

The moment condition above is doubly robust. If we replace ξ0 in the above by ξ 6= ξ0 then
the condition still holds. Similarly, if we replace µ0 by µ 6= µ0 the condition continues to
hold. The moment condition is also robust to the coe�cients involved in partialling out D.
We show this formally in the proof Lemma 2 in the Appendix.

In fact, in the formula for µ0, Gβ could be any matrix and Ω any strictly positive-
de�nite matrix and the resulting moment condition would still be doubly robust. However,
the choices of Ω and Gβ above are e�cient (see e.g., subsection 2.2.2 of Chernozhukov et al.
(2018) for discussion).

We now specify our estimator. We assume we have access to an iid sample of the variables
Y,X,Z, V,D of size n and we index the individual observations by `i'.

6Miao et al. (2018a) allow the instruments (Z′, X′) to be replaced with any vector of transformations
q(Z,X) with �nite variance. However, in our model if q is nonlinear then the resulting moment conditions are
valid only when the zero correlation conditions in Assumption 1.1.ii are strengthened to mean independence.
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2.1 Nuisance Parameter Estimates

The doubly-robust moment condition (10) depends on nuisance parameters ξ0 and µ0 which
we estimate in a �rst stage. The key step is to attain estimates of M0 and Q0 from the
conditions (7) and (8) using adaptive reduced-rank regression. ξ0 and µ0 can then be written
in terms of M0 and Q0 and some sample means. In addition, D is partialled out from the
variables in (10). We must obtain estimates of the regression coe�cients used to partial out
D.

First, let us consider estimators for the coe�cients used to partial out D, namely γ0,X ,
γ0,Z , γ0,V , and γ0,Y . If the vector of additional covariates D is low-dimensional then one
can simply ordinary least-squares, for example the estimate of γ0,V is:

γ̂V = (
1

n

n∑
i=1

DiD
′
i)
† 1

n

n∑
i=1

DiV
′
i

Similarly, one may estimate the the coe�cients involved in partialling out both D and
X, which are ω0,Z , ω0,V , and ω0,Y , by least-squares. For example, estimate of ω0,Z by ω̂Z
are:

ω̂Z =
( 1

n

n∑
i=1

(X ′i, D
′
i)
′(X ′i, D

′
i)
)† 1

n

n∑
i=1

(X ′i, D
′
i)
′Z ′i

We use hats to indicate a variable with D partialled out in the sample, so for example
V̂i = Vi− γ̂′VDi, or equivalently V̂i = Ṽi(γ̂V ). Check marks indicate a variables with both D
and X partialled out in the sample, so for example Ži = Zi − ω̂′Z(X ′i, D

′
i)
′ or equivalently

Ži = Z̄i(ω̂Z).
In some cases Di may be high-dimensional and the true partialling out parameters may

be sparse or approximate sparse. In this case we suggest that Lasso regression (Tibshirani
(1996)) be used in place of ordinary least squares.

Now we turn to estimation of ξ0 and µ0 which requires estimates ofM0 and Q0. Corollary
1 states that M0 and Q0 are the unique solutions to the moment conditions (7) and (8).
These are standard least-squares moment conditions and so M0 and Q0 minimize sum-of-
squares objectives. The corollary also states that M0 and Q0 are each of rank dW . We can
de�ne least-squares estimates of M0 and Q0 that are subject to rank constraints as follows:

M̂r = argmin
rank(M)≤r

1

n

n∑
i=1

‖V̂i −M(Ẑ ′i, X̂
′
i)
′‖2 (11)

Q̂r = argmin
rank(Q)≤r

1

n

n∑
i=1

‖(V̌ ′i , Y̌ ′i )′ −QŽi‖2 (12)

M̂r and Q̂r are reduced-rank regression estimates and thus have closed-form solutions
(Reinsel & Velu (1998), Izenman (1975)). The formulas for the solutions and other algo-
rithmic details are provided in Appendix B.

Note that r, the bound on the rank, determines the number of free parameters in the
minimization problem. If r is small compared to min{dV , dZ} then the constraint imparts a
considerable dimension reduction. Ideally we would set r = dW . However, dW is generally
not known a priori, but since it is identi�ed one can adapt to this quantity.

In order to adapt to the unknown number of confounders dW let us replace the con-
strained least-squares problems (11) and (12) with penalized least-squares problems. Let
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λM,n and λQ,n be positive scalars that control the degree of regularization. We de�ne
penalized estimators as follows:

M̂ = argmin
rank(M)≤dZ

1

n

n∑
i=1

‖V̂i −M(Ẑ ′i, X̂
′
i)
′‖2 + λM,nrank(M), (13)

Q̂ = argmin
rank(Q)≤dV

1

n

n∑
i=1

‖(V̌ ′i , Y̌ ′i )′ −QŽi‖2 + λQ,nrank(Q) (14)

Bunea et al. (2011) provide the formula for the solution to penalized reduced-rank re-
gression problems like (13) and (14). Their results show M̂ = M̂r̂M and Q̂ = Q̂r̂Q , where
r̂M and r̂Q are estimators of the number of unobserved confounders dW . The formulas for
r̂M and r̂Q are provided in the appendix.

The penalty parameters λM,n and λQ,n can be chosen by cross-validation or by a plug-
in formula provided by Bunea et al. (2011). In our simulations we �nd cross-validation
generally selects the correct rank with higher frequency and so we take this as our preferred
method.

Alternative adaptive reduced-rank regression methods are available in the literature. One
such a method replaces the term rank(M) in (13) with the nuclear norm of M , commonly
denoted ‖M‖∗.7 Penalizing the rank has the advantage that the solution has a closed-form.
Another alternative, proposed in Bing & Wegkamp (2019) uses estimates which again take
the form M̂ = M̂r̂M and Q̂ = Q̂r̂Q , but where the selected ranks r̂M and r̂Q are chosen using
an iterative method.

Having obtained estimates of M0 and Q0 we can estiamte µ0 and ξ0. Corollary 1 states
that ξ0 solves ξ′0B0C0 = A0C0 and that B0C0 and A0C0 both sub-matrices of Q0. We
replace B0C0 and A0C0 in this equation with the corresponding sub-matrices of Q̂ and take
as our estimate ξ̂ the solution with smallest Euclidean norm:

ξ̂′ = Q̂[dV +1,:]Q̂
†
[1:dV ,:]

(15)

In order to estimate µ0 we replace Gξ, Gβ , and Ω in the formula for µ0 with estimates

Ĝξ, Ĝβ , and Ω̂. The resulting estimate µ̂ is given below:

µ̂ = Ĝ′βΩ̂−1/2
(
I − Ω̂−1/2Ĝξ(Ω̂

−1/2Ĝξ)
†)Ω̂−1/2 (16)

The estimates of Gξ and Ĝβ are given below. Note the dependence of Ĝξ on M̂ , the
estimate of M0.

Ĝξ = − 1

n

n∑
i=1

(Ẑ ′i, X̂
′
i)
′(Ẑ ′i, X̂

′
i)M̂

′

Ĝβ = − 1

n

n∑
i=1

(Ẑ ′i, X̂
′
i)
′X̂ ′i

For Ω̂ we suggest either the identity matrix or the following estimate obtained by a two-
step procedure. Recall that the e�cient choice of Ω is the variance matrix of g(β0, ξ0). Let

β̃ be an initial estimate of β̂ obtained using the identity for Ω̂. We can then estimate the

7See Chen et al. (2013) for some analysis of nuclear norm penalization in reduced-rank regression.
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e�cient Ω by letting Ω̂ be the sample variance-covariance matrix of ĝi(β̃, ξ̂) which is de�ned
below:

ĝi(β̃, ξ̂) = (Ŷi − β′X̂i − ξ′V̂i)(Ẑ ′i, X̂ ′i)′

2.2 Second-Stage Estimator

We estimate β0 by inverting an empirical analogue of (10) with the nuisance parameters
replaced with the estimates speci�ed in the previous sub-section. Following Chernozhukov
et al. (2018) we employ sample-splitting to reduce bias.

For the purpose of exposition let us �rst specify a version of the estimator without
sample-splitting. De�ne an estimate of the score function for the robust moment condition
(10) evaluated at observation i as follows:

ψ̂i(β, ξ, µ) = µ(Ŷi − β′X̂i − ξ′V̂i)(Ẑ ′i, X̂ ′i)′ (17)

Note that the above is an estimate of the true score because we have partialled out
D from the variables on the right-hand-side empirically rather than exactly. An esti-
mate of β0 that does not employ sample-splitting solves the empirical moment condition
1
n

∑n
i=1 ψ̂i(β; ξ̂, µ̂) = 0. The solution β̌ has the following formula:

β̌ =
( n∑
i=1

X̂i(Ẑ
′
i, X̂

′
i)µ̂
′)† n∑

i=1

µ̂(Ẑ ′i, X̂
′
i)
′(Ŷi − ξ̂′V̂ ′i )

To apply sample splitting, one partitions the data into J sub-samples. Let {Ij}Jj=1 be a
partition of {1, ..., n} and let nj be the number of entries in Ij . Thus each index i = 1, ..., n

is a member of precisely one subset Ij and
∑J
j=1 nj = n. We will use the shorthand I−j to

denote all the elements of {1, ..., n} that are not in Ij (i.e., the complement of Ij).
For each j = 1, ..., J the researcher evaluates each of the nuisance parameter estimates

using only the observations with indices in I−j , that is, the data outside of the jth subsample.
Thus, for each j, one obtains estimates ξ̂j , µ̂j of ξ0 and µ0. We also suggest sample-splitting
when partialling out D and X. For each j one obtains an estimate γ̂j,X of γX,0 using only
the data in I−j and likewise for γY,0, γV,0, etc. Thus for each j one obtains a separate

estimate of X̃i denoted by X̂j,i = Xi − γ̂′j,XDi, and likewise for the other variables. This
results in a separate estimate for the score function for each j:

ψ̂j,i(β, ξ, µ) = µ(Ŷj,i − β′X̂j,i − ξ′V̂j,i)(Ẑ ′j,i, X̂ ′j,i)′

The estimate β̂ with sample-splitting solves the following empirical analogue of the dou-
bly robust moment condition (10):

J∑
j=1

1

nj

∑
i∈Ij

ψ̂j,i(β̂; ξ̂j , µ̂j) = 0

The solution has the formula below:

β̂ =
( J∑
j=1

1

nj

∑
i∈Ij

X̂j,i(Ẑ
′
j,i, X̂

′
j,i)µ̂

′
j

)† J∑
j=1

1

nj

∑
i∈Ij

µ̂j(Ẑ
′
j,i, X̂

′
j,i)
′(Ŷj,i − ξ̂V̂ ′j,i)
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2.3 Inference

Chernozhukov et al. (2018) suggests a variance estimator for DML2 estimators. In the case

of our estimator β̂ the variance estimate is as follows:

ŝ2 =
1

n

J∑
j=1

∑
i∈Ij

Ŝ−1ψ̂j,iψ̂
′
j,i(Ŝ

−1)′

Where we let ψ̂j,i = ψ̂j,i(β̂, ξ̂j , µ̂j) and de�ne the matrix Ŝ by:

Ŝ =
1

n

J∑
j=1

∑
i∈Ij

µ̂j(Ẑ
′
i, X̂

′
i)
′X̂ ′i

Note that the above estimates the symmetric matrix S0 = µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i].

If the variance estimator is consistent and β̂ is asymptotically Gaussian centered at β0,
then a con�dence interval for l′β0 (where l is some vector) can be obtained as follows:

CI =
[
l′β̂ ± Φ−1(1− α/2)

√
l′ŝ2l/n

]
The formula above is suggested in Chernozhukov et al. (2018). Φ is the cumulative distri-
bution function of a standard Gaussian random variable.

3 Consistency and Asymptotic Normality

The methods in the previous section estimate a parameter of interest β0 in the presence of
possibly high-dimensional nuisance parameters. We take the standard approach to asymp-
totic analysis in such settings which is to �nd conditions under which the estimates are
root-n consistent and admit an asymptotic Gaussian approximation.

For readers who wish to skip the more technical results in this section, some of the key
takeaways are as follows. Firstly, to ensure that ξ̂ and µ̂ are consistent, we require not only
that the reduced-rank regression estimates M̂ and Q̂ are consistent, but that the rank dW
be selected correctly with probability approaching 1.

Standard IV estimation does not impose any rank-restrictions. Thus if we were to ap-
ply IV in our setting (as in Griliches (1977)), the resulting estimates of ξ0 are generally
inconsistent when the number of proxies in each group is strictly larger than the number
of confounders. As we discuss in detail in Appendix C, despite the inconsistent estimation
of ξ0, standard IV estimators of β0 are in fact consistent under �xed-dimensional asymp-
totics (under some weak regularity conditions), but they generally have a non-standard
distribution.

Secondly, the quality of the nuisance parameter estimates depends upon the measure of
proxy informativeness introduced in Section 1. If this quantity is small then ξ̂ and µ̂ may
be subject to substantial error compared with M̂ and Q̂.

