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Abstract

An obstacle to using market mechanisms to allocate indivisible goods is the non-

existence of competitive equilibria (CE). To surmount this Arrow and Hahn proposed

the notion of social-approximate equilibria: a price vector and corresponding excess

demands that are ‘small’. We identify social approximate equilibria where the excess

demand, good-by-good, is bounded by a parameter that depends on preferences only

and not the size of the economy. This parameter measures the degree of departure from

substitute preferences. As a special case, we identify a class called geometric substitutes

that guarantees the existence of competitive equilibria in non-quasi-linear settings. It

strictly generalizes prior conditions such as single improvement, no complementarities,

gross substitutes and net substitutes.

1 Introduction

The use of market mechanisms for allocating resources like school slots and courses is hin-

dered by the non-existence of competitive equilibria (CE) when the goods to be allocated are
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indivisible. One can ensure existence by restricting agents’ preferences (e.g., Gul and Stac-

chetti (1999)) or assuming the setting is large enough to render the indivisibilities negligible

(e.g., Azevedo et al. (2013)). Unfortunately, many applications are neither large enough nor

satisfy the preference restrictions.

To accommodate non-existence, Arrow and Hahn (1971) proposed the notion of social-

approximate equilibria: a price vector and associated demands that ‘approximately’ clear

the market in that the excess demand for goods is ‘small’. See, for example, Starr (1969),

Dierker (1971) and Mas-Colell (1977). The bounds on excess demand offered in these papers

depend on the number of goods or agents or both, which is unsatisfactory. They also do not

contain the existence results as a special case.

This paper identifies social approximate equilibria where the gap between supply and

demand, good-by-good, is bounded by a parameter ∆ that depends only on agent preferences

and, not the size of the economy. The parameter ∆ is a bound on the `1 norm of the edges

of the convex hull of the demand correspondence. This ostensibly abstract quantity can

be interpreted as the maximum number of goods involved in a utility-improving exchange.

Thus, it is a measure of the degree of preference complementarity, hence, the name ∆-

substitutes. When all preferences satisfy ∆-substitutes, we exhibit prices where the excess

demand good-by-good is at most ∆ − 1. This is accomplished using a strengthening of the

Shapley-Folkman-Starr lemma (Starr (1969)) that is of independent interest.

While the violation of market-clearing is unavoidable, it opens up new possibilities for

market design using pseudo-markets. The magnitude of the excess demand, ∆ − 1, is the

‘shadow’ cost of dividing the indivisible. If a ‘planner’ knows the excess demand a priori,

she can withhold that amount to ‘add back’ to ensure that each agent’s demand is satisfied.

Hence, ‘burning’ some of the supply to ensure feasibility.

We emphasize that ∆-substitute preferences are not restricted to being quasi-linear, so

they accommodate financing constraints and other income effects, which can be important.

Obvious examples of ∆-substitute preferences are those that are satiated outside of a finite
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region. Examples are Shapley and Shubik (1971), Quinzii (1984), where agents consume a

single good; and Budish (2011) in which there is an upper bound on the size of bundles

consumed. This paper contains other less obvious but natural instances of ∆-substitute

preferences.

Within the class of ∆-substitute preferences, we identify a subclass, we call geometric

substitutes, that guarantees the existence of CE. We show that geometric substitutes strictly

subsumes many prior preference restrictions that guarantee the existence of CE. For example,

gross substitutes (Kelso Jr and Crawford (1982)), M-natural concave valuations (Murota

and Tamura (2003)), the single improvement property (Gul and Stacchetti (1999)) and net

substitutes (Baldwin et al. (2020)). There is also a connection between our results and

Danilov et al. (2001) that we discuss in more detail in Section 5.

Our results go beyond the existence of (approximate) CE. We show that any CE in

probability shares can be implemented as a lottery over (approximate) CE allocations. In

this way, one can satisfy ex-ante, properties unattainable in any ex-post CE. This generalizes

Hylland and Zeckhauser (1979) and Gul et al. (2019) and has a wide range of applications

in market design as discussed in Section 6.

We summarize the relationship between this paper and prior work next.

1.1 Prior Work

Prior work deals with the non-existence of CE in two distinct ways. First, by restricting

agent’s preferences, for example, quasi-linearity and gross substitutes (see Kelso Jr and

Crawford (1982)). Subsequent work by Danilov et al. (2001) and Baldwin et al. (2020)

relaxed the quasi-linearity assumption. They introduce a condition that the second calls

net substitutes, which guarantees the existence of a CE in the presence of income effects

and contains gross substitutes as a special case. Section 3 introduces geometric substitutes

preferences which is a strict generalization of the net substitutes condition. A detailed

discussion of the relationship between geometric substitutes and other sufficient conditions
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for existence of CE is deferred to that section.

The second is to determine prices that ‘approximately’ clear the market. These social-

approximate equilibria are preference independent and rely on the economy growing to in-

finity to ensure that the excess demand is negligible. See, for example, Starr (1969), Dierker

(1971), Mas-Colell (1977), and Azevedo et al. (2013).1

Our paper establishes a link between the magnitude of excess demand in a social-

approximate equilibrium to a parameter, ∆, that characterizes agent preferences. ∆ can

be interpreted as the degree of complementarity exhibited by the preferences. The smaller

∆ is, the more limited the complementarities. Gross substitutes preferences, for example,

are a strict subset of ∆ substitute preferences for ∆ = 2. We exhibit a social-approximate

equilibrium in which the excess demand is at most ∆ − 1 for each good. Budish (2011)

also exhibits a social approximate equilibrium in which the magnitude of the excess demand

depends on the underlying preferences. We differ from that in two ways. First, our result

holds for a class of preferences that strictly subsumes the ones considered in Budish (2011).

Second, Budish (2011) bounds the excess demand in terms of the Euclidean distance between

demand and supply, whereas we offer a bound that holds good by good. (See Section 6.2.)

To the best of our knowledge, our paper is the first to derive a scale-free bound on excess

demand of CE. Bounds based on prior approaches depends on either the number of goods

or the number of agents.2

Our results apply to resource allocation problems both with and without monetary trans-

fers. For example, if agents’ von Neuman-Morgenstern preferences satisfy ∆-substitutes, our

methods allow one to implement a CE in probability shares as a lottery over allocations

in which the excess demand good-by-good is at most ∆ − 1, while maintaining any linear

ex-ante constraints including budget constraints. This generalizes Gul et al. (2019) which
1There is also a focus on finding an acceptable approximation of a CE outcome in terms of cardinal

measures of welfare that scale appropriately with the size of the economy. See for example Akbarpour and
Nikzad (2020), Cole and Rastogi (2007), Milgrom and Watt (2021) and Feldman and Lucier (2014).

2The bound in Nguyen and Vohra (2018) is also independent of the market size, but it is valid for a
strictly smaller class of preferences and for stable solutions rather than CE.
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only considers budget constraints and assumes preferences satisfy gross substitutes.

The next section introduces notation and is followed by Section 3 which introduces ge-

ometric substitute preferences and characterizes them in terms of a single improvement

property. Section 4 defines ∆-substitute preferences and characterizes them in terms of a

generalization of the single improvement property. This section also summarizes the main

results on social approximate equilibria. Section 5 outlines the ideas used to obtain the main

results and the connection to the Shapley-Folkman-Starr lemma. Section 6 summarizes

applications to pseudo-markets. The appendix contains the proofs.

2 Notation & Preliminaries

The economy has m indivisible goods and one divisible good (money). Let M denote a set

of m indivisible goods. A bundle of goods is denoted by a binary vector x ∈ {0, 1}m whose

ith component, denoted xi, indicates whether good i ∈M is in the bundle. Thus, we assume

that each agent is interested in consuming at most one copy of each good. Call this single

copy demand.3 Section 4.1 shows how to reduce the case of multiple copy demand to the

case of single copy demand.

Let N denote the set of agents. Given a bundle x, and a quantity w ∈ R of a divisible

good which we interpret as money, the utility of each agent j ∈ N for the bundle x and the

amount of money w is denoted Uj(x,w).4 We assume Uj(x,w) is continuous, non-decreasing

in w, and Uj(~0, 0) = 0.

Each agent j is endowed with bj units of money only.5 Their utility for a bundle x which

costs t is Uj(x, bj − t). Associated with each j ∈ N is a finite set of bundles Xj ⊂ {0, 1}m

that they can feasibly consume, their feasible bundles. The bundle ~0 is always assumed to

be feasible. If x 6∈ Xj, then, Uj(x, bj − t) = −∞ for all t. As is standard (see, for example,
3Also called unit demand. However, this term is also used for the case where agents demand at most one

unit of any good, so we avoid it.
4These are called expenditure augmented utilities in Deb et al. (2021).
5Our results extend to the case where agents are endowed with indivisible goods as well as ‘bads’.
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Fleiner et al. (2019)) we assume a bounded willingness to pay condition. Specifically, there

is a monetary amount Bj such that Uj(x, bj − Bj) = −∞ for all x ∈ Xj.6 While we state

our results in terms of utility functions that depend on money, we show in Section 6.2 how

to accommodate artificial currency.

Let p ∈ Rm
+ be a price vector where pi is the unit price of good i ∈ M . The utility of

agent j for bundle x at price p will be Uj(x, bj − p · x). Given a price vector p, agent j’s

choice correspondence, denoted Chj(p), is defined as follows:

Chj(p) = arg max{Uj(x, bj − p · x) : x ∈ Xj}.

Denote the convex hull of Chj(p) by conv(Chj(p)). Under single copy demand, no interior

point of conv(Chj(p)) is contained in Chj(p).

Let (x− y)+ denote the vector whose ith component is max{xi − yi, 0}. The `1 norm of

vectors will play an important role, to see why, consider two bundles x and y. Then,

||x− y||1 = ~1 · (x− y)+ +~1 · (y − x)+.

The term on the right hand side can be interpreted as the total number of items that must

be swapped to get from bundle x to bundle y.

