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Abstract

The best-performing and most popular algorithms are often the least explainable. In par-

allel, there is growing concern and evidence that sophisticated algorithms may engage, au-

tonomously, in profit-maximizing but welfare-damaging strategies. Drawing on the literature

on self-regulation and following recent regulatory proposals, we model a regulator who seeks to

encourage algorithmic compliance through the threat of (costly and imperfect) audits. Firms

may invest in “explainability” to better understand their own algorithms and reduce their cost of

compliance. We find that, when audit efficacy is not affected by explainability, audit regulation

always induces investment in explainability. Mandatory disclosure of the explainability level

makes regulation even more effective, because it allows firms to signal compliance. If, instead,

explainability facilitates regulatory audits a firm may attempt to hide a potential misconduct be-

hind algorithmic opacity. Because of regulatory opportunism, mandatory disclosure may further

deter investment in explainability. In these cases, regulatory audits may be counterproductive

and laissez-faire or minimum explainability standards should be envisaged.
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“Algorithms must not be a black box and there must be clear rules if something goes wrong.”

Ursula von der Leyen, State of the Union, September 2020.

1 Introduction

An increasing number of decisions involving important business activities such as price-setting,

advertising, loan granting processes, are delegated to artificial intelligence algorithms.1 Over the

past decade, these technologies have made staggering progress that may bring sizeable benefits to

firms, consumers, and society as a whole. There is, however, mounting concern that these algorithms

may take undesirable or even illegal decisions on behalf of their makers–sometimes without their

knowing. With suspicion regarding the secrecy and lack of explainability of advanced machine-

learning tools rising, firms making extensive use of algorithms have come under increased scrutiny,

and many institutions are laying the foundations for algorithmic regulation and auditing (see e.g.,

European Commission (2020a,b, 2021)).

Explainability is generally defined as the extent to which an algorithm can be explained in

human terms. When choosing their technology, firms face a trade-off between performance and

explainability; often, the best-performing methods (e.g., deep neural networks) are the least ex-

plainable, while the most explainable (e.g., linear regressions or simple decision trees) are the least

accurate. This phenomenon, illustrated in Figure 1, is well-known to data scientists2 but generates

a somewhat new concern among economists and regulators: as algorithmic sophistication increases

algorithmic misconducts become increasingly difficult to detect and demonstrate. When the lack

of explainability is detrimental to social welfare, regulatory intervention may be warranted.

This paper models the interaction between a firm and a regulator. The firm operates a tech-

nology that may autonomously engage in “misconduct” (i.e., harm social welfare). The regulatory

environment penalizes misconduct through regulatory audits, inducing the firm to intensify its com-

pliance efforts (e.g., by implementing self-audit procedures). Explainability, which comes at the

firm’s cost,3 helps the firm understand the behavior of its own technology, and therefore identify

1A possible definition of artificial intelligence may be found in Acemoglu and Restrepo (2020): “[Artificial In-
telligence] refers to the study and development of ’intelligent (machine) agents’, which are machines, software, or
algorithms that act intelligently by recognising and responding to their environment.”

2While recent research has made advances in developing interpretable machine-learning models, Barredo Arrieta
et al. (2020) and Bertsimas et al. (2019) note that algorithmic interpretability comes at the cost of accuracy.

3In the absence of an appropriate regulatory framework (or effective consumer reactions), the firm always favors
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Figure 1: The explainability vs accuracy trade-off

Source: Gunning and Aha (2019)

and remedy a possible misconduct prior to regulatory intervention. More specifically, in our model,

explainability lowers the marginal cost of compliance.

We compare a firm’s equilibrium explainability in two distinct regulatory regimes: when the

explainability level is firm’s private information technology-neutral regulation arises naturally. In

that case, the regulator maintains the same audit frequency for all firms, irrespective of the observed

level of explainability. In a second paradigm we acknowledge that the regulator may request that the

explainability level be observed publicly (e.g. through a regulatory requirement for transparency)

which makes technology-specific regulation possible: the regulator observes the explainability level

before auditing begins and may adjust the audit frequency accordingly. In this case, we will show

that explainability acts as a signalling and commitment device of strong compliance.

Out first set of results concerns the effect of imperfectly efficacious regulatory audits on equi-

librium explainability. When the efficacy of regulatory audits is not affected by explainability,

regulatory audits always prompt firms to voluntarily invest in explainability. This is in line with

intuition, as firms invest in compliance following the introduction of audits, and consistently strive

to reduce their compliance costs through increased explainability. However, we note that explain-

ability may, in some circumstances, render regulatory audits more efficacious, which deters firms

the efficiency of a technology over its explainability. McKinsey & Company survey of 2,360 company respondents,
each answering questions about their organizations. While 39% of respondents recognize the risk associated with
“explainability”, only 21% say they are actively addressing this risk (Cam et al., 2019). Examples of technology
companies that operate “responsible artificial intelligence” divisions include Facebook and Google.
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from investing in explainability. We find that when explainability strongly affects audit efficacy

our first result may be overturned: audits may not induce investment in explainability at all and

firms may even actively obfuscate their algorithms so as to hide behind less transparent processes.

