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Abstract

General Data Protection Regulation (GDPR) aims to protect consumer data privacy,

however, its adverse effects have been widely documented. We present a new model for

the analysis of consumer data acquisition under privacy regulation. We treat both data

and analytics as separate strategic variables and consider the heterogeneity of privacy costs

across consumers. Using this model to examine the impact of GDPR, we identify a market

failure before GDPR and find that GDPR activates a market for data acquisition by im-

posing consent requirements on data acquisition. We further study the optimal design of

the mechanism for consumer data acquisition and deliver important policy implications for

implementing the social optimum.
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1 Introduction

Consumer data has become a fundamental resource for the modern digital economy.1 Recent

technological progress in data science has facilitated enormous growth in the scale and precision

of consumer data. These advances have led firms to explore new products and services and

convert to new business models, which has generated a new source of revenue for firms and

extra benefits to consumers.

However, the unprecedented scale of consumer data generation through invasive and opaque

acquisition practices by digital platforms has raised privacy concerns to the forefront of the policy

debate. Digital platforms typically offer “free” content or services for consumers, and digital

businesses collect and process consumer data generated from the use of these “free” services,

which they then monetize. Such a raw data set contains heterogeneous and complex attributes

and dimensions of personal information related to a consumer’s online activities, which might

include private and sensitive information. In addition, consumer data can be harvested across

different devices and processed through different parties other than the digital platforms, making

it impossible to track the dispersion of such sensitive information. An increasing number of data

breach cases have been exposed,2 but the true scale of privacy breaches is diffi cult to estimate.

Government regulators have taken action to protect consumer privacy in the digital era. The

European Union (EU) has endeavoured to enact such legislation by introducing the General

Data Protection Regulation (GDPR) in 2016; this is the toughest privacy and security law in

the world, which aims to harmonize data privacy laws across of its member countries as well as

provide greater protection and rights to individuals. GDPR has become a blueprint for privacy

regulation in many other countries and states, including Australia, New Zealand, Brazil, and

India, as well as California and Vermont in the United States.

Two years after its entry into effect in May 2018, the EU claims that "the GDPR enhances

transparency and gives individuals enforceable rights, such as the right of access, rectification,

erasure, the right to object and the right to data portability" and that "the GDPR has been

1Consumer data refers to the behavioural, demographic and personal information trail that consumers leave

behind as a result of their Internet use. The terminologies of “consumer data”and “personal data”are often used

interchangeably. Here, we prefer using “consumer data”to emphasize the commercial purpose of such data.

2According to the Identity Theft Resource Center’s 2021 Data Breach Report, there were 1862 re-

ported cases of data breaches and the case number increased by 68 percent from the previous year. See

https://www.cnet.com/news/privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/.
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an overall success, meeting many of the expectations".3 However, the negative economic con-

sequences of GDPR have also been widely seen. GDPR’s rollout causes an immediate negative

impact on digital platforms’data acquisition and their profitability. One of the most common

ways consumer data is collected is through the use of cookies.4 An empirical study by Aridor

et al. (2020) indicates a 12.5% drop in total cookies, while Johnson et al. (2020) find that

the significant reduction of cookies reduces the platforms’revenue by 52% from opt-out con-

sumers. The decrease of revenue also leads to a significant reduction of investments in digital

infrastructure,5 and the strict regulation on data acquisition will have significant impacts on the

development of emerging technologies.6 Moreover, GDPR compliance costs a significant level of

resources for platforms, and it is expected that such high costs will eventually be passed on to

consumers.7

The above controversy raises several fundamental economic questions on data privacy regu-

lation. First, how do we reconcile the conflict between consumer data acquisition and privacy

protection? Second, on what economic basis do we evaluate the overall impact of regulation?

Third, what is the optimal regulation of data acquisition that maximizes social welfare?

Privacy protection often takes a fundamental rights perspective, although there is no con-

sensus among scholars on the concept and the value of privacy. A distinction between privacy

rights and data rights is also commonly acknowledged, in which the former is formally protected

and cannot be traded- whereas the latter can be traded under the consent of the data subject.8

Such distinction makes it possible to reconcile the trade-off between data rights and privacy

protection. Moreover, an essential step for such goal is to establish a proper market mechanism

for consumer data acquisition under privacy protection.

3See https://ec.europa.eu/commission/presscorner/detail/en/qanda_20_1166

4Cookies are small text files that are planted into the user’s device by a web browser when the user visits a

particular website. By varying the number and types of cookies, digital platforms are able to change the scale of

data that it will collect from each consumer. We provide a detailed discussion of cookies in the Online Appendix.

5Jia et al. (2021) find a 26% reduction of venture investment in digital sectors by EU ventures compared to

their US counterparts.

6See the discussion on the impact of GDPR on global technology development by Li et al. (2019).

7According to the PricewaterhouseCoopers survey, 68% of American companies are expected to spend between

US$1 million and US$10 million to meet the GDPR requirements, and 9% are expected to spend more than US$10

million (PwC, 2017, https://www.pwc.com/us/en/services/consulting/library/gdpr-readiness.html.)

8Most data protection regulations including GDPR do not recognize property rights over consumer data.

Digital platforms can harvest data and possess data without data subjects retaining any property rights over

their data, provided the data subjects have consented to data collection.
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To understand key features of such a market and examine the impact of GDPR, we develop

a new theoretical model of consumer data acquisition. Our first step is to introduce the concept

of privacy costs which captures two key features of the economics of privacy.9 First, harvesting

consumer data with sensitive personal information causes a privacy concern, which results in a

loss of utility or a cost to consumers. Moreover, the privacy cost increases with the amount of

data collected by the platform. Second, privacy sensitivities and attitudes are subjective and

idiosyncratic, because what constitutes sensitive information differs across consumers. Thus, it

is essential to incorporate the heterogeneity in consumers’privacy sensitivities.

Second, we treat “data” and “process” as two separate inputs. Raw consumer date does

not have much value per se. It needs to be processed and analyzed to create value, and its

value depends on the scale of data and the firm’s capability in extracting valuable information

from the data. We call this capability “data analytics”. Broadly speaking, a digital platform’s

data analytics is the aggregation of its data analysis technologies, computation infrastructures,

and most importantly, the data science team.10 Data analytics is not a software development

cycle such as machine learning. Instead, it is an exploratory undertaking closer to research and

development than it is to software engineering. As stated by Provost and Fawcett (2013), the

investment in data analytics is the most important asset for a digital platform.

Hence, we consider both raw data and data analytics as two essential inputs, and the combi-

nation of these inputs generates a revenue to platforms and a benefit for consumers respectively.

We take a reduced-form for the revenue and benefit from the data with the assumption of

complementarity between the two inputs. This approach allows us to establish a general social

welfare function by taking into account both the benefits and the costs of data acquisition, which

can be used as a benchmark for policy evaluation. The social benefits from consumer data rely

on contributions from both platforms and consumers, by which platforms incur a cost for data

analytics while consumers bear a privacy cost. However, the nature of these costs is somewhat

different. Digital platforms invest a large amount of physical costs in the capacity-building of

data analytics, and these physical costs are observable. By contrast, data provision incurs a

psychological cost to consumers, with such privacy costs being subjective and heterogeneous

across consumers, which remains a piece of private information to consumers.

Equipped with these novel features, our model provides a new lens through which to examine

the impact of GDPR and a new approach to analyze the optimal mechanism design for consumer

9See Acquisti et. al (2016) for detailed discussions on the economics of privacy.

10We provide a brief summary of data analytics in the Online Appendix.
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data acquisition. Before GDPR, digital platforms bundle the "free" digital service with the

requirement of data provision; that is, by offering their digital services for "free", the digital

platforms harvests consumer data at zero marginal cost. Without taking consumers’privacy

costs into account, digital platforms collect more consumer data than needed for the social

optimum to maximize total social welfare, which further promotes additional investment in data

analytics than the social optimum due to the complementarity of both inputs. Such market

failure before GDPR harms consumers and distorts resource allocation.

A principal rule for data acquisition under GDPR is the requirement of consent from the data

subject, which is defined as “any freely given, specific, informed and unambiguous indication of

the data subject’s wishes by which he or she, by a statement or by a clear affi rmative action,

signifies agreement to the processing of personal data relating to him or her”(article 4). When

data acquisition is inevitably accompanied by privacy concerns, such consent requirement entitles

consumers to trade their personal data for benefits at the cost caused by privacy concerns, with

consumers only willing to give consent if the benefits from providing data exceed the cost of

privacy. GDPR allows consumers to use the free service of a platform without accepting non-

essential cookies (i.e., GDPR opt-out). If consumers also accept non-essential cookies (i.e.,

GDPR opt-in), they can enjoy extra benefits from sharing data but will incur a privacy cost.

Consumers will choose opt-in if the extra benefit from providing data exceeds their privacy

cost. To incentivize participation, digital platforms need to compensate opt-in consumers with

additional benefits (or transfers) for their data provision.

Thus, GDPR activates a market for consumer data acquisition in which consumers are enti-

tled to trade their personal data for extra benefits while platforms need to pay for data acquisi-

tion. Fixing the market failure benefits consumers by reducing the scale of data acquisition and

improves the effi ciency of investment in data analytics. We first analyze the data acquisition

mechanism when the digital platform is committed to a uniform data collection policy for all

consumers (by offering a single option for all non-essential cookies). Comparing the equilibrium

before and after GDPR allows us to deliver some useful policy implications. In particular, we

find GDPR improves consumer welfare when the mean of consumer privacy costs is suffi ciently

high.

The uniform policy is not an optimal mechanism with heterogeneous types of consumers.

Consumers who are more privacy-sensitive will opt out, resulting in a welfare loss. To counter

such welfare loss, digital platforms are gradually adopting more sophisticated incentive schemes

with a menu of options for different types of cookies, through which consumers are able to choose
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how much and what type of data to share according to their privacy sensitivity. We then study

the optimal design of the data acquisition mechanism that maximizes total social welfare under

the private information of privacy sensitivity. This optimal mechanism requires digital platforms

to provide an incentive compatible policy with a type-contingent data scale and compensation

for all types of consumers.

Hence, by fixing the market failure, GDPR opens a door to maximizing social welfare under

privacy protection. Of course, achieving such a goal requires well-designed guidelines for the

regulation. The key obstacle of implementation is the asymmetric knowledge on data acquisi-

tion whereby consumers often do not understand the implications and the real value of given

options. We propose a guideline for the categorization and standardization of cookie specifi-

cations, through which the accurate and specific information of cookies can be provided in a

standardized and plain language.11

GDPR’s rollout leads to a significant reduction of third-party cookies.12 In particular, several

dominant digital platforms, including Amazon, Facebook, and Google, are currently moving to

phase out third-party cookies, which causes serious antitrust concerns. Using a variant of the

baseline model, we analyze a digital platform’s benefit and cost for replacing third-party cookies.

This analysis incorporates two key features: first, digital platforms typically share the revenue

from the third-party advertiser without incurring the cost for data analytics; and second, third-

party cookies cause more serious privacy concerns (and higher privacy cost) than first-party

cookies.

Prior to GDPR, digital platforms did not differentiate third-party cookies from first-party

cookies according to their resulting privacy costs. After GDPR, digital platforms might favour

first-party over third-party cookies, since they need to compensate opt-in consumers for their

privacy cost. For dominant digital platforms who have their own technology and capacity for

online advertising, they will phase out the third-party’s advertisement when the privacy concern

becomes serious. We characterize the equilibrium condition for such replacement and find that

phasing-out third-party cookies increases consumer surplus.

Digital platforms also use consumer data to offer personalized products and charge person-

alized prices. We extend the baseline model to analyze data acquisition with personalization.

11Apple’s movement of Privacy Labels in 2020 is an endeavour to achieve such standardization.

12Third-party cookies are placed by external domains that differ from the site the user is browsing, mainly for

the purpose of online advertisements. Libert et al. (2018) find that the number of third-party cookies has gone

down by more than 30% in the EU’s news websites after GDPR.
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Before GDPR, digital platforms can fully extract consumer benefits from data provision through

personalized pricing, leaving consumers with a negative extra surplus from providing their data.

By contrast, GDPR opt-out secures consumers a non-negative extra surplus from data sharing,

and digital platforms must leave a positive surplus to opt-in consumers as compensation for

their privacy costs. Hence, GDPR improves consumer welfare unambiguously.

The rest of the paper is organized as follows. Section 2 sets up the model and provides

a benchmark for social optimum. Section 3 studies the equilibrium before and after GDPR

and the mechanism design to achieve the second-best outcome. We discuss policy implications

in Section 4 and analyze the equilibrium with personalization in Section 5. Finally, Section 6

reviews the literature and concludes the paper.

2 The Model and Benchmark

2.1 The Baseline Model

A digital platform provides free digital services to consumers. The consumer data is then col-

lected, from which the platform earns revenue by selling targeted advertisements, providing

various data-driven services to other businesses, or selling products/services directly to con-

sumers. The platform’s investment in the digital service is a sunk cost and is not relevant here.

There is a continuum of consumers with the total population normalized to 1. Consumers gain

a value u from using the digital platform’s free service.

A consumer’s online activities through the digital platform generate a data set that the

platform can harvest using cookies. Let s ∈ [0, s̄] be the measure of the data set harvested by

the platform and call it the data scale, with s̄ being the maximum.13 The digital platform can

choose the data scale by varying the number and types of cookies. The raw data set contains

unstructured and complex attributes and dimensions of information and it must be processed

to generate valuable information. Let φ ∈ [0,+∞) denote the capacity of data analytics. The

platform’s choice of φ is a strategic investment in data analytics, including the infrastructure for

data collection and storage, data analysis, and data interpretation, and the cost of investment

13Defining and measuring a big data set is quite challenging because of its complexity. Big data has commonly

been characterized by four "V"s: Volume, Velocity, Variety, and Value of the data. Here we propose the termi-

nology of "data scale" as a measurement of a data set for the purpose of economic analysis. It can be viewed as

a real-valued function that maps different attributes of a data set into the real number set <+.
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in data analytics is I(φ) with I ′ > 0 and I ′′ > 0.14 We focus only on I(φ) as the cost that is

relevant to this study.

