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Abstract

In this paper we use the enhanced consumption data in the Panel Survey of Income Dynamics

(PSID) from 2005-2017 to explore the transmission of income shocks to consumption. We build

on the nonlinear quantile framework introduced in Arellano, Blundell and Bonhomme (2017). Our

focus is on the estimation of consumption responses to persistent nonlinear income shocks in the

presence of unobserved heterogeneity. To reliably estimate heterogeneous responses in our un-

balanced panel, we develop Sequential Monte Carlo computational methods. We find substantial

heterogeneity in consumption responses, and uncover latent types of households with different life-

cycle consumption behavior. Ordering types according to their average log-consumption, we find

that low-consumption types respond more strongly to income shocks at the beginning of the life

cycle and when their assets are low, as standard life-cycle theory would predict. In contrast, high-

consumption types respond less on average, and in a way that changes little with age or assets. We

examine various mechanisms that might explain this heterogeneity.
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1 Introduction

The empirical analysis of consumption and income dynamics has an important place in a number of

key areas of economic research and policy design. A large literature aims at understanding income

persistence, income inequality and income volatility, see Moffitt and Gottschalk (1995), Baker and

Solon (2003) and references in Meghir and Pistaferri (2011). A parallel literature studies how income

shocks impact consumption and savings decisions, see Hall and Mishkin (1982) and Blundell, Pistaferri

and Preston (2008) among many other references. In this paper our goal is to empirically document

the nature of consumption responses, with a particular focus on household heterogeneity.

Economic models inform the empirical analysis of consumption and income. In a standard incom-

plete markets model of the life cycle, how much a household consumes in a given period is determined

by the level of assets, the stage of the life cycle, as well as the income stream, see Deaton (1992)

for a comprehensive review. Changes to income components with different degrees of persistence

lead to different consumption responses. In addition, the shape of the consumption function may

differ among households for a variety of reasons, such as heterogeneity in preferences or discounting,

household-specific returns to assets, or heterogeneous access to other sources of insurance.

Our starting point is the nonlinear panel data framework proposed by Arellano, Blundell and

Bonhomme (2017, ABB hereafter) which involves a Markovian permanent-transitory model of income,

and a flexible age-dependent nonlinear consumption rule that is a function of assets, permanent income

and transitory income. ABB found that individual income dynamics feature nonlinearities that matter

for economic decisions. Specifically, they found evidence that the persistence of past earnings varies

substantially with the sign and magnitude of shocks across the past earnings distribution. Thus, ex

ante identical individuals may have experienced a very different propagation of a past shock into their

income depending on their history of subsequent shocks. Using a balanced panel from the PSID, from

1999 to 2009, ABB showed how nonlinear income dynamics lead to nonlinear responses of consumption

to income shocks.1

Given this background we make three main contributions. First, we exploit the important extension

to the set of consumption goods in the recent waves of the PSID to produce new estimates of the degree

of nonlinear persistence and consumption insurance. The improved panel survey redesign in the 1999

PSID was further enhanced in 2005 and, in addition to food at home and food away from home,

includes health expenditures, utilities, gasoline, car maintenance, transportation, education, clothing,

and leisure activities. We bring this together with the detailed data on earnings, family income,

and financial and real estate assets. Using the 2005-2017 PSID panel survey waves, we estimate the

nonlinear nature of income shocks and the consumption implications of the insurance to income shocks.

In addition, unlike ABB we do not restrict the sample to be balanced. This leads us to consider a

1See De Nardi, Fella and Paz-Pardo (2020) and Anghel, Basso, Bover, Casado, Hospido, Izquierdo and Vozmediano

(2018) for recent applications of the nonlinear dynamic approach introduced in ABB.
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larger and more comprehensive sample, more than 2000 households compared to approximately 800

in ABB.

Our second main contribution is to empirically document household heterogeneity in consumption

responses. To do so, we move away from the partial insurance consumption growth framework of

Blundell, Pistaferri and Preston (2008) and estimate a dynamic model where we specify the entire

conditional distribution of consumption given assets, age, and the income components. This mod-

eling approach contrasts with that adopted in ABB, who specified the link between consumption

and its determinants using a nonlinear mean model with separable heterogeneity. Allowing for non-

separabilities, we show how to estimate the joint distribution of latent and observed variables, and to

consistently estimate log-derivatives of the consumption function as a result, see Matzkin (2013) for a

review of identification results in models with non-separable heterogeneity.2

The average log-derivatives of the consumption function that we focus on are nonlinear coefficients

quantifying how well insured households are, at different points of the life cycle and depending on their

level of assets. In addition, importantly, we model the consumption function as heterogeneous across

households, by indexing consumption on a latent time-invariant continuous type. This unobserved

consumer type may reflect heterogeneity in economic primitives, and leads to different consumption

derivative responses for two households that are at the same point of the life cycle, face the same

income stream, and own the same level of assets. We show this heterogeneity to be a salient feature

of the PSID.

To study a larger sample using a more complex model, we modify the computational techniques

that ABB relied on. The use of new computational tools represents our third main contribution.

Specifically, we examine improved sequential computational methods for the estimation of the nonlin-

ear latent/hidden quantile Markov model. The Markovian structure for latent earnings components

allows us to make use of Sequential Monte-Carlo (SMC) methods to improve the Markov Chain Monte

Carlo algorithm, see Creal (2012) for a review. SMC methods can be used to generate efficient pro-

posals within a Particle Markov Chain Monte Carlo (PMCMC) algorithm, as proposed by Andrieu,

Doucet and Hollenstein (2010). We develop an implementation in the latent Markov setting of this

paper. The PMCMC approach allows us to produce numerically robust estimates of derivatives of

log-consumption with respect to the latent income components, in a nonlinear quantile model that

allows for unobserved types.

Empirically, we confirm the nonlinear income dynamics found in ABB while documenting new

2As we will explain below, our approach exploits the weak exogeneity of the observed state variables (i.e., assets

and income components), conditional on a latent time-invariant type, to identify average response functions. Relaxing

exogeneity would require valid instruments and appropriate structure on the first stage (Imbens and Newey, 2009). Also,

while the distribution of responses is generally not identified beyond its mean, partial information about this distribution

can be obtained by using a result from Hoderlein and Mammen (2007). We will apply this strategy to compute a lower

bound on the variance of responses.
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patterns in consumption responses. The estimated quantile Markovian permanent-transitory model of

income reveals asymmetric persistence of earnings and income shocks. We show the use of enhanced

computational techniques leads to essentially the same results as ABB in their balanced sample.

However, estimates based on SMC techniques are more stable numerically. The use of sequential

Monte Carlo methods allows us to draw robust conclusions in our larger unbalanced sample, and to

document nonlinear patterns in the dynamics of income.

Our main results concern the nature of consumption responses to income shocks. We find that

older and wealthier households adjust their consumption less as a response to an income shock than

younger and less wealthy households. For our main sample of dual earners the average derivative of

log-consumption to the persistent income component is 0.30 on overall average, yet it can be much

higher for younger households with low levels of assets and, conversely, as low as 0.10 for older and

wealthy households. These findings are qualitatively consistent with the implications of standard

life-cycle models of consumption and saving behavior. We show that accounting for latent income

components with varying degrees of persistence, and for unobserved heterogeneity in consumption,

are both important to accurately document these patterns quantitatively. Heterogeneity in consumer

responses to income shocks matters for understanding the impact not only of fiscal policies but also

of monetary policies which, as Auclert (2019) notes, can create large redistribution in favor of high

MPC agents and be expansionary over and beyond the effect on real interest rates.

Our key finding is that consumption responses vary substantially with unobserved types. Our

results clearly separate lower consumption types, who appear to follow the life-cycle patterns in con-

sumption responses implied by standard models, from higher types, whose consumption responses to

income shocks vary little with either assets levels or the stage of the life cycle. High-type households

consistently have higher consumption levels, and relative to low-type households they have slightly

higher incomes and levels of assets. For the younger low types, consumption responses to persistent

income shocks exceed 0.50 while for older low types this falls to 0.10. Moreover, based on boot-

strapped confidence intervals we conclude the difference between the two coefficients is significant at

conventional levels. For the higher types, consumption responses are flatter across age and assets, and

differences across age and assets are insignificant. These findings shed new light on the presence of

heterogeneity in consumption behavior across households, on which there has been extensive micro-

and macroeconomic research, see Alan, Browning and Ejrns (2018), Crawley and Kuchler (2020), and

references therein.

We examine several mechanisms that could lead to such heterogeneous consumption responses.

First, the fact that high types consume more and hold more assets is difficult to reconcile with an

explanation based on heterogeneity in preferences or discounting. Second, we estimate a specification

that allows for latent heterogeneity in asset accumulation and find that the heterogeneity in consump-

tion responses is virtually unaffected. Lastly, we link a subset of household heads in our sample (33%)
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to their parents, using the inter-generational linkages that the PSID provides. We find that high-type

household heads have on average parents with higher consumption and income levels, suggesting that

the heterogeneous responses that we find might in part reflect heterogeneity in access to other sources

of insurance such as parental insurance.

We show the main results are robust to a number of specification changes. In particular, while

we use disposable income in most of the analysis, we find similar patterns when using pre-tax labor

income, with some quantitative differences. In addition, we find that including households where one

member may not be working does not lead to major changes in our results. Lastly, we probe the

robustness of our single-type model by allowing for a separate effect of education on consumption

responses, in addition to the latent type. While the heterogeneity results remain qualitatively similar,

the findings based on this specification allow us to discuss some limitations of our single-type modeling

approach and to motivate future work.

The outline of the paper is as follows. In Section 2 we describe the sample and present motivating

evidence on the nature of consumption responses. In Section 3 we provide a general description of the

model, and in Section 4 we discuss implementation and present the computational methods we use.

We then show our main empirical results in Section 5. In Section 6 we study possible mechanisms for

those results. In Section 7 we show results based on extensions of our main model. We conclude in

Section 8. An appendix describes implementation and provides additional empirical results. Lastly,

replication codes are available in an online repository.

2 Data

In this section we describe the PSID sample, and we provide preliminary motivating evidence about

how consumption responds to income changes.

2.1 The PSID sample

We rely on the newly redesigned PSID, from 2005 to 2017. Since 1999, the PSID presents a unique

combination of longitudinal data on income, consumption, and assets holdings for the US. Unlike the

annual information available every year before 1997, after 1999 a new wave is only available every

other year. Since 2005, the consumption information has been enhanced, with additional categories.

The recent waves include food at home and away from home, gasoline, health, transportation, utilities,

clothing, and leisure activities. For this reason, we expect the post-2005 PSID to provide more accurate

information about household consumption patterns than the earlier period used in ABB.

Another difference with ABB is that we do not restrict the panel to be balanced. Following Blun-

dell, Pistaferri and Saporta-Eksten (2016), we focus on a sample of household heads that participate

in the labor market and are between 25 and 60 years old. Since we do not model labor supply, either
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at the extensive or intensive margin, in our baseline sample we focus on households where both adult

members are working and present in at least two waves, and we keep their first spell of non-zero income

observations. We refer to this baseline as the “dual earners” sample. However, in Section 7 we will

also present results based on a broader sample that includes households where only one member is

employed.

Our final dual earners sample contains 2114 households and seven biennial waves from 2005-2017.

In Table 1 we report some descriptive statistics about this sample. Food consumption, which was

the only consumption item available in the PSID prior to the redesign of the data set, accounts for

approximately one fourth of total non-durables consumption. Net disposable income is approximately

30% lower than pre-tax labor income. Since it is disposable income and not pre-tax income that should

affect consumption decisions, we will focus on disposable income in most of the analysis. In Section 7

we will also present results using pre-tax labor income.

Table 1 also shows that total wealth tends to decrease around the 2008 recession, whereas income

and especially consumption seem more stable over the period. See Krueger, Mitman and Perri (2015)

for an analysis of consumption, income and wealth using the PSID with a focus on the great recession.

In our analysis we will not focus on business cycle fluctuations, and we will attempt to remove calendar

time effects in a prior partialling-out estimation step.

In Appendix Table A1 we show additional statistics in order to describe the unbalanced structure

of the panel sample. In the first column of that table we report statistics for households who are only

observed for one wave, although we do not include these households in our main sample due to our

focus on unobserved heterogeneity. More than half of households in our main sample are observed for

at most three waves. For this reason, it will be important to account for the unbalancedness of the

PSID in the modeling of income and consumption dynamics.