Our second set of results concerns the effect of mandatory disclosure of the explainability level.

Two additional effects may come into play. First, the regulator rationally anticipates that a firm

which invests robustly in explainability is more likely to be compliant. As a consequence, the

regulator rationally lowers the frequency of auditing to explainable technologies. This mechanism

strengthens the firm’s incentives to invest in explainability, so as to signal compliance and induce

less audit. When explainability does not make audits more efficacious this is the only effect of

mandatory disclosure, which unequivocally promotes investment in explainability. However, when

explainability makes audits more efficacious a second effect emerges. Indeed, a regulator may

increase the audit frequency to explainable technologies, where its audits are more likely to be

successful. This behavior, which we call “regulatory opportunism”, weakens firms’ incentives to

invest in explainability. When this effect is too strong, our conclusion is reversed and mandatory

disclosure of the explainability level reduces equilibrium investment in explainability.

To the best of our knowledge, the present paper is the first to model technology explainability

as a firm’s strategic choice. Also novel is the explicit acknowledgement that explainability affects

the firm’s ability to comply with regulation as well as the efficacy of regulatory interventions. Our

analysis has important policy implications for the regulation of algorithms. First, we observe that

firms may reduce explainability strategically when regulatory audits are imperfect, as doing so

enables them to evade regulatory monitoring and punishment. Rather counter-intuitively, in this

situation audit regulation generates adverse results and laissez-faire should be preferred. Second,

we show that in some situations, transparency over the level of explainability should be avoided.

This is, again, rather counter-intuitive inasmuch as transparency usually allows efficient regulation

and investments. Our model provides guidance for the implementation of the regulatory audits

envisaged in recent regulatory proposals for digital markets, digital services, and AI in Europe (see

European Commission 2020a,b, 2021, respectively).

The remainder of the paper is organized as follows. In Section 2, we review the literature. In

Section 3, we describe the base model. In Section 4, we analyse investments in explainability in

the benchmark case when explainability is firm’s private information (technology-neutral regula-
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tion). These results are compared to the case of mandatory disclosure of the explainability level

(technology-specific regulation) in Section 5. In Section 6, we analyse social welfare and confirm

that in most relevant cases, a benevolent welfare-maximizing social planner would seek to promote

explainability. We conclude in Section 7.

2 Literature review

This paper relates to three streams of literature. The first stream concerns the analysis of the

use of algorithms in decision-making. A recent but very active literature shows that competing

AI algorithms may engage in welfare-reducing strategies (Calvano et al., 2020; Assad et al., 2020;

Brown and Mackay, 2019; Klein, 2019; Abada and Lambin, 2020). Athey et al. (2020) study

decisions to delegate decision-making to either a human agent or an algorithm. Similarly, Dogan

et al. (2018) studies adoption and utilization of automation in firms with varying organizational

structures by developing a theoretical model of organizational design with embedded cheap-talk. In

contrast with this literature, we explicitly model the interactions between the firm and a regulator

under moral-hazard. The firm is already committed to use an algorithmic solution, and it must now

choose the level of explainability of its algorithm. This choice not only affects its own efficiency,

but also the efficacy of regulatory instruments.

Second, our paper relates to the economics literature on optimal law enforcement. How a

firm responds to changes in enforcement policies has been discussed extensively in the literature.

Becker (1968) was the first to formalize the inclusion of economic considerations in studies of law

enforcement (see, e.g., Polinsky and Shavell, 2000 and Shavell, 2009 for a survey). The literature

has emphasized the several issues related to public enforcement. Bebchuk and Kaplow (1993) ac-

knowledge that all offenders are not equally easy to apprehend. In turn, firms may respond to

regulatory oversight by undertaking avoidance activities that make detection more difficult. Ma-

lik (1990) and Garvie and Keeler (1994) model the implications of attempts by agents trying to

reduce the probability that they will be sanctioned by engaging in evasion, lobbying, or conceal-

ment efforts. He shows that larger penalties increase incentives to engage in avoidance activities,

so an optimizing enforcement agency may not choose the stiffest possible sanction. We obtain a

similar result with our model, where the firm would choose to obfuscate its technology when the
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regulatory regime is too stringent. Heyes (1994) expands these ideas to include a case where a

regulator trades off the frequency of inspections against their thoroughness. More frequent inspec-

tions encourage concealment, while more thorough inspections encourage transparency. In addition,

regulators have developed valuable tools, such as leniency and voluntary disclosure programs, to

manage enforcement costs and information problems.4 In this body of literature, however, firms

invest in a technology which only purpose is to make the discovery and verification of violations

difficult and costly. In contrast, we allow for explainability to affect not only the regulators perfor-

mance but also the firm’s performance and propensity to self-police. The firm may also reduce the

regulator’s enforcement cost by committing to compliance through its investment in explainability,

thereby affecting the regulatory pressure it faces. Our paper provides practical guidance for curbing

algorithmic-driven misconduct through auditing schemes that (indirectly) promote explainability.