Finally, suppose that ‖ξ̂ − ξ0‖ = Op(δξ) and ‖µ̂ − µ0‖ = Op(δµ). A key condition that

we use to establish root-n asymptotic normality of the doubly-robust estimator β̂ is that
the product δξδµ goes to zero faster than n−1/2.

It is helpful to introduce some additional notation. Firstly, we make the dependence of
the robust core function on the parameters involved in partialling out D explicit:

ψ(β, ξ, µ, γ) = µ
(
Ỹ (γY )− β′X̃(γX,1)− ξ′Ṽ (γV )

)(
Z̃(γZ)′, X̃(γX,2)′

)′
(18)
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Note the distinction between γX,1 and γX,2. While both of these quantities take the place
of the same parameter γX,0 it is useful to treat them as separately for analytical purposes.
The argument γ in the score function collects γX,1, γX,2, γY etc. into one parameter γ =
(γX,1, γX,2, γZ , γV , γY ) with true value γ0 = (γX,0, γX,0, γZ,0, γV,0, γY,0). For convenience we
write ψ = ψ(β0, ξ0, µ0, γ0).

We de�ne the residual ε̃ as follows:

ε̃ = Ỹ − X̃ ′β0 − Ṽ ′ξ′0

Relative to some γ we de�ne γε by γε = γY − γV ξ′0 − γX,2β0 and γε,0 is de�ned in the
same way but with γ0 in place of γ.

3.1 Asymptotic Analaysis of the Doubly-Robust Estimator

We begin by establishing root-n consistency and asymptotic normality of the doubly-robust
estimator with sample splitting as de�ned in (2.2). These results apply for any choice of

nuisance parameter estimators ξ̂ and m̂u not just those speci�ed in Section 2. We analyze
our suggested nuisance parameter estimates later in this section.

The doubly-robust estimator is a Double-Machine Learning 2 (DML2) estimator of the
kind analyzed in section 2 in Chernozhukov et al. (2018). DML2 estimators (along with the
DML1 estimators in Chernozhukov et al. (2018)) have the advantage that they are root-
n consistent and centered asymptotically normal under relatively weak conditions on the
nuisance parameter estimates.

Our asymptotic analysis is based on Theorems 3.1 and 3.2 in Chernozhukov et al. (2018).
The Assumptions 1.1-1.4 and 3.1-3.2 (stated below) act as primitive conditions for the
assumptions in that paper.

In order to derive results that are uniform over a growing sequence of parameter spaces
we suppose that for each sample size n, the data generating process, denoted by P , belongs
to some set Pn. Our results then rely on conditions that restrict Pn.

Assumption 3.1 (Convergence rates of the nuisance parameter estimates). There
is a sequence αn with αn → 0 so that if P ∈ Pn then with probability at least 1 − αn the

following hold for j = 1, ..., J . i. ‖µ̂j − µ0‖ ≤ δµ ≺ d
−1/2
X . ii. ‖ξ̂j − ξ0‖ ≤ δξ ≺ d

−1/2
X . iii.

For H = X,V, Z, ε, ‖γ̂H,j − γH,0‖ ≤ δγ,H ≺ d−1/2
X .

Assumption 3.2 (Restrictions on the DGP). There are constants c > 0 and q > 2 so
that if P ∈ Pn the following hold: i. E[ε̃2] ≤ c, the eigenvalues of ΣṼ , ΣZ̃X̃ , and ΣD are

bounded below by 1/c and above by c. ii. For each H ∈ {Ṽ , (Z̃ ′, X̃ ′)′}, ‖E[HH ′|D]‖ ≤
c with probability 1, and for each H ∈ {Ṽ , ε̃}, ‖E[HH ′|Z̃, X̃]‖ ≤ c with probability
1. iii. For any matrix A ∈ RdX ,dD and vector b, E

[
‖ADD′b‖2

]
≤ dX‖A‖2‖b‖2c2. iv.

‖M0‖, ‖Ω−1‖, ‖ξ0‖ ≤ c. v. If ‖ξ−ξ0‖, ‖µ−µ0‖, ‖γH−γH,0‖ ≤ 1/c for each H ∈ {ε, V, Z,X},
then E

[
‖ψ(β0; ξ, γ, µ)‖q

]1/q ≤ c and E[‖µ(Z̃ ′, X̃ ′)′X̃ ′‖q
]1/q ≤ c.

Assumption 3.1 imposes convergence rates for each of the nuisance parameter estimates.
Note that the convergence rates are required to hold uniformly over sequences of DGPs in
{Pn}∞n=1.

Assumption 3.2 imposes bounds on the rates at which the magnitudes of some population
objects grow with the sample size. Note that Assumption 3.2.v requires that some higher-
order moments of the score exist and be bounded uniformly over n when the nuisance
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parameter arguments are close to the true values. Existence of higher-order moments is a
standard assumption in problems with growing dimension as an assumption of this kind is
generally required for an application of a multivariate central limit theorem.

Theorem 3.2. Suppose that for each n, P ∈ Pn so that Assumptions 1.1-1.4, 3.1, and 3.2
hold, the singular values of S0 are bounded uniformly below and away from zero, and the
eigenvalues of E[ψψ′] are bounded uniformly above and below away from zero.

In addition, suppose that δµδξ ≺ n−1/2 and (
√
n+
√
dX)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ) ≺ 1.

Then uniformly over all P ∈ Pn, β̂ is root-n consistent and asymptotically normal:

√
ns−1(β0 − β̂) N(0, I)

Where the asymptotic variance s2 is given by: s2 = S−1
0 E[ψψ′]S−1

0 . Moreover, the
estimator ŝ2 is consistent for s2 and the con�dence intervals described earlier in this section
have asymptotically correct coverage.

Theorem 3.2 establishes uniform root-n consistency of the estimator and asymptotic
validity of the con�dence intervals. In addition to Assumptions 1.1-1.4, 3.1, and 3.2, the
theorem requires a number of conditions on the rates at which the nuisance parameters
converge.

The condition that the singular values of S0 are bounded uniformly below and that
E[ψψ′] has eigenvalues bounded uniformly above ensures that the asymptotic variance of
the estimator is uniformly bounded.

3.2 Consistency of the Nuisance Parameter Estimates

We now bound the error in the nuisance parameters ξ0 and µ0. In this subsection ξ0 refers
speci�cally to the solution to ξ0B0C0 = A0C0 with minimal Euclidean norm. A minimum-
norm solution to moment conditions with proxy controls is also targeted by Imbens et al.
(2021). Throughout this subsection ξ̂ and µ̂ refer to the estimators of ξ0 and µ0 described
in Section 2.

Proposition 3.1 relates the degree of error in the nuisance parameter estimates ξ̂ and µ̂
to the quality of the corresponding estimates of M0 and Q0.

Proposition 3.1. Suppose that Assumptions 1.1-1.4 hold and there exists 0 < c1 < ∞ so
that ‖B0(C0, G0)‖, ‖A0C0‖ ≤ c1, and the eigenvalues of Ω, ΣZ̄ , and ΣZ̃X̃ are bounded above
and below by c1 and 1/c1. Let {αn}∞n=1 be a sequence in (0, 1] with αn → 0.

a. Suppose that with probability at least 1 − αn, rank(Q̂[1:dV ,:]) = dW and ‖Q̂[1:dV ,:] −
B0C0‖ ≤ c1σnαn. Then there is a constant c <∞ that depends only on {αn}∞n=1 and c1 so
that with probability at least 1− αn:

‖ξ̂ − ξ0‖ ≤ c(1 + σ−2
n )‖Q̂−Q0‖

b. Suppose that with probability at least 1−αn, rank(M̂) = dW , Ω̂ and Σ̂ẐX̂ have full rank,

and c1σnαn exceeds ‖M0 − M̂‖, ‖Σ̂ẐX̂ − ΣZ̃X̃‖, and ‖Ω̂−1/2 − Ω−1/2‖. Then there is an
m ∈ N and constant c <∞ that depend only on {αn}∞n=1 and c1 so that for all n ≥ m, with
probability at least 1− αn:

‖µ̂− µ0‖ ≤ c(1 + σ−2
n )
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂ẐX̂ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)
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Proposition 3.1 is non-asymptotic in that it bounds the �nite-sample estimation error in
ξ̂ and µ̂. Formulas for the constants c and m can be found in the proof of the result.

Recall that the measure of proxy informativeness σn, is de�ned as the dW -th smallest
singular value on the LHS of (4). When σn is small (suggesting uninformative proxies)
Proposition 3.1 allows for the possibility that the error in ξ0 and µ0 is large compared to
level the error in the intermediate estimates of M0 and Q0.

Proposition 3.1 only establishes consistency of the nuisance parameter estimates if the
rank is estimated consistently. We discuss the need for consistent rank selection and how
this may be relaxed in detail in Appendix C. Note that a linear IV estimation strategy
(like that of Griliches (1977)) necessarily fails to select the correct rank when dW is strictly
smaller than dV . As we discuss in the appendix, the corresponding estimates of β0 may be
consistent nonetheless. However, these estimates generally have a non-standard asymptotic
distribution, even under standard �nite-dimensional asymptotics. This means that standard
inference methods based on IV estimation are invalid in this setting.

Bunea et al. (2011) provide �nite-sample statistical results for their adaptive reduced-
rank regression method. If σn is �xed and strictly positive, then consistent rank selection
simply requires that the penalty parameters go to zero su�ciently slowly. The rate at which
these penalties may go to zero depends on the noise levels rM,n and rQ,n de�ned below.

rM,n = ‖Σ̂−1/2

ẐX̂

1

n

n∑
i

(Ẑ ′i, X̂
′
i)
′U ′i,M‖

rQ,n = ‖Σ̂−1/2

Ž

1

n

n∑
i

ŽiU
′
Q,i‖

The regression residuals UM,i and UQ,i are de�ned as follows:

UM,i = V̂i −M0(Ẑ ′i, X̂
′
i)
′

UQ,i = (V̌ ′i , Y̌i)
′ −Q0Ži

Proposition 3.2 below applies some of the �nite-sample results in Bunea et al. (2011) to our
setting. `‖ · ‖2F ' denotes the squared Frobenius norm (the sum of the squared entries of the
matrix).

Proposition 3.2 (Bunea et. al.). a. Suppose Assumptions 1.1-1.4 hold and there are
scalars a > 0 and b > 0 so that with probability at least 1− αn, ‖Σ̂−1

ẐX̂
‖ ≤ b and:

(1 + a)r2
M,n < λM,n <

(
1 + (1 + a)−1/2

)−2
b−1σ2

n/‖Σ−1
Z̄
‖2

Then P (rank(M̂) = dW ) ≥ 1− 2αn and with probability at least 1− αn:

‖M̂ −M0‖2F ≤ 2b(1 + 2/a)λM,ndW

b. Suppose Assumptions 1.1-1.4 hold and there are scalars a > 0 and b > 0 so that with
probability at least 1− αn, ‖Σ̂−1

Ž
‖ ≤ b and:

(1 + a)r2
Q,n < λQ,n <

(
1 + (1 + a)−1/2

)−2
b−1σ2

n/‖Σ−1
Z̄
‖2

Then P (rank(Q̂) = dW ) ≥ 1− 2αn and with probability at least 1− αn:

‖Q̂−Q0‖2F ≤ 2b(1 + 2/a)λQ,ndW
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Proposition 3.2 bounds the Frobenius norms of the errors in M̂ and Q̂. Note that the
Euclidean matrix norm is always bounded above by the Frobenius norm, as is the Euclidean
norm of any sub-vector of a matrix.

Bunea et al. (2011) provide results that (applied to our setting) show that if all the
entries of UM,i and UQ,i are jointly independent, independent of Ẑ and X̂, and jointly
standard Gaussian, then rM,n and rQ,n converge to zero in probability at respective rates
(
√
dV +

√
dZ + dX)/

√
n and (

√
1 + dV +

√
dZ)/

√
n. These rates apply even in very high

dimensions. Note that the same rates apply if UM,i and UQ,i are multivariate Gaussian with
second moment matrices whose smallest eigenvalues are both bounded below away from zero
by a constant.

4 Simulation Study

In order to assess the e�cacy of the methods we present in Section 2 we carry out a Monte
Carlo simulation. We implement our methods on a number of simulated datasets. For each
simulation, we draw observations independently and identically from the following model:

Vi = B0Wi + υi

Xi = T0Wi + εi

Zi = P0Wi +Q0Xi + ηi

Yi = X ′iβ0 + F0Wi + χ0Vi + ei

The residuals υi, εi, ηi, and ei are drawn independently of each other from zero-mean
Gaussian distributions: Wi ∼ N(0, I), υi ∼ N(0,ΣV ), εi ∼ N(0,ΣX), ηi ∼ N(0,ΣZ), and
ei ∼ N(0,ΣY ). Note that we do not include additional controls Di in our simulations
however in estimation we include an intercept (i.e, we treat Di as a constant).

In each simulation we must choose parameters β0, B0, P0, Q0, T0, F0, χ0, ΣY , ΣV ,
ΣX , and ΣZ . Rather than use a �xed value of each parameter in all of our simulations, we
draw the parameters at random in each simulation. Thus our simulation results show the
weighted average performance of our estimators over a parameter space.

