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Abstract

I analyze dynamic Mirrlees taxation with preferences that are non-separable between con-

sumption, leisure and type, which determines both ability and consumption needs. I show how

to account for non-separable preferences through a simple change in probability measures. I ge-

neralize the existing Inverse Euler Equation and optimal static labor tax formulae and provide

a unified intuition based on a set of perturbations around the optimal allocations that preserve

expected utility and incentive compatibility. Non-separability in preferences gives rise to a new

tradeoff between current and future redistribution that is internalized by the planner’s solution

but not by private savings decisions. This leads to a novel rationale to subsidize (tax) savings

and make labor taxes more (less) persistent, when more productive agents also have higher

(lower) consumption needs.

1 Introduction

How should optimal taxes be structured to balance redistribution motives and efficiency distorti-

ons? Starting with the seminal work of Mirrlees (1971), the existing literature on optimal income

taxes captures the efficiency-redistribution tradeoff through a basic asymmetric information friction:

workers have private information about their ability or inclination to work.1 Dynamic life cycle

economies augment the tax design problem by a dynamic insurance motive through stochastic

evolution of individual types (i.e. abilities or preferences) and aggregate savings.

∗I thank Fabrice Collard, Tuuli Vanhapelto and Nicolas Werquin for useful discussions and seminar participants at Toulouse

School of Economics for comments. Funding from the French National Research Agency (ANR) under grant ANR-17-EURE-

0010 (Investissements d’Avenir) is gratefully acknowledged.
1see Mirrlees (1971), Diamond (1998), Saez (2001), among many others.
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Existing results on dynamic optimal tax design leverage an assumption that preferences are

separable, and in particular that the marginal utility of consumption is independent of leisure or

ability types, into a sharp characterization of optimal labor and savings distortions.2 Optimal

savings distortions are characterized by the Inverse Euler Equation, which captures the idea that

wealth accumulation has adverse effects on future incentives to work (see e.g. Diamond and Mirrlees,

1978, and Rogerson, 1985, and Golosov, Kocherlakota and Tsyvinski, 2003). In parallel, Farhi and

Werning (2013) and Golosov, Troshkin and Tsyvinski (2016) have characterized optimal labor

wedges emphasizing smoothing and backloading of tax distortions.

The separability assumption plays a key role in limiting the interaction between static redistri-

bution and dynamic savings margins, which greatly facilitates the characterization of each of the

two margins separately. At the same time it imposes strong restrictions on substitution between

home production and market work, across periods or wealth effects on labor supply, which in turn

limit the scope of applicability for many questions of applied interest involving life-cycle savings,

home production, taxation of couples, or insurance against important life cycle risks. Aguiar and

Hurst (2005, 2007) document patterns of substitution between market and non-market work and

consumption in both the time series and cross section which directly contradict this hypothesis.3

I characterize optimal labor and savings wedges in a dynamic Mirrleesian economy with arbitrary

non-separability in preferences between consumption, types and leisure.4 I show three main results:

First, I identify a new rationale for savings taxes or subsidies based on the effect of savings

on current redistribution. This rationale is conceptually distinct from the wealth effect of savings

on future incentives that was captured by the original Inverse Euler Equation, and it disappears

when preferences are separable. Furthermore, when it is optimal to subsidize savings, the optimal

allocation features mean-reverting social mobility and overturns the immiseration property that

often characterizes optimal social mobility in dynamic private information economies.5

2see e.g. Kocherlakota, Golosov and Tsyvinski (2003), Kocherlakota (2005), Albanesi and Sleet (2006), Golosov

and Tsyvinski (2006), Farhi and Werning (2013), Golosov, Troshkin, and Tsyvinski (2016), or Stantcheva (2018) for

important contributions and Stantcheva (2020) for a recent review of the literature.
3see also Aguiar, Hurst and Karabarbounis (2012) for a review and further discussion of consumption patterns

and intra- and inter-temporal substitution between time use and consumption goods at the micro level. Benhabib,

Rogerson and Wright (1991) have shown how allowing for substitution between home and market production improves

upon some key predictions of standard real business cycle models.
4Grochulski and Kocherlakota (2010), Köhne and Kuhn (2015) and Köhne (2018) extend the dynamic Mirrlees

model to allow for non-time separable preferences through the introduction of habits or durable consumption goods,

but they retain the separability of consumption and effort.
5See for example Thomas and Worrall (1990), or Atkeson and Lucas (1992).
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Savings affect current information rents and redistribution both directly and indirectly because

a change in future redistribution also feeds back into current incentives. These two effects go

in opposite directions but the direct effect dominates unless types are highly persistent, and in

expectation, the effect of savings on current redistribution always dominates the wealth effect of

savings on future incentives. If consumption needs or marginal utilities are increasing with the

worker’s ability type, savings reduce current information rents and facilitate current redistribution:

this makes it optimal to subsidize savings. When instead low-ability types have higher consumption

needs, it becomes optimal to tax savings. The magnitude of this savings wedge is increasing in the

optimal concurrent labor tax and decreasing in the persistence of types.

Second, I provide a new characterization of optimal labor wedges based on an arbitrage between

redistribution of consumption and redistribution of leisure. This arbitrage highlights that the

optimal allocation doesn’t just trade off between incentives and redistribution, but also between

the channels through which redistribution takes place: is it more efficient to tax top income earners

by asking them to work harder, or by asking them to consume less?

The optimal allocation equalizes the marginal cost of redistribution to the marginal benefit of

redistribution through consumption and to the marginal benefit of redistribution through leisure,

for each type, i.e. at the optimum, the planner is indifferent between increasing the work load,

or reducing the consumption, of the most productive types. This simple observation leads to a

natural complement of existing formulae for optimal income taxes from the static Mirrlees model

(e.g. Diamond 1998, Saez, 2001) or the dynamic tax formula in Golosov, Troshkin and Tsyvinski

(2016), which applies in both static and dynamic economies, and is easy to link to sufficient statistics

from the distribution of earnings and consumption.

The marginal cost of redistribution is given by the ratio of the marginal efficiency loss from

the labor distortion to the reduction in marginal information rents for a given type. The marginal

benefits of redistribution consist of a static component and a dynamic component. The static

component is determined by perturbations that transfer consumption or leisure from higher to

lower types while preserving expected utility and incentive compatibility. The additional dynamic

benefit of tax distortions arises because a commitment to future labor taxes and redistribution also

reduces current information rents, thus facilitating current redistribution. The optimal labor wedge

arbitrages distortions over time, while internalizing that future labor distortions generate an extra

benefit from raising future redistribution. As in Farhi and Werning (2013), the optimal labor taxes

are persistent and backloaded over time or with age.

Third, when preferences are non-separable, labor tax-smoothing interacts with the optimal
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savings wedge, since the latter determines the planner’s discount rate between current and future

costs and benefits fo redistribution. Taxing or subsidizing savings to increase current redistribution

goes hand in hand with increasing or reducing the persistence of labor tax distortions. In addition,

the feedback from future to current incentives and redistribution also affects optimal persistence of

labor taxes directly.

All my results derive from the following key technical insight: Non-separability in preferences

enters the characterization of optimal allocations through a change in the probability measure

of types, or Radon-Nikodym derivative, that can be interpreted as an “incentive adjustment”

to Pareto weights that is required to respect incentive compatibility. If a local perturbation of

consumption allocations relaxes (tightens) incentive compatibility constraints for higher types, then

the perturbation increases (reduces) the scope for further redistribution. The change in probability

measures captures this through a first-order shift of probability weights towards lower (higher)

types. This effect disappears with separable preferences because local perturbations of consumption

impact incentive constraints only locally, so the original and incentive-adjusted Pareto weights are

the same. A similar change in probabilities results from perturbations to leisure, but the latter

always shifts weights towards lower ability types. The change in probability measure appears

in some existing characterizations of the optimal labor wedge, but doesn’t appear to have been

interpreted as such.6

This characterization of optimal allocations in turn allows me to interpret optimal labor and

savings wedges through elementary perturbations that capture the marginal costs and benefits

of redistribution, or the private and social marginal returns to savings, thus providing a unified

intuition and generalization of many existing results to arbitrary preferences: Optimal savings

wedges are characterized by a generalized Inverse Euler Equation which incorporates the wealth

effect of savings on future incentives through the change in probabilities, and adds a static savings

wedge to account for the effect of savings on current period incentives. Optimal labor wedges

are captured by a dual representation of the costs and benefits of redistribution through either

consumption and leisure, which are each governed by their respective change in probabilities. Their

combination highlights a novel two-way interaction that arises from concerns for redistribution that

are internalized by the planner’s solution but not by private decisions. The magnitude of the optimal

savings wedge is linked to the magnitude of current labor wedges since the latter is used to “price”

current redistribution, and the persistence of labor wedges is linked to the sign and level of the

6See, e.g. Hellwig (2007) or for the static Mirrlees model with non-separable preferences, or Golosov, Troshkin

and Tsyvinski (2016) for a similar characterization in the dynamic model with non-separable preferences.
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savings wedge since the latter determines the optimal tradeoff between current and future resources

and efficiency distortions.

From an applied perspective, these results substantially expand the applicability of optimal tax-

ation results. Whenever households tradeoff between market and non-market work or consumption,

or when labor supply decisions coordinate multiple household members across different activities

and interact with life-cycle savings, it is important to know whether non-separability of preferences

makes it easier or harder to provide insurance without distorting incentives. The present analysis

answers this question by showing that the tradeoff shifts towards positive savings taxes, lower but

more persistent labor taxes, and more redistribution, when needs-based and ability-based redis-

tribution motives are aligned (low types have low ability and high needs), but towards savings

subsidies, higher but less persistent labor taxes, and less redistribution in the opposite case (low

ability types also have low consumption needs). Understanding how different redistribution moti-

ves interact thus becomes crucially important for any quantitative assessment of dynamic tax and

insurance policies.

Section 2 introduces the model. Section 3 develops the core idea of incentive-adjusted proba-

bilities. Section 4 reviews the benchmark results with separable preferences. Section 5 discusses

optimal savings distortions, section 6 optimal labor wedges. Section 7 concludes with examples.

2 The Model

There are T <∞ periods, and there is a measure-1 continuum of agents. Each agent draws a type

sequence θT ∈
[
θ, θ
]T

iid across agents according to cdf F (·) (and pdf f (·)) at date 0 (prior to the

first period), and θt ∈
[
θ, θ
]

is then revealed to the agent at the beginning of period t; in period t,

the agent thus knows θt. Agents’ preferences over consumption and earnings are defined by

E0

{
T∑
t=1

βt−1U (Ct, Yt; θt)

}

i.e. an agent’s utility in period t is a function of his current type θt, current consumption Ct and

current earnings Yt. The function U is twice continuously differentiable, UC > 0, UCC < 0, UY < 0,

UY Y < 0, Uθ > 0 and U otherwise satisfies the usual Inada conditions as C or Y approach 0 or

∞. Consumption and earnings are assumed to be observable but individual types are the agents’

private information. Types are private information, but the social planner keeps a record of the

agents’ past announcements and can borrow or save with a return R > 0.

I assume that f (·) is positive over the interior of its support, that f
(
θt|θt−1

)
only depends on
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t and θt−1 (i.e. θt follows a time-dependent Markov chain), conditional densities f
(
θt|θt−1

)
are

differentiable w.r.t. θt−1, and that "types are persistent", i.e.

J
(
θt, θ

t−1
)
≡

∂f(θt|θt−1)
∂θt−1

f (θt|θt−1)

is non-decreasing in θt. This formulation includes types that follow a generic linear AR(1) process

in which
∂f(θt|θt−1)

∂θt−1
= −ρ∂f(θt|θ

t−1)
∂θt

, with useful polar cases ρ = 0 (types are independent across

time, no persistence) and ρ = 1 (types follow a random walk, full persistence).

I make a few additional assumptions about U (C, Y ; θ). The first is the Strict Single-Crossing

Condition: −UY (C, Y ; θ) /UC (C, Y ; θ) is strictly decreasing in θ for all (C, Y ; θ), or

UCθ
UC
− UY θ
UY

> 0.

This assumption guarantees monotonicity of any incentive-compatible allocation in the static

Mirrlees screening problem: on the margin, higher types are more willing to work.

Next, I assume that both consumption and leisure (or earnings) are normal goods, or that the

elasticities

EC ≡
∂ln (−UY /UC)

∂lnC
= −

(
UCC
UC
− UCY

UY

)
C

EY ≡
∂ln (−UY /UC)

∂lnY
=

(
UY Y
UY
− UCY

UC

)
Y.

are both non-negative for all (C, Y ; θ). These two elasticities will play a key role in my analysis.

Finally, I make assumptions about the planner’s motives for redistribution. The signs of UCθ and

UY θ play a key role in determining how non-separabilities affect the optimal tax design problem. For

illustrative purposes, I will occasionally use the following class of “ weakly separable” preferences:

U (C, Y ; θ) = U (γ (C,C (θ))− n (Y, θ))

The utility aggregator U (·) is strictly increasing and concave. The function n (Y, θ) can be

interpreted as (a disutility of) hours worked to generate earnings Y .7 I assume that nY > 0,

nθ < 0, and nθY < 0, so that θ can be interpreted as the agent’s labor productivity or disutility

of effort, with higher types being more productive. This formulation captures redistribution of

effort from less to more productive agents, or equivalently, redistribution of leisure towards less

productive agents, i.e. redistribution “from each according to his ability”.

7While it is convenient for the analysis to define preferences in terms of the observables C and Y , it is straight-

forward to map the type-contingent preference over earnings into a preference over leisure or hours worked. I will

thus refer interchangeably to redistribution of Y as redistribution of earnings or leisure.
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The function γ (C,C (θ)) can be interpreted as a consumption index that includes a type-

dependent subsistence consumption C (θ). I assume that γC > 0, γC ≤ 0, and γCC ≥ 0. An increase

in subsistence consumption C (θ) then lowers the agent’s utility and increases their marginal utility.

This formulation thus introduces redistribution of consumption towards those with the highest

marginal utilities, i.e. redistribution “to each according to his needs”.