Finally, our paper contributes to the theoretical literature that studies how decisions to self-

police are influenced by regulatory enforcement policy. To detect and deter misconduct, a regulator

would traditionally audit a firm with some probability and impose a penalty when misconduct is

identified (as proposed in recent regulatory projects European Commission 2020a,b). This solution

requires time and financial resources. This is particularly the case when adequate expertise is rare

and costly, as is the case for algorithmic audits. To limit regulatory costs, a regulator may want

to stimulate self-policing by a firm, which makes the need for an audit less urgent. Indeed, the

threat of punishment may be sufficient to induce the firm to seek to identify misconduct prior

to taking the algorithm to market – and prior to exposing the firm to a regulatory intervention.

Contrary to the literature on self-reporting, firms do not use regulatory mechanisms previously de-

veloped by public authorities; they self-regulate strategically to preempt future regulatory actions.

Glazer and McMillan (1992) show theoretically that a monopolistic firm that faces the threat of

regulation lowers its prices to avert regulation. Maxwell et al. (2000) study whether firms can

avert environmental regulation by controlling pollution voluntarily. Suijs and Wielhouwer (2019)

study coordination issues and free-riding problems when firms seek to avert regulation. Lyon and

Maxwell (2016) characterize strategies deployed when firms signal their type through extensive self-

regulation or remain in step with the rest of the industry through modest levels of self-regulation.

4The theoretical literatures on leniency programs and on self-reporting are vast (seeMarvão and Spagnolo (2018)
for a literature review on the former and see, e.g., Kaplow and Shavell (1994), Innes (1999) for the latter.
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Our model is related to that in Maxwell and Decker (2006), who investigate how a regulator may

induce voluntary environmental investments. A key difference with Maxwell and Decker (2006), is

that in our model the firm’s investment may facilitate regulatory audits. Much of the literature

on industry self-regulation argues that firms can profitably preempt mandatory regulatory require-

ments (e.g., Short and Toffel, 2010). We show that this may not be the case when explainability

facilitates regulatory audits. To the best of our knowledge, our paper is the first to acknowledge

that algorithmic explainability affects the efficiency of regulatory monitoring. This brings new

insight into the question regarding how private investments that facilitate both private and public

monitoring can be promoted.

3 The model

We consider a game with incomplete information between two strategic (risk-neutral) agents: a

profit-maximizing firm and a regulator. The firm uses a technology (the algorithm) that generates

a fixed revenue but, with some probability, may also generate a net welfare cost K ≥ 0 to society.

In this case, we say that the technology engages in “misconduct”. The regulator seeks to minimize

the technology’s expected damage. He may audit the firm at frequency m ∈ [0, 1], in which case the

regulator finds whether there was a misconduct with a certain probability, defined below. If found

guilty of misconduct, a fine F ≥ 0 is imposed on the firm. To minimize the expected fine, the firm

may therefore endeavor to comply, as is reflected in a choice of compliance probability, or the prob-

ability that there is no misconduct, p ∈ [0, 1]. To attain compliance level p the firm endures a cost

Ψ(x, p), where x ∈ [0, 1] is the explainability of the technology. The compliance cost is an increasing

and convex function of the compliance probability (Ψp > 0, Ψpp > 0). While the compliance level p

is the firm’s private information, the explainability level x may be publicly observed. In our model,

explainability is the extent to which a misconduct facilitated by an algorithm can be identified by

humans (the manager of the firm that operates the algorithm, or a regulator).5 More specifically,

5Though our definition is very consensual, explainability is often defined in much broader terms, that include our
definition. “Explainability” is defined in Cam et al. (2019) as the ability to explain how AI models come to their
decisions. The concept of explainability is closely related to the concepts of interpretability and transparency. Trans-
parency sometimes involves asymmetric information between a regulator and a firm. In contrast, with explainability,
information is usually symmetric but possibly imperfect.
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explainability reduces the total as well as the marginal cost of compliance (Ψx < 0, Ψxp < 0).6 The

technology has a base explainability level x0, which is the technology’s intrinsic explainability and

is publicly known. Deviating from this base level generates a positive and convex cost C(x), which

may represent engineering of efficiency costs and finds its minimum in x0 (C(x0) = 0, C ′(x0) = 0,

C ′′(x0) > 0). x0 is the level of explainability that would arise in case of laissez-faire.

Definition 1. When x > x0, we say that there is investment in explainability. When x < x0, there

is obfuscation.

