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Abstract

Equilibria in auctions can be very difficult to analyze, beyond the symmetric environments
where revenue equivalence renders the analysis straightforward. This paper takes a robust
approach to evaluating the equilibria of auctions. Rather than identify the equilibria of
an auction under specific environments, it considers min-max analysis where an auction is
evaluated according to the worst environment and worst equilibrium in that environment. It
identifies a non-equilibrium property of auctions that governs whether or not their worst-case
equilibria are good for welfare and revenue. This property is easy to analyze, can be refined
from data, and composes across markets where multiple auctions are run simultaneously.

1 Introduction

Equilibria in auctions can be very difficult to analyze, beyond the symmetric environments where
revenue equivalence renders the analysis straightforward. This paper takes a robust approach
to evaluating the equilibria of auctions. Rather than identify the equilibria of an auction under
specific environmental conditions, it considers worst-case analysis where an auction is evaluated
according to the worst environment and worst equilibrium in that environment. It identifies a
non-equilibrium property of auctions that governs whether or not their worst-case equilibria are
good for welfare and revenue. This property is easy to analyze, can be refined from data, and
composes across markets where multiple auctions are run simultaneously.

Classical economic analyses identify three main drivers of inefficiency: (a) externalities, (b)
incomplete information, and (c) market power. The analysis of this paper decomposes the
performance of auctions into two terms: competitive efficiency quantifies the degree to which
externalities cause losses in performance and individual efficiency quantifies the degree to which
incomplete information causes losses in performance. The decomposition does not ascribe further
loss of efficiency to market power.

The quantity of interest for this paper is the robust efficiency of mechanisms, i.e., the fraction
of the optimal welfare or revenue that is attained in any equilibrium and under any informational

∗This paper provides an economic interpretation on results presented in an extended abstract under the
title “Price of Anarchy for Auction Revenue” at the fifteenth ACM Conference on Economics and Computation
(Hartline et al., 2014). We thank Vasilis Syrgkanis for comments on a prior version of this paper for which
simultaneous composition did not hold, for suggesting the study of simultaneous composition, and for perspective
on price-of-anarchy methodology.
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model. By measuring the efficiency of a mechanism as the ratio of its performance to the optimal
performance we obtain bounds that are invariant with respect to the relative magnitudes of the
environment. By normalizing the performance with respect to the optimal performance, the
robust analysis framework requires that performance is good when good performance is possible.
In contract, absolute evaluation of robust performance gives result that are primarily determined
by environments where the optimal performance is bad.

The analysis of the paper shows that competitive efficiency is a central determinant of
whether an auction is good or bad; while individual efficiency is always relatively high. Com-
petitive efficiency can be low when externalities are significant and mechanisms that are more
competitively efficient reduce the impact of externalities. On the other hand, individual effi-
ciency which quantifies the impact of incomplete information is always relatively high, though
mechanisms with the winner-pays-bid payment format can be seen as better than those with
the all-pay payment format. Applying the perspective of Hartline (2013) to these two concerns:
externalities are a critical feature to be treated carefully in mechanism design while incomplete
information is more of a detail.

Introducing the notion of competitive efficiency by example, consider any set of bids in a
first-price auction. For each agent and this fixed set of bids, there is a minimum bid that serves
as a threshold for whether the agent wins or loses. Consider two quantities: (a) the revenue of
the auction for the given bids and (b) the optimal revenue of an auction if each agent instead
bid their threshold. Quantity (b) is a measure of the level of competition in the auction. The
competitive efficiency µ is the worst case over bids of the ratio of (a) to (b), this number is at
most 1 and large numbers are more efficient. For the first-price auction this ratio is µ = 1. The
revenue is the highest bid and the thresholds of all losers are equal to the highest bid. Thus,
the revenue from thresholds and the revenue from bids are the same.

Even mechanisms that are competitively efficient may be less efficient due to the inability
of the agents to precisely respond to thresholds, i.e., due to incomplete information. Returning
to the example of first price auctions, with deterministic equilibrium concepts like pure Nash
equilibrium, an agent’s threshold is deterministic, and the agent can respond efficiently. One
the other hand, in stochastic equilibrium concepts like Bayes-Nash equilibrium, the threshold an
agent faces is stochastic, and the agent cannot respond efficiently. Specifically, when the thresh-
old is below the agent’s value the agent would prefer to bid just above the threshold; however,
this threshold is stochastic and the agent must place a single bid. Viewing this threshold as the
seller’s outside option, the inability for an agent to respond precisely results in an additional loss
of performance. This individual efficiency η is a property of the best-response problem faced by
the agents and depends on the equilibrium notion (e.g., pure Nash or Bayes-Nash) and payment
format (e.g., winner-pays-bid or all-pay).

This paper shows that robust efficiency can be bounded by a combination of the individual
efficiencies of the agents and competitive efficiency of the mechanism. The main welfare analysis
of this paper proves that, broadly, the fraction of the optimal welfare of an auction in equilibrium
is at least the product of the mechanism’s competitive efficiency and the agents’ individual
efficiencies. For example, we will show that the individual efficiency of the agent’s response for
pure Nash equilibria in winner-pays-bid mechanisms is η = 1. Combined with the competitive
efficiency of µ = 1 for the first-price auction, we see that pure Nash equilibria in the first-
price auction are fully efficient, i.e., they obtain a ηµ = 1 fraction of the optimal welfare.
(More precisely, pure Nash tend not to exist in the first-price auction, but the same result
approximately holds for approximate pure Nash which exist; details given subsequently.) The
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main revenue analysis of the paper shows that the fraction of the optimal revenue of an auction
with appropriate reserve prices in equilibrium is at least half the product of its competitive
efficiency and the agents’ individual efficiency.

Individual efficiency is a property of the agents’ best response problem that takes into account
the incompleteness of information and the payment format. Thus, it is sufficient to analyze a
few canonical models of incomplete information and payment formats. We provide the following
individual efficiency results:

• η = (1− ε) for winner-pays-bid mechanisms in pure (1− ε)-Nash equilibria (for any ε ≥ 0).
This result is written for approximate Nash equilibrium rather than exact Nash equilibrium
because in winner-pays-bid auctions the latter tends not to exist. This is a complete
information model.

• η = 1 − 1/e ≈ 0.63 for winner-pays-bid mechanisms in Bayes-Nash equilibria. This is an
incomplete information model.

• η = 1/2 for all-pay mechanisms in Bayes-Nash equilibria. This is an incomplete information
model.

These results quantify the role of incomplete information. When information is compete (in
payoffs, actions of opponents, and rules of the mechanism), an agent’s best response problem
is fully efficient. On the other hand we see that with incomplete information the agent’s best
response problem can be inefficient, but that inefficiency is bounded by a constant. As mentioned
above, the best response problem of winner-pays-bid payment formats mitigates informational
inefficiencies more than that of the all-pay payment formats.

Combining these individual efficiency bounds with the competitive efficiency of the first-price
auction (µ = 1), the equilibrium welfare is at least an ηµ = 0.63 fraction of the optimal welfare
in equilibrium. The revenue of the first-price auction with per-agent monopoly reserves a ηµ/2 =
0.31 fraction of the optimal revenue in equilibrium. Recall that these auctions are optimal for
welfare and revenue when the agents values are identically distributed, the above robust welfare
guarantee holds for all correlated distributions and the above robust revenue guarantee holds
for all non-identical product distributions satisfying a standard regularity property. We see
from this analysis that, while the first-price auction can be inefficient, it can never be extremely
inefficient.

Competitive efficiency is a property of the rules of the auction that map bids to winners,
a.k.a., bid allocation rules. Given the individual efficiencies of standard best response problems
of the agents, the robust efficiency of a mechanism is approximately governed by its competitive
efficiency. Therefore, analysis of robust welfare and revenue of an auction approximately reduces
to analysis of its competitive efficiency.

To aid in the analysis of the competitive efficiency we develop a number of closure properties.

• Competitive efficiency is closed under reserve pricing, i.e., the competitive efficiency of
mechanism without reserve prices is equal to the competitive efficiency of the mechanism
with the worst reserve prices.

• Competitive efficiency is closed under randomizations of mechanism and selection, i.e.,
the competitive efficiency of any randomized mechanism on any randomized sets of agents
is equal to the competitive efficiency of the worst combination of mechanism and set of
agents.
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• Competitive efficiency is closed under simultaneous composition (when bids are indepen-
dently distributed), i.e., the competitive efficiency of the worst composite mechanism where
a set of mechanisms are run in parallel is equal to the competitive efficiency of the worst
mechanism in the set. (In this composition, agents are assumed to be unit-demand, but
can bid in multiple mechanisms at once if it is in their best interest.)

These closure properties imply that it is generally sufficient to analyze competitive efficiency of
deterministic mechanisms with deterministic selection. Such analyses are fairly straightforward
compared to more technically involved analyses of stochastic equilibrium concepts.

The following mechanisms have competitive efficiency µ = 1. Intuitively, in these environ-
ments the externalities are only those of one-for-one substitution:

• Single-item multi-unit unit-demand highest-bids-win mechanisms, i.e., there are k identical
units for sale and they are allocated to the k-highest bidders. (Note that the first-price
auction is the special case where k = 1.)

• Rank-by-bid position auctions, i.e., there are k positions with descending weights, and
the highest k bidders are assigned to these k positions in order of bid. The agent in
the jth highest position receives a unit with probability equal to the jth position weight.
(The k-unit auction is a special case where the position weights are all 1.) The position
auction model was popularized by the studies of Varian (2007a) and Edelman et al. (2007a)
auctions for advertising on Internet search engines.

• (Single-bid) highest-bids-win matching markets, i.e., there are m items and n bidders who
each desire a single item from known subset of the items. The highest-bid-wins rule selects
the bidders to match to maximize the sum of the matched bids.

• (Multiple-bid) per-item highest-bids-win matching markets, i.e., there are m items and n
bidders who each desire a single item from a unknown subset of items, bids are submitted
for each item, and the highest bidder for each wins. (For this result, bids are required to
be independently distributed in equilibrium.)

These results all follow from a single analysis of the competitive efficiency of bid allocation
rules based on greedy algorithms and the above closure properties. Greedy algorithms order
the agents by a function of their bids and then allocate to each one in turn, if doing so is
feasible. Notice that the k-unit highest-bids-win allocation rule is given by the greedy-by-bid
algorithm. For complicated optimization problems, greedy algorithms are not generally optimal.
Our main analysis of competitive efficiency shows that the non-strategic efficiency of the greedy
algorithm, i.e., the fraction of the optimal welfare it obtains in non-strategic environments, is
equal to its competitive efficiency. The results listed above follow because the greedy algorithm
is non-strategically efficient for these environments. The result for rank-by-bid position auctions
additionally views the position auction as a convex combination of multi-unit auctions and
invokes the closure of competitive efficiency under convex combinations. The result for multiple-
bid per-item matching markets follows from the closure under simultaneous composition of the
first-price auction.