The platform earns a revenue r(s, φ) from each consumer’s data set, while a consumer derives

an additional benefit b(s, φ) from providing data, which includes a personalized service provided

by the platform or attractive targeted offers from third-party sellers on the platform, for example.

Both r(s, φ) and b(s, φ) increase in the scale of data s as well as the capacity of data analytics

φ.

Consumer data contains sensitive personal information and data acquisition causes a privacy

concern. Such privacy concerns transform into a loss of utility or a cost to a consumer, which

we call the privacy cost. Privacy sensitivities and attitudes are subjective and idiosyncratic,

because what constitutes sensitive information differs across consumers. A consumer’s privacy

sensitivity is characterized by parameter θ, which is distributed between θ and θ̄ according to

cumulative distribution function F and strictly positive density f , and the mean denoted by µ.

We assume h = F/f is increasing. It is natural to think that the privacy cost increases in the

scale of data collected by the platform. Thus, we assume the privacy cost for consumer θ is

given by sθ.15

Remark 1: Privacy Costs. We treat consumers’privacy concerns as a cost increasing with

the scale of data being collected and moreover consider the heterogeneity of privacy sensitivity

across consumers. This modelling approach is motivated by some experimental and empirical

evidence from a growing literature of preferences for privacy.16 Lin (2021) provides experimental

evidence on how consumers’ privacy preferences (concerns) can be divided into intrinsic and

instrumental preferences, the distinction first made by Becker (1980). The intrinsic preference

of privacy is related to the intrinsic moral value. Privacy is considered as an aspect of human

dignity, because it provides personal autonomy and independence. Privacy laws also justify

privacy protection on moral grounds. We consider a consumer’s privacy sensitivity as an intrinsic

14Large digital platforms such as Google and Amazon build their own capacities of data analytics. Small digital

platforms outsource the service of data analytics to several leading specialist companies such as Adobe Analytics.

Data processing is not a "standard" product or service. Data transformation, data mining, and data evaluation

have to be customized according to a customer’s specific business model and unique data features. Hence, digital

platforms need to pay for the specific investment cost of data analytics when they outsource the task of data

processing.

15A consumer’s privacy cost can be expressed by a general function form C (s, θ). For the tractability of the

analysis we assume a simple function form C (s, θ) = sθ.

16We refer to Acquisti et al. (2016) for a more comprehensive review of the literature.
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privacy preference. Experimental evidence from Lin (2021) shows the strong heterogeneity

of intrinsic privacy preferences across consumers. The instrumental preference of privacy is

endogenously determined by how the private information is used in transactions. For instance,

consumers may be concerned that firms can use their data to charge personalized prices according

to their willingness-to-pay. Such instrumental privacy concerns can be expressed as a cost. We

incorporate the instrumental cost into a consumer’s benefit function such that b(s, φ) is treated

as a consumer’s net benefit from data provision.

Before GDPR, digital platforms set “accepting all cookies”as a default option for using the

digital platform’s service. Even when consents are required in principle, most consumers are

not aware of their rights under such practice. Essentially, this is equivalent to a requirement

of data provision. Thus, we consider that digital platforms bundle their digital services to the

requirement of data provision before GDPR. Then consumers using the digital service obtain

utility U(s, φ, θ) = u+ b(s, φ)− sθ. After GDPR’s rollout, however, consumers have two options

for sharing their data with the platform. First, in order to use the platform’s service, consumers

have to allow essential cookies from the platform, in which case they obtain utility u. For

simplicity we assume away the privacy cost of allowing essential cookies. Second, if they also

allow non-essential cookies, then they derive an additional benefit but incur the privacy cost, and

their total utility is expressed in the same way as before GDPR: U(s, φ, θ) = u+b(s, φ)−sθ. For

simplicity, we use the term “opt-in”when consumers accepts non-essential cookies and “opt-out”

when they do not.

Assumptions

We restrict the analysis to a reasonably large range of θ. Roughly speaking, the lower bound

θ is not too small and the upper bound θ̄ is not too large. Specifically, we assume u ≥ s̄θ̄, so

that all consumers are willing to provide data if this is a requirement to obtain utility u. The

following regular assumption is needed to guarantee that optimal policies are well-defined:

Assumption A: The per-consumer revenue function r(s, φ) and consumer benefit b(s, φ)

are concave.17

It is well-understood that data scale and data analytics are complementary. The scale of data

relies on the infrastructures and technology of data gathering, storage, and cleaning, whereas

the capacity of data analytics can be improved through learning-by-doing in processing the large

17Formally, this assumption requires the second-order derivatives rss(s, φ) and rφφ(s, φ) are negative and H ≡
rssrφφ − rsφrφs ≥ 0. The same applies to b(s, φ).
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scale of data. This feature is captured by the following assumption:

Assumption B: The cross-derivatives of r(s, φ) and b(s, φ) are positive: rsφ(s, φ) > 0 and

bsφ(s, φ) > 0.

We assume that the function forms r(s, φ), b (s, φ), and I (φ) are common knowledge. The

digital platform announces its data scale s and data analytics φ publicly. However, the privacy

sensitivity θ is a consumer’s private information that the digital platform cannot observe.

In the baseline model, we focus on the type of platforms that offer free service/products

to consumers in order to collect consumer data (which is the business model for many digital

platforms), and moreover use the reduced forms for r(s, φ) and b (s, φ). An illustrative example

of microfoundation for r(s, φ) and b (s, φ) from online advertising is provided below. In Section

5, we analyze the digital platform’s pricing decisions when it supplies personalized products in

Section 5.

Microfoundation: Targeted Advertising/Recommendation

Advertising markets are typically two-sided markets in which advertisers aim to match with

users who are most interested in their products. Consider a continuum of consumers with

heterogeneous preferences over some product/service, where their taste x is uniformly distributed

along the line [0, 1]. There is also a continuum of sellers (advertisers) located on the same unit

line with its location y and each seller’s product is listed at a competitive price a.18 A consumer

x is matched with a seller y with probability 1 − (y − x)2, in which case this consumer derives

a matching value v and zero otherwise (here the distance (y − x)2 measures the utility loss due

to mismatch).

Consumer data is collected through cookies. Each internet user is associated a unique cookie

ID. The digital platform can monetize the display of matching advertisements through auctions,

usually via first-price auctions. In these auctions, advertisers do not bid directly, but rather

via “Demand Side Platforms” (DSPs), which select from among the millions of advertising

opportunities available on the internet on behalf of their advertiser clients. Most large platforms

including Amazon, Facebook, and Google, however, run their own DSPs. When the DSPs are

operated by parties other than the digital platform, the competing DSPs will receive an internet

user’s third-party cookie identifier prior to bidding. The cookie allows the DSP to track the

user’s data and impute this user’s taste. The DSP then uses this information to determine

which of its advertiser clients would be the best match for this user, and then submit a bid on

behalf of this advertiser in the auction.

18The production cost is normalized to zero.
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When a consumer (user) visits the platform, its tracking technology identifies this user’s

ID and a DSP generates a public signal among advertisers about this consumers’ taste, δ ∼

N (x, 1/m (s, φ)), where m (s, φ) measures the precision of targeted advertising. The most

relevant seller/advertiser is located at y = δ. If the DSP chooses to display y’s product

(advertisements), this seller/advertiser’s revenue is r (s, φ) = a
(

1− E
[
(y − x)2 |y = δ

])
=

a
(

1− 1/m (s, φ)2
)
. The advertiser’s revenue r (s, φ) will be shared by advertising interme-

diaries (DSPs) and the digital platform. The total social benefit generated by consumer data is

the extra consumer surplus through improved matching: B (s, φ) = v
(

1− 1/m (s, φ)2
)
,19 from

which the consumer receives its share b (s, φ) = (v − a)
(

1− 1/m (s, φ)2
)
.

2.2 The Benchmark

As a comparison benchmark, we first consider a hypothetical economy in which a social planner

runs the digital platform, providing a free service and processing consumer data. A consumer’s

data generates a social benefit B (s, φ) = r(s, φ)+b (s, φ), whereas this consumer bears a privacy

cost sθ. In addition, processing consumer data incurs an investment cost of data analytics I (φ).

We further assume that the social planner possesses full information on each consumer’privacy

sensitivity θ, and can design a type-contingent offer {s (θ) , t (θ)} for each consumer, where

s (θ) is the type-contingent data scale while t (θ) is the associated transfer to the consumer.

The social planner’s offer satisfies each consumer’s participation constraint in data provision,

such that each consumer’s extra surplus from providing data is non-negative, i.e., V (θ) ≡

b (s (θ) , φ) + t (θ)− s (θ) θ ≥ 0.

The social planner chooses {s (θ) , t (θ)} and φ to maximize the following social welfare

SW =

∫ θ̄

θ
[B (s (θ) , φ)− s (θ) θ] dF (θ)− I (φ) ,

subject to V (θ) ≥ 0. The maximization of SW with respect to s (θ) requires that the term

under the integral B (s (θ) , φ)− s (θ) θ be maximized with respect to s (θ) for all θ. That is, the

optimal data scale s∗ (θ) balances the marginal benefit of data acquisition Bs (s (θ) , φ) and a

consumer’s marginal cost, the privacy sensitivity of type θ:

Bs (s (θ) , φ) = θ. (1)

The above FOC determines the equilibrium path s∗ (θ, φ) = B−1
s (θ), which increases in φ under

Assumption B and decreases in θ under Assumption A. Throughout the paper, we make the

19Assume consumers receive zero payoff without using the third-party cookies.

10



following assumption on the lower bound of θ to ensure an interior optimum for the lowest type:

s∗ (θ) < s̄.20

Assumption C: s∗ (θ) < s̄.

The socially optimal data analytics is determined by equating the marginal cost for data

analytics to the expected marginal social benefit:∫ θ̄

θ
Bφ (s (θ) , φ) dF (θ) = I ′ (φ) . (2)

Substituting s∗ (θ, φ) = B−1
s (θ) into the above FOC, the first-best data analytics φ∗ is the

solution of ∫ θ̄

θ
Bφ (s∗ (θ, φ) , φ) dF (θ) = I ′ (φ) . (3)

Solving the FOCs (2) and (1) determines the first-best outcomes φ∗ and s∗ (θ). The transfer

must satisfy t∗ (θ) ≥ s∗ (θ) θ − b (s∗ (θ) , φ∗).

The first-best outcome is summarized in the following lemma:

Lemma 1 Suppose a social planner runs the digital platform and has complete information on

a consumer’s privacy sensitivity. Under Assumptions A, B, and C, the first-best data scale and

data analytics are characterized by (1) and (2). The optimal data scale decreases in θ.

Leading Example

For further illustration, we provide a leading example. The functions r (s, φ) and b (s, φ) take

the form of Cobb-Douglas with 0 < ρ < 1:

r (s, φ) = αsρφ1−ρ, b (s, φ) = (1− α) sρφ1−ρ.

In addition, I (φ) = φ2/2. The detailed calculation of all equilibrium outcomes is provided in

Online Appendix B.

Using this example, the first-best data analytics and data scale are given respectively by

φ∗ = (1− ρ)

∫ θ̄

θ

(ρ
θ

)1/(1−ρ)
dF (θ) , s∗ (θ) =

(ρ
θ

)1/(1−ρ)
φ∗.

20This is guaranteed when the marginal benefit of data decreases to zero for s approaching to infinity:

lims→∞Bs (s, φ) = 0. See detailed characterization in the Online Appendix A.
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3 The Role of GDPR

There is a market failure in data acquisition before GDPR. We first analyze such a market

failure and its underlying harm to consumers and society, and then study the role of GDPR in

fixing the market failure.

3.1 Market Failure before GDPR

Before GDPR, the digital platform bundles its digital service with a default option of accepting

all cookies. Then consumers using the digital service obtain utility U(s, φ, θ) = u+ b(s, φ)− sθ,

and the assumption u ≥ s̄θ̄ implies that all consumers use the platform. With full participation,

the platform’s total revenue is r(s, φ). The platform chooses s and φ to maximize its profit

Π = r(s, φ)− I (φ).

The digital platform’s revenue increases in data scale s while the marginal cost of data

acquisition is zero. Hence, the platform will collect the maximum scale of consumer data: s = s̄.

Meanwhile, the digital platform builds the optimal capacity of data analytics such that the

marginal cost of investment in data analytics I ′ (φ) is equal to the marginal revenue rφ (s, φ), as

given by

rφ (s, φ) = I ′ (φ) . (4)

The optimal data analytics as a function of data scale, as denoted by φb (s) (the superscript b

stands for "Pre-" GDPR) increases in s under Assumption B, and the equilibrium data analytics

is φb = φb (s̄).

The market failure causes a negative impact on consumer surplus. The digital platform

acquires excessive consumer data compared to the first-best. Over-collection of consumer data

makes consumers worse-off. A consumer’s extra surplus from data provision is V (θ) = b
(
s̄, φb

)
−

s̄θ. Then, consumers relatively high privacy sensitivity (i.e., θ > θ̂ ≡ b
(
s̄, φb

)
/s̄) receive negative

extra surplus from data provision,21 whereas they could be better off if they were allowed to

use the digital service without providing their data. The aggregate extra consumer surplus from

data provision can be expressed as

CSb =

∫ θ̄

θ

(
b
(
s̄, φb

)
− s̄θ

)
dF (θ) = b

(
s̄, φb

)
− s̄µ,

which turns to be negative when the mean of privacy cost µ is high such that µ > θ̂.

21Nevertheless, consumers still receive a positive utility from free service as U (θ) = u+ b
(
s̄, φb

)
− s̄θ > 0 under

the assumption u > s̄θ̄.
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By contrast, the market failure leads to two countervailing effects on data analytics. First, the

platform has less incentives in data analytics because it does not internalize consumer benefits.

Before GDPR, the platform offers a free service to consumers in exchange for their data, which

is independent of its data analytics. Thus, the platform does not internalize consumer benefits

b(s, φ) in its investment in data analytics. In addition, full consumer participation is guaranteed

before GDPR, implying that the platform needs not to improve its data analytics to induce

consumers’participation decision. Second, the platform chooses the maximum data scale, i.e.,

s = s̄. The over-collection of consumer data, however, contributes to increasing the investment

in data analytics since φb (s) increases in s, which is a positive effect on data analytics due to

complementarity with data scale.