Crucially, we allow for explainability to also affect the efficacy η(x) of regulatory audits (η′(x) ≥

0), which is the probability that the audit correctly identifies the misconduct.7 In doing so, we

explicitly acknowledge that explainability is a double-edged sword. It helps the firm ensure that its

algorithm is compliant but it may also make regulatory audits more efficacious. In sum, the firm

chooses the explainability x of its technology and the compliance effort p to minimize its expected

cost:

min
x,p
FC(x, p) = C(x) + Ψ(x, p) + (1− p)mη(x)F (1)

This cost function allows for a very flexible representation of the firms private costs and benefits

of explainability and compliance. The first two terms represent respectively the direct costs of

providing explainability x and compliance p. We note that the first term may represent not only

the loss in accuracy of the algorithm following the introduction of explainability (see Figure 1),

but also the developer’s time needed to alter the base explainability of an algorithm. Importantly,

it may also cover any intrinsic private benefit or cost of explainability: opaque algorithms may

generate higher or lower profits than transparent algorithms, but also affect public acceptance, as

consumers may value transparency in and of itself. The second term reflects the cost of compliance,

in the form of the costs of an internal audit. Explainability allows to reduce this cost. Note that this

term may also cover any expected private cost (benefit) of compliance per se, in case a misconduct

benefits (harms) the firm. Allowing for such a cost (benefit) of compliance would translate in a

6Though we ’black-box’ the compliance technology, we believe these to be plausible restrictions to place on it,
and we restrict our analysis to technologies which satisfy them. These are consistent with the seminal papers on
imperfect inspectability such as Bebchuk and Kaplow (1993); Garvie and Keeler (1994); Heyes (1994) among others.

7For simplicity we assume that the fine is conditional on the regulator’s having proved the infringement : we
allow only for type-2 errors (false negatives).
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larger (smaller) sensitivity of compliance costs to the compliance level p. The last term corresponds

to the expected fine. It is paid if and only if there was a misconduct, which happens with probability

1− p, and the firm was successfully audited, which happens with probability mη(x).

For simplicity, we assume that compliance efforts and regulatory audits occur before the tech-

nology is deployed in large-scale operations: the damage occurs if and only if neither the firm nor

the regulator identifies technology misconduct. Thus, the expected social cost of the technology is

(1−mη(x))(1− p)K, where (1− p) is the probability of a misconduct and (1−mη(x)) is the prob-

ability that the regulator fails to identify the misconduct. In addition to minimizing the expected

damage, the regulator is also concerned with its monitoring and enforcement cost, γ(m), which is

an increasing and convex function of the audit probability m (γm > 0 and γmm > 0). In sum, the

regulator chooses its audit policy m to minimize the following objective function:8

min
m
RC(m) = (1−mη(x)) (1− p)K + γ(m) (2)

With the objective functions (1) and (2), we can now proceed to our benchmark.

4 Benchmark: explainability is firm’s private information

We first examine a benchmark case with “technology-neutral regulation”, which means the regulator

chooses a uniform audit frequency for all technologies (i.e., regardless the explainability level).

This case occurs when explainability is not observed prior to the audit: the firm first chooses its

explainability level x, which remains private information. Then, it chooses its effort level p, to

minimize the expected costs of compliance (1) and, simultaneously, the regulator determines its

audit frequency m to minimize (2). We assume that agents form rational expectations. As stated

earlier, the regulator’s ability to detect the technology misconduct may increase with explainability

(i.e., η′(x) ≥ 0). We obtain the following lemma:

Lemma 1 (technology-neutral regulation). When explainability is firm’s private information, any

Nash equilibrium requires that investment in explainability, compliance, and audit frequency derive

8In order to identify the tensions between firms and social interest as neatly as possible, this objective function
is biaised against the firm. Including the firm’s profits in the regulator’s objective alters the quantitative results, but
our main insights remain intact.

8

Electronic copy available at: https://ssrn.com/abstract=3958902



from the following relations:

C ′(x) = −Ψx − η′(x)(1− p)mF (TN:x)

Ψp = mη(x)F (TN:p)

γm = (1− p)η(x)K (TN:m)

Proof. This results from the differentiation of objective function (1) with respect to x and p, and

the differentiation of objective function (2) with respect to m.

The first relation in Lemma 1 means that the firm chooses the explainability level such that

the marginal cost of explainability, which corresponds to the direct efficiency cost, equals the

marginal benefit. The marginal benefit is composed of two terms: on the one hand, explainability

reduces the cost of compliance (first term). On the other hand, it may also result in a higher

probability that the regulator finds a misconduct (second term). The second relation means that

the marginal cost of compliance equals the expected penalty for noncompliance. Finally, the third

condition means that the regulator chooses its audit policy such that the marginal cost of regulation

coincides with the marginal social benefit of detecting a misconduct. Solving (TN:x), (TN:p), and

(TN:m) simultaneously and assuming rational expectations yields a Nash equilibrium candidate

solution for m, p, and x. We denote these as xn, pn, mn, where the superscript n stands for

“technology-neutral”.9

Importantly, we observe in expression (TN:x) that when explainability positively affects a reg-

ulators’ audit efficacy, equilibrium explainability decreases. In contrast, Section 6 will show that

the welfare-maximizing level of explainability increases when explainability positively affects a reg-

ulators’ audit efficacy. Proposition 1 describes the environments in which voluntary explainability

or obfuscation may occur.