With these assumptions, the cross-partials UCθ and UY θ take the following form:

UCθ
UC

=
U ′′

U ′
(
γCC

′ (·)− nθ
)

+
γCC
γC

C ′ (·)

UY θ
UY

=
U ′′

U ′
(
γCC

′ (·)− nθ
)

+
nθY
nY

.

If preferences are separable between consumption and earnings (U ′′ = 0), UY θ/UY captures

the motive for redistribution based on ability, and UCθ/UC the needs-based redistribution motive.

With the ordering assumption that higher types are more productive, it follows that UY θ/UY < 0.

The slope of C (·) in turn determines how consumption needs are aligned with ability. If

consumption needs are decreasing in type, then the two redistribution motives reinforce each other

towards increasing consumption and lowering effort of the lowest types, but they generate opposite

incentives effects: higher ability types have less consumption needs which reduces incentives to work.

In this case UCθ/UC ≤ 0. The Single-Crossing Condition imposes that 0 ≥ UCθ/UC > UY θ/UY ,

i.e. that ability has a stronger impact on work incentives than needs.

If consumption needs are instead increasing in type, UCθ/UC > 0. In this case, the Single-

Crossing Condition holds automatically since needs- and ability-based incentives are both stronger

for higher types. In this case, the planner has a motive of demanding higher effort from, and

offering higher consumption to high types.

Non-separability in preferences between consumption and earnings (U ′′ < 0) does not af-

fect incentives, but strengthens both redistribution motives towards lower types, since Uθ =

U ′ ·
(
γCC

′ (·)− nθ
)
> 0, i.e. higher types obtain higher utility from any pair (C, Y ).

Throughout the paper I assume that UY θ/UY < 0, and I distinguish between the case where

need-based redistribution is aligned with redistribution based on ability (0 ≥ UCθ/UC > UY θ/UY

for all (C, Y ; θ)) and the case where it is not (UCθ/UC ≥ 0 > UY θ/UY for all (C, Y ; θ)).8 In both

cases I assume that UCθ doesn’t change sign, i.e. either UCθ ≥ 0 for all (C, Y ; θ), or UCθ ≤ 0

for all (C, Y ; θ). The standard model of ability-based redistribution (U (C, Y ; θ) = U (C,N) with

N = Y/a (θ) and UCN ≥ 0, where a (θ) denotes labor productivity) belong to the first case.

8It is straight-forward to extend the results to the alternative case in which need-based redistribution is the

dominant channel for incentives, adapting the corresponding preference assumptions and their interpretation.
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2.1 Social planner’s problem

The utilitarian planner designs a sequence
{
C
(
θt
)
, Y
(
θt
)}

to maximize the agents’ expected utility,

subject to incentive compatibility and break-even conditions. I reformulate this problem as a

problem of minimizing the cost of the planner’s allocation, subject to promise-keeping and incentive

compatibility:

K (v0) = min
{C(θt),Y (θt)}

E0

{
T∑
t=1

R−t
(
C
(
θt
)
− Y

(
θt
))}

, s.t.

E0

{
T∑
t=1

βt−1U
(
C
(
θt
)
, Y
(
θt
)

; θt
)}
≥ v0

and

E0

{
T∑
t=1

βt−1U
(
C
(
θt
)
, Y
(
θt
)

; θt
)}
≥ E0

{
T∑
t=1

βt−1U
(
C
(−→
θ t
(
θt
))
, Y
(−→
θ t
(
θt
))

; θt

)}

for all types θT ∈
[
θ, θ
]T

and announcement strategies
−→
θ T :

[
θ, θ
]T → [

θ, θ
]T

that are measurable

w.r.t. θt in period t.

To define the problem recursively, let

vt−1

(
θt−1

)
= E

{
T∑
τ=t

βτ−tU (C (θτ ) , Y (θτ ) ; θτ ) |θt−1

}

wt
(
θt
)

= U
(
C
(
θt
)
, Y
(
θt
)

; θt
)

+ βvt
(
θt
)

I relax incentive compatibility to local IC by which this inequality must only hold for θ
′

sufficiently

close to θ. Following Pavan, Segal and Toikka (2014), Farhi and Werning (2013) or Kapicka (2013),

the local IC constraint is

∂wt
(
θt
)

∂θt
≡ ẇt

(
θt
)

= Uθ
(
C
(
θt
)
, Y
(
θt
)

; θt
)

+ β∆t

(
θt
)
, where

∆t

(
θt
)

=

∫
wt+1

(
θt+1

) ∂f (θt+1|θt
)

∂θt
dθt+1 = E

{
wt+1

(
θt+1

)
J
(
θt+1, θ

t
)
|θt
}
.

The term ∆t

(
θt
)

constitutes a promise or commitment towards future redistribution so as to

limit dynamic marginal information rents, i.e. the part of the marginal information rent ẇt
(
θt
)

that an agent obtains at type θt, which is not embedded in the current utility Uθ. With time-

independent types, J
(
θt, θ

t−1
)

= 0, so the local IC condition reduces to its static counterpart. In
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that case, incentive provision occurs only within, but not across periods, so the planner incurs no

dynamic incentive commitments and ∆ can be dropped from the set of state variables.9

Using v = vt−1

(
θt−1

)
and ∆ = ∆t−1

(
θt−1

)
as state variables, the optimal allocation then

minimizes the planner’s net present value of transfers Kt

(
v,∆, θt−1

)
subject to promise keeping

and local incentive compatibility constraints and satisfies the following recursive characterization:

Kt

(
v,∆, θt−1

)
= min

∫
R−1

{
Ct
(
θt
)
− Yt

(
θt
)

+Kt+1

(
vt
(
θt
)
,∆t

(
θt
)
, θt
)}
f
(
θt|θt−1

)
dθt, s.t.

v =

∫
wt
(
θt
)
f
(
θt|θt−1

)
dθt

∆ =

∫
wt
(
θt
)
J
(
θt, θ

t−1
)
f
(
θt|θt−1

)
dθt

wt
(
θt
)

= U
(
Ct
(
θt
)
, Yt
(
θt
)

; θt
)

+ βvt
(
θt
)

ẇt
(
θt
)

= Uθ
(
Ct
(
θt
)
, Yt
(
θt
)

; θt
)

+ β∆t

(
θt
)

The initial state variables v0 and ∆0 are then chosen so that ∆0 ∈ arg min∆K1

(
v0,∆, θ

−1
)

and

K (v0) = K1

(
v0,∆0, θ

−1
)

= 0, i.e. ∆0 is set to minimize K1

(
v0,∆, θ

−1
)
, meaning that at date 0

the planner’s break-even constraint is satisfied and the planner is free of prior commitments.

This recursive control problem decomposes into a static optimal control problem using wt
(
θt
)

as

the state and Ct
(
θt
)
, Yt

(
θt
)

and ∆t

(
θt
)

as control variables and a dynamic programming problem

to keep track of of utility promises vt
(
θt
)

and incentive commitments ∆t

(
θt
)
. The Hamiltonian is

Ht = R−1
{
Ct
(
θt
)
− Yt

(
θt
)

+K
(
vt
(
θt
)
,∆t

(
θt
)
, θt, t+ 1

)}
f
(
θt|θt−1

)
+
{
λt
(
v − wt

(
θt
))

+ ηt
(
wt
(
θt
)
J
(
θt, θ

t−1
)
−∆

)}
f
(
θt|θt−1

)
+ψt

(
θt
) {
wt
(
θt
)
− U

(
Ct
(
θt
)
, Yt
(
θt
)

; θt
)
− βvt

(
θt
)}

+µt
(
θt
) {
Uθ
(
Ct
(
θt
)
, Yt
(
θt
)

; θt
)

+ β∆t

(
θt
)}

The first-order conditions w.r.t. Ct (·) and Yt (·) yield

ψt
(
θt
)

=
R−1

UC (θt)
f
(
θt|θt−1

)
+ µt

(
θt
) UθC (θt)
UC (θt)

=
R−1

−UY (θt)
f
(
θt|θt−1

)
+ µt

(
θt
) UθY (θt)
UY (θt)

where I use the notation G
(
θt
)
≡ G

(
Ct
(
θt
)
, Yt
(
θt
)

; θt
)

for any function G of both the allocation(
Ct
(
θt
)
, Yt
(
θt
))

and the current type θt, to ease notation. These first order conditions define a

9As a corollary, it follows that unless types are time-independent, the planner’s solution is generically time-

inconsistent, since the planner must keep track of prior incentive commitments that are summarized by ∆: at date t

agents’ incentives are influenced by how the planner promises to reallocate resources at future dates. But once those

future dates arrive those prior incentive effects are “sunk”.

9



shadow cost of increasing the utility of agents with type θt, ψt
(
θt
)
, which consists of two com-

ponents. The first term f
(
θt|θt−1

)
R−1/UC

(
θt
)

or f
(
θt|θt−1

)
R−1/(−UY

(
θt
)
) represents a direct

shadow cost of increasing type θ utility through higher consumption or lower earnings. The second

term measures how a direct consumption or earnings increase affects Uθ
(
θt
)

and thereby tightens

or relaxes the local incentive compatibility constraint at θt. The latter is weighted by the multiplier

µt
(
θt
)

and added to the former.

The first-order conditions for vt
(
θt
)

and ∆t

(
θt
)
, along with the envelope conditions at t + 1,

yield

βR
ψt
(
θt
)

f (θt|θt−1)
=

∂Kt+1

∂vt (θt)
= λt+1

βR
µt
(
θt
)

f (θt|θt−1)
= − ∂Kt+1

∂∆t (θt)
= ηt+1

These conditions link the marginal costs of promised utility λt+1 and incentive commitments ηt+1

back in time to marginal costs of promised utility and shadow price of redistribution at θt. The

initial incentive commitment ∆0 is freely chosen, which results in η1 = −∂K1
∂∆0

= 0.

Finally, the multiplier µt
(
θt
)

is given by the solution to the following linear ODE:

µ̇t
(
θt
)

= − ∂Ht
∂wt (θt)

= λtf
(
θt|θt−1

)
− ηtJ

(
θt, θ

t−1
)
f
(
θt|θt−1

)
− ψt

(
θt
)

= λtf
(
θt|θt−1

)
− ηtJ

(
θt, θ

t−1
)
f
(
θt|θt−1

)
− R−1

UC (θt)
f
(
θt|θt−1

)
− µt

(
θt
) UθC (θt)
UC (θt)

along with the boundary conditions µ (θ) = µ
(
θ
)

= 0, which imply that there are no distortions at

the top and the bottom of the type distribution. The FOC for earnings yields an analogous ODE.

Let τt
(
θt
)

= 1 + UY
(
θt
)
/UC

(
θt
)

denote the labor wedge at θt, i.e. the distortion between the

marginal product and the marginal rate of substitution between consumption and earnings. Com-

bining the first-order conditions for Ct (·) and Yt (·) yields the following static optimality condition:

R−1

UC (θt)

τt
(
θt
)

1− τt (θt)
=

µt
(
θt
)

f (θt|θt−1)

(
UθC

(
θt
)

UC (θt)
−
UθY

(
θt
)

UY (θt)

)
.

This static optimality condition succinctly summarizes the static trade-off between efficiency

and redistribution at date 1. To substantiate this interpretation, consider a perturbation that leaves

a given type θt agent’s utility unchanged (∆C1

(
θt
)

= δ/UC
(
θt
)

and ∆Y1

(
θt
)

= δ/
(
−UY

(
θt
))

).

The planner raises resources

∆Y1

(
θt
)
−∆C1

(
θt
)

=

(
1

−UY (θt)
− 1

UC (θt)

)
δ =

1

UC (θt)

τt
(
θt
)

1− τt (θt)
δ

10



through this perturbation, which have to be weighted by the density f
(
θt|θt−1

)
. The LHS in

the static optimality condition thus represents the planner’s resource gain from this perturbation

discounted by R−1, or in other words, the marginal efficiency cost of distorting labor supply at θt.

The RHS describes how this resource gain can be re-distributed. The perturbation changes the

marginal information rent Uθ
(
θt
)

at θt by

∆Uθ
(
θt
)

= UθC
(
θt
)

∆C1 + UθY
(
θt
)

∆Y1 =

(
UθC

(
θt
)

UC (θt)
−
UθY

(
θt
)

UY (θt)

)
δ.

From the single-crossing condition, ∆Uθ
(
θt
)
> 0. Therefore, upon reducing the distortion at θt, the

planner cannot freely re-distribute the extra resources across all types, but must raise the utility of

all types θ′ > θt by an extra ∆Uθ
(
θt
)
, relative to all types θ′ < θt. Hence, at each θt, the planner

faces a simple tradeoff between an efficiency motive on the LHS and a redistribution motive on the

RHS: More redistribution around θt must come at the cost of lower efficiency at θt, and vice versa.

I can thus re-state the static optimality condition as follows:

µt
(
θt
)

f (θt|θt−1)
= MCt

(
θt
)
≡ R−1

1
−UY (θt) −

1
UC(θt)

UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

.

In other words, the optimal allocation equates the normalized multiplier µt
(
θt
)
/f
(
θt|θt−1

)
, or

shadow price of redistribution, to a static marginal cost of redistribution at θ that is given by the

ratio of the resource loss of marginally increasing the tax distortion, to the reduction in marginal

information rents and hence the increase in redistribution that this entails.