Let n = |N |, si ∈ Z+ denote the supply of good i ∈ M , ~s ∈ Zm+ the supply vector and ~b

the vector of cash endowments. An economy is the collection {{Uj}j∈N ,~b, ~s}.

Definition 2.1 A competitive equilibrium for the economy {{Uj}j∈N ,~b, ~s} is a price vector

p and demands xj ∈ Chj(p) for all j ∈ N such that
∑

j∈N x
j ≤ s with equality for each

i ∈M for which pi 6= 0.

Definition 2.2 A α-approximate competitive equilibrium for the economy {{Uj}j∈N ,~b, ~s}
6Quasi-linear preferences, where Uj(x, bj − t) = vj(x) + bj − t for some valuation function vj(·) satisfy

these conditions. Hard budget constraints can be approximated by allowing Uj(x, bj − t) to approach −∞
as t approaches the budget.
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is a competitive equilibrium for the economy {{Uj}j∈N ,~b, ~s′}, where |si − s′i| ≤ α for every

good i ∈M .

As mentioned in the introduction, the key is to analyze preferences using the edges of the

convex hull of the demand correspondence. To this end, we recall some terminology from

convex geometry.

A finite dimensional polyhedron is defined by the intersection of a finite number of

half-spaces. A bounded polyhedron is called a polytope. It is also the convex hull of a

finite set of points.

A subset F of a polytope Q ⊆ Rm is called a face of Q if there is a hyperplane {x :

h · x = γ} such that F = Q ∩ {x : h · x = γ} and Q ⊆ {x : h · x ≤ γ}. A face of a

polytope is itself a polytope. A zero dimensional face is called an extreme point and a face

of dimension 1 is called an edge of the polytope. The polytope Q is a (trivial) face of itself,

where h = ~0, γ = 0. The dimension of a face F is denoted dim(F ). For any y ∈ Q, there is

a unique face F of Q with lowest dimension that contains y. We call F the minimal face

containing y.

3 Geometric Substitutes

In this section, we introduce a strict generalization of gross substitutes called geometric

substitutes. We show that a competitive equilibrium exists when all preferences satisfy

geometric substitutes.

Definition 3.1 A utility function Uj satisfies geometric substitutes if for all price vectors

p, the edges of conv(Chj(p)) are {0,±1} vectors with at most two non-zero entries and these

being of opposite sign.

The following result establishes the existence of CE in this environment.
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Theorem 3.1 An economy {{Uj}j∈N ,~b, ~s} in which each Uj satisfies geometric substitutes

has a competitive equilibrium.

Proof. Theorem 3.1 is a corollary of Theorem 5.2 which is stated later.

We emphasize that neither Definition 3.1 or Theorem 3.1 assume quasi-linearity. Next,

we show that geometric substitutes subsumes many preference conditions under which a CE

exists. We also characterize geometric substitutes in terms of a single improvement property.

3.1 Relation with Gross Substitutes

For the remainder of this section and the next, as we are focused on the properties of utility

functions, we suppress the dependence on the agent index j. We recall the definition of gross

substitutes:

Definition 3.2 A utility function satisfies gross substitutes if for all budgets b and for every

pair of price vectors p and q such that p ≤ q and for all x ∈ Ch(p), there exists y ∈ Ch(q)

such that yi ≥ xi for all i ∈M such that qi = pi.

Geometric substitutes and gross substitutes coincide in the quasi-linear preferences do-

main. Now, we furnish an example of a utility function satisfying geometric but not gross

substitutes.

Example 3.1 Suppose two goods and a soft ‘budget’ of 1. In particular,7

U(x1, x2, 1− p · x) =v(x1, x2)− ε · (p · x) + min{0, log(
1− p · x

ε
)} for p · x < 1

−∞ for p · x ≥ 1

where ε = 0.01, and v(0, 0) = 0, v(1, 0) = 1, v(0, 1) = 2 and v(1, 1) = 3.
7This utility function is continuous and decreasing in p · x. As p · x approaches 1, it approaches −∞.

This captures the soft budget of the agent. The purpose of the term −ε · (p · x) is to ensure that utility is
decreasing in p · x, which is needed for Proposition 3.2. Proposition 3.1 holds without this term.
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Proposition 3.1 The utility function defined in Example 3.1 is geometric substitute but

not gross substitutes.

Proof. To show that the utility function in Example 3.1 is geometric substitutes, we argue

that for any (p1, p2) ≥ 0 the agent’s choice correspondence never contains both (0, 0) and

(1, 1). If both (0, 0) and (1, 1) were in the choice correspondence for some (p1, p2) ≥ 0, the

utility of bundle (1, 1) must be 0, and thus p1 +p2 < 1. But then, min{p1, p2} ≤ 0.5 in which

case the utility of either the bundle (1, 0) or (0, 1) is strictly greater than 0, contradicting

the assumption that (0, 0) was in the choice correspondence.

Hence, at any price vector, the choice correspondence can only contain pairs of bun-

dles whose difference is a 0,±1 vector with at most two non-zero entries of opposite sign.

Therefore, the utility function in Example 3.1 satisfies geometric substitutes.

Gross substitutes requires that if the price of a single good increases, the demand for the

other goods does not decline. Suppose p1 = p2 = 0.4. The unique utility-maximizing bundle

is (1, 1). Now increase p2 to 0.6. The unique utility maximizing bundle is (0, 1). Thus, the

utility function in Example 3.1 is not gross substitutes.

Proposition 3.2 Suppose U(x, b − t) is strictly decreasing in t. Then, gross substitutes is

a strict subset of geometric substitutes.

Proof. Example 3.1 shows that it suffices to prove that gross substitutes implies geometric

substitutes. Assume, for a contradiction, that there exist x, y ∈ Ch(p) such that x and y

form an edge (1-dimensional face) of the convex hull of Ch(p) and ||(x−y)+||1 ≥ 2. Because

x, y is an edge of conv(Ch(p)), there exists a vector v ∈ Rm such that

v · x = v · y < v · z for all z ∈ Ch(p) \ {x, y}. (1)

Set p′ = p+ ε · v, for small ε > 0, and increase the agent’s budget to b′ = b+ ε · v · x. We
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choose ε so that Ch(p′) = {x, y}. This corresponds to determining an ε that solves:

U(x, b+ ε · v · x− p′ · x) = U(y, b+ ε · v · x− p′ · y) (2)

U(x, b+ ε · v · x− p′ · x) > U(x, b+ ε · v · x− p′ · z) ∀z ∈ X \ {x, y} (3)

The (2) holds because of (1). Existence of a suitable ε satisfying (3) follows from continuity

of U and the fact that it is strictly decreasing in transfers.

We now invoke the gross substitute property for the given choice correspondence at p′.

Because ||(x− y)+||1 ≥ 2, assume without loss of generality that x1 = x2 = 1, y1 = y2 = 0.

If we increase the price of good 1 by δ > 0 to get new price q, then the price of bundle x

increases, while the price of bundle y is unchanged, thus at q, the agent will only choose y,

but y2 < x2 even though q2 = p′2, which contradicts the definition of gross substitutes.

3.2 Relation with Single Improvement and No Complementarities

Quasi-linear gross substitutes with single copy demand is equivalent to the single improve-

ment property as well as no complementarities (see Gul and Stacchetti (1999)). This equiv-

alence does not hold in the non-quasilinear setting.8 We show that these properties are a

special case of geometric substitutes. Together with Theorem 3.1, this shows that single

improvement/ no complementarities implies the existence of CE in non-quasi-linear setting

as well. To the best of our knowledge, this extension of Gul and Stacchetti (1999) to the

non-quasi-linear setting is new.9

We use the following definition of single improvement and no complementarities that is

modified to account for the cash endowment b.

Definition 3.3 We say U(x, b− t) satisfies the single improvement property if for all b and

8For example, Schlegel (2018) shows that the law of aggregate demand is also needed to guarantee
equivalence.

9It is not implied by either Echenique (2012) nor Baldwin et al. (2020).
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all price vectors p if x /∈ Ch(p), then there exists a superior bundle y, (that is U(x, b−p ·x) <

U(y, b− p · y)) such that ||(x− y)+||1 ≤ 1 and ||(y − x)+||1 ≤ 1.

Definition 3.4 We say U(x, b − t) satisfies the no complementarities property if for all b

and all price vectors p if x, y ∈ Ch(p) and any bundle x′ ≤ x, then there exists a bundle

y′ ≤ y such that x− x′ + y′ ∈ Ch(p).

Proposition 3.3 Let U(x, b− t) be strictly decreasing in t. If U satisfies the single improve-

ment property or no complementarities, then, it satisfies geometric substitutes.

Proof. Suppose not. Let x, y ∈ Ch(p) determine an edge of conv(Ch(p)) such that ||(x −

y)+||1 ≥ 2. Without loss we may assume that x1 = x2 = 1; y1 = y2 = 0. Similar to the proof

of Proposition 3.2, we can perturb the price to p′ and the cash endowment of the agent so

that Ch(p′) = {x, y}.

If U(.) satisfies the no complementarity property, we can remove good #1 from x and

replace it with a subset of goods from y to obtain a new bundle in the choice correspondence.

However, this contradicts the fact that Ch(p′) = {x, y}.

Now suppose that U(.) satisfies single improvement. Then, we can increase the price

of good #1 by a small ε to get a new price p′′ such that x /∈ Ch(p′′) and the utility at x

is greater than all other bundles except bundle y, which is the only bundle in Ch(p′′). In

other words, y is the only bundle superior to x. This contradicts single improvement because

||(x− y)+||1 ≥ 2.

Unlike the quasi-linear case, these properties do not characterize geometric substitutes.

However, we show that a modified form of these conditions does.