Proposition 1 (obfuscation or explainability). When explainability is firm’s private information,

the firm makes voluntary investments in explainability (xn > x0) if and only if explainability strongly

reduces compliance costs Ψ(xn, p) but does not strongly affect audit accuracy η(x). Otherwise, they

9The existence and uniqueness of the Nash equilibrium is not our central concern. It is, however, easily obtained
under the rather mild conditions that η′′(x), η′(x) and Ψxp be not too large (in absolute value) relative to C′′(x) and
Ψxx.
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engage in obfuscation (xn < x0).

Proof. Voluntary investments correspond to situations in which C ′(x) > 0, which is equivalent to

x > x0. Obfuscation corresponds to situations in which C ′(x) < 0 (x < x0). From equations (TN:x)

and (TN:p), we easily derive that firms make voluntary investments in explainability (xn > x0) if

and only if

(1− p)η
′(xn)

η(xn)
· Ψp(x

n, pn)

−Ψx(xn, pn)
< 1 (3)

, which proves the proposition.

Recalling that audit efficacy η(x) is a primitive of the model, Proposition 1 can be reformulated

as follows: if explainability strongly affects audit accuracy η(x) but does not significantly reduce

compliance costs Ψ(xn, p), firms will engage in obfuscation. In that case, audits have a counterpro-

ductive effect and laissez faire should be envisaged. We may also observe that when compliance is

costly to the firm (Ψp(x
n, pn) is large), which happens when internal self-audits are costly or mis-

conducts grant a large private benefit to the firm, firms are more likely to obfuscate. The results

of Proposition 1 are illustrated in Figure 2. Propositions 2 and 3 describe in more detail the rather

unfavourable case in which audit efficacy is low, and strongly affected by explainability.

Proposition 2 (black-box algorithms). If the regulator cannot detect misconduct in a base tech-

nology, there is no investment in explainability and no investment in compliance.

Proof. Using Lemma 1 with η(x0) = 0, the unique Nash equilibrium is xn = x0, p
n = mn = 0.

This simple result rationalizes the commonly observed empirical fact that most machine-learning

algorithms are black boxes over which regulators currently have little power. This allows firms

to hide misconduct behind opaque algorithms. If such a case occurs, a minimum explainability

standard should be considered.

Proposition 3 (command-and-control regulation). When explainability strongly increases the ef-

ficacy of regulatory audits, there is no voluntary investment in explainability. If implemented, the

minimum explainability standard x determines the level of technology explainability.

10
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Figure 2: Obfuscation and explainability as a function of audit efficacy

Graph follows the parametric specification of Appendix A with K = 1 and F = 4. Audit efficacy
is linear in x: η(x) = max (0, η(x0) + b(x− x0)). The green (orange) area corresponds to settings

wheretechnology-neutral regulation generates more (less) explainability than laissez-faire.
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Proof. Assume there exists a minimum explainability standard x ≥ x0. If

Ψx(p, x) + C ′(x) + η′(x)(1− p)mf > 0,

with p and m derived from (TN:p) and (TN:m) evaluated in x = x, then the only equilibrium is

xn = x, pn = p and mn = m.

When the conditions of Proposition 3 are met, output regulation fails to induce explainability

and input regulation (i.e. a norm on explainability) should be implemented. We acknowledge,

however, that regulation of the inputs (explainability) would require to overcome the hurdle of

defining and measuring precisely explainability. This could occur e.g., through audit procedures

that allow to identify causal effects in algorithmic decisions, or (much-demanding) technical analysis

of the code.

Appendices A and B propose applications of the results of this section to standard cost functions.

In particular, Appendix B allows for the firm and the regulator to use symmetric audit technologies.

In the next section, we analyze technology-specific regulation which, in some cases, further promotes

explainability and compliance.

5 Mandatory disclosure of the explainability level

In this section, we assume that the explainability level x is publicly observed before the regulator

chooses its audit policy. This situation would emerge if firms are mandated to disclose some of

the characteristics of their decision-making processes, so regulators may infer their explainability

prior to conducting the audit. This allows for technology-specific regulation, in which the regulator

designs an audit frequency policy that depends on the observed level of explainability. Following

standard backward-induction logic, the analysis starts in the last stage of the game (compliance

and audit decision, given the observed level of explainability) and proceeds to the first stage (firm

chooses explainability level). Variables of this section are denoted with a superscript s, which

stands for “specific”.