3 Incentive-adjusted Probability Measures

In this section, I introduce the key technical idea that the solution to the multipliers µt
(
θt
)

and

λt can be defined by means of a change in the probability measure that governs the Markov chain

of types. This change captures the notion that incentive compatibility imposes restrictions on

the planner’s ability to redistribute utility from higher to lower types. Specifically, by combining

the linear ODE for µt
(
θt
)

with the first order conditions for consumption and earnings and the

boundary conditions µ (θ) = µ
(
θ
)

= 0, I obtain two separate, but equivalent characterizations

of µt
(
θt
)

and λt, once based on
UθC(θt)
UC(θt) and marginal utilities of consumption, and once based

on
UθY (θt)
UY (θt) and marginal disutilities of earnings. These characterizations are summarized below in

Proposition 1:

11



Proposition 1 : The multipliers µt
(
θt
)

and λt can be represented in one of the following two

(equivalent) forms:

(i) In terms of marginal benefits of redistribution through consumption:

µt
(
θt
)

f (θt|θt−1)
= M̂Bt

(
θt
)

+ %̂t
(
θt
)
ηt, where

M̂Bt

(
θt
)
≡ R−1 1− F̂

(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê
(

1

UC (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
− Ê

(
1

UC (θt)
|θt−1

)}

f̂
(
θt|θt−1

)
≡

f
(
θt|θt−1

)
m̂
(
θt
)∫ θ

θ f (θt|θt−1) m̂ (θt) dθt
with m̂

(
θt
)

= e
−
∫ θ
θ

UθC

(
θt
)

UC(θt)
dθt

%̂t
(
θt
)

= %t
(
θt
)
+

1− F̂
(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê

(
%t
(
θ, θt−1

) UθC (θ, θt−1
)

UC (θ, θt−1)
|θ ≥ θt, θt−1

)
− Ê

(
%t
(
θt
) UθC (θt)
UC (θt)

|θt−1

)}
(ii) In terms of marginal benefits of redistribution through earnings:

µt
(
θt
)

f (θt|θt−1)
= M̃Bt

(
θt
)

+ %̃t
(
θt
)
ηt, where

M̃Bt

(
θt
)
≡ R−1 1− F̃

(
θt|θt−1

)
f̃ (θt|θt−1)

{
Ẽ
(

1

−UY (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
− Ẽ

(
1

−UY (θt)
|θt−1

)}

f̃
(
θt|θt−1

)
≡

f
(
θt|θt−1

)
m̃
(
θt
)∫ θ

θ f (θt|θt−1) m̃ (θt) dθt
with m̃

(
θt
)

= e
−
∫ θ
θ

UθY

(
θt
)

UY (θt)
dθt

%̃t
(
θt
)

= %t
(
θt
)
+

1− F̃
(
θt|θt−1

)
f̃ (θt|θt−1)

{
Ẽ

(
%t
(
θ, θt−1

) UθY (θ, θt−1
)

UY (θ, θt−1)
|θ ≥ θt, θt−1

)
− Ẽ

(
%t
(
θt
) UθY (θt)
UY (θt)

|θt−1

)}
In addition,

λt = R−1Ê
(

1

UC (θt)
|θt−1

)
+ ηtÊ

(
%t
(
θt
) UθC (θt)
UC (θt)

|θt−1

)

= R−1Ẽ
(

1

−UY (θt)
|θt−1

)
+ ηtẼ

(
%t
(
θt
) UθY (θt)
UY (θt)

|θt−1

)

In this proposition Ê (·) denotes the expectations operator associated with cdf F̂ (·) and Ẽ (·)

the expectations operator associated with cdf F̃ (·). The main message from Proposition 1 is that

non-separabity of preferences enters the characterization of multipliers by adjusting the probability

measure over types from F (·) to F̂ (·) when UθC 6= 0 or from F (·) to F̃ (·) when UθY 6= 0.

The direction of these incentive adjustments depends on the signs of UθC and UθY . Since

UθY /UY < min {0, UθC/UC}, F̃
(
·|θt−1

)
is first-order stochastically dominated by F

(
·|θt−1

)
and
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F̂
(
·|θt−1

)
. In addition, F̂

(
·|θt−1

)
first-order stochastically dominates F

(
·|θt−1

)
when UθC > 0,

and F
(
·|θt−1

)
first-order stochastically dominates F̂

(
·|θt−1

)
when UθC < 0. The characterization

subsumes the benchmark case with separable preferences (UθC = 0) as a special case in which

F̂
(
·|θt−1

)
= F

(
·|θt−1

)
, i.e. incentive-adjusted and original probability measures coincide.

The ranking of these distributions in terms of first-order dominance is naturally linked to the

interpretation of UθC/UC and UθY /UY as needs- and ability-based redistribution motives. Since

UθY /UY < 0, increasing utilities by reducing earnings lowers information rents, and thus allows

for more redistribution of utility towards lower types. This explains why F̃
(
·|θt−1

)
overweighs the

lower types relative to F
(
·|θt−1

)
.

Likewise, F̂
(
·|θt−1

)
is shifted towards higher (lower) types, whenever higher types have higher

(lower) consumption needs. When higher types have lower consumption needs (UθC < 0), increa-

sing consumption reduces information rents and thus allows for more redistribution towards lower

types. In contrast, when consumption needs are increasing in type, extra consumption increases in-

formation rents and reduces redistribution towards lower types, in which case F̂
(
·|θt−1

)
first-order

stochastically dominates F
(
·|θt−1

)
.

Redistributive Perturbations: These changes in probability measures are naturally linked

to a perturbation that identifies the marginal benefit of redistribution M̂Bt

(
θt
)

as the resource gain

of a local utility transfer from θ′ > θt to θ′ < θt that preserves incentive compatibility and expected

utility.10 When %̂t
(
θt
)
ηt = 0, the optimal allocation reduces to a simple comparison of static costs

and benefits of redistribution. When %̂t
(
θt
)
ηt > 0, the static marginal benefit is augmented by a

backward-looking dynamic component.

Consider the following class of perturbations which transfer consumption from all agents with

types θ′ > θ to all agents with types θ′ < θ

∆C1

(
θ′, θt−1

)
=

 1
UC(θ′,θt−1)

·∆V
(
θ′, θt−1

)
< 0 if θ′ > θt

1
UC(θ′,θt−1)

·∆V
(
θ′, θt−1

)
> 0 if θ′ < θt

This perturbation decreases realized utility by −∆V
(
θ′, θt−1

)
for all agents with types θ′ > θ and

increases realized utility by ∆V
(
θ′, θt−1

)
for all agents with types θ′ < θ. Set ∆V

(
θ′, θt−1

)
so that

limθ′↑θ ∆V
(
θ′, θt−1

)
= ζ̂− > 0 and limθ′↓θ ∆V

(
θ′, θt−1

)
= ζ̂+ < 0, with ζ̂− − ζ̂+ = δ > 0, i.e. the

change in utility around θ is of size δ.

10See Brendon (2013) and Farhi and Werning (2012) for related perturbation arguments in static and dynamic

Mirrlees models with separable preferences.
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The perturbation changes marginal information rents Uθ
(
θ′, θt−1

)
by

∆Uθ
(
θ′, θt−1

)
=
UθC

(
θ′, θt−1

)
UC (θ′, θt−1)

·∆V
(
θ′, θt−1

)
,

and it therefore preserves local incentive compatibility if and only if

∆V ′
(
θ′, θt−1

)
= ∆Uθ

(
θ′, θt−1

)
=
UθC

(
θ′, θt−1

)
UC (θ′, θt−1)

∆V
(
θ′, θt−1

)
.

The unique perturbation that preserves local IC for all θ′ 6= θ is then given by

∆V
(
θ′, θt−1

)
=


e

∫ θ′
θ

UθC(θ′′,θt−1)
UC(θ′′,θt−1)

dθ′′

· ζ̂+ =
m̂(θ′,θt−1)
m̂(θt,θt−1)

ζ̂+ < 0 if θ′ > θt

e

∫ θ′
θ

UθC(θ′′,θt−1)
UC(θ′′,θt−1)

dθ′′

· ζ̂− =
m̂(θ′,θt−1)
m̂(θt,θt−1)

ζ̂− > 0 if θ′ < θt

For θ′ just above θ, the perturbation changes Uθ
(
θ′, θt−1

)
by
(
UθC

(
θ′, θt−1

)
/UC

(
θ′, θt−1

))
· ζ̂+,

and this adjustment to the slope must be offered to all θ′′ > θ′ to restore local incentive compatibility

at θ′. But these modifications for any θ′′ > θ′ then generate further adjustments for all θ′′′ > θ′′,

and so on. By re-weighting the utility perturbations according to m̂ (·), the perturbation preserves

local incentive compatibility for all types: the ODE is solved by “integrating up” the cumulative

utility changes for higher types that are required as a result of preserving local IC at all lower types.

I complete the perturbation by requiring that the net change to expected utility is 0:

0 =

∫ θ

θ
∆V

(
θ′, θt−1

)
f
(
θ′|θt−1

)
dθ′ =

∫ θ

θ

m̂ (θ′)

m̂ (θ)
ζ̂+f

(
θ′|θt−1

)
dθ′ +

∫ θ

θ

m̂ (θ′)

m̂ (θ)
ζ̂−f

(
θ′|θt−1

)
dθ′,

which yields ζ̂− = δ
(

1− F̂
(
θt|θt−1

))
and ζ̂+ = −δF̂

(
θt|θt−1

)
. The discounted resource gain of

this perturbation is then given by

−R−1

∫ θ

θ
∆C1

(
θ′, θt−1

)
f
(
θ′|θt−1

)
dθ′

= δR−1 1− F̂
(
θt|θt−1

)
m̂ (θt, θt−1)

{
Ê
(

1

UC (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
− Ê

(
1

UC (θt)
|θt−1

)}
= δf

(
θt|θt−1

)
M̂Bt

(
θt
)
,

which justifies the interpretation of M̂Bt

(
θt
)

as the marginal benefit of redistribution around θt

via consumption, i.e. the marginal benefit of transfering consumption around θt while maintai-

ning incentive compatibility and keeping expected utility unchanged. This transfer saves resources

because higher types have lower marginal utilities.

In the benchmark with separable preferences (UθC (·) = 0), this perturbation transfers utility

uniformly from all types θ
′
> θt to all type θ

′
< θt. With separable preferences, this uniform

14



transfer of utilities does not affect local incentive compatibility constraints other than at θt, which

explains why the original and incentive-adjusted probability measures coincide.

An analogous perturbation argument explains why a local IC and expected-utility preserving

perturbation that redistributes leisure or earnings around θ must reweight states according to m̃ (·),

resulting in the above expression M̃Bt

(
θt
)

as the marginal benefit of redistribution via earnings.

Tying incentive adjustments to observables: The next proposition decomposes the chan-

ges in probability measures m̂ (·) and m̃ (·) into a risk component UC
(
θt
)

or −UY
(
θt
)

that captures

the redistribution motive, and an incentive component M̂
(
θt
)

or M̃
(
θt
)

that represents the adjus-

tment to the marginal redistribution of resources: preserving incentive compatibility requires that

on the margin consumption must be redistributed in proportion to M̂ (·) and earnings in proportion

to M̃ (·). Furthermore, the latter only depends on the elasticities EC and EY and the distribution

of consumption and earnings.

Proposition 2 The incentive adjustments m̂ (·) and m̃ (·) admit the following representations:

(i) Consumption-based incentive adjustment: m̂
(
θt
)

= UC
(
θt
)
M̂
(
θt
)
, where

M̂
(
θt
)

= e
∫ θt
θ EC(θ′,θt−1)dlnC(θ′,θt−1)

(ii) Earnings-based incentive adjustment: m̃
(
θt
)

= −UY
(
θt
)
M̃
(
θt
)
, where

M̃
(
θt
)

= e
−
∫ θt
θ EY (θ′,θt−1)dlnC(θ′,θt−1)

The incentive component M̂ (·) is increasing in θt so consumption must be redistributed re-

gressively on the margin except when EC = 0. Moreover, M̂ (·) only depends on the distribution

of consumption and the elasticity EC (·), and when the latter is constant, M̂
(
θt
)

= C
(
θt
)EC . On

the other hand, M̃
(
θt
)

is decreasing in θt, unless EY = 0, so the marginal incentive-compatible

redistribution of utility via earnings is progressive. It only depends on the distribution of earnings

and the earnings elasticity EY (·), and when the latter is constant, M̃
(
θt
)

= Y
(
θt
)−EY .

The elasticities EY
(
θt
)

and EC
(
θt
)

were defined in section 2. They determine how much the

marginal rate of substitution responds to increases in consumption or earnings. These two parame-

ters have natural counter-parts in terms of income and substitution effects of labor supply, which

are fully discussed in a static application of this framework in Hellwig and Werquin (2021). Intui-

tively speaking, 1/EY
(
θt
)

represents an elasticity of labor supply to wages, holding consumption

constant, and EC
(
θt
)

governs the relative strength of income and substitution effects.

When preferences are weakly separable (U (C, Y ; θ) = U (γ (C,C (θ))− n (Y, θ))), the risk and

incentive components both include a factor γC (·) or nY (·) which then cancels out from the product:
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m̂
(
θt
)

= U ′
(
θt
)
χ
(
θt
)

where χ
(
θt
)

= e

∫ θt
θ

γCC

(
θ
′
,θt−1

)
γC(θ′ ,θt−1)

C
′(
θ
′
,θt−1

)
dθ
′

and m̃
(
θt
)

= U ′
(
θt
)
p
(
θt
)

where p
(
θt
)

= e

∫ θt
θ

nY θ

(
θ
′
,θt−1

)
nY (θ′ ,θt−1)

dθ
′

. Hence m̂
(
θt
)

and m̃
(
θt
)

decompose into a risk component from

the curvature in U and an incentive component from the non-separabilities between the consumption

utility γ (C,C (·)) or effort n (Y, ·) and type θ. When preferences are additively separable, then

U ′ (·) = χ (·) = 1, and the risk and incentive components in the adjusted probability measure just

offset each other, M̂
(
θt
)

= 1/UC
(
θt
)
. Also, with weakly separable preferences, the elasticity EC (·)

only depends on the curvature of γC (·), while the elasticity EY (·) only depends on the curvature

in n (Y, θ), in which case 1/EY (·) represents the Frisch elasticity of labor supply.

4 Benchmark: separable preferences

Before developing the general characterization of optimal labor and savings wedges, it will be

useful to pause and review the well-known benchmark with separable preferences that has been

extensively analyzed in Golosov, Kocherlakota and Tsyvinski (2003), Farhi and Werning (2013),

Golosov, Troshkin and Tsyvinski (2016) and summarized by Stantcheva (2020). This can be done

simply by setting UθC = UCY = 0 in the characterization of multipliers given by Proposition 1.

Inverse Euler Equation: With separable preferences, the optimal savings wedge is given by

the Inverse Euler Equation

UC
(
θt
)

= βR

{
E
(

1

UC (θt+1)
|θt
)}−1

< βRE
(
UC
(
θt+1

)
|θt
)
.