In some scenarios the digital platform can capture all social benefits through personalized

offers (see the discussion in Section 5), i.e., b (s, φ) = 0, in which the negative effect on data

analytics vanishes. Then, φb is determined by Bφ (s̄, φ) = I ′ (φ). Compared to the first-best

data analytics φ∗ as given by (2) and noting that s∗ (θ) < s̄ for all θ while Bφs (s, φ) > 0, it

appears that φb > φ∗. That is, over-collection of consumer data leads to excessive investment

in data analytics, at a cost to the society.

Summarizing the above analysis leads to:

Proposition 1 There is a market failure in data acquisition before GDPR. As a result, the

digital platform acquires the maximum scale of consumer data (i.e., s = s̄), and consumers with

high privacy sensitivity (i.e., θ > θ̂) receive a negative extra surplus from data provision. When

the digital platform can capture all social benefits, the over-collection of consumer data leads to

excessive investment in data analytics.

3.2 Fixing Market Failure after GDPR

GDPR compliance requires that digital platforms must have "specific, unambiguous consent"

from data subjects for data provision and must "allow users to access your service even if they

refuse to allow the use of certain cookies". Under GDPR, the digital platform is required to

unbundle its digital service from the default consumer consent for data collection and allow

consumers to use its service and obtain utility u by accepting only essential cookies (i.e., GDPR

opt-out). If consumers also allow non-essential cookies, i.e., GDPR opt-in, then they can enjoy

additional benefits b(s, φ) but incur the privacy cost sθ.

GDPR opens a door to fix the market failure. The digital platform now must compensate

consumers for data acquisition through non-essential cookies. In addition to the consumer bene-

13



fit b(s, φ) from data provision, the platform might offer additional benefits to opt-in consumers.

These may include enhanced services (personalized services) or even a monetary payment (vouch-

ers) for opt-in. We collectively call this a transfer from the platform to opt-in consumers, denoted

by t. Consumers will then choose opt-in only if the overall benefits from data collection more

than offset their privacy cost, i.e., if b(s, φ) + t ≥ sθ.

Digital platforms respond to GDPR compliance by providing explicitly consent forms for

cookies (cookies policies) on their websites. Many digital platforms only provide one option for

all non-essential cookies, which we refer to as the uniform policy for data collection. Others,

however, offer a menu of options consisting of several categories of cookies for consumers to

choose to accept. We analyze the uniform data policy first and then study the optimal design

of data policy with a menu of options in the next subsection.

When the digital platform is committed to the uniform data policy, it only provides one

option for all non-essential cookies whereby consumers cannot choose how much and what kind

of data is being collected through non-essential cookies. Since we restrict analysis to the uniform

data policy, we only need to consider a constant transfer.22 The timing of the game is given as

follows. First, the digital platform announces the policy {s, φ, t}. Second, observing the policy,

consumers choose to opt in or opt out.

Under the uniform policy {s, φ, t}, a consumer will opt in if θ ≤ τ ≡ (b(s, φ) + t) /s, where

τ is the cut-off value of θ for the marginal consumer indifferent between opt-in or opt-out.

Then the platform’s revenue from each opt-in consumer is r(s, φ) − t and the population of

opt-in consumers is reduced to F (τ). Insofar as τ < θ̄, GDPR reduces the opt-in population,

which decreases the platform’s profit given the same data scale and data analytics. Substituting

t = sτ − b(s, φ) into the platform’s profit, we have

Πu = F (τ) (r(s, φ)− t)− I(φ) = F (τ) (B(s, φ)− sτ)− I(φ).

That is, the platform’s revenue from each opt-in consumer is equal to the social benefit less the

privacy cost of the marginal consumer τ . It follows that, given s and φ, choosing the optimal t is

equivalent to choosing the optimal threshold τ . Hence, the platform chooses the optimal policy

22When the transfer t is made in terms of enhanced services or personalized services, it may cost c (t) for the

digital platform. We assume c (t) = t for simplicity of analysis. The analysis for a general form of c (t) is a bit

complicated. However, as long as the cost c (t) is independent of s and φ, the main results and insights of the

equilibrium analysis do not change qualitatively. When digital platforms sell products as well, the transfer can be

made through a price discount, in which case the cost c (t) is equal to the benefit t; see the discussion in Section

5.
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{su, φu, τu} to maximize the above profit, where the superscript ‘u’indicates ‘uniform policy’.

Before GDPR, the platform sets the maximum data scale because its marginal cost for har-

vesting consumer data is zero. After GDPR, the platform has to compensate opt-in consumers

for data acquisition. Consumers choose opt-in or opt-out by comparing total benefits b(s, φ) + t

with their privacy cost sθ. GDPR opt-out reduces the population of opt-in consumers to F (τ).

The platform can counter this by making a transfer to opt-in consumers, however, this reduces

the platform’s revenue per opt-in consumer. An important implication is that, through the

transfer and opt-in decisions, the platform internalizes the consumer benefit b(s, φ) but also

compensates consumers for their privacy cost, which is not the case before GDPR. For each

opt-in consumer, the platform captures social benefits B(s, φ) but pays a price equal to the

privacy cost of the marginal consumer. This leaves each opt-in consumer with an extra surplus

V (θ) = b(s, φ) + t− sθ = s (τ − θ), equal to the difference between her actual privacy cost and

the privacy cost of the marginal type.

GDPR reduces the data scale as the digital platform now has to take into account the privacy

cost of opt-in consumers. The platform’s optimal choice of data scale su, which balances the

marginal social benefit with the marginal cost of the consumer with type θ = τ , is an interior

solution of the following FOC:

Bs (s, φ) = τ . (5)

By contrast, GDPR generates two opposite effects on data analytics. First, with the transfer,

the digital platform is able to internalize its externality of data analytics on opt-in consumers,

and its net per-consumer revenue becomes B(s, φ) − sτ , which is a positive impact on data

analytics. Second, since only F (τ) consumers opt in, the digital platform can only recoup its

investment cost from a reduced population of consumers, which generates a negative impact

on data analytics. More specifically, an increase in data analytics generates a marginal social

benefit F (τ)Bφ (s, φ) at the marginal cost I ′ (φ), and the optimal data analytics φu satisfies the

following FOC:

F (τ)Bφ (s, φ) = I ′ (φ) . (6)

Meanwhile, the platform chooses the optimal threshold τu such that the per consumer social

benefit offsets the privacy cost for the marginal consumer sτ plus a rent sh(τ) from all opt-in

consumers

B (s, φ) = sτ + sh(τ). (7)
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This leaves the digital platform a per-consumer revenue: B (s, φ)− sτ = sh(τ). Combining the

above equation with (5), we can derive the equilibrium threshold τu as the solution of

τu

τu + h(τu)
= εs ≡

Bs (s, φ) s

B (s, φ)
.

The equilibrium threshold τu depends on the elasticity of social benefit on data scale, εs; it

does not rely on the cost function I(φ) directly. When the social benefit function has a constant

elasticity as in the case of the leading example, τu is independent of s and φ. This nice property

simplifies analysis. Finally, the equilibrium transfer is ta = suτu−b(su, φu) = r(su, φu)−suh(τu),

and the equilibrium profit is Πu = suh(τu)F (τu)− I(φu).

We show in Online Appendix C how to characterize the equilibrium su, φu, and τu through

the FOCs (6), (5), and (7).23 GDPR opt-out reduces consumer participation in data provi-

sion, causing an effi ciency loss. Compared to the first-best data scale s∗ (θ, φ), it follows that

s∗ (θ, φ) > su (φ) for any θ < τu, since Bs (s, φ) decreases in s. That is, the digital platform

collects less consumer data than the first-best level for each opt-in consumers under the uniform

data policy. Hence, it collects much less total amount of consumer data under the uniform

policy. This further implies a lower capacity of data analytics under the uniform policy since φ

is complementary to data scale.

Summarizing the above analysis leads to:

Proposition 2 GDPR activates a market for data acquisition. Suppose the digital platform is

committed to a uniform data policy after GDPR. The digital platform’s optimal data scale su,

optimal data analytics φu, and equilibrium threshold τu are characterized by (5), (6), and (7)

respectively. Opt-in consumers receive an extra surplus from data provision V (θ) = su (τu − θ).

Compared to the social optimum, the digital platform collects less data and invests less in data

analytics.

Using the leading example, we can solve for the optimal policy, as given by

su = (1− ρ)F (τu)
( ρ
τu

)(1+ρ)/(1−ρ)
, φu = (1− ρ)F (τu)

( ρ
τu

)ρ/(1−ρ)
,

where the equilibrium threshold τu is given by ρh(τu) = (1− ρ) τu.

Impact of GDPR

23The assumption that B (s, φ) is concave and I (φ) is convex ensures that these FOCs are also suffi cient for

the optimum.
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Fixing the market failure benefits consumers from two aspects. First, GDPR changes con-

sumers’default choice and allows consumers to opt-out but still use the digital platform’s free

service when they have a relatively high privacy cost. In other words, GDPR entitles consumers

to trade their personal data for extra benefits, under which a consumer will do so if and only if

the extra gain exceeds her privacy cost. Thus, no consumers will receive negative extra surplus

under GDPR. In contrast, consumers were not granted with (or not aware of) such rights be-

fore GDPR, and some of them with relatively high privacy sensitivity actually receive negative

extra surplus from providing data. Second, the digital platform takes into account consumers’

privacy costs under GDPR and collects less consumer data, which can further benefit opt-in

consumers by reducing their privacy cost. After GDPR, opt-in consumers receive extra surplus

V a (θ) = su (τu − θ), whereas opt-out consumers get zero. So, the aggregate extra consumer sur-

plus CSa is always positive after GDPR, whereas consumer surplus before GDPR CSb becomes

negative when µ > r
(
s̄, φb

)
/s̄.

GDPR has significantly reduced the total amount of data collected by digital platforms.24

This could generate negative effects on data analytics. First, GDPR opt-out reduces the digital

platform’s incentives in its investment on data analytics. Fixing the data scale and differentiating

both sides of F (τ)Bφ (s, φ) = I ′ (φ) with respect to τ , it is straightforward to show that the

equilibrium data analytics increases in the opt-in population:

dφ

dτ
=

f (τ)Bφ (s, φ)

I ′′ (φ)− F (τ)Bφφ (s, φ)
> 0.

Second, the digital platform collects less consumer data after GDPR, resulting further in a lower

φ as φu (s) increases in s.

For further comparison, recall that the optimal data analytics before GDPR φb (s̄) satisfies

rφ (s̄, φ) = I ′ (φ), whereas the optimum after GDPR φu (s) solves F (τ)Bφ (s, φ) = I ′ (φ). When

the digital platform captures all social benefits from data mining, i.e., r (s, φ) = B (s, φ), φb (s) >

φu (s) for any given s. In such a scenario, GDPR results in a lower level of data analytics.

φb = φb (s̄) > φb (su) > φu (su) = φu.

The negative effect in digital platforms’ investments is evidenced by the recent empirical

studies including Jia et al. (2021), in which they find that, shortly after GDPR’s rollout, the

venture investment in technology by digital firms in the EU drops by more than 30% relative

to both their US counterparts and counterparts in the rest of the world. They also find that

24The empirical study by Aridor et al. (2020) finds that GDPR resulted in approximately 12% reduction in

total number of cookies.
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the negative effect of GDPR on technology investment appears particularly pervasive for firms

relying heavily on consumer data, including those in the healthcare and finance categories.

Economists are also concerned that the significant reduction of investments in data analytics

might cause a long-run negative effect on social welfare, since the innovation in data science

becomes the main driving force of economic growth. We do not investigate such long-run effect

on data analytics in this paper.

3.3 Mechanism Design for Consumer Data Acquisition

A uniform data collection policy cannot maximize total social welfare when consumers have

heterogeneous privacy costs. Digital platforms are learning to adopt sophisticated mechanisms

for consumer data acquisition. Many platforms now offer a menu of options for consumers to

select different types of cookies according to their privacy preferences, instead of a single option

for all non-essential cookies. The provision of a menu of options (contracts) for consumers

has become common practice in many industries, including the telecom and electricity sectors

among others. Not surprisingly, more digital platforms are expected to use such mechanisms to

maximize their profits. In this section, we use the mechanism design approach to characterize the

second-best policy. We briefly sketch the analysis here while leaving the detailed computation

in Online Appendix D.

Suppose a digital platform is committed to a type-contingent data scale s (θ) and moreover

offers a type-contingent transfer t (θ) for each type-θ consumer. Without loss of generality, we

focus on the direct mechanism in which the digital platform requires a consumer to report her

true type θ and then recommends the policy {s (θ) , t (θ)} accordingly. By reporting her true

type, a type-θ consumer receives net utility U (θ) = u+V (θ), where V (θ) = b (s (θ) , φ)+ t (θ)−

s (θ) θ is the consumer’s extra benefit from opt-in. This consumer prefers opt-in to opt-out if

V (θ) ≥ 0, which defines a consumer’s participation constraint.

Since a consumers’marginal privacy cost θ is private information, the optimal policy must

satisfy a consumer’s incentive compatibility constraint to prevent this consumer from mis-

reporting. A consumer of type θ, who mis-reports his type as θ̂, will receive

V
(
θ̃, θ
)

= t
(
θ̃
)

+ b
(
s
(
θ̃
)
, φ
)
− s

(
θ̃
)
θ.

The mechanism is incentive compatible if V (θ) ≥ V
(
θ̃, θ
)
for any θ̃ 6= θ. In the Online

Appendix, we check that V (θ) satisfies the single-crossing condition. When s (θ) is monotonic,

the Incentive Compatibility (IC) constraint can be transformed into the following first-order
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condition, according to the standard mechanism design approach:

t′ (θ) = −∂V
∂s

s′ (θ) . (8)

Moreover, using the Envelope Theorem, a consumer’s net value from opt-in can be expressed as

V (θ) =

∫ θ̄

θ
s (x) dx.

The digital platform’s profit under full participation is

Π =

∫ θ̄

θ
(r (s (θ) , φ)− t (θ)) dF (θ)− I (φ) .

Substituting t (θ) = V (θ)− b (s (θ) , φ) + s (θ) θ and using integration by parts, we obtain

Π =

∫ θ̄

θ
W (θ, φ) dF (θ)− I (φ) ,

where W (θ, φ) ≡ B (s (θ) , φ) − s (θ) (θ + h (θ)) is the net social benefit from type θ consumer

and the term s (θ)h (θ) is the information rent for type θ consumer to meet her IC constraint.