We draw the parameters as follows. The elements of the coe�cient matrices β0, L0,
T0, F0, and χ0 are all independently mean-zero normal with variance equal to the square
root of the number of columns of the matrix. For example, the elements of F0 are all
independent with distribution N(0, 1/

√
dW ). This choice of the variances of the normal

distributions ensures that the ratio of the variance in each variable to the residual variance
remains roughly constant as the dimension changes.

The matrices B0 and P0 are generated in order so that we obtain a pre-speci�ed value
of σn. Let N1 be a dV × dV matrix of independent standard normals and N2 be a dW × dW
matrix of independent standard normals. We draw B0 as follows:

B0 ∼
√
σn(N ′1N1)−1/2N1(I, 0)′N ′2(N ′2N2)−1/2

We draw P0 independently of B0 using a similar formula:

P0 ∼
√
σn(N ′3N3)−1/2N3(I, 0)′N ′4(N ′4N4)−1/2(I + T ′0T0)

where N3 is a dZ×dZ matrix of independent standard normals and N4 is a dW ×dW matrix
of independent standard normals.
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The covariance matrices have a re-scaled inverse Wishart distribution, for example
dV pΣ

−1
V ∼ WdV (I, dV p). The natural number p is a hyper-parameter that determines

the degrees of freedom of the Wishart distribution.
We are left with hyperparameters σn, p, dW , dX , dV , dZ , and the sample size n. In

all of our simulations we let dX = 1 so that there is a single treatment of interest. We set
p = 2 which means the covariance matrices are concentrated around the identity. In all of
our simulations dZ = dV so there are the same number of proxies in Zi as in Vi. We carry
out simulations for a range of choices for the remaining hyperparameters σn, dW , dV , and
n.

(a) dW = 5

(b) dW = 10

Figure 4.1: Simulated Median Squared Errors, σn = 1
Median Squared Errors on the y-axes are the medians of ‖β̂ − β0‖2 over 1000 simulated datasets for various

estimators β̂. The di�erent �gures correspond to di�erent choices for the number of confounding factors dW , and

the numbers of proxies dV and dZ .

Figure 4.1 shows the median-squared errors of alternative estimators for a variety of
di�erent hyperparameters. In all cases in Figure 4.1 we set s = 1. The estimators that
are compared are: (in blue) a naive least-squares estimator that simply treats Vi as a
set of controls, (in red) the proxy control estimator with no rank restriction, (in yellow) an
infeasible estimator that imposes the rank restriction dW , and (in purple) our doubly-robust
estimator.8

For the implementation of the doubly-robust estimator we split the sample into �ve
evenly-sized sub-samples. We select the penalty parameters from a dense grid of 100 values
using cross-validation with �ve folds.

Keeping the number of confounders �xed but increasing the number of proxies leads
to remarkably little loss in performance for the doubly robust estimator (in purple). The

8For the infeasible estimator we perform ordinary least-squares regression of Ỹi on X̃i and M̃(Z̃′i, X̃
′
i)
′,

where M̃ is a reduced-rank regression estimate of M0 that imposes the rank dW on the estimate.
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doubly robust estimator achieves a performance that is near indistinguishable in all but
the smallest samples from that of the infeasible estimator (in yellow). As we move from
left to right in Figure 4.1 we see that the median squared error of this estimator stays
roughly constant, with the only apparent exception occurring in the smallest sample size in
the the rightmost sub-�gures. Likewise, the performance varies little with the number of
confounders dW .

The proxy control estimator with no rank restriction (in red) is equivalent to the two-
stage least squares strategy of Griliches (1977) in which Vi is a vector of endogenous regres-
sors, Xi is a vector of exogenous regressors, and Zi is a vector of instruments. As we discuss
extensively in Appendix C along with formal results and further simulation evidence, this
estimator is consistent (in a �xed-dimensional regime) under our identifying assumptions
and some weak regularity conditions but has a non-standard asymptotic distribution when
dV is strictly larger than dW . When the number of proxies in each group is equal to the
number of confounders (the leftmost sub-�gures) this estimator has nearly identical perfor-
mance to our doubly robust procedure. This is to be expected as in these sub-�gures there is
no rank restriction for our estimator to exploit. However, unlike the doubly robust estimator
(and the infeasible estimator), this procedure exhibits substantially worse performance as
the number of proxies increases. This loss is apparent even in large samples.

The naive estimator (in blue) is inconsistent in this model, and this is clear from Figure
4.1 which shows that the median squared error of this estimator does not fall as the sample
size grows. Nonetheless, in the setting with 10 confounders and 50 proxies in each group,
the naive estimator outperforms the proxy estimator with no rank restrictions in all but the
very largest samples. The doubly robust estimator has a lower median-squared error than
the naive estimator in nearly all cases, the exceptions occurring in the leftmost sub-�gures
where the estimators have almost identical performance.

Figure 4.2 contains the same results for the case in which σn = 0.25. Recall from Section
3 that σn controls the informativeness of the proxies relative to noise levels. A smaller value
of σn is thus likely to be less favorable for our analysis. Indeed, all of the estimators perform
worse in this setting (apart from the naive estimator which performs slightly better) and
the proxy estimators perform markedly worse relative to the naive estimator. Nonetheless,
our estimator still outperforms the naive estimator apart from in the smaller samples, and
attains a level of performance that is close to that of the naive estimator, particularly with
large sample sizes.

As in the case of σn = 1, the estimator that does not impose a rank restriction performs
substantially worse when there are many proxies compared to the number of unobserved
confounders.

Figure 4.3 shows the percentage of simulations in which 99%, 95%, and 90% con�dence
intervals cover the true parameter β0 (recall β0 is drawn at random in each simulation).
The con�dence intervals are those based on a Gaussian approximation for the doubly-robust
estimator as described in Section 3. In all cases the coverage is close to nominal level in
large samples. In small samples the con�dence intervals undercover, particularly when there
are many proxies and many confounders.

Figure 4.4 shows the coverage is less favorable setting with σn = 0.25 at least in small
and moderate samples. There is very substantial undercoverage in small and medium sized
samples, particularly when the number of proxies is large. Even in the largest samples the
90% interval undercovers by as close to 5% in some cases.

In Table 1 we give the proportion of simulations in which both the rank of M̂ and Q̂,
are equal to the number of confounders dW (which is the rank of the matrices M0 and Q0).
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(a) dW = 5

(b) dW = 10

Figure 4.2: Simulated Median Squared Errors, σn = 0.25
Median Squared Errors on the y-axes are the medians of ‖β̂ − β0‖2 over 1000 simulated datasets for various

estimators β̂. The di�erent �gures correspond to di�erent choices for the number of confounding factors dW , and

the numbers of proxies dV and dZ .

These estimates were evaluated using the whole sample rather than a sub-sample.
As we would expect, the probability of correct rank selection increases with the sample

size. The frequency is lower when the measure of proxy informativeness σn is smaller. A
small value of σn means that the smallest non-zero singular values of Q0 and M0 are close
to zero and are therefore more di�cult to distinguish from noise. This makes it harder to
estimate the number of non-zero singular values, and thus the ranks of these matrices. In
the case of a small σn and small sample size, a smaller number of proxies is associated with
a greater probability of correct rank selection. In larger samples and with more informative
proxies there is no clear trend.

5 Conclusion

We present novel identi�cation results for the linear model with proxy controls. Our iden-
ti�cation results suggest method of moments estimators that can take advantage of the
dimension reduction when the number of unobserved confounding factors is smaller than
the number of proxies. We present model selection methods that adapt to the unknown
number of confounding factors. We provide conditions for uniform root-n consistency of our
estimates and asymptotic validity of an inference procedure. Our simulation results suggest
that our estimators are more e�ective than proxy control methods that do not exploit the
dimension reduction, particularly when the the number of proxies substantially exceeds the
number of unobserved confounders. In the latter case inference based on our doubly-robust
adaptive proxy control method performs well.
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(a) dW = 5

(b) dW = 10

Figure 4.3: Simulated Con�dence Interval Coverage, σn = 1
Con�dence interval coverage of the treatment parameter. on the y-axes are percentages of 1000 simulated datasets

in which con�dence intervals contain β0. The di�erent �gures correspond to di�erent choices for the number of

confounding factors dW , and the numbers of proxies dV and dZ .
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A Relaxing Assumption 1.1

In Theorems 1.1 and 1.2, the following weaker condition would su�ce in lieu of Assumption
1.1:

Y = β′0X +A0W + L0D + ε, E[ε(X ′, D′)] = 0 (19)

V = B0W +R0D + υ, E[υD′] = 0 (20)
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Assumption 1.1*. i. (19) and (20) hold. ii. E[εZ ′] = 0 and E[υ(X ′, Z ′)] = 0.

Assumption 1.1* weakens Assumption 1.1 by dropping the requirement (in 1.1.i) that
E[εW ′] = 0 and E[υW ′] = 0. Thus Assumption 1.1* is weaker than Assumption 1.1.
However, Assumption 1.1.i can be understood as a de�nition rather than an `assumption' in
the usual sense of the word. In particular, Assumption 1.1.i de�nes the coe�cients β0, A0,
B0, etc. and the residuals ε and υ. This is because (generically) there exist unique values of
these coe�cients and residuals that satisfy Assumption 1.1.i. By contrast, Assumption 1.1*.i
does not uniquely determine these coe�cients and residuals, leaving their interpretation
ambiguous. Ambiguity in the de�nition of β0 is problematic because identi�cation of this
quantity is the main goal of Section 1.

B Additional Algorithmic Details

The formulas for the solutions to the rank-restricted regression problems (11) and (12) are
as follows. Let Σ̂ẐX̂ = (Ẑ, X̂)′(Ẑ, X̂)/n and Σ̂Ž = Ž ′Ž/n and de�ne ÊM and ÊQ by:

ÊM = eigen
(
V̂ ′(Ẑ, X̂)Σ̂†

ẐX̂
(Ẑ, X̂)′V̂

)
ÊQ = eigen

(
(V̌ , Y̌ )′ŽΣ̂†

Ž
Ž ′(V̌ , Y̌ )

)
Then we have:

M̂r = Σ̂†
ẐX̂

(Ẑ, X̂)′V̂ ÊM,[:,1:r]Ê
′
M,[:,1:r]

Q̂r = Σ̂†
Ž
Ž ′(V̌ , Y̌ )ÊQ,[1:r,:]Ê

′
Q,[1:r,:]

As stated in Section 2, the solutions to the rank-penalized least squares problems (13)
and (14) are identical to the solutions to (11) and (12) but with the rank restriction r set
in each equation to r̂M and r̂Q respectively. The formulas for r̂M and r̂Q are as follows.

r̂M is whichever is smaller: dZ or the number of eigenvalues of the matrix V̂ ′(Ẑ, X̂)Σ̂†
ẐX̂

(Ẑ, X̂)′V̂
that exceed λM,n. Similarly r̂Q is the minimum of dV and the number of eigenvalues of

(V̌ , Y̌ )′ŽΣ̂†
Ž
Ž ′(V̌ , Y̌ ) that exceed λQ,n.

In our setting the plug-in penalty parameters suggested by Bunea et al. (2011) are:

λM,n = C(dV
1/2 + rank

(
(Ẑ, X̂)

)1/2
)2s2

M/n

λQ,n = C
(
(dV + 1)1/2 + rank(Ž)1/2)2s2

Q/n

Where C is a constant with C > 1. In our simulations we set C = 1.1. s2
M is an estimate

of the residual variance from regression of V̂i on Ẑi and X̂i, s
2
Q is an estimate of the residual

variance from regression of (V̌ ′i , Y̌i)
′ on Ži. The estimates are:

s2
M = ‖Ŷ − (Ẑ, X̂)

(
(Ẑ, X̂)′(Ẑ, X̂)

)†
(Ẑ, X̂)′Ŷ ‖2F /

(
ndV − rank

(
(Ẑ, X̂)

)
dV
)

s2
Q = ‖(V̌ , Y̌ )− Ž(Ž ′Ž)†Ž ′(V̌ , Y̌ )‖2F /

(
n(dV + 1)− rank(Ž)(dV + 1)

)
C Consistency and non-Gaussianity of Two-Stage Least-

Squares

Recall the moment condition (6) in Corollary 1.1 which identi�es β0:
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E
[
(Ỹi − β′0X̃i − ξ′0Ṽi)(Z̃ ′i, X̃ ′i)′

]
= 0

We can rewrite this as:

E
[
(Ỹi − β′0X̃i)(Z̃

′
i, X̃

′
i)
′]− χ0 = 0

Where χ0 is de�ned as follows:

χ0 = E[ξ0Ṽi(Z̃
′
i, X̃

′
i)
′]

= A0C0(C0B0)†B0G0

= Q0,[dV +1,:]Q
†
0,[1:dV ,:]

E
[
Ṽi(Z̃

′
i, X̃

′
i)
′]

Where Q0,[dV +1,:] = A0C0 and Q0,[1:dV ,:] = C0B0 are submatrices of Q0 = (B′0, A
′
0)′C0.