The competitive efficiency of mechanisms can be very bad when externalities between agents
are ones of many-for-one complementarities. The classic environment where agents are com-
plements is the single-minded combinatorial auction. Here there are n agents and m items
and agents each desire the entirety of a known subset of items. The competitive efficiency
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of highest-bids-win single-minded combinatorial auctions is 1/m and indeed winner-pays-bid
highest-bids-win auctions possess equilibria that are 1/m efficient. A classical result from the
computer science literature on algorithm design, however, shows that there is a greedy algorithm
for the single-minded combinatorial allocation problem that is 1/

√
m efficient;1 thus the winner-

pays-bid auction with this greedy bid allocation rule 1/
√
m competitively efficient. Explicitly

designing mechanisms to maximize competitive efficiency can significantly reduce the impact of
externalities.

1.1 Related Work

In symmetric environments in the canonical independent private value model second-price, first-
price, and all-pay auctions with or without reserves are both welfare and revenue equivalent
(Myerson, 1981). In asymmetric models, they are not equivalent, and the equilibria, even un-
der the simplifying assumption that the agents’ values are uniformly (but asymmetrically with
different supports) distributed, are very difficult to solve for (Kaplan and Zamir, 2012).

An approach from computer science for understanding potentially complex equilibria in
mechanisms is to bound is to give robust bounds on equilibria that do not require exactly iden-
tifying an equilibrium. This literature analyzes the robust efficiency, a.k.a., the price of anarchy,
of games and mechanisms. Within this literature, this paper builds on the smooth games frame-
work of Roughgarden (2009) and the smooth mechanisms extension of Syrgkanis and Tardos
(2013). In this context, this paper refines the smoothness framework for Bayesian games in
two notable ways. First, it decomposes smoothness into two components, separating the conse-
quences of best-response (individual efficiency) from the specifics of a mechanism (competitive
efficiency). The former quantifies losses due to incomplete information and the latter quanti-
fies losses due to externalities between agents. Second, the framework is compatible with the
analysis of auction revenue by Myerson (1981) and allows for robust bounds on the equilibrium
revenue of auctions.

There are two subsequent works with strong connections to our decomposition of smoothness
into competitive efficiency and individual efficiency. First, Dütting and Kesselheim (2015) show
that competitive efficiency, which they call “permeability,” is in fact a necessary condition (we
show sufficiency) for the equilibrium welfare of a mechanism to be proven to be good via the
smoothness framework. Second, Hoy et al. (2015) show how to derive empirical welfare bounds
by measuring the degree to which competitive efficiency and individual efficiency hold, without
needing to infer the agents’ true values.

A number of papers have derived revenue guarantees for the welfare-optimal Vickrey-Clarke-
Groves (VCG) mechanism in asymmetric environments. Hartline and Roughgarden (2009) show
that VCG with monopoly reserves, a carefully chosen anonymous reserve, or duplicate bidders
achieves revenue that is a constant approximation to the revenue optimal auction. Dhangwatno-
tai et al. (2010) show that the single-sample mechanism, essentially VCG using a single sample
from the distribution as a reserve, achieves approximately optimal revenue in broader environ-
ments. Roughgarden et al. (2012) showed that in broader environments, including matching
environments, limiting the supply of items in relation to the number of bidders gives a constant
approximation to the optimal auction. See Hartline (2013) for a survey of results in this area.

1Computer scientists study greedy algorithms like this one in part because computing the allocation that
maximizes the sum of winning bids is believed to be computationally intractable. Thus, we see that greedy
algorithms should be preferred as allocation rules for auctions both for their computational tractability and for
there competitive efficiency.
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Bergemann et al. (2017) consider a robust analysis of the revenue in a first-price auction
with respect to the knowledge of the agents. They derive tight lower bounds on this revenue
based on a characterization of the minimum distribution over winning bids. In contrast, though
our welfare bounds are tight, our revenue bounds are lose. Our bound, however, apply more
broadly than single-item auctions. Bergemann et al. (2019) give worst-case, over information
structure, revenue rankings of standard auction formats.

Robust analyses in the economics literature have focused on mechanism design context where
a principal faces ambiguity with respect to an aspect of the model and aims to maximize the
worst-case revenue with respect to the ambiguity. For example, Carroll (2017) considers a
revenue maximizing seller with multiple items and a buyer with values distributed with known
marginals. The correlation structure is ambiguous. He shows that the max-min mechanism
is linear pricing. Brooks and Du (2021) consider the design of revenue optimal common-value
auctions that are robust to information structures. A key difference between these works and
this paper is that this paper considers robust performance relative to optimal performance.

2 Preliminaries

This paper studies mechanisms for single-parameter agents. A mechanism consists of action
spaces Ai for each agent i (and joint action space A =

∏
iAi), an allocation rule x̃, and a

payment rule p̃. Given the profile a of actions selected by each agent, the mechanism computes
an allocation level x̃i(a) ∈ [0, 1] and payment p̃i(a) ∈ R for each agent i, with x̃(a) and p̃(a)
describing the full profiles of allocations and payments, respectively. Each agent i has a value
vi for service, and linear utility function ũi(a) = vix̃i(a)− p̃i(a).

We study n-agent mechanisms under both complete and incomplete information. A mecha-
nism’s allocation is constrained by a feasibility environment X . For example, in selling a single
item, X = {x ∈ [0, 1]n |

∑
i xi ≤ 1}. Settings we consider will be downward-closed, in the sense

that for any x ∈ X and any index i, (0,x−i) ∈ X . Even fixing a mechanism’s payment format
(e.g. first-price), richer feasibility settings admit many possible allocation rules. In our analysis
framework, competitive efficiency (Section 3) captures the consequences of this variation.

Values are drawn according to a common (possibly degenerate or correlated) prior F , with
marginals {Fi}i. Throughout, we maintain the interpretation that each agent i is randomly
selected to participate from a population with value distribution Fi, with the joint selection
governed by F . A strategy function si maps values for agent i to actions, with the interpreta-
tion that the value vi agents in population i all play si(vi) when selected to participate. Denote
a profile of strategies by s, and for an action ai, denote by x̃i(ai) = Ev−i | vi [x̃i(ai, s−i(v−i))]
(resp. p̃i(ai), ũi(ai)) the interim allocation (resp. payment, utility) rule induced by s. For
mechanism M , prior F , and strategy profile s, our two objectives of interest are revenue,
given by Rev(M, s,F) = Ev∼F [

∑
i p̃i(s(v))], and welfare (alternatively, “surplus”), given by

Welfare(M, s,F) = Ev∼F [
∑

i ũi(s(v))] + Rev(M, s,F) = Ev∼F [
∑

i vix̃i(s(v))].
The mechanisms we study are non-truthful and depend only minimally on priors. The stan-

dard theory of revenue maximization requires detailed knowledge of the prior F , and the families
of mechanisms we consider often have equilibria with suboptimal welfare. We therefore pursue
robust, or worst-case, approximation analyses, and ask how far from optimal a mechanism can
be, quantified over equilibria in a family. Formally, given prior F , denote the optimal expected
welfare by Welfare(Opt,F) = Ev∼F [maxx∗∈X

∑
i vix

∗
i ]. Fixing a family of distributions (e.g.

degenerate, product, or unrestricted) F and family of equilibria EqF (M) for each F ∈ F and

6



mechanism M (e.g. ε-Nash, Bayes-Nash), we study the approximation ratio

min
F∈F,s∈EqF (M)

Welfare(M, s,F)

Welfare(Opt,F)
.

When the value of the approximation ratio is at least ρ, we say the welfare of M is a ρ-
approximation to the optimal welfare over F and EqF (M). A large value of ρ (close to 1) indicates
that M is always nearly efficient, whereas ρ very small suggests a pathology that might rule out
M in practice. By exposing the structural characteristics that influence worst-case performance,
our framework can inform robust design. We also show that several commonly-observed formats
such as the single-item first-price auction can be explained by their low approximation ratio.

For revenue, we assume independently distributed values across agents and argue with respect
to the Bayesian optimal revenue for F . Per Myerson (1981), the optimal mechanism can depend
intricately on the prior. Denote the expected revenue of the optimal mechanism OptF for prior
F by Rev(OptF ,F). We study mechanisms which are prior-independent except for monopoly
reserves (defined formally in Section 4), which depend on much less fine-grained information
than the form of the Bayesian optimal mechanism. We study the ratio

min
F∈F,s∈BNEF (MF )

Rev(MF , s,F)

Rev(OptF ,F)
,

where MF denotes mechanism M endowed with monopoly reserve prices for F and BNEF (MF )
the family of Bayes-Nash equilibria for MF under F .

3 Competitive Efficiency

In this section, we formally define competitive efficiency. Competitive efficiency depends only
on the bid allocation rule of the mechanism. Importantly, it does not depend on preferences,
beliefs, or strategies of agents; nor does it depend on relationships between these. As we will
see in Section 4, this parameter governs the extent to which equilibria in the mechanism obtain
good welfare and revenue, and is robust to specifics that are typically critical for equilibria such
as preferences, beliefs, and strategies.

For the time being we restrict our analysis to single-bid rules, for which each agent i’s action
is a single real-valued bid bi. We extend the analysis to general mechanisms in Section 5. Given
single-bid allocation rule x̃, two salient payment formats are the winner-pays-bid mechanism for
x̃ which has payment rule p̃i(b) = bix̃i(b), and the all-pay mechanism for x̃, with payment rule
p̃i(b) = bi. Competitive efficiency compares two quantities: threshold surplus, which quantifies
the level of competition each agent faces, and the total bid of the winners, i.e. bid surplus. In
winner-pays-bid and all-pay mechanisms, the bid surplus lower bounds total payments. Hence,
competitive efficiency measures the extent to which competition translates into revenue. We
first consider deterministic allocation rules without reserve prices under full information, where
this comparison is particularly straightforward. Competition can be easily quantified by the
threshold bid that each agent’s bid must exceed to win.

Definition 1. In an (implicit) deterministic single-bid rule x̃ and a profile of bids b, we sum-
marize agent i’s competition by the threshold bid b̂i(b−i) = inf{bi | x̃i(bi,b−i) = 1} that the
agent must outbid to win. Denote the threshold surplus for allocation yi by Ti(yi) = b̂i yi.
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Definition 2. The competitive efficiency of a deterministic allocation rule x̃ for a deterministic
environment is the largest µ such that, for any profile of bids b and any feasible allocation y,
the bid surplus is at least a µ fraction of the threshold surplus.∑

i
bix̃i(b) ≥ µ

∑
i
Ti(yi). (1)

In the case of deterministic single-bid rules, threshold surplus is a simple linear function of
the allocation, i.e.,

∑
i Ti(yi) =

∑
i b̂i yi. As already described in the introduction, the highest-

bid-wins rule has competitive efficiency µ = 1. Given bids, the threshold bids of losers are the
highest bid; the threshold bid of the winner is the second highest bid. Thus, both the optimal
threshold surplus and the bid surplus are equal to the highest bid (see the formal treatment in
Section 3.1). Later in this section, we will identify a number of deterministic rules of interest
that have easy-to-analyze competitive efficiencies.