The incentive-compatibility and expected utility preserving perturbation in the previous section

generalizes a well-known perturbation argument which explains why, with separable preferences, the

returns to savings must be distributed in proportion to 1/UC
(
θt+1

)
and therefore the discounted

shadow cost of utility at date t + 1 equals λt+1 = R−1 · E
(
1/UC

(
θt+1

))
. This expression arises

because the planner must redistribute resources at date t+ 1 in such a manner that utility changes

are uniform across all types, so as to preserve incentive compatibility. As a result the resources from

savings are distributed regressively: higher θt+1 types enjoy higher returns from savings than lower

θt+1 types. This observation then leads to the Inverse Euler Equation (IEE) for optimal savings

distortions, which augments the standard inter-temporal substitution channel by the wealth effect

of savings on future incentives and redistribution. This effect reduces the social returns to savings

relative to the private ones and is captured by the savings wedge implied by the IEE.
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Smoothing and back-loading of labor taxes: The optimal labor wedge satisfies

R−1

UC (θt)

τt
(
θt
)

1− τt (θt)
=

µt
(
θt
)

f (θt|θt−1)
= MCt

(
θt
)

= MBt
(
θt
)

+ βR%t
(
θt
)
·MCt−1

(
θt−1

)

where MBt
(
θt
)
≡ R−1 1− F

(
θt|θt−1

)
f (θt|θt−1)

{
E
(

1

UC (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
− E

(
1

UC (θt)
|θt−1

)}

%t
(
θt
)

=
1− F

(
θt|θt−1

)
f (θt|θt−1)

E
(
J
(
θ
′
, θt−1

)
|θ′ ≥ θt, θt−1

)
=

∂(1−F(θt|θt−1))
∂θt−1

f (θt|θt−1)
> 0

i.e. the planner’s solution equates the static marginal cost of redistribution for each θt, to the

static marginal benefit of redistribution around θt, MBt
(
θt
)
, and a backwards-looking dynamic

marginal benefit βR%t
(
θt
)
·MCt−1

(
θt−1

)
, which captures the marginal impact of prior incentive

commitments on the shadow price of redistribution in the current period. These prior incentive

commitments constitute a promise to limit future information rents. They appear in the recursive

optimality condition through the term βR%t
(
θt
)
·MCt−1

(
θt−1

)
, where %t

(
θt
)
> 0 denotes the rate

of decay in information rents. One can rewrite the incentive commitment constraint as

∆ =

∫ (
Uθ
(
θt
)

+ β∆t

(
θt
))
%t
(
θt
)
f
(
θt|θt−1

)
dθt.

Therefore, %t
(
θt
)

describes the rate at which marginal information rents at θt feed back into

incentive commitments at θt−1. %t
(
θt
)

naturally maps into the persistence of the type process at

θt−1: If %t
(
θt
)

= 0 for all θt|θt−1, ∆ = 0 and the recursive optimality condition reduces to its

static counterpart, since there is no scope for dynamic incentive commitments. When types are

perfectly persistent, %t
(
θt
)

= 1 and information rents at θt are fully passed through to incentive

commitments at θt−1.

The optimal labor distortion trades off the marginal cost of efficiency distortions at θt against

the marginal redistributional gain. Consider a perturbation
(
∆Ct

(
θt
)
,∆Yt

(
θt
))

that marginally

increases distortions at θt, but leaves a type θt agent’s utility unchanged. The marginal efficiency

loss associated with this perturbation is MCt
(
θt
)
·δ. The marginal benefit of redistribution at θt is

MBt
(
θt
)
·δ. In addition, the same reduction in marginal information rents at θt also feeds back into

marginal information rent at θt−1 at a rate %t
(
θt
)
. This reduction in marginal information rents

can be transformed into a marginal efficiency gain at a rate βMCt−1

(
θt−1

)
, which must in turn be

adjusted to period t by the return R. Hence the dynamic benefit from additional redistribution at t

is given by δ ·%t
(
θt
)
·βR·MCt−1

(
θt−1

)
. Combining these terms yields the recursive characterization

of MCt
(
θt
)

given above.
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The recursive optimality condition thus smoothes tax distortions optimally between θt−1 and

θt, where backloading distortions to θt generates additional marginal benefits from redistribution

around θt. Solving the optimality condition backwards and expressing MCt
(
θt
)

in terms of the

labor tax τt
(
θt
)

yields the following expression:

τt
(
θt
)

UθY (θt)
=

t−1∑
τ=0

(βR)τ
τ−1∏
s=0

%t−s
(
θt−s

)
MBt−τ

(
θt−τ

)
i.e. at the optimum the current tax distortion is equal to a weighted sum of current and past

marginal benefits of redistribution, with weights that take into account the impact of efficiency dis-

tortions at θt on prior information rents. Hence, the optimal cost-benefit trade-off in the dynamic

model sets the cost of current tax distortions against the benefits of higher current and past redis-

tribution: more redistribution in period t reduces prior information rents and thus allows for more

redistribution in earlier periods without adversely affecting incentives. The incentive commitment

thus constitutes a commitment to future taxes and redistribution to limit current information rents.

Alternative representations: The recursive optimality condition can be related in a straight-

forward manner to the characterizations provided by Golosov, Troshkin and Tsyvinski (2016) and

Farhi and Werning (2013). Multiplying both sides of the optimality condition by
UY θ(θt)
UY (θt) UC

(
θt
)

gives the characterization provided by Golosov, Troshkin and Tsyvinski (2016):

τt(θ
t)

1− τt(θt)
=
UY θ

(
θt
)

UY (θt)
RUC

(
θt
)
MBt

(
θt
)
+βR%t

(
θt
) UY θ

(
θt
)
/UY

(
θt
)

UY θ (θt−1) /UY (θt−1)

UC
(
θt
)

UC (θt−1)

τt−1(θt−1)

1− τt−1(θt−1)

Based on this expression, they show that the impact of past labor wedges on the current one

increases with UC
(
θt
)
, and therefore decreases with the current type realization.

One obtains the characterization provided by Farhi and Werning (2013) by multiplying both

sides of the recursive optimality condition by
UY θ(θt)
−UY (θt) and then taking expectations:11

E

(
τt(θ

t)

1− τt(θt)
1/UC

(
θt
)

E(1/UC (θt) |θt−1)
|θt−1

)
= Cov

(∫ θt

θ

UY θ
(
θ′, θt−1

)
−UY (θ′, θt−1)

dθ′,
1/UC

(
θt
)

E(1/UC (θt) |θt−1)
|θt−1

)

+R
(
θt−1

) τt−1(θt−1)

1− τt−1(θt−1)

where R
(
θt−1

)
=

E(%t(θ
t)UY θ

(
θt
)
/UY

(
θt
)
|θt−1)

UY θ (θt−1) /UY (θt−1)
.

Hence the recursive optimality condition takes expectations of future tax distortions and future

marginal benefits of redistribution under an incentive-adjusted probability measure that re-weights

11Their representation is more general in that marginal costs and benefits can be multiplied with arbitrary weighting

functions before taking expectations. Hence their result also implies the present one by applying a weighting function

π (·) that places weight only on a singleton of types. The two characterizations are thus equivalent.
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returns by 1/UC
(
θt
)
, and labor taxes mean-revert with a rate R

(
θt−1

)
. The term

UY θ(θt−1)
UY (θt−1)

measures the impact of current labor taxes on current information rents, and E(%t(θ
t)
UY θ(θt)
UY (θt) |θ

t−1)

measures the impact of expected future labor taxes on current information rents. ThereforeR
(
θt−1

)
trades off between the two in a such a way that a marginal transfer of tax distortions over time

does not change current information rents and redistribution.

With isoelastic preferences (U (C, Y ; θ) = γ (C)−κ (Y/A (θ))1+EY ) and A (θ) = eφθ with φ > 0,

the expected marginal benefit of future redistribution is (1 + EY )Cov
(
log (A (θt)) ,

M̂(θt)

E(M̂(θt)|θt−1)
|θt−1

)
,

while labor taxes mean-revert with a rate R
(
θt−1

)
= E(%t(θ

t)|θt−1) that only depends on the sto-

chastic process of types.

Trading off efficiency and redistribution in this manner relies on the fact that an intervention at

or around θ only affects incentives locally when preferences are separable. This assumption com-

pletely separates the incentive-compatible utility transfers across time from efficient redistribution

within each period. Moreover, the characterization of optimal allocations remains incomplete since

it provides a single optimality condition to characterize two allocation variables (Ct
(
θt
)
, Yt
(
θt
)
) for

each type. In the remainder of this paper I show how these two results generalize to non-separable

preferences, and I complete the characterization of optimal allocations by also considering the

benefits of redistribution via earnings or leisure.

5 Optimal Savings Wedges

I now discuss the implications of Proposition 1 for optimal savings wedges. Two changes appear in

the expression for λt, relative to the separable benchmark: the use of incentive-adjusted probabili-

ties, and the additional term ηtÊ
(
%t
(
θt
) UθC(θt)
UC(θt) |θ

t−1

)
or ηtẼ

(
%t
(
θt
) UθY (θt)
UY (θt) |θ

t−1

)
.

The use of incentive-adjusted probabilities follows from the fact that marginal returns to savings

must be redistributed in proportion to M̂ (·) for consumption and M̃ (·) for earnings, in order to

preserve local incentive compatibility.

The additional term in the expression for λt identifies a novel feedback effect from savings to

current marginal information rents. A marginal increase in savings at θt−1, which is redistributed at

θt|θt−1 in proportion to 1/UC
(
θt
)
· m̂
(
θt
)
· δ = M̂

(
θt
)

to preserve incentive compatibility, changes

marginal information rents by an agent of type θt by UθC
(
θt
)
/UC

(
θt
)
· m̂
(
θt
)
· δ, and as discussed

above, this change in marginal information rents is passed through to θt−1 at a rate %t
(
θt
)
. Hence

the term Ê
(
%t
(
θt
) UθC(θt)
UC(θt) |θ

t−1

)
measures the feedback from future returns to savings into current

information rents, and these information rents are “priced” by ηt, which represents the shadow cost
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of incentive commitments at θt−1. Along the same lines, Ẽ
(
%t
(
θt
) UθY (θt)
UY (θt) |θ

t−1

)
represents the

feedback from a labor deferral to current information rents.

Combining the dynamic optimality conditions with the characterization for λt+1 and rearranging

terms then yields the following expression for the planner’s consumption-savings tradeoff:

1

UC (θt)
+

Rµt
(
θt
)

f (θt|θt−1)

UθC
(
θt
)

UC (θt)
=

Rψt
(
θt
)

f (θt|θt−1)

= (βR)−1 Ê
(

1

UC (θt+1)
|θt
)

+
Rµt

(
θt
)

f (θt|θt−1)
Ê

(
%t+1

(
θt+1

) UθC (θt+1
)

UC (θt+1)
|θt
)

This expression generalizes the IEE to non-separable preferences. The terms 1/UC
(
θt
)

on

the LHS and (βR)−1 Ê
(
1/UC

(
θt+1

)
|θt
)

on the RHS describe the inter-temporal tradeoff between

saving resources at θt and redistributing the returns to savings in an incentive-compatible manner

at date t + 1. As before savings reduce future redistribution. The incentive-adjusted expectation

amplifies the impact of savings on future incentives when UθC > 0 and dampens it when UθC < 0.

The two new terms that appear in this expression are related to how savings affect information

rents and redistribution at θt. Savings affect current redistribution through (i) the direct effect of

savings on redistribution at θt, and (ii) the feedback from future information rents at θt+1|θt to

redistribution at θt. These two effects determine together how savings affect current redistribution,

which in turn increases or reduces the resources generated by savings at θt. They are both weighted

by the normalized shadow price of redistribution at θt, Rµt
(
θt
)
/f
(
θt|θt−1

)
.

The direct effect captures the fact that increasing savings and lowering consumption of type

θt by δ/UC
(
θt
)

changes Uθ
(
θt
)

and therefore redistribution around θt by UθC
(
θt
)
/UC

(
θt
)
. The

resource gain (if UθC
(
θt
)
> 0) or cost (if UθC

(
θt
)
< 0) associated with this change in redistribution

appears in the UθC
(
θt
)
/UC

(
θt
)

term on the LHS.

However, this direct effect must be offset against the feedback of savings from future to current

information rents, which is given by Ê
(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

on the RHS. This term inher-

its the sign of UθC (·), i.e. the effect nets out when preferences are separable, it reduces current

redistribution when consumption needs are increasing in type (UθC (·) > 0) and increases current re-

distribution when consumption needs are decreasing in type (UθC (·) < 0). This force works against

the direct effect, and its strength depends on the decay of future information rents, %t+1

(
θt+1

)
.

Theorem 1 shows how these effects combine to determine the overall savings wedge.

Theorem 1 : An interior solution to the multi-period dynamic optimal taxation problem satisfies
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the following Generalized Inverse Euler Equation in consumption:

UC
(
θt
)

= βR
(
1 + ŝC

(
θt
))

E

UC (θt+1
) M̂

(
θt+1

)
E
(
M̂ (θt+1) |θt

) |θt


where

ŝC
(
θt
)

=
τt
(
θt
)

1− τt (θt)

UθC
(
θt
)
/UC

(
θt
)
− Ê

(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

UθC (θt) /UC (θt)− UθY (θt) /UY (θt)
.

The optimal type-contingent savings wedge ŜC
(
θt+1

)
≡
(
1 + ŝC

(
θt
)) M̂(θt+1)

E(M̂(θt+1)|θt)
− 1 has expecta-

tion E
(
ŜC
(
θt+1

)
|θt
)

= ŝC
(
θt
)
. Finally, ŝC

(
θt
)
R 0 if and only if

UθC
(
θt
)

UC (θt)
R Ê

(
%t+1

(
θt+1

) UθC (θt+1
)

UC (θt+1)
|θt
)

Theorem 1 highlights the existence of a new intertemporal tradeoff between redistribution at

date t and redistribution at date t + 1. The dynamic Mirrlees problem augments the standard

consumption-savings tradeoff in resources by an additional inter-temporal tradeoff between present

and future redistribution that is internalized by the planner, but not by private savings decisions.

This tradeoff in turn can lead to optimal savings taxes or subsidies, depending on whether the

planner is more concerned about present or future redistribution, as well as by the direction in

which savings taxes or subsidies facilitate redistribution.