GDPR enables a market for consumers to trade their data for extra benefits. The op-

timal data scale s (θ) must equate a consumer’s marginal social benefit from data provision,

Bs (s (θ) , φ), to her privacy sensitivity plus the information rent, θ + h (θ), as given by

Bs (s (θ) , φ) = θ + h (θ) . (9)

The above FOC determines the equilibrium path s∗∗ (θ, φ) = B−1
s (θ + h (θ)), which is decreasing

in θ and increasing in φ. It follows that the digital platform collects less consumer data than

the first-best level, given the same φ: s∗∗ (θ, φ) = B−1
s (θ + h (θ)) < B−1

s (θ) = s∗ (θ, φ).

The digital platform chooses the optimal data analytics such that its marginal cost is equal

to the expected marginal social benefit, which is given by∫ θ̄

θ
Bφ (s (θ) , φ) dF (θ) = I ′ (φ) . (10)

Substituting s∗∗ (θ, φ) into the above FOC, the second-best φ∗∗ is determined by∫ θ̄

θ
Bφ (s∗∗ (θ, φ) , φ) dF (θ) = I ′ (φ) .

Compared to the first-best data analytics φ∗ (given by (3)), then s∗∗ (θ, φ) < s∗ (θ, φ) implies

Bφ (s∗∗ (θ, φ) , φ) < Bφ (s∗ (θ, φ) , φ) since Bφs (s, φ) > 0. It follows that φ∗∗ < φ∗ as I ′ (φ)

increases in φ. This further implies s∗∗ (θ) = s∗∗ (θ, φ∗∗) < s∗ (θ, φ∗∗) < s∗ (θ, φ∗) = s∗ (θ), since
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s∗ (θ, φ) increases in φ. Hence, the digital platform collects less data for each consumer and

invests less in data analytics than the first-best outcome.

Finally, substituting s∗∗ (θ) and φ∗∗ into the optimal transfer gives

t∗∗ (θ) =

∫ θ̄

θ
s∗∗ (x) dx+ s∗∗ (θ) θ − b (s∗∗ (θ) , φ∗∗) , (11)

which leaves each consumer with a positive extra surplus V (θ) =

∫ θ̄

θ
s (x) dx. The second-best

transfer t∗∗ (θ) is not monotonic in θ, since it depends on the shape of consumer benefit as well.

The optimal mechanism {s∗∗ (θ) , t∗∗ (θ) , φ∗∗} is incentive compatible, enables full consumer

participation, and implements the second-best outcome that maximizes total social welfare under

asymmetric information, as summarized below:

Proposition 3 The second-best policy for data acquisition {s∗∗ (θ) , t∗∗ (θ) , φ∗∗} is characterized

by (9), (11), and (10). Compared to the first-best outcome, the digital platform collects less

consumer data and invests less in data analytics.

Leading Example:

Using the leading example, the second best outcomes are given by

φ∗∗ = (1− ρ)

∫ θ̄

θ

(
ρ

θ + h (θ)

)ρ/(1−ρ)

dF (θ) ,

s∗∗ (θ) =

(
ρ

θ + h (θ)

)1/(1−ρ)

φ∗∗.

Compared to the first-best outcomes, we have φ∗∗ < φ∗ and s∗∗ (θ) < s∗ (θ).

4 Policy Implications

4.1 Implementation of Optimal Mechanism: A Guideline

Our key finding in Proposition 3 is that the second-best social optimum can be implemented

through a type-dependent policy.25 In practice, how to implement such contract remains an im-

portant policy issue. GDPR establishes a set of principles for consumer data collection, including

25The second-best outcome we have characterized is based on the assumption of continuous distribution of type

θ. Of course, implementing the menu of options in the real world requires the segmentation of consumers into n

different groups according to their privacy preferences and accordingly offer n different options (si, ti), i = 1, ..., n.
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lawfulness, fairness and transparency, purpose limitation, and data minimization, among others.

However, it does not provide detailed guidelines. As a result, GDPR-compliance cookie policies

can take different forms, as long as they meet the requirement for opt-in consent.26 While digital

platforms can control the data scale through the number and types of cookies, most of them do

not provide detailed specifications on the different types of cookies. For the most part, consumers

do not understand how much and what kinds of personal data will be collected through different

types of cookies. Choosing an option of cookies is not as straightforward as choosing a mobile

phone plan. Thus, the main obstacle to implementing the optimal policy is the asymmetric

knowledge between the digital platforms and consumers regarding data collection.

The GDPR website has classified cookies into four categories according to their purposes:

strictly necessary cookies, preference cookies, statistics cookies, and marketing cookies.27 How-

ever, a typical website contains hundreds of different types of cookies, and a coarse classification

such as this does not help consumers identify the features and attributes of their data being

collected through these different cookies. GDPR compliance of cookie policies requires that

digital platforms “must provide accurate and specific information about the data each cookie

tracks and its purpose in plain language before consent is received.”However, there does not

exist a commonly acceptable interpretation for the "accurate and specific information in plain

language" without any standards as references.

Thus, the most important guideline is the categorization and standardization of cookies, and

this guideline must specify key features and attributes of consumer data being collected by a

particular cookie, which include:

• 1. Variety of data: What types of personal information will be collected and in what kinds

of formats?

• 2. Volume of data: How much personal data will be collected within a given time period,

say one hour?

• 3. Purpose of data: Which parties are going to use these consumer data and for what

purpose?

• 4. Analysis of data: Which party is going to process these data and what kind of data

analytics tools will be used?

26See detailed discussion in the Online Appendix "Cookies".

27See https://gdpr.eu/cookies/.
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• 5. Value of data: What is the potential or estimated value that the collected data can

generate? What are the potential benefits to consumers?

• 6. Risk of data breach: What is the potential risk of data breach? How does the dig-

ital platform prevent this? If data breach occurs, how will consumers be informed and

compensated?

Items 1 to 4 provide essential information about the scale of data being collected through

a particular cookie, while items 5 and 6 help consumers assess the benefit and the cost of

data sharing when they accept this particular cookie. Regulators should provide standardized

templates for cookie specifications, as they did for consent forms in the GDPR website.

Apple’s Privacy Labels

Apple’s privacy labels introduced in December 2020 are a case in point. They require all

Apple application developers to disclose their data collection practices by filling out privacy

"nutrition" labels. The offi cial form provided by Apple to app developers defines 14 data types,

32 specific data items, and six data usages. The six data usages include third-party advertising,

developer’s advertising or marketing, analytics, product personalization, other purposes, and

app functionality. Moreover, Apple has classified three categories of purposes according to how

widely data is shared with other parties: Data Used to Track You, Data Linked to You, and

Data Not Linked to You.

Apple’s movement is an important endeavour to standardize specifications of features on

consumer data, a similar idea to the Nutrition Facts label on food packaging. Privacy labels

disclose several key properties of data collection: variety of data, purpose of data, and analysis

of data. The information is presented in a standardized format, which is designed to be easy

to read for users. However, Apple’s design of privacy labels does not allow app developers to

provide consumers with a menu of options in the way our second-best policy describes. Hence,

Apple’s practice contributes to implementing the optimal uniform policy but not the second-best

outcome.

4.2 Impact on Third-Party Cookies

GDPR categorizes cookies into two types according to its attribute of provenance: first-party

cookies and third-party cookies. First-party cookies are placed directly in the user’s device by

the website (domain) the user is browsing, while third-party cookies are generated by external

domains that differ from the site the user is browsing. Typically, third-party cookies are placed
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in the user’s device by advertisers or web analytics providers.28

Since GDPR’s rollout, several large digital platforms have blocked third-party cookies by

default, including Apple’s Safari and Mozilla’s Firefox web browsers. In a widely-expected move,

Google has announced its plan to block by default all third-party cookies for its Google Chrome

browser in 2023. Online advertisers rely on third-party cookies. Google’s move to phase out

third-party’s cookies will have an enormous negative impact on the online advertising market.

Empirical studies by Alcobendas et al. (2021) find that such a ban would reduce publishers’

revenue by 51%, and advertisers’surplus by 41%. However, they do not examine the welfare

effect on consumers, which is the key purpose of antitrust intervention.

In this subsection, we use a variant of the baseline model to analyze the GDPR’s impact on

third-party cookies. The variant captures two key features related to the third-party cookies.

First, the platform runs the business of online advertising through the third-party, from

which it receives a share from the third-party’s revenue, however, the platform does not bear

the cost of data analytics for such business. For the simplicity of analysis, we assume the digital

platform obtains a share β from the third-party’s revenue.29

Second, consumers are more concerned about privacy issues caused by third-party cookies

than first-party. Unlike first-party cookies, third-party cookies can track a user across websites.

The considerable use of such cookies creates an environment where cookies are continuously

sent between browser and server. This behaviour magnifies the diffusion of user information and

unnecessarily escalates potential interception by an adversary. Hence data collection through

third-party cookies causes higher privacy sensitivity γθ with the multiplier γ > 1.

Denote by st the scale of data collected by the third-party for advertising and by φt the

related data analytics, where the subscript t stands for third-party. Online advertising generates

a per-consumer social benefit B̂ (st, φt) = r̂(st, φt) + b̂(st, φt), where the third-party receives a

revenue r̂(st, φt) and consumers gain b̂(st, φt). The third-party specializes in online advertising

and its cost of data analytics is Î (φt). The digital platform can control the data scales st by

monitoring and adjusting the number and categories of cookies. We focus the analysis on the

uniform data policy here. Applying the methodology of the optimal mechanism design to this

28See the discussion "Cookies" in the Online Appendix.

29The digital platform shares the third-party’s revenue from online advertisements. Such revenue-sharing is

achieved through intermediaries such as the "Supply Side Platforms" and "Demand Side Platforms" (DSPs),

using online auctions as the main revenue-extraction mechanism. See the discussion of microfoundation in Section

2.
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case is quite straightforward.

Before GDPR, both the digital platform and the third-party incur zero marginal cost for

data acquisition. The digital platform can share the third-party’s revenue without incurring the

cost of data analytics. Since r̂(st, φt) increases in st, the third-party is allowed to collect the

maximum scale of consumer data sbt = s̄t before GDPR.

After GDPR, however, the digital platform has to compensate opt-in consumers for their

privacy cost, caused not only by the first-party cookies but also by the third-party cookies.

Since data collection through the third-party cookies causes a higher (marginal) privacy cost

than that by the first-party cookies, it is not surprising that the third-party’s online advertising

business will be affected more severely under GDPR. For simplicity of analysis, we isolate data

acquisition through third-party cookies from that through first-party cookies. Then, a consumer

ticking the box of third-party cookies (opt-in) receives an extra surplus Vt (θ) = b̂(st, φt)− γstθ,

and they will opt in if θ ≤ τ t =
(
b̂(st, φt) + t

)
/ (γst).

Most digital platforms do not have their own DSPs and only display the third-party’s ad-

vertisements before GDPR. After GDPR, these digital platforms still rely on third-party’s DSP

but the third-party’s data scale st decreases as a response of consumer opt-out. Such reduction

of the data scale st can be quite significant due to the high privacy cost: the equilibrium data

scale sut decreases in γ. This further decreases the equilibrium data analytics, since φt and st

are complementary, and reduces the third-party’s profits.

The most profound impact on third-party cookies comes from several dominant digital plat-

forms, including Google, Facebook, and Amazon, which run their own online advertising but also

display advertisements from independent DSPs. That is, these digital platforms use both the

first-party and third-party cookies for online advertising, although these two types of businesses

are operated through separate Demand Side Platforms.

Suppose the digital platform still uses the third-party cookies after GDPR, its profit becomes

Πu
t = F (τ)

(
βr̂(st, φt) + b̂(st, φt)− γstτ t

)
= F (τ)

(
B̂(st, φt)− (1− β) r̂(st, φt)− γstτ t

)
.

When the digital platform can extract full surplus from the third-party such that (1− β) r̂(st, φt) =

Î (φt), its maximum profit from accommodating the third-party is

Πu
t = F (τ)

(
B̂(st, φt)− Î (φt)− γstτ

)
.

If, instead, these platforms replace the third-party’s DSP by its first-party DSP after GDPR,

they could earn a profit Πu = F (τ)
(
B̂(s, φ)− sτ

)
− I (φ). Since Πu

t decreases in γ whereas Πu
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does not depend on γ, it follows that the digital platform will phase-out the third-party’s online

advertising when the multiplier γ is suffi ciently large.

To examine the impact on third-party cookies, we first analyze the equilibrium in which the

digital platform still uses the third-party’s DSP, and then compare it with the counterfactural

equilibrium in which the digital platform phases out the third-party cookies. The characteriza-

tion of equilibrium is similar to the baseline model and is provided in Online Appendix E. For

further comparison, we use a variant of the leading example as follows:

Example V: B̂ (st, φt) = sσt φ
1−σ
t , I (φt) = φ2

t /2, and Î (φt) = jφ2
t /2 with j ≤ 1.

We show in the Online Appendix that when γ > γ̄, where γ̄ is a cut-off threshold as defined

in Online Appendix E, the digital platform finds it profitable to phase out the third-party.

Comparing the equilibrium with and without third-party cookies, we find the following:

First, the equilibrium data scale st is determined by B̂s(st, φt) − (1− β) r̂s(st, φt) = γτ t.

Compared with the FOC for s, B̂s(s, φ) = τ , it follows that consumer data collected through

third-party cookies generates less marginal social benefits but causes higher marginal privacy

costs, given φt = φ and τ t = τ . Hence, the optimal data scale by the third-party is lower

than the scale of data that would have been collected by the first-party, all other things equal.

Moreover, the optimal data scale sut decreases in γ.

This result indicates that GDPR’s rollout has a more severe impact on the third-party’s data

collection, which is supported by the evidence that the number of third-party cookies has gone

down by more than 30% in the EU’s news websites after GDPR according to the study by Libert

et al. (2018). However, we find that the phase-out increases the allocative effi ciency of consumer

data, which further allows the digital platform to collect more consumer data: su > γsut > sut .

Second, the third-party’s equilibrium data analytics φut satisfies (1− β) r̂φ(st, φt) = Î ′ (φt).