To obtain an estimate of β0 we e�ectively replace χ0 with an estimate. An estimate χ̂
without sample splitting is given below:

χ̂ =
1

n

n∑
i=1

ξ̂′V̂i(Ẑ
′
i, X̂

′
i)
′

= Q̂[dV +1,:]Q̂
†
[1:dV ,:]

1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′

In order to establish consistency of χ̂ (and thus consistency of a corresponding estimate

β̂ of β0), we would typically decompose:

χ̂− χ0 = ξ′0
( 1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E[Ṽi(Z̃

′
i, X̃

′
i)
′]
)

+ (ξ̂ − ξ0)′E[Ṽi(Z̃
′
i, X̃

′
i)
′]

+ (ξ̂ − ξ0)′
( 1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E[Ṽi(Z̃

′
i, X̃

′
i)
′]
)

Under standard conditions, the terms on the �rst two rows of the RHS above are root-n
asymptotically zero-mean normal and the term on the third row above is of second order.
Thus χ̂− χ0 is root-n asymptotically zero-mean Gaussian.

However, a problem arises when the rank is inconsistently estimated. Let d̂W = rank(Q̂†[1:dV ,:]
)

and recall that dW = rank(Q0,[1:dV ,:]). Asymptoptic analysis of χ̂ is complicated by the fol-

lowing fact. If ‖Q̂ − Q0‖ ≺p 1 but P
(
d̂W = dW

)
66→p 1, then it is necessarily the case that

‖Q†0,[1:dV ,:]
− Q̂†[1:dV ,:]

‖ does not converge in probability to zero. This follows from a well-

known result (see Stewart (1977)) that for any matrices A and B, if rank(A) 6= rank(B)
then:

‖A† −B†‖ ≥ 1

‖A−B‖

25



Moreover, if rank(A) > rank(B) then ‖A†‖ ≥ 1
‖A−B‖ . This contrasts with the case of

rank(A) = rank(B) which implies that, for ‖A†‖‖A−B‖ < 1:

‖A† −B†‖ ≤ ‖A−B‖
1− ‖A†‖‖A−B‖

If Q̂ is a consistent least squares estimator of Q0 and the variables are continuously
distributed, then Q̂[1:dV ,:] has rank dV with probability 1, but Q0[1:dV ,:] has rank dW . As

such, if dW < dV then both ‖Q̂†[1:dV ,:]
‖ and ‖Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]
‖ must diverge.

An interesting consequence of the arguments above is that if Q̂ is consistent for Q0,
and ‖(B0C0)†‖ -p 1, then the probability that d̂W strictly underestimates dW must vanish.
Thus the problematic case is restricted exclusively to the overestimation of dW . To see this
recall that ‖(B0C0)†‖ = ‖Q†0[1:dV ,:]

‖, so if d̂W < dW then ‖(B0C0)†‖ ≥ 1
‖Q̂[1:dV ,:]−Q0,[1:dV ,:]‖

,

but by consistency of Q̂ the RHS diverges, so unless the probability of d̂W < dW goes to
zero we have 1 ≺p ‖(B0C0)†‖, which yields a contradiction.

Fortunately, χ̂ may converge in probability to χ even when the rank is inconsistently
estimated. Demonstrating this requires a rather more involved argument which we provide
in the proof of Theorem A.3.1 below. In e�ect, the theorem demonstrates that, although ξ̂ is
generally inconsistent for ξ0, the term ξ̂− ξ0 is stoachstically bounded. Stochastic bounded-
ness of ξ̂−ξ0 ensures consistency of χ̂ (assuming ξ0 has bounded norm and 1

n

∑n
i=1 V̂i(Ẑ

′
i, X̂

′
i)
′

is consistent). However, if ξ̂ − ξ0 does not converge to a constant, then χ̂ (and thus β̂) is
generally not root-n asymptotically normal.

In sum. If the rank is estimated inconsistently (as is necessarily the case for 2SLS
estimation when dW < dV ) then the resulting proxy control estimator may be consistent
but it may not have an asymptotic normal distribution.

We demonstrate the non-normality of the asymptotic distribution of 2SLS using simu-
lation evidence. The following �gure contains a QQ plot of the simulated distribution of
the 2SLS estimator centered and rescaled to have mean zero and unit variance. The data
were drawn from the same model as in Section 4 but with all residuals standard normal,
and all coe�cients equal to unity except with a zero coe�cients on Xi in the equation for
Zi and Vi in the equation for Yi. The simulation has dX = 1, dZ = dV = 2, and dW = 1
and n = 10000.

The QQ-plot was generated using 1000 simulation draws and the top and bottom 1%
outliers are trimmed. The �gure shows that the distribution is highly non-Gaussian, with
very heavy tails.

Despite the non-standard asymptotic distribution, our simulations in Section 4 clearly
demonstrate consistency of the 2SLS estimator. Theorem A.3.1 provides a formal consis-
tency result for estimates which, like 2SLS, do not correctly select the rank. The argument
depends strongly on the Generalized sin θ Theorem from Wedin (1972), which we adapt for
our purposes in a Lemma stated at the end of this subsection.

Theorem A.3.1. Suppose that ‖C†0‖, ‖B
†
0‖ - 1 and ‖A0‖, ‖B0‖, ‖C0‖, ‖G0‖ - 1. In addi-
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Figure C.1: QQ-plot of 2SLS estimates

tion for sequences δa, δb, δc ≺ 1 suppose that:

‖Q̂[dV +1,:] −Q0,[dV +1,:]‖ -p δa
‖Q̂[1:dV ,:] −Q0,[1:dV ,:]‖ -p δb

‖ 1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E

[
Ṽi(Z̃

′
i, X̃

′
i)
′]‖ -p δc

If ‖Q̂†[1:dV ,:]
‖ -p δ−1

b then:

‖χ̂− χ0‖ -p δa + δb + δc +
δaδc
δb

Discussion

As we discuss above, if the rank is not consistently estimated then ‖Q̂†[1:dV ,:]
‖ diverges,

and in fact it must diverge at least as quickly as ‖Q̂[1:dV ,:]−Q0,[1:dV ,:]‖. Thus the condition
‖Q̂†[1:dV ,:]

‖ -p δ−1
b states that it diverges no more quickly than this lower bound. In the 2SLS

case in �xed dimensions δa, δb, δc �p n−1/2 under weak conditions. In this setting we would

expect the singular values of the linear regression estimate Q̂[1:dV ,:] to concentrate around

the those of Q0,[1:dV ,:] at exactly rate
√
n in thich case ‖Q̂†[1:dV ,:]

‖ -p
√
n the condition of

the theorem holds.
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Proof. De�ne ω0, ω1, ω2, and ω3 as follows:

ω0 = Q†0,[1:dV ,:]
− Q̂†[1:dV ,:]

ω1 = A0C0

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
ω2 =

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
B0G0

ω3 = A0C0

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
B0G0

We can decompose χ̂− χ0 as follows:

χ̂− χ0

=(Q̂[dV +1,:] −Q0,[dV +1,:])(C0B0)†E
[
Ṽi(Z̃

′
i, X̃

′
i)
′]

+ω3 + (Q̂[dV +1,:] −Q0,[dV +1,:])ω2

+Q0,[dV +1,:](C0B0)†
(

1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E

[
Ṽi(Z̃

′
i, X̃

′
i)
′])

+ω1

(
1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E

[
Ṽi(Z̃

′
i, X̃

′
i)
′])

+(Q̂[dV +1,:] −Q0,[dV +1,:])(C0B0)†
(

1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E

[
Ṽi(Z̃

′
i, X̃

′
i)
′])

+(Q̂[dV +1,:] −Q0,[dV +1,:])ω0(
1

n

n∑
i=1

V̂i(Ẑ
′
i, X̂

′
i)
′ − E

[
Ṽi(Z̃

′
i, X̃

′
i)
′])

By a well-known property of the pseudo-inverse ‖(C0B0)†‖ ≤ ‖C†0‖‖B
†
0‖ - 1. Apply-

ing the triangle inequality, de�nition of the matrix norm, and the rate conditions in the
statement of the theorem, we get:

‖χ̂− χ0‖ -p‖ω3‖+ δa(1 + ‖ω2‖) + δc(1 + ‖ω1‖)
+δaδc(1 + ‖ω0‖)

It remains to bound ‖ω0‖, ‖ω1‖, ‖ω2‖, and ‖ω3‖. The �rst of these is straight forward,
recall ‖Q̂†[1:dV ,:]

‖ �p δ−1
b and note that ‖Q†0,[1:dV ,:]

‖ = σ−1 - 1. So by the triangle inequality:

‖ω0‖ ≤ ‖Q†0,[1:dV ,:]
‖+ ‖Q̂†[1:dV ,:]

‖ -p
1

‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖

We can rewrite ω1 as:

ω1 = A0C0

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
= A0B

†
0Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
And so:

‖ω1‖ ≤ ‖A0‖‖B†0‖‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
‖
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By similar reasoning

‖ω2‖ ≤ ‖C†0‖‖G0‖‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
‖

And again by similar deductions:

‖ω3‖ ≤ ‖A0‖‖B†0‖‖C
†
0‖‖G0‖‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
Q′0,[1:dV ,:]

‖

In order to bound the term ‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
‖ we apply Lemma A.3.1

which is a slight adaptation of a theorem from Wedin (1972). We get that if d̂W ≥ dW then:

‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
‖ ≤ ‖Q0,[1:dV ,:]‖

2‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖
‖(B0C0)†‖−1 − 2‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖

+
1

2
‖(B0C0)†‖‖Q̂†[1:dV ,:]

‖‖Q0,[1:dV ,:]‖‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖

�p 1

Also using Lemma A.3.1 we get that for d̂W ≥ dW :

‖Q0,[1:dV ,:]

(
Q†0,[1:dV ,:]

− Q̂†[1:dV ,:]

)
Q′0,[1:dV ,:]

‖

≤‖Q0,[1:dV ,:]‖
2 2‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖
‖(B0C0)†‖ − 2‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖

+
1

4
‖(B0C0)†‖2‖Q̂†[1:dV ,:]

‖‖Q0,[1:dV ,:]‖
2‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖

2

�‖Q0,[1:dV ,:] − Q̂[1:dV ,:]‖
-pδb

Recall that ‖(B0C0)†‖ -p 1 and consistency of Q̂[1:dV ,:] imply that P (d̂W ≥ dW ) → 1
and so the bounds above hold with probability approaching 1. In all we get:

‖χ̂− χ0‖ -pδa + δb + δc +
δaδc
δb

Lemma A.3.1 (Wedin). Consider k×l matrices A and B with r = rank(A) < rank(B) =
p. Let σr denote the rth smallest non-zero singular value of A. Suppose σr > 0 and
2‖B −A‖ < σr, then:

‖A(B† −A†)‖ ≤ ‖A‖ 2‖B −A‖
‖A†‖−1 − 2‖B −A‖

+
1

2
‖A†‖‖B†‖‖A‖‖A−B‖

Where σ̃p is the smallest non-zero singular value of B. Moreover:

‖A(B† −A†)A′‖ ≤ ‖A‖2 2‖B −A‖
‖A†‖−1 − 2‖B −A‖

+
1

4
‖A†‖2‖B†‖‖A‖2‖A−B‖2
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Proof. Let the singular values of A ordered in terms of size be σ1 ≥ σ2 ≥ ... ≥ σmin{k,l}−1 ≥
σmin{k,l} and the singular values of B ordered in terms of size be σ̃1 ≥ σ̃2 ≥ ... ≥
σ̃min{k,l}−1 ≥ σ̃min{k,l}. Since B has rank r, σs = 0 for all r < s ≤ min{l, k}. We de-

compose B into two matrices B1 = Ũ1Σ̃1Ṽ
′
1 and B0 = Ũ0Σ̃0Ṽ

′
0 using the compact singular

value decomposition of B:

B = (Ũ1, Ũ0)

(
Σ̃1 0

0 Σ̃0

)
(Ṽ1, Ṽ0)′

= Ũ1Σ̃1Ṽ
′
1 + Ũ0Σ̃0Ṽ

′
0

= B1 +B0

In the above, Σ̃1 is the r × r diagonal matrix whose diagonal entires are the r largest
signular values of B and Σ̃2 is the diagonal marix whose entires are the reaming singular
values of B. The block matrix (Ũ1, Ũ0) is the orthonormal matrix of left singular vectors of
B with Ũ1 of dimension k× r and Ũ0 of dimension k× (p− r). The block matrix (Ṽ1, Ṽ0) is
the orthonormal matrix of right singular vectors of B with Ṽ1 of dimension l × r and Ṽ0 of
dimension l × (p− r). Applying a similar decomposition for A would simply yield A1 = A
and A0 = 0.

Note that rank(B1) = rank(A) = r. The pseudoinverse of B is then:

B† = (Ṽ1, Ṽ0)

(
Σ̃†1 0

0 Σ̃†0

)
(Ũ1, Ũ0)′

= Ṽ1Σ̃†1Ũ
′
1 + Ṽ0Σ̃†0Ũ

′
0

= B†1 +B†0

Note that ‖A†‖ = σ−1
r and ‖B†0‖ = σ̃−1

p . It is helpful to note the well-known result that for
each 1 ≤ s ≤ min{l, k}, |σs − σ̃s| ≤ ‖B −A‖.