Following a common practice in the previous literature on income dynamics, we will work with

residuals of log-disposable income on a set of demographics and time indicators. This partialling-out

is meant to make household demographics as comparable to each other as possible, and to control

for aggregate time effects. Specifically, we net out household size, year of birth, state indicators,

number of kids, race of both adults, a higher education indicator for both adults interacted with age

indicators, and a full set of age indicators interacted with year indicators. We similarly construct

residuals of log-consumption and log-assets net of the same set of controls. Working with logarithms

requires removing observations with zero or negative assets, which reduces the number of observations

by approximately 200 households per year. In Appendix Table A2 we report additional statistics for

a sample which includes households with negative asset balances.
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Table 1: Descriptive Statistics

(1) (2) (3) (4) (5) (6) (7)

2005 2007 2009 2011 2013 2015 2017

Food 10,681.46 10,652.44 10,356.33 10,516.91 10,778.89 11,287.65 11,916.79

(5,280.66) (5,497.57) (5,035.15) (5,107.21) (5,744.91) (5,385.16) (5,673.31)

Non-durables (excl. food) 28,476.06 29,563.67 28,264.68 28,694.76 30,310.30 29,906.71 28,432.69

(19,445.13) (19,881.54) (19,295.93) (18,331.37) (18,247.37) (17,265.61) (14,547.69)

Total Non-durables 39,179.31 40,233.90 38,669.21 39,265.89 41,129.95 41,246.63 40,383.30

(22,220.87) (22,516.17) (21,678.39) (21,154.18) (20,962.80) (19,845.41) (17,547.23)

Home equity 161560.91 169580.40 137089.26 121021.37 111956.54 113269.94 130350.80

(216942.00) (229763.44) (197997.93) (166538.89) (154874.43) (143419.48) (144146.96)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.02 0.01 0.01

(0.08) (0.10) (0.16) (0.16) (0.15) (0.09) (0.10)

Wealth (excl. home) 206679.75 278971.16 269420.39 247951.44 231130.23 256813.63 333757.83

(709285.07) (1.00e+06) (933414.69) (536086.47) (516957.59) (566105.75) (1.06e+06)

Total wealth 446917.54 512678.86 448989.83 388763.07 349033.92 370083.56 448654.75

(970857.51) (1.25e+06) (1.14e+06) (656915.67) (621844.77) (636801.00) (1.07e+06)

Labor income 126181.76 127847.66 133105.34 129458.55 128366.66 124779.30 131051.39

(143916.08) (148500.93) (194142.24) (129247.51) (128479.97) (72,585.03) (69,355.95)

Net income 95,598.70 97,089.32 100204.10 99,234.77 98,238.57 95,004.23 99,192.91

(86,212.45) (89,857.83) (116281.39) (78,750.29) (77,931.32) (46,552.59) (45,252.48)

Observations 1288 1544 1400 1149 1023 948 755

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.

2.2 A first look at consumption responses

We will analyze the PSID sample using a dynamic model of income, consumption, and assets holdings.

The model is flexibly parameterized and it features various latent variables. Before describing how we

specify the model and estimate it, here we provide preliminary motivating evidence about consumption

and income, only using observed covariates and simple econometric methods. We highlight two features

of the data in turn.

In Figure 1, we show average derivatives of log-consumption with respect to log-income, controlling

for age and log-assets.3 The derivative effect is 0.45 on average, with a standard deviation of 0.07. In

3Here and in the following we simply refer to log-income residuals in a regression on demographics and time indicators

as “log-income”, and we similarly refer to log-consumption residuals and log-assets residuals as “log-consumption” and

“log-assets”, respectively.
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Figure 1: Average derivative of log-consumption with respect to log-income

Notes: The graph shows averages of the derivative with respect to log-income of log-consumption, conditional on log-

income, age and log-assets. Estimates are based on a linear regression of log-consumption on second-order polynomials

in log-income, age, and log-assets. The two horizontal axes show age and assets percentiles.

Figure 2: Quantile derivatives of log-consumption with respect to log-income

(a) Bottom Tercile (b) Top Tercile

Notes: The graphs show averages of the derivatives with respect to log-income of quantile functions of log-consumption,

conditional on income, age and assets. In the left graph we report results for the bottom tercile (averaged over a fine

grid of percentiles), in the right graph we report results for the top tercile. Estimates are based on quantile regressions of

log-consumption on second-order polynomials in log-income, age, and log-assets. The two horizontal axes show age and

assets percentiles.

particular, wealthier and older households have a lower derivative (i.e., lower than 0.30), suggesting

that they are relatively well insured against income shocks. In contrast, younger and less wealthy

households have a higher derivative (i.e., higher than 0.50), suggesting less ability to insure.

In Figure 2, we show quantile derivatives of log-consumption with respect to log-income. In the

left graph, we average quantile derivatives over the bottom tercile, while in the right graph we report

an average over the top tercile. We see that these quantile derivative coefficients tend to be somewhat
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higher at the bottom of the consumption distribution (0.48 on average) than at the top (0.43 on

average). In addition, the main difference between the two graphs concerns the younger and less

wealthy households, for whom the derivative drops from 0.60 to 0.40 when moving from the bottom

tercile to the top tercile.4

This evidence is suggestive of the presence of heterogeneity in consumption responses and insur-

ance. However, there are several reasons why it may be incomplete and quantitatively inaccurate.

Standard consumption models imply that income components with varying degrees of persistence

have a different impact on consumption. Hence, while in Figure 1 we report derivatives with respect

to observed income, in a model where log-income is the sum of a persistent and a transitory compo-

nent, economically-relevant consumption derivatives should be computed with respect to the latent

components of income. To do so, a dynamic model with latent variables is needed. The heterogeneity

suggested by Figure 2 is similarly ambiguous. Indeed, consumption quantiles are likely to reflect a

combination of time-invariant household heterogeneity and time-varying shocks. Distinguishing the

two requires estimating a dynamic panel data model that features latent heterogeneity explicitly. In

the next two sections we describe such a model, and we explain how we estimate it using the PSID.

3 Overview of the model

3.1 Consumption behaviour

Our primary interest is to understand how shocks to income translate into consumption for differ-

ent types of consumers. Consumers are allowed to differ along a number of dimensions, specifically

according to their assets, the stage in their life cycle, observable characteristics, and unobserved het-

erogeneity. Our underlying framework is one where households act as single agents with access to a

single risk-free asset. They receive income shocks each period and make consumption decisions subject

to a period-to-period budget constraint. We assume all distributions are known to households, and

there is no aggregate uncertainty.

In modeling the dynamic responses of consumption to earnings shocks, one strategy is to specify

the functional form of the utility function and the distributions of the shocks, and to calibrate or

estimate the model’s parameters by comparing the model’s predictions with the data, see Kaplan and

Violante (2010) and references therein. Another strategy is to follow the partial insurance approach of

Blundell, Pistaferri and Preston (2008) and linearize the Euler equation, with the help of the budget

constraint. The approach we follow in this paper builds on the framework introduced in ABB. It

differs from the earlier strategies as we directly estimate the consumption rule that comes from the

optimization problem. In this approach the level of consumption is modeled as a function of beginning

of period assets, income components, consumer characteristics and individual heterogeneity. The

4In Appendix Figure A3 we show bootstrapped confidence bands corresponding to both Figures 1 and 2.
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framework we develop here is a generalization of the main specification in ABB to allow for individual

unobserved heterogeneity and a more flexible policy rule. The shape of the consumption function and

its derivatives will depend on the distributions of beliefs about future incomes and characteristics. We

are therefore able to document a rich set of derivative effects but, as we treat expectations as given,

we cannot recover counterfactuals that involve a change in the income process.

In our approach, the income process is modeled using the framework of ABB which allows for

nonlinear persistence. In this framework, log-income is decomposed into a predetermined life-cycle

component and two latent stochastic factors that represent the level of persistent income and the level

of transitory income. We consider an unbalanced panel of households, i = 1, ..., N , in which household

i is observed Ti consecutive time periods. For any household i at time t we denote the persistent

income component as ηit and assume it follows a nonlinear first-order Markov process. The transitory

income component εit is assumed to be distributed independently across time and independent of the

η′s. Log-income residuals are then yit = ηit+εit. The details of the income specification are developed

in the next subsection.

Given beginning-of-period-t assets ait, and the realizations of the persistent and transitory income

components ηit and εit, consumers make their consumption choices according to the policy rule

cit = gt (ait, ηit, εit, ageit, ξi, νit) , i = 1, ..., N, t = ti, ..., ti + Ti − 1, (1)

where ti denotes the period when i enters the panel, cit is log-consumption for household i in period

t, ait is log-assets, ageit is the age of the household head in period t, and unobserved heterogeneity

is given by the “fixed effect” ξi.
5 As mentioned above, both cit and ait are net of common effects of

age and other demographics, and of time indicators. We also allow consumption choices to depend on

transitory preference shocks νit, with arbitrary dimension.

Our main goal is to estimate the empirical consumption response parameters

φ(ageit, ait, ηit, εit, ξi) = Eνit
[
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η

]
. (2)

Average derivative effects such as (2) can be identified without restricting the dimensionality of νit, see

Matzkin (2013) and references therein.6 Reporting features of estimates of the individual transmission

parameters

φit = φ(ageit, ait, ηit, εit, ξi)

in the PSID will shed light on how much variation there is in consumption responses and insurance, over

the life cycle and as a function of assets and income. Importantly, the dependence of the consumption

5Below we will postulate that ξi follows a certain distribution (albeit a rather flexible one) conditional on cohort,

education and income. An alternative description of ξi would thus be as a “correlated random effect”.
6However, in our setting, some of the arguments of the structural function gt (i.e., ηit, εit, and ξi) are latent.

Identification of average derivatives thus requires showing that the distribution of (cit, ait, ηit, εit, ageit, ξi) is identified.
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function on the latent type ξi will allow us to document individual heterogeneity in consumption

responses. Exploring the relationship between φit and ξi is a main objective of this paper.

In order to estimate the consumption function gt in (1), one needs to recover the persistent and

transitory income components ηit and εit, and the time-invariant consumption type ξi, all of which

are unobserved to the econometrician. For this purpose, we will estimate a dynamic model of income

and consumption with latent variables, following ABB.

Asset accumulation. Estimation of the consumption function gt requires taking a stand on the

accumulation of assets. A simple case is when current assets only depend on lagged assets, income,

and consumption, but not on the latent income components and heterogeneity separately. This would

hold in a textbook asset accumulation rule with a constant risk-free interest rate, for example. Under

the assumption that asset accumulation does not depend on the latent variables, one can estimate the

consumption function consistently without having to model the assets process, in the spirit of partial

likelihood estimation. We will use this approach in our main results. More generally, our approach

can allow the latent income components and type heterogeneity to affect current assets, and we will

report results based on such a specification as well, see Subsection 6.3.

Dispersion of consumption derivatives. Lastly, while we focus on recovering the average re-

sponse parameters φit, the distribution of the consumption derivatives

∂cit
∂η

=
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η
,

conditional on (ait, ηit, εit, ageit, ξi), is generally not identified unless νit is scalar and has a monotone

effect on gt. Yet, using an insight from Hoderlein and Mammen (2007), one can compute a lower bound

on the variance of the consumption derivatives ∂cit
∂η , even though the variance itself is not identified.

We make this point formally in Appendix C, and we will report empirical estimates of variance lower

bounds as a complement to our main average coefficients.

3.2 Income and consumption

Our modeling of the income process closely follows ABB, with the main difference that we extend the

model to an unbalanced panel. Specifically, let yit be the log-disposable income of household i in year

t, net of common effects of age and other demographics, and time indicators. We specify the following

persistent-transitory model

yit = ηit + εit, i = 1, ..., N, t = ti, ..., ti + Ti − 1, (3)

where the persistent and transitory components ηit and εit, respectively, are zero-mean continuous

latent variables given age.
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We model the processes ηit and εit using their quantile representations. Let QA(B, v) be a generic

notation for the conditional quantile of A given B, evaluated at the percentile v in the unit interval.

The quantile representation of A given B implies that A = QA(B, V ), where V is standard uniform

independent of B.7

The persistent income component ηit follows a nonlinear first-order Markov process with age-

specific transitions; that is,8

ηit = Qη(ηi,t−1, ageit, u
η
it),

(
uηit | ηi,t−1, ageit

)
∼ iidUniform (0, 1) , t > ti. (4)

In order to model entry in the panel, we let the initial persistent latent component ηi,ti depend on

years of education and birth cohort of the household head, and on age at entry in the sample:

ηi,ti = Qη1(cohorti, educi, agei,ti , u
η1
i ),

(
u
η1
i | cohorti, educi, agei,ti

)
∼ iidUniform (0, 1) . (5)

In turn, the transitory component εit is assumed to be independent over time and independent of

ηis for all s with an age-specific distribution,

εit = Qε(ageit, u
ε
it), (uεit | ageit) ∼ iidUniform (0, 1) . (6)

Note that the income process is common across households. In this paper we do not attempt to model

latent time-invariant heterogeneity in the income process beyond heterogeneity in initial conditions.

However, we allow for an unobserved type that affects consumption and may be correlated with income.

Turning to consumption, we let the unobserved heterogeneity variable ξi be correlated with birth

cohort, education, and income; that is, we specify

ξi = Qξ(cohorti, educi, incomei, u
ξ
i ),

(
uξi | cohorti, educi, incomei

)
∼ iidUniform (0, 1) . (7)

Here incomei is a measure of the household’s “normal” income. In our baseline specification we will

take incomei to be the average log-income over the period of observation. We also estimated a model

using instead income in the first period as incomei, and another model not allowing for any dependence

of ξi on income. All these specifications tend to give similar results. In addition, note that the age at

entry in the panel does not affect ξi given cohort, education, and income. Hence, ξi is a time-invariant

household characteristic that does not depend on when the household starts being recorded in the

PSID, whereas the value of the initial persistent latent component in (5) depends on the stage of the

life cycle the household was at when she entered the panel.

7For example, QA(B, 0.50) is the conditional median of A given B, and QA(B, 0.90) is the conditional 90th percentile

of A given B. The fact that A = QA(B, V ), where V is standard uniform independent of B, is referred to as the Skorohod

representation in the literature, see, e.g., Chernozhukov and Hansen (2005).
8In our sequential model, we assume that uηit | η

t−1
i , ageti is standard uniform, where ηt−1

i and ageti denote sequences

of lags of η and age. For conciseness we leave the full conditioning implicit in the notation.
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We then specify the log-consumption function as

cit = Qc(ait, ηit, εit, ageit, ξi, u
c
it), (ucit | ait, ηit, εit, ageit, ξi) ∼ iidUniform (0, 1) . (8)

For the purpose of documenting consumption responses, it is important to know under which conditions

estimating (8) allows one to learn about features of the household’s consumption function gt in (1).