It is common in practice to augment a winner-pays-bid mechanism with a profile of individ-
ualized reserve prices. One generic way to incorporate a profile of reserves r into a mechanism
with single-bid rule x̃ to produce a rule x̃r is: (1) Solicits a bid bi from each agent i. (2) For
each agent i, if bi < ri, sets b̃i = 0, else b̃i = bi. (3) Allocates according to x̃(b̃). We typically
consider adding reserves to rules where bidding 0 guarantees an agent goes unallocated, i.e.
x̃i(0,b−i) = 0.

The definition of competitive efficiency extends naturally to allocation rules with reserves,
as well as to randomization in the auction environment. Such randomization could come from
feasible allocations being randomized, randomization in the allocation rule itself, or uncertainty
over the participants of the auction, captured by the prior distribution. The general definition
of competitive efficiency will enable quantification of welfare and revenue over the more compli-
cated mechansisms and equilibria arising from reserves and randomness. Importantly, though,
extension theorems given subsequently will allow us to characterize competitive efficiency in
these environments via analysis of simpler mechanisms with full information and no reserves.

For randomized allocation rules or environments, threshold bids are not deterministic, and
generally, the competition faced by an agent depends on the desired level of allocation. We
now give a natural generalization of threshold surplus that quantifies the competition an agent
faces in the presence of randomness as a function of the desired level of allocation. The def-
inition discounts reserve prices, which make it harder for an agent to receive allocation, but
do not stem from competition. This distinction is critical for analysis of mechanisms with
reserves. Intuitively, an agent i faces strong competition under a single-bid allocation rule
x̃ with reserves r, strategy profile s, and prior F if bids above their reserve price generally
yield low allocation probabilities. To this end, recall we define i’s interim allocation rule by
x̃i(b | vi) = Ev−i | vi [x̃i(b, s−i(v−i)], and define its inverse as ti(x | vi) = inf{b | x̃i(b | vi) ≥ x}.

Definition 3. For an (implicit) single-bid allocation rule x̃ with (implicit) reserves r, strategy
profile s, and prior F , The competition faced by agent i with value vi for obtaining alloca-
tion yi is summarized by the threshold surplus with discounted reserve, defined as Ti(yi | vi) =∫ yi
x̃i(ri | vi) ti(x | vi) dx. With the reserve price denoted explicitly, define T rii (yi | vi).

For deterministic environments, Definition 2 defined competitive efficiency in terms of fea-
sible, deterministic allocations. Under a general prior, we now consider feasible interim allo-
cations. Taking the view of the prior as defining populations of agents, an interim allocation
level defines a feasible allocation probability for each agent in each population. Formally, let y
map value profiles to allocations in the feasible set X . Denote the interim allocations for y by
yi(vi) = Ev[yi(v) | vi].
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Definition 4. The competitive efficiency of a (randomized) allocation rule x̃ for prior F is the
largest µ such that, for any strategy profile s and any feasible allocation function y mapping
value profiles to X , the expected bid surplus is at least a µ fraction of the threshold surplus:

Ev∼F

[∑
i
si(vi)x̃i(s(v))

]
≥ µ

∑
i
Evi∼Fi [Ti(yi(vi) | vi)] . (2)

The simple definition of competitive efficiency (Definition 2) quantified over all deterministic
bid profiles. In Definition 4 a strategy profile picks a bid for every agent in every population.
Hence, Definition 4 generalizes the simpler definition to bid profiles over populations of partici-
pants. Furthermore, though Definition 4 depends on the prior F , we show via closure properties
that a rule’s competitive efficiency on all priors can be analyzed by considering any single prior,
including a degenerate one. It will therefore often suffice to work with the simpler Definition 2 to
characterize the competitive efficiency of Definition 4. Conceptually, this shows that competitive
efficiency depends only on the allocation rule of the mechanism.

We now derive two closure properties of competitive efficiency. Our first is that competitive
efficiency is closed with respect to reserve prices, i.e., if a rule has competitive efficiency µ
without reserves, then its competitive efficiency with reserves is µ. Then, we consider the impact
of two types of randomization on competitive efficiency. First, we consider randomization over
allocation rules. In other words, if the lowest competitive efficiency of any rule in a family of
allocation rules is µ then the competitive efficiency of any convex combination of rules in the
family is at least µ. Second, we study closure under mixture over priors. We start with closure
under reserves.

Lemma 5. The competitive efficiency is closed under reserve pricing, i.e., an allocation rule
with competitive efficiency µ on F (without reserves) has competitive efficiency µ on F with
reserves.

Proof of Lemma 5. Let x̃0 be a rule that has competitive efficiency µ without reserves (equiv-
alently with reserves 0) on prior F . We will show that adding any profile of reserves r yields a
rule x̃r with competitive efficiency µ with reserves r on F . The converse direction in the lemma
is immediate.

For a strategy profile s, let sr denote the strategy profile obtained by setting to 0 all bids
si(vi) < ri failing to meet the reserves r. The main ideas of the proof are that (a) outcomes are
equivalent for x̃0 on sr and x̃r on s, and (b) fixing the bid allocation rules, reserves only lower
threshold surplus. Thus, a competitive efficiency without reserves implies the same competitive
efficiency with reserves. We adopt the following notation that makes the allocation rule x̃
and strategy profile s explicit in our notation for threshold surplus with discounted reserve
T rii (x, x̃, s−i | vi) = T rii (x | vi). Zero reserves will be explicitly designated as such.

Consider the following analysis, with subsequent discussion:

µEv

[∑
i
si(vi)x̃

r
i (s(v))

]
= µEv

[∑
i
sri (vi)x̃

0
i (sr(v))

]
(3)

≥
∑

i
Evi
[
T 0
i (yi(vi), x̃

0, sr−i | vi)
]

(4)

=
∑

i
Evi
[
T 0
i (yi(vi), x̃

(0,r−i), s−i | vi)
]

(5)

≥
∑

i
Evi
[
T rii (yi(vi), x̃

(0,r−i), s−i | vi)
]

(6)

=
∑

i
Evi [T rii (yi(vi), x̃

r, s−i | vi)] (7)
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Equations (3) and (5) follow by the equivalence of outcomes from reserves in the allocation
rule and reserves in the bids. Equation (4) follows from the assumed competitive efficiency
of the rule without reserves x̃0. Equation (6) follows from the definition of threshold surplus
with discounted reserves; i.e., discounting reserves lowers the threshold surplus. Equation (7)
follows because the thresholds considered are only above the reserve. Combining the sequence
of inequalities we observe that x̃r has competitive efficiency µ on strategy profile s.

Closure under convex combination of both allocation rules and priors will follow from a single
convexity argument. The definitions of each are below, followed by a proof encompassing both.

Definition 6. Let θ ∼ U [0, 1] be a uniform random variable indexing over allocation rules x̃θ and
their feasibility environments X θ. The convex combination of these rules is x̃(b) = Eθ[x̃θ(b)].
The corresponding feasibility environment is X = {x = Eθ[xθ] : ∀θ ∈ [0, 1], xθ ∈ X θ}.

Definition 7. Let ω ∼ U [0, 1] be a uniform random variable indexing over priors Fω. To draw
from the convex combination of these distributions F , draw ω ∼ U [0, 1] then draw v ∼ Fω.

Lemma 8. The competitive efficiency is closed under convex combination of allocation rules and
of priors, i.e. (i) if a rule x̃ has competitive efficiency µ on Fω for all ω, it also has competitive
efficiency µ on the convex combination F ; (ii) if for all θ, x̃θ has competitive efficiency µ on F ,
then the convex combination x̃ also has competitive efficiency µ on F .

Proof. Let x̃ be the convex combination of rules indexed by θ (with corresponding feasibility
settings X θ and combination X ). Further let F be a convex combination of distributions, indexed
by ω. Assume for all θ and ω, x̃θ has competitive efficiency µ on Fω. We will argue that x̃ has
competitive efficiency µ on F . This implies both stated claims, as either convex combination
could be trivial.

Let y map value profiles to allocations feasible for the convex combination environment
X . Then for each profile v, we can write y(v) = Eθ[yθ(v)] for some collection allocation
functions yθ respectively feasible for X θ. Moreover, for an agent i with value vi the interim
allocation yi(vi) = Ev[yi(v) | vi] satisfies yi(vi) = Eθ,ω[yθ,ωi (vi) | vi], where yθ,ωi (vi) is the interim
allocation with respect to yθ under distribution Fω. Now consider an agent i with value vi,
and consider an allocation level yi(vi) = Eθ,ω[yθ,ωi (vi) | vi]. The following inequalities show that

Eθ,ω[T θ,ωi (yθ,ωi (vi) | vi) | vi] ≥ Ti(yi(vi) | vi), explained after their statement:

Ti(yi(vi) | vi) =

∫ ∞
0

max(yi(vi)− x̃i(z | vi), 0) dz

=

∫ ∞
0

max
(
Eθ,ω

[
yθ,ωi (vi)− x̃θ,ωi (z | vi)

∣∣ vi] , 0) dz
≤ Eθ,ω

[∫ ∞
0

max(yθ,ωi (vi)− x̃θ,ωi (z | vi), 0) dz
∣∣∣ vi]

= Eθ,ω
[
T θ,ωi (yθ,ωi (vi) | vi)

∣∣ vi] .
The first and last equalities are another way to write the integral defining the threshold surplus.
The second equality is from the definitions of convex combination, and linearity of expectation.
The inequality follows from convexity of the function max(·, 0) and linearity of integration.
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Now we write out the definition of the competitive efficiency for feasible allocation y:

Ev∼F

[∑
i
si(vi)x̃i(s(v))

]
= Eθ,ω

[
Ev∼Fω

[∑
i
si(vi)x̃

θ
i (s(v))

]]
≥ Eθ,ω

[
µ
∑

i
Evi∼Fω

i

[
T θ,ωi (yθ,ωi (vi) | vi)

]]
= µ

∑
i
Evi∼F

[
Eθ,ω | vi

[
T θ,ωi (yθ,ωi (vi) | vi)

]]
≥ µ

∑
i
Evi∼F [Ti(yi(vi) | vi)] .

The first line follows from the definitions of convex combination and revenue. The second
follows from applying competitive efficiency. The third line follows from properties of expec-
tation, and the final line follows because Eθ,ω[T θ,ωi (yθ,ωi (vi) | vi) | vi] ≥ Ti(yi(vi) | vi), as argued
above. We conclude that M has competitive efficiency µ on F .