Definition 3.5 A utility function U(x, b−p·x) satisfies the generalized single-improvement

property if for any price vector p, any two bundles x, y ∈ Ch(p) and any price change δp ∈ Rm

satisfying δp · x > δp · y, there exist a ≤ (x− y)+ and d ≤ (y − x)+ such that

11



1. ~1 · a ≤ 1 and ~1 · d ≤ 1,

2. δp · a > δp · d, and

3. x− a+ d ∈ Ch(p).

Generalized single improvement coincides with the definition of single improvement when

preferences are quasi-linear.

Theorem 3.2 A preference satisfies geometric substitutes if and only if it satisfies the gen-

eralized single-improvement property.

See Appendix A.

3.3 Relation with Net Substitutes

Baldwin et al. (2020) accommodate non-quasi-linear preferences using Hicksian demand.10

Given a price vector p and a target level of utility u, the Hicksian demand at (p, u) is

DH(p, u) = arg min{px : x ∈ X,U(x, b− p · x) ≥ u}.

They introduce an analog of gross substitutes for Hicksian demand called (strong) net sub-

stitutes.11

Definition 3.6 Suppose U(x, b− t) is strictly decreasing in the transfer t (this ensures that

Hicksian demand is well defined). U(.) satisfies net substitutes if for all utility levels u and

price vectors p and λ > 0 whenever DH(p, u) = x and DH(p+λei, u) = x′ where ei is the ith

unit vector, we have that x′k ≥ xk for all k 6= i.

Baldwin et al. (2020) show that if all preferences satisfy net substitutes, a CE exists. We show

that the geometric substitutes property is more general than net substitutes. In particular,
10A similar approach is taken in Danilov et al. (2001).
11This condition is not explicitly articulated in Danilov et al. (2001).
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the former is a property that holds for all prices while the latter must hold for all prices and

utility levels.12

Proposition 3.4 Suppose U(x, b − t) satisfies net substitutes, then, U(.) is geometric sub-

stitutes.

Proof. Given price vector p, let u∗ = maxx∈X U(x, b− p ·x). At the optimal utility level u∗,

Hicksian demand coincides with the choice correspondence. That is, DH(p, u∗) = Ch(p).

Baldwin et al. (2020) show that DH(p, u∗) is a choice a correspondence of a quasi-linear

utility function. Under net substitutes, it satisfies the gross substitute property. Hence,

according to Proposition 3.2, U(.) is geometric substitutes.

4 ∆-substitutes

Here we introduce a generalization of the geometric substitutes condition.

Definition 4.1 A utility function U(x,b−p · x) satisfies the ∆-substitutes property if for

any price vector p, the `1 norm of each edge of conv(Ch(p)) is at most ∆.

Geometric substitutes is a special case with ∆=2. However, geometric substitutes is not

simply a small bound on the edge length but a restriction on the ‘sign pattern’ of the edges

as well.

While a CE need not exist under ∆-substitutes preferences, we show that one can perturb

the supply of each good to guarantee the existence of CE. Our main result is the following.

Theorem 4.1 If all agent’s preferences possess the ∆-substitutes property, then for every

supply vector s the economy {{Uj}j∈N ,~b, ~s} has a ∆− 1-approximate CE.

Proof. This follows from the proof Theorem 5.3.
12In the proof below, we only invoke net-substitutes at the maximum utility level.
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Notice the excess demand for each good is at most ∆ − 1, a quantity independent of both

the number of agents and goods. Applications of Theorem 4.1 are discussed in Section 6.

We outline the key ideas used to prove our main results in Section 5.

We give examples of natural classes of preferences that satisfy the ∆-substitutes property.

Example 4.1 If an agent is satiated outside of a finite region, as is true in our case, an

agent’s preferences satisfy the ∆-substitutes property for a suitable chosen ∆. Examples are

Shapley and Shubik (1971), Dierker (1971)), Quinzii (1984), Budish (2011) and Milgrom

and Watt (2021). In Budish (2011), goods correspond to courses in an academic term, and

there is usually an upper limit on the number of courses a student can take in the term. If

that limit is ∆, i.e., no bundle can contain more than ∆ items, the preferences satisfy 2∆

substitutes. This is because the l1 distance between any two bundles of size ∆ is at most 2∆.

Next, we give examples where agents have preferences for bundles whose size exceeds

some ∆, but nevertheless satisfy ∆-substitutes.

To motivate the next definition, consider what can happen when the price of a good,

i, say is increased. First, the demand for good i might decline. Second, the demand for

goods that complement i may also decline. Third, the demand for goods other than its

complements may increase. The conditions for the existence of a CE operate by limiting the

impact that the demand for one good has on the demand of others which inspire the next

definition.

Definition 4.2 A utility function U(x, b − t) that is strictly decreasing in t satisfies the

∆-bounded impact property if for every pair of price vectors (p, q) that differ in one item

such that p ≤ q, then for all x ∈ Ch(p), there exists y ∈ Ch(q) such that |{i ∈ M : yi 6=

xi, qi = pi}| ≤ ∆.

Thus, when the price of good i alone changes, the number of other goods whose demand

is affected is at most ∆.
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Proposition 4.1 A utility function that is strictly decreasing in transfers and satisfies the

∆-bounded impact property is (∆ + 1)−substitutes.

Proof. Suppose not. Let x, y ∈ Ch(p) determine an edge of conv(Ch(p)) such that ||(x −

y)||1 ≥ ∆ + 2. Without loss we may assume that ||(x− y)+||1 > 0 and x1 = 1; y1 = 0.

Similar to the proof of Proposition 3.2, we can perturb the price to p′ and the cash

endowment of the agent so that Ch(p′) = {x, y}. Consider price q obtained from p′ by

increasing p′1. Because U(.) is strictly decreasing in transfers, Ch(p′) = {y}. However,

|{i ∈ M : yi 6= xi, qi = pi}| = ||(x− y)||1 − 1 ≥ ∆ + 1, contradicting the ∆-bounded impact

property.

One can also generalize the single improvement property of Definition 3.3 as follows.

Definition 4.3 A utility function U(x, b − t) satisfies the ∆-improvement property if, for

all b, whenever x 6∈ Ch(p) there is a superior bundle y such that ||x− y||1 ≤ ∆.

Proposition 4.2 A utility function that is strictly decreasing in transfers and satisfies ∆-

improvement is ∆−substitutes.

Proof. The proof is similar to that of Proposition 3.3 and so omitted.

We illustrate Definition 4.3 with an example of preference that generalizes gross substi-

tutes that we call bundled gross substitutes.

Example 4.2 Each agent is interested in at most one copy of each good. Associated with

each agent is a partition P1, P2 . . . , Pk of M such that |Pr| ≤ Ω for all r = 1, . . . , k. The

partitions can vary across agents. If x is a bundle, let x|Pr denote the sub-bundle consisting

only of goods in Pr. Suppose x is not a utility maximizing bundle at price p. Then, there

is a better bundle to be had by either adding a new sub-bundle, subtracting a sub-bundle,

or exchanging x|Pr 6= 0 with a different bundle in Pr′, where r, r′ ∈ {1, .., k} and are not

necessarily different. Thus, within Pr, there can be complementarities among the goods. Fox
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and Bajari (2013) suggests that spectrum preferences resemble bundled substitutes. Spectrum

licenses within the same geographical cluster complement each other but are substitutes across

different clusters. It is easy to see that bundled gross substitutes satisfies 2Ω-substitutes.

∆-improvement does not characterize ∆-substitutes. The following related notion does.

Definition 4.4 A utility function U(x, b − p · x) satisfies the generalized ∆-improvement

property if for any price vector p, any two bundles x, y ∈ Ch(p) and any price change

δp ∈ Rm satisfying δp · x > δp · y, there exist a ≤ (x− y)+ and d ≤ (y − x)+ such that

1. ~1 · a+~1 · d ≤ ∆,

2. δp · a > δp · d, and

3. x− a+ d ∈ Ch(p).

Theorem 4.2 A preference satisfies the ∆-substitutes property, if and only if it satisfies the

generalized ∆-improvement property.

Proof. See Section A.

4.1 Multi-copy Demand

A bundle x is now any vector in Zm
+ , where xi represents the number of copies of good i ∈M .

It would be natural to define ∆-substitute preferences in the same way, i.e., the `1 norm of

each edge of conv(Ch(p)) is at most ∆. However, unlike single copy demand, conv(Ch(p))

can contain bundles that are not in Ch(p). For this reason, we define ∆-substitute preferences

for the multi-copy case by reduction to the single copy case. Hence, Theorems 3.1, 3.2, 4.1,

4.2 all hold for multi-copy demand. Indeed, their proofs in the appendix are stated for the

multi-copy demand case.

When a bundle contains multiple copies of the same good, think of each copy of the good

as being a separate good. For example, if the bundle contains three oranges, we represent

16



that as three distinct objects called orange copy #1, orange copy #2, and orange copy #3.

Therefore, any vector x ∈ Zm
+ can be represented as a 0-1 vector, which we call its binary

representation.

Let C ∈ Z+ be a constant at least as large as the maximum number of copies of a

good that an agent consumes. Make C copies of each good. Let y ∈ {0, 1}C·m be a binary

representation of a bundle. The total number of copies of good i ∈M contained in y is

Ti(y) =
C·i∑

k=C·(i−1)+1

yk. (4)

Thus, y is a binary representation of the bundle (T1(y), .., Tm(y)).

A bundle x ∈ Zm
+ can have multiple binary representations. Hence, to each bundle

x ∈ Zm
+ we associate a set B(x) in {0, 1}C·m of all possible binary representations of x.

Formally,

B(x) := {y ∈ {0, 1}C.m|Ti(y) = xi ∀i ∈M}. (5)

The following is the definition of geometric substitutes for the multi-copy demand case.

Definition 4.5 Multi-copy preferences satisfy geometric substitutes if for all price vectors

p, the edges of ∪x∈Ch(p)B(x) are {0,±1} vectors with at most two non-zero entries and these

being of opposite sign.

The following is the definition of ∆-substitutes for the multi-copy demand case.