12
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Stage 2: Compliance and Audit decisions

The firm selects its effort p to minimize its costs (1), given rationally anticipated audit frequency

m(x) and, simultaneously, the regulator determines its audit frequency m(x) to minimize (2), given

rationally anticipated audit frequency p(x) . This leads in equilibrium to the following relations,

much like in equations (TN:p) and (TN:m):

Ψp = m(x)η(x)F (TS:p)

γm = K(1− p(x))η(x) (TS:m)

The interpretation of these two equations is similar to that of the benchmark of Section 4. The

difference is that the decision variables p and m, now depend explicitly on explainability x. We

denote ps(x), ms(x) as the solutions to (TS:p) and (TS:m). By implicit differentiation of ms(x)

and ps(x) with respect to x, we obtain the following relations:

ms
x =

ΨxpKη + ηxK ((1− p)Ψpp −mηF )

KFη2 + γmmΨpp
(4)

psx =
−Ψxpγmm + ηxF ((1− p)Kη +mγmm)

KFη2 + γmmΨpp
(5)

The first term of the numerator in both equations represents the “commitment to comply” that

stems from explainability. This increases compliance (Equation 5), as a marginal increase in ex-

plainability decreases the marginal cost of compliance (Ψxp < 0). This also tends to decrease audit

pressure in Equation (4), as regulators rationally anticipate that higher explainability generates

greater compliance. The second term in the numerator in both equations represents the “oppor-

tunistic auditing policy” effect of explainability. This effect always increases compliance but has

ambiguous effects on the auditing policy. On the one hand, a regulator may strategically audit firms

with higher explainability, as doing so makes audit success more likely. This effect is captured by

the term (1− p)Ψpp. On the other hand, high audit accuracy makes actual auditing less necessary.

This effect is captured by the term mηF . Overall, the effect of explainability on audit frequency is

ambiguous.
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Stage 1: Explainability decision

The firm chooses explainability by rationally anticipating ps(x) and ms(x). We rewrite the objective

function of the firm (1):

min
x
FC(x, ps(x)) = C(x) + Ψ(x, ps(x)) + (1− ps(x))ms(x)η(x)F (1’)

Recalling from the resolution of the second stage that in equilibrium Ψp(x
s, ps) = ms(xs)Fη(xs),

we obtain an implicit formulation of the firm’s equilibrium investment in explainability, xs:

C ′(x) = −Ψx − (1− ps)F
(
η′(x)ms + ηms

x

)
(TS:x)

This expression is the technology-specific counterpart of equation (TN:x). We summarize these

findings in the following lemma.

Lemma 2 (technology-specific regulation). With mandatory disclosure of the explainability level,

any subgame-perfect Nash equilibrium has the equilibrium investment in explainability, compliance,

and audits derive from Equations (TS:x), (TS:p) and (TS:m).

Proof. Derives from previous developments.

From Lemma 2, we derive the following proposition:

Proposition 4 (audits unaffected by explainability). When explainability does not affect the quality

of audits, i.e., η′(x) = 0, mandatory disclosure of the explainability level always favors equilibrium

explainability and compliance.

Proof. This derives from the comparison of equations (TN:x), (TN:p) and (TN:m) on the one

hand, and equations (TS:x), (TS:p) and (TS:m) on the other hand. See Appendix C.1 for detailed

developments.

The intuition of this proposition is rather straightforward. When audit efficacy is not affected

by explainability, the only effect of explainability on regulatory audits is the “commitment to

comply”: explainability allows the firm to use its investment in explainability as a signalling and
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commitment device to signal its compliance efforts. Because this effect reduces the likelihood that

it is audited, the firm raises its investment in explainability relative to the equilibrium investment

under technology-neutral regulation (i.e., xs > xn). As we noted with regard to the benchmark of

Section 4, however, the explainability of machine-learning techniques may strongly affect the efficacy

of audits. In turn, this may affect the relative efficacy of technology-neutral and technology-specific

regulations, as we show in Proposition 5:

Proposition 5 (regulatory opportunism). When the fine F is small, explainability strongly affects

the quality of audits (η′(x) is large) and does not strongly affect the cost of compliance (Ψxp is small),

mandatory disclosure of the explainability level induces less robust investment in explainability and

compliance.

Proof. This derives from the comparison of equations (TN:x), (TN:p) and (TN:m) on the one

hand, and equations (TS:x), (TS:p) and (TS:m) on the other hand. See Appendix C.2 for detailed

developments.

The effect of technology-specific regulation on equilibrium explainability is ambiguous. It de-

pends on the sign of ms
x. If the opportunistic regulatory response dominates the commitment

effect (ms
x > 0), explainability facilitates inspection by the regulator: the firm lowers its invest-

ment in explainability relative to the investment under technology-neutral regulation. Conversely,

if (ms
x < 0), technology-specific regulation promotes explainability. Figure 3 illustrates the results

derived from Lemma 2 and Proposition 5 based on the specification detailed in Appendix A. We

observe that, when audit accuracy is low and highly sensitive to explainability (η(x0) is small and

η′(x0) is large), firms are more likely to engage in obfuscation and technology-neutral regulation

should be preferred over technology-specific regulation. In other words, when there is a risk of

regulatory opportunism, transparency over explainability should be avoided.

To promote explainability under technology-specific regulation, the regulator should make a

credible commitment to eschewing opportunism. A possible solution is that the legislator modifies

the regulator’s objective function (2) so it does not explicitly depend on η(x).
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Figure 3: Best regulatory regime as a function of audit efficacy

This figure uses the same parametric assumptions as Figure 2. The green (orange) area
corresponds to settings where technology-specific regulation induces more (less) explainability

than technology-neutral regulation. The dotted line is as in Figure 2.