Suppose that the transitory preference shocks νit in (1) are i.i.d., independent of past assets and

income components, age, and latent type ξi. If in addition νit are scalar and have a monotone impact

on the consumption function gt, then consistently estimating (8) will deliver estimates of gt, up to

a nonlinear transformation of its last argument. Moreover, when the economic primitives are such

that νit are multidimensional or have a non-monotone impact on consumption, the conditional mean

function of log-consumption implied by (1) will still be consistently estimated based on (8), even

though the individual consumption function gt will not be identified in general. Indeed, under our

assumptions we have

φit = Eνit
[
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η

]
= Eucit

[
∂Qc(ait, ηit, εit, ageit, ξi, u

c
it)

∂η

]
.

In other words, using quantile methods to flexibly estimate the function Qc in (8), we will be able to

consistently estimate our main target parameters, which are the average derivative quantities φit.

Note that, under mild assumptions, the consumption response parameters in (2) are equal to the

derivatives of the conditional mean of consumption given the state variables,

φit =
∂

∂η
E [cit | ait, ηit, εit, ageit, ξi] .

However, ηit, εit and ξi are unobserved in the data, so it is not enough to model the conditional mean

E [cit | ait, ηit, εit, ageit, ξi] to recover our key parameters φit. ABB specified a nonlinear mean model

with separable heterogeneity. A concern with their specification is that it might be too restrictive as

a model of the conditional distribution of cit given (ait, ηit, εit, ageit, ξi). In contrast, in this paper we

employ a quantile specification to achieve a more flexible modeling of that conditional distribution.

In our baseline model where assets do not depend on the latent variables ηit, εit, and ξi directly, a

specification of the assets process is not needed. However, assuming that asset accumulation does not

depend on the latent variables might be restrictive if, for example, assets returns are heterogeneous

and the assets process is not independent of ξi. For this reason, we will also estimate a model where

we specify a reduced-form assets process as

ai,t+1 = Qa(ait, ηit, εit, cit, ageit, ξi, u
a
i,t+1),

(
uai,t+1 | ait, ηit, εit, cit, ageit, ξi

)
∼ iidUniform (0, 1) ,

(9)

where in addition uai,t+1 and uci,t+1 are independent. In this model, we will specify initial assets holdings

as

ai,ti = Qa1(ηi,ti , agei,ti , cohorti, educi, ξi, u
a1
i,ti

),(
ua1i,ti | ηi,ti , agei,ti , cohorti, educi, ξi

)
∼ iidUniform (0, 1) . (10)
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To summarize the framework laid out in this section, we have described a model with three latent

components. The time-invariant type ξi is intended to capture household pre-sample-period observed

and unobserved heterogeneity. The other two latent components enter the income process. The persis-

tent component ηit captures household heterogeneity that results from the accumulation of persistent

shocks over time. Finally, independent transitory shocks εit with an age-specific distribution combine

with the persistent component and its profile to produce observed labor income.

The presence of the latent type ξi as an argument of the consumption function may potentially

reflect several mechanisms. For example, variation in ξi may indicate preference or discounting het-

erogeneity. Alternatively, it may capture heterogeneity in returns to assets. Yet another possible

interpretation of ξi is as additional resources that are available to the household but not observed in

the data, such as consumption insurance provided by parents. We will examine the plausibility of

these various mechanisms empirically in Section 6. We let the latent type ξi correlate with income

through the conditioning on incomei in (7). In addition, although here we will use our most parsi-

monious specification as a baseline when reporting results, in an extension we will let ξi enter asset

accumulation directly, see equations (9)-(10).

The model thus features two levels of heterogeneity: demographics and time effects, which we

partial out linearly in an initial step, and the latent type ξi, which we include as part of our nonlinear

model. We will study the possibility of an additional nonlinear impact of demographic heterogeneity

in Subsection 7.4.

4 Estimation methodology and implementation

To specify and estimate the model, we closely follow ABB, with some differences. While in this

section we focus on estimation and practical implementation, we note that given the similarity of the

model’s structure to that of ABB, nonparametric identification can be shown using the arguments

they provide. Those arguments rely on insights from the literature on nonparametric instrumental

variable models and nonlinear models with latent variables (see, among others, Newey and Powell,

2003, Hu and Schennach, 2008, and Wilhelm, 2015).

4.1 Specification

Following ABB, we model all conditional quantile functions using linear quantile specifications at a

grid of percentiles. As an example, we model the conditional quantile function of the persistent latent

component of income in (4) as

Qη(ηi,t−1, ageit, τ) =

K∑
k=0

aηk(τ)ϕk(ηi,t−1, ageit), (11)
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where ϕk are low-order products of Hermite polynomials in age and the lagged persistent latent com-

ponent of income, and aηk(τ) are piecewise-linear polynomial functions of τ . In practice we use a grid

of 11 equidistant percentiles. In addition, following ABB we augment the model by specifying aηk(τ)

using an exponential modeling of the tails of the intercept coefficients. We use similar specifications

for all the other equations (6)-(10). We provide details in Appendix A.

A difference with ABB is that, while they modeled the nonlinear mean of log-consumption and

assumed separable errors, here we flexibly estimate the entire conditional quantile function of log-

consumption in (8) without imposing separability between ucit and the other determinants of con-

sumption. This is important for estimating the average consumption derivative parameters φit in the

presence of latent variables, in a way which is robust to the presence of non-separabilities implied by

the economic model.

Fully nonlinear estimation of consumption quantiles has implications for the econometric specifica-

tion of the model, given that the type ξi is a latent variable. Indeed, note that ξi and the conditional

quantile function Qc are not separately nonparametrically identified, since it is always possible to take

a transformation of ξi, and to undo it in Qc.
9 In a general quantile model such as (8), we impose the

following restriction:

E[cit | ait = a, ηit = η, εit = ε, ageit = age, ξi = ξ] =

∫ 1

0
Qc(a, η, ε, age, ξ, τ)dτ = ξ, for all ξ, (12)

where a, η, ε, age are some fixed reference values for log-assets, persistent and transitory income com-

ponents, and age. Imposing this restriction resolves the indeterminacy.10 In this way, ξi is measured

in consumption units, which is meaningful when studying its distribution. In the implementation we

set a, η, age to be the unconditional sample averages of log-assets, log-income and age, respectively,

and we set ε to zero.

4.2 Estimation

To estimate the model we adapt the multi-step approach proposed by ABB to our setting. In a

first step, we compute regression residuals of log-income, log-consumption, and log-assets on a set of

controls, which includes demographics and time indicators, see Section 2 for the full list of controls.

This allows us to construct the residualized variables yit, cit, and ait.

In a second step, we estimate the income process. To this end we use a stochastic EM algorithm

(Nielsen, 2000), which alternates between draws of the latent income components ηit and εit, and

parameter updates based on the latent draws. The updates are performed using quantile regressions,

similarly to ABB. For example, to estimate the parameters aηk(τ) at a grid of τ values in (11), we

9For example, for any invertible function ψ we can write Qc(ξ) = (Qc ◦ ψ−1)(ψ(ξ)).
10If Qc is linear, (12) selects a form of the fixed effect that is inclusive of all the intercept components. See Hu and

Schennach (2008) and the subsequent literature for related assumptions.
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run multiple quantile regressions.11 To generate the latent draws, we depart from ABB who relied on

Metropolis Hastings, and use a Sequential Monte Carlo sampling method. We describe this method in

the next subsection. The reason for using a different sampler compared to ABB is numerical stability.

Indeed, the performance of Metropolis Hastings tends to deteriorate as the length of the panel and the

number of households increase. In the longer and larger panel sample we use in this paper, Sequential

Monte Carlo methods tend to be more robust to numerical issues such as initialization and seeding

than Metropolis Hastings in our experience. A feature of Sequential Monte Carlo methods is that

they take advantage of the Markovian structure of the model to improve performance relative to naive

importance sampling.

In a third step, we estimate the consumption function, for given values of the parameters governing

the income process. We perform this step using a similar strategy to the one we use for income. In

this case also, we depart from ABB in the sampling step of the stochastic EM algorithm. However,

the presence of the latent type ξi further complicates implementation, since one needs to repeatedly

draw ξi together with the sequences of persistent and transitory components. To generate valid draws,

we rely on the pseudo-marginal Markov Chain Monte Carlo algorithm proposed by Andrieu, Doucet

and Hollenstein (2010), which itself makes use of Sequential Monte Carlo sampling. We describe our

implementation in the next subsection.

Quantile monotonicity. Given our quantile modeling, the parameters satisfy monotonicity re-

strictions (e.g., Chernozhukov, Fernndez-Val and Galichon, 2010). For example, in (11) the mapping

τ 7→ aηk(τ)ϕk(ηi,t−1, ageit) is non-decreasing. In practice we do not enforce monotonicity in estimation.

However, in each expectation step of the stochastic EM algorithm we draw from the likelihood implied

by the estimated parameters. This ensures that we obtain posterior draws from a valid distribution of

η’s and ξ’s, irrespective of the lack of monotonicity of the quantile parameter estimates. To provide

intuition in a simple setup, note that to draw ηit according to model (11) one can compute, as in

Machado and Mata (2005),

η̃it =
K∑
k=0

âηk(u
η
it)ϕk(η̃i,t−1, ageit) for t > ti, η̃i,ti = ηi,ti ,

where uηit are i.i.d. standard uniform. Although the estimates âηk(τ) may not satisfy monotonicity

restrictions, this approach produces η̃it draws from a valid distribution function. In our setting we use

this strategy to generate posterior draws of η’s and ξ’s, see Appendix A for details.

11Before every update step, we compute an empirical counterpart of the left-hand side in (12) by regressing log-

consumption on the draws of η, ε, ξ, log-assets, and age, and we set ξi to be the corresponding predicted value, see

Appendix A for details.
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Asymptotic distribution and inference. Under correct specification of the parametric model,12

averages of parameter draws are consistent and asymptotically normal with an asymptotic variance

that can be estimated by bootstrap or analytical approximations, see Arellano and Bonhomme (2016)

and ABB for details. We will report confidence bands computed using two versions of the bootstrap:

a parametric bootstrap that relies on the model’s structure for simulations, and a nonparametric

bootstrap clustered at the household level.

4.3 Computational sampling techniques

Here we describe how we draw latent variables in every step of the stochastic EM algorithm. We

present, in turn, the methods we use for the latent income components ηit, εit, and for the latent

consumption type ξi. In practice we run these simulation steps in parallel across households, which

makes it easy to estimate the model on an unbalanced panel.

Income components: Sequential Monte Carlo. Estimating the income process requires solving

a nonlinear filtering problem, where ηi,ti , ..., ηi,ti+Ti−1 are latent variables. To draw from their posterior

distribution given the income data we use a Sequential Monte Carlo (SMC) approach, see Creal (2012)

and Kantas, Doucet, Singh and Maciejowski (2009) for surveys.

To describe the SMC approach, we focus on the problem of sampling ηi,ti , ..., ηi,ti+Ti−1 for a single

household i from the posterior distribution f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1). In practice we sam-

ple in parallel across households. With importance sampling, one might first sample directly from some

proposal distribution π(ηi,ti , ..., ηi,ti+Ti−1), and then re-sample using importance sampling weights

wi ∝
f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1)

π(ηi,ti , ..., ηi,ti+Ti−1)
,

where ∝ is a proportionality symbol. However, finding a suitable proposal distribution in our flexible

nonlinear model is challenging. Instead, we try and generate draws (also called “particles”) sequen-

tially.

At t = ti, we initialize S particles η
(s)
i,ti

from a suitable proposal distribution π(ηi,ti). Re-sampling

with weights

w
(s)
i,ti
∝
f
(
η
(s)
i,ti
|yi,ti

)
π
(
η
(s)
i,ti

)
gives S particles approximately distributed according to f(ηi,ti |yi,ti).

At t = ti + 1, we now aim to approximate

f(ηi,ti , ηi,ti+1|yi,ti , yi,ti+1) =
f(yi,ti+1|ηi,ti+1)f(ηi,ti+1|ηi,ti)

f(yi,ti+1|yi,ti)
f(ηi,ti |yi,ti).

12One may also view the parametric model as a sieve approximation to a nonparametric distribution, where the size

of the grid of τ values, and hence the number of parameters, would grow with the sample size at an appropriate rate.

The theoretical justification we mention here is for a well-specified parametric model.
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Since we already have S particles approximately distributed according to f(ηi,ti |yi,ti), we can simply

use a second proposal distribution π(ηi,ti+1|ηi,ti) to extend these existing particles. Re-sampling with

weights

w
(s)
i,ti+1 ∝

f
(
η
(s)
i,ti+1|yi,ti+1, η

(s)
i,ti

)
π
(
η
(s)
i,ti+1|η

(s)
i,ti

)
gives S particles approximately distributed according to f(ηi,ti , ηi,ti+1|yi,ti , yi,ti+1). The process contin-

ues until we obtain S particles approximately distributed as f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1).
13

The choice of proposal distributions π is important for numerical performance. We found that a

simple generalization of a linear permanent-transitory earnings model with Gaussian errors performed

well. Specifically, we postulate the following model:

yit = ηit + εit, εit ∼ iid N (0, σ2ε), (13)

ηit = m(ηi,t−1, ageit) + vηit, vηit ∼ iid N (0, σ2v), (14)

where εit and vηit are independent at all lags, and m is a Hermite polynomial. We re-estimate this

model at each iteration of the stochastic EM algorithm, and then set π(ηit|ηi,t−1) to be the posterior

distribution based on it. We provide details about the implementation of the SMC sampler in Appendix

A. In addition, we provide a comparison of the SMC and Metropolis Hastings sampling methods in

the ABB sample in Appendix B. We find that, while our SMC algorithm recovers similar estimates

of nonlinear persistence to those reported in ABB, the SMC method is less sensitive to numerical

instability than Metropolis Hastings.