Definition 4.6 We say that multi-copy preferences satisfy the ∆-substitutes property if the

`1 norm of each edge of the convex hull of ∪x∈Ch(p)B(x) is at most ∆.

Notice the restriction is on the convex hull ∪x∈Ch(p)B(x) and not conv(Ch(p)). The

advantage of defining preferences with respect to the convex hull of ∪x∈Ch(p)B(x) instead of

conv(Ch(p)) is that one doesn’t need to specify whether an integer vector in the interior of

conv(Ch(p)) lies in Ch(p).

From now on, we do not restrict ourselves to single copy demand.
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4.2 Relation with Demand Types

Baldwin and Klemperer (2019) proposed that the preferences of an agent over bundles of

indivisible goods be characterized in terms of demand changes in response to a small generic

price change.13 The set of vectors that summarize the possible demand changes is called

the demand type of an agent. They give a variety of definitions that under quasi-linearity

are equivalent. One involves the edges of conv(Ch(p)). Scale the edges of conv(Ch(p))

so that their greatest common divisor is one and call them primitive edge directions.

The demand type of an agent is the set of primitive edge directions of Ch(p) for all price

vectors p. Baldwin and Klemperer (2019) show that if utilities are quasi-linear, concave and

the demand types of all agents form a unimodular vector system, then a CE exists.

The column vectors of a network matrix, which is a 0,±1 matrix with at most two

non-zero entries in each column and these being of opposite sign, is a unimodular vector

system. When the matrix of vectors in the demand type is a network matrix, the underlying

quasi-linear preferences are gross substitutes. Hence, Baldwin and Klemperer (2019) extends

Kelso Jr and Crawford (1982) but maintains quasi-linearity.

Unlike Baldwin and Klemperer (2019), our preferences depend on the edges of a different

polytope: the convex hull of the choice correspondence in its binary presentation. The

polytopes coincide under single copy demand. Under quasi-linearity, geometric substitutes

coincides with gross substitutes and is a special case of unimodular demand types. However,

our existence results extends to the non-quasi-linear setting.

5 Proof Ideas and Extension

In this section we state and sketch the proofs of two Theorems that imply Theorems 3.1

and 4.1. The proofs rely on the concept of a pseudo-equilibrium (see Milgrom and Strulovici

(2009)). It is a relaxation of competitive equilibrium where agent’s preferences are ‘con-
13This idea is implicit in Danilov et al. (2001).
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vexified’ by replacing each agent j ∈ N ’s choice correspondence with its convex hull,

conv(Chj(p)). Each x ∈ conv(Chj(p)), because it is a convex combination of the bun-

dles in Chj(p), is interpreted as a lottery over those bundles, and x itself is the ‘expected’

bundle. Therefore, a pseudo-equilibrium allocates to each agent lotteries over bundles. Un-

fortunately, it is not always possible to implement these lotteries in the sense that there is

a lottery over allocations consistent with the individual lotteries over bundles.14 However,

if preferences are geometric substitutes, then a pseudo-equilibrium can be implemented as a

lottery over integral allocations. Furthermore, each of the integral allocations in this lottery

is a CE allocation.

From the perspective of the parachutist, this will appear similar to the proof of existence

of a CE in Danilov et al. (2001). However, from the perspective of the truffle hunter, there

are important differences. They require that the choice correspondences be discrete convex

sets; we do not. This requirement amounts to assuming concavity of each agents utility

functions. Second, we provide a lottery implementation. They do not. Furthermore, we

furnish, as detailed below, a social approximate CE, they do not.

Similarly, if preferences possess the ∆-substitutes property, this lottery can be imple-

mented as a lottery over approximate equilibria, such that the ex-post violation of any

supply constraint is bounded by ∆− 1.15

Definition 5.1 A price vector p and xj ∈ conv(Chj(p)) for all j ∈ N is called a pseudo-equilibrium

if
∑

j∈N x
j ≤ s with equality for every good i ∈M with pi 6= 0.

The next theorem shows the existence of a pseudo-equilibrium.

14See Budish et al. (2013) for more on this issue.
15It is well known that when preferences violate non-satiation, CE allocations need not be Pareto optimal.

This is because some agents do not purchase their least expensive optimal bundle. To ensure efficiency,
attention has focused on CE with slack (eg. McLennan (2017)) or ‘paper money’ (eg. Kajii (1996)). The
first allows for reallocating unspent wealth (slack). The second interprets the slacks (or the dividends) as
paper money, which is allocated to the consumers before the market takes place. If the conditions for the
existence of these efficient CE hold, they can be used in our implementation results (Theorem 5.2 and 5.3).
The resulting lottery will be over allocations that are efficient CE.
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Theorem 5.1 Let ~0 ∈ Xj denote the finite set of bundles that agent j ∈ N can feasibly

consume. Each agent j’s utility function Uj(x, b− p · x) satisfies

• Uj(0, 0) = 0,

• Uj(x, b− p · x) = −∞ for x /∈ Xj

• Uj(x, b− p · x) is continuous in p ∈ Rm for each x ∈ Xj and

• there exists B > 0 such that if pẋ ≥ B, then, Uj(x, b− p · x) < 0.

Then, there exists a pseudo-equilibrium.

Proof. See Appendix B.

We begin with the case of geometric substitutes. The following Theorem yields Theo-

rem 3.1 as a corollary.

Theorem 5.2 Let (p, {xj}nj=1) be a pseudo-equilibrium of an economy {{Uj}j∈N ,~b, ~s} in

which each Uj satisfies geometric substitutes. Then, the vector (x1, . . . , xn) of lotteries can

be implemented as a lottery over competitive equilibrium allocations.

Proof. See Appendix C.

A pseudo-equilibrium allocation associated with price vector p lies in the intersection of two

polytopes. The first is the Cartesian product of the convex hull of choice correspondences

of each of the agents. Because each conv(Chj(p) is an integral polytope, their Cartesian

product is also an integral polytope. The second polytope is defined by the requirement that

demand for each good equals its supply. This polytope is also integral. Any integral vector

in the intersection of the two polytopes corresponds to a competitive equilibrium allocation.

To show that any pseudo-equilibrium allocation can be expressed as a convex combination

of competitive equilibrium allocations, we prove that the intersection of these two polytopes

is an integral polytope.
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The following gives an approximate implementation of a pseudo-equilibrium for the case

of ∆-substitutes, which yields Theorem 4.1 as a consequence.

Theorem 5.3 Let (p, {xj}nj=1) be a pseudo-equilibrium of an economy {{Uj}j∈N ,~b, ~s} in

which each Uj satisfies the ∆-substitutes property. Then, the vector of lotteries (x1, . . . , xn)

can be implemented as a lottery over the allocations of ∆− 1-approximate competitive equi-

libria.

Proof. See Appendix D.

The proof of Theorem 5.3 relies on an extension of the Shapley-Folkman-Starr lemma. We

now outline the proof.

Assume single copy demand and suppose a pseudo-equilibrium with price vector p and

demands xj ∈ conv(Chj(p)) for all j ∈ N such that
∑

j∈N x
j ≤ s. For ease of exposition

only, suppose
∑

j∈N x
j = s, i.e., demand meets supply. This means that the vector s is in

the Minkowski sum of the sets {conv(Chj(p))}j∈N . For a pseudo-equilibrium to be an actual

equilibrium, we need s be in the Minkowski sum of {Chj(p)}j∈N instead. The next Lemma

tells us that under certain conditions this is ‘almost’ true.

Call a polytope P binary if it is the convex hull of 0-1 vectors and denote its set of

extreme points by ext(P ). In our case, P will correspond to the convex hull of a choice

correspondence and ext(P ) to the choice correspondence itself.

Recall that the edges of a polytope are its one-dimensional faces and are vectors of the

form v−u for some (not all) pairs of extreme points v and u. The edges of a binary polytope

have components in {0,±1}. Call a binary polytope ∆-uniform if the `1 norm of each of

its edges is at most ∆. The key technical result that yields Theorem 5.3 is the following.

Theorem 5.4 Let P1, . . . , Pn be binary ∆-uniform polytopes in Rm. Then, each y ∈ P1 +

. . . + Pn can be expressed as a convex combination of points in ext(P1) × . . . × ext(Pn).

Furthermore, for each (z1, . . . , zn) ∈ ext(P1) × . . . × ext(Pn) in the support of the convex

combination, ||
∑n

j=1 z
j − y||∞ ≤ ∆− 1.

21



Proof. See Appendix D.

Theorem 5.4 has applications beyond obtaining social approximate equilibria. One can

interpret any mechanism as giving to each agent j ∈ N , depending on what they report, a

‘budget’ or ‘option’ set, denoted Bj from which they may choose. Let Pj ⊆ Bj be the set

of agent j’s most preferred elements of Bj. We ‘convexify’ the sets Bj and Pj by allowing

lotteries. Suppose these convexified sets have been chosen so that ‘average’ demand is equal

to supply. Then, depending on the properties of the sets Pj, one may invoke Theorem 5.4 to

implement these allocations as lotteries over approximately feasible allocations of the goods.

Next, we describe the connection between Theorem 5.4 and the Shapley-Folkman-Starr

lemma.

5.1 Relation to Shapley-Folkman-Starr Lemma

This lemma can be interpreted as saying that the non-convexities in an aggregate of non-

convex sets diminishes with the number of sets making up the aggregate. We state two

versions of it. The first version is from Budish and Reny (2020).

Theorem 5.5 Let P1, . . . , Pn be a collection of binary polytopes in Rm with n > m. Suppose

the diameter of each Pi is no larger than d. For any y ∈ P1 + . . . + Pn there exist vectors

zj ∈ Pj for all j of which at least n−m are in ext(Pj) and

||y −
n∑
j=1

zj||2 ≤
d
√
m

2
.

The second version is due to Cassels (1975).