Bounding ‖A(B† −A†)‖
Applying the triangle inequality and the de�nition of the matrix norm we get:

‖A(B† −A†)‖

≤‖A‖‖B†1 −A†‖+ ‖AB†0‖ (21)

Using the triangle inequality and the fact (already established) that σ̃s ≤ ‖B − A‖ for
s > r, we get:

‖A−B1‖ ≤ ‖B −A‖+ ‖B0‖
= ‖B −A‖+ σ̃r+1

≤ 2‖B −A‖
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So using 2‖A†‖‖B −A‖ = 2σ−1
r ‖B −A‖ < 1 we get:

‖B†1 −A†‖

≤ ‖A†‖‖A−B1‖
1− ‖A†‖‖B −B1‖

≤ 2σ−1
r ‖B −A‖

1− 2σ−1
r ‖B −A‖

Now consider the term ‖AB†0‖. Let PR(B′
1) be the orthogonal projection onto the range

of B′1 and similarly for PR(A′). By the construction of B0 and B1, R(B′1) is a subspace

the kernel of B0. By elementary properties of the pseudoinverse, the kernel of (B′0)† is
identical to the kernel of B0, thus R(B′1) is a subspace of the kernel of (B′0)† and so (B′0)† =
(B′0)†(I − PR(B′

1)). Moreover by de�nition of the projection PR(A′)A
′ = A′. Thus we have:

(B′0)†A′ = (B′0)†(I − PR(B′
1))PR(A′)A

′

And so applying the triangle inequality and de�nition of the matrix norm:

‖AB†0‖ ≤ ‖A‖‖(I − PR(B′
1))PR(A′

1)‖‖B†0‖
= σ̃−1

p ‖A‖‖(I − PR(B′
1))PR(A′)‖

In order to bound the quantity ‖(I − PR(B′
1))PR(A′)‖ we apply the `Generalized sin θ

Theorem' from Wedin (1972). In our setting this theorem states that if σ̃r ≥ δ + α and
σmin{k,l} ≤ α for some α ≥ 0 and δ > 0 then:9

‖(I − PR(B′
1))PR(A′)‖ ≤

‖A−B‖
δ

In our setting σmin{k,l} = 0 by |σ̃r − σr| ≤ ‖B −A‖ and by assumption 2‖B −A‖ < σr,

and so σ̃r >
1
2σr so letting α = 0 and δ = 1

2σr and combining we get:

‖AB†0‖ ≤
1

2
σ−1
r σ̃−1

p ‖A‖‖A−B‖

In all:

‖A(B† −A†)‖ ≤ ‖A‖ 2‖B −A‖
σr − 2‖B −A‖

+
1

2
σ−1
r σ̃−1

p ‖A‖‖A−B‖

Bounding ‖A(B† −A†)A′‖
Applying a similar decomposition to the above we get:

‖A(B† −A†)A′‖

≤‖A‖2‖B†1 −A†‖+ ‖AB†0A′‖ (22)

9Strictly speaking the bound in Wedin (1972) replaces ‖A−B‖ with a weakly smaller quantity. In Wedin
the matrix A1 appears in place of A, but recall that in our case A1 = A.
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We already attained a bound on ‖B†1 − A†‖. it remains to bound ‖AB†0A′‖. Using our
previous reasoning:

A(B′0)†A′ = A
(
(I − PR(B′

1))PR(A′)

)′
(B′0)†(I − PR(B′

1))PR(A′)A
′

And so applying the triangle inequality and de�nitiopn of the matrix norm:

‖AB†0A′‖ ≤ ‖A‖2‖(I − PR(B′
1))PR(A′

1)‖2‖B†0‖

We then use the bound on ‖(I − PR(B′
1))PR(A′

1)‖ which we attained earlier.

D An alternative estimate of ξ0

In Section 2 we develop an estimator of ξ0 that is a function of the reduced-rank estimator
of Q0. However, one can also estimate ξ0 directly. In this case, instead of using the rank
restrictions onM0 and Q0 for dimension reduction we instead take advantage of the sparsity
result in Corollary 1.

To motivate the estimator, note that the moment conditions in Corollary 1 imply the
following condition.

E
[
Z̄i(Ȳi − V̄iξ′0)

]
= 0

Substituting 7 and multiplying by M0,[:,1:dZ ] we get:

E
[
M0,[:,1:dZ ]Z̄i(Ȳi − ξ′0M0,[:,1:dZ ]Z̄i)

]
= 0

Recall that Corollary 1 states there is a solution ξ0 to the moment conditions which has at
most dW non-zero entries. To estimate ξ0, we perform `1 penalized two-stage least-squares.
The `1 penalization induces sparsity in the estimate of ξ0. In particular, the alternative
estimate of ξ0 is the vector ξ that minimizes the empirical objective below:

‖Y̌ − ŽM̃ ′ξ‖2F + λξ,n‖ξ‖1 (23)

Where ‖ · ‖1 is the `1 norm and λξ,n is a penalty parameter. M̃ is the matrix of
regression estimates from multiple linear regression of V̄i on Z̄i without any rank restrictions
or penalization.

Minimization of (23) is an `1-penalized least squares problem and can be solved using
any standard Lasso algorithm. A number of methods are available for selecting the penalty
parameter in Lasso regression. For example, λξ,n could be chosen using cross-validation.

Note that in contrast to the methods in Section 2, which e�ectively estimate the minimum
Euclidean norm solution to ξ0B0C0 = A0C0, the method above estimates the solution with
smallest `1 norm.

E Proofs

Proof Theorem 1.1. By Assumption 1.1.ii E[ε(Z ′, X ′)] = 0 and E[εD′] = 0 and so E[ε(Z̃ ′, X̃ ′)] =
0 and by the same reasoning E[υ(Z̃ ′, X̃ ′)] = 0
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Partialling out D from both sides of (1) and (2) and using that E[εD′] = 0 and E[υD′] =
0 we get:

Ṽ = B0W̃ + u

Ỹ = β′0X̃ +A0W̃ + ε

And so:

E
[
(Ṽ −B0W̃ )(Z̃ ′, X̃ ′)

]
= 0 (24)

E
[
(Ỹ − β′0X̃ −A0W̃ )(Z̃ ′, X̃ ′)

]
= 0 (25)

Recall the de�nition of C0 and G0:

(C0, G0) = E
[
W̃ (Z ′, X ′)

]
E
[
(Z ′, X ′)′(Z ′, X ′)

]†
The rows of E

[
W̃ (Z ′, X ′)

]
must all be in the row space of E

[
(Z ′, X ′)′(Z ′, X ′)

]
, and so

by elementary properties of the pseudo-inverse:

(C0, G0)E
[
(Z ′, X ′)′(Z ′, X ′)

]
= E

[
W̃ (Z ′, X ′)

]
Using the above to substitute out E

[
W̃ (Z ′, X ′)

]
from (24) and (25) we get:

E
[
(Ṽ −B0(C0, G0)(Z̃ ′, X̃ ′)′)(Z̃ ′, X̃ ′)

]
= 0

E
[(
Ỹ − β′0X̃ −A0(C0, G0)(Z̃ ′, X̃ ′)′

)
(Z̃ ′, X̃ ′)

]
= 0

Stacking the condition above into a block matrix we get the result.

Proof Theorem 1.2. Step 1: Prove the rank conditions on the nuisance parameters
By Assumptions 1.2 and 1.3, B0 has full column rank and C0 has rank dW . Thus the

product B0C0 has rank dW . Moreover, since C0 rank dW , (C0, G0) must have row rank of
at least dW and so (using that B0 has full column rank of dW ) B0(C0, G0) has rank dW .
Since (B′0, A

′
0)′ has column rank of at least dW , and C0 has full row rank of dW , (B′0, A

′
0)′C0

has rank dW .
Step 2:
From Theorem 1.1 we have:

E

[((
Ṽ

Ỹ − β0X̃

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃

X̃

))
(Z̃ ′, X̃ ′)

]
= 0

Suppose the following holds for B with full column rank:

E

[((
Ṽ

Ỹ − βX̃

)
−
(
BC BG
AC AG

)(
Z̃

X̃

))
(Z̃ ′, X̃ ′)

]
= 0

Under Assumption 1.4, E
[
(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)

]
is non-singular, and so we get the following

four equalities:
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B0C0 = BC (26)

B0G0 = BG (27)

A0C0 = AC (28)

A0G0 − β′0 = AG− β′ (29)

It follows immediately from the above and the rank restrictions on B0C0, B0(C0, G0),
and (B′0, A

′
0)′C0 that BC, B(C,G), and (B′, A′)′C each have rank dW .

Recall that C0 has full row rank and thus C0C
′
0 is non-singular. De�neM = C ′0(C0C

′
0)−1G0.

Post-multiplying both sides of (28) by M we get A0G0 = ACM and substituting this into
(29) gives:

ACM − β′0 = AG− β′ (30)

Now, post-multiplying both sides of (26) by M we get B0G0 = BCM . Substituting into
(27) BG = BCM . Premultiplying both sides by A(B′B)−1B′ (recall B has full column
rank and so B′B is non-singular) we get AG = ACM . Substituting into (30) we get β = β0,
as required.

Lemma 1. Under Assumption 1.4, there exist matrices A, B, C, and G with so that B has
full column rank and β, A, B, C, and G satisfy (5) if and only if there exists a vector ξ so
that:

E
[(
Ỹ − β′X̃ − ξ′Ṽ

)
(Z̃ ′, X̃ ′)

]
= 0 (31)

Proof of Lemma 1. First let us prove the `only if'. B has full column rank and so B′B is non-
singular, so letting ξ′ = A(B′B)−1B′ we have AC = ξBC and AG = ξ′BG. Substituting
into (5) we get:

E

[((
Ṽ

Ỹ − β′X̃

)
−
(
B(C,G)
ξ′B(C,G)

)(
Z̃

X̃

))
(Z̃ ′, X̃ ′)

]
= 0

Using the �rst dV rows of the matrix equation above to substitute out E[B(C,G)(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]
from the remaining rows we get (31).

Now the `if'. By Assumption 1.4 E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)] is non-singular and so there must
exist a matrix M so that:

E
[(
Ṽ −M(Z̃ ′, X̃ ′)′

)
(Z̃ ′, X̃ ′)

]
= 0 (32)

Using this to substitute out E
[
Ṽ (Z̃ ′, X̃ ′)

]
from (31) we get:

E
[(
Ỹ − β′X̃ − ξ′M(Z̃ ′, X̃ ′)′

)
(Z̃ ′, X̃ ′)

]
= 0 (33)

Any matrix M of can be written as the product M = M1M2 where M1 has full column
rank. So let B = M1, (C,G) = M2, and A = ξ′B substituting this into (32) and (33) and
stacking the resulting moment conditions we get (5).

Proof of Corollary 1. Theorem 1.2 and Lemma 1 together show that (6) identi�es β0.
By Theorem 1.1 (7) is satis�ed byM0 = B0(C0, G0). By Assumption 1.4 E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

is non-singular and so this M0 is the unique solution. By Theorem 1.2 we then have
rank(M0) = dW .
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Next we show that ξ0 satis�es (6) if and only if ξ′0B0C0 = A0C0. From Theorem 1 we
get:

E[(Ỹ − β′0X̃)(Z̃ ′, X̃ ′)] = A0(C0, G0)E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

From (6) and (7) we have:

E[(Ỹ − β′0X̃)(Z̃ ′, X̃ ′)] = ξ′0M0E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

Substituting M0 = B0(C0, G0) and combining we get:

ξ′0B0(C0, G0)E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)] = A0(C0, G0)E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

Again, using that E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)] is non-singular we get ξ′0B0(C0, G0) = A0(C0, G0)
and thus ξ0B0C0 = A0C0 which proves the `only if'. For the `if', Theorem 1.2 states that
C0 has full row rank and so ξ′0B0C0 = A0C0 implies ξ′0B0 = A0 and thus ξ′0B0(C0, G0) =
A0(C0, G0). Using M0 = B0(C0, G0) we get:

ξ0M0E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)] = A0(C0, G0)E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

Using (7) to substitute out M0E[(Z̃ ′, X̃ ′)(Z̃ ′, X̃ ′)′] we get:

ξ0E[Ṽ (Z̃ ′, X̃ ′)] = A0(C0, G0)E[(Z̃ ′, X̃ ′)′(Z̃ ′, X̃ ′)]

Substituting into the moment condition Theorem 1.1 gives (6).
Next we will show that there exists a solution ξ0 with ‖ξ0‖ ≤ dW . By Theorem 1.2,

rank(B0C0) = dW . Since B0C0 has rank dW , for any vector ξ, there is a ξ0 with at most
dW non-zero entries so that ξ′0B0C0 = ξ′B0C0. Since there exists at least one ξ so that
ξ′B0C0 = A0C0 it follows that there is at least one ξ0 with at most dW non-zero entries and
ξ′0B0C0 = A0C0.