Unobserved type in consumption: Particle Markov Chain Monte Carlo. In order to incor-

porate unobserved heterogeneity ξi, we embed the SMC sampler into a Particle Markov Chain Monte

Carlo (PMCMC) algorithm, following Andrieu, Doucet and Hollenstein (2010). We use this method

to estimate the parameters of the consumption process, after having estimated the parameters of the

income process.

To outline the PMCMC approach, suppose we wish to sample ξi, ηi,ti , ..., ηi,ti+Ti−1 from the pos-

terior distribution f(ξi, ηi,ti , ..., ηi,ti+Ti−1 |wi,ti , ..., wi,ti+Ti−1), where wit = (yit, cit, ait) is a vector of

household i’s observed income, consumption and assets at time t. In the PMCMC approach, SMC

algorithms are used to generate efficient proposals to be used within a Metropolis Hastings algorithms.

An important feature of these methods is that they only rely upon the availability of unbiased estimates

of the marginal likelihood f(wi,ti , ..., wi,ti+Ti−1|ξi), which are readily available as a by-product of many

SMC algorithms. The use of unbiased estimates of a target distribution within a Metropolis Hastings

algorithm can be viewed more generally as an example of a pseudo-marginal approach in which the

13In practice, re-sampling at every time increment can result in degeneracy among the available particles. For this

reason, we instead use an adaptive rule which avoids degeneracy (see Creal, 2012).
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resulting algorithms can be presented as bona fide Metropolis Hastings samplers whose marginal dis-

tribution is the target distribution of interest. We provide details about the implementation of the

PMCMC sampler in Appendix A.

5 Main results

In this section we present the main empirical results on income and consumption, obtained using our

baseline nonlinear model with unobserved heterogeneity.

5.1 Income persistence

We start by reporting the results on nonlinear income persistence. In the left graph of Figure 3 we show

the derivative of the conditional quantile function of log-income given lagged log-income and age, with

respect to lagged log-income. Formally, we compute an estimate of
∂Qy(y,age,τ)

∂y , for τ ∈ (0, 1), where

Qy is the conditional quantile function of log-income given lagged log-income and age, and average

it with respect to age. These nonlinear persistence parameters can be interpreted as heterogeneous

autoregressive coefficients, which may depend on both the income level y and the income shock τ .14

We plot the derivative as a function of lagged log-income (which we refer to as “initial income”) and

the innovation in the quantile model (which we refer to as “income shock”).

The results show that most households, for most shocks, have current disposable incomes that are

quite persistent, with a derivative coefficient that is above 0.80. However, households with low initial

income and high income shocks have incomes that are substantially less persistent, with a coefficient

as low as 0.40. Likewise, persistence is also low for households with high initial income and low income

shocks, with a coefficient of a similar magnitude. These nonlinear persistence estimates are closely

related to those found by ABB on a smaller balanced sample drawn from the earlier pre-recession

years of the PSID.

In the right graph of Figure 3 we show nonlinear income persistence, but now for the persistent

latent component ηit. That is, we show
∂Qη(η,age,τ)

∂η , for τ ∈ (0, 1), where Qη is the conditional quantile

function of ηit given ηi,t−1 and age, see (4). We plot the derivative as a function of ηi,t−1 (“initial

income”) and the innovation in the quantile model (“income shock”).15 We see that average persistence

is higher than for the case of log disposable income — it is 0.92 in the right graph, versus 0.78 in the

left graph — due to the removal of the transitory income component. For households with high values

of initial persistent income and high shocks, persistence is close to unity, and similarly for households

with low initial persistent income and low shocks.16 The nonlinear pattern for the persistent latent

14In Appendix Figure A4 we show a different projection of the same three-dimensional surfaces, to ease visualization.
15To produce the plot, we use posterior draws computed from the model. We proceed similarly when plotting all

subsequent results involving latent variables.
16Note that it is possible for the nonlinear income persistence measure to exceed one.

18



Figure 3: Nonlinear income persistence
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Notes: PSID, 2005-2017 sample, disposable income, dual earners. The left graph shows quantile derivatives of log-income

with respect to lagged log-income. The right graph shows quantile derivatives of the persistent latent component ηit with

respect to ηit−1, in a model estimated using sequential Monte Carlo with a stochastic EM algorithm. In this case, the

two horizontal axes show percentiles of ηit−1 (“initial income”) and conditional percentiles of ηit given ηit−1 (“income

shock”), respectively.

component ηit is qualitatively similar to the one for log-income, although it is quantitatively less

pronounced. In Appendix Figure A5 we report 95% confidence intervals based on the parametric

bootstrap, which show that nonlinear persistence patterns are rather precisely estimated. In addition,

comparing to Appendix Figure A1, we see that, while nonlinearities are somewhat more salient in

our larger and more recent sample compared to the balanced sample used in ABB, the persistence

patterns in both cases are comparable.17

5.2 Average consumption responses to income shocks

The main goal of the paper is to study heterogeneity in consumption responses to unexpected changes

in income. That is, the way income shocks are transmitted into consumption which underpins the

degree of “partial insurance” achieved by the household. In this subsection, and the next, we document

several key features of household partial insurance, which we measure using the household-and-time-

varying transmission coefficients φit = φ(ageit, ait, ηit, εit, ξi) given by the average derivative effects (2)

introduced in Subsection 3.1. The transmission coefficient φit quantifies the change in consumption

induced by an exogenous marginal change in the persistent latent component of income.

In Figure 4 we start by showing how the mean of the estimated transmission parameters φit varies

with assets levels and over the life cycle. We compare four specifications. The “models without

17In Figure 3 we average the persistence measure across age values. In contrast, the main nonlinear persistence figures

in ABB are evaluated at a reference age value. The analog of Figure 3(a) in ABB is Appendix Figure S3.
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Figure 4: Average consumption responses

A. Models without filtering

(a) No heterogeneity (b) Heterogeneity

B. Models with filtering

(c) No heterogeneity (d) Heterogeneity

Notes: PSID, 2005-2017 sample, dual earners. The graphs show the average derivative of log-consumption with respect

to log-income (in the top panel) and the persistent latent component ηit (in the bottom panel). The left graphs correspond

to a model without unobserved heterogeneity ξi in consumption, whereas the right graphs correspond to a model with

unobserved heterogeneity ξi. The two horizontal axes show age and assets percentiles, respectively.
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filtering” in the upper panel correspond to specifications without transitory component εit, so the

derivative on the right-hand side of (2) is taken with respect to log current disposable income yit

instead of the persistent latent component ηit. The “models with filtering” in the lower panel allow

for a separate role of ηit and εit. For both models with and without filtering, we distinguish two

specifications with and without unobserved heterogeneity ξi, in the left and right columns, respectively.

Figure 4 shows that all specifications agree quite well qualitatively. In particular, the association

between consumption and income or its persistent latent component is weaker for older and wealthier

households. At the same time, there are important quantitative differences between the four speci-

fications. We find that allowing for unobserved heterogeneity ξi tends to dampen the consumption

impacts of income shocks, the difference being particularly noticeable for the models without filtering

where average responses decrease from 0.40 to 0.14. The impact of heterogeneity can be explained

by the fact that, according to our estimates, ξi is positively correlated with income, see Section 6. In

contrast, allowing for a transitory income component tends to increase consumption responses to in-

come shocks, as is typically the case in estimates that correct for measurement error bias. As a result,

in our main model with unobserved heterogeneity and a transitory component, the lower right hand

graph shows an estimated average response parameter of 0.30. There are strong differences by assets

and age too, with the estimated average transmission coefficient dropping toward 0.10 for older and

wealthier households, while for younger households the estimated mean transmission rises to around

0.40.

Comparison with ABB. It is informative to compare the average responses in Figure 4 to the

results obtained by ABB. In a model without heterogeneity but with a transitory component, ABB

found an average transmission coefficient of 0.38. This is lower than the responses in Figure 4 (c), which

are 0.54 on average.18 As we previously noted, the period of observation, the sample of households,

and the income measure used in ABB all differ from the ones we focus on in the current paper. In

particular, ABB focus on labor income as opposed to disposable income. Our estimates of consumption

responses based on labor income are substantially lower than the responses based on disposable income

shown in Figure 4, see Section 7.

5.3 Heterogeneity in consumption responses to income shocks

We have already seen that the introduction of unobserved heterogeneity has a systematic effect on the

estimated average response of consumption to changes in income. We hypothesize that there are also

systematic differences in responses across consumers that differ according to unobserved heterogeneity.

18The consumption responses in a model without heterogeneity in ABB can be found in their Figure 5(c). In addition,

ABB also reported average responses based on a model with unobserved heterogeneity, albeit using a different specification

for the consumption rule. They found lower responses in this case, amounting to 0.32 on average, see Appendix Figure

S24(b) in ABB.
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To examine this, we study how consumption responses differ among households that are at the same

point in the life cycle and have the same level of assets. For this purpose, we show how the transmission

coefficients φit vary by quantiles of the unobserved type ξi, in addition to showing how they vary with

assets levels and over the life cycle.

In Figure 5 we show transmission parameters as a function of assets and age, for five different

percentiles of ξi, and we also show the average across ξi values. The results show clear evidence of

household heterogeneity in consumption responses to income shocks. Consider the 10th percentile of

ξi, in the top left graph. For these “low consumption type” households, average transmission is 0.34,

yet the magnitude of the transmission coefficient varies substantially with age and assets. Indeed, while

younger and less wealthy households have transmission coefficients of close to 0.60, the coefficient is

as low as 0.15 for older and wealthier households. This pattern is qualitatively consistent with the

implications of a standard life-cycle model of consumption and saving behavior in which persistent

shocks are harder to self-insure for young consumers and for those consumers with low levels of net

assets.

This “life-cycle consistent” pattern of responses is maintained through to the median type, albeit

less pronounced. As we move to the higher consumer types, a pattern that is much less sensitive to

assets and age appears. Consider the 90th percentile of ξi, in the bottom right graph of Figure 5. For

these high-type households, the transmission coefficients are 0.26 on average, hence lower than the

coefficients of the low-type households. In addition, the variation of the transmission coefficients with

assets and age is less pronounced than for the low types. Indeed, while coefficients are approximately

0.15 for the older and wealthier households, the young and less wealthy households have coefficients

that do not exceed 0.30. These patterns for the high-types are less in accordance with the forces at

play in conventional life-cycle models of the individual household.

In order to provide measures of uncertainty associated with our main results, we rely on the

bootstrap. We report results based on a parametric bootstrap approach, where we use the model

to simulate bootstrapped data sets given parameter estimates. In Appendix Figure A6 we report

pointwise 95% bands for the transmission parameters of Figure 5. We see that our estimates are rather

precise. As a complement to the parametric bootstrap, in Appendix Figure A7 we report pointwise

95% bands based on the nonparametric bootstrap clustered at the household level. Precision is lower

in this case, which is is not surprising, since, relative to the clustered nonparametric bootstrap, the

parametric bootstrap exploit our modeling of the time-series dependence.

As a summary measure of the salient dimensions of heterogeneity we find, in the top panel of Table

2 we report estimates of average transmission parameters for various categories of households: high and

low types, corresponding to ξi being above the 90th percentile or below the 10th percentile, young/low

assets for whom age and assets are below the median, and old/high assets for whom age and assets are

above the median. In the bottom panel we repeat the exercise for high types corresponding to ξi above
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Figure 5: Heterogeneity in consumption responses

(a) 10th percentile (b) 25th percentile
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Notes: See the notes to Figure 4. Here we report the results by percentiles of heterogeneity ξi in consumption.
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Table 2: Summarizing heterogeneity across types

A. 90th vs 10th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.26 0.14 0.12

[0.11,0.32] [-0.02,0.21] [-0.04,0.26]

[0.10,0.39] [-0.06,0.22] [-0.06,0.28]

Low ξ 0.49 0.13 0.36

[0.25,0.52] [-0.11,0.14] [0.17,0.55]

[0.20,0.53] [-0.13,0.17] [0.15,0.56]

∆ -0.23 0.02 -0.25

[-0.36,0.01] [-0.07, 0.24] [-0.53,-0.02]

[-0.40,0.08] [-0.15, 0.25] [-0.56,0.03]

B. 75th vs 25th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.32 0.14 0.18

[0.17,0.35] [0.01,0.16] [0.08,0.29]

[0.15,0.37] [-0.05,0.18] [0.04,0.31]

Low ξ 0.44 0.13 0.31

[0.24,0.45] [-0.06,0.14] [0.17,0.45]

[0.19,0.46] [-0.08,0.15] [0.15,0.46]

∆ -0.11 0.01 -0.12

[-0.19,0.01] [-0.03,0.13] [-0.27,-0.01]

[-0.21,0.04] [-0.08,0.13] [-0.28,0.02]

Notes: See the notes to Figure 4. Here we report average consumption responses for young and low assets households

compared to old and high assets households, for different percentiles of heterogeneity ξi in consumption. Values are

calculated by evaluating the average consumption response for households at a fixed percentile of ξi when assets and age

are fixed at the τ th percentile. Reported values for young and low assets households are then shown by averaging over

τ ∈ (0, 0.5). Reported values for old and high assets households are then shown by averaging over τ ∈ (0.5, 1). Parametric

bootstrap confidence intervals (in bracket, 95% bottom brackets, and 90% top brackets) are based on 250 replications.
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the 75th percentile and low types corresponding to ξi being below the 25th percentile. Alongside point

estimates, we report 90% and 95% confidence intervals based on the parametric bootstrap.