Theorem 5.6 Let P1, . . . , Pn be a collection of binary polytopes in Rm with n > m. For any

y ∈ P1 + . . .+ Pn there exist vectors zj ∈ Pj for all j of which at least n−m are in ext(Pj)

such that ||y −
∑n

j=1 z
j||∞ ≤ m.
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If we let Pj = conv(Chj(p)) for all j ∈ N , because s =
∑

j∈N x
j and xj ∈ Pj for all

j ∈ N , it follows that s ∈ P1 + . . . + Pn. Hence, in either version of the Shapley-Folkman-

Starr Lemma, we can give to at least n − m agents a bundle zj ∈ ext(Pj) that is in their

demand correspondence (not just its convex hull) in such a way that the discrepancy between

supply and demand is small. The two versions obviously differ in the way the discrepancy

is measured. Furthermore, neither version imposes restrictions on the Pj’s.

Theorem 5.4 relaxes the requirement that n >> m by imposing restrictions on the `1

norm of the edges of Pj and bounds the discrepancy in terms of the `1 norm.

6 Applications to Market Design

This section contains applications of our results to market design. Our existence theorems for

(social approximate) equilibria are relevant for the design of (approximate) market-clearing

mechanisms with money. We also show that our existence results are relevant in settings

without money and ordinal preferences although we assume each agent’s preferences depend

on money. In particular, our existence results cover pseudo-market mechanisms that use

artificial currency rather than coin of the realm because of fairness concerns or a desire to

limit certain trades. In course allocation, for example, all students are considered to have

an equal claim on available classes. In this case, the goal of a pseudo-market mechanism

is to allocate the available slots fairly (see Budish (2011)). In the context of food banks

(Prendergast (2017)), the goal is to reallocate food to reduce waste. Artificial currency

ensures that donated food remains within the food bank network rather than sold to the

‘outside.’

Hylland and Zeckhauser (1979) was the first to propose the use of CE allocations with

equal artificial currency endowments and goods that are the probabilities of being assigned

to each object.16 The corresponding mechanism is called the CEEI mechanism, the acronym

standing for competitive equilibrum with equal incomes. The outcome of the CEEI mecha-
16See Pratt and Zeckhauser (1990) for a discussion of an actual application.
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nism is a lottery over feasible allocations. Assuming agents have von Neuman-Morgenstern

preferences, the CEEI mechanism returns a lottery over allocations that is both ex-ante

Pareto optimal and ex-ante envy free.

In section 6.1 we show how Theorem 5.2 and 5.3 can be used to extend the CEEI mech-

anism to identify lotteries that satisfy, ex-ante, a variety of side constraints. This allows

one to apply the CEEI mechanism in the presence of constraints that encode bounds on the

probability of receiving bundles from a particular category. Such constraints are relevant, for

example, in online advertising where advertisers prefer to diversify the audiences they reach.

In a school choice setting, they capture proportionality requirements to ensure diversity.17

Requiring agents to communicate preferences over lotteries is impractical in many con-

texts. Offering agents lotteries over bundles is also seen as unappealing. Motivated by course

allocation, Budish (2011) proposes a modification of the CEEI mechanism that relies on or-

dinal preference information information only. To circumvent non-existence of a CE, agents

receive approximately equal budgets. Under these conditions, a social approximate equilib-

rium is determined. Thus, instead of ex-ante Pareto optimality, one obtains approximate

ex-post Pareto optimality. Instead of ex-ante envy freeness, one obtains approximate ex-post

envy-freeness. The first follows from the existence of excess demand, while the second is a

consequence of perturbing budgets.

Using the course allocation problem, we show in Section 6.2 how Theorem 4.1 can be

adapted to a setting where agent preferences are ordinal and do not depend on money.

Our approach gives similar results as in Budish (2011): deterministic social approximate

equilibrium with perturbed budget. The main difference is in the way we measure the

deviation from market clearing. We use the `- infinity norm instead of the Euclidean norm

as in Budish (2011). We elaborate on this difference in Section 6.2.
17See He et al. (2018) for a discussion of CEEI in school choice.
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6.1 Side Constraints

In this section, we show how to accommodate any finite collection of ex-ante linear constraints

on the probability shares an agent can consume. These constraints could be endowment

limitations, bounds on the probability of receiving bundles of a specific category as well, as

budget constraints. Such requirements could be baked into the utility function but might

destroy any nice properties the utility function might have enjoyed. We show that under ∆-

substitutes, a CE in probability shares can be implemented as a lottery over approximately

feasible allocations. This generalizes Gul et al. (2019) who limit attention to gross substitutes

preferences and budget constraints only.

Section 6 of Akbarpour and Nikzad (2020) also contains an approximate competitive

equilibrium result which accommodates side constraints on agents choices such as we have

here. However, the quality of the approximation is in terms of agent utility and relies on a

large market assumption.

Let vj(x) be the value of agent j for bundle x ∈ Xj. We assume 0 ∈ Xj and vj(0) = 0.

Let L(Xj) denote the set of lotteries over bundles in Xj. For each lottery y ∈ L(Xj), denote

by v̄j(y) its expected utility. Let y be the average consumption of the lottery y. Thus, p · y

is the expected price of the lottery y.

Associated with each agent j ∈ N , is a k×m matrix Aj and vector bj ∈ Rk
+. We assume

Aj and bj are continuous functions of p. Agent j is restricted to choosing lotteries y ∈ L(Xj)

such that Aj · y ≤ bj.

Notice a budget constraint corresponds to a row of Aj being the price vector. Aj and bj

being positive independent of p capture bounds on the probability of receiving bundles from

specific categories. As the entries of Aj are not required to be positive, diversity concerns

expressed in as bounds on proportions can also be modeled.

Let

Ch∗j(p) := arg max{v̄j(y) : y ∈ L(Xj), Aj · y ≤ bj}.
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Note, Ch∗j(p) is convex and compact and nonempty.18 Furthermore, the value of vj(y) for

y ∈ Ch∗j(p) is continuous in p. By standard arguments, there exists a competitive equilibrium

allocation of lotteries.

Claim 6.1 There exists a price vector p and a vector of lotteries (y1, .., yn) such that yj ∈

Ch∗j(p) and yi ≤ si for all i ∈M and yi = si if pi > 0, where y denotes the average aggregate

consumption.

The ability to implement (y1, .., yn) depends on the quasi-linear utility vj(x) − p · x.

In particular, if vj(x) − p · x is (∆) substitutes for all j and p, we show how to implement

(y1, .., yn) as a lottery over (approximately) feasible allocations. At the heart of the argument

is the following claim which generalizes the result in Gul et al. (2019) beyond a single budget

constraint to any any finite collection of linear constraints.

We associate with each vj(x) a quasi-linear choice correspondence:

Chj(p) := arg max{vj(x)− p · x , x ∈ Xj}.

Proposition 6.1 For every price vector p, and for every agent j ∈ N , let Aj be a matrix

of size k ×m, and bj ∈ Rk
+ (both Aj and bj can be continuous functions of p). Then, there

exists a price vector p′ such that Ch∗j(p) = conv(Chj(p
′)).

Proof. For convenience, we omit the agent index in the proof. First, we show that Ch∗(p)

is the set of optimal solutions to a linear program. For each x ∈ X let wx ∈ [0, 1] denote the

fraction of bundle x selected. The average bundle ȳ :=
∑

x∈X wx · x.

The constraint A · ȳ ≤ ~b can be reformulated in terms of wx as A · (
∑

x∈X wx · x) ≤ ~b.

Thus, the problem of selecting a utility maximizing lottery over Xj can be represented as
180 is always a feasible choice as bj ≥ 0.
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follows:

max
∑
x∈X

wx · v(x)

s.t
∑
x∈X

wx ≤ 1

A · (
∑
x∈X

wx · x) ≤ ~b

wx ≥ 0 ∀x ∈ X.

Here we assume v(0) = 0, which is why we write
∑

xwx ≤ 1 instead of
∑

xwx = 1.

Let α be the dual variable associated with the first constraint and ~β ≥ 0 the dual variable

associated with the second constraint. For every good i, denote

γi := ~βT · Ai, where Ai is the column i of matrix A.

Dual feasibility and complementary slackness imply:

v(x)−
∑
i

γi · xi ≤ α for all x ∈ X

and

if wx > 0, then v(x)−
∑
i

γi · xi = α.

Hence wx > 0 ⇒ x ∈ arg max{v(x)−
∑

i γi · xi} = Ch(~γ).

If α > 0, then
∑

xwx = 1 and thus any optimal solution of the linear program is a lottery

over Chj(~γ).

If αj = 0 any solution of the linear program with
∑

xwx < 1 can be extended to a lottery

over Chj(~γ) by setting w0 = 1−
∑

xwx > 0. Then, 0 ∈ Chj(~γ).

Furthermore, by complementary slackness, any lottery over Chj(~γ) is an optimal solution

of the linear program.

If a quasi-linear preference satisfies (∆) substitutes, then, if the prices are scaled by

27



a constant, (∆) substitutes is maintained. It is clear that Proposition 6.1 together with

Theorem 5.2 and Theorem 5.3, imply the following:

Proposition 6.2 If the quasi-linear preference vj(x)− p · x is substitutes, or ∆-substitutes

for all j and p, the equilibrium of Claim 6.1 can be implemented as a lottery over feasible

allocations, or allocations whose excess demand is at most ∆− 1 good-by-good, respectively.

6.2 Course Allocation

Motivated by the course allocation problem, Budish (2011) proposed implementing a so-

cial approximate equilibria with approximately equal incomes (A-CEEI). It does not require

agents to communicate their preferences over lotteries because it offers a deterministic allo-

cation.

In the A-CEEI mechanism, endowments of artificial currency are allocated at random

rather than goods. In expectation, each agent receives the same endowment of artificial

currency but ex-post, they receive different but roughly equal amounts. Using the realized

endowments of artificial currency, a social approximate CE is computed. Budish (2011)

bounds the resulting excess demand in terms of the Euclidean distance between the supply

vector and the vector of demands by
√

min{2∆,m}m
2

, where ∆ is the size of a maximum bundle

that an agent is interested in consuming and m is the number of goods.