Its investment in data analytics only partially captures the marginal social benefit, but it does

not need to discount the reduction of opt-in consumers. By contrast, the first-party’s optimal

data analytics φu, which is determined by F (τ)B̂φ(s, φ) = I ′(φ), fully captures the marginal

social benefit but is also discounted by the reduction of opt-in consumers (F (τ) < 1). The net

effect depends on the parameters α, β, and γ, as well as the difference between cost functions

I(φt) and Î(φt). Using Example V, we show that the replacement increases the capacity of data

analytics, i.e., φu > φut if γ > γ̃, where γ̃ is a cut-off threshold defined in Online Appendix E.

Third, when the social benefit takes the function form of Cobb-Douglas, phasing out third-

party’s cookies does not change the cut-off threshold: τu = τu. This result simplifies the

comparison of consumer surplus. The net surplus for opt-in consumers is Vt (θ) = γsat (τu − θ)
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with third-party cookies and becomes V (θ) = su (τu − θ) without them. Thus, the replacement

benefits consumers if su > γsat . We show in the Online Appendix that the replacement increases

net consumer surplus (when γ > γ̄).

The above analysis is summarized as follows:

Proposition 4 Suppose digital platforms can replace the third-party’s DSP by its own DSP.

Such a phase-out happens when γ > γ̄ in Example V, in which the replacement increases data

scale and total consumer surplus, and moreover improves data analytics if γ > γ̃.

Google’s movement of phasing out third-party cookies was originally expected to launch

in early 2022 and was postponed to 2023 due to criticism and concern voiced by industry

and government. We find that, while the replacement reduces the third-party’s profitability,

it reduces consumer privacy costs, increases the allocative effi ciency of consumer data, and

increases consumer surplus. Hence, prohibiting Google’s move to phase-out third-party cookies

can harm consumers. However, Google could potentially take advantage of such a move to

further expand its market share in online advertising, and such monopolization could dampen

competition in online advertising. Hence, competition authorities need to balance the short-run

consumer gain and the long-run competition harm.

5 Data Acquisition with Personalization

The analysis in the baseline model is focused on intermediary digital platforms that do not sell

their own products/services. When a digital platform also sells their own products, consumer

data collected through its cookies can be used for personalization. Through data mining, the

digital platform can recommend a best-matching product (personalized product) to a consumer

according to her taste, while charging a personalized price based on her willingness to pay. In

this section, we consider an extension of the baseline model and apply the same methodology in

order to analyze the equilibrium data policy with personalization.

Suppose the digital platform sells a product in addition to its free service. A standard version

of the product is supplied in a competitive market at a price normalized to zero. Each consumer

demands one unit of the product and derives utility v−x from consuming the standard version,

where x represents the consumer’s general taste and it is uniformly distributed in [0, 1]. The

digital platform knows a consumer’s taste x through data mining from her past activities on the

website.
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Consumer data will be collected through the digital platform’s first-party cookies. If a

consumer does not consent to data collection, she can only get the standard version. The digital

platform cannot charge this consumer a personalized price based on her taste x because the

standard version is supplied in a competitive market at a price zero.

If a consumer consents to data collection (or by default before GDPR), the platform can

offer her a personalized version of the product, from which this consumer obtains a higher level

of utility v − (1−m (s, φ))x, where v > 1. Here, m (s, φ)x is the extra value from improved

matching. The provision of a personalized product relies on the prediction of the consumer

preferences on some specific attributes of the product, not limited to her general taste x, thus,

data collection is essential for personalization. The precision of such prediction,m (s, φ), depends

on the data scale s and data analytics φ, with m (s, φ) < 1, m′ (s, φ) > 0 and m
′′

(s, φ) ≤ 0.

We assume away the additional cost of supplying personalized version. Meanwhile, the digital

platform can charge the consumer a personalized price p (x) for the personalized version. Each

personalized version (with a personalized price) is offered personally and privately, which is not

comparable across consumers.

Hence, consumer data generates a social benefit m (s, φ)x through personalization, from

which the digital platform earns a revenue p (x) and leaves this consumer with a benefitm (s, φ)x−

p (x). For illustration, we focus on the uniform policy only, while the analysis of the type-

dependent policy is provided in Online Appendix F.

Before GDPR

Before GDPR, the digital platform acquires consumer data at zero marginal cost and a

consumer’s privacy cost sθ is her "sunk" cost when she uses the platform’s free service. This

consumer will purchase the personalized version rather than the standard version if the extra

benefit from personalization m (s, φ)x exceeds the personalized price p (x). This pins down the

digital platform’s personalized price to p (x; s, φ) = m (s, φ)x, in which each consumer receives

zero net surplus from providing data. The digital platform’s profit is

Πb =

∫ 1

0
m (s, φ)xdx− I (φ) =

m (s, φ)

2
− I (φ) .

The platform acquires the maximum scale of data: sb = s̄, which exceeds the social optimum. Its

optimal data analytics equates the expected marginal benefit from the improved matching value

to the marginal cost, as given by mφ

(
s̄, φb

)
/2 = I ′

(
φb
)
. Since data analytics is complementary

to data scale, the digital platform builds excessive capacities of data analytics compared to

the social optimum. Consumers actually receive a negative extra surplus from providing data:
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V (θ, x) = m (s, φ)x− p (x)− sθ = −sθ.

After GDPR

Consumers can choose to opt-out under GDPR. The timing of the game is given as follows.

In stage one, the digital platform announces the data policy {s, φ}. Observing the policy, a

consumer with taste x and type θ decides whether or not to opt out. Opt-out consumers will

purchase the standard version and receive v−x. In stage 2, the digital platform offers each opt-

in consumer a personalized version and charges a personalized price. Consumers then decides

whether or not to accept the personalized offer. Moreover, a consumer rejecting the personalized

offer can choose to opt-out to avoid the privacy cost, because such an option is always open.

This ensures the consumer a reservation payoff v − x by choosing to opt-out at any time.

A consumer’s privacy costs sθ is not a sunk cost after GDPR. An opt-in consumer accepting

the personalized offer receives v− (1−m (s, φ))x−p (x)−sθ, whereas this consumer can always

secure a payoff v−x by choosing opt-out. Thus, a consumer with taste x and type θ will accept

the personalized offer if the net surplus m(s, φ)x− p (x) exceeds the privacy cost sθ. That is, if

θ ≤ τ (x) ≡ m (s, φ)x− p (x)

s
,

where τ (x) is the cut-off value of θ for the marginal consumer. The digital platform’s profit is

Πu =

∫ 1

0
p (x)F (τ (x)) dx− I (φ) .

The digital platform sets personalized prices p (x) = m (s, φ)x− sτ (x), which leaves each opt-in

consumer a positive surplus V (x, θ) = m (s, φ)x− p (x)− sθ = s (τ (x)− θ) > 0.

We first solve for the digital platform’s optimal personalized prices given {s, φ}. Substituting

p (x) into the above profit function, we obtain

Πu =

∫ 1

0
(m (s, φ)x− sτ (x))F (τ (x)) dx− I (φ) .

Thus, given {s, φ}, choosing p (x) is equivalent to choosing τ (x) in the maximization. The maxi-

mization ofΠu with respect to τ (x) requires that the term under the integrand (m (s, φ)x− sτ (x))F (τ (x))

be maximized with respect to τ (x) for all x. Differentiating the integrand with respect to τ (x)

and solving for the FOC leads to

m (s, φ)x = s (τ (x) + h (τ (x))) . (12)

Similar to the result in the baseline model, the equilibrium cut-off threshold τ (x) is given by

equating the per consumer social benefit to the privacy cost for the marginal consumer θ = τ (x)

plus a rent sh(τ (x)) from all opt-in consumers.
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The optimal data scale and data analytics can be determined using the similar approach as

in the baseline model, which is left in the Online Appendix. Since the digital platform must take

into account the opt-in consumers’privacy cost, it will collect less consumer data than before

GDPR, which results in a lower level of data analytics. Hence, the main results and insights

in the baseline model hold here. Furthermore, GDPR improves consumer welfare since opt-in

consumers get a positive extra surplus whereas opt-out consumers get zero, compared to the

negative extra surplus before GDPR.

Summarizing the above analysis leads to:

Proposition 5 Suppose the digital platform sells personalized products and charges personalized

prices to opt-in consumers. Before GDPR, the platform can extract full consumer surplus from

data provision through personalized pricing, leaving consumers a negative extra surplus from

data-sharing. After GDPR, the digital platform collects less consumer data and leaves positive

extra surplus to opt-in consumers. GDPR improves consumer welfare.

6 Literature and Conclusion

Related Literature

There is a growing literature of theoretical research focusing on privacy rights and data

security, but only a few of them examine the impact of GDPR by modelling explicitly consumers’

opt-in or opt-out choices.

Choi et. al. (2019) provide a model of privacy and personal data collection with informa-

tion externalities. They consider the heterogeneity of privacy sensitivity on different types of

personal data but assume that such sensitivity does not vary across consumers. Moreover, they

assume that privacy costs increase as more users share personal information, which reflects data

externalities. By contrast, we emphasize the heterogeneity of privacy sensitivity across con-

sumers while using a measurement of data scale to incorporate different types of information.

We also consider a consumer’s privacy cost increasing with the scale of data collected from that

consumer but assume away the cross-consumer externality. They focus on the digital platform’s

data collection policy but do not consider data analytics, whereas we treat both data scale and

data analytics as two strategic inputs, while also considering the different features of these input

costs.
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These different modelling features lead to different theoretical findings and policy implica-

tions. They identify excessive data collection by a monopoly digital platform before GDPR, but

the main mechanism for this result is information externalities across users and users’coordi-

nation failure in data sharing. They show that such information externalities can make GDPR

ineffective and argue that monetary inducement for opt-in should not be allowed. By contrast,

we find that the excessive data collection is the result of a market failure in which the digital

platform bears zero marginal cost in data acquisition due to the bundling of the digital services

with data collection. We show that monetary inducement can play an important role in fixing

such market failure and, furthermore, characterize the optimal mechanism with type-contingent

compensation for consumers.

Ke and Sudhir (2020) analyze a model of behavioural-based pricing that endogenizes a con-

sumer’s decision to exercise the rights to opt-in, erases personal data and data portability, and

in which firms can offer personalized products to opt-in consumers. They assume exogenous pri-

vacy costs that are determined by the probability of data breach and the expected loss from the

breach. They emphasize the role of GDPR in promoting data security and find that by reducing

expected privacy breach costs, data security mandates increase opt-in, consumer surplus and a

firm’s profit. By contrast, we investigate the impact of GDPR through its consent requirement

for data acquisition and shed light on its fundamental role in fixing the market failure.

Another closely related paper is that of Fainmesser et al. (2021), who develop a model

of digital privacy where a digital platform chooses the data level (scale) and the data protec-

tion strategies, in which a data breach by third parties can impose privacy costs on users. A

consumer’s privacy costs increase with her online activities (data scale) but are assumed ho-

mogeneous among all consumers. They do not explicitly model consumers’opt-in or opt-out

choices and thus do not examine the impact of GDPR. Instead, they focus on the optimal data

protection strategies against adversaries and show that the social optimal policy combines a

minimum data protection requirement with a tax proportional to the amount of data collected.

We consider consumer heterogeneity in their privacy sensitiviy. Consumers’opt-in decision

is endogeneously characterized by a cut-off threshold of privacy sensitivity balancing the benefits

and costs of data sharing. This allows us to examine the impact of GDPR on social welfare. We

characterize the social optimal data acquisition mechanism, which combines a type-contingent

data scale with a type-contingent compensation for consumers.

Our paper is also related to a growing literature of data collection and data intermediation,

which treats consumer data as an informative signal for the prediction of a consumer’s will-
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ingness to pay and/or for the improvement of product recommendation. The precision of such

prediction or recommendation relies on the scale and quality of data and can be also affected by

information externalities. Acemoglu et. al (2021) find that digital platforms over-collect data

due to information externalities and moreover characterize conditions to shut down data markets

for welfare improvement. Bergemann et al. (2021) propose a model of data intermediation to

analyze the incentives for sharing individual data in the presence of information externalities.

They show that the intermediary enables firms to offer personalized product recommendations

but not personalized prices. Ichihashi (2021a) considers a single data intermediary and asks how

complements or substitutes to consumer signals affect the equilibrium price of the individual data

under information externalities.

In the absence of information externalities, Ichihashi (2020) studies both personalized pricing

and product recommendations, and shows that a seller benefits from committing not to use the

consumer’s information to set prices. Ichihashi (2021b) considers a dynamic model of consumer

privacy and platform data collection. Data collection generates a cross-period effect, through

which the platform lowers the level of privacy protection, while consumers lose privacy and

become gradually worse off.

These studies treat the processed consumer data as an informative signal and provide a

microfoundation for the analysis of the value of consumer data. By contrast, we separate data

and processing as two strategic inputs to emphasize the different nature of benefits and costs for

these inputs. The studies also consider consumer privacy costs, which are treated as a reduced

form of utility loss from data provision and are assumed homogeneous across consumers, whereas

we consider heterogeneous consumer privacy costs. Finally, these papers study the optimal data

collection strategies in the presence of consumer privacy concerns, while our paper directly

examines the impact of GDPR on social welfare.

Concluding Remarks

General Data Protection Regulation aims to protect consumer data privacy, however, its

adverse effects have been widely documented. We present a new model for the analysis of con-

sumer data acquisition under privacy regulation. We treat both data and analytics as separate

strategic variables and consider the heterogeneity of privacy costs across consumers. Using this

model to examine the impact of GDPR, we identify a market failure before GDPR and find that

GDPR activates a market for data acquisition by imposing consent requirements on data ac-

quisition. We further study the optimal design of the mechanism for consumer data acquisition
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and deliver important policy implications for implementing the social optimum. We conclude

this paper with a number of remarks outlining the model’s limitations.

Several papers including Choi et. al (2019) and Acemoglu et. al (2021) focus on information

externalities in data collection. We isolate these effects for the simplicity of analysis. This

modelling approach is also justified by distinguishing the effects of within-user and cross-user

data mining.