The optimal type-contingent savings subsidy ŜC
(
θt+1

)
decomposes into a factor 1+ ŝC

(
θt
)

that

internalizes the combined effect of savings on current redistribution, and a factor
M̂(θt+1)

E(M̂(θt+1)|θt)
that

redistributes future marginal returns regressively to preserve incentive compatibility at θt+1. This

second factor is derived from the IC-preserving change in probability measure and averages to 1. It

therefore doesn’t affect the average savings subsidy, generalizing the result of zero expected wealth

taxes from Kocherlakota (2005) to arbitrary non-separable preferences. The first factor internalizes

the effect of savings on current redistribution. This factor determines whether savings should, on

average, be taxed or subsidized.

Effect of savings on current redistribution: If types are not too persistent (the direct effect

dominates), savings should be subsidized if consumption needs are increasing in type (UθC > 0) and

taxed if consumption needs are decreasing in type (UθC < 0). These prescriptions are reversed if

the indirect effect dominates. The magnitude of the wedge is decreasing in the degree of persistence

of information rents, concretely the condition for ŝC
(
θt
)
R 0 say that savings should be subsidized

(taxed) if the impact of savings on current information rents, UθC
(
θt
)
/UC

(
θt
)
, is larger than the
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expected feedback from future information rents, Ê
(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

. This condition can

be equivalently re-stated in terms of the marginal impact of the returns on information rents as

UθC
(
θt
)
R βRE

%t+1

(
θt+1

)
UθC

(
θt+1

) M̂
(
θt+1

)
E
(
M̂ (θt+1) |θt

) |θt
 .

The magnitude of the savings wedge thus relates to the current labor tax τt
(
θt
)
/
(
1− τt

(
θt
))

,

which is used to “price” redistribution at θt, and the expected rate of decay %t+1

(
θt+1

)
which

governs the relative strength of the indirect effect. If types are highly persistent, one reverts to

a “benchmark” in which it is optimal to leave savings decisions on average undistorted. In this

case the direct and indirect effect on current redistribution just offset so savings have no impact

on current information rents and redistribution. But this knife-edge result arises for reasons very

different from Kocherlakota (2005), since it is based on two competing forces for savings taxes or

subsidies just canceling each other.

Effect of savings on future incentives: The change of probability measure
M̂(θt+1)

E(M̂(θt+1)|θt)
summarizes how returns to savings must be distributed to preserve incentive compatibility. Since

M̂ (·) is increasing in θt+1 unless EC = 0, the returns on savings are regressive, i.e. higher

types must earn higher returns to preserve incentive compatibility. This in turn implies that

E
(
UC
(
θt+1

) M̂(θt+1)
E(M̂(θt+1)|θt)

|θt
)
< E

(
UC
(
θt+1

)
|θt
)
, i.e. the state-contingent savings subsidy redu-

ces incentives to save by increasing returns for high realizations of θt+1.

When preferences are separable, M̂
(
θt+1

)
= 1/UC

(
θt+1

)
, and the representation collapses to

the standard IEE. In general, the adjustment to preserve incentive compatibity can be either more

or less regressive, depending on whether M̂
(
θt+1

)
is steeper or less steep than 1/UC

(
θt+1

)
, or

equivalently whether UθC > 0 or UθC < 0.

Finally, if EC = 0, the generalized IEE coincides with the normal Euler Equation and it is

optimal not to distort savings. This case corresponds to a generalized form of GHH preferences.

With weakly separable preferences (U (C, Y ; θ) = U (γ (C,C (θ))− n (Y, θ))), the inverse Euler

equation can be rewritten as

UC
(
θt
)

= βR
(
1 + ŝC

(
θt
))

E
(
U ′
(
θt+1

)
· χ
(
θt+1

)
|θt
){

E

(
χ
(
θt+1

)
γC (θt+1)

|θt
)}−1

This representation illustrates that the marginal returns to savings, after adjusting for incentive

compatibility, depend on three elements: (i) the arithmetic expectation of the “outer” marginal

utility U ′ (·) which does not affect incentives, (ii) the harmonic expectation of the “inner” marginal
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utility γC (·) which does, and (iii) an incentive adjustment to the expectations given by χ (·) which

factors in the non-separability in γ. It is thus important to distinguish between non-separability

coming from curvature in the aggregator function U (·) which is immaterial for incentives and thus

treated according to the standard Euler Equation, and curvature and non-separability in the inner

function γ, which matters for incentives and is thus treated according to the Inverse Euler Equation,

with an incentive adjustment for the non-separability in γ. The result is a “mixed” Euler Equation

that combines elements of both the standard and the Inverse Euler Equation in one.

Optimal Social Mobility: Theorem 1 has direct implications for the question of optimal

social mobility, originally posed in the work of Thomas and Worrall (1990) and Atkeson and Lucas

(1992) who presented dynamic private information economies in which marginal utilities tended to

infinity and consumption to 0 with probability 1 for almost all agents. To this end, I set βR = 1, so

that long-run dynamics are not determined by discounting and returns. Then the optimal savings

wedge implies the following about the process of Marginal utilities:

Corollary 1 : Marginal utilities satisfy the following dynamics:

(i) If ŝC
(
θt
)
≤ 0 for all θt, then 1

UC(θt) ≥ Ê
(

1
UC(θt+1)

|θt
)

and UC
(
θt
)
≤ E

(
UC
(
θt+1

)
|θt
)

for

all θt.

(ii) If ŝC
(
θt
)
> 0 for all θt, then 1

UC(θt) < Ê
(

1
UC(θt+1)

|θt
)

for all θt.

The first part of the corollary states that if it is optimal to always restrict savings, the in-

verse marginal utility process (and by extension, consumption) follow a super-martingale under

the incentive-adjusted probability measure, and marginal utility follows a sub-martingal under the

original measure. This in turn generalizes the force towards immiseration that is present when

preferences are separable and inverse Marginal utilities follow a Martingale.

When it is instead optimal to subsidize savings, then the inequalities are reversed and inverse

marginal utilities and consumption drift up under the incentive-adjusted probability measure.

While this cannot be directly mapped into corresponding dynamics under the original measure,

using the representation of M̂ (·) from proposition 2 when EC is constant and preferences weakly

separable yields

E

(C (θt+1
)

C (θt)

)EC
|θt
 ≥ E

(
U ′
(
θt+1

)
· χ
(
θt+1

)
U ′ (θt) · χ (θt)

|θt
)

and when χ (·) is increasing in θt+1 and types are sufficiently mean-reverting, then it is optimal to

have a savings subsidy and a consumption process that inherits the mean-reversion from U ′
(
θt+1

)
·

χ
(
θt+1

)
, thus breaking the forces towards immiseration. As discussed for example by Farhi and
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Werning (2007), the existing immiseration results rely on the fact that at the optimal allocation,

temporary shocks to labor productivity have permanent effects on future marginal utilities as a

consequence of smoothing incentives over time. Here the temporary co-movement of consumption

needs or marginal utilities with types makes it optimal to build some “foregiveness” into optimal

consumption allocations: more productive types also have higher consumption needs, which makes

it optimal to front-load consumption increases for incentive reasons. This restores mean reversion

in the long-run without differential discounting or altruism towards future generations as in Farhi

and Werning (2007) or Phelan (2006).

Inter-temporal Earnings Wedge: Along the same lines, one can re-cast optimal inter-

temporal allocations of effort or labor by a generalized IEE which yields the following expression:

−UY (θt) = βR
(
1 + s̃Y (θt)

)
E

−UY (θt+1
) M̃(θt+1)

E
(
M̃(θt+1)|θt

) |θt


where

s̃Y (θt) = τt(θ
t)
UθY (θt)/UY (θt)− Ẽ

(
%t+1(θt+1)UθY (θt+1)

UY (θt+1)
|θt
)

UθC(θt)/UC(θt)− UθY (θt)/UY (θt)
.

The generalized IEE for earnings augments the tradeoff in intertemporal allocation of earnings

by a tradeoff between current and future redistribution that is internalized by the planner but not

by private decisions. This second tradeoff decomposes into the effect on future incentives through

the incentive-adjusted probability or returns M̃(θt+1), a direct effect on current redistribution, and

the feedback from future to current redistribution. The latter two are captured by s̃Y (θt).

Since redistribution based on ability lowers current information rents (UθY /UY < 0), M̃ (·) is

decreasing in θt+1. Therefore, if −UY (·) is decreasing in θt+1,12 E
(
−UY

(
θt+1

) M̃(θt+1)

E(M̃(θt+1)|θt)
|θt
)
>

E
(
−UY

(
θt+1

)
|θt
)
, so the incentive adjustment favors backloading leisure, unless n (Y, θ) is linear

in Y , or EY = 0. On the other hand, if the direct effect dominates the indirect, then s̃Y (θt) < 0

which implies that it is optimal to backload earnings, and subsidize current leisure. Since the latter

dominates on average, earnings become mean-reverting at the optimal allocation.

12Under the weak separability assumption, −UY (·) is decreasing in θ2 whenever nY (·) is decreasing in θ2. This

holds automatically whenever Y (·) is not too strongly increasing.
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6 Optimal Labor Wedges

I now turn to the caracterization of optimal labor wedges. Combining Proposition 1 with the

dynamic optimality conditions yields the following recursive characterization of static labor wedges:

MCt
(
θt
)

= M̂Bt

(
θt
)

+ %̂t
(
θt
)
βR ·MCt−1

(
θt−1

)
= M̃Bt

(
θt
)

+ %̃t
(
θt
)
βR ·MCt−1

(
θt−1

)
The equation combines the recursive characterization of labor wedges from the case with separable

preferences with the observation that the optimal allocation equates the marginal cost of efficiency

distortions to the marginal benefit of redistribution through either consumption or earnings - and

the two marginal benefits of redistribution must therefore also be equal to each other. In other

words, the planner equates marginal costs and benefits of redistribution, and is indifferent between

redistribution via consumption or via earnings at each realization of θ. The marginal benefits

of redistribution include both a static and a dynamic component, which are based on the same

arbitrage between smoothing tax distortions and backloading to internalize the future marginal

benefit of redistribution as in the separable model.

Non-separability in preferences modifies the static marginal benefits M̂Bt

(
θt
)

and M̃Bt

(
θt
)
,

and changes the rate of decay in information rents, %̂t
(
θt
)

and %̃t
(
θt
)
. The rate of decay of

information rents need not be the same for redistribution via consumption or via leisure. Hence

the optimal solution also trades off between current and past marginal benefits: if for example

%̂t
(
θt
)
> %̃t

(
θt
)
, then the optimal allocation will generate more redistribution via consumption

than via leisure implying M̂Bt

(
θt
)
< M̃Bt

(
θt
)
, and M̂Bt

(
θt
)

has more persistent effects on

current taxes than M̃Bt

(
θt
)
. Solving the optimality condition backwards and expressing MCt

(
θt
)

in terms of the labor tax τt
(
θt
)

yields the following expressions:

τt
(
θt
)

UθY (θt) + (1− τt (θt))UθC (θt)
=

t−1∑
τ=0

(βR)τ
τ−1∏
s=0

%̂t−s
(
θt−s

)
M̂Bt−τ

(
θt−τ

)
=

t−1∑
τ=0

(βR)τ
τ−1∏
s=0

%̃t−s
(
θt−s

)
M̃Bt−τ

(
θt−τ

)
.

Hence, how the non-separability affects the rate of decay of information rents is key to understanding

the persistence of labor wedges and the respective impact of marginal benefits of redistribution via

consumption and earnings.

Decay of information rents: %̂t
(
θt
)

and %̃t
(
θt
)

can be decomposed into (i) the feedback

%t
(
θt
)

from future distortions MCt
(
θt
)

to information rents at θt−1 and (ii) the feedback from

M̂Bt

(
θt
)

or M̃Bt

(
θt
)

to information rents at θt−1.
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Consider the same perturbation as in section 3, which marginally increases distortions and redis-

tribution at θt while preserving expected utility and incentive compatibility. As before this pertur-

bation generates a static cost MCt
(
θt
)

and benefit M̂Bt

(
θt
)
, and MCt

(
θt
)

feeds into marginal in-

formation rents at θt−1 at a rate %t
(
θt
)
. But in addition, M̂Bt

(
θt
)

also feeds back into information

rents at θt−1. If consumption is redistributed around θt in proportion to m̂
(
θ′, θt−1

)
/UC

(
θ′, θt−1

)
to preserve incentive compatibility and expected utility, then marginal information rents for θ′ 6= θt

change in proportion to m̂
(
θ′, θt−1

)
UθC

(
θ′, θt−1

)
/UC

(
θ′, θt−1

)
, and these changes in turn feed

back into information rents at θt−1 at a rate %t
(
θ′, θt−1

)
. Hence the second term in the expression

of %̂t
(
θt
)

represents the feedback from M̂Bt

(
θt
)

to information rents at θt−1. Along the same lines,

the second term in %̃t
(
θt
)

represents the feedback from M̃Bt

(
θt
)

to information rents at θt−1.

The representation of %̂t
(
θt
)

and %̃t
(
θt
)

in Proposition 1 leads to the following comparative

statics result:

Proposition 3 : Comparative statics for %̂t
(
θt
)

and %̃t
(
θt
)
:

(i) %̂t
(
θt
)
R %t

(
θt
)

if %t
(
θ, θt−1

) UθC(θ,θt−1)
UC(θ,θt−1)

is increasing/constant/decreasing in θ.

(ii) %̃t
(
θt
)
R %t

(
θt
)

if %t
(
θ, θt−1

) UθY (θ,θt−1)
UY (θ,θt−1)

is increasing/constant/decreasing in θ.

(iii) %̂t
(
θt
)

and %̃t
(
θt
)

converge to %t
(
θt
)

as θt converges to θ or θ.

(iv) %̂t
(
θt
)

= %̃t
(
θt
)

= %t
(
θt
)

in the special case where ∂
∂θ%t

(
θ, θt−1

)
= 0 for all θ and UθC/UC

and UθY /UY are constant.