We find that, while for high consumption types above the 90th percentile the transmission of

income shocks is only 0.10 higher for young/low assets households and insignificant at conventional

levels, for low types below the 10th percentile the average response coefficient is 0.37 higher for the

young and low assets and significant at the 5% level. This supports our main conclusion regarding

the fact that the behavior of low types appears to be consistent with a standard life-cycle model of

consumption and saving, yet the behavior of high types appears less consistent with the mechanisms of

the model. In addition, the cross-type difference 0.10-0.37=-0.27 between these two estimates, which

is akin to a difference-in-differences estimate, is significant at the 10% level though not at the 5%

levels.

The results in this section, based on a dynamic model with latent income components and unob-

served heterogeneity, provide evidence for the presence of heterogeneous types of consumers, confirming

what Figure 2 suggested. In the next section, we develop the implications of these results for life-cycle

patterns of consumption and savings, and we examine various possible mechanisms for the patterns

in transmission parameters displayed in Figure 5.

Dispersion of consumption responses around their means φit. While our main focus is on

the average consumption response parameters φit, there may be dispersion around those averages.

In Appendix C we show how to compute an upper bound on the share of variance in responses ∂cit
∂η

explained by the means φit. The reason why only upper bounds are available is because transitory

preference shocks νit, which may generate additional heterogeneity in responses beyond the mean

transmission parameters φit, may be multi-dimensional. We report estimates of these upper bounds

in Appendix Figure A8. We find high variance shares, in many cases higher than 80%, suggesting that

the φit parameters capture a large part of the heterogeneity in responses.

6 Candidate mechanisms to explain the heterogeneity

In this section we study various mechanisms that might potentially explain the type heterogeneity

that we find.

6.1 Three candidate mechanisms

Informed by standard models of consumption and saving decisions, which guide our empirical analysis,

we can outline three candidate mechanisms to explain the heterogeneous types that we document.

A first possible explanation is heterogeneity in preferences and discounting. There is a long history

of incorporating discount rate heterogeneity to help explain lifetime wealth accumulation, for exam-

ple Krusell and Smith (1998) and Hendricks (2007). Everything else equal, individuals with higher
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marginal utility of consumption will consume more, and hold fewer assets. Individuals with higher

discount factors will delay consumption relative to those with lower discount factors, and hold more

assets. This type of heterogeneity should lead to high-type households consuming more and holding

fewer assets. We examine this hypothesis by showing how consumption and assets profiles depend on

the latent type.

A second candidate explanation is heterogeneity in returns to assets. The rate of return is a

key determinant of consumption choice in standard models, so the types we find might in fact reflect

heterogeneity in those returns across households. Fagereng, Guiso, Malacrino and Pistafferi (2020) find

evidence of individual heterogeneity in returns to wealth using administrative records from Norway.

We examine this heterogeneity in the PSID by estimating an extension of the model with heterogeneity

in the asset accumulation rule (see equations (9)-(10)), and by empirically documenting the form of

this rule.

A third candidate explanation is heterogeneity in access to external resources, such as parental

insurance. Individuals with access to other forms of insurance would be expected to consume more,

for a comparable level of income and assets. Altonji, Hayashi, and Kotlikoff (1992), Hayashi, Altonji,

and Kotlikoff (1996) and, more recently, Attanasio, Meghir and Mommaerts (2019) use the generational

links in the PSID to document a significant role for parents and family networks in providing additional

insurance. To probe this hypothesis, we link the household heads in the PSID to their parents, and

study how the latent types relate to parental income, wealth, and consumption.

6.2 Life-cycle profiles

As a step towards examining the plausibility of a preference and discounting channel, we show the life-

cycle profiles implied by our dynamic model, for various percentiles of the unobserved heterogeneity ξi.

In the top panel of Figure 6 we show consumption profiles, in logs.19 We see that consumption levels

are monotone in the types. This is partly a result of our restriction in (12), which implies monotonicity

at the reference age. In addition, comparing the dispersion of the solid lines (which correspond to

the ξi percentiles) with the dashed lines (which correspond to 10th and 90th unconditional percentiles

of log-consumption), we see that type heterogeneity explains a large part of the overall variation in

log-consumption. Our results imply that ξi accounts for 25% of the variance of log-consumption.20

In the bottom panel of Figure 6 we show the profiles of assets and income, in logs. In the left

19To draw these profiles we proceed by simulation, using a similar strategy to ABB. In addition, in the graphs we

show non-residualized variables; that is, we add back the predictions of the first-stage regressions to the residuals of

log-consumption, log-assets, and log-income. Note these predictions include the effects of calendar time in addition to

those of demographics.
20In Appendix Figure A9 we plot the median and 10th and 90th percentile of log-consumption, over the life cycle,

for three percentiles of ξi (10th, median, and 90th). This confirms that the between-ξi dispersion of consumption is

substantial, even though there is large within-ξi variation as well.
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Figure 6: Life-cycle profile
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Notes: Average non-residualized log-consumption in graph (a), log-assets in graph (b), and persistent latent component

of log-income in graph (c), for different ages and percentiles of ξi (10%, 25%, Median, 75%, 90%). The dashed lines

show the age-specific unconditional 10th and 90th percentiles for each outcome measure.

graph we see that, similarly to consumption, assets are monotone in types. This suggests that, while

high-type households consume more than low types, they also hold more assets. However, the variation

in types explains a relatively small share of the overall variation in log-assets. Note that, while the

restriction in (12) imposes that log-consumption increases with the type ξi at particular covariates

values, nothing in our approach restricts log-assets to be monotone in the type. Quantitatively, we

find that ξi accounts for 3% of the variance of log-assets. In the right graph we show the results for

the persistent latent component of income. We see the same monotone behavior in the type as for

consumption and assets. Our results imply that ξi accounts for 4% of the variance of the persistent

latent component of log-income.21 We have already seen that the correlation between the latent type

and income is sufficient to generate sizable differences between specifications with and without latent

heterogeneity, see Figure 4.

Overall, our results show that high-type households consume more, hold more assets, and have

higher income. Quantitatively, individual types mainly differ in their consumption profiles. While

these findings do not rule out that differences in preferences and discounting may be present in the

21In Appendix Figure A10 we plot the median and 10th and 90th percentile of log-assets and the persistent latent

component of log-income, over the life cycle, for three percentiles of ξi. The results confirm that most of the dispersion

in assets and income is within-ξi.
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data, they are difficult to reconcile with this channel being the main driver of the heterogeneity in

consumption responses that we find.

6.3 Heterogeneity in consumption and assets

We next assess the role of heterogeneity in assets returns as an explanation for type heterogeneity.

For this purpose, we estimate a specification where asset accumulation depends on the latent type ξi,

see equations (9)-(10). The results based on this specification are similar to the baseline ones for both

income and consumption. In Appendix Figure A11 we show the type heterogeneity in consumption

responses to variation in the persistent latent component of income, and find overall very similar

responses to the ones based on a specification without assets heterogeneity. In Appendix Figures A12

and A13 we report estimates of assets responses, by type, in this generalized specification that allows

the latent type to enter the asset accumulation rule. We find that the association between lagged

assets and current assets conditional on lagged income and consumption increases with the latent

type, and that assets responses are higher for the young, decrease with the level of lagged assets, and

increase with the type ξi, especially for older households.

Overall, the results based on the extended specification with latent heterogeneity in assets and

consumption suggest that returns to assets are indeed heterogeneous across households in the data.

However, allowing the heterogeneity to enter asset accumulation does not materially affect the con-

clusions regarding the heterogeneity in consumption responses.

6.4 Parental heterogeneity

A third candidate mechanism is heterogeneity in access to other forms of insurance, such as parental

insurance. In order to examine the plausibility of this mechanism, we take advantage of the inter-

generational linkages available in the PSID to match households to their parents. This aspect makes

the PSID uniquely suited to study income and consumption dynamics in the presence of links across

generations. Specifically, we start by matching the heads of each household to those households headed

by a parent of the head. If matches to the household head are not available, we alternatively try and

match the spouse of each household to those households headed by a parent of the spouse. In our

baseline sample we are able to successfully match approximately 33% of households.

Given this matched panel dataset, we then regress posterior means of the types ξi on various

parental outcomes, such as consumption, income, and assets. In Table 3 we report the results of

various specifications with different sets of controls. For robustness, in addition to the results for all

households (in the top panel) we also report results for household heads who are less than 45 years

old (in the bottom panel). We find that parental income and consumption correlate positively with

the mean type, although the correlation with assets is insignificant from zero at conventional levels.

When including all parental variables together, parental consumption remains significantly positively
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Table 3: Heterogeneity and parental outcomes

A. All households

(1) (2) (3) (4) (5) (6)

Parent consumption 0.05 0.07 0.05 0.05

(0.02) (0.02) (0.02) (0.02)

Parent income 0.03 0.04 0.01 0.02

(0.01) (0.01) (0.02) (0.02)

Controls No Yes No Yes No Yes

B. Young adults only

(1) (2) (3) (4) (5) (6)

Parent consumption 0.05 0.06 0.03 0.04

(0.02) (0.02) (0.03) (0.02)

Parent income 0.03 0.04 0.02 0.02

(0.01) (0.01) (0.02) (0.02)

Controls No Yes No Yes No Yes

Notes: PSID, 2005-2017 sample, household heads aged 25-60 (top panel) and 25-45 (bottom panel). Regressions of

posterior ξi draws on parental outcomes. Parental links are obtained for approximately 33% of panel. Parental outcomes

are obtained as average residuals net of cohort and year effects. Results are based on 10 posterior draws per household.

Controls include an education dummy for the household head and a quadratic specification for first period age. Standard

errors clustered at the household level do not account for the uncertainty in the posterior parameter estimates.
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correlated with the type. This suggests that, indeed, the latent type ξi may partly reflect heterogeneous

access to parental insurance. This interpretation is further supported by the monotonicity of assets

in the type documented in Figure 6. However, these results are purely indicative and we leave it to

future work to assess whether this channel is quantitatively important.

7 Other results and extensions

In this section we report results based on extensions of the model and other robustness checks.

7.1 Impulse responses

We start by reporting impulse responses implied by the model’s estimates. In Figure 7 we estimate the

impact of a shock to the persistent latent component of income, ηit, at age 34. The figure is divided

into three parts. In the upper part, we report the difference between the average persistent latent

component of income for households hit by the shock and the average persistent latent component

of income for households hit by a “median” shock, i.e., corresponding to the 50th percentile of ηit

conditional on ηi,t−1. To highlight the heterogeneity in impulse responses, we show results for various

percentiles of the latent type distribution. In the middle and bottom parts of the figure we proceed

similarly for log-consumption and log-assets, respectively, instead of the income component.

Within each part of the figure, we show impulse responses for various values of initial income and

the shock. In the left, middle and right columns we consider households who are at the 10th, 50th and

90th percentile of the distribution of the persistent income component at age 32, respectively. In the

top (respectively, bottom) subpanels, we show the results for a shock at the 10th (respectively, 90th)

percentile of the distribution of shocks. Hence, top subpanels correspond to negative income shocks,

whereas bottom subpanels correspond to positive income shocks.

Focusing first on the upper part of Figure 7, and moving across columns, we observe that negative

shocks tend to have a stronger impact for those on higher income, and that positive shocks have a

stronger impact for those on lower income. This illustrates the nonlinear persistence in the income

process documented in ABB. In addition, the fact that all lines corresponding to different values of

the latent type ξi reflects our assumption that the income process does not depend on ξi.

Moving then to the middle part of Figure 7, we also observe nonlinearities in consumption re-

sponses, although those are stronger for the negative income shocks than for the positive ones. In

addition, the differences between lines reflect the heterogeneity between types. In particular, low

types with higher income tend to respond more strongly to negative shocks than other types. To

further illustrate this heterogeneity, in Appendix Figure A14 we show how consumption levels evolve,

on impact, after an income shock.

Lastly, focusing on the bottom part of Figure 7 we see only moderate differences in assets evolution
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Figure 7: Heterogeneity in impulse responses
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Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) percentiles, relative

to median. See the text for a description. The different lines correspond to different percentiles of ξi.
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after a shock depending on the initial income level. In Appendix Figure A15 we show impulse responses

based on the model that allows for heterogeneity in both assets and consumption, see equations (9)-

(10) and the results discussed in Subsection 6.3. The responses to a shock to the persistent latent

component of income are overall similar to the ones based on the model without heterogeneity in the

asset accumulation rule.

7.2 Robustness to the complexity of the quantile model used in estimation

The complexity of our empirical specification is controlled in part by the number of knots at which we

evaluate the quantiles of the variables in the model (i.e., the income components, consumption, and

the latent type). Our estimates of the functions, such as aηk(τ) in (11), interpolate between those τ

values. Hence, a large number of knots can approximate any continuous quantile function well, while a

small number of knots may provide a worse approximation. However, in estimation one faces the usual

bias/variance trade-off, and the impact of the number of knots on the estimates is a priori unclear.