6 Welfare effects

So far, the analysis focused on the effects of regulatory audits on the equilibrium level of explain-

ability when the explanability level is firm’s private information (Section 4) and under mandatory

disclosure of the explanability level (Section 5). We acknowledge, however, that explainability is

not necessarily a policy target per se. In order to formulate effective policy recommendations, it

is useful to derive the first-best (i.e. welfare-maximizing) levels of explainability and compliance

and compare them to the outcomes of the aforementioned regulations. In line with intuition, this

section shows that a social planner interested in maximizing social welfare would generally seek to

increase the equilibrium explainability level relative to laissez-faire, and also relative to the level

under technology-neutral regulation.

To detect compliance, the social planner may use both the technology of the firm and that of
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the regulator. The (unbiaised) social planner’s objective is to minimize social costs:

min
x,p,m

SC(x, p,m) = C(x) + Ψ(x, p) +K(1− p)(1− η(x)m) + γ(m) (6)

We easily derive that the first-best levels of explainability, compliance, and audits are solutions to:

C ′(x) = −Ψx + η′(x)(1− p)mK (SP:x)

Ψp = (1− η(x)m)K (SP:p)

γm = (1− p)η(x)K (SP:m)

These conditions uniquely define a minimum of Equation (6) when the problem is concave, which

requires that Ψxp(x, p) be not too large. As shown in Equation (SP:x), the marginal investment

in explainability x (in the form e.g. of an efficiency loss) must equal its marginal benefit (in the

form of a lower cost of compliance, and an increase in audit efficiency). In this equation, we may

also note that social-optimality always requires that there is positive investment in explainability

relative to laissez-faire.10

Table 1 compares the first-order conditions of the first-best and the two regulatory regimes

considered in the paper. A few observations are in order. First, as expected, the social planner

chooses its audit frequency in the same way as the regulator in both regulatory regimes (third line).

This is because regulators cannot commit to a specific audit frequency: the marginal costs of audits

equal their marginal social benefit, taking firm’s decisions as given.

Second, the social planner chooses a compliance effort such that the marginal cost of the com-

pliance effort corresponds to the expected social cost, while a firm under technology-neutral or

technology-specific regulation chooses its compliance effort in accordance with its expectation of a

fine (second line).

Third, the social planner chooses the investment in explainability such that the direct costs equal

the marginal social benefit, which is the reduction in the compliance cost, plus the social benefit

of an increase in audit efficacy. In contrast, the firm weights the direct costs against the marginal

private benefit, which is the reduction in the compliance cost and the private cost associated an

10C′(x) > 0, except in the extreme case when explainability does not allow to limit misconducts, nor to improve
audit accuracy (Ψx = η′(x) = 0).
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increase in audit efficacy (first line).

Social planner Technology-neutral regulation Technology-specific regulation

C ′(x) = −Ψx + (1− p)Kη′(x)m −Ψx − (1− p)Fη′(x)m −Ψx − (1− p)F (η′(x)m(x) + η(x)m′(x))
Ψp = K(1− η(x)m) Fmη(x) Fm(x)η(x)
γm = K(1− p)η(x) K(1− p)η(x) K(1− p)η(x)

Table 1: First-order conditions in first-best (left), technology-neutral (center) and technology-
specific regulation (right)

It is not possible to compare welfare in these three scenarios without specific functional forms.

Our conclusions would also be affected by the (exogenous) level of the fine F . Nevertheless, we can

state a few general results that confirm that social planners would in real-life cases prefer regulatory

regimes that promote explainability. We denote by an asterisk superscript the values set by the

social planner (i.e. the solution to the system of equations of the first column in Table 1).

Proposition 6 (Optimum level of explainability). Assume that the fine F is set such that the

equilibrium compliance level is optimal given explainability, or lower than optimal (pn ≤ p∗). As-

sume further that η′(x) > 0. Then, equilibrium quality is suboptimally low under technology-neutral

regulation (xn < x∗).

Proof. We can easily show that in technology-neutral regulation, F = 0 results in pn = 0 and

setting F to infinity results in pn = 1. By the intermediate value theorem is thus possible to set

F = F ∗ such that pn = p∗. Then, relation SP:p is equivalent to TN:p, and SP:m is equivalent

to TN:m. From the comparison of SP:x and TN:x, recalling the assumption that η′(x) > 0, and

that the direct cost of explainability is increasing and convex, we observe that explainability is

suboptimally low under technology-neutral regulation.