As stated earlier, an important consequence of Lemma 8 is that competitive efficiency does
not depend on the prior, but rather is inherent to the allocation rule.

Corollary 9. An allocation rule x̃ has competitive efficiency µ on a degenerate prior if and only
if it has competitive efficiency µ on all priors.

Proof. Assume x̃ has competitive efficiency µ on a degenerate prior. Under a degenerate prior,
Definition 4 is equivalent to the statement that for any bid profile b and fixed allocation profile
y ∈ X , ∑

i
bix̃i(b) ≥ µ

∑
i
Ti(yi),

where degeneracy of the prior allows us to omit conditioning from Ti(yi). This inequality does
not depend on the prior, and hence x̃ has competitive efficiency µ on every degenerate prior.
Now consider some nondegenerate prior F . Since F can be written as a mixture over degenerate
priors, the forward direction follows from Lemma 8. The reverse direction is immediate.

Definition 10. We say an allocation rule x̃ has competitive efficiency µ if it has competitive
efficiency µ on all priors.

In the remainder of the section, we analyze the competitive efficiency of a variety of well-
studied single-bid allocation rules. In Section 3.1, we consider the highest-bid-wins rule for
single-item auctions, and prove a competitive efficiency of 1. For contrast, we then turn the
multi-item setting of single-minded combinatorial auctions in Section 3.2. We show that for
multiple items, highest-bids-win, which is welfare-optimal in the absence of incentives, has an
undesirable competitive efficiency. In Section 3.3, we consider the competitive efficiency of
greedy allocation rules. We observe that they generally lack the pathology of highest-bids-win
single-minded combinatorial auctions. Finally, we demonstrate the usefulness of closure under
convex combination by considering position auctions in Section 3.4. In Section 4, we will show
how these competitive efficiency bounds imply a variety of worst-case welfare and revenue results
for winner-pays-bid and all-pay mechanisms under several standard notions of equilibrium.

3.1 Single-item Multi-unit Auctions

This section considers the n-agent single-item and multi-unit highest-bids-win allocations. Under
the k-unit highest-bids-win rule, each agent i submits a bid bi, the and the k highest bidders
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win a unit. This generalizes the standard allocation rule for single-item auctions. By Lemma 9,
it suffices to analyze degenerate priors. Since the highest-bids-win rule and k-unit environment
are both deterministic, we may consider the simpler Definition 2. We first give the proof for
single-item environments.

Theorem 11. The highest-bids-win rule has competitive efficiency 1 in single-item environ-
ments.

Proof. The bid surplus under bid profile b is the highest bid, i.e.,
∑

i bix̃i(b) = maxi bi. Each

agent’s threshold bid b̂i(b−i) is at most the highest bid. Thus, for any feasible allocation y, i.e.,
with

∑
i yi ≤ 1, we can bound the threshold surplus by the bid surplus.∑

i
b̂i(b−i) yi ≤ maxi bi

∑
i
yi

≤
∑

i
bix̃i(b).

A very similar proof shows that the highest-bids-win rule for selling k-units to unit-demand
agents has competitive efficiency 1. Rather than give the elementary proof here, we will observe
it as a corollary of Theorem 23, given subsequently.

Theorem 12. For any single-item or multi-unit environment, the highest-bids-win winner-pays-
bid rule has competitive efficiency 1.

3.2 Single-Minded Combinatorial Auctions: Highest Bids Win

In the Section 3.1, we saw that in single-item and k-unit settings, allocating the highest bidders
has competitive efficiency 1. We now present a negative example, and show that in another
natural multi-item setting, competition under the generalization of the highest-bids-win rule
corresponds much less directly to bid surplus. Our multi-item setting and allocation rule are as
follows:

Definition 13. A single-minded combinatorial auction feasibility environment is defined by m
indivisible items, n agents that each desire a bundle of items, and the constraint that no item
can be allocated more than once. Agent i desires the set of items Si, she receives value vi for
receiving any superset of Si and value 0 otherwise. An allocation vector x ∈ {0, 1}n is feasible if
and only if for all agents i 6= i′, simultaneous allocation xi = xi′ = 1 implies disjoint demands
Si ∩ Si′ = ∅.

Definition 14. The highest-bids-win rule allocates the feasible set of bidders with the highest
total bid.

In a single-minded combinatorial auction under the highest-bids-win rule, a single bidder
may exclude many others simultaneously. As an example, consider an m+1-agent environment,
where agents 1, . . . ,m desire only the item with their same index, and agent m + 1 desires the
grand bundle of all items. Agent m+1 is mutually exclusive with any subset of the other agents.
The impact of agent m+ 1 on the competition experienced by agents 1, . . . ,m far exceeds their
impact on bid surplus. Under the bid profile b = (0, . . . , 0, 1), the bid surplus is 1, while each
agent i ∈ {1, . . . ,m} now faces a threshold bid of b̂i(b−i) = 1. Since the allocation vector
y = (1, . . . , 1, 0) is feasible, this immediately implies:

Lemma 15. There exists a single-minded combinatorial auction environment where the highest-
bids-win rule does not have competitive efficiency µ for any µ > 1/m.
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3.3 Greedy Auctions

The previous section demonstrates the inability of the highest-bids-win rule to effectively convert
competition into bid surplus in multi-item settings. We now show that other rules may manage
this relationship more effectively. In particular, this section considers allocation rules which are
greedy, defined below.

Definition 16. The greedy by priority rule is given by a profile ψ = (ψ1, . . . , ψn) of nonde-
creasing priority functions mapping bids for each agent i to real numbers. It proceeds in the
following way:

1. Sort agents in nonincreasing order of priority ψi(bi).

2. Initialize the set of winners S = ∅.

3. For each agent i in sorted order: if S ∪ {i} is feasible, S = S ∪ {i}.

4. Return S.

For example, the greedy by bid rule is given by priority functions ψi(bi) = bi for all i. Greedy
by priority rules may be defined in any feasibility environment. In many settings, including the
single-minded combinatorial auction, greedy rules will be suboptimal in the absence of incentives
— they may not select a set of winners with highest total bid. We will show that this subop-
timality completely governs the competitive efficiency of greedy auctions. Since the design of
approximately optimal greedy algorithms is well-studied, we obtain several competitive efficiency
bounds as immediate corollaries. We first define our measure of approximate optimality.

Definition 17. A bid allocation rule x̃ is an α-approximation for a feasibility environment X
if for any bid profile b and feasible allocation y, we have:∑

i
bix̃i(b) ≥ α

∑
i
biyi.

We formalize the relationship between approximation and the competitive efficiency as fol-
lows.

Theorem 18. For any feasibility environment X , every greedy α-approximation x̃ for X has
competitive efficiency at least α.

For single-minded combinatorial auctions, a greedy 1/
√
m-approximation is well-known.

Lemma 19 (Lehmann et al., 2002). For any single-minded combinatorial auction environment,
greedy by priority with ψi(bi) = bi/

√
|Si| for all agents i is a 1/

√
m-approximation.

Another family of settings where greedy allocation rules are of particular interest are ma-
troids, defined below, where the greedy by bid rule is known to be optimal i.e. a 1-approximation,
absent incentives. Notable examples of matroids include k-unit environments, discussed in Sec-
tion 3.1, and transversal matroids, which are matchable subsets of vertices on one side of a
bipartite graph.

Definition 20. A feasibility environment X is a matroid if the following two properties hold:

i. (Downward Closure) For any S ∈ X and i ∈ S, S \ {i} ∈ X .
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ii. (Augmentation Property) For any S1, S2 ∈ X with |S1| > |S2|, there exists i ∈ S1 \S2 such
that S2 ∪ {i} ∈ X .

Lemma 21. For any matroid feasibility environment, greedy by priority with ψi(bi) = bi for all
agents i is a 1-approximation.

We therefore obtain:

Theorem 22. For any single-minded combinatorial auction environment, greedy-by-priority rule
with priority function ψi(bi) = bi/

√
|Si| for agent i, has competitive efficiency at least 1/

√
m.

Theorem 23. For any matroid environment, the highest-bids-win rule has competitive efficiency
1.

To prove Theorem 18, it is helpful to compare the behavior of greedy rules to the non-greedy
highest bids win rule of Section 3.2, which had a poor competitive efficiency. In the example
which proved Lemma 15, the high bid of the (m+1)th agent discouraged participation from the
others - individually, each agent would have needed to bid 1 + ε to win. As a group, though, the
losing agents could have won by increasing each of their bids by a tiny amount. Greedy rules
lack this pathology. For any greedy allocation rule, we could increase the bids of every losing
agent to their threshold without changing the outcome. We formalize this property as follows.

Definition 24. Bid allocation rule x̃ is coalitionally non-bossy if: for any profiles of bids b and
b′ where the bids in b′ are the same as b for winners under b and at most their critical prices
for losers under b, i.e., if x̃i(b) = 0 then b′i ≤ b̂i(b−i); then the allocations of x̃ under b and b′

are the same, i.e. x̃(b) = x̃(b′).

Lemma 25. Any greedy by priority allocation rule is coalitionally non-bossy.

Proof. Imagine changing b to b′ by increasing one loser’s bid at a time. Each time we increase
a bid, say, of agent i, two things remain true: (1) i still loses: as long as b′i ≤ b̂i(b−i), i is passed
over as infeasible when she is reached by the greedy rule; and (2) the threshold of every other
losing agent i′ remains unchanged: each losing agent’s threshold is only determined by the bids
of the agents who win.

Lemma 26. Any coalitionally non-bossy allocation rule has competitive efficiency at least its
approximation ratio.

Proof. Let y be a feasible allocation, b a profile of bids, and let b′ be a vector of bids where
losers under b bid b̂i(b−i), while winners bid as before. The following inequalities hold, with
justifications after. ∑

i
bix̃i(b) =

∑
i
b′ix̃i(b)

=
∑

i
b′ix̃i(b

′)

≥ α
∑

i
b′iyi

≥ α
∑

i
b̂i(b−i)yi.

The first line holds because b′ differs from b only on the bids of losing agents. The second
follows from the coalitional non-bossiness of greedy rules, and the third from the assumption
that the greedy rule is an α-approximation. The last line follows from the fact that b′ doesn’t
change the bids of winners under b, and for those agents, bi ≥ b̂i(b−i).

Theorem 18 follows from combining Lemma 25 with Lemma 26.
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3.4 Position Auctions

The allocation rules and environments in Section 3.1-Section 3.3 have been deterministic. We
now consider the canonical and inherently randomized allocation environment of position auc-
tions and show that the most natural single-bid rule has competitive efficiency 1. This result
follows directly from the competitive efficiency of multi-unit highest-bids-win allocation (Theo-
rem 12) and closure of the competitive efficiency under convex combination (Lemma 8).