To probe the sensitivity of our main results to the number of knots, we report two sets of average

consumption derivatives in Appendix Figure A16. In the top panel we show the results for 7 knots,

and in the bottom panel we show the results for 19 knots. By comparison, our baseline results were

obtained using 11 knots (see Figure 5). Although we find some quantitative differences between the

three sets of estimates, overall they agree well.

7.3 Robustness to income definition and sample restriction

Next we probe the robustness of our results to changes in income definition and sample restriction.

While our main results rely on using disposable, post-tax income, in Appendix Figure A17 we report

results on nonlinear income persistence based on pre-tax labor income. In Appendix Figure A18 we

report the corresponding results for heterogeneity in consumption responses. The findings suggest a

higher degree of nonlinearity in income persistence, and a higher degree of consumption insurance,

compared to the results based on disposable income. This is not surprising, as the non-proportionality

in the tax system can be interpreted as a source of insurance to households. Moreover, since the results

in ABB were based on labor income, these findings help explain the quantitative differences between

the results in ABB and the ones we report in this paper when relying on disposable income.

Another important feature of our sample is the restriction to dual earner households. While this

restriction is motivated by the goal to abstract from extensive labor supply decisions, it also results

in a smaller and potentially more insured sample. We have estimated our model on a larger sample

that also includes single earners, where the second member of the household is not working.22 In

Appendix Figure A19 we report the results for income persistence, and in Appendix Figure A20 we

22In Appendix Table A3 we show descriptive statistics for this broader sample.
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reproduce our main results on heterogeneity in consumption responses to income shocks. Our findings

are qualitatively unchanged relative to our baseline sample of dual earners.

7.4 Additional dimensions of heterogeneity

Our specification of the consumption function flexibly allows for heterogeneity in income, assets,

age effects, and the effect of the latent type, see equation (1). However, it is possible that the

effects of additional observed and unobserved factors might matter for consumption insurance. For

example, differences in education and birth cohorts might be associated with different consumption

responses to income shocks. In Appendix Figure A22 we show that neither education nor cohort

are strongly associated with the latent type ξi. Yet, it is theoretically possible that they enter the

consumption function, and interact with income components in meaningful ways, even though our

modeling approach rules out this possibility.

To tentatively explore this question, in Appendix Figure A23 we report consumption responses to

income shocks, by type ξi, in a specification that also controls for a fully interacted education indicator.

Since we do not re-estimate the model with latent variables, we view this exercise as indicative. We see

that the consumption responses across types are qualitatively similar to the baseline ones, yet those

responses appear somewhat muted. This motivates future work extending our framework to allow

for multiple observed and unobserved sources of heterogeneity in consumption insurance and income

processes across households.

8 Conclusion

The motivation for this research has been to better understand nonlinear income dynamics and het-

erogeneous consumption responses to changes in income. In this paper we have developed methods

that build on and extend Arellano, Blundell and Bonhomme (2017), and we have applied them to

a larger and more comprehensive sample from the PSID which includes a richer set of consumption

categories. We have developed computational tools to better handle larger and more complex mod-

els, including in settings with unbalanced panels, within a nonlinear quantile-based latent variables

framework. These new data and tools allow us to go beyond confirming the presence of nonlinear

income and consumption dynamics, and to document rich heterogeneity in consumption responses

across households.

Our results point to consumption responses to income shocks that vary substantially with unob-

served types. We distinguish lower types, who appear to follow the life-cycle patterns in consumption

responses implied by standard models, from higher types, whose consumption responses to income

shocks vary little with either assets levels or the stage of the life cycle. High-type households con-

sistently have higher consumption levels and, relative to low-type households, have slightly higher

33



incomes and levels of assets. For the younger low types, consumption responses to persistent income

shocks are close to 0.60 while for older low types this falls to 0.10. For the higher types, consumption

responses are flatter across age and assets.

We examined alternative mechanisms that could lead to such heterogeneous consumption responses.

The fact that high types both consume more and hold more assets is difficult to reconcile with an

explanation based on heterogeneity in preferences or discounting. We also argue that it is difficult to

align with a specification that allows for latent heterogeneity in asset accumulation, finding that the

heterogeneity in consumption responses is virtually unaffected by this extension. To explore a third

mechanism, parental insurance, we used the inter-generational linkages in the PSID to link a subset

of household heads in our sample to their parents. We found that high-type household heads have

on average parents with higher consumption and income levels, suggesting that the heterogeneous

responses might in part reflect heterogeneity in access to other sources of insurance such as parental

insurance.

Our findings motivate further work on two fronts. First, whilst we have examined several mecha-

nisms and found a correlation between the latent types and parental consumption, we lack a quanti-

tative understanding of how these and other factors shape the household differences in consumption

responses and insurance. Second, although we have leveraged a single-latent-factor model to maintain

tractability in the presence of heterogeneous responses, generalizing the model to account for other

sources of heterogeneity is an important next step. In particular, it would be valuable to extend the

model to allow for time-invariant heterogeneity in income, in addition to the latent consumption type.
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APPENDIX

A Modeling and estimation details

A.1 Empirical specification

Earnings components. Let ϕk, for k = 0, 1, ..., denote a dictionary of functions, with ϕ0 = 1. In

practice we use low-order products of Hermite polynomials for ϕk. We specify, for t ∈ {ti + 1, ..., ti +

Ti− 1}, the conditional quantile function of ηit given ηi,t−1 and ηit as in (11). We specify the quantile

function of εit (for t = 1, ..., T ) given ageit, and that of ηi1 given age at the start of the period agei1,

in a similar way. Specifically, we set

Qε(ageit, τ) =
K∑
k=0

aεk(τ)ϕk(ageit),

Qη1(cohorti, educi, agei,ti , τ) =

K∑
k=0

a
η1
k (τ)ϕk(cohorti, educi, agei,ti),

with outcome-specific choices for K and ϕk.

Consumption type. To specify the latent type we set

Qξ(cohorti, educi, incomei, τ) =
K∑
k=0

aξk(τ)ϕk(cohorti, educi, incomei).

Consumption rule. To specify the consumption process we set

Qc(ait, ηit, εit, ageit, ξi, τ) =
K∑
k=1

ack(τ)ϕk(ait, ηit, εit, ageit, ξi). (A1)

To fix the scale of the function we impose that∫ 1

0
Qc(a, η, ε, age, ξ, τ)dτ = ξ,

which translates into linear restrictions on the parameters
∫ 1
0 a

c
k(τ)dτ .

Assets evolution. For initial assets we set

Qa1(ηi,ti , agei,ti , cohorti, educi, ξi, τ) =
K∑
k=0

aa1k (τ)ϕk(ηi,ti , agei,ti , cohorti, educi, ξi). (A2)

For assets evolution we set

Qa(ait, ηit, εit, cit, ageit, ξi, τ) =

K∑
k=0

aak(τ)ϕk(ait, ηit, εit, cit, ageit, ξi, τ). (A3)
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Implementation. We base our implementation on ABB, and model the functions ak(τ) as piecewise-

linear interpolating splines on a grid [τ1, τ2], [τ2, τ3], ... , [τL−1, τL], contained in the unit interval.

We extend the specification of the intercept coefficient a0 on (0, τ1] and [τL, 1) using a Laplace model

indexed by λ− (for the left tail) and λ+ (for the right tail). All ak for k ≥ 1 are constant on [0, τ1] and

[τL, 1], respectively. We denote ak` = ak(τ `). In practice, we take L = 11 and τ ` = `/(L+ 1). We use

tensor products of Hermite polynomials for ϕk, each component of the product taking as argument a

standardized variable.

A.2 Estimation

Overview of the estimation strategy. We start by estimating the earnings parameters. Next,

we recover estimates of the consumption, assets, and type parameters, given the previous earnings

estimates.

Parameters. We collect all parameters governing the income process into a vector θ, given by

θ =

(
aη, λη, aε, λε, aη1 , λη1

)
.

Likewise, we collect all parameters governing the consumption process into a vector µ, given by

µ =

(
aξ, λξ, ac, λc, aa1 , λa1 , aa, λa

)
.

We estimate θ and µ sequentially.

Model’s restrictions Let ρτ (u) = u(τ − 1{u ≤ 0}) denote the “check” function of quantile regres-

sion. Consider the parameters of Qη; that is, the aηk` and the corresponding Laplace parameters λη.

The true values of aηk` maximize

E

[
ti+Ti−1∑
t=ti+1

∫
ρτ`

(
ηt −

K∑
k=0

aηk`ϕk(ηt−1, ageit)

)
fi(η)dη

]
= 0,

where fi is the posterior distribution of the (ηi,ti , ..., ηi,ti+Ti−1) given the data and the true parameter

values. In turn, the true values of λη satisfy

λ
η
− = −

E
[∑ti+Ti−1

t=ti+1

∫
1
{
ηt ≤

∑K
k=0 a

η
k1ϕk(ηt−1, ageit)

}
fi(η)dη

]
E
[∑ti+Ti−1

t=ti+1

∫ (
ηt −

∑K
k=0 a

η
k1ϕk(ηt−1, ageit)

)
1
{
ηt ≤

∑K
k=0 a

η
k1ϕk(ηt−1, ageit)

}
fi(η)dη

] ,
with an analogous formula for the upper tail parameter λη+. The model implies related restrictions on

all the other quantile and tail parameters in θ and µ.
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Likelihood function. The likelihood function is, letting zi = (cohorti, educi) and Ti = {ti, ..., ti +

Ti − 1},

f(yTii , c
Ti
i , a

Ti
i , η

Ti
i , ξi | age

Ti
i , zi; θ, µ)

=
∏
t∈Ti

f(cit|ait, ηit, yit, ξi, ageit;µ)

×
∏

t∈Ti,t>ti

f(ait|ai,t−1, yi,t−1, ci,t−1, ηi,t−1, ξi, ageit;µ)

×
∏
t∈Ti

f(yit|ηit, ageit; θ)
∏

t∈Ti,t>ti

f(ηit|ηi,t−1, ageit; θ)

× f(ai,ti |ηi,ti , agei,tizi, ξi;µ)f(ηi,ti | zi, agei,ti ; θ)f(ξi | zi, incomei;µ),

where notice we have imposed the assumption that ξi is independent of (yTii , η
Ti
i ) given (zi, incomei).

Similarly to ABB, the likelihood function is available in closed form. For example, we have

f(yit|ηit, ageit; θ) = 1 {yit − ηit < Aεit(1)} τ1λε− exp
[
λε− (yit − ηit −Aεit(1))

]
+
L−1∑
`=1

1 {Aεit(`) ≤ yit − ηit < Aεit(`+ 1)} τ `+1 − τ `
Aεit(`+ 1)−Aεit(`)

+1 {Aεit(L) ≤ yit − ηit} (1− τL)λε+ exp
[
−λε+ (yit − ηit −Aεit(L))

]
,

where

Aεit(`) ≡
K∑
k=0

aεk`ϕk(ageit) for all (i, t, `).

Note that the likelihood function is non-negative by construction. In particular, drawing from the pos-

terior density of η automatically produces rearrangement of the various quantile curves (Chernozhukov,

Fernndez-Val and Galichon, 2010).

Estimation algorithm. Like in ABB, starting from initial parameter values, we iterate between

two steps.

In the stochastic E-step, we draw M values η
(m)
i = (η

(m)
i,ti

, ..., η
(m)
i,ti+Ti−1) and ξ

(m)
i from their posterior

distribution. In practice we take M = 1.

In the M-step, we estimate parameters by solving empirical counterparts of the population restric-

tions. This involves running multiple quantile regressions in order to estimate the ak` parameters, and

estimating the λ parameters which are available in closed form.

Solving the indeterminacy in consumption. To impose the restriction (12), which solves the

indeterminacy in the relationship between consumption and the latent type, we proceed as follows.

At the start of every M-step, given draws η
(m)
i and ξ

(m)
i , we regress cit on polynomials in ait, η

(m)
it ,

ε
(m)
it = yit− η(m)

it , ageit, and ξ
(m)
i , using the same polynomial specification as in the quantile model for

log-consumption. Letting ĉit denote the predicted value at (a, η, ε, age, ξ
(m)
i ), we then reset ĉit 7→ ξ

(m)
i .
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Stochastic E-step (income estimation). The target for a given household i is the posterior

distribution

f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1).

At t = ti, we initialize S particles η
(s)
i,ti

from the following proposal distribution π:

ηi,ti ∼ N (µi, σ
2),

µi =

(
1−

σ2η1
σ2η1 + σ2ε

)
K∑
k=0

βεkϕk(cohorti, educi, agei,ti) +
σ2η1

σ2η1 + σ2ε
yi,ti ,

σ2 =
c

1
σ2
η1

+ 1
σ2
ε

,

where the βεk, σ
2
η1

and σ2ε are parameters estimated by running OLS counterparts to the M-step

quantile regressions (in the previous stochastic EM iteration), and c ≥ 1 is a constant (we take c = 2).

Time t = ti re-sampling weights are then given by

w
(s)
i,ti
∝
f(η

(s)
i,ti
|yi,ti)

π(η
(s)
i,ti

)
,

where π(ηi,ti) is the normal density with mean µi and variance σ2. These weights, which are available

in closed form, are used to re-sample particles with replacement from the set of particles η
(s)
i,ti

, if the

effective sample size 1∑S
s=1(w

(s)
i,ti

)2
exceeds some threshold (see below). This simple adaptive rule avoids

degeneracy of the particles. After re-sampling we reset w
(s)
i,ti

= 1
S . Otherwise we keep all the existing

particles and weights.