Proposition 3 shows how the persistence of labor taxes %̂t
(
θt
)

or %̃t
(
θt
)

differs from the decay

of information rents %t
(
θt
)
. The terms %t

(
θt
) UθC(θt)
UC(θt) and %t

(
θt
) UθY (θt)
UY (θt) measure the feedback

from consumption or earnings changes at θt to marginal information rents at θt−1. If this feedback

is increasing in θt, then the feedback from M̂Bt

(
θt
)

to information rents at θt−1 is positive and

results in an optimal persistence of labor taxes that is higher than the decay of information rents. If

instead the feedback from consumption or earnings changes to prior information rents is decreasing

in the type realization, then the feedback from M̂Bt

(
θt
)

to information rents at θt−1 is negative

and the optimal persistence of labor taxes that is less than the decay of information rents.

Two special cases deserve to be mentioned: first, at the top and the bottom of the distribution

the optimal persistence of labor taxes converges to the decay of information rents since marginal

benefits of redistribution vanish at the top and bottom of the distribution. Second, if the decay

rate is uniform in θt ( ∂∂θ%t
(
θ, θt−1

)
= 0 for all θ), and UθC/UC and UθY /UY are constant, then

the feedback is constant for all types, and therefore the optimal persistence of labor taxes is also

uniform and equal to the decay of information rents. In these cases, future redistribution has
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no effect on current information rents, the optimal allocation satisfies M̂Bt

(
θt
)

= M̃Bt

(
θt
)

and

MCt
(
θt
)

= M̂Bt

(
θt
)
+%t

(
θt
)
βR·MCt−1

(
θt−1

)
, i.e. the planner’ solution equalizes static marginal

benefits of redistribution and the persistence of labor tax distortions only depends on the exogenous

decay of information rents.

Marginal Benefits of Redistribution: The marginal benefits of redistribution can be re-

written as M̂Bt

(
θt
)

=
1−F(θt|θt−1)

f(θt|θt−1)UC(θt)
· B̂
(
θt
)

and M̃Bt

(
θt
)

=
1−F(θt|θt−1)

f(θt|θt−1)(−UY (θt))
· B̃
(
θt
)
, where

B̂
(
θt
)

= E

(
M̂ (θ′)

M̂ (θt)
|θ′ ≥ θt, θt−1

)
− E

(
M̂ (θ′)

M̂ (θt)
|θt−1

)
1− F̂

(
θt|θt−1

)
1− F (θt|θt−1)

B̃
(
θt
)

= E

(
M̃ (θ′)

M̃ (θt)
|θ′ ≥ θt, θt−1

)
− E

(
M̃ (θ′)

M̃ (θt)
|θt−1

)
1− F̃

(
θt|θt−1

)
1− F (θt|θt−1)

When the two marginal benefits have equal persistence, the optimal labor wedge satisfies the

following simple characterization:

Theorem 2 : If %̂t
(
θt
)

= %̃t
(
θt
)

= %t
(
θt
)
, then the optimal labor wedge satisfies

−UY
(
θt
)

UC (θt)
= 1− τt

(
θt
)

=
B̃
(
θt
)

B̂ (θt)

If instead %̂t
(
θt
)
> %̃t

(
θt
)
, then 1 − τt

(
θt
)
< B̃

(
θt
)
/B̂
(
θt
)
, while if %̂t

(
θt
)
< %̃t

(
θt
)
, then 1 −

τt
(
θt
)
> B̃

(
θt
)
/B̂
(
θt
)
.

Theorem 2 shows that with equal persistence, the optimal labor wedge corresponds to the ratio

of the marginal benefit of redistribution through earnings to the marginal benefit of redistribution

through consumption. This condition captures the basic intuition that the planner arbitrages

between asking the high income types to work more vs. asking them to consume less, and on

the margin the planner’s solution must be indifferent between the two. When persistence is not

equal, then the ratio of the two marginal benefits serves as an upper or lower bound, given that

the planner’s solution trades off more static redistribution against higher persistence.

A special case of the theorem arises when types are iid (%t
(
θt
)

= 0). In this case the optimal

labor wedge only depends on static costs and benefits of redistribution, and the two static optimality

conditions can be re-stated as follows:

τt
(
θt
)

1− τt (θt)
= A

(
θt
)
· B̂
(
θt
)

and τt
(
θt
)

= A
(
θt
)
· B̃
(
θt
)

where A
(
θt
)

=

(
UCθ

(
θt
)

UC (θt)
−
UY θ

(
θt
)

UY (θt)

)
·

1− F
(
θt|θt−1

)
θtf (θt|θt−1)
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The first optimality condition restates and generalizes the well-known ABC formula of Diamond

(1998) and Saez (2001) to the present model which allows for redistribution based on both needs

and abilities. The second optimality condition complements the first by obtaining the equivalent

representation from marginal benefits of redistribution via earnings. The two optimality conditions

offer a new interpretation to this representation as equating the marginal efficiency cost of redistri-

bution to the marginal benefit of redistribution via consumption, since the terms
τt(θt)

1−τt(θt)/A
(
θt
)

and

τt
(
θt
)
/A
(
θt
)

map directly to the marginal cost of redistribution, rescaled by UC
(
θt
)

or −UY
(
θt
)
,

and B̂
(
θt
)

and B̃
(
θt
)

correspond to the re-scaled marginal benefits of redistribution via consump-

tion or earnings.

By taking the ratio between the two marginal benefit terms I obtain the alternative represen-

tation given by Theorem 2, which allows me to unify the representation of optimal labor wedges in

the static and dynamic Mirrlees model.

What’s more, recall that in the iso-elastic case M̂ (·) and M̃ (·) directly derive from the distribu-

tion of consumption and income. Hence B̂
(
θt
)

and B̃
(
θt
)

are robustly tied to observable statistics

and estimates of the elasticities EC (·) and EY (·) which relate to income and substitution effects

of labor supply. In Hellwig and Werquin (2021), we tie this alternative representation of optimal

income taxes to the sufficient statistics approach of Saez (2001).

The above representation also determines how optimal taxes and marginal costs and benefits

of redistribution vary with primitive parameters. If U (C, Y ; θ) = U (γ (C,C (θ))− n (Y, θ)), then

UCθ
UC

= U ′′
(U ′)2Uθ + χ′

χ and UY θ
UY

= U ′′
(U ′)2Uθ −

−p′
p , where χ′(·)

χ(·) and p′

p were defined in the text fol-

lowing proposition 2. Therefore fixing the allocation, an increase in χ′(·)
χ(·) increases UCθ

UC
, making

consumption needs more regressive or less progressive. An increase in −p
′(·)

p(·) makes productivities

or disutilities of effort more sensitive to type, which makes UY θ
UY

more negative. An increase in −U
′′

U ′

increases the outer curvature or overall risk aversion and reduces both UCθ
UC

and UY θ
UY

by the same

magnitude. I also consider comparative statics w.r.t. EC (·) and EY (·) which only enter through

their respective marginal benefits.

Proposition 4 For a given allocation of consumption C (·) or earnings Y (·):

(i) The (rescaled) marginal costs A (θ)−1 is decreasing in χ′(·)
χ(·) and −p

′(·)
p(·) , and independent of

EC (·), EY (·), and −U
′′

U ′ .

(ii) The (rescaled) marginal benefit of redistribution via consumption B̂ (·) is increasing in EC (·)

and −U
′′

U ′ , decreasing in χ′(·)
χ(·) , and independent of EY (·) and −p

′(·)
p(·) .

(iii) The (rescaled) marginal benefit of redistribution via earnings B̃ (·) is increasing in −U
′′

U ′ and
−p′(·)
p(·) , decreasing in EY (·), and independent of EC (·) and χ′(·)

χ(·) .
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Proposition 4 shows how non-separabilities in preferences alter the tradeoff between efficiency

and redistribution. It translates the stochastic dominance ordering of F̂ (·), F (·) and F̃ (·), as well

as the elasticities EC (·) and EY (·) into comparative statics of re-scaled marginal costs and benefits

of redistribution for a given type-contingent consumption or earnings profile. These comparative

statics then identify welfare-improving changes to the optimal allocation that can be implemented

through a combination of the perturbations that were presented above:

If EC (·) increases, the marginal benefits of redistributing consumption increase, and the op-

timal allocation therefore shifts towards higher labor taxes, more redistribution via consumption

and less redistribution via earnings. If EY (·) increases, the marginal benefits of redistributing ear-

nings are reduced, so the optimal allocation shifts towards less redistribution of earnings and more

redistribution of consumption, while also opting for labor taxes.13

If χ′ (·) /χ (·) increases, it is optimal to increase redistribution via earnings and compensate

with a combination of higher labor taxes and/or less redistribution via consumption, in line with

the intuition that an increase in χ′ (·) /χ (·) results in a less progressive or more regressive motive

of redistribution based on consumption needs.

If −p′ (·) /p (·) increases, productivities or disutilities of effort are more dispersed so the gains

from redistribution via earnings increase. It’s then optimal to increase labor taxes and redistribution

via earnings. Redistribution via consumption may increase or decrease depending on whether the

combined effect of the tax increase and the increase in a′ (·) /a (·) results in higher or lower marginal

costs of efficiency distortions.

If−U ′′/U ′ increases, additional curvature in utility strengthens both redistribution motives. The

planner gains from increasing labor taxes and redistribution via both consumption and earnings.

To recap, increases in EC (·), −U ′′/U ′ and −p′ (·) /p (·) or a reduction in EY (·) unambiguously

shift the tradeoff between efficiency and redistribution towards higher taxes and more redistribution,

but the effect of χ′ (·) /χ (·), which captures changes in the motive for redistribution based on

consumption needs, is more subtle: An increase in χ′ (·) /χ (·) reduces both the marginal benefits of

redistribution based on consumption and the marginal cost of efficiency distortions. This leads to

more redistribution via earnings, but whether this is compensated by a reduction of redistribution

via consumption or an increase in taxes, or a combination of both, is ambiguous and depends on the

relative effect of χ′ (·) /χ (·) on the marginal cost of efficiency distortions and the marginal benefit

of consumption-based redistribution.

13This comparative static of the labor supply elasticity EY (·) holds −p
′(·)

p(·) constant. In practice, an increase in the

Frisch elasticity would also change productivities −p
′(·)

p(·) .
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Optimal Persistence of Labor wedges: My final result links optimal tax-smoothing to

the sign and magnitude of the savings wedge, which completes the connection between the two

wedges. Theorem 3 generalizes the tax-smoothing representation of Farhi and Werning (2013) to

non-separable preferences and provides an analogous representation based on redistribution through

earnings.14

Theorem 3 : The optimal labor wedge satisfies the following two recursive characterizations:

(i) Based on marginal benefits of redistribution through consumption:

Ê

(
τt(θ

t)

1− τt(θt)
1/UC

(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)
= Ĉov

(
log

(
m̂(θt)

m̃(θt)

)
,

1/UC
(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)

+
1

1 + ŝC(θt−1)
R̂
(
θt−1

) τt−1(θt−1)

1− τt−1(θt−1)

where R̂
(
θt−1

)
=

Ê
(
%̂t
(
θt
)
·
(
UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

)
|θt−1

)
UθC(θt−1)
UC(θt−1)

− UθY (θt−1)
UY (θt−1)

(ii) Based on marginal benefits of redistribution through earnings:

Ẽ

(
τt
(
θt
) 1/

(
−UY

(
θt
))

Ẽ (1/ (−UY (θt)) |θt−1)
|θt−1

)
= C̃ov

(
log

(
m̂(θt)

m̃(θt)

)
,

1/
(
−UY

(
θt
))

Ẽ (1/ (−UY (θt)) |θt−1)
|θt−1

)
+

1

1 + s̃Y (θt−1)
R̃
(
θt−1

)
τt(θ

t−1)

where R̃
(
θt−1

)
=

Ẽ
(
%̃t(θ

t) ·
(
UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

)
|θt−1

)
UθC(θt−1)
UC(θt−1)

− UθY (θt−1)
UY (θt−1)

This representation incorporates two changes relative to the benchmark with separable prefe-

rences. First, expected future tax distortions and marginal benefits of redistribution are computed

using incentive-adjusted probability measures. Expected future tax distortions can be re-stated as

Ê
(

τt(θt)
1−τt(θt)

1/UC(θt)
Ê(1/UC(θt)|θt−1)

|θt−1

)
= E

(
τt(θt)

1−τt(θt)
M̂(θt)

E(M̂(θt)|θt−1)
|θt−1

)
and Ẽ

(
τt
(
θt
) 1/(−UY (θt))

Ẽ(1/(−UY (θt))|θt−1)
|θt−1

)
=

E
(
τt
(
θt
) M̃(θt)

E(M̃(θt)|θt−1)
|θt−1

)
, which re-weights the distortions according to the incentive-adjusted

returns M̂(θt) or M̃(θt). The expected marginal benefits of redistribution can be re-stated along

similar lines.

Second the persistence of the labor wedge is determined not just by the tradeoff between fu-

ture and current information rents that is captured by R̂
(
θt−1

)
and R̃

(
θt−1

)
, but also by the

14The dynamic tax formula of Golosov, Troshkin and Tsyvinski (2016) follows from the recursive optimality con-

dition along the same lines as in the separable case.
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optimal savings wedge 1 + ŝC(θt−1) or 1 + s̃Y
(
θt−1

)
. The savings wedge enters optimal tax-

smoothing because the planner’s solution discounts consumption between θt and θt−1 by a factor

R
(
1 + ŝC

(
θt−1

)) M̂(θt)
E(M̂(θt)|θt−1)

and earnings by a factor R
(
1 + s̃Y

(
θt−1

)) M̃(θt)
E(M̃(θt)|θt−1)

, while the

private return on savings is given by R. The planner’s solution internalizes dynamic tradeoffs bet-

ween redistribution at θt and θt−1 that are not internalized by private savings decisions. The same

wedge enters the resource tradeoff between current and future tax distortions. The savings wedge

can thus either reinforce or dampen labor-tax smoothing: a savings tax increases the persistence

of labor taxes, while a savings subsidy reduces it. Which one arises is determined as before by the

net impact of savings on current information rents.

As before, the terms R̂
(
θt−1

)
and R̃

(
θt−1

)
smooth labor wedges inter-temporally in such a

way that a marginal transfer of distortions leaves current information rents unchanged. As shown

in proposition 3 labor wedges become more (less) persistent when feedback from future to current

information rents is increasing (decreasing) in θt.