Position environments are a standard model for internet advertising auctions, e.g., Varian
(2007b) and Edelman et al. (2007b). Advertisers (agents) compete for ad placement in positions
in a list on a webpage. Each position has an associated clickthrough probability, and an agent
is considered allocated when clicked. Feasible allocations are assignments of ads to positions,
with the possibility for the auctioneer to exclude any agent from the auction.

Definition 27. A position environment is given by position allocation probabilities 1 ≥ α1 ≥
. . . ≥ αn ≥ 0. An allocation vector x̃ is feasible if there exists a permutation π over {1, . . . , n}
such that for all agents i x̃i ∈ {0, απ(i)}.

The natural extension of highest-bids-win to position environments is the following:

Definition 28. The rank-by-bid rule for position auctions assigns agents to slots in order of
their bid. The agent in slot j wins with probability αj.

The following interpretation of position auctions as a convex combination of multi-unit auc-
tions is well known in the literature, e.g., Devanur et al. (2015). The subsequent theorem
combines this interpretation with Lemma 8 and Theorem 12.

Lemma 29. The allocation rule of the generalized first price auction for position weights
α1 ≥ . . . ≥ αn is equivalent the convex combination of single-item multi-unit highest-bids-win
allocation rules where k-units are sold with probability αk − αk+1 (with αn+1 = 0).

Theorem 30. For any position environment, the rank-by-bid rule has competitive efficiency 1.

4 Welfare and Revenue Analysis

In the previous section, we studied the way mechanisms manage inter-agent competition. We
focused on the mechanisms’ allocation rules in isolation, agnostic to the choice of payment
format and behavioral assumptions on participating agents. This section considers allocations
and payments together, and turns the focus to agents’ behavior. In equilibrium, agents respond
to a range of allocations at different prices. Behavioral assumptions such as best response dictate
the choice from this range, which in turn governs the agent’s contribution to social welfare. In
what follows, we define individual efficiency, which quantifies how an agent’s solution to their
bidding problem impacts welfare. Individual efficiency will depend on the shape of the allocation
rule, the payment format, and the way the agent selects a bid (e.g. the degree of approximate
best response). We then show how individual efficiency and competitive efficiency combine to
imply robust equilibrium performance guarantees.

Equilibrium induces for each agent a single-agent interim mechanism, with a bid allocation
rule x̃ and payment rule p̃. For each bid b, the bid allocation rule and payment rule induce
a utility ũ(b) = vx̃(b) − p̃(b). For the winner-pays bid payment rule, an agent with value v
receives utility ũ(b) = (v− b)x̃(b), and for an all-pay rule, we have ũ(b) = vx̃(b)− b. The agent’s
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competition is summarized by the bid allocation rule x̃ they face. In Section 3 we measured the
strength of this competition by the threshold surplus T (·). Individual efficiency measures the
tradeoff between this competition and utility.

Definition 31. Let M = (x̃, p̃) be a single-agent mechanism and b : R+ → R+ a bid function
mapping agent values to bids. The individual efficiency of b(·) in M is the largest η such that
for all z ∈ [0, 1] and values v ≥ 0, ũ(b(v)) + T (z) ≥ ηvz.

Definition 31 can be motivated by considering winner-pays-bid mechanisms in the following
single-agent problem. A seller faces a choice between allocating a buyer with fixed value v or
seeking value from an outside option. The outside option’s value v0 is distributed with CDF equal
to x̃. The welfare-maximizing outcome allocates the buyer if v ≥ v0, taking the outside option
otherwise. The buyer’s contribution to social welfare is therefore vz∗, where z∗ is the probability
that v ≥ v0. Individual efficiency η measures the portion of the buyer’s surplus captured by a
winner-pays-bid mechanism. The first term on the left, ũ(b(v)), captures the contribution from
the buyer’s utility. The second term, T (z∗) is equal to E[v0 | v ≥ v0] Pr[v ≥ v0]. Since the seller’s
revenue is always at least v0, this lower bounds the seller’s contribution to the welfare.

To enable robust analysis, we will consider individual efficiency taken in the worst case over
broad families of single-agent mechanisms likely to arise in equilibrium. For example, in Nash
equilibria of a single-item first-price auction, each agent faces a single-agent mechanism with a
0-1 allocation rule stepping up at a threshold. The model of agent behavior (e.g. best response)
in turn governs the bid functions that arise in response to allocation rules. Taking these two
together yields the following.

Definition 32. Given a set of single-agent mechanisms M and a behavioral model B mapping
single-agent mechanisms M to bid functions bM , the individual efficiency of B on M is the
infimum of the individual efficiency of bM in M , taken over all M ∈M.

In Section 4.1, we consider individual efficiency for three pairings of mechanism family
(winner-pays-bid/all-pay) and behavioral model (approximate/exact best response). We then
connect the single-agent analyses to performance guarantees in auction equilibria in Section 4.2.
If equilibrium induces single-agent mechanisms with individual efficiency η in a mechanism with
competitive efficiency µ, then we show in Section 4.2.1 that the mechanism has welfare ap-
proximation µη. Furthermore, we show in Section 4.2.2 that analogous guarantees hold for the
objective of revenue in Bayes-Nash equilibrium of winner-pays-bid mechanisms with carefully-
selected reserve prices. Finally, we trace out the limits of our approach by exhibiting examples
with high loss in Section 4.3.

4.1 Individual Efficiency Analyses

Individual efficiency quantifies the performance of a behavioral model when faced with a fam-
ily of single-agent mechanisms. To study equilibria of winner-pays-bid and all-pay auctions,
we consider the single-agent mechanisms that arise from those auctions. For winner-pays-bid
mechanisms, approximate best response in full-information environments generates ε-Nash equi-
libria, which induce 0-1 (i.e. deterministic) single-agent mechanisms (Section 4.1.1). Similarly,
best response under incomplete information generates winner-pays bid single-agent mechanisms
with possibly randomized allocations (Section 4.1.2). Finally, we study single-agent, randomized
all-pay mechanisms under best response (Section 4.1.3).
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4.1.1 Deterministic Rules with Approximate Best Response

This section characterizes the individual efficiency of (1 + ε)-best response bids against deter-
ministic winner-pays-bid mechanisms, i.e. those with allocations in {0, 1}.

Definition 33. A bid b is an (1 − ε)-best response for an agent with value v if it maximizes
utility up to a factor of (1− ε): for any alternative bid b′, vx̃(b)− p̃(b) ≥ (1− ε)(vx̃(b′)− p̃(b′)).

Note that taking ε = 0 yields exact best response. We give a tight characterization as follows.

Lemma 34. The individual efficiency of (1 − ε)-best response in winner-pays-bid mechanisms
with deterministic allocation rules is (1− ε).

Proof. We give an argument lower bounding the individual efficiency, and then exhibit a par-
ticular example where our bound holds with equality. Let x̃ step up to 1 at b̂ ∈ [0,∞). Then
T (z) = b̂z. For any δ > 0, the agent could bid b̂ + δ and win. Hence, for any agent value v, a
(1 − ε) best response b(v) satisfies ũ(b(v)) ≥ (1 − ε)(v − b̂ − δ). Since δ is arbitrary, we obtain
ũ(b(v)) + b̂ ≥ (1 − ε)v. We may further weaken this to obtain the desired inequality for all
z ∈ [0, 1]:

ũ(b(v)) + b̂z ≥ (1− ε)vz.

This is the best possible worst-case bound. An example for which it holds with equality is
v = (1 + ε), z = 1, b̂ = 0, and b(v) = ε.

Note that this analysis relied heavily on the allocation rule being deterministic. We present
an example demonstrating this assumption to be necessary in Section 4.3.2.

4.1.2 Winner-Pays-Bid With Randomized Allocation

Randomized allocation rules present a richer bidding problem, as agents may now select from
many different allocation levels and associated payments. Randomness may stem from incom-
plete information with respect to other agent’s values or from randomness in the mechanism or
feasibility environment. Below, we give a tight single-agent analysis under exact best response.

Lemma 35. The individual efficiency of exact best response in winner-pays-bid mechanisms
with randomized allocation rules is (e− 1)/e.

Proof. We give a lower bounding argument, followed by an example for which the analysis is
tight. Let allocation rule x̃ and value v be given. An agent’s best response bid b(v) must
maximize ũ(b) = (v − b)x̃(b). For any allocation probability x, the agent could get allocation
probability at least x by bidding arbitrarily close to t(x) = inf{b | x̃(b) ≥ x}. Hence, ũ(b(v)) ≥
(v− t(x))x for all x ∈ [0, 1]. We may rearrange this as t(x) ≥ v− ũ(b(v))/x. Since we also have
t(x) ≥ 0, we may write:

T (z) ≥
∫ z

0
max(v − ũ(b(v))

x , 0) dx =

∫ z

ũ(b(v))/v
v − ũ(b(v))

x dx

= vz − ũ(b(v))(1− ln ũ(b(v))
vz ).

We therefore have ũ(b(v)) +T (z) ≥ vz− ũ(b(v)) ln(ũ(b(v))/vz). Holding v fixed and minimizing
the righthand side as a function of ũ(b(v)) yields the inequality ũ(b(v)) + T (z) ≥ vz(e − 1)/e.
This lower bounds individual efficiency by e/(e − 1). An example exhibiting tightness can be
produced by choosing v = 1, x̃(b) = (e(1− b))−1 for b ∈ [0, 1− 1/e], and b = 0.
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4.1.3 All-Pay Mechanisms

For all-pay mechanisms, we consider only randomized allocation rules. Pure approximate Nash
equilibria do not exist, rendering an analysis of deterministic mechanisms unnecessary.

Lemma 36. The individual efficiency of exact best response in all-pay mechanisms with ran-
domized allocation rules is 1/2.

Proof. To lower bound the individual efficiency, note that the agent selects their best response
bid b to maximize their utility ũ(b) = vx̃(b)− b. For any allocation probability x ∈ [0, 1], agent
i could choose to get allocation probability at least x by bidding their interim threshold t(x).
Hence, ũ(b(v)) ≥ vx − t(x) for all x ∈ [0, 1]. We may rearrange this as t(x) ≥ vx − ũ(b(v)).
Since we also have t(x) ≥ 0, we may write:

T (z) ≥
∫ z

0
max(vx− ũ(b(v)), 0) dx =

∫ z

ũ(b(v))/v
vx− ũ(b(v)) dx

= v
2 − ũ(b(v)) + ũ(b(v))2

2v .

We therefore have ũ(b(v))+T (z) ≥ v/2+ũ(v)2/2v. Holding v fixed and minimizing the righthand
side as a function of ũ(b(v)) yields a lower bound of vz/2, as desired. To exhibit tightness, choose
v = 1, x̃(b) = b for b ∈ [0, 1], and b = 0.

4.2 Performance Guarantees

Competitive efficiency and individual efficiency together yield performance guarantees for auc-
tion equilibria. Section 4.2.1 gives the welfare consequences. In Section 4.2.2, we then use
the reduction from revenue maximization to welfare maximization of Myerson (1981) to show
that similar guarantees apply to winner-pays-bid mechanisms with reserves when values are
independent.