A large proportion of big data applications are focused on marketing and product/service

recommendations, in which the digital platform uses the predictive data analytics for forecasting

and estimating the probability that a consumer will accept a recommended product/service and

his/her willingness to pay. Such data analytics rely heavily on a consumer’s historical data

(behavioural data) and her other available activity profiles (i.e., within-user data mining) and

uses behavioural-based machine learning to provide personalized product recommendations and

prices. For instance, Fitbit premium service provides users with a personalized service on health,

sleep and fitness based on the data collected by their Fitbit device (as well as their Google

accounts after it has been acquired by Google). Likewise, Amazon.com recommends a best-

matching product for a premium customer based on her historical searching and purchasing

data as well as on other available personal data. In other applications, however, data analytics

adopts machine learning by leveraging data sets across different users as well. Such applications

include Grammarly for spelling, grammar, and tone, Cruise for autopilot, Deep sentinel for home

security, etc..30 This paper focuses on the applications of data analytics that rely mainly on

the within-user data mining, which may well suit business models for personalized advertising,

product recommendation, pricing, and so on.

We believe that our main insights and results do not change qualitatively when we consider

cross-user data mining as well. Suppose the revenue and benefits are also increasing with the

aggregate scale of data collected from all consumers,m. It is reasonable to assume that consumer

privacy cost is not related to m. Before GDPR, there is a market failure and as a result, digital

platforms collect the maximum scale of data. The presence of data externalities does not affect

this result. After GDPR, digital platforms will collect more data than without externalities,

which further leads to a higher level of data analytics. When digital platforms use the uniform

policy, the characterization of equilibrium becomes more complicated since the cut-off threshold

τ cannot be expressed explicitly since m = sτ appears in the benefit function b (s,m, φ). Since

b (s,m, φ) increases with τ , the presence of data externalities could reduce the digital platform’s

30See Hagiu and Wright (2021) for further discussion on within-user vs. cross-user learning.
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transfer t and increase opt-in population, which is a welfare-enhancing effect. When the digital

platform offers a type-dependent policy, the usual mechanism design approach does not apply

here since the benefit function b (s,m, φ) depends on the policy offered to not only an individual

consumer but to all consumers. We cannot characterize the optimal mechanism with such an

aggregation effect.

Consumer data consists of multiple dimensional attributes and categories. We use a variable

of data scale as integration of all attributes, which is another modelling limitation. Choi et.

al (2019) emphasize the heterogeneity of consumer privacy sensitivity on different categories of

data.31 Combining their methodology with ours could provide a comprehensive characterization

of privacy costs and offer important policy implications. However, handling two dimensional

heterogeneity is technically demanding, and which we leave as our next research topic.

31Prince and Wallsten (2021) report survey results documenting heterogeneous valuation of online privacy across

different data types and different countries.
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Online Appendix
(Not for Publication)

A: Condition for Assumption C
We illustrate the condition for Assumption C. Totally differentiating both sides ofBs (s (θ) , φ) =

θ with respect to θ, we have

Bss (s (θ) , φ) s′ (θ) = 1.

Thus, Bss (s (θ) , φ) < 0 implies s′ (θ) < 0. That is, the first-best data scale is decreasing in θ.

Thus, a suffi cient condition for the interior optimum s∗ (θ) < s̄ is s∗ (θ) < s̄.

Note that s∗ (θ) is given by

Bs (s∗ (θ) , φ∗) = θ.

As Bs (s∗ (θ) , φ∗) is decreasing in s, s∗ (θ) < s̄ is equivalent to

Bs (s̄, φ∗) < Bs (s∗ (θ) , φ∗) = θ,

which amounts to

θ > Bs (s̄, φ∗) .

Assume that lims→∞Bs (s, φ) = 0 for any φ. The right-hand-side tends to zero when s̄ → ∞.

When s̄ is suffi ciently large, Bs (s̄, φ) becomes arbitrarily small. Thus, the condition θ > Bs (s̄, φ)

is satisfied for any lower bound θ not close to zero.

B: Leading example
Suppose that the per-consumer revenue and benefit functions take the form of Cobb-Douglas

with 0 < ρ < 1:

r (s, φ) = αsρφ1−ρ, b (s, φ) = (1− α) sρφ1−ρ.

It is straightforward to check that B (s, φ) = sρφ1−ρ is concave. Assume further that I (φ) =

φ2/2.

Before GDPR

The digital platform collects the maximum amount of consumer data before GDPR: s = s̄.

The optimal data analytics before GDPR is given by

rφ (s, φ) = α (1− ρ) sρφ−ρ = I ′ (φ) = φ.

This FOC defines the equilibrium φ as a function of s:

φb (s) = (α (1− ρ))1/(1+ρ) sρ/(1+ρ),
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which is increasing in s.

After GDPR

We can rewrite the FOCs for s and τ as ρsρ−1φ1−ρ = τ and sρφ1−ρ = s (τ + h(τ)) respec-

tively. Combining these two equations determines the optimal threshold τu as given by

ρh(τu) = (1− ρ) τu.

Assume further the function k (x) ≡ h (x) /x is monotonic, then τu = k−1
(

1−ρ
ρ

)
.

In addition, the optimal data analytics is given by F (τ) (1− ρ) sρφ−ρ = φ. Combining it

with the FOC for s, ρsρ−1φ1−ρ = τ , we have

s = φ2 ρ

(1− ρ)F (τ) τ
.

Then, solving for s and φ leads to

φu = (1− ρ)F (τu)
( ρ
τu

)ρ/(1−ρ)
,

and

su = (1− ρ)F (τu)
( ρ
τu

)(1+ρ)/(1−ρ)
.

First-Best Outcome

The first-best data scale s (θ) is determined by

Bs (s (θ) , φ) = ρs (θ)ρ−1 φ1−ρ = θ.

Solving for s (θ, φ) gives

s (θ, φ) =
(ρ
θ

)1/(1−ρ)
φ.

Substituting into the FOC for φ,∫ θ̄

θ
(1− ρ) s (θ)ρ φ−ρdF (θ) = φ,

we obtain

φ∗ = (1− ρ)

∫ θ̄

θ

(ρ
θ

)1/(1−ρ)
dF (θ) ,

and

s∗ (θ) =
(ρ
θ

)1/(1−ρ)
φ∗.

It follows that s∗ (θ) decreases in θ.

Second-Best Outcome
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Similarly, the second-best data policy is given by

φ∗∗ = (1− ρ)

∫ θ̄

θ

(
ρ

θ + h (θ)

)ρ/(1−ρ)

dF (θ) ,

s∗∗ (θ) =

(
ρ

θ + h (θ)

)1/(1−ρ)

φ∗∗.

Compared to the first-best data analytics, φ∗∗ < φ∗. Moreover, s∗∗ (θ) < s∗ (θ) for any given φ.

It follows that s∗∗ (θ) < s∗ (θ).

C: Equilibrium after GDPR under Uniform Policy
The digital platform’s profit function is

Πu = F (τ) (r(s, φ)− t)− I(φ) = F (τ) (B(s, φ)− sτ)− I(φ),

where the second equality comes by substituting t = sτ − b(s, φ). Given s and φ, choosing the

optimal t is equivalent to choosing the optimal threshold τ . The optimization program can be

decomposed into two steps. First, given data analytics φ, the digital platform chooses s and τ

to maximize its revenue R (s, τ ;φ) ≡ F (τ) (B(s, φ)− sτ). Second, given the optimal s and τ ,

the digital platform chooses φ to maximize Πu = R (φ)−I (φ). We now solve for the equilibrium

following two steps.

Step 1: Since B(s, φ)− sτ is concave in s given φ, the maximization of R with respect to s

has a unique interior solution, which is determined by the following first-order condition:

Bs(s, φ) = τ .

Meanwhile, it is straightforward to check that R (s, τ ;φ) is also concave in τ , as well as under

the assumption of increasing h (τ). Thus, optimization with respect to τ has a unique interior

solution as given by the FOC:32

B (s, φ) = s (τ + h(τ)) .

Substituting τ = Bs(s, φ) into the above equation, we have

B (s, φ) = s (Bs(s, φ) + h(Bs(s, φ))) .

32 It is easy to check that the Hessian matrix is negative definite and the optimum sa and τa are the solutions

to the above two FOCs.
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Solving for the above equation determines the optimal data scale su (φ), and then the optimal

threshold τu (φ) = Bs(s
u (φ) , φ). Differentiating both sides of Bs(s, φ) = τ with respect to φ, it

is straightforward to see that su(φ) increases in φ: dsu(φ)/dφ = −Bsφ/Bss > 0.

Step 2: Substitute su (φ) and τu (φ) into the R (s, τ ;φ). Maximizing Πu = R (φ)−I (φ) with

respect to φ has a unique interior solution as R (φ) is concave and I (φ) is convex. Differentiating

Πu with respect to φ and using the envelope theorem, the optimal data analytics is the solution

of the following FOC

F (τ)Bφ(s, φ) = I ′ (φ) .

We now compare the equilibrium with the first-best outcome. For opt-in consumers with

θ < τu, fixing τu, we conduct comparative statics as follows. Recall that the first-best data scale

s∗(θ, φ), is given by Bs(s∗(θ, φ), φ) = θ, whereas the optimal data scale su (φ) is the solution of

τu = Bs(s
u (φ) , φ). Then, Bs(s∗ (θ, φ) , φ) = θ < τu = Bs(s

u (φ) , φ) implies s∗ (θ, φ) > su (φ)

for any given φ, since Bss < 0.

Moreover, the optimal data analytics φu is the solution of F (τu)Bφ(su (φ) , φ) = I ′ (φ),

whereas the first-best data analytics φ∗ is given by∫ θ̄

θ
Bφ (s∗ (θ, φ) , φ) dF (θ) = I ′ (φ) .

Comparing the left-hand sides of the two FOCs and noting that Bφs > 0, we have∫ θ̄

θ
Bφ (s∗ (θ, φ) , φ) dF (θ) >

∫ θ̄

θ
Bφ (su (φ) , φ) dF (θ) = Bφ (su (φ) , φ) > F (τu)Bφ(su (φ) , φ).

It follows that φ∗ > φu since I ′ (φ) is increasing in φ.

Note that both s∗ (θ, φ) and su (φ) increase in φ. Then, s∗ (θ, φ) > su (φ) for any given φ

and φ∗ > φu together imply s∗ (θ) = s∗ (θ, φ∗) > su (φ∗) > su (φu) = su, for any θ < τu.

D: Mechanism Design
We now provide full characterization of the equilibrium for the second best outcomes. Recall

that

V (θ) = b (s (θ) , φ) + t (θ)− s (θ) θ.

Note that
∂V

∂s
= bs (s (θ) , φ)− θ, ∂V

∂t
= 1,
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then
∂

∂θ

[
∂V/∂s

∂V/∂t

]
=

∂

∂θ
[bs (s (θ) , φ)− θ] = −1 < 0.

It follows that the single-crossing condition is satisfied.

We first characterize the Incentive Compatibility (IC) constraint. A consumer with type θ

who mis-reports her type as θ̃ will receive

V
(
θ̃, θ
)

= t
(
θ̃
)

+ b
(
s
(
θ̃
)
, φ
)
− s

(
θ̃
)
θ.

The data policy is incentive compatible if V (θ) ≥ V
(
θ̃, θ
)
for any θ̃ 6= θ. Differentiating

V
(
θ̃, θ
)
with respect to θ̃, we have

∂V
(
θ̃, θ
)

∂θ̃
= t′

(
θ̃
)

+
(
bs

(
s
(
θ̃
)
, φ
)
− θ
)
s′
(
θ̃
)
.

The IC constraint requires V
(
θ̃, θ
)
be maximized at θ̃ = θ, which implies

t′ (θ) + (bs (s (θ) , φ)− θ) s′ (θ) = 0.

By the envelope theorem, we obtain

dV (θ)

dθ
= −s (θ) .

At the optimum the participation constraint of the highest type is binding, i.e., V
(
θ̄
)

= 0, which

implies

V (θ) = V
(
θ̄
)

+

∫ θ̄

θ
s (x) dx =

∫ θ̄

θ
s (x) dx.

The digital platform’s total profits is given by

Π =

∫ θ̄

θ
(r (s (θ) , φ)− t (θ)) dF (θ)− I (φ) .

Using

t (θ) = V (θ)− b (s (θ) , φ) + s (θ) θ,

we can rewrite Π as

Π =

∫ θ̄

θ
(r (s (θ) , φ)− V (θ) + b (s (θ) , φ)− s (θ) θ) dF (θ)− I (φ)

=

∫ θ̄

θ
[B (s (θ) , φ)− s (θ) θ] dF (θ)−

∫ θ̄

θ

(∫ θ̄

θ
s (x) dx

)
dF (θ)− I (φ) .
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Using integration by parts, we obtain

∫ θ̄

θ

(∫ θ̄

θ
s (x) dx

)
dF (θ) =

[(∫ θ̄

θ
s (x) dx

)
F (θ)

]θ̄
θ

+

∫ θ̄

θ
F (θ) s (θ) dθ =

∫ θ̄

θ
F (θ) s (θ) dθ.

Substituting this into Π, we have

Π =

∫ θ̄

θ
[B (s (θ) , φ)− s (θ) (θ + h (θ))] dF (θ)− I (φ) =

∫ θ̄

θ
W (θ, φ) dF (θ)− I (φ) ,

where

W (θ, φ) ≡ B (s (θ) , φ)− s (θ) (θ + h (θ))

is the net social benefit with type θ and the extra negative term s (θ)h (θ) is the information

rent due to the IC constraint.

The maximization of Π with respect to s (θ) requires that the term under the integralW (θ, φ)

be maximized with respect to s (θ) for all θ. That is, the optimal data policy s (θ)must maximize

the net social benefit for each type of consumers. It is straightforward to check that

∂2W (θ)

∂s2 (θ)
= Bss (s (θ) , φ) < 0.

Then, the optimal data policy is the (unique) solution of the following FOC:

Bs (s (θ) , φ) = θ + h (θ) .

The above FOC determines the equilibrium path s∗∗ (θ, φ) = B−1
s (θ + h (θ)). It is easy to check

that s∗∗ (θ, φ) decreases in θ (since Bss < 0) and increases in φ (as Bsφ < 0).

Under full participation, the optimal data analytics is determined when the marginal cost

equal to the expected marginal social benefit. That is,

I ′ (φ) =

∫ θ̄

θ
Bφ (s (θ) , φ) dF (θ) .