Finally we show thatQ0 = (A′0, B
′
0)′C0 (which is of rank dW by Theorem 1.2) is identi�ed

from (8). First note that Z̄ is a linear combination of Z̃ and X̃ and so (3) implies:

E

[((
Ṽ

Ỹ − β0X̃

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃

X̃

))
Z̄ ′
]

= 0

By the properties of partialling out, E[Z̃Z̄ ′] = E[Z̄Z̄ ′], E[Ṽ Z̄ ′] = E[V̄ Z̄ ′], etc. and
X̄ = 0, and so the above is equivalent to the following:

E

[((
V̄
Ȳ

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̄
0

))
Z̄ ′
]

= 0

Multiplying out

(
B0C0 B0G0

A0C0 A0G0

)(
Z̄
0

)
and substituting Q0 = (A′0, B

′
0)′C0 we get (8).

Q0 is the unique solution to (8) because E[Z̄Z̄ ′] is non-singular by Assumption 1.4.

Lemma 2. Under Assumptions 1.1-1.4 ψ(β0;M0, ξ0, γ0, µ0) is doubly robust.

Proof of Lemma 2. Recall that ψi(β, ξ, γ, µ) = µgi(β, ξ, γ) where gi is given by:

gi(β, ξ, γ) =

(
Z̃i(γZ,1)

X̃i(γX,1)

)(
Ỹi(γY )− β′X̃i(γX,2)− ξṼi(γX,2)′

)
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Step 1: Show the score is robust to µ0.
Corollary 1 immediately implies that E

[
gi(β0; ξ0, γ0)

]
= 0 and so for any µ:

E
[
ψi(β0; ξ0, γ0, µ)

]
= µE

[
gi(β0; ξ0, γ0)

]
= 0

And so the score function is doubly robust with respect to µ0.
Step 2: Show the score is robust to ξ0.
Consider the derivatives of E

[
ψi(β; ξ, γ, µ)

]
with respect to ξ with the other arguments

set to their true values. With a little work one can show the derivatives are as follows:

∂

∂ξ
E
[
ψi(β0;M, ξ, γ0, µ0)

]
= −µ0E[(Z̃ ′i, X̃

′
i)
′Ṽ ′i ]

The derivatives does not depend on ξ. Therefore, if the derivative with respect to ξ is
zero at ξ0 then it is zero for all ξ. As in the main text, de�ne Gη by:

Gη =
∂

∂ξ
E
[
gi(β0; ξ, γ0)

]∣∣
ξ=ξ0

Substituting the above we get:

∂

∂ξ
E
[
ψi(β0; ξ, γ0, µ0)

]∣∣
ξ=ξ0

= µ0Gη

Substituting the de�nition of µ0 the RHS becomes:

µ0Gη = (G′βΩ−1 −G′βΩ−1Gη(G′ηΩ−1Gη)†G′ηΩ−1)Gη

= 0

The �nal equality follows by the elementary property of the Moore-Penrose pseudo-
inverse that for any matrix A, A(A′A)†A′A = AA†A = A, even if A is nonsingular.
So ∂

∂ξE
[
ψi(β0; ξ, γ0, µ0)

]∣∣
ξ=ξ0

= 0 and thus ∂
∂ξE

[
ψi(β0; ξ, γ0, µ0)

]
= 0 for all ξ. Since

E
[
ψi(β0; ξ0, γ0, µ0)

]
= 0 it follows that E

[
ψi(β0; ξ0, γ0, µ0)

]
= 0 for all ξ.

Step 3: Show the score is robust to the components of γ0.
Suppose γ di�ers from γ0 only in that γY 6= γ0,Y . By the properties of partialling out,

for any γY :

E
[
(Z̃ ′i, X̃

′
i)Ỹi(γY )

]
= E[(Z̃ ′i, X̃

′
i)Yi]− E[(Z̃ ′i, X̃

′
i)D

′
i]γY

= E[(Z̃ ′i, X̃
′
i)Ỹi]

γY only enters E
[
ψi(β0;M, ξ0, γ, µ0)

]
= 0, through the expression above, so we are

robust to the γY component of γ0. By the same reasoning:

E
[
(Z̃ ′i, X̃

′
i)Ṽi(γV )′

]
= E[(Z̃ ′i, X̃

′
i)Ṽ
′
i ]

And so we are robust to γV . We can follow similar steps to show we are robust to γ1,X ,
γ2,X , γ1,Z , and γ2,Z .

Note this is why we treat γ0,X as two di�erent parameters in the two places it enters

the score function and likewise for γ0,Z . If γX 6= γ0,X when in general E[X̃i(γX)X̃i(γX)′] 6=
E[X̃iX̃

′
i] but E[X̃i(γX,1)X̃i(γ0,X)′] = E[X̃iX̃

′
i] regardless of γX,1.
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Proof of Theorem 3.2. To prove the result we con�rm that the conditions for Theorems 3.1
and 3.2 in Chernozhukov et al. (2018) hold. The result follows immediately from those
theorems.

Theorems 3.1 and 3.2 in Chernozhukov et al. (2018) require Assumptions 3.1 and 3.2
in that paper. Let us begin with Assumption 3.1. This states that a) the true parameter
(β0 in our case) satis�es the moment condition. b) That the moment condition is linear
in this parameter. c) That the map from the parameters to the moment is twice contin-
uously Gateaux di�erentiable. d) That the score is Neyman orthogonal (or `near Neyman
orthogonal'). (e) S0 has eigenvalues bounded above and below away from zero. By Lemma
2 the moment condition is valid so a) hold. By Lemma 3 the score is doubly-robust and
therefore Neyman-orthogonal so d) holds. The score is linear in β0 and it is linear in each
of its arguments and is thus continuously twice Gateaux di�erentiable, so b) and c) hold.
Condition (e) holds by supposition. Thus Assumption 3.1 of Chernozhukov et al. (2018) is
satis�ed.

We now show that Assumption 3.2 of Chernozhukov et al. (2018) holds. this constitutes
the bulk of the proof. Below we restate this assumption as it applies in our setting. It will
be convenient to collect all the nuisance parameters into one single parameter. In particular,
let η0 contain the true values of all the nuisance parameters so that:

η0 = (µ0, ξ0, γ0)

In the above, the parentheses indicate an ordered set rather than horizontal concatenation
of matrices. Similarly, let η̂j be the collection of all the nuisance parameter estimates for
the jth sub-sample:

η̂j = (µ̂j , ξ̂j , γ̂j)

Moreover, for some η = (µ, ξ, γ) we de�ne ψi(β, η) = ψi(β; ξ, γ, µ) and use ψi as shorthand
for ψi(β0, η0).

Assumption 3.2 of Chernozhukov et al. (2018) states that there are sequences αn → 0
and δn → 0, constants c0 and c1, and a sequence of sets Tn so that for each n if P ∈ Pn the
conditions below all hold.

1. With probability at least 1− αn, η̂j ∈ Tn for all j = 1, ..., J .

2. supη∈Tn E
[
‖ψi(β0, η)‖q

]1/q ≤ c1
3. supη∈Tn E

[
‖µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖q

]1/q ≤ c1
4. supη∈Tn ‖µ0E[(Z̃ ′i, X̃

′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖ ≤ δn

5. supη∈Tn E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2 ≤ δn
6. supr∈(0,1),η∈Tn ‖

∂2

∂r2E

[
ψi
(
β0, η0 + r(η − η0)

)]
‖ ≤ δn/

√
n

7. The eigenvalues of E[ψi(β0, η0)ψi(β0, η0)′] are bounded below by a constant c0.

Note that condition 7 holds by supposition. For conditions 4, 5, and 6 we will show that
the following rates apply uniformly over P ∈ Pn:
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sup
η∈Tn

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

-δµ + (δγ,Z + δγ,X)δγ,X

sup
r∈(0,1),η∈Tn

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+
√
dX(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

sup
r∈(0,1),η∈Tn

‖ ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
‖

-δµδξ + (δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

This implies that conditions 4, 5, and 6 hold with:

δn -
√
nδµδξ

+
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+ (
√
n+

√
dX)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

The premises of the theorem imply that each of the three terms in the sum above o(1),
and so we get that δn ≺ 1 as required.

Before we begin con�rming each of the conditions stated above, we �rst show that
‖µ0‖ ≤ c2. Note that by the de�nition of µ0 and the de�nition of the matrix norm:

‖µ0‖ ≤ ‖E[X̃i(Z̃
′
i, X̃

′
i)]‖‖I − Ω−1/2ΣZ̃X̃M

′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖‖Ω−1‖

The matrix I −Ω−1/2ΣZ̃X̃M
′
0(Ω−1/2ΣZ̃X̃M

′
0)† is idempotent and thus has matrix norm

less that unity. E[X̃i(Z̃
′
i, X̃

′
i)] is a sub-matrix of ΣZ̃X̃ and so ‖E[X̃i(Z̃

′
i, X̃

′
i)]‖ ≤ ‖ΣZ̃X̃‖.

Combining we get:
‖µ0‖ ≤ ‖ΣZ̃X̃‖‖Ω

−1‖

By Assumption 3.2.i, ‖ΣZ̃X̃‖ ≤ c, and by the conditions of the theorem ‖Ω−1‖ ≤ c, and
so ‖µ0‖ ≤ c2.

We will now consider conditions 1-6 in turn. In order to reduce the complexity of some
of the expressions in the arguments below, we use the following notation: γR = (γ′Z , γ

′
X)′,

γH = (γ′Y , γ
′
V , γ

′
X)′, R̃i(γR) = (Z̃i(γZ)′, X̃i(γX)′)′, H̃i(γH) = (Ỹi(γY ), Ṽi(γV )′, X̃i(γX)′)′

and ζ = (1,−ξ,−β′0)′. In addition let γR,0 = (γ′Z,0, γ
′
X,0)′, γH,0 = (γ′Y,0, γ

′
V,0, γ

′
X,0)′, let

R̃i = R̃i(γR,0) and H̃i = H̃i(γH,0).
Condition 1
Under Assumption 3.1, the set Tn de�ned as follows satis�es Condition 1 for some αn →

0. η ∈ Tn if and only if ‖µ − µ0‖ ≤ δµ, ‖ξ − ξ0‖ ≤ δξ, and ‖γQ − γQ,0‖ ≤ δγ,Q for
Q ∈ {V,X,Z, ε}. In our discussion of the remaining conditions we take Tn to be this set.

Condition 2
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By Assumption 3.2.v it is enough to show that for n su�ciently large, for all η ∈ Tn,
‖µ−µ0‖ ≤ 1/c, ‖ξ−ξ0‖ ≤ 1/c, and ‖γQ−γQ,0‖ ≤ 1/c for Q ∈ {V,X,Z, ε}. By the de�nition
of Tn this holds so long as:

δµ, δξ, δγ,X , δγ,V , δγ,Z , δγ,ε ≺ 1

And the above is true by the conditions of the Theorem.
Condition 3
This follows from the same argument as we used for Condition 2.
Condition 4
Next we show that, uniformly over all P ∈ Pn:

sup
η∈Tn

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

-δµ + (δγ,Z + δγ,X)δγ,X

By the triangle inequality and de�nition of the matrix norm:

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

≤‖µ0 − µ‖‖E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]‖

+(‖µ0 − µ‖+ ‖µ0‖)‖E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− E[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

Using the properties of partialling out:

E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− E[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]

=E[
(
(Z̃ ′i, X̃

′
i)
′ − Z̃i(γZ)′, X̃i(γX)′)

)
(X̃i(γX)′ − X̃ ′i)]

=(γ′Z,0 − γ′Z , γ′X,0 − γ′X)′ΣD(γX,0 − γX)

And so:

‖E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− E[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

≤‖(γ′Z,0 − γ′Z , γ′X,0 − γ′X)‖‖(γX,0 − γX)‖‖ΣD‖

Combining we get:

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

≤‖µ0 − µ‖‖E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]‖

+(‖µ0 − µ‖+ ‖µ0‖)
× ‖(γ′Z,0 − γ′Z , γ′X,0 − γ′X)′‖‖γX,0 − γX‖‖ΣD‖

Note that:
‖E[(Z̃ ′i, X̃

′
i)
′X̃ ′i]‖ ≤ ‖ΣZ̃X̃‖

And so, if η ∈ Tn and Assumption 3.2 holds we get:

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

≤cδµ + c(δµ + c2)(δγ,Z + δγ,X)δγ,X
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Under the conditions of the Theorem we then have uniformly over P ∈ Pn:

‖µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]‖

-δµ + (δγ,Z + δγ,X)δγ,X

Condition 5
We will show that uniformly over P ∈ Pn:

sup
η∈Tn

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+dD(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

In the notation introduced earlier in the proof:

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
=E
[
‖µ0R̃iH̃

′
iζ0 − µR̃i(γR)H̃i(γH)′ζ‖2

]1/2
Using the triangle inequality and de�nition of the operator norm:

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
≤E
[
‖(µ− µ0)(Z̃ ′i, X̃

′
i)
′‖2ε̃2i

]1/2

+E

[
‖µ(Z̃ ′i, X̃

′
i)
′‖2‖Ṽ ′i (ξ − ξ0)‖2

]1/2

+E

[
‖µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ‖2
]1/2

(34)

Under Assumption 3.2.iii, the �rst term on the RHS is bounded by:

E

[
‖(µ− µ0)(Z̃ ′i, X̃

′
i)
′‖2ε̃2i

]1/2

=E

[
‖(µ− µ0)(Z̃ ′i, X̃

′
i)
′‖2E[ε̃2i |Z̃i, X̃i]

]1/2

≤cE
[
‖(µ− µ0)(Z̃ ′i, X̃

′
i)
′‖2
]1/2

≤
√
dXc‖µ− µ0‖‖Σ1/2

Z̃X̃
‖

-
√
dXδµ

Where the �nal inequality above assumes η ∈ Tn. For the second term on the RHS of
34, if η ∈ Tn then:
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E

[
‖µ(Z̃ ′i, X̃

′
i)
′‖2‖Ṽ ′i (ξ − ξ0)‖2

]1/2

=E

[
‖µ(Z̃ ′i, X̃

′
i)
′‖2‖E[Ṽ ′i Ṽi|Z̃i, X̃i]

1/2(ξ − ξ0)‖2
]1/2

≤E
[
‖µ(Z̃ ′i, X̃

′
i)
′‖2‖E[Ṽ ′i Ṽi|Z̃i, X̃i]‖

]1/2

‖ξ − ξ0‖

-δξE

[
‖µ(Z̃ ′i, X̃

′
i)
′‖2
]1/2

-δξ
√
dX‖µ‖‖Σ1/2

Z̃X̃
‖

-δξ
√
dX(δµ + ‖µ0‖)

Next we will show that:

E

[
‖µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ‖2
]1/2

-
√
dX(‖µ0‖+ δµ)(δγ,ε + δγ,V δξ)

+2
√
dX(‖µ0‖+ δµ)(δγ,Z + δγ,X)(1 + δξ)

+dD(δµ + ‖µ0‖)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ) (35)

To see this, we �rst apply the triangle inequality and Young's inequality to get:

E

[
‖µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ‖2
]1/2

≤E
[
‖µR̃i‖2‖D′i(γH,0 − γH)′ζ‖2

]1/2
+2E

[
‖µ(γR,0 − γR)Di‖2ε̃2i

]1/2
+2E

[
‖µ(γR,0 − γR)Di‖2‖Ṽ ′i (ξ − ξ0)|2

]1/2
+E
[
‖µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ‖2

]1/2
(36)

To bound the above �rst note that under Assumption 3.2:

E[‖µR̃i‖2|Di] ≤ dX‖µE[R̃iR̃
′
i|Di]

1/2‖2

≤ dX‖µ‖2 · ‖E[R̃iR̃
′
i|Di]‖

- dX(‖µ0‖+ δµ)2

Where the �nal inequality above assumes η ∈ Tn. Similarly:

E[‖µ(γR,0 − γR)Di‖2] ≤ dX‖µ(γR,0 − γR)Σ
1/2
D ‖

2

≤ dX‖µ‖2 · ‖γR,0 − γR‖2‖ΣD‖
- dX(c2 + δµ)2(δγ,Z + δγ,X)2
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And moreover, if Assumption 3.2 holds and η ∈ Tn:

E[|Ṽ ′i (ξ − ξ0)|2|Di] ≤ ‖ξ − ξ0‖2 · ‖E[ṼiṼ
′
i |Di]‖

- δ2
ξ

If η ∈ Tn, then the using the de�nition of ζ, γH , and γH,0:

E
[
‖D′i(γH,0 − γH)′ζ‖2

]1/2
=‖Σ1/2

D (γH,0 − γH)′ζ‖

≤‖(γY − γY,0)− (γX − γX,0)β0 − (γV − γV,0)ξ′0‖‖Σ
1/2
D ‖

+‖γV,0 − γV ‖‖ξ − ξ0‖‖Σ1/2
D ‖

-δγ,ε + δγ,V δξ

If Assumption 3.2 holds, then using the law of iterated expectations and the above we
get from 36:

E

[
‖µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ‖2
]1/2

-
√
dX(‖µ0‖+ δµ)(δγ,ε + δγ,V δξ)

+
√
dX(‖µ0‖+ δµ)(δγ,Z + δγ,X)(1 + δξ)

+E
[
‖µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ‖2

]1/2
(37)

Applying Assumption 3.2:

E
[
‖µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ‖2

]
≤dX‖µ(γR,0 − γR)‖2‖(γH,0 − γH)′ζ‖2c2

≤dX(δµ + ‖µ0‖)2(δγ,X + δγ,Z)2(δγ,ε + δγ,V δξ)
2

Where the last line assumes η ∈ Tn. Combining we get 35, and in all:

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
-
√
dXδµ + δξ

√
dX(δµ + ‖µ0‖)

+
√
dX(‖µ0‖+ δµ)(δγ,ε + δγ,V δξ)

+
√
dX(‖µ0‖+ δµ)(δγ,Z + δγ,X)(1 + δξ)

+
√
dX(‖µ0‖+ δµ)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Under the conditions of the theorem we get:

E
[
‖ψi(β0, η0)− ψi(β0, η)‖2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+
√
dX(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

42



Condition 6
Next we show that uniformly over P ∈ Pn:

sup
r∈(0,1),η∈Tn

‖ ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
‖

-δµδξ + (δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Twice di�erentiating we get:

∂2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
=2(µ− µ0)ΣZ̃X̃M

′
0(ξ0 − ξ)′

+2µ0(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD

×
(
(γY − γ0,Y )− (γV − γ0,V )′ξ′0 − (γX − γ0,X)′β0

)
+6rµ0(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD(γV − γ0,V )′(ξ0 − ξ)′

+6r(µ− µ0)(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD

×
(
(γY − γ0,Y )− (γV − γ0,V )′ξ′0 − (γX − γ0,X)′β0

)
+12r2(µ− µ0)(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD(γV − γ0,V )′(ξ0 − ξ)′

Where we have used that E[(Z̃ ′i, X̃
′
i)
′Ṽ ′i ] = ΣZ̃X̃M

′
0. Applying the triangle inequality

and the de�nition of the operator norm:

‖ ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
‖

≤2‖µ− µ0‖‖M0‖‖ξ0 − ξ‖‖ΣZ̃X̃‖
+2‖µ0‖(‖γZ − γZ,0‖+ ‖γX − γX,0‖)‖ΣD‖‖γε − γ0,ε‖
+6r‖µ0‖(‖γZ − γZ,0‖+ ‖γX − γX,0‖)‖γV − γ0,V ‖‖ξ0 − ξ‖‖ΣD‖
+6r‖µ− µ0‖(‖γZ − γZ,0‖+ ‖γX − γX,0‖)‖ΣD‖‖γε − γ0,ε‖
+12r2‖µ− µ0‖(‖γZ − γZ,0‖+ ‖γX − γX,0‖)‖γV − γ0,V ‖‖ξ0 − ξ‖‖ΣD‖

The expression above is maximized over r ∈ [0, 1] by r = 1. If Assumption 3.2 holds and
η ∈ Tn then we get from the above:

‖ ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
‖

≤2c2δµδξ

+2c(c2 + 3δµ)(δγ,Z + δγ,X)δγ,ε

+6c(c2 + 4δµ)(δγ,Z + δγ,X)δγ,V δξ

So using the conditions of the theorem, uniformly over P ∈ Pn:
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‖ ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
‖

-δµδξ + (δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Proof of Proposition 3.1. Throughout the proof, for any matrix A with side lengths greater
than k, σk(A) denotes the kth largest singular value of A and σmin(A) the smallest singular
value. We use the following fact about the Moore-Penrose pseudoinverse (which can be
found in Stewart (1977)) for any two matrices A and B with rank(A) = rank(B) and
‖A†‖‖A−B‖ < 1:

‖A† −B†‖ ≤ ‖A†‖2‖A−B‖
1− ‖A†‖‖A−B‖

(38)

Another important inequality is that for any two realK×K matricesA andB, σk(AB′) ≤
σk(A)σ1(B) for k = 1, ...,K (see for example Theorem 3.3.16 in Horn & Johnson (1991)) If
B is non-singular then this inequality implies:

σk(A) = σk
(
AB′(B′)−1

)
≤ σk(AB′)σ1

(
(B′)−1

)
= σk(AB′)‖(B′)−1‖ (39)

Where we have used that σ1

(
(B′)−1

)
= ‖(B′)−1‖. Note that this inequality easily extends

to the case in which A is L × K with L 6= K because σk(AB′) = σk
(
(A′A)1/2B′

)
and

σk(A) = σk
(
(A′A)1/2

)
.

Recall that σn is the dW th largest singular value of E[V̄ W̄ ′]E[W̄W̄ ′]†E[W̄ Z̄ ′]. Under
Assumption 1.1 this matrix is equal to B0C0E[Z̄Z̄ ′]. From (39) and the fact that E[Z̄Z̄ ′] is
nonsingular (by Assumption 1.4) it follows that:

σdW
(
E[V̄ W̄ ′]E[W̄W̄ ′]†E[W̄ Z̄ ′]

)
≤ σdW (B0C0)‖E[Z̄Z̄ ′]−1‖

BecauseB0C0 has rank dW we have ‖(B0C0)†‖ = σdW (B0C0)−1, using this and the de�nition
of σn we get:

‖(B0C0)†‖ ≤ σ−1
n ‖Σ−1

Z̄
‖ (40)

Proof of part a.
Using the de�nitions of ξ̂ and ξ0 and applying the triangle inequality and de�nition of

the operator norm:

‖ξ̂ − ξ0‖ ≤ ‖(B0C0)†‖‖Q̂[dV +1,:] −A0C0‖

+ ‖(B0C0)† − Q̂†[1:dV ,:]
‖‖A0C0‖

+ ‖(B0C0)† − Q̂†[1:dV ,:]
‖‖Q̂[dV +1,:] −A0C0‖

Recall that by Corollary 1 rank(B0C0) = dW , and so, if rank(Q̂[dV +1,:]) = dW and

‖(B0C0)− Q̂[1:dV ,:]‖ < σn‖Σ−1
Z̄
‖−1 then by (38):

‖(B0C0)† − Q̂†[1:dV ,:]
‖ ≤

σ−2
n ‖Σ−1

Z̄
‖2‖(B0C0)− Q̂[1:dV ,:]‖

1− σ−1
n ‖Σ−1

Z̄
‖‖(B0C0)− Q̂[1:dV ,:]‖
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Where we have used (40). So if rank(Q̂[dV +1,:]) = dW , and ‖(B0C0) − Q̂[1:dV ,:]‖ ≤
αn‖Σ−1

Z̄
‖σn:

‖(B0C0)† − Q̂†[1:dV ,:]
‖ ≤ 1

1− αn
σ−2
n ‖Σ−1

Z̄
‖2‖(B0C0)− Q̂[1:dV ,:]‖

Combining we get:

‖ξ̂ − ξ0‖ ≤ σ−1
n ‖Σ−1

Z̄
‖‖Q̂[dV +1,:] −A0C0‖

+
1

1− αn
σ−2
n ‖Σ−1

Z̄
‖2‖(B0C0)− Q̂[1:dV ,:]‖‖A0C0‖

+
1

1− αn
σ−2
n ‖Σ−1

Z̄
‖2‖(B0C0)− Q̂[1:dV ,:]‖‖Q̂[dV +1,:] −A0C0‖

Using σ−1
n ‖Σ−1

Z̄
‖‖(B0C0)− Q̂[1:dV ,:]‖ ≤ αn the above yields:

‖ξ̂ − ξ0‖ ≤
σ−1
n ‖Σ−1

Z̄
‖

1− αn
‖Q̂[dV +1,:] −A0C0‖

+
σ−2
n ‖Σ−1

Z̄
‖2

1− αn
‖(B0C0)− Q̂[1:dV ,:]‖‖A0C0‖

By supposition a number of quantities on the RHS are bounded above by c1 so we get:

‖ξ̂ − ξ0‖

≤ σ−1
n c1

1− αn
‖Q̂[dV +1,:] −A0C0‖+

σ−2
n c31

1− αn
‖(B0C0)− Q̂[1:dV ,:]‖

≤2(c1 + c31)
1 + σ−2

n

1− αn
(
‖Q̂[dV +1,:] −A0C0‖+ ‖(B0C0)− Q̂[1:dV ,:]‖

)
Where the �nal line uses that for any a > 0, a+ a2 ≤ 2(1 + a2). Finally, note that for any
A and B with equal number of columns, ‖A‖+ ‖B‖ ≤ 2‖(A′, B′)′‖ so we get:

‖ξ̂ − ξ0‖ ≤ 4(c1 + c31)
1 + σ−2

n

1− αn
‖Q0 − Q̂‖

Setting c = 4(c1 + c31)/(1−maxn αn) gives the result.
Proof of part b.
Let us suppose that rank(M̂) = rank(M0), ‖Ω̂−1/2 − Ω−1/2‖ ≤ σnαn/‖Σ−1

Z̄
‖, ‖M̂ −

M0‖ ≤ σnαn/‖Σ−1
Z̄
‖, and ‖Σ̂Z̃X̃ − ΣZ̃X̃‖ ≤ σnαn/‖Σ

−1
Z̄
‖. Since this holds with probability

at least 1− αn our conclusions will likewise hold with at least this probability. We take m
to be the smallest natural number so that 3c21αn(c1 + 1)2 < 1 and 3σnαn ≤ 1 and assume
n ≥ m.
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Applying the triangle inequality and de�nition of the matrix norm:

‖Ω̂−1/2Σ̂ẐX̂M̂
′ − Ω−1/2ΣZ̃X̃M

′
0‖

≤
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Ω−1/2‖

)
×
(
‖Σ̂ẐX̂ − ΣZ̃X̃‖+ ‖ΣZ̃X̃‖

)
×
(
‖M̂ −M0‖+ ‖M0‖

)
− ‖Ω−1/2‖‖ΣZ̃X̃‖‖M

′
0‖

≤(c1 + 1)2

×
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)
≤3(c1 + 1)2σnαn/‖Σ−1

Z̄
‖ (41)

Where for the penultimate inequality we have used that ‖Ω−1/2‖, ‖ΣZ̃X̃‖, ‖M0‖ ≤ c1
and αn ≤ 1.