4.2.1 Robust Welfare Guarantees

Individual efficiency was motivated in terms of the welfare properties of a single-buyer alloca-
tion problem, where a seller chose between the buyer and an outside option. In multi-buyer
mechanisms, the seller’s outside options are endogenously generated by competition; compet-
itive efficiency measures the way competition translates into revenue. Hence, individual effi-
ciency and competitive efficiency combine to bound welfare in equilibrium. This discussion
can be formalized as follows. For a mechanism M = (x̃, p̃) and prior F , any strategy pro-
file s induces an interim mechansim for agent i with value vi with interim allocation rule
x̃i(b | vi) = Ev−i [x̃i(b, s−i(v−i) | vi] and interim payment rule p̃i(b | vi) = Ev−i [p̃i(b, s−i(v−i) | vi].
The interim mechanisms induced by winner-pays-bid and all-pay mechanisms will have those
same payment formats.

Theorem 37. Given mechanism M = (x̃, p̃) let x̃ have competitive efficiency µ ≤ 1. Let M
be a set of single-agent mechanisms, and B a behavioral model mapping values to bids for every
mechanism with individual efficiency η on M. Then for any prior F and strategy profile s for
M where each agent’s interim mechanism is in M and each player’s bid is selected according to
B, the expected welfare is a µη-approximation to the optimal welfare.
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Proof. For any value vi for agent i, let x∗i (vi) denote agent i’s interim allocation probability
under the welfare-optimal allocation rule. The individual efficiency of B on X̃ implies:

ui(vi) + Ti(x
∗
i (vi) | vi) ≥ ηvix∗i (vi).

Summing over all agents and taking expectation over v yields:

Ev

[∑
i
ui(vi)

]
+ Ev

[∑
i
Ti(x

∗
i (vi) | vi)

]
≥ η Ev

[∑
i
vix
∗
i (vi)

]
.

The righthand side is the optimal expected welfare. The second term on the left can be rewritten
as Ev[

∑
i Ti(x

∗
i (vi) | vi)] =

∑
i Evi [Ti(x∗i (vi) | vi)]. We may therefore apply competitive efficiency

to obtain:
Ev

[∑
i
ui(vi)

]
+ 1

µRev(M, s,F) ≥ ηWelfare(Opt,F).

the result then follows from noting that µ ≤ 1 and that the welfare of M is the sum of the
expected utilities and revenue.

Combining Theorem 37 with the individual efficiency guarantees of Lemmas 34 and 35 to
obtain the following welfare bounds:

Corollary 38. Any winner-pays-bid mechanism with deterministic allocation rule and compet-
itive efficiency µ ≤ 1 has worst-case welfare approximation µ(1− ε) in ε-Nash equilibrium.

Corollary 39. Any winner-pays-bid mechanism with competitive efficiency µ ≤ 1 has worst-case
welfare approximation µ(e− 1)/e in Bayes-Nash equilibrium.

Corollary 40. Any all-pay mechanism with competitive efficiency µ ≤ 1 has worst-case welfare
approximation µ/2 in Bayes-Nash equilibrium.

4.2.2 Revenue in Bayes-Nash Equilibrium

Individual efficiency quantifies the way a buyer chooses to trade off their utility and the seller’s
utility (via competitive efficiency) against their value. We now extend these ideas to study the
objective of seller revenue in Bayes-Nash equilibrium with independently distributed values. For
winner-pays-bid mechanisms with suitably chosen reserve prices, we will obtain a robust revenue
approximation of µ(e− 1)/2e for winner-pays-bid mechanisms with competitive efficiency µ.

Given a Bayes-Nash equilibrium s for product distribution F , Myerson (1981) shows that

the ex ante expected payment of an agent i is Evi [φi(vi)xi(vi)], where φi(vi) = vi− 1−Fi(vi)
fi(vi)

is the

virtual value for value vi and Fi (resp. fi) the cumulative distribution function (resp. probability
density function) of i’s value distribution. It follows that Rev(M, s,F) = Ev[

∑
i φi(vi)x̃i(s(v))].

We refer to an atomless distribution with φi(vi) nondecreasing in vi as regular. For regular distri-
butions, the revenue-optimal mechanism chooses the allocation with the highest virtual surplus∑

i φi(vi)xi. For downward-closed settings, agents with negative virtual value are excluded via
monopoly reserves, given by r∗i = inf{vi |φi(vi) ≥ 0}.

The above characterization rewrites equilibrium revenue in terms of buyer surplus in a trans-
formed value space. Revenue maximization then amounts to excluding agents with negative
virtual values, and maximizing virtual welfare among those that remain. The following lemma
extends Lemma 35 to reason about an agent’s contribution to revenue under monopoly reserves.
We assume agents who are indifferent between a bid of 0 and a positive bid choose the latter.
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Lemma 41. Let F be a regular value distribution with monopoly reserve r∗. Further let M be
a single-agent winner-pays-bid mechanism with allocation rule x̃, with x̃(b) = 0 for all b ≤ r∗.
Then for any v, best response bid b(v) and z ∈ [0, 1],

φ(v)x̃(b(v)) + T r
∗
(z) ≥ e−1

e φ(v)z. (8)

Proof. Since Fi is regular, φi(vi) < 0 if and only if vi < r∗i , in which case i is excluded by both
the optimal mechanism and Mr∗ , i.e. x̃i(s(v)) = x∗i (v) = 0. For such agents, (10) holds trivially.

For an agent with value v ≥ r∗, all best response bids are at least r∗. Hence for any best
response b(v), we have p̃(b(v)) ≥ r∗x̃(r∗). Furthermore, if x ≤ x̃(r∗), then t(x) ≤ r∗. It follows

that
∫ x̃(r∗)
0 t(x) dx ≤ r∗x̃(r∗). We therefore obtain the following sequence of inequalities:

p̃(b(v)) ≥ r∗x̃(r∗) ≥
∫ x̃(r∗)

0
t(x) dx ≥ T (z)− T r∗(z).

Combining with Lemma 35, we obtain a tradeoff between an agent’s contribution to surplus and
their threshold surplus:

vx̃(b(v)) + T r
∗
(z) = ũ(b(v)) + p̃(b(v)) + T r

∗
(z) ≥ ũ(b(v)) + T (z) ≥ e−1

e vz. (9)

The lemma then follows from noting that φ(v) ≤ v, and hence when φ(v) ≥ 0, the inequality
(8) is a weakening of (9).

We may apply Lemma 41 to obtain a revenue guarantee for Bayes-Nash equilibria.

Theorem 42. In any Bayes-Nash equilibrium of a winner-pays-bid mechanism with competitive
efficiency µ ≥ 1 and monopoly reserves r∗ for regular product distribution F , the expected revenue
is a µ(e− 1)/2e-approximation to that of the optimal mechanism.

Proof. Fix a value vi for agent i. If vi ≥ r∗i , Lemma 41 implies

φi(vi)xi(vi) + T
r∗i
i (x∗i (vi)) ≥ e−1

e φi(vi)x
∗
i (vi), (10)

where x∗i (vi) denotes the interim allocation probability for i under allocation rule of the revenue-

optimal mechanism OptF for F . We omit conditioning from T
r∗i
i (x∗i (vi)), as F is a product

distribution. We may sum (10) over all agents and take expectations to obtain

Ev

[∑
i
φi(vi)xi(vi)

]
+ Ev

[∑
i
T
r∗i
i (x∗i (vi))

]
≥ e−1

e Ev

[∑
i
φi(vi)x

∗
i (vi)

]
.

Applying competitive efficiency and noting that µ ≥ 1 yields:

1
µ

(
Ev

[∑
i
φi(vi)xi(vi)

]
+ Rev(Mr∗ , s,F)

)
≥ e−1

e Ev

[∑
i
φi(vi)x

∗
i (v)

]
.

Since a mechanism’s expected revenue is equal to its expected virtual surplus, we obtain the
desired revenue guarantee:

2Rev(Mr∗ , s,F) ≥ µ e−1e Rev(OptF ,F).

20



4.3 Lower Bounds

To conclude the section, we explore the limits of our approach. We do so by exhibiting three
sets of examples. In Section 4.3.1, we give the worst-known examples for welfare and revenue
loss in the single-item first-price auction in Bayes-Nash equilibrium. Section 4.3.2 gives a Nash
equilibrium of a mechanism with randomized allocations, competitive efficiency 1, and a factor
of (e− 1)/e welfare loss. This shows that the restriction to deterministic allocation rules in our
analysis of ε-Nash equilibrium was necessary. Finally, Dütting and Kesselheim (2015) study the
extent to which low competitive efficiency is a necessary condition for a good robust welfare
guarantee. We briefly discuss their results in Section 4.3.3.

4.3.1 Single-Item Lower Bounds

The competitive efficiency and individual efficiency provide an general framework for robust
welfare and revenue analysis. Whether the resulting welfare guarantees are best possible will
vary across mechanisms and solution concepts. What follows are three equilibria of the single-
item first-price auction which are the worst known for their type. We begin with a Bayes-Nash
equilibrium with correlated values which meets our welfare guarantee exactly, due to Syrgkanis
(2014).

Example 43. Our example has three agents. Agents 1 and 2 have values perfectly correlated,
and drawn according to the distribution with CDF (e(1− v))−1 for v ∈ [0, 1− 1/e]. Agent 3 has
value deterministically 1. If we break ties in favor of agent 3, it is a Bayes-Nash equilibrium for
agents 1 and 2 to bid their value and agent 3 to bid 0. In the optimal allocation, agent 3 always
wins. A straightforward calculation shows the equilibrium welfare to be (e− 1)/e.

Example 43 provides a canonical setting in which our welfare analysis is tight. When values
are independently distributed, however, Hoy et al. (2018) exploit independence to improve the
welfare approximation guarantee from (e − 1)/e ≈ .63 to ≈ .74. We now give the give the
worst-known example for welfare under independent distributions, with a multiplicative loss of
≈ .869.

Example 44. Our example will have n+1 agents. Agents 1, . . . , n will be designated low-valued
agents, with an identical value distribution to be determined shortly. Agent n + 1 will be the
high-valued agent, with value deterministically 1. Allocating to agent n+ 1 in all value profiles
yields a lower bound on the optimal welfare of 1. Our constructed equilibrium will occasionally
misallocate to low-valued agents, yielding an expected welfare of approximately .869.