At t = ti + r > ti, we use the following proposal distribution, again denoted as π, to generate new

draws to append to the existing set of particles:

ηi,ti+r | ηi,ti+r−1 ∼ N (µ̃i,r, σ̃
2),

µ̃i,r =

(
1−

σ2η
σ2η + σ2ε

)
K∑
k=0

βεkϕk(ηi,t+r−1, agei,ti+r) +
σ2η

σ2η + σ2ε
yi,ti+r,

σ̃2 =
c

1
σ2
η

+ 1
σ2
ε

,

where again the βεk, σ
2
η and σ2ε are parameters estimated by running OLS counterparts to the M-step

quantile regressions. The re-sampling weights are given by

w
(s)
i,ti+r

∝ w(s)
i,ti+r−1

f(η
(s)
i,ti+r

|yi,ti+r, η
(s)
i,ti+r−1)

π(η
(s)
i,ti+r

|η(s)i,ti+r−1)
,

which are used to re-sample particles if the effective sample size 1∑S
s=1

(
w

(s)
i,ti+r

)2 exceeds the threshold.
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Stochastic E-step (consumption estimation). The target for a given household is the posterior

distribution

f(ξi, ηi,ti , ..., ηi,ti+Ti−1 |xi,ti , ..., xi,ti+Ti−1),

where xit = (yit, cit, ait, ageit) is a vector of household i’s observed income, consumption, assets and age

at time t. Algorithm A1 below provides a pseudo-code for the implementation. The SMC sampling

steps (used to generate efficient proposals within a Metropolis Hastings algorithm) are identical to

those outlined above with the exception that re-sampling weights at times t = ti and t > ti are now

given by

w
(s)
i,ti
∝
f
(
η
(s)
i,ti
|ξ∗i , xi,ti

)
π
(
η
(s)
i,ti

) ,

and

w
(s)
i,ti+r

∝
f
(
η
(s)
i,ti+r

|ξ∗i , xi,ti+r, η
(s)
i,ti+r−1

)
π
(
η
(s)
i,ti+1|η

(s)
i,ti

) ,

respectively, where ξ∗i is a draw from a random walk proposal. We make use of the same proposal

distributions π as in the income estimation.

In the very first iteration of the stochastic EM algorithm we initialize the Metropolis Hastings

chains using random draws from the following proposal:

ξ∗i ∼ N (νi, ω
2),

where νi =
∑K

k=0 β
ξ
kϕk(cohorti, educi, incomei). The parameters βξk and ω2 are estimated by running

OLS counterparts to the corresponding M-step quantile regressions. At subsequent iterations of the

stochastic EM we initialize the Metropolis Hastings chains using draws from the previous iteration.

After initialization we use a Gaussian random walk proposal with variance 3.5ω2.

Whilst running the SMC samplers we obtain unbiased estimates of the marginal likelihood which

can be calculated recursively as p̂(xi,ti+r, ...|ξ∗i ) =
∑S

s=1 p̂(xi,ti+r−1, ...|ξ
∗
i )w

(s)
i,ti+r

. The unbiasedness of

these marginal likelihood estimates implies that the resulting algorithm can be represented as a bona

fide Metropolis Hastings algorithm yielding the desired target as its marginal.

Pseudo-code of the stochastic EM algorithm. A short pseudo-code for the algorithm we use is

presented in Algorithm A1.

Algorithm A1 (Stochastic EM)

1: for `=1:L do

2: Stochastic E-Step:

3: Set ξ0i and (η0i,ti , ..., η
0
i,ti+Ti−1) to some starting values.1

4: for k=1:K do

5: Sample ξ∗i ∼ q(.|ξk−1i ), where q is a proposal distribution.2

1When ` > 1 we simply take ξ0i to be the ξi draw from the previous (` − 1) step. When ` = 1 we always accept the

first proposal. In both cases, we run an SMC algorithm (see line 6 in the pseudo-code) based on ξ0i to generate a draw

(η0i,ti , ..., η
0
i,ti+Ti−1).

2In practice, we use a random walk proposal. We tune the variance of the proposal so that the acceptance rate is

approximately 30%.
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6: Run an SMC algorithm targeting p(ηi,ti , ..., ηi,ti+Ti−1|ξ
∗
i , wi,ti , ..., wi,ti+Ti−1).

7: Store the marginal likelihood estimate, p̂(ξ∗i ) = p(wi,ti , ..., wi,ti+Ti−1|ξ∗i ), and the resulting

particles η∗i,ti , ..., η
∗
i,ti+Ti−1, both of which are available as output of the SMC algorithm in line 6.

8: Let f denote the density of ξi, whose expression is given in Appendix A. With probability

min

(
1,

p̂(ξ∗i )f(ξ
∗
i )q(ξ

k−1
i |ξ∗i )

p̂(ξk−1
i )f(ξk−1

i )q(ξ∗i |ξ
k−1
i )

)
set ξki = ξ∗i and (ηki,ti , ..., η

k
i,ti+Ti−1) = (η∗i,ti , ..., η

∗
i,ti+Ti−1); other-

wise set ξki = ξk−1i and (ηki,ti , ..., η
k
i,ti+Ti−1) = (ηk−1i,ti

, ..., ηk−1i,ti+Ti−1).

9: end for

10: Keep the last values ξKi and (ηKi,ti , ..., η
K
i,ti+Ti−1).

11: M-Step:

12: Estimate the quantile parameters by quantile regressions given the draws ξKi and (ηKi,ti , ..., η
K
i,ti+Ti−1),

as explained in Appendix A. Estimate the Laplace tail parameters.

13: Update the parameters of the proposal distribution, as explained in Appendix A.

14: end for

Practical issues: number of particles and threshold for effective sample size. In practice,

we set an i-specific number of particles equal to Si = 50Ti, where Ti is the number of observations of

household i. We set the threshold for effective sample size to Si/2.

Practical issues: specification. In practice we set the following polynomial degrees K for our

baseline specification, chosen after some experimentation:

• Qη: Kη = 3, Kage = 2.

• Qη1 : Keduc = 1, Kcohort = 1, Kage = 2.

• Qε: Kage = 2.

• Qc: Kage = 1, Ka = 2, Kη = 2, Kε = 1, Kξ = 1.

• Qa: Kage = 1, Ka = 2, Ky = 1, Kc = 1.

• Qa1 : Kage = 1, Kη = 1, Kξ = 1, Keducation = 1, Kcohort = 1.

• Qξ: Kincome = 1, Keduc = 1, Kcohort = 1.

Practical issues: starting values. In practice, we start the algorithm from different parameter

values. For example, for the initial values of the quantile parameters in ηit, we run quantile regressions

of log-earnings on lagged log-earnings and age. We proceed similarly to set other starting parameter

values, including those for the proposal distributions. In addition, we use latent draws from the income

model as initial draws when estimating the consumption model. We experimented with a number of

other choices.

Practical issues: numerical performance. Our aim is to ensure that the stochastic EM param-

eter Markov chains mix well. Among the factors that influence mixing (as measured by the decay rate

of auto-correlations along the parameter Markov chains), we found three key ones to be the number of

particles, the length of the Metropolis chains, and the number of iterations in the overall EM algorithm.

Given our experiments, we found that setting moderate numbers for the first two (we set Si = 50Ti
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Figure A1: Comparing Metropolis Hastings and Sequential Monte Carlo in the balanced panel used

in Arellano, Blundell and Bonhomme (2017, ABB)

(a) Metropolis Hastings (b) Sequential Monte Carlo
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Notes: 6-wave balanced sample from the PSID used in ABB, 1999-2009. The graphs show the quantile derivatives of the

persistent income component ηit with respect to ηit−1, averaged over ages in the sample. In the left graph we show the

result obtained using a Metropolis Hastings, using the codes from ABB. In the right graph we show the results obtained

using the Sequential Monte Carlo algorithm we have described in this section. The two horizontal axes show percentiles

of ηit−1 (“initial income”) and conditional percentiles of ηit given ηit−1 (“income shock”), respectively.

particles, as indicated above, and we run each Metropolis chain for 50 iterations), and relatively large

numbers for the third (we run the stochastic EM for 2000 iterations), gave best performance given

computation constraints in our short panel data setting.

B Numerical comparison with ABB

The SMC approach differs from the Metropolis Hastings method that was used in ABB. Here we

compare the income persistence implied by SMC and Metropolis Hastings, when using the original

6-wave balanced panel from ABB.

In Figure A1 we show the nonlinear income persistence predicted by the algorithm using SMC,

and compare it to the estimates based on the Metropolis Hastings algorithm from ABB. We see that

the results are little affected by the change in method. In particular, we see that, for households with

a low persistent income component, high shocks are associated with less income persistence, and for

households with a high persistent income component, low shocks are associated with more income

persistence. These patterns differ from the implications of a linear process such as a random walk,

where income persistence would be flat, independent of both the income level and the income shock.

Formally, the income persistence measure proposed by ABB is, in the case of the persistent income

component ηit,

ρ(η, age, τ) =
∂Qη(η, age, τ)

∂η
, τ ∈ (0, 1), (A4)

where Qη is the quantile function appearing in (4).3

3Note that ρ(η, age, τ) also depends on age, which we average out in Figure A1.
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Figure A2: Pointwise numerical stability bands of nonlinear persistence estimates

(a) Metropolis Hastings (b) Sequential Markov Chain

Notes: 6-wave balanced sample from the PSID used in ABB, 1999-2009. The graphs show the quantile derivatives of the

persistent income component ηit with respect to ηit−1, averaged over ages in the sample, and evaluated pointwise at the

2.5th and 97.5th percentiles over 200 runs of the stochastic EM algorithm, using different seeds every time. In the left

graph we show the result obtained using a Metropolis Hastings sampler, using the codes from ABB. In the right graph we

show the results obtained using the Sequential Monte Carlo algorithm. The two horizontal axes show percentiles of ηit−1

(”initial income”) and conditional percentiles of ηit given ηit−1 (”income shock”), respectively.

The income persistence results reported in ABB are based on comparing various estimation runs,

and selecting the one that provides the highest value of the likelihood. However, compared to Metropo-

lis Hastings used in ABB, we found the SMC approach to be more effective at reducing the numerical

instability across estimation runs. To illustrate this, in Figure A2 we report numerical stability bands

that indicate the variability of income persistence estimates obtained from 200 runs of our estimation

algorithm using different seeds, based on the two different sampling methods. In the left graph of

the figure we report results based on Metropolis Hastings. In the right graph we report results based

on the SMC algorithm we rely on in this paper. The SMC results show substantially less numerical

variability.

Lastly, although reported estimates in ABB appear reliable in the shorter balanced sample, in our

experience increasing the number of households and the length of the panel makes it more challenging

to rely on Metropolis Hastings for sampling. In contrast, we found our SMC implementation to remain

numerically stable in such cases.

C Which features of the consumption policy rule can be identified?

Consider a structural policy rule of the form

C = g(X, ν),

where ν, of unrestricted dimension, is independent of X. To simplify the presentation we assume that

X is scalar. In this paper, C denotes consumption, and X contains all state variables, including the
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income components. Denote the conditional quantile function of C given X as q(X, τ). Hence, for U

uniform independent of X, we can write

C = q(X,U).

We are interested in moments of the marginal effects

∆xC =
∂g(x, ν)

∂x
.

The key challenge is that, while q is identified from data on (C,X), g is generally not.

Average responses. We have, under standard conditions,

E [∆xC] =
∂

∂x
E [g(x, ν)] ,

hence

E [∆xC] =
∂

∂x
E [C |X = x] ,

or, equivalently,

E [∆xC] =
∂

∂x
E [q(x, U)] ,

that is,

E [∆xC] = E
[
∂

∂x
q(x, U)

]
.

Hence, average marginal effects are identified, irrespective of the dimensionality of ν and the mono-

tonicity properties of g.

Variance of responses. By Theorem 2.1 in Hoderlein and Mammen (2007) we have

E [∆xC |X = x,C = q(x, τ)] =
∂

∂x
q(x, τ),

for all τ and x. We thus can write

∂

∂x
q(x, U) = E [∆xC] + V,

where

V =
∂

∂x
q(x, U)− E [∆xC] .

Now, V has mean zero, and variance

V ar

(
∂

∂x
q(x, U)

)
= V ar (E [∆xC |X = x,C = q(x, U)])

= R2V ar (∆xC) ,

where R2 corresponds to the nonparametric regression of ∆xC on C and X. Hence, the variance of
∂
∂xq(x, U) underestimates the variance of ∆xC, by an amount that depends on how well C and X

explain ∆xC.