The A-CEEI mechanism has been implemented to assign students to courses at the

Wharton School (see Budish et al. (2017)). Agents are students, and objects are courses,

with the number of seats in a course being the supply of that course. The supply is upper

bounded by Fire Safety regulations. Every semester students take about five courses, thus

∆ = 5. Because the bound on excess demand is in terms of Euclidean distance, there is no

guarantee that the number of students assigned to a course will exceed the regulated limit.

For this reason, the mechanism needs to be rerun several times with reduced capacities to

ensure feasibility. Nguyen et al. (2016) propose an alternative based on the probabilistic

serial mechanism (see Bogomolnaia and Moulin (2001)). It enjoys different efficiency and
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fairness properties than the A-CEEI mechanism. However, it returns an allocation in which

the excess demand for each course is at most ∆−1. It has been implemented at the Technical

University of Munich (see Bichler et al. (2018)). The advantage of this mechanism is that one

knows a-priori how many seats in each class to ‘withhold’ to ensure feasibility. Theorem 4.1

yields a mechanism with the same fairness and efficiency guarantees as in Budish (2011) but

with a course-by-course bound of 2∆− 1 on excess demand. Furthermore, this bound holds

beyond the case where agents can only consume small bundles. An argument in Nguyen

et al. (2016), specific to the case where no agent demands a bundle whose size exceeds ∆,

yields a bound of ∆− 1.

Suppose each student j has a feasible set of bundles (course schedules) Xj and a budget

of 1.19 Let �j denote the ordinal preference of agent j and let vj(x) be the utility function

that represents these preferences. We assume 0 ∈ Xj and vj(0) = 0. Without loss we can

assume that each vj(x) is a rank score of the bundles, rj(x), consistent with �j and rj(0) = 0.

Recall that our Theorems on ∆−1 approximate CE rely on utility functions that depend

on money. In the course allocation setting, there is no money, and agents preferences depend

on goods only. In order to apply our existence results, we define the following auxiliary utility

function for each student. Let

U ε
j (x, t) := vj(x) + min{0, log

1− t
ε
} for an arbitrarily small, but positive ε. (6)

Let Chεj(p) denote the choice correspondence of this auxiliary utility function. We show

that for any bundle in the choice correspondence of the auxiliary utility function, there is a

way to perturb the budget so that under the original ordinal preference, the bundle continues

to be the optimal choice. Formally we have the following.

Claim 6.2 Let x ∈ Chεj(p), then there exists a new budget b such that 1− ε ≤ b < 1 and

x = max(�j){x′ ∈ Xj and p · x′ ≤ b}.
19The approach trivially extends to the case where agent’s have differing budgets.
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Proof. Let t := p · x, because of the form of the utility, we know that t < 1.

Case 1: If 1 − ε < t < 1, define the new budget to be b := t. Since x ∈ Chεj(p), for any

feasible bundle x′ such that vj(x′) > vj(x) we have p · x′ > p · x = b. Thus, under the new

budget, the agent cannot afford x′.

Case 2: If t ≤ 1 − ε, then U ε
j (x, t) = vj(x). Define the new budget to be b := 1 − ε.

Because x ∈ Chεj(p), for any feasible bundle x′ such that vj(x′) > vj(x), p · x′ > 1 − ε

otherwise x′ will give a strictly better utility than x.

To formally state our result, we modify the notion of approximate competitive equilibrium

with equal budgets to account for the `∞-norm instead of the `2 norm as in Budish (2011).

Definition 6.1 Fix an economy, the allocation (x1, .., xn), budgets (b1, .., bn) and item prices

(p1, .., pm) constitute an (∆, ε)-approximate competitive equilibrium with equal budget if the

following hold:

• xj = max(�j){x ∈ Xj and p · x ≤ bj} for all j ∈ N

• 1− ε ≤ bj ≤ 1 for all j ∈ N

• maxi |zi| ≤ ∆, where z = (z1, .., zm) and

a) zi =
∑

j x
j
i − si if pi > 0

b) zi = max{0,
∑

j x
j
i − si} if pi = 0

Formally, we have the following result, which is a direct application of Theorem 4.1.

Proposition 6.3 For every ε > 0, if U ε
j defined as in (6) is ∆-substitutes, there exists a

(∆− 1, ε)-approximate competitive equilibrium with equal budget.

If no agent is interested in consuming a bundle whose size exceeds ∆, each U ε
j is 2∆-

substitutes. Hence, we have an approximate CE with approximately equal incomes in which

the excess demand for each good with a positive price is at most 2∆− 1.

30



Using a specialized argument from Nguyen et al. (2016) for just the case where no agent

wants a bundle of size more than ∆, one can improve this bound to ∆ − 1. Thus, unlike

Budish (2011) one can guarantee that no supply constraint will be violated by more than

∆ − 1. Therefore, no more than ∆ − 1 seats need be withheld from each course. An

approximate competitive equilibrium for the economy where the supply of each course is

reduced by ∆− 1 is computed. Seats withheld can be added back to satisfy excess demand.

Hence, a single equilibrium computation suffices.

The bound on excess demand given in Budish (2011) depends on the diameter of conv(Ch(p))

while ours depends on the edge lengths of the same object. Two examples serve to illustrate

the contrast.

First, suppose for some p, conv(Ch(p)) is the m-dimensional hypercube. The hypercube

is an example of the underlying preferences having many near substitutes. It has maximum

diameter among all binary polytopes, i.e.,
√
m. The `1 norm of the edge lengths of a

hypercube, however, are all 1, so the bound on excess demand for each good we offer is zero!

This illustrates that a large diameter polytope can have small edge lengths.

Now, suppose conv(Ch(p)) is the convex hull of just two points: the origin and the m-

vector of all 1’s. This instance is unusual in that the agent’s demand correspondence consists

of just two bundles: everything and nothing. It suggests very strong complementarities in

preferences. The diameter of conv(Ch(p)) is
√
m while the `1 norm of the edge length is m.

When there are many near substitutes, we expect that our bound is likely to dominate.

When complementarities are pronounced, we expect the `2 norm bound to dominate.

It is helpful to keep two polar cases of preferences in mind. Gross substitutes and pure

complementarities, where the agent desires everything or nothing. In these polar cases,

CE exist. Deviations from either result in non-existence of CE. Our results are focused on

deviations from the gross substitutes case. Bounds based on the diameter would be more

relevant for minor deviations from the case of pure complements.
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7 Conclusion

This paper makes two contributions. The first identifies a new sufficient condition for exis-

tence of a competitive equilibria which generalizes gross substitute preferences to non quasi-

linear settings and subsumes other known sufficient conditions. Second, a relaxation of the

sufficient condition yields a social approximate equilibrium where the mismatch between sup-

ply and demand depends on preferences rather than the size of the economy. The usefulness

of this approximation is illustrated in the context of pseudo-markets.
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Appendix

A Proof of Theorem 3.2 and 4.2

We prove Theorem 4.2 for the case of multi-copy demand. The proof of Theorem 3.2 is the

same and omitted.

Let P be the convex hull of ∪x∈Ch(p)B(x). Assuming preferences satisfy ∆-improvement

we show that P is ∆-uniform. Let C ≥ maxi∈M xi for all x ∈ Ch(p). Let ȳ be an extreme

point of P , let z̄1, . . . , z̄K ∈ P be all extreme points of P such that ||z̄r − y||1 ≤ ∆. Note, as

P is binary, every integer vector in P is an extreme point.

Suppose, for a contradiction that w̄− ȳ is an edge of P such that ||w̄− ȳ||1 > ∆. Then, w̄

cannot lie in the cone generated by {z̄1− ȳ, . . . , z̄K− ȳ}, i.e., there do not exist non-negative

numbers {λi}Kr=1 such that

w̄ − ȳ =
K∑
r=1

λi(z̄
r − ȳ).

By Farkas’ lemma, there exists a vector β such that β · (w̄ − ȳ) < 0 and β · (z̄r − ȳ) ≥ 0 for

all r = 1, . . . , K.

Without loss of generality, we order the copies of each good i in non-decreasing order in

β, i.e.,

βC·(i−1)+1 ≤ βC·(i−1)+2 ≤ . . . ≤ βC·i.
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We now argue that for each good i we can assume that

ȳC·(i−1)+1 ≥ ȳC·(i−1)+2 ≥ . . . ≥ ȳC·i.

If not, there exist two copies of good i: i1 and i2 such that βi1 < βi2 and ȳi1 = 0; ȳi2 = 1.

Consider the bundle ȳ′ obtained from ȳ by switching the values of ȳi1 and ȳi2 . Note ȳ′ ∈ P and

β · (ȳ′− ȳ) = βi1−βi2 < 0. Hence, ȳ′ cannot lie in the cone generated by {z̄1−y, . . . , z̄K−y},

However, 2 = ||ȳ′ − ȳ||1 ≤ ∆ which is a contradiction.

We now use the extreme point w̄ ∈ P to construct a vector w̄∗ ∈ P such that for each

good i:

w̄∗C·(i−1)+1 ≥ w̄∗C·(i−1)+2 ≥ . . . ≥ w̄∗C·i

and w̄∗ is not in the cone generated by {z̄1 − ȳ, . . . , z̄K − ȳ}.

If there exist two copies of good i: i1 and i2 such that βi1 < βi2 and w̄i1 = 0; w̄i2 = 1,

switch the values of w̄i1 and w̄i2 to obtain the bundle w̄′ ∈ P . Then, β·(w̄′−w̄) = βi1−βi2 < 0.

Therefore,

β · (w̄′ − ȳ) = β · (w̄′ − w̄) + β · (w̄ − ȳ) < 0.

Hence, w̄′ is not in the cone generated by {z̄1 − ȳ, . . . , z̄K − ȳ}.