We will design the bid distribution of the low-valued agents to make the high-valued agent
indifferent over an interval of bids. This will allow us to select a mixed strategy for the high-
valued bidder supported on this interval. To do so, fix in advance the expected utility uH ∈ [0, 1]
of the high-valued agent. The utility uH will be a parameter which defines a family of examples
constructed as below. Let GL denote the CDF of the bid distribution of an individual low-valued
agent. Then the CDF of the distribution of the highest-bidding low-valued agent is GnL. Note
that if GnL(b) = uH/(1 − b), then any bid b ∈ [0, 1 − uH ] for the high-valued bidder yields an
expected utility of exactly uH (breaking ties in favor of agent n + 1). We will therefore take
GL(b) = (uH/(1− b))1/n.

We have not yet derived a value distribution for the low-valued agents, and we have not
derived a bid distribution for the high-valued agent. Given a bid distribution GH for the high-
valued agent, the value distribution for the low-valued agents can be derived from first-order
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conditions. In other words, for any individual low-valued agent i ∈ 1, . . . , n, agent i is facing the
distribution of highest competing bid given by GC(b) = Gn−1L (b)GH(b). Agent i bids to maximize
(vi−b)GC(b). For any bi ∈ (0, 1−uH), first-order conditions imply that vi = bi+GC(bi)/gC(bi),
where gC(b) = G′C(b) is the density of agent i’s competing bid distribution at b. This mapping
immediately implies a value distribution for the low-valued agents.

All that remains is to select a mixed strategy for the high-valued agent, their expected
utility parameter, uH , and a number of low-valued agents n. To produce an equilibrium with
low welfare, we must navigate a tradeoff. If GH is too aggressive, then the high-valued agent
will win frequently, yielding high welfare. If GH is too weak, then noting the formula for the
low-valued agents’ values, we see that these values will generally be high. A similar tradeoff
applies in selecting uH . Numerical experimentation shows that choosing GH(b) =

√
b/(1− uH)

and uH = .57 yields low welfare. Given these choices, one can compute the expected welfare in
equilibrium as approximately .869 for very large n. As mentioned, allocating the high-valued
agent yields a lower bound of 1 on the optimal social welfare. This implies the desired welfare
ratio.

Finally, we give the worst-known example for revenue in Bayes-Nash equilibrium with monopoly
reserves, with independent, regularly-distributed values. As with welfare under independence,
there is a gap between our example and our robust guarantee.

Example 45. Our equilibrium will have two agents. The first agent will have value determin-
istically 1, and the second will have value CDF F2(v2) = 1 − 1/v2. The monopoly reserve for
agent 1 is trivially 1. For agent 2, any price above 1 has virtual value 0, so the monopoly reserve
is ambiguous. Perturb F2 slightly such that the monopoly reserve is 1. In equilibrium, agent
1 bids their value, 1. If we break ties in favor of agent 2, then agent 2 also bids 1, yielding an
expected revenue of 1. This obtains less revenue than posting a price of H > 1 to agent 2, and
upon rejection selling to agent 1, which has expected revenue 2 − 1/H. Taking H → ∞ yields
the desired multiplicative loss of 1/2.

4.3.2 Welfare Loss Under Randomized Mechanisms

Section 4.1.1 gave an improved individual efficiency guarantee for deterministic allocation rules
when compared to randomized rules. This translated to an improved welfare guarantee. We now
demonstrate that the restriction to deterministic rules is necessary for this improvement. We
do so by giving a mechanism with competitive efficiency 1, randomized allocations, and Nash
equilibrium with multiplicative welfare loss (e− 1)/e.

Example 46. Define a partial allocation environment to be an n-agent feasibility environment
given by a vector (z1, . . . , zn) of maximum allocations. A feasible allocation selects an agent
i and assigns them up to zi units of allocation. Given a value profile v, the welfare-optimal
allocation in a partial allocation environment selects the agent maximizing vizi. The highest
bids win allocation rule takes a profile of bids b and allocates the agent maximizing bizi. This
mechanism has competitive efficiency 1.

Now consider the following convex combination of partial allocation environments. Draw
a parameter θ according to G(θ) = (e(1 − θ))−1, and consider the three-agent partial alloca-
tion environment with maximum allocations (θ, θ, 1). By Lemma 8 competitive efficiency is
closed under convex combination, so the winner-pays-bid, highest-bids-wins mechanism for this
environment has competitive efficiency 1. We will now construct a Nash equilibrium for this
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mechanism with welfare approximation e/(e− 1). Let values be (1, 1, 1). If we allocate to break
ties to favor agent 3, then it is a Nash equilibrium for agents 1 and 2 to bid 1, and agent 3 to
bid 0. Equilibrium welfare is therefore the expected value of θ, which is (e − 1)/e, rather than
the 1 that could be achieved by allocating agent 3.

4.3.3 Necessity of Low Competitive Efficiency

We have shown that low competitive efficiency is a sufficient condition for robust performance
guarantees. We now briefly examine whether it is also a necessary condition. In other words,
we study the extent to which a mechanism with poor competitive efficiency must also possess
equilibria with welfare far from optimal. A formal treatment of this question appears in Dütting
and Kesselheim (2015). For brevity, we simply overview the main ideas.

In Section 3.2, we exhibited the highest-bids-win rule for single-minded combinatorial auc-
tions as a mechanism with poor competitive efficiency. We gave a bundle structure with m items
and an agent i desiring item i for each i ∈ {1, . . . ,m}, along with an agent m+1 who desires the
grand bundle. The bid profile (0, . . . , 0, 1) then refuted any competitive efficiency better than
m. Note, however, that under the winner-pays-bid format, this bid profile is not an equilibrium
for any positive value for agent m + 1, as this agent would always prefer to lower their bid. If
we allow ourselves to augment the setting with an additional bidder, however, we may produce
an equilibrium with welfare approximation m. Specifically, add a second grand bundle bidder,
m + 2. The value profile (1, . . . , 1) and bid profile (0, . . . , 0, 1, 1) is a Nash equilibrium for any
tiebreaking: the only unilateral deviations in which bidders 1, . . . ,m can win involve bidding at
least their value, and if bidders m+ 1 or m+ 2 bid less than 1, they are guaranteed to lose.

The approach of duplicating bidders can be extended to most winner-pays-bid mechanisms
of interest for single-minded combinatorial auctions. In particular, consider any winner-pays bid
mechanism M which, given two or more bidders with identical desired bundles, always allocates
the bidder among the group with the highest bid. Let bid profile b and alternate allocation y
exhibit a competitive efficiency at most µ. For each winner i under b in M , add a duplicate
i′ desiring the same bundle. The following value and bid profiles are then a Nash equilibrium
with welfare approximation µ in the augmented setting: for each winner i under b, give i and
i′ value equal to their equilibrium bid equal to bi. For each agent i winning under y but not
winning under b, give that agent value b̂i(b−i) and bid bi. Give all other agents value and bid
0. Under appropriate tiebreaking, this is an equilibrium for the same reasons as in the previous
example: winners (and their duplicates) under bi cannot reduce their bids without losing, and
losers under b cannot win without overbidding. Moreover, the welfare approximation is equal
to the competitive efficiency exhibited by b and y, µ.

Dütting and Kesselheim (2015) formalize the above approach for arbitrary single-parameter
environments. For any setting which can be augmented with duplicates, and any winner-pays-
bid mechanism which handles duplicates sensibly, any instance with competitive efficiency µ
implies the existence of a related instance and equilibrium for that related instance with welfare
approximation µ. For single-minded combinatorial auctions in particular, this implies that up to
a constant factor, the greedy mechanism discussed in Section 3.3 is the optimal winner-pays-bid
mechanism, with respect to the objective of robust welfare approximation. It also pinpoints the
highest-bids-wins mechanism’s mismanagement of inter-bidder competition as the source of its
worst-case inefficiency. More generally, it further justifies the study of competitive efficiency as
a design objective in itself.
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5 Beyond Single-Bid Mechanisms

Our analysis thus far has considered only single-bid mechanisms. This section adapts our mea-
sure of competition to arbitrary mechanisms for single-parameter agents. By generalizing the
idea of competitive efficiency and our individual efficiency analysis, we show that analogous
relationships continue to hold. We then apply our generalized framework to the sale of identical
items via simultaneous auctions to unit-demand agents. Agents may participate in any number
of auctions, and are served if they win at least one. Under our new definition, if all compo-
nent mechanisms mechanism have competitive efficiency µ, we show that their simultaneous
composition must as well.

5.1 Generalized Framework

The robust analysis of single-bid mechanisms consisted of three steps. First, we quantified an
agent’s competition in terms of their threshold bids. Second, competitive efficiency measured the
way a mechanism managed this competition across agents, independent of incentives. Finally,
individual efficiency related this competition to each agent’s bidding problem: in winner-pays-
bid (resp. all-pay) mechanisms, bids determine the price per unit (resp. price) of allocation.
In general single-parameter mechanisms, each agent i submits an action ai, which may be a
richer object than a real-valued bid. Nonetheless, competitive efficiency and individual efficiency
generalize with a suitable new measure of competition. To illustrate, in this section we measure
competition directly using the price per unit associated with different levels of allocation. This
will generalize our results for winner-pays-bid mechanisms from the previous sections, e.g. to
simultaneous first-price auctions. A similar approach, instead measuring competition with price
of allocation, would suffice to generalize our all-pay results.

For a general single-parameter mechanism M and strategy profile s for prior F , each action
ai obtains for agent i with value vi an interim allocation x̃i(ai) = Ev−i | vi [x̃i(ai, s−i(v−i) | vi] and
interim payment p̃i(ai) = Ev−i | vi [p̃i(ai, s−i(v−i) | vi]. Dividing the former quantity by the latter
yields the price per unit associated with ai. For winner-pays-bid mechanisms, the price per unit
of a bid bi is exactly bi itself.

Definition 47. The price per unit for action ai, denoted βi(ai | vi), is given by βi(ai | vi) =
p̃i(ai | vi)/x̃i(ai | vi).

When an agent faced strong competition in a winner-pays-bid mechanism, this was reflected
as a high threshold bid. In other words, we said competition was strong when high allocation
came with a high price per unit of allocation. We adopt this same perspective for general
mechanisms by studying actions on the Pareto frontier between allocation probability and price
per unit of allocation.

Definition 48. Given prior F , strategy profile s, value vi for agent i, and target allocation proba-
bility x ∈ [0, 1], an agent i’s interim threshold price is given by τi(x | vi) = infai : x̃i(ai | vi)≥x βi(ai | vi).

General single-parameter mechanisms need not support a natural notion of a reserve price.
One exception is simultaneous first-price auctions, where an individualized reserve of ri in each
mechanism for each agent i manifests as a minimum price per unit of ri for agent i. This excludes
agents with value below ri. The following definition will enable Bayes-Nash revenue analysis
under these circumstances.
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Definition 49. Given strategy profile s, prior F , desired allocation probability x ∈ [0, 1], and
minimum price per unit ri, an agent i’s interim threshold price with discounted reserve is given
by τ rii (x | vi) = τi(x | vi) if τi(x | vi) ≥ ri and 0 otherwise.