For example, if ν is scalar and has a monotone effect on g, then R2 = 1 and the variances are

equal. In that case, q = g, and g is identified. More generally, even though g is may not be identified,

the mean of ∂g(x,ν)
∂x is identified and one can compute a lower bound on the variance of ∂g(x,ν)

∂x .
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D Additional tables and figures

D.1 Tables and figures for Section 2

Table A1: Additional descriptive statistics about the unbalanced panel

(1) (2) (3) (4) (5) (6) (7)

Waves 1 Waves 2 Waves 3 Waves 4 Waves 5 Waves 6 Waves 7

Age 38.29 39.66 40.58 40.95 40.90 40.08 38.25

(10.51) (10.70) (10.13) (9.55) (9.23) (8.52) (6.71)

Education 4.88 4.95 5.00 5.06 5.05 5.16 5.14

(1.09) (1.10) (1.10) (0.99) (1.05) (0.95) (0.98)

Kids 1.22 1.05 1.08 0.90 1.02 1.17 1.35

(1.16) (1.15) (1.17) (1.00) (1.22) (1.08) (1.01)

Food 10,224.82 10,297.24 10,231.33 10,417.36 10,618.86 10,873.81 10,339.80

(5,618.54) (4,871.19) (4,884.57) (5,322.02) (5,205.25) (5,295.29) (5,566.94)

Non-durables (excl. food) 24,446.69 25,271.07 27,640.10 26,705.96 27,597.78 29,553.66 27,365.30

(23,423.94) (14,975.07) (20,170.04) (19,519.81) (18,453.14) (18,044.51) (18,732.42)

Total Non-durables 34,818.81 35,657.00 37,929.68 37,137.98 38,269.81 40,427.48 37,731.48

(26,171.72) (17,197.60) (22,674.04) (22,345.36) (21,752.17) (20,778.80) (21,432.31)

Home equity 94,353.18 93,634.64 134445.57 142168.95 146854.98 144322.37 145431.99

(221908.96) (157549.09) (218194.70) (196533.44) (231684.48) (171917.47) (182450.48)

Negative Equity Dummy 0.03 0.01 0.02 0.02 0.03 0.02 0.01

(0.16) (0.12) (0.13) (0.12) (0.16) (0.15) (0.10)

Wealth (excl. home) 236379.23 151718.99 192237.00 207947.79 245846.12 149537.06 144836.15

(1.85e+06) (452508.81) (480574.21) (1.03e+06) (713417.52) (437249.71) (607971.51)

Total wealth 369397.05 283854.13 387068.75 414928.35 464594.00 349645.50 352285.71

(2.26e+06) (648961.96) (714758.54) (1.30e+06) (1.00e+06) (604613.97) (791042.37)

Labor income 105504.37 106842.60 121094.14 134196.63 136728.34 118852.50 117218.18

(131690.40) (90,625.35) (131051.85) (226750.06) (132471.38) (65,851.87) (53,500.79)

Net income 83,800.29 84,063.03 92,061.60 100974.16 101662.12 90,869.67 90,045.96

(80,287.10) (57,270.53) (80,307.77) (132837.00) (79,228.69) (42,442.62) (34,698.92)

Observations 1002 668 484 263 223 177 299

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.
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Table A2: Additional descriptive statistics about the main sample, including negative assets

(1) (2) (3) (4) (5) (6) (7)

2005 2007 2009 2011 2013 2015 2017

Food 10,632.46 10,584.68 10,231.23 10,517.05 10,701.87 11,154.70 11,761.09

(5,299.94) (5,480.66) (4,985.32) (5,039.51) (5,575.75) (5,262.43) (5,514.86)

Non-durables (excl. food) 28,005.27 29,138.06 27,784.64 28,336.56 30,089.00 29,597.75 28,312.56

(18,936.74) (19,416.39) (18,768.90) (17,696.35) (17,860.16) (17,018.40) (14,572.47)

Total Non-durables 38,669.31 39,750.28 38,081.61 38,921.75 40,869.60 40,824.46 40,119.38

(21,699.98) (22,033.74) (21,113.38) (20,391.50) (20,440.32) (19,538.10) (17,414.63)

Home equity 150404.41 156582.18 117029.77 97,240.09 91,229.90 94,851.48 108298.61

(212201.08) (224409.31) (192280.79) (161856.05) (146908.40) (135356.38) (135913.11)

Negative Equity Dummy 0.01 0.01 0.07 0.08 0.06 0.02 0.02

(0.12) (0.12) (0.26) (0.28) (0.24) (0.14) (0.12)

Wealth (excl. home) 188962.86 255179.00 230841.97 201148.10 183919.95 203580.64 272524.94

(683870.01) (964936.86) (874673.16) (497471.78) (476877.85) (519691.15) (1.01e+06)

Total wealth 411875.17 470628.74 384224.26 314392.55 279919.36 298432.12 368142.89

(940132.05) (1.20e+06) (1.07e+06) (617956.79) (578419.27) (590056.80) (1.01e+06)

Labor income 122972.70 124391.48 126510.00 123237.46 121745.86 120544.04 125475.14

(139187.13) (143195.31) (182296.90) (119741.17) (118132.57) (72,546.62) (66,226.60)

Net income 93,504.28 94,804.55 95,893.52 95,289.90 94,087.25 92,224.02 95,572.56

(83,501.16) (86,771.32) (109386.52) (73,204.74) (71,919.39) (46,205.59) (43,329.49)

Observations 1397 1684 1616 1399 1269 1192 968

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.
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Figure A3: Consumption responses at various quantiles, confidence bands

(a) Average

(b) Bottom tercile (c) Top tercile

Notes: See the notes to Figures 1 and 2. Bootstrapped pointwise 95% confidence bands clustered at the household level.
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D.2 Tables and figures for Section 5

Figure A4: Nonlinear income persistence

(a) Log-income (b) Persistent component

Notes: PSID, 2005-2017 sample, disposable income, dual earners from an alternative perspective. The left graph shows

quantile derivatives of log-income with respect to lagged log-income. The right graph shows quantile derivatives of the

persistent latent component ηit with respect to ηit−1, model estimated using sequential Monte Carlo with a stochastic EM

algorithm. The two horizontal axes show percentiles of ηit−1 (“initial income”) and conditional percentiles of ηit given

ηit−1 (“income shock”), respectively.

Figure A5: Nonlinear persistence in ηit, 95% pointwise confidence bands

Notes: Pointwise 95% confidence bands based on the parametric bootstrap. 250 replications.
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Figure A6: Heterogeneity in consumption responses, 95% pointwise confidence bands (parametric

bootstrap)

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: Pointwise 95% confidence bands based on parametric bootstrap. 250 replications.

Figure A7: Heterogeneity in consumption responses, 95% pointwise confidence bands (nonparametric

bootstrap)

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: Pointwise 95% confidence bands based on non-parametric bootstrap. 250 replications. Bootstrap is clustered at

the household level.
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Figure A8: Heterogeneity in residual variation of consumption responses

(a) 10th percentile (b) 50th percentile (c) 90th percentile

Notes: See the notes to Figure 5. The figure shows an upper bound on the proportion of the variation in consumption

responses to ηit explained by the average consumption response, conditional on age and assets, see Section C. The various

graphs corresponds to different percentiles of ξi.
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D.3 Tables and figures for Section 6

Figure A9: Life-cycle profile of log-consumption, for different percentiles of unobserved types
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Notes: Average non-residualized log-consumption, for different ages and percentiles of ξi (10%, Median, 90%). The

dashed lines show the age-specific and ξi-specific 10th and 90th percentiles of log-consumption.

Figure A10: Life-cycle profiles of log-assets and log-income, for different percentiles of unobserved

types

(a) Assets (b) Income

25 30 35 40 45 50 55 60
Age

8

10

12

14

16

F
it
te

d
 v

a
lu

e
 o

f 
a
s
s
e
ts

10

50

90

25 30 35 40 45 50 55 60
Age

10.5

11

11.5

12

12.5

F
it
te

d
 v

a
lu

e
 o

f 

10

50

90

Notes: Average non-residualized log-assets and persistent latent component of log-income, for different ages and percentiles

of ξi (10%, Median, 90%). The dashed lines show the age-specific and ξi-specific 10th and 90th percentiles for each

outcome measure.
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Figure A11: Heterogeneity in consumption responses, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) Average

(e) 75th Percentile (f) 90th Percentile

Notes: See the notes to Figure 5. The results are based on a model with latent heterogeneity ξi in consumption and

assets. Here we report the results by percentiles of heterogeneity ξi.
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Figure A12: Heterogeneity in assets dynamics, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) 75th Percentile

(e) 90th Percentile

Notes: The figure shows the average total derivative of log-assets with respect to lagged log-assets, conditional on lags of

log-assets, income components, log-consumption, age, and the latent type. Here we report the results by percentiles of

heterogeneity ξi.
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Figure A13: Heterogeneity in assets responses, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) 75th Percentile

(e) 90th Percentile

Notes: The figure shows the average total derivative of log-assets with respect to lagged η, conditional on lags of log-assets,

income components, age and the latent type. Here we report the results by percentiles of heterogeneity ξi.
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D.4 Tables and figures for Section 7

Figure A14: Heterogeneity in impulse responses: consumption trajectories
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Notes: Trajectories shown for shocks at the 10th (top subpanel), 50th (middle subpanel) and 90th (bottom subpanel)

percentiles.
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Figure A15: Heterogeneity in impulse responses, model with heterogeneity in assets

10th lagged η percentile 50th lagged η percentile 90th lagged η percentile
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Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) percentiles, relative

to median.
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Figure A16: Heterogeneity in consumption responses for different numbers of knots

Estimates based on 7 knots

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Estimates based on 19 knots

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: See the notes to Figure 5. In this figure we use 7 and 19 knots in estimation. For our baseline results (see Figure

5) we used 11 knots.
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Figure A17: Nonlinear income persistence, labor income

(a) Log-income (b) Persistent component

Notes: PSID, 2005-2017 sample, household labor income. The left graph shows quantile derivatives of log-income with

respect to lagged log-income. The right graph shows quantile derivatives of the persistent latent component ηit with respect

to ηit−1, model estimated using sequential Monte Carlo with a stochastic EM algorithm. The two horizontal axes show

percentiles of ηit−1 (“initial income”) and conditional percentiles of ηit given ηit−1 (“income shock”), respectively.

Table A3: Descriptive statistics about the main sample without dual earners restriction

(1) (2) (3) (4) (5) (6) (7)

2005 2007 2009 2011 2013 2015 2017

Food 10,739.58 10,629.51 10,294.05 10,523.17 10,728.10 11,195.42 12,049.05

(5,602.43) (5,617.21) (5,131.22) (5,066.30) (5,701.24) (5,290.79) (5,872.98)

Non-durables (excl. food) 27,847.42 28,588.68 27,339.21 27,883.75 29,368.71 29,549.63 27,907.17

(23,625.00) (20,214.59) (19,243.79) (19,340.37) (19,382.75) (19,794.72) (16,322.99)

Total Non-durables 38,625.09 39,265.87 37,731.22 38,532.60 40,205.65 40,843.42 40,002.57

(26,482.07) (23,195.91) (21,701.55) (21,932.92) (22,194.81) (22,563.15) (19,525.89)

Home equity 168358.82 176300.55 136154.76 121783.91 116463.18 118089.14 133596.76

(262246.00) (283429.69) (207398.72) (175957.85) (165962.97) (152785.21) (150451.14)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.03 0.01 0.01

(0.08) (0.10) (0.17) (0.17) (0.16) (0.10) (0.10)

Wealth (excl. home) 211547.79 279544.52 278268.96 268297.79 260584.33 291511.77 346692.78

(1.09e+06) (1.16e+06) (1.02e+06) (704058.90) (656770.57) (765195.01) (1.07e+06)

Total wealth 461075.98 521015.10 457730.90 411004.15 383583.34 409600.91 464296.87

(1.51e+06) (1.51e+06) (1.23e+06) (841641.87) (762537.13) (834428.29) (1.09e+06)

Labor income 121962.17 120618.90 124276.87 121469.61 127809.57 124560.33 129948.36

(155403.02) (143009.67) (181097.03) (129296.65) (241344.84) (172615.50) (115383.29)

Net income 93,333.70 93,262.22 95,306.98 95,476.95 98,924.10 95,790.47 99,431.91

(92,700.09) (86,962.24) (108935.54) (82,869.14) (145844.22) (98,144.09) (69,882.14)

Observations 1730 2004 1843 1578 1436 1321 1090

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.
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Figure A18: Heterogeneity in consumption responses, labor income

(a) 10th percentile (b) 25th percentile

(c) Median (d) Mean

(e) 75th percentile (f) 90th percentile

Notes: See the notes to Figure 5. Household labor income. Here we report the results by percentiles of heterogeneity ξi

in consumption.
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Figure A19: Nonlinear income persistence, no dual earners restriction

(a) Log-income (b) Persistent component
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Notes: PSID sample, no dual earners restriction. See the notes to Figure 3.
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Figure A20: Heterogeneity in consumption responses, no dual earners restriction

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) Average

(e) 75th Percentile (f) 90th Percentile

Notes: See the notes to Figure 4. No dual earners restriction. Here we report the results by percentiles of heterogeneity

ξi in consumption.
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Figure A21: Average consumption responses to labor income

Notes: PSID, 2005-2017 sample, dual earners, labor income. The graph shows the average derivative of log-consumption

with respect to the persistent latent component ηit in a model without unobserved heterogeneity ξi in consumption. The

two horizontal axes show age and assets percentiles, respectively.

Figure A22: Quantile-quantile plots for ξi by observables

(a) Cohort (b) Education
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Notes: Quantile-quantile plots shown for (a) graduates and non-graduates (b) born before 1969 and born after 1969. The

graphs show the quantiles of ξi indicated on the x-axis against the quantiles of ξi indicated on the y-axis.
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Figure A23: Heterogeneity in consumption responses controlling for education

(a) 10th percentile (b) 25th percentile

(c) Median (d) Mean

(e) 75th percentile (f) 90th percentile

Notes: See the notes to Figure 4. We report average derivatives in a regression that includes a full set of interactions

with a binary higher education indicator. Here we report the results by percentiles of heterogeneity ξi in consumption.
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