Through 1 + ŝC
(
θt−1

)
and R̂

(
θt−1

)
, as well as 1 + s̃Y

(
θt−1

)
and R̃

(
θt−1

)
, the persistence of

labor taxes thus depends on the sign, level and slope of UθC/UC and UθY /UY , which govern the

strength and direction of the need-based and ability based redistribution motives.

7 Examples

In this section I present four examples to illustrate the different possibilities that the main results

allow for: (i) with GHH preferences, the wealth effect on incentives disappears, and the characte-

rization of savings and labor distortions are uniquely determined from static concerns about redis-

tribution. (ii) With preferences that incorporate type dependent marginal utilities or consumption

needs (subsistence consumption), the optimal savings tax or subsidy is linked to how consumption

needs vary with type. (iii) In an extension with type-dependent volatility, the persistence of labor

wedges becomes state-dependent.

1. GHH Preferences: Suppose that U (C, Y ; θ) = U
(
C − κ (Y/A (θ))1+EY

)
, A (θ) = eφθ

with φ > 0, and −U
′′(·)
U ′(·) (C − n) = ψ > 0. Then, the incentive-adjusted probability takes the form

m̂
(
θt
)

= U ′
(
θt
)
, and M̂(θt) = 1, i.e. the wealth effect on incentives disappears and the adjustment

only incorporates risk aversion due to U (·). It is straight-forward to check that UθC
UC
− UθY

UY
=

(1 + EY )φ > 0 and UθC
UC

= −Z
(
θt
)
ψ (1 + EY )φ, where Z

(
θt
)

= n
(
θt
)
/
(
C
(
θt
)
− n

(
θt
))

. Then

the Generalized IEE reduces to a standard Euler equation with a savings wedge:

U ′
(
θt
)

= βR
(
1 + ŝC

(
θt
))

E
(
U ′
(
θt+1

)
|θt
)
,
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where

ŝC(θt−1) = −
τt
(
θt
)

1− τt (θt)
ψ
(
Z
(
θt
)
− Ê

(
%t+1

(
θt+1

)
Z
(
θt+1

)
|θt
))
.

If Z
(
θt
)
> Ê

(
%t+1

(
θt+1

)
Z
(
θt+1

)
|θt
)
, it is optimal to tax savings. The recursive tax-smoothing

equation yields

τt(θ
t)

1− τt(θt)
= (1 + EY )φ

F̂
(
θt|θt−1

)
− F

(
θt|θt−1

)
f (θt|θt−1)

+
U ′
(
θt
)

E (U ′ (θt) |θt−1)

%̂t
(
θt
)

1 + ŝC(θt−1)

τt−1(θt−1)

1− τt−1(θt−1)
,

where the optimal decay of information rents is

%̂t
(
θt
)

= %t
(
θt
)
−(1 + EY )φψ

f (θt|θt−1)

∫ θ

θt

(
%t
(
θ′, θt−1

)
Z
(
θ′, θt−1

)
− Ê

(
%t
(
θt
)
Z
(
θt
)
|θt−1

))
f̂
(
θ′|θt−1

)
dθ′.

Taking expectations of the recursive tax-smoothing equation yields the Farhi-Werning representa-

tion where E
(
F̂(θt|θt−1)−F(θt|θt−1)

f(θt|θt−1)
|θt−1

)
= −Cov

(
θt,

U ′(θt)
E(U ′(θt)|θt−1)

|θt−1

)
.

As these expressions show, with GHH preferences the adjusted probability measure only in-

cludes a risk component
U ′(θt)

E(U ′(θt)|θt−1)
, but the incentive component M̂(·) disappears. If types are

not too persistent, risk aversion introduces a motive for taxing savings and making labor taxes

more persistent than at the separable benchmark. If in addition Z
(
θt
)

is decreasing and %t
(
θt
)

independent of θt, the GHH preferences result in higher feedback of information rents and higher

optimal persistence of the labor wedge.15

2. Isoelastic preferences: Suppose preferences take the form

U (C, Y ; θ) =
1

1− EC

(
C

C (θ)

)1−EC
− κ (Y/A (θ))1+EY ,

with EC ≥ 1 and EY > 0.16 Suppose also that A (θ) = eφθ, φ > 0, and C (θ) = CeΓθ where Γ

denotes the sensitivity of consumption needs to types, and Γ can be positive or negative. It follows

that m̂
(
θt
)

= C (θt)
EC−1, m̃

(
θt
)

= A (θt)
−(1+EY ), M̂(θt) = C

(
θt
)EC , and M̃(θt) = Y

(
θt
)−EY . The

Generalized Inverse Euler Equation take the form

C
(
θt
)−EC

C (θt)
EC−1 = βR

(
1 + ŝC

(
θt
)) E(C (θt+1)EC−1 |θt

)
E
(
C (θt+1)EC |θt

) ,

where the savings wedges satisfy

ŝC
(
θt
)

=
τt
(
θt
)

1− τt (θt)

(EC − 1) Γ
(

1− Ê
(
%t+1

(
θt+1

)
|θt
))

(1 + EY )φ+ (EC − 1) Γ

15Z
(
θt
)

is decreasing in θt whenever n
(
θt
)

is decreasing in θt.
16It is possible to rewrite these preferences as U (C, Y ; θ) = C (θ)EC−1

{
1

1−EC
C1−EC − κ

(
Y/Ā (θ)

)1+EY } ,where

Ā (θ) = C (θ)
EC−1
1+EY A (θ). Hence the iso-elastic preference model has an equivalent reinterpretation as including a

shock to time preference rates.
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Hence it is optimal to subsidize savings if 1 > Ê
(
%t+1

(
θt+1

)
|θt
)
, and to tax them otherwise.

Rewriting the IEEs yields:

E

(C (θt+1
)

C (θt)

)EC
|θt
 = βR

(
1 + ŝC

(
θt
))

E

((
C (θt+1)

C (θt)

)EC−1

|θt
)
,

Therefore expected consumption growth is an increasing function of the savings subsidy ŝC
(
θt
)

and the expected growth in consumption needs C (θt+1) /C (θt). Then, if types are fully persistent

(%t+1

(
θt+1

)
= 1) or consumption needs independent of type (Γ = 0), the savings subsidy is 0 and

consumption growth is independent of the current type, resulting in divergence of consumption

profiles. These dynamics are reinforced when Γ < 0, which leads to a savings tax that frontloads

consumption and reduces future consumption growth. In addition consumption growth is increasing

in θt resulting in even more divergence and polarization of consumption over time.

If instead Γ > 0 and Ê
(
%t+1

(
θt+1

)
|θt
)
< 1, then it is optimal to subsidize savings and con-

sumption needs introduce a force towards mean-reversion. The resulting consumption process is

mean-reverting around a positive growth trend. With Γ < 0 on the other hand, the savings tax

frontloads consumption and lowers average consumption growth. Furthermore, consumption gro-

wth is increasing in θt resulting in more divergence of consumption over time.

3. Subsistence consumption needs: Suppose preferences take the form

U (C, Y ; θ) =
1

1− χ
(C − C (θ))1−χ − κ (Y/A (θ))1+EY ,

with χ ≥ 0, A (θ) = eφθ, φ > 0, and C (θ) = CeΓθ where Γ denotes as before the sensitivity

of consumption needs to types, and Γ can be positive or negative. It then follows that UθC
UC

=

Γ
(
EC
(
θt
)
− χ

)
, UθY
−UY = (1 + EY )φ, m̂

(
θt
)

= e
Γ
∫ θ
θ (EC(θ′,θt−1)−χ)dθ′ and M̂(θt) = e

∫ θ
θ EC(θ′,θt−1)dθ′ ,

where EC
(
θt
)

= χ
C(θt)

C(θt)−C(θt) . The Generalized IEE takes the form

(
C
(
θt
)
− C

(
θt
))−χ

= βR
(
1 + ŝC

(
θt
)){

Ê
((
C
(
θt+1

)
− C

(
θt+1

))χ |θt)}−1

where the savings wedge takes the form

ŝC
(
θt
)

=
τt
(
θt
)

1− τt (θt)
Γ
EC
(
θt
)
− χ− Ê

(
%t
(
θt
) (
EC
(
θt+1

)
− χ

)
|θt
)

(1 + EY )φ+ Γ (EC (θt)− χ)

Hence if Γ
(
EC
(
θt
)
− χ− Ê

(
%t
(
θt
) (
EC
(
θt+1

)
− χ

)
|θt
))

< 0 it is optimal to tax savings, in the

opposite case it is optimal to subsidize them.

Suppose that C (·) /C (·) is increasing in θt and hence EC
(
θt
)

is decreasing in θt. This holds

whenever Γ is negative or at most small and positive, i.e. consumption needs are decreasing or not
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too strongly increasing in θt. Then, if Γ < 0, the persistence parameters satisfy %̂t
(
θt
)
> %̃t

(
θt
)

=

%t
(
θt
)
, and therefore M̂Bt

(
θt
)
< M̃Bt

(
θt
)
, i.e. at the optimal allocation, marginal benefits

of redistribution through consumption are smaller, but more persistent than marginal benefits of

redistribution through earnings - the decreasing consumption needs strengthen the planner’s motive

to redistribute consumption towards lower types, along with a positive tax on savings. If instead

Γ > 0, the opposite conclusion holds (%̂t
(
θt
)
< %̃t

(
θt
)

= %t
(
θt
)

and M̂Bt

(
θt
)
> M̃Bt

(
θt
)
), i.e.

the optimal allocation shifts towards more redistribution via earnings, and it becomes optimal to

subsidize savings.

As in the case with GHH preferences, the endogenous persistence and the savings wedge are

mutually reinforcing, leading to higher %̂t
(
θt
)

and positive savings taxes when Γ < 0. But the two

effects can also result in savings subsidies and less persistence than at the separable benchmark if

Γ > 0 (consumption needs are increasing in type).

4. Type-dependent volatility: Suppose as in example 2 that preferences are isoelastic,

U (C, Y ; θ) =
1

1− EC

(
C

C (θ)

)1−EC
− κ (Y/A (θ))1+EY ,

with EC ≥ 1, A (θ) = eφθ, φ > 0, and C (θ) = CeΓθ where Γ can be positive or negative. Suppose

that θt = µ (θt−1) + σ (θt−1) vt, where vt is iid over time, and µ′ (θt) ∈ [0, 1]. In this case, %t
(
θt
)

is

no longer uniform for all θt, but instead

%t
(
θt
)

= µ′ (θt−1) + σ′ (θt−1)
θt − µ (θt−1)

σ (θt−1)

Therefore, %t
(
θt
)

is increasing in θt if σ′ (θt−1) > 0 (higher types face higher uncertainty),, and

%t
(
θt
)

is decreasing in θt if σ′ (θt−1) < 0 (higher types face less uncertainty). We then have

%̂t
(
θt
)

= %t
(
θt
)

+ ECΓ
1− F̂

(
θt|θt−1

)
f̂ (θt|θt−1)

σ′ (θt−1)

σ (θt−1)

{
Ê
(
θt|θ ≥ θt, θt−1

)
− Ê

(
θt|θt−1

)}

%̃t
(
θt
)

= %t
(
θt
)

+ (1 + EY )φ
1− F̃

(
θt|θt−1

)
f̃ (θt|θt−1)

σ′ (θt−1)

σ (θt−1)

{
Ẽ
(
θt|θ ≥ θt, θt−1

)
− Ẽ

(
θt|θt−1

)}
Proposition 3 then implies that %̃t

(
θt
)
< %t

(
θt
)

if σ′ (θt−1) < 0 and %̃t
(
θt
)
> %t

(
θt
)

if

σ′ (θt−1) > 0, while the sign of %̂t
(
θt
)
− %t

(
θt
)

depends on Γσ′ (θt−1). This example shows that

type dependent volatilities also contribute the persistence of the labor wedge: the feedback of infor-

mation rents is increasing with the uncertainty about the current type realization, which increases

persistence in labor wedges when Γ > 0 and σ′ (θt−1) > 0.
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8 Conclusion

This paper aims to provide a general analysis of optimal dynamic taxation with non-separable

preferences, and explore to what extent the core insights from the existing literature survive or

generalize. First, I have shown how to incorporate non-separability in the analysis by means of

a simple change in probability measures that captures the need for regressive redistribution of

resources, and/or either progressive or regressive redistribution of utilities, as a means to preserve

incentive compatibility. This incentive adjustment depends on preference parameters such as risk

aversion, labor supply elasticities and consumption needs.

Second, by applying this incentive adjustment to the optimality condition for redistribution

through both consumption and earnings, I obtain a double representation of the optimal labor and

savings wedges, which completes the existing representations that are solely based on redistribution

through consumption. This double representation captures the basic intuition that the planner can

transfer utility from high to low types by transfering either consumption or leisure, and at the

optimal allocation, the planner is indifferent between the two.

Third, I have shown how non-separability generates feedback from future allocations to current

information rents. This feedback generates a new inter-temporal tradeoff between current and

future redistribution and tax distortions which in turn modifies the main results from the existing

literature on optimal savings and labor tax distortions. Optimal savings taxes may be positive or

negative, depending on how savings internalize a tradeoff between current and future redistribution.

The dynamics of labor taxes inherit the same savings wedge that determines how the planner’s

solution discounts resources from one period to the next. Finally the optimal persistence of labor

taxes also depends on how tax-smoothing feeds back into current information rents.

One stark benchmark result stands out: when preferences are "sufficiently" isoelastic and types

are highly persistent then the rationale for savings taxes or subsidies again disappears, and labor

taxes are highly persistent with an upwards drift that is independent of assumptions about agent’s

preferences. Whether or not the theoretical results presented here also provide a strong quantitative

case for taxing or subsidizing savings then depends on whether this benchmark comes close to reality

or not. Answering this question, or related ones that bring the present results closer to applications,

is an important direction for future work.