Finally, we will aggregate threshold prices in a manner analogous to Definition 3.

Definition 50. Given strategy profile s, prior F , allocation probability yi ∈ [0, 1], and minimum
price per unit ri, agent i’s generalized threshold surplus with discounted reserve for yi is given
by T rii (yi | vi) =

∫ yi
0 τ rii (x | vi) dx. When ri = 0, we omit ri and simply write Ti(yi | vi).

We now state our generalized definition of competitive efficiency. Without real-valued bids,
a mechanism’s bid surplus is no longer well-defined. We instead directly compare the threshold
surplus to the mechanism’s revenue. Note, however, that this new definition still only depends
on the rules of the mechanism, and not on incentives.

Definition 51. The generalized competitive efficiency of a mechanism M for prior F is the
smallest µ such that, for any strategy profile s and any feasible allocation function y mapping
value profiles to X , the revenue is at least a µ fraction of the threshold surplus:

Rev(M, s,F) ≥ µ
∑

i
Evi∼Fi [Ti(yi(vi) | vi)] .

For winner-pays-bid mechanisms, the price per unit of a bid is the bid itself. The mechanism’s
revenue is exactly its bid surplus. Hence:

Lemma 52. Let M be a winner-pays-bid mechanism and F a prior. If M has competitive
efficiency µ on F , then M also has generalized competitive efficiency µ on F .

A single-bid mechanism’s competitive efficiency was the same for all priors, including those
with correlation. However, simultaneously-composed auctions are known to possess inefficient
equilibria under correlation (Feldman et al., 2013). To obtain a definition which will extend to
simultaneous mechanisms, we weaken competitive efficiency in two ways. First, we only consider
priors which are product distributions. Second, we restrict to alternate allocations y which do
not depend on the value profile. Formally:

Definition 53. A mechanism M has weak competitive efficiency if for any product distribution
F , any strategy profile s and any feasible allocation y ∈ X , the revenue is at least a µ fraction
of the threshold surplus:

Rev(M, s,F) ≥ µ
∑
Ti(yi).

Note two notational simplifications for the threshold surplus: first, we omit conditioning
from Ti(yi), due to the independence of the prior. Second, the deterministic feasible allocation y
allows us to further omit expectation over vi. The following is then immediate from definitions.

Lemma 54. Let M be a winner-pays-bid mechanism and F a product distribution. If M has
generalized competitive efficiency µ on F , then M also has weak competitive efficiency µ on F .

Next, we generalize individual efficiency. Section 4 built up a modular definition which
depended on the type of single-agent mechanism an agent faced and the behavioral assumptions
governing the agent’s actions. For our application, it will suffice to consider unrestricted single-
agent mechanisms under exact best response. That is, we assume our agent faces an arbitrary
allocation rule x̃ and payment rule p̃, and chooses their action to maximize ũ(a) = vx̃(a)− p̃(a).
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We may extend our single-bid analysis in the following way. Consider the Pareto frontier
between allocation and price per unit: x̂(b) = supa :β(a)≤b x̃(a). Best responding to x̃, the agent
will only select actions a inducing (equivalent bid, allocation) pairs (b, x) if x = x̂(b). Note that
such b would be a best response bid under x̂, treated as a winner-pays-bid single-bid mechanism.
Now for any minimum price per unit r∗, consider the threshold surplus T r

∗
defined according

to Definition 3 with respect to x̂ and the generalized threshold surplus T r∗ with respect to x̃.
For any z ∈ [0, 1], T r

∗
(z) = T r∗(z). Using these observations, we may apply Lemmas 35 and 41

to conclude:

Lemma 55 (Generalized Individual Efficiency). Let x̃ : A→ [0, 1] and p̃ : A→ R+ be arbitrary
single-agent allocation and payment rules mapping actions to allocation levels and payments.
Further let a : R+ → A be a function mapping agent values to best response actions. Then for
every value v and every z ∈ [0, 1],

ũ(a(v)) + T (z) ≥ e−1
e vz. (11)

Lemma 56. Let F be a regular value distribution with monopoly reserve r∗. Further let
x̃ : A→ [0, 1] and p̃ : A → R+ be arbitrary single-agent allocation and payment rules map-
ping actions to allocation levels and payments, and assume that for any action a with β(a) ≤ r∗,
x̃(a) = 0. Then for every v, best response a(v) and z ∈ [0, 1],

φ(v)x̃(a(v)) + T r∗(z) ≥ e−1
e vz. (12)

To derive welfare and revenue guarantees from a mechanism’s weak competitive efficiency
aggregate inequalities (11) and (12) over all agents i and all type profiles v, taking z = x∗i (v)
to be the optimal allocation in the welfare- or revenue-optimal mechanism. This implies:

Theorem 57. Let M be a mechanism with weak competitive efficiency µ ≤ 1. Then in any
Bayes-Nash equilibrium of M with independently distributed values, the expected welfare is a
e−1
e µ-approximation to that of the optimal mechanism.

Theorem 58. Let M be a mechanism for a downward-closed setting with weak competitive
efficiency µ ≤ 1 which excludes agents below the monopoly reserves r∗. Then in any Bayes-
Nash equilibrium of M with independently distributed values, the expected revenue is a e−1

2e µ-
approximation to that of the optimal mechanism.

5.2 Simultaneous Composition

We now apply our generalized framework and study the impact of local mechanisms’ properties
on the equilibrium performance of a larger system. Consider n single-parameter agents seeking
abstract service. Agents may participate in one or more of m separate mechanisms. Each
of the mechanisms are run simultaneously; each agent submits a profile of actions, one per
mechanism. If the agent wins in any mechanism, they are considered served. They make the
assigned payments to all mechanisms. In this section we show that under these assumptions, if
each individual mechanisms has weak competitive efficiency µ, then so too does the aggregate
mechanism induced for agents by simultaneous participation as described above. We refer to the
aggregate mechanism as the simultaneous composition of the individual component mechanisms.

Formally, a simultaneous composition of mechanisms consists of m separate feasibility en-
vironments X 1, . . . ,Xm, one per component mechanism. Each component mechanism M j is
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comprised of a bid allocation rule x̃j and a bid payment rule p̃j , mapping a profile of actions
aj to an allocation in X j and a nonnegative payment, respectively. We assume each mechanism
has a withdraw action ⊥ which guarantees zero allocation and payments in M j . Define the
simultaneous composition of mechanisms M1, . . . ,Mm in the following way:

Definition 59. Let mechanisms M1, . . . ,Mm have bid allocation and bid payment rules (x̃j , p̃j)
and individual action spaces spaces A1

i , . . . , A
m
i for each agent i. The simultaneous composition

of M1, . . . ,Mm is defined to have:

• Action space
∏
j A

j
i for each agent. That is, each agent participates in the global mechanism

by participating in each composed mechanism individually. Given a profile of actions a for
each agent, we denote by aj the profile of actions restricted to mechanism j.

• Allocation rule x̃i(a) = maxj x̃
j
i (a

j). That is, each agent is served at their highest level
across all component mechanisms.

• Payment rule p̃i(a) =
∑

j p̃
j
i (a

j). That is, agents make payments to every composed mech-
anism.

Note that as a consequence of Definition 59, we may define the composed feasibility envi-
ronment as the set of allocation levels induced by the component mechanisms, i.e.

X = {(max
j
xj1, . . . ,max

j
xjn) |x1, . . . ,xm ∈ X 1, . . . ,Xm}.

Having defined the composed mechanism and feasibility environment, we may state the main
result of this section.

Theorem 60. Let M be a simultaneous composition of mechanisms M1, . . .Mm. If M1, . . . ,Mm

all have weak competitive efficiency µ with minimum per-unit prices r, then so does M .

The theorem will follow from two observations. First, agents’ threshold prices are lower in
the composition of mechanisms than in any individual component mechanism. In other words,
it is easier for agents to secure allocation with more mechanisms to participate in. Second, the
aggregate revenue is the sum of the component mechanisms’ revenues.

To formalize the first observation, let a be a strategy profile under a degenerate prior, i.e. a
profile of actions in the composed mechanism. We may treat each component mechanism M j

in isolation, and define aj to be the profile of actions taken by agents in M j . With respect to
aj , we may define for any action aj the payment p̃ji (a

j), allocation x̃ji (a
j), and price per unit

βji (a
j). For any allocation x ∈ [0, 1], we may also define agent i’s threshold price τ ji (x), threshold

price with discounted reserve τ j,rii (x) and generalized threshold surplus with discounted reserve

T j,rii (x) for mechanism M j according to Definitions 48-50. We omit the superscript j when
discussing these quantities in the context of the composed mechanism. In these terms, our first
observation can be stated as:

Lemma 61. For any profile of actions a, any z ∈ [0, 1], any component mechanism M j, and
any minimum price per unit ri, T rii (z) ≤ T j,rii (z).

Proof. The interim threshold prices for the composed mechanism and M j are defined as τi(x) =
infa:x̃i(a)≥x βi(a) and τ ji (x) = inf

aj :x̃ji (a
j)≥x β

j
i (a

j), respectively, where a denotes a profile of

actions for agent i in all m mechanisms. For any action aj in M j , there exists an action a′ in
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the composed mechanism where agent i plays aj in M j and ⊥ in all other mechanisms. This
action has price per unit β(a′) = βji (a

j). This implies τi(x) ≤ τ ji (x). For any minimum price

per unit ri, we then obtain τ rii (x) ≤ τ j,rii (x) and T rii (z) ≤ T j,rii (z) from the definitions.

Proof of Theorem 60. Let a be an action profile in the composed mechanism, and y a feasible
allocation in the composed environment. Let aj denote the restriction of a to actions in com-
ponent mechanism j, and let y1 . . . ,ym ∈ X 1, . . . ,Xm denote a profile of allocations for each
component mechanism certifying the feasibility of y, i.e. yi = maxj y

j
i for all i. For each agent i,

let δij be an indicator taking value 1 if j is the lowest index such that yi = yji , and 0 otherwise.
We obtain the following sequence of inequalities, explained after their statement:

1
µRev(M,a) =

∑
j

1
µRev(M j ,aj)

≥
∑

j

∑
i
T j,rii (yji )

≥
∑

j

∑
i
T rii (yji )

≥
∑

j

∑
i
δijT rii (yi)

=
∑

i
T rii (yi).

The first inequality follows from the definition of payments in a composed mechanism as the sum
of the revenues of the component mechanisms. The second line comes from the assumption that
each component mechanism has generalized competitive efficiency µ with minimum per-unit
prices r. The third line follows from Lemma 61. The remaining lines follow from the definition
of feasibility in the composed mechanism.

Theorem 60 and the results of Sections 3 and 4 imply that the simultaneous composition of
winner-pays-bid mechanisms inherits the worst-case welfare properties of the component mech-
anisms. Moreover, if all mechanisms have monopoly reserves, the same can be said for revenue.
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