Repeat this step until we terminate in a vector w̄∗ where for each j, the components in

the interval [C · (i− 1) + 1, C · i] are arranged in non-increasing order. Note β · (w̄∗− ȳ) < 0.

Hence, w̄∗ ∈ P cannot lie in the cone generated by {z̄1−ȳ, . . . , z̄K−ȳ} and so ||w̄∗−ȳ||1 > ∆.

Let x be such that ȳ ∈ B(x) and x∗ such that w̄∗ ∈ B(x∗). Because ||w̄∗ − ȳ||1 > ∆

and the components of w̄∗ and ȳ in each interval [C · (i− 1) + 1, C · i] are both arranged in

non-increasing order, ||x∗ − x||1 > ∆.

Consider good i. If x∗i = xi set β̃i = 0. If x∗i > xi, set β̃i to be the average of the β-s of

the copies of good i in (w̄∗ − ȳ). Similarly, if x∗i < xi, then let β̃j be the average of the β-s
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of the copies of good j in (ȳ − w̄∗). Hence,

β̃ · (x∗ − x) = β · (w̄∗ − ȳ) < 0.

We now invoke the definition of ∆-improvement. Interpret β̃ as a price change, i.e.

δp = β̃. Then, δp · x > δp · x∗. Hence, there exist non-negative integer vectors a ≤ (x− x∗)+

and b ≤ (x∗ − x)+ such that ~1 · a + ~1 · b ≤ ∆, z∗ := x− a + b ∈ Ch(p), ||z∗ − x||1 ≤ ∆ and

(p′ − p) · x > (p′ − p) · z∗, i.e. β̃ · (z∗ − x) < 0.

Choose z̄ ∈ B(z∗) such that

z̄C·(i−1)+1 ≥ z̄C·(i−1)+2 ≥ . . . ≥ z̄C·i.

Because of this ordering

||z̄ − ȳ||1 = ||z∗ − x||1 ≤ ∆.

As z̄ is a binary representation of z∗ and ȳ is a binary representation of x it follows that

β · (z̄ − ȳ) = β̃ · (z∗ − x) < 0, which is a contradiction.

We now prove the converse. Denote the convex hull of ∪x∈Ch(p)B(x) by P . We will show

that if P is ∆-uniform, the corresponding preferences satisfy the ∆-improvement property.

For economy of exposition only, suppose C = 1, i.e., the agent wishes to consume at most

one copy of each good. In this case the binary presentation of a vector is itself: B(x) = x,

∪x∈Ch(p)B(x) = Ch(p) and P is the convex hull of Ch(p). Fix a price vector p and two

bundles x, y ∈ Ch(p). Consider a price change δp ∈ Rm satisfying δp · x > δp · y.

As all binary vectors of binary polytope are extreme points, x, y ∈ ext(P ). Now, y − x

is in the cone generated by the edges of P adjacent to x. This means that there exit a set

of extreme points {z1, . . . , zK} adjacent to x and a set of positive numbers {λ1, .., λK} such

that

y − x =
K∑
r=1

λr(z
r − x). (7)
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Multiplying both sides of equation (7) by δp, yields

0 > δp · (y − x) =
K∑
r=1

λr · δp · (zr − x).

Hence, there exists r ∈ {1, .., K} such that δp · (zr − x) < 0.

Let a := (x− zr)+ and b := (zr − x)+. Because P is ∆-uniform, ~1 · a+~1 · b ≤ ∆.

It is left to show that a ≤ (x−y)+ and b ≤ (y−x)+. Let I0 and I1 be the set of coordinates

in which both x, y are 0 and 1, respectively. Notice (zri − xi) ≥ 0 while (yi − xi) = 0 for

all i ∈ I0, thus, because of (7), (zri − xi) = 0 for all r ∈ {1, . . . , K} and i ∈ I0. Similarly,

(zrj − xj) ≤ 0 while (yj − xj) = 0 for all i ∈ I1, and thus because of (7), (zrj − xj) = 0 for all

r ∈ {1, . . . , K}, j ∈ I1. This shows that (x− zr)+ ≤ (x− y)+ and (zr − x)+ ≤ (y − x)+ for

all r ∈ {1, . . . , K}.

B Proof of Theorem 5.1: Existence of a Pseudo Equilib-

rium

Proof. Denote by Xj the set of feasible bundles available to agent j ∈ N . Let L(Xj) be the

set of lotteries over Xj. We construct a correspondence

f : [0, B]m × L(X1)× . . .× L(Xn) ⇒ [0, B]m × L(X1)× . . .× L(Xn)

and use Kakutani’s fixed point theorem to show that it has a fixed point, (p, x1, .., xn). This

fixed point will correspond to a pseudo-equilibrium.

Given {xj ∈ L(Xj)}nj=1, let x =
∑n

j=1 x
j be the aggregate consumption. The excess

demand vector is x− s. Let

g(p, x1, .., xn) := (p+ x− s)+.
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Notice, for p ∈ Rm
+ , g(p, x1, .., xn) = p implies that for all i ∈ M , if pi > 0, then xi = si and

if pi = 0, then xi ≤ si. This is exactly the condition of that price and excess demand must

meet to be considered a pseudo equilibrium.

To apply Kakutani’s Theorem, we need the function g to be bounded, so we modify it.

As B is the bound on the willingness to pay of each agent, let

zi(p, x
1, .., xn) := min{(pi + xi − si)+, B} for all i ∈M.

Each zi is bounded. Define the following correspondence

f(p, x1, .., xn) := (z, conv(Ch1(p)), .., conv(Chn(p)).

It is easy to see that f satisfies all the conditions of Kakutani’s Theorem. Let (p, x1, .., xn)

be a fixed point of the correspondence f .

At this fixed point xj ∈ conv(Chj(p)). Furthermore, because of the bounded willingness

to pay assumption, if pi = B, then for all xj ∈ conv(Chj(p)), xji = 0. Thus,

min{(pi + xi − si)+, B} = (B − si)+ < B.

Therefore, at the fixed point pi = (pi + xi− si)+. This implies that (p, x1, .., xn) is a pseudo-

equilibrium.

A pseudo-equilibrium is an equilibrium with respect to the ‘convexified’ choice correspon-

dences. As these may violate non-satiation, some competitive equilibria may be Pareto

inefficient (with respect to the convexified choice correspondences). To avoid this, one can,

when possible, select an efficient disposal equilibrium as defined in McLennan (2017).
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C Proof of Theorem 5.2

C.1 Special Polytope

Call a binary polytope special if all its edge vectors have at most two non-zero components

and these being of opposite sign.20

Lemma C.1 If P ⊂ Rd1 and Q ⊂ Rd2 are special, then P ×Q is also special.

Proof. Let A ⊂ Rd1 , be the set of edges in P, B ⊂ Rd2 , be the set of edges in Q, then

A × ~0d1 ∪ ~0d2 × B is the set of edges of P × Q. This shows that if P,Q are special, then

P ×Q is also special. (Here ~0d denotes the 0 vector in Rd.)

Lemma C.2 Let A be a 0-1 matrix where each column contains exactly one non-zero entry

and b a non-negative integral vector. Then, the polytope H = {z : Az = b, 0 ≤ z ≤ 1} is

special.

Proof. The d-dimensional simplex, {z : z1 + . . .+ zd = k, 0 ≤ zi ≤ 1} is a special polytope.

The polytope H is a Cartesian product of d-dimensional simplices for various d, therefore it

is also special.

Standard arguments (see Frank et al. (2014), for example) tell us that the intersection

of two special binary polytopes has integral extreme points. For completeness, we furnish

proof of this fact.

Lemma C.3 If P and Q are two special binary polytopes in Rd with P ∩ Q 6= ∅, then, the

extreme points of P ∩Q are integral.

Proof. By the fundamental theorem of Linear Programming, it suffices to show that for any

w ∈ Rd, {maxw · z : z ∈ P ∩Q} has an integral solution. Let z be an extreme point solution

of this program. Let F1, F2 be the minimal faces of P and Q, respectively, that contain z.
20This is a subset of the class of compressed polytopes introduced in Stanley (1980).
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Because z is an extreme point solution, the linear spaces spanned by the edges of F1 and F2

are independent.21

Let vi be an extreme point of Fi and Ei the set of its edges for i = 1, 2. As z ∈ F1 ∩ F2,

there exist αe ∈ R for e ∈ E1 ∪ E2 such that

z = v1 +
∑
e∈E1

αe · e = v2 +
∑
e∈E2

αe · e. (8)

It remains to show that
∑

e∈E1
αe · e is integral as this implies that z is integral.

Equation (8) implies

v1 − v2 =
∑
e∈E2

αe · e−
∑
e∈E1

αe · e. (9)

Because F1, F2 are each special polytopes, their edges E1 ∪ E2 are {0,±1} vector with at

most 2 nonzero components and these are of opposite signs. Hence, the matrix each of whose

columns is in E1 ∪E2 is a network matrix and therefore totally unimodular. Combined with

the fact that v1 − v2 is integral implies that there exists βe ∈ Z for e ∈ E1 ∪ E2 such that

v1 − v2 =
∑
e∈E2

βe · e−
∑
e∈E1

βe · e. (10)

Equations (9) and (10) imply

∑
e∈E1

(αe − βe) · e =
∑
e∈E2

(αe − βe) · e. (11)

Now, the linear spaces spanned by E1, E2 are independent. Therefore, either side of equation

(11) must be zero 0. Thus,
∑

e∈E1
αe ·e =

∑
e∈E1

βe ·e, which is an integral vector as desired.

21This is because the faces F1 and F2 correspond to the binding constraints which must be linearly
independent at an optimal solution.
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C.2 Proof of Theorem 5.2

First, we identify a pseudo-equilibrium price p and corresponding allocation {x1, . . . , xn}

such that xj ∈ conv(Chj(p)) for all j ∈ N . It is technically convenient to assume that∑
j∈N x

j = s. This is without loss because otherwise, the price will be 0, and we can add a

dummy agent with 0 marginal utility over the good and consumes the leftover.