Finally, my results do not address the issue of tax implementation. In Hellwig (2021), I propose

an implementation using history-dependent labor taxes with no private savings, and show that

private savings decisions do not matter for the implementation of the optimal (or more generally,

35



any) incentive compatible allocation, but only serve to fulfill future tax obligations, extending the

principle of Ricardian Equivalence to dynamic Mirrlees models. Even when savings are allowed

the resulting labor and savings taxes need not match the wedges of the present characterization

one-for-one: with dynamic information rents, the static labor supply decision includes a forward-

looking element that alters the mapping from static labor wedges to tax implementations. Future

work will have to explore the importance of these dynamic information rents for optimal tax design.
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9 Appendix: Proofs

Proof of Proposition 1:

The ODE that characterizes µt
(
θt
)

satisfies

µ̇t
(
θt
)

+ µt
(
θt
) UθC (θt)
UC (θt)

=

(
λt − ηtJ

(
θt, θ

t−1
)
− R−1

UC (θt)

)
f
(
θt|θt−1

)
along with boundary conditions µt (θ) = µt

(
θ
)

= 0. Define
UθC(θt)
UC(θt) =

m̂θt(θ
t)

m̂(θt) , or m̂
(
θt
)

=

e
−
∫ θ
θt

UθC

(
θt
)

UC(θt)
dθt

. Substituting into the above ODE and integrating out yields

µt
(
θ
)
m̂
(
θ
)
− µt

(
θt
)
m̂
(
θt
)

=

∫ θ

θt

(
λt − ηtJ

(
θt, θ

t−1
)
− R−1

UC (θt)

)
f
(
θt|θt−1

)
m̂
(
θt
)
dθt,

or

µt
(
θt
)

f̂ (θt|θt−1)
=

1− F̂
(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê
(

R−1

UC (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
+ ηtÊ

(
J
(
θt, θ

t−1
)
|θ′ ≥ θt, θt−1

)
− λt

}
.
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From the boundary conditions it follows that∫ θ

θ

(
λt − ηtJ

(
θt, θ

t−1
)
− R−1

UC (θt)

)
f
(
θt|θt−1

)
dθt = 0

or λt = R−1Ê
(
1/UC

(
θt
)
|θt−1

)
+ ηtÊ

(
J
(
θt, θ

t−1
)
|θt−1

)
. Rewrite Ê

(
J
(
θt+1, θ

t
)
|θt
)

as

Ê
(
J
(
θt+1, θ

t
)
|θt
)

=

∫ θ

θ
J
(
θt+1, θ

t
) m̂

(
θt+1

)
E (m̂ (θt+1) |θt)

f
(
θt+1|θt

)
dθt+1

=

∫ θ

θ

∫ θ

θt+1

J
(
θ′, θt

)
f
(
θ′|θt

)
dθ′

m̂′
(
θt+1, θ

t
)

m̂ (θt+1, θt)

m̂
(
θt+1

)
E (m̂ (θt+1) |θt)

f
(
θt+1|θt

)
dθt+1

=

∫ θ

θ
%t+1

(
θt+1

) UθC (θt+1
)

UC (θt+1)

m̂
(
θt+1

)
E (m̂ (θt+1) |θt)

f
(
θt+1|θt

)
dθt+1

= Ê

(
%t+1

(
θt+1

) UθC (θt+1
)

UC (θt+1)
|θt
)

Substituting into the solution for µt
(
θt
)

and rearranging terms yields

µt
(
θt
)

f̂ (θt|θt−1)
= R−1 1− F̂

(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê
(

1

UC (θ′ , θt−1)
|θ′ ≥ θt, θt−1

)
− Ê

(
1

UC (θt)
|θt−1

)}
+ηt%̂t

(
θt
)

where

%̂t
(
θt
)

=
1− F̂

(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê
(
J
(
θt, θ

t−1
)
|θ′ ≥ θt, θt−1

)
− Ê

(
J
(
θt, θ

t−1
)
|θt−1

)}
=

1

f̂ (θt|θt−1)

∫ θ

θt

J
(
θ′, θt−1

) m̂′ (θ′)

E (m̂ (θt) |θt−1)
f
(
θ′|θt−1

)
dθ′ − Ê

(
J
(
θt, θ

t−1
)
|θt−1

) 1− F̂
(
θt|θt−1

)
f̂ (θt|θt−1)

=
1

f̂ (θt|θt−1)

∫ θ

θt

J
(
θ′, θt−1

)
f
(
θ′|θt−1

)
dθ

m̂ (θt)

E (m̂ (θt) |θt−1)
− Ê

(
J
(
θt, θ

t−1
)
|θt−1

) 1− F̂
(
θt|θt−1

)
f̂ (θt|θt−1)

+
1

f̂ (θt|θt−1)

∫ θ

θt

∫ θ

θ
J
(
θ′, θt−1

)
f
(
θ′|θt−1

)
dθ′

m̂′ (θ)

E (m̂ (θt) |θt−1)
dθ

= %t
(
θt
)

+
1− F̂

(
θt|θt−1

)
f̂ (θt|θt−1)

{
Ê

(
%t
(
θ, θt−1

) UθC (θ, θt−1
)

UC (θ, θt−1)
|θ ≥ θt, θt−1

)
− Ê

(
%t
(
θt
) UθC (θt)
UC (θt)

|θt−1

)}

The same steps apply to the ODE

µ̇t
(
θt
)

+ µt
(
θt
) UθY (θt)
UY (θt)

=

(
λt − ηtJ

(
θt, θ

t−1
)
− R−1

UY (θt)

)
f
(
θt|θt−1

)
to arrive at the characterization linking µt

(
θt
)

to the inverse marginal utilities of earnings.
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Proof of Proposition 2:

For Part (i), notice that

d
dθt
UC
(
θt
)

UC (θt)
=

UCθ
(
θt
)

UC (θt)
+
UCC

(
θt
)

UC (θt)
C ′
(
θt
)

+
UCY

(
θt
)

UC (θt)
Y ′
(
θt
)

=
UCθ

(
θt
)

UC (θt)
+

(
UCC

(
θt
)

UC (θt)
−
UCY

(
θt
)

UY (θt)

)
C ′
(
θt
)

=
UCθ

(
θt
)

UC (θt)
− EC

(
θt
) C ′ (θt)
C (θt)

where the second equality substituted the local IC constraint UC
(
θt
)
C ′
(
θt
)

= −UY
(
θt
)
Y ′
(
θt
)
,

the third equality the definition of EC
(
θt
)
. Integrating out yields

m̂
(
θt
)

= KUC
(
θt
)
e

∫ θt
θ
EC

(
θ′, θt−1

) C′(θ′,θt−1
)

C
(
θ′,θt−1

) dθ′

where K is a constant of proportionality that can be set equal to 1 as a normalization (given that

the change in probability measure is defined by m̂ (θ) /Ê (m̂ (θ)).

The steps for Part (ii) are identical: combining

d
dθt

(
−UY

(
θt
))

−UY (θt)
=

UY θ
(
θt
)

UY (θt)
+
UY Y

(
θt
)

UY (θt)
Y ′ (θ) +

UCY
(
θt
)

UY (θt)
C ′
(
θt
)

=
UY θ

(
θt
)

UY (θt)
+

(
UY Y

(
θt
)

UY (θt)
−
UCY

(
θt
)

UC (θt)

)
Y ′
(
θt
)

=
UY θ

(
θt
)

UY (θt)
+ EY

(
θt
) Y ′ (θt)
Y (θt)

from which it follows that m̃
(
θt
)

= −UY
(
θt
)
e
−
∫ θt
θ EY (θ′,θt−1)

Y ′(θ′,θt−1)
Y (θ′,θt−1)

dθ′

.

Proof of Theorem 1:

Rearranging the inter-temporal optimality condition and substituting

Rµt
(
θt
)

f (θt|θt−1)
=

1

UC (θ)

τt
(
θt
)

1− τt (θt)

(
UθC

(
θt
)

UC (θt)
−
UθY

(
θt
)

UY (θt)

)−1

yields

1

UC (θ)

1 +
τt
(
θt
)

1− τt (θt)

UθC(θt)
UC(θt) − Ê

(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

 = (βR)−1 Ê
(

1

UC (θt+1)
|θt
)
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It follows that ŝC
(
θt
)
R 0 if and only if

UθC(θt)
UC(θt) R Ê

(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

. Re-arranging

terms,

ŝC
(
θt
)

=
τt
(
θt
)

1− τt (θt)

UθC(θt)
UC(θt) − Ê

(
%t+1

(
θt+1

) UθC(θt+1)
UC(θt+1)

|θt
)

UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

=
τt
(
θt
)

1− τt (θt)

1
UC(θt)

(
UθC

(
θt
)
− βR

(
1 + ŝC

(
θt
))

E
(
%t+1

(
θt+1

)
UθC

(
θt+1

) M̂(θt+1)
E(M̂(θt+1)|θt)

|θt
))

UθC(θt)
UC(θt) −

UθY (θt)
UY (θt)

which implies that ŝC
(
θt
)
R 0 if and only if

UθC
(
θt
)
R βRE

%t+1

(
θt+1

)
UθC

(
θt+1

) M̂
(
θt+1

)
E
(
M̂ (θt+1) |θt

) |θt
 .

Proof of Proposition 3:

The result follows directly from the characterization of %̂t
(
θt
)

and %̃t
(
θt
)

in proposition 1.

Proof of Theorem 2:

From the representation of M̂Bt

(
θt
)

and M̃Bt

(
θt
)

it follows that

M̃Bt

(
θt
)

M̂Bt (θt)
=

B̃
(
θt
)

(1− τt (θt)) B̂ (θt)
.

It follows from M̂Bt

(
θt
)

+ %̂t
(
θt
)
βR ·MCt−1

(
θt−1

)
= M̃Bt

(
θt
)

+ %̃t
(
θt
)
βR ·MCt−1

(
θt−1

)
that

M̂Bt

(
θt
)
R M̃Bt

(
θt
)

or equivalently 1− τt
(
θt
)
R

B̃(θt)
B̂(θt)

if and only if %̂t
(
θt
)
Q %̃t

(
θt
)
.

Proof of Proposition 4:

(i) Notice that M̂B (·)UC (·) can be rewritten as

RM̂B (θ)UC (θ) =
1

f (θ)

{
F̂ (θ)

∫ θ

θ

M̂ (θ′)

M̂ (θ)
f
(
θ′
)
dθ′ −

(
1− F̂ (θ)

)∫ θ

θ

M̂ (θ′)

M̂ (θ)
f
(
θ′
)
dθ′

}

Since M̂(θ′)

M̂(θ)
= e

∫ θ′
θ EC(θ′′)dlnC(θ′′), it follows that for a given allocation, M̂ (θ′) /M̂ (θ) is increasing in θ

and becomes steeper when EC (·) goes up, but does not change with EY (·). Therefore, holding fixed

F̂ (θ), M̂B (θ)UC (θ) is increasing with EC (·) and bounded below by RM̂B (θ)UC (θ) ≥ F̂ (θ)−F (θ)
f(θ) .
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In addition, F̂ (θ) does not depend on EC (·) or EY (·), but an increase in χ′/χ or a reduction

in −U ′′/U ′ both increase UθC/UC , which is independent of a′/a. The results then follow by noting

that an increase in UθC/UC results in a FOSD shift in F̂ (·) which lowers M̂B (·).

(ii) Rewrite M̃B (·) (−UY (·)) as

RM̃B (θ) (−UY (θ)) =
1

f (θ)

{
F̃ (θ)

∫ θ

θ

M̃ (θ′)

M̃ (θ)
f
(
θ′
)
dθ′ −

(
1− F̃ (θ)

)∫ θ

θ

M̃ (θ′)

M̃ (θ)
f
(
θ′
)
dθ′

}

Since M̃(θ′)

M̃(θ)
= e−

∫ θ′
θ EY (θ′′)dlnC(θ′′), it follows that for a given allocation M̃ (θ′) /M̃ (θ) is decreasing

in θ and becomes steeper when EY (·) goes up, but does not change with EC (·). Therefore, holding

fixed F̃ (θ), M̃B (·) (−UY (·)) is decreasing with EY (·) and bounded above by RM̃B (·) (−UY (·)) ≤
F̃ (θ)−F (θ)

f(θ) .

In addition, F̃ (θ) does not depend on EC (·) or EY (·), but an increase in a′/a or a reduction in

−U ′′/U ′ both increase UθY /UY , which is independent of χ′/χ. The results then follow by noting

that an increase in UθY /UY results in a FOSD shift in F̃ (·) which lowers M̃B (·).

(iii) Rewrite M̂B (·)UC (·) and M̃B (·) (−UY (·)) as

RM̂B (·)UC (·) =

τ(θ)
1−τ(θ)

UθC/UC − UθY /UY
=
RM̃B (θ) (−UY (θ))

1− τ (θ)

and which only depend on UθC/UC − UθY /UY = χ′/χ− a′/a.

Proof of Theorem 3:

Multiply both sides of MCt
(
θt
)

= M̂Bt

(
θt
)

+ %̂t
(
θt
)
βR ·MCt−1

(
θt−1

)
by

UθC(θt)
UC(θt) −

UθY (θt)
UY (θt) ,

divide by Ê
(
1/UC

(
θt
)
|θt−1

)
, and take expectations with respect to the incentive-adjusted proba-

bility measure to find

Ê

(
τt(θ

t)

1− τt(θt)
1/UC

(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)
= Ê

((
UθC

(
θt
)

UC (θt)
−
UθY

(
θt
)

UY (θt)

)
M̂Bt

(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)
βR

UC (θt−1)

1

Ê(1/UC (θt) |θt−1)
· R̂
(
θt−1

) τt−1(θt−1)

1− τt−1(θt−1)

By Theorem 1, βR
UC(θt−1)

1
Ê(1/UC(θt)|θt−1)

= 1
1+ŝC(θt−1)

. At the same time,

Ê

((
UθC

(
θt
)

UC (θt)
−
UθY

(
θt
)

UY (θt)

)
M̂Bt

(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)
= Ê

((
∂m̂(θt)
∂θt

m̂(θt)
−

∂m̃(θt)
∂θt

m̃(θt)

)
M̂Bt

(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)

= Ĉov

(
log

(
m̂(θt)

m̃(θt)

)
,

1/UC
(
θt
)

Ê(1/UC (θt) |θt−1)
|θt−1

)
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Applying the same steps to MCt
(
θt
)

= M̃Bt

(
θt
)

+ %̃t
(
θt
)
βR · MCt−1

(
θt−1

)
leads to the

analogous representation based on redistribution through earnings.
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