From (39) we get that the smallest non-zero singular value of Ω−1/2ΣZ̃X̃M
′
0 is greater

than the smallest non-zero singular value of M0 times ‖Σ−1

Z̃X̃
Ω1/2‖, and therefore:

‖(Ω−1/2ΣZ̃X̃M
′
0)†‖ ≤ ‖M†0‖‖Σ

−1

Z̃X̃
Ω1/2‖

≤ ‖M†0‖‖Ω1/2‖‖Σ−1

Z̃X̃
‖

≤ c21‖M
†
0‖

Under Assumptions 1.1-1.4 M0 = B0(C0, G0) and rank(B0C0) = rank(M0), thus M0

has the same number of non-zero singular values as B0C0. The singular values of a sub-
matrix are all weakly smaller than the singular values of the original matrix, thus σn, the

smallest non-zero singular value of B0C0 (which satis�es (40), is weakly less than ‖M†0‖−1,
the smallest singular value of M0. So we get:

‖(Ω−1/2ΣZ̃X̃M
′
0)†‖ ≤ c21‖M

†
0‖

≤ c21σ−1
n ‖Σ−1

Z̄
‖ (42)

By (38), if Ω̂−1/2Σ̂Z̃X̃M̂
′ and Ω−1/2ΣZ̃X̃M

′
0 have the same rank, and the denominator

on the RHS below is strictly positive:

‖(Ω̂−1/2Σ̂Z̃X̃M̂
′)† − (Ω−1/2ΣZ̃X̃M

′
0)†‖

≤
‖(Ω−1/2ΣZ̃X̃M

′
0)†‖2 · ‖Ω̂−1/2Σ̂Z̃X̃M̂

′ − Ω−1/2ΣZ̃X̃M
′
0‖

1− ‖(Ω−1/2ΣZ̃X̃M
′
0)†‖‖Ω̂−1/2Σ̂Z̃X̃M̂

′ − Ω−1/2ΣZ̃X̃M
′
0‖

≤c̃σ−2
n ‖Σ−1

Z̄
‖2‖Ω̂−1/2Σ̂Z̃X̃M̂

′ − Ω−1/2ΣZ̃X̃M
′
0‖

Where c̃ =
c41

1−3c21αn(c1+1)2
which is �nite for n ≥ m, and the �nal line uses 41.

Ω−1/2ΣZ̃X̃ and Ω̂−1/2Σ̂Z̃X̃ have full rank, and so rank(Ω−1/2ΣZ̃X̃M
′
0) = rank(M0) and

rank(Ω̂−1/2Σ̂Z̃X̃M̂
′) = rank(M̂). By supposition rank(M̂) = rank(M0) and so the above

holds.
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Next note that applying the triangle inequality and the de�nition of the matrix norm:

‖Ω̂−1/2Σ̂Z̃X̃M̂
′(Ω̂−1/2Σ̂Z̃X̃M̂

′)† − Ω−1/2ΣZ̃X̃M
′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖

≤‖Ω̂−1/2Σ̂Z̃X̃M̂
′ − Ω−1/2ΣZ̃X̃M

′
0‖‖(Ω−1/2ΣZ̃X̃M

′
0)†‖

+‖Ω−1/2‖‖ΣZ̃X̃‖‖M0‖‖(Ω̂−1/2Σ̂Z̃X̃M̂
′)† − (Ω−1/2ΣZ̃X̃M

′
0)†‖

+‖Ω̂−1/2Σ̂Z̃X̃M̂
′ − Ω−1/2ΣZ̃X̃M

′
0‖‖(Ω̂−1/2Σ̂Z̃X̃M̂

′)† − (Ω−1/2ΣZ̃X̃M
′
0)†‖

≤(c21σ
−1
n ‖Σ−1

Z̄
‖+ c31c̃σ

−2
n ‖Σ−1

Z̄
‖2)‖Ω̂−1/2Σ̂Z̃X̃M̂

′ − Ω−1/2ΣZ̃X̃M
′
0‖

+c̃σ−2
n ‖Σ−1

Z̄
‖2‖Ω̂−1/2Σ̂Z̃X̃M̂

′ − Ω−1/2ΣZ̃X̃M
′
0‖2

Combining the above with 42, setting c∗ = (c21 + c31c̃+ c̃)(c1 + 1)2, we get:

‖Ω̂−1/2Σ̂Z̃X̃M̂
′(Ω̂−1/2Σ̂Z̃X̃M̂

′)† − Ω−1/2ΣZ̃X̃M
′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖

≤c∗(σ−1
n ‖Σ−1

Z̄
‖+ σ−2

n ‖Σ−1
Z̄
‖2)
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)
+c∗σ−2

n ‖Σ−1
Z̄
‖2
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)2
(43)

For the �nal step, �rst note that the matrix norm of a sub-matrix is weakly smaller than
the norm of the full matrix and so ‖E[X̃(Z̃ ′, X̃ ′)]‖ ≤ ‖ΣZ̃X̃‖ and:

‖E[X̃(Z̃ ′, X̃ ′)]− 1

n

n∑
i=1

X̂i(Ẑ
′
i, X̂

′
i)‖ ≤ ‖ΣZ̃X̃ − Σ̂ẐX̂‖

In addition, note that the norm of an idempotent matrix is one or zero and so:

‖I − Ω−1/2ΣZ̃X̃M
′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖ ≤ 1

Applying the triangle inequality and de�nition of the matrix norm along with the in-
equality above, we get:

‖µ0 − µ̂‖

≤
((
‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖ΣZ̃X̃‖

)(
‖Ω−1/2 − Ω̂−1/2‖+ ‖Ω−1/2‖

)2
×
(
‖Ω̂−1/2Σ̂Z̃X̃M̂

′(Ω̂−1/2Σ̂Z̃X̃M̂
′)† − Ω−1/2ΣZ̃X̃M

′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖+ 1

))
−‖ΣZ̃X̃‖‖Ω

−1/2‖2

And so:

‖µ0 − µ̂‖
≤2(c1 + 1)2‖Ω−1/2 − Ω̂−1/2‖+ 2(c1 + 1)2‖Σ̂Z̃X̃ − ΣZ̃X̃‖
+(c1 + 1)3‖Ω̂−1/2Σ̂Z̃X̃M̂

′(Ω̂−1/2Σ̂Z̃X̃M̂
′)† − Ω−1/2ΣZ̃X̃M

′
0(Ω−1/2ΣZ̃X̃M

′
0)†‖
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Using (43) and taking c◦ = (c1 + 1)3c∗ + 2(c1 + 1)2 we get that:

‖µ0 − µ̂‖
≤c◦(1 + σ−1

n ‖Σ−1
Z̄
‖+ σ−2

n ‖Σ−1
Z̄
‖2)
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)
+c◦σ−2

n ‖Σ−1
Z̄
‖2
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)2
Since n ≥ m with 3σnαn/‖Σ−1

Z̄
‖ ≤ 1, by (41) we see that ‖Ω̂−1/2 − Ω−1/2‖ + ‖Σ̂Z̃X̃ −

ΣZ̃X̃‖+ ‖M̂ −M0‖ ≤ 1 and so:

‖µ0 − µ̂‖
≤c◦(1 + σ−1

n ‖Σ−1
Z̄
‖+ σ−2

n ‖Σ−1
Z̄
‖2)
(
‖Ω̂−1/2 − Ω−1/2‖+ ‖Σ̂Z̃X̃ − ΣZ̃X̃‖+ ‖M̂ −M0‖

)
Finally, for any a ≥ 0, 1 + a+ a2 ≤ 2(1 + a2), setting c = 2c◦(1 + c21) gives the result.

Proof of Proposition 3.2. We use results in Bunea et al. (2011). Note that the objective and
penalty in Bunea et al. (2011) are scaled up by a factor of n so the penalty, denoted by µ
in Bunea et al. (2011), is nλM,n or nλQ,n in our setting.

The argument for part a. is as follows. For a proof of part b. one need only replace M
by Q and Σ̂ẐX̂ by Σ̂Ž in the steps below.

The following is an immediate application of Theorem 7 in Bunea et al. (2011). For any
a > 0, if (1 + a)r2

M,n ≤ λM,n and then:

‖(Ẑ, X̂)(M̂ −M0)′‖2F ≤ 2(1 + 2/a)nλM,ndW

Note that:
1

n
‖(Ẑ, X̂)(M̂ −M0)′‖2F = ‖Σ̂1/2

ẐX̂
(M̂ −M0)′‖2F

If ‖Σ̂−1

ẐX̂
‖ ≤ b then using elementary properties of the Frobenius norm the above implies:

‖M̂ −M0‖2F ≤
b

n
‖(Ẑ, X̂)(M̂ −M0)′‖2F

By supposition with probability at least 1− α, (1 + a)r2
M,n < λM,n and ‖Σ̂−1

ẐX̂
‖ ≤ b, so

combining the inequalities above we get that with probability at least 1− α:

‖M̂ −M0‖2F ≤ 2b(1 + 2/a)λM,ndW

The following is an immediate application of Theorem 2 in Bunea et al. (2011): Sup-
pose that for some δ ∈ (0, 1] and s ≤ dW that σs

(
(Ẑ, X̂)M ′0

)
> (1 + δ)

√
nλM,n and

σs+1

(
(Ẑ, X̂)M ′0

)
< (1− δ)

√
nλM,n then (conditional on these events):

P
(
rank(M̂) = s

)
≥ 1− P (rM,n ≥ δ

√
λM,n) (44)

We apply the above with s = dW and δ = (1 + a)−1/2. Under Assumptions 1.1-1.4
M0 has rank dW and so σdW +1

(
(Ẑ, X̂)M ′0

)
= 0 and so (assuming λM,n > 0) the condition

σdW +1

(
(Ẑ, X̂)M ′0

)
< (1 − δ)

√
nλM,n holds trivially. As for the other condition, suppose

‖Σ̂−1

ẐX̂
‖ ≤ b and λM,n <

(
1 + (1 + a)−1/2

)−2
b−1σ2

n/‖Σ−1
Z̄
‖2 then:

√
n‖Σ̂−1

ẐX̂
‖−1/2σn/‖Σ−1

Z̄
‖ > (1 + δ)

√
nλM,n (45)
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Recall from the proof of Lemma 3.1 that for two real matrices A and B where B is a
square matrix with side length greater than k, σk(A)‖(B′)−1‖−1 ≤ σk(AB′). In addition,

note that ‖Σ̂−1/2

ẐX̂
‖−1 = ‖Σ̂−1

ẐX̂
‖−1/2 and σdW (M0) ≥ σn/‖Σ−1

Z̄
‖ (again, see the proof of

Lemma 3.1). It follows that:

σdW
(
(Ẑ, X̂)M ′0

)
=
√
nσdW

(
Σ̂

1/2

ẐX̂
M ′0
)

≥
√
n‖Σ̂−1

ẐX̂
‖−1/2σn/‖Σ−1

Z̄
‖

Using (45) and δ = (1 + a)−1/2 we then get:

σdW
(
(Ẑ, X̂)M ′0

)
> (1 + δ)

√
nλM,n

As required. So conditional on the events ‖Σ̂−1

ẐX̂
‖ ≤ b and λM,n <

(
1+(1+a)−1/2

)−2
b−1σ2

n/‖Σ−1
Z̄
‖2,

44 holds for our choice of δ and s:

P
(
rank(M̂) = dW

)
≥ 1− P (rM,n ≥ (1 + a)−1/2

√
λM,n)

= P
(
(1 + a)r2

M,n < λM,n

)
≥ 1− αn

Where the �nal inequality holds by supposition. Since the above holds conditional on
events which occur with probability at least 1 − αn, by the Bonferroni bound we get that,
unconditionally:

P
(
rank(M̂) = dW

)
≥ 1− 2αn
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