Let

Pj = conv(∪x∈Chj(p)B(x)),

where B(x) is a binary presentation of x, as defined in (5). Because the preferences are

geometric substitutes, the binary polytopes P1, . . . , Pn are special. Therefore, according to

Lemma C.1, P1 × ..× Pn is special.

Let Q denote the following polytope

Q := {(z1, .., zn)|zi ∈ [0, 1]Cm and
n∑
j=1

Ti(z
j) = si for all i ∈M}.

From the definition of T (.) in (4), the ith constraint that defines Q has the form:

n∑
j=1

C·i∑
k=C·(i−1)+1

zjk = si.

From this we see that the non-zero coefficients in constraint i and i′ 6= i do not overlap.

Hence, the matrix of coefficients associated with the linear system
∑n

j=1 Ti(z
j) = si for all

i ∈ M has all 0-1 entries with exactly one non-zero entry in each column. According to

Lemma C.2, Q is a special polytope.

For each xj ∈ conv(Chj(p)) there is at least one corresponding yj ∈ Pj. Furthermore,∑
j∈N x

j = s implies that
∑n

j=1 Ti(y
j) = si for all i ∈ M . Hence, y ∈ P1 × .. × Pn ∩ Q.

According to Lemma C.3, P1 × ..× Pn ∩Q is an integral polytope. Because of this y can be

expressed as a lottery over the integral vectors in P1 × ..× Pn ∩Q. Each integral vector in

P1× ..×Pn ∩Q is a binary presentation of an allocation (w1, .., wn) in Ch1(p)× ..×Chn(p)
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that satisfies
∑

j∈N w
j = s. This shows that w is a competitive equilibrium. Hence, any

pseudo equilibrium can be expressed as a lotteries over a set of competitive equilibria.

D Proof of Theorem 5.3 and 5.4

D.1 Proof of Theorem 5.3

We first show how Theorem 5.3 follows from Theorem 5.4.

Proof of Theorem 5.3 First, we identify a pseudo-equilibrium price p and corresponding

allocation {x1, . . . , xn} such that xj ∈ conv(Chj(p)) for all j ∈ N . It is technically convenient

to assume that
∑

j∈N x
j = s. This is without loss because we can add dummy agents who

demand all goods. Let Pj denote the binary polytope ∪x∈Chj(p)B(x), where B(x) is a binary

presentation of x, as defined in (5).

For each xj ∈ conv(Chj(p)) there is at least one corresponding yj ∈ Pj. Furthermore,∑
j∈N x

j = s implies that
∑n

j=1 Ti(y
j) = si for all i ∈ M . Hence, all the conditions needed

to invoke Theorem 5.4 are satisfied. This yields Theorem 5.3.

D.2 Lottery implementation

The following basic result is needed for our lottery implementation result.

Lemma D.1 Given an y ∈ Rm, and some property (∗), y can be expressed as a lottery over

a set of vectors satisfying (∗) if and only if for every weight vector w ∈ Rm, there exists

z ∈ Rm satisfying (∗) and w · z ≥ w · y.

Proof. Let Z be the set of all vectors satisfying property (∗). Now, y /∈ conv(Z) if and only

if there exists a hyperplane separating y from conv(Z). This means that there is a w ∈ Rm

such that w · y > w · z for all z ∈ Z.

Any algorithm that finds a vector z satisfying (∗) and w · z ≥ w · y can be used to express y

as a convex combination of vectors in Z (see Nguyen et al. (2016)).
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D.3 Proof of Theorem 5.4

First we need some terminology. Given a binary polytope Q ∈ RCmn, a coordinate i ∈

{1, . . . , Cmn} is called fixed with respect to Q if xi = yi for all x, y ∈ Q. Otherwise it is

called free. In other words, if a coordinate i is fixed with respect to Q it means that there is

a constant θ such that xi = θ for all x ∈ Q. The proof is based on the algorithm described

in Figure 1.

Figure 1: Algorithm

Input: {Pj}nj=1 ∆-uniform binary polytopes, y = (y1, . . . , yn) ∈ P1 × . . . × Pn,∑n
j=1 Ti(y

j) = si ∈ Z, and weight vector w ∈ RCmn.

Output: z ∈ ext(P1) × . . . × ext(Pn) such that w · z ≥ w · y and for all i ∈ M ,
|Ti(

∑
j z

j)− si| ≤ ∆− 1.

Step 0: Initiate Q = P1× . . .×Pn, and let S := M to be the set of active supply constraints.

Step 1: Let

R := {z = (z1, . . . , zn)|zi ∈ [0, 1]Cm;
n∑
j=1

Ti(z
j) = si for all i ∈ S}.

Solve
{maxw · z|z ∈ Q ∩R}. (12)

Let z = (z1, . . . , zn) be an optimal extreme point solution and F be the minimal face of Q
containing z.

Step 2a: If dim(F ) = 0, that is F contains a single element, call it (z1, . . . , zn) and STOP.

Step 2b: Else, each constraint i such that
∑n

j=1 Ti(z
j) = si, can be written as α(i) · z = si,

where α(i) is a {0, 1} vector.

Let ai be the number of non-zero coordinates of α(i) that are free with respect to F . Among
the active constraints in S, choose the constraint i ∈ S with smallest ai.

Update Q := F and S := S \ {i}.

Step 3: Return to Step 1.
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We now show that the algorithm is correct and terminates in the desired solution z. At

each iteration of the algorithm, we solve a linear program (12) with the objective given by

the weight vector w and one less supply constraint than the iteration before. Thus, the

linear program (12) is feasible at each iteration, and the optimal objective function value is

non-decreasing. Thus, the terminal solution z will satisfy w · z ≥ w · y.

Claim D.1 At each iteration of the algorithm Q is ∆ uniform and the minimal face F ⊂ Q

containing the extreme point solution of (12) satisfies dim(F ) ≤ |S|.

Proof. At the beginning of the algorithm Q = P1 × .. × Pn. As each Pi is ∆ uniform, by

Lemma C.1, so is Q. In the subsequent iterations, Q is replaced by one of its faces. The

edges of a face are a subset of the edges of the corresponding polytope. Thus, Q remains ∆

uniform.

To show dim(F ) ≤ |S|, rewrite the constraints of the linear program (12) in matrix

form:{Az ≤ a,Bz = b}. Here Az ≤ a expresses z ∈ Q while Bz = b expresses z ∈ R. In

an extreme point solution, the number of independent binding constraints is equal to the

number of non-zero coordinates of z, which is Cmn. B has |S| rows. Thus, the number

of independent binding constraints in Az ≤ a is at least Cmn − |S|. This shows that the

minimal face containing z is of dimension at most |S|.

Claim 2 shows that when there are no more supply constraints left to delete, dim(F ) = 0

and the algorithm terminates. Hence, the algorithm terminates in at most m iterations.

To show that the violation in each supply constraint cannot exceed ∆ − 1, we need the

following.

Claim D.2 At each iteration, the number of free coordinates with respect to Q is at most

∆ · dim(Q).

Proof. Fix an extreme point v of Q and let Ev be a maximal linearly independent set

of edges of Q that are incident to v. Recall that the dimension of the space spanned by
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the edges incident to any extreme point is equal to the dimension of the polytope. Thus,

|Ev| = dim(Q).

By claim D.1, Q is binary and ∆-uniform, the components of each of the vectors in Ev

belongs to {−1, 0, 1} and the number of non-zero components in each of them is at most ∆.

By the definition of free coordinates, a non-zero component of an edge can only be at

a free coordinate of Q. The reverse is also true. If j is a free coordinate, then there exists

v′ ∈ Q such that the jth coordinate of v′ − v is not 0. But v′ − v is in the span of Ev, thus,

there must be a vector in Ev, whose jth coordinate is not 0.

There are dim(Q) vectors in Ev, each vector has at most ∆ nonzero components. There-

fore, the number of free coordinates of Q is at most ∆ · dim(Q) .

Claim D.3 Let z∗ = (z∗1, .., z∗n) be the algorithm’s output. Then, for every good i ∈M

|
n∑
j=1

Ti(z
∗j)− si| ≤ ∆− 1.

Proof. Fox some iteration of the algorithm where S is the set of active supply constraints,

z is the extreme point solution of (12), and F ⊂ Q is the minimal face of Q containing z.

The coordinates of the non-zero components of distinct supply constraints are disjoint.

By Claim D.2 there are at most ∆·dim(F ) free coordinates with respect to F . By Claim D.1,

dim(F ) ≤ |S|. Thus, the supply constraint selected for deletion in Step (2b) of the algorithm

contains at most ∆ free coordinates with respect to F .

The outcome of the algorithm belongs to a polytope that shrinks in dimension at every

step of the algorithm. Thus, as the output of the algorithm, z∗ ∈ F . Consider the supply

constraint i to be deleted at this iteration. Because constraint i contains at most ∆ free

coordinates with respect to the binary polytope F and z ∈ F as well, it follows that

|
n∑
j=1

Ti(z
∗j)−

n∑
j=1

Ti(z
j)| ≤ ∆.
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Equality can only occur if constraint i contains exactly ∆ free coordinates and the values of

these coordinates in z are either all 0 or all 1, while the opposite is true for z∗. However,

this is impossible because, for example, if the values of these coordinates in z are all 0 then,

these coordinates will be fixed (at 0) with respect to the minimal face containing {z, z∗},

which contradicts the fact that they are free coordinates.

Now, because
∑n

j=1 Ti(z
j) = si and

∑n
j=1 Ti(z

∗j) are both integral, we have.

|
n∑
j=1

Ti(z
∗j)−

n∑
j=1

Ti(z
j)| = |

n∑
j=1

Ti(z
∗j)− si| ≤ ∆− 1.

This is what we need to prove.
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