Substituting s∗∗ (θ, φ) into the above equation, the equilibrium data analytics is the solution of∫ θ̄

θ
Bφ (s∗∗ (θ, φ) , φ) dF (θ) = I ′ (φ) .

Finally, the optimal payment is given by

t∗∗ (θ) = V (θ)− b (s∗∗ (θ) , φ∗∗) + s∗∗ (θ) θ =

∫ θ̄

θ
s (x) dx+ s∗∗ (θ) θ − b (s∗∗ (θ) , φ∗∗) .

41



E: Proof of Proposition 4
We first characterize the equilibrium with third-party cookies after GDPR and then compare

it with the counterfactural benchmark.

Equilibrium with third-party cookies

The digital platform’s profit from displaying the third-party’s advertisements is

Πu
t = F (τ)

(
B̂(st, φt)− (1− β) r̂(st, φt)− γstτ t

)
.

The digital platform chooses st and τ t to maximize the above profit. Simultaneously, the third-

party chooses φt to maximize πt = (1− β) r̂(st, φt)− Î (φt).

The digital platform’s optimal data scale st equates the marginal revenue to its marginal

cost, which is given by

B̂s(st, φt)− (1− β) r̂s(st, φt) = γτ t. (13)

In addition, the digital platform chooses the optimal threshold τ t such that

B̂(st, φt)− (1− β) r̂(st, φt)

γst
= τ t + h (τ t) . (14)

The third-party’s optimal data analytics φut is determined by

(1− β) r̂φ(st, φt) = Î ′ (φt) . (15)

The equilibrium data scale sut , data analytics φ
u
t , and threshold τ

u are determined by the FOCs

(13), (15), and (14), which can be characterized using the same approach as in the baseline model.

The equilibrium profits for the digital platform and the third-party are given respectively by

Πu
t = γsatF (τu)h (τu) and πt = (1− β) r̂(sut , φ

u
t )− Î (φut ).

Equilibrium without third-party cookies

Consider now the counterfactural scenario in which the digital platform replaces the third-

party’s advertisements. Consumer data collection through its first-party cookies reduces con-

sumer privacy cost to sθ, but the digital platform needs to incur the cost of data analytics I (φ).

Its profit from such substitution is

Πu = F (τ)
(
B̂(s, φ)− sτ

)
− I (φ) ,

where τ =
(
b̂(s, φ) + t

)
/s. The equilibrium data scale su, analytics φu, and threshold τu can

be derived using exactly the same approach as in the baseline model, by replacing B with B̂.
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We use a variant of the leading example to compare equilibrium outcomes. Assume r̂ (s, φ) =

αsσt φ
1−σ
t , b̂(st, φt) = (1− α) sσt φ

1−σ
t , I (φ) = φ2/2, and Î (φt) = jφ2

t /2 with j < 1.

Equilibrium with third-party cookies

Suppose the digital platform keeps the third-party cookies. The equilibrium threshold τu is

given by
τu

τu + h (τu)
= εst = σ.

The optimal third-party data analytics is determined by

α (1− β) (1− σ) sσt φ
−σ
t = jφt

and the optimal third-party data scale is given by

σ (1− (1− β)α) sσ−1
t φ1−σ

t = γτ t.

Combining these two FOCs, we get

st = φ2
t

j

γτ t

(1− α (1− β))σ

α (1− β) (1− σ)
.

Substituting it into the FOC for st and then solving for φt and st, we obtain

φut =
(α (1− β) (1− σ))

j

(
(1− α (1− β))

γ

)σ/(1−σ) ( σ
τu

)σ/(1−σ)
,

and

sut =
α (1− β) (1− σ)

j

(
(1− α (1− β))

γ

)(1+σ)/(1−σ) ( σ
τu

)(1+σ)/(1−σ)
.

The digital platform’s equilibrium profit is

Πu
t = γsatF (τu)h (τu)

=
γ−2σ/(1−σ)

j
α (1− β) (1− σ)2 ((1− α (1− β)))(1+σ)/(1−σ)

( σ
τu

)2σ/(1−σ)
F (τu),

where we have used h(τu) = (1− σ) τu/σ to derive the second line.

Equilibrium without third-party cookies

Suppose the digital platform replaces the third-party’s advertisements with its own business.

The equilibrium outcome is exactly the same as in the leading example for the baseline model,

by replacing ρ with σ, which are given by

φu = (1− σ)F (τu)
( σ
τu

)σ/(1−σ)
,

and

su = (1− σ)F (τu)
( σ
τu

)(1+σ)/(1−σ)
,

43



where τu is given by
τu

τu + h (τu)
= σ.

The digital platform’s profit is

Πu = suF (τu)h (τu)− I (φu)

= (1− σ)
( σ
τu

)(1+σ)/(1−σ)
F 2 (τu)h (τu)− 1

2
(φu)2

=
1

2
(1− σ)2

( σ
τu

)2σ/(1−σ)
F 2 (τu) .

Comparing the digital platform’s profits in two scenarios and noting that τu = τu, we have

Πu > Πu
t if and only if

γ > γ̄ ≡
(

2α (1− β)

jF (τu)

)(1−σ)/(2σ)

((1− α (1− β)))(1+σ)/(2σ) .

Recall that the extra surplus for opt-in consumers is Vt (θ) = γsat (τu − θ) with three-party cook-

ies and becomes V (θ) = su (τu − θ) without them. Thus, the replacement benefits consumers

if su > γsat , which amounts to

γ > γ̂ ≡
(
α (1− β) ((1− α (1− β)))(1+σ)/(1−σ)

jF (τu)

)(1−σ)/(2σ)

.

Since γ̂ < γ̄, such replacement improves consumer surplus when it happens (γ > γ̄). Finally,

comparing the levels of data analytics, we have φu > φut if and only if

γ > γ̃ ≡
(
α (1− β)

jF (τu)

)(1−σ)/σ

(1− α (1− β)) .

F: Data Acquisition with Personalization
Here, we characterize the digital platform’s optimal data policy with personalization. Recall

that an opt-in consumer receives an extra benefit m (s, φ)x from sharing data and the digital

platform charges the personalized prices p (x; s, φ). The analysis before GDPR is given in the

main context. We provide the analysis after the GDPR here.

Uniform Policy

Suppose the digital platform is committed to the uniform data policy{s, φ}. The digital

platform’s profit is

Πu =

∫ 1

0
p (x)F (τ (x)) dx− I (φ) ,
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where the cut-off threshold is

τ (x) =
m (s, φ)x− p (x)

s
.

Given {s, φ}, we first solve for the digital platform’s personalized pricing. Substituting

p (x) = m (s, φ)x− sτ (x) into the above profit function, we obtain

Πu =

∫ 1

0
(m (s, φ)x− sτ (x))F (τ (x)) dx− I (φ) .

Thus, given {s, φ}, choosing p (x) is equivalent to choosing τ (x) in the maximization. The maxi-

mization ofΠ with respect to τ (x) requires that the term under the integrand (m (s, φ)x− sτ (x))F (τ (x))

be maximized with respect to τ (x) for all x. Differentiating the integrand with respect to τ (x)

and solving for the FOC leads to

m (s, φ)x = s (τ (x) + h (τ (x))) .

Using l (τ) ≡ τ + h (τ) (l (τ) increases in τ), we have

τ (x) = l−1

(
m (s, φ)x

s

)
.

We show that τ (x) increases in x. Differentiating both sides of the FOC with respect to x, we

have

m (s, φ) = s
(
1 + h′ (τ)

)
τ ′ (x) ,

which implies

τ ′ (x) =
m (s, φ)

s (1 + h′ (τ))
> 0.

Next, we solve for the optimal policy {s, φ}. Differentiating Πu with respect to φ, we obtain

∂Πu

∂φ
=

∫ 1

0
mφ (s, φ)xF (τ (x)) dx− I ′ (φ) .

The optimal data analytics φu is given by

mφ (s, φ)

∫ 1

0
xF (τ (x)) dx = I ′ (φ) . (16)

In addition, differentiating Πu with respect to s, we have

∂Πu

∂s
=

∫ 1

0
(ms (s, φ)x− τ (x))F (τ (x)) dx.

The second-order derivative is negative

∂2Πu

∂s2
=

∫ 1

0
mss (s, φ)xF (τ (x)) dx < 0.

45



Hence, the optimal s in an interior solution and satisfies

ms (s, φ)

∫ 1

0
xF (τ (x)) dx =

∫ 1

0
τ (x)F (τ (x)) dx. (17)

A consumer’s net surplus is then given by

V (x, θ) = m (s, φ)x− p (x)− sθ = s (τ (x)− θ) .

Hence, opt-in consumers are better off after GDPR.

Mechanism Design

Suppose the digital platform offers type-dependent data policy. Without loss of generality,

we focus on the direct mechanism in which the digital platform requires a consumer to report

her true type θ and then recommends the policy {s (θ) , t (θ, x)} accordingly, where t (θ, x) is the

type-dependent payment to the digital platform. A consumer with type θ and taste x receives

a net surplus from opt-in

V (θ;x) = m (s (θ) , φ)x− t (θ, x)− s (θ) θ.

The digital platform knows the exact value of x but does not observe θ. The policy must be

incentive compatible for type θ.

A type θ consumer who mis-reports her type as θ̃ will receive

V
(
θ̃, θ;x

)
= m

(
s
(
θ̃
)
, φ
)
x− t

(
θ̃, x
)
− s

(
θ̃
)
θ,

and the policy is incentive compatible if V (θ;x) ≥ V
(
θ̃, θ;x

)
for any θ̃ 6= θ. Differentiating

V
(
θ̃, θ;x

)
with respect to θ̃, we have

∂V
(
θ̃, θ;x

)
∂θ̃

=
(
ms

(
s
(
θ̃
)
, φ
)
x− θ

)
s′
(
θ̃
)
−
∂t
(
θ̃, x
)

∂θ̃
.

The IC constraint requires V
(
θ̃, θ;x

)
be maximized at θ̃ = θ, which implies

(mφ (s (θ) , φ)x− θ) s′ (θ) =
∂t (θ, x)

∂θ
.

By the envelope theorem, we obtain

dV (θ;x)

dθ
= −s (θ) .

At the optimum, the participation constraint of the highest type is binding such that V
(
θ̄;x
)

=

0. Then

V (θ;x) = V
(
θ̄;x
)

+

∫ θ̄

θ
s (y) dy =

∫ θ̄

θ
s (y) dy.
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Note that V (θ;x) does not depend on x, since the digital platform knows the exact value of x

and can extract full consumer surplus related to taste x.

The digital platform signs up all consumers under the policy {s (θ) , t (θ, x)}. Its total profits

are given by

Π =

∫ 1

0

∫ θ̄

θ
t (θ, x) dF (θ) dx− I (φ) .

Using

t (θ, x) = m (s (θ) , φ)x− s (θ) θ − V (θ;x) ,

we can rewrite the digital platform’s profits as

Π =

∫ 1

0

∫ θ̄

θ
(m (s (θ) , φ)x− s (θ) θ − V (θ;x)) dF (θ) dx− I (φ)

=

∫ 1

0

[∫ θ̄

θ
[m (s (θ) , φ)x− s (θ) θ] dF (θ)−

∫ θ̄

θ

(∫ θ̄

θ
s (y) dy

)
dF (θ)

]
dx− I (φ) .

Using integration by parts, we have

∫ θ̄

θ

(∫ θ̄

θ
s (y) dy

)
dF (θ) =

[(∫ θ̄

θ
s (y) dy

)
F (θ)

]θ̄
θ

+

∫ θ̄

θ
F (θ) s (θ) dθ =

∫ θ̄

θ
F (θ) s (θ) dθ.

Substituting into Π, we obtain

Π =

∫ 1

0

∫ θ̄

θ
[m (s (θ) , φ)x− s (θ) (θ + h (θ))] dF (θ) dx− I (φ)

=

∫ θ̄

θ

[
m (s (θ) , φ)

2
− s (θ) (θ + h (θ))

]
dF (θ)− I (φ)

=

∫ θ̄

θ
W̃ (θ, φ) dF (θ)− I (φ) ,

where

W̃ (θ, φ) ≡ m (s (θ) , φ)

2
− s (θ) (θ + h (θ)) ,

is the net social benefit with type θ, in which the extra negative term s (θ)h (θ) is the information

rent due to the IC constraint.

The maximization of Π with respect to s (θ) requires that the term under the integral W̃ (θ, φ)

be maximized with respect to s (θ) for all θ. That is, the optimal data policy s (θ)must maximize

the net social benefit for each type of consumers. It is straightforward to check that

∂2W (θ, φ)

∂s2 (θ)
=
mss (s (θ) , φ)

2
< 0.
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Then, the optimal data policy is the (unique) solution of the following FOC:

ms (s (θ) , φ)

2
= θ + h (θ) .

The optimal data policy is determined when the marginal social benefit ms(s(θ),φ)
2 is equal to the

adjusted marginal cost of privacy θ + h (θ).

Under full participation, the optimal data analytics is determined when the marginal cost

equates to the expected marginal social benefit. That is,

I ′ (φ) =

∫ θ̄

θ

mφ (s (θ) , φ)

2
dF (θ) .

Finally, the optimal payment is given by

t∗∗ (θ, x) = m (s∗∗ (θ) , φ∗∗)x− s∗∗ (θ) θ − V (θ, x) = m (s∗∗ (θ) , φ∗∗)x−
∫ θ̄

θ
s (y) dy − s∗∗ (θ) θ.

Since the digital platform can use personalized pricing, each consumer’s extra surplus from data

sharing is independent of x:

V (θ;x) = V (θ) =

∫ θ̄

θ
s (y) dy.

G: Cookies33

Cookies are small text files that are downloaded into a user’s device by the web browser when

visiting a particular website. Cookies are tiny packets of modulated information transmitted

between a server and a browser,34 and their primary role is to establish a connection and

simultaneously retrieve useful information about the user’s activity during subsequent page

visits. Removing cookie will make it diffi cult for merchants to keep tracking a user’s website

browsing record.

A. Purpose of cookies

Over time internet cookies have been repurposed to serve three main objectives:35

Session management. This is a process of holding and relaying information of the user across

various pages on the merchant’s website. For example, a merchant uses a cookie with a unique

identifier to map a user with their shopping cart. The user’s browser sends a session identifier

33 I thank my research assistant Ratul Das Chaudhury for completing this supplementary reading material. I

made some editorial changes on Ratul’s original note.

34See Park and Sandhu (2000).

35https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
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to the merchant’s server every time the user visits a page or clicks on a link on the merchant’s

website. Session cookies also reduce the page loading time of the user.

Tracking. Cookies are also used to monitor the browsing preferences of the user. Some

cookies purposefully track user activities on social media, news, or shopping websites to gener-

ate and analyze user behaviour. For example, web-based advertising platforms like Google Ad-

Sense, Amazon Native Shopping Ads, and Adversal use tracking cookies to analyze the browsing

behaviour of target users, which can be used for marketing.

Personalization. Some cookies help merchants recall relevant user details and browsing

habits. These cookies can benefit the user by enabling certain features on the website to improve

the user experience. Personalization enhances the user’s web experience by providing tailored

product layouts based on previous choices, pre-set preferences, browsing history, and display

style.

B. Types of cookies

The General Data Protection Regulation (GDPR) categorizes cookies into three broad groups

based on three attributes —duration, provenance, and purpose.36

Duration:

• Session cookies are temporary and automatically deleted after the termination of the

browsing session. For example, if a user logs into their e-commerce account, session cookies

help a user stay logged in their account across multiple pages;

• Persistent cookies are stored in the user’s device and are not deleted once the session ter-

minates. Persistent cookies are utilized for user authentication, tracking, or other related

purposes.

Provenance:

• First-party cookies are placed directly in the user’s device by the website the user is

browsing;

• Third-party cookies are generated by websites that differ from the site the user is brows-

ing. These cookies are placed by external domains, such as advertisers or web analytics

providers. Unlike first-party cookies, third-party cookies can track a user across different

websites.

36https://gdpr.eu/cookies/
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Purpose:

• Strictly necessary cookies are crucial for the proper operation of the website, for example,

access a secure page or holding items in a shopping cart. Generally, these cookies do not

require a user’s consent before proceeding;

• Preference cookies ensure that the webpage is well managed and suited to a user’s choices

during the previous page visits, e.g., auto log-in, display preferences, languages, etc. These

cookies improve functionality and enhance the user experience;

• Statistics cookies help identify the important performance indicators of users and user

activity in the domain website. These cookies record clicks on links on a particular page,

duration of stay, and other web usage statistics to optimize the user experience;

• Marketing cookies are applied to provide users with relevant marketing and advertisement

campaigns. These cookies can track users across websites where advertisements are placed

and used by marketing agencies to build a user profile and present targeted advertisements.

C. Cookie banners and options

GDPR has prompted websites to display cookie banners and disclaimers. We provide some

examples of cookie disclaimers:

• No banner: Websites like better.com (a company primarily based in New York) provide

users with minimal information about cookie policy on their webpages and only offer a

link to their privacy policy.

• Inform-only: Some websites such as termsfeed.co and Los Angeles Times (https://www.latimes.com/)

only inform users about cookie usage and privacy policies. These websites inform users

about using different types of cookies to enhance user experience, improve web function-

ality, and site analytics. These are examples of implied consent.

• Confirmation-only: Several websites, like The Mirror (https://www.mirror.co.uk/) and

Essentra (https://www.essentra.com/en), offer users a banner with an ‘Accept’/ ‘Agree’

button and make it diffi cult for users to further access the page without agreeing to the

policy. This is classified as forced opt-in consent.

• Dual option: Some websites such as GDPR (https://gdpr.eu/cookies/) offer users a binary

choice: choose all cookies or only strictly necessary cookies.
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• Two-step granular option: Some websites, such as Premiere League (https://www.premierleague.com/)

and Prolific ( https://prolific.co/) also offer a two-step option for their users. They can ei-

ther accept all cookies or select from a menu of options. The website provides a multitude

of granular options (functional, performance, analyticalm and marketing) from which the

user can accept cookies of their own choice.

D. GDPR’s impact on Cookies

GDPR’s rollout has a considerable impact on cookies. Some of the observed changes are as

follows:

• Cookie banners: Degeling et. al. (2018) examined 500 popular websites in EU nations

post-GDPR. They observed a significant increase of 16% in the display of cookie consent

banners, from 46.1% in January 2018 to 62.1% in May 2018.

• Third-party cookies: Libert et. al. (2018) examined the popular news websites in seven

EU countries and found that 98% of those sites contain at least one third-party cookie,

with an average of 81 cookies per page. The average count of third-party cookies per page

went down by 22% in these news websites after GDPR’s rollout, with 14% decrease in

advertising cookies and 9% reduction in social media cookies.

• Fines for non-compliance: More than 24% of the popular websites in the Baltic states do

not display privacy policies after GDPR. The EU’s data protection authorities have issued

over 800 fines by May 2018 for GDPR non-compliance.37 Luxembourg National Commis-

sion for Data Protection fined Amazon a €746 million for violating data processing pro-

cedures, forcing users to comply with cookie policies, and making the opt-out process too

challenging. WhatsApp and Google were also found in violation of the GDPR guidelines

and fined for the lack of transparency in cookie policies and data processing guidelines.38
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H: Data Analytics39

Computer scientists define data as bits of information that can be structured, processed,

or analyzed to gather insights or make meaningful predictions about relevant topics. However,

raw data does not have much value per se; it needs to be processed and analyzed to create

value. Data analytics is the process of logically and systematically analyzing raw data to assess,

anticipate or forecast various scenarios.40 The term “data analytics”is an umbrella term, as it

incorporates the acts of capturing, processing, storing, analyzing, and using the data.

Data analytics is a complex process of inspecting, cleaning, transforming, and analyzing

unstructured data to yield effective business perceptions. Data analytics is slowly evolving to

incorporate the processing of big data with analytics.41 Traditionally, data and analysis were

treated as two separate processes that were integrated and analyzed using statistical tools before

they would be worthy of offering up valuable insights. The conventional method of collecting data

and analyzing was expensive, time-consuming, and computationally challenging. In the past few

decades, advancements in storage and sensor technology have contributed to transforming big

data into analysis-worthy information42. Modern data analytics rely on algorithms and machine

learning processes to increase effi ciency and optimize decision-making processes. Advancements

in computational sciences have contributed significantly to reducing data processing times. Data

analytics is integrated in transforming raw and unstructured data into usable knowledge that

has the potential to improve competitiveness among businesses, increase productivity, analyze

risk, detect fraud to name a few.

Steps of Data Analytics

The primary purpose of any analytics tool is to process and convert unstructured inputs into

39 I am grateful to my research assistant Ratul Das Chaudhury for completing this supplementary reading

material. I made some editorial changes on Ratul’s original note.

40https://www.investopedia.com/terms/d/data-analytics.asp

41See Tsai et. al (2015).

42See Bloem et. al (2013) and Kambatla et. al (2014) for detailed discussion.
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useful output that can be used to make precise predictions and draw valuable inferences. The

steps involved in the development of a data analytics pipeline can be classified as follows:43

• Data collection. The preliminary step is a proper data collection system and a suitable

infrastructure to ingest the data from the source;

• Data processing. Providing some structure to a crude dataset is essential in creating a

proper data analytics pipeline. Data is usually collected from a multitude of sources. It

must undergo extraction, cleaning, and transformation into the requisite layout to make

the data worthy of analysis;

• Data storage. This steps involves refining and storing the data using a proper data storage

service —(a “data warehouse”or “data lake”) —to be used for further processing;

• Data analysis. The stored data is either achieved or used for analytical purposes to generate

useful insights. The type of analyses applied to the database is determined by research

objectives and client requirements.

• Data visualization. Use the findings from the analysis to create visual or graphical repre-

sentations and employ the available visualization toolkit to identify the trends and patterns

in the data.

Types of Data Analytics

According to Bloem et. al (2013), data Analytics is broadly classified into four subcategories:

• a) Descriptive analytics is the study of information that illustrates what has happened

over time. This type of analytical method involves analyzing a dataset to gather valuable

insights about the past. It is primarily used to investigate whether and when something has

been misconstrued and/or misinterpreted in the past. Descriptive analytics as a standalone

method is incomplete in that it helps identify a problem without offering any justification;

• b) Diagnostic analytics investigates why something has happened. This method in-

volves understanding whether there exists a causal relationship between two events. While

descriptive analytics provide insights about specific trends in the past, diagnostic analytics

investigates the factors that have contributed to those trends;

43See https://www.freecodecamp.org/news/scalable-data-analytics-pipeline/
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• c) Predictive analytics provides the likelihood of the occurrence of an event. This

method utilizes past data to make meaningful future predictions. Predictive analytics is

useful to forecast future trends by utilizing descriptive and diagnostic analytics and other

available modelling techniques. The precision of the forecasts is largely reliant on the

quality of the data and other exogenous factors;

• d) Prescriptive analytics is the method of prescribing a plan of action to eliminate a

problem or benefit from a trend.

Applications of Data Analytics

Enterprises utilize decision-driven analytics to better understand whether and how analytical

thinking benefits the organization44. A recent survey highlights that 94 percent of the surveyed

business analytics professionals believe that data and analytics are crucial for the growth of their

businesses.45 A significant portion also believe that data analytics increases the productivity

of their firm, improves cost effi ciency, engenders faster decision-making, and financially benefits

the company. The survey also reveals that 65 percent of companies are planning to increase

their investment in data analytics in the upcoming years. A McKinsey report highlights that

companies that had infused creativity and purpose in conjunction with data analytics had ex-

perienced 2.7 times average annual revenue growth in 2020 compared to their peers.46 Another

IBM report indicates that the use of big data analytics gives banking and financial institutions

a considerable competitive advantage over their peers.47 More recent assessments by Allied

Market Research reveal that the market for big data and analytics was valued at approximately

$198 billion in 2020 and is expected to rise to $684 billion by 2030.48

Firms are utilizing consumer data to streamline operations, access newer markets, and to

better serve existing customers. Companies such as Google Analytics, Amazon Redshift, Sales-

force’s Einstein Analytics, and Adobe Analytics provide inexpensive analytics solutions to en-

terprises. The Economist Intelligence Unit assessment found that a significant portion of the

44See Provost and Fawcett (2013) and Brynjolfsson and McElheran (2016).

45https://www.microstrategy.com/getmedia/db67a6c7-0bc5-41fa-82a9-bb14ec6868d6/2020-Global-State-of-

Enterprise-Analytics.pdf

46https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-growth-triple-play-

creativity-analytics-and-purpose

47See Turner et. al (2013).

48https://www.alliedmarketresearch.com/big-data-and-business-analytics-market
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surveyed companies underutilize their data.49 An MIT Solan survey finds that 87 percent of

the respondents believe that their organization ‘needs to step up’the use of analytics.50 Cost-

effective data analytics solutions provide opportunities to small and medium-sized businesses to

harness their sales and consumer data to better understand buying habits, distinguish trends

and manage finances. One study finds that 67% of the surveyed small businesses spend more

than $10000 a year on data analytics solutions.51

Adobe Analytics is an analytics solutions platform that provides real-time analytics, cus-

tomer behaviour, sales data to their clients. Adobe analytics provide their clients with the

ability to collect and analyze large datasets to forecast consumer behaviour, predict sales etc.52

For example, the packages of Adobe Analytics provides their clients with a multitude of analytics

tools like —reporting, dashboarding, data repository services, ad-hoc analysis, tag management,

customer analytics, predictive modeling, etc. An HG Insights study reveals that about 47 per-

cent of the 53,532 companies that rely on Adobe Analytics earn annual revenues of around $1

million to $10 million.53

Although it is diffi cult to determine the actual return on investment from data analytics due

to the complexity and the indirect effects it generates, both researchers and businesses agree that

data analytics fosters innovation, provides effi cient problem-solving techniques, better manages

risk, and reduces cost.54 Currently, some enterprises target a return of three and a half times

the initial spending on data analytics projects.55 Current market research has identified the use

of analytics has improved effi ciency in fraud detection among the top 50 riskiest providers in

healthcare.56 A report of eight selected clients of Adobe analytics reveals that after the adaption

of Adobe Analytics there was a 3 percent increase in site traffi c, and the average ROI from using

Adobe Analytics services is 224 percent.57

We provide several business cases of using data analytics:

49Unit, E. I. (2011). Big data: Harnessing a game-changing asset. The Economist, 1-32.

50See Kiron et. al (2014).

51https://smallbiztrends.com/2020/03/data-analytics-trends.html

52https://www.adobe.com/content/dam/acom/au/marketing-cloud/playbook/Adobe-Analytics.pdf

53https://discovery.hgdata.com/product/adobe-analytics

54https://www.pwc.com/us/en/services/consulting/analytics.html

55See Shim et. al (2015).

56https://www.elderresearch.com/blog/can-data-analytics-really-deliver-1300-roi/

57https://business.adobe.com/content/dam/dx/us/en/resources/reports/forrester-tei-adobe/total-economic-

impact-analytics-audience-manager.pdf
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• Mango - a high-end clothing retailer, noticed an influx in web traffi c from mobile devices

but was struggling to translate the increased traffi c to sales. Mango utilized the analytical

tools in Google Analytics 360 to analyze consumer behaviour by device type. This led to

a 49 percent increase in shoppers adding a product to their cart and a 3.9 percent rise in

mobile revenue.58

• Sigma Sport —a sports gear retailer, while reviewing Google Analytics data noticed a lack

of consumer engagement in their website. Combining the results from data analytics with

insights from a consumer journey experiment led the company to provide customers with

a personalized homepage that resulted in a 28 percent increase in revenue.59

• Netflix —an online streaming platform, leveraged viewer information and predictive ana-

lytics modelling and filtering to improve TV show/film recommendations, customer expe-

rience etc. This helped the streaming platform attain a show success rate of 80 percent.60

• McDonald acquired a data analytics firm for $300 million.61 The global fast-food chain is

investing in data analytics to optimize its food delivery service, reducing operations costs

and improving customer experience.62

• Shazam —a sound recognition application, sought to Einstein Analytics for data analytic

solutions. Implementing the self-service analytic tools has led to an increase in employee

productivity, improved data quality, customer segmentation, etc., which resulted in a 752

percent ROI.63
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