Proposition 6 shows that, in the likely case when equilibrium compliance is optimal or deemed

too low given the explainability level (either because the fine is too low or because the regulator’s

technology is not effective enough in inducing self-regulation), explainability under technology-

neutral regulation is too low relative to the first best. We conclude that maximizing welfare

requires increasing the equilibrium explainability level.
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7 Conclusion and policy implications

Our analysis has highlighted an important trade-off that firms contemplating investment in explain-

ability face: they may choose either to invest in explainability and take advantage of a reduction in

compliance costs and reduce the regulatory pressure it experiences, or strategically reduce explain-

ability so as to hide possible algorithmic misconducts behind algorithmic opacity. This decision

depends crucially on the regulatory framework in which it operates, and on the regulator’s ability

to exploit explainable technologies when conducting an audit.

When explainability strongly affects the efficacy of regulatory audits, firms may strategically

reduce explainability or even actively obfuscate their technology processes so as to render audits

ineffective. This results in very low levels of compliance. In this case, audit regulation is counter-

productive and laissez faire or minimum explainability standards may need to be considered. When

explainability does not strongly affect audit efficacy, some degree of self-policing may be observed.

When the regulator adopts a technology-specific regulation, explainability acts as a signalling and

commitment device through which firms may signal compliance efforts. This tends to reduce regu-

latory pressure and in turn it increases further the marginal returns from increased explainability.

When explainability strongly affects audit efficacy, however, another factor comes into play: reg-

ulatory opportunism deters investment in explainability. When this effect dominates, mandatory

disclosure of explainability decreases equilibrium explainability and harms social welfare. This calls

for a careful design of explainability regulatory policy.

Even though it is probably the application where the implications of our work are strongest,

our work applies not only to AI technologies. It may indeed apply to any decision-making process

which mechanisms can be rendered more or less complex in the eyes of the manager and/or the

regulator. As such, it may also apply to more traditional algorithms or even to organizations where

final decisions are essentially delegated to a complex hierarchy of managers and decision-makers.

Our work could be extended in several directions. First, we deliberately chose a setting where the

regulator bears the burden of the proof. It is important to note that making it the responsibility of

firms to demonstrate their innocence would strongly enhance incentives for explainability. Second,

we assume the regulator and firms’ audit technologies are independent. Allowing for correlation

may highlight interesting moral-hazard and signaling effects. Finally, this work would benefit from
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the consideration of leniency and voluntary disclosure programs.
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Appendices

A An application

We now propose an application of our model. Assume that the firm’s costs of compliance is

Ψ(x, p) = p2

a+x with a > 0. This specification verifies the assumptions formulated in Section 3

(Ψp > 0, Ψpp > 0, Ψx < 0, Ψxp < 0). The firm’s cost of explainability is C(x) = x2

2 . This means

that the base explainability is x0 = 0. Finally, the monitoring cost of the regulator is γ(m) = m2

2 .

A.1 No explainability

The first-order condition for explainability (TN:x) can be rewritten as :

A(x) ≡ x+ η′(x)mF (1− p)− p2

(a+ x)2
= 0 (7)

Assume further for simplicity that ∀x, ∂A(x)∂x > 0 so the firm’s cost-minimizing exercise has an

interior solution. It suffices for example to impose the condition that ηxx not be too negatively

large. We have that

A(0) = η′(0)mF (1− p)− p2

a2
(8)

Assume that η′(0) = 0 or that η′(0) > 0 but p is large enough even when there is no explainabil-

ity. Using, (TN:p), the latter outcome occurs when the regulator’s ability to detect technological

misconduct in the absence of explainability and the fine are sufficiently large (i.e., Fη(0)2 � 0). In

these cases we have that A(0) < 0. We note from Equation (7) that limx→+∞A(x) > 0. As A(x) is

always continuous and differentiable, there exists a positive level of explainability, x∗ > 0, such that

A(x∗) = 0: we conclude that self-policing emerges, even in the absence of a minimum explainability

standard, when Fη2(0) is large enough or η′(0) is small enough. Failing this, A(0) > 0 and there is

obfuscation: xn < 0.
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A.2 Explainability or obfuscation?

By Definition 1, if xn > 0, firms make their algorithms explainable. If xn < 0 they obfuscate them.

In equilibrium, solving (TN:p) and (TN:m) allows us to derive equilibrium p and m :

m =
2Kη(x)

2 + (a+ x)KFη2(x)

p =
(a+ x)KFη2(x)

2 + (a+ x)KFη2(x)

The equilibrium explainability xn is then derived from (TN:x):

xn = x0 +
η(xn)KF

(2 + η2(xn)KF (xn + a))2
(
η3(xn)KF − 4η′(xn)

)
(9)

We conclude that, if η3(xn)KF > 2η′(xn), firms invest in explainability (xn > x0). Otherwise,

they obfuscate their algorithms (xn < x0). Recalling that η(x) is a primitive of the model, this

conclusion can be reformulated as follows: when the fine and audit accuracy are too low relative

to the sensitivity of audit accuracy to explainability, firms strategically make their algorithms less

transparent.

For the specific illustration of Figure 2, we assume that η(x) = max (0, η(x0) + b(x− x0)). b

is the sensitivity of audits to explainability. From (9), we find that technology-neutral regulation

is more effective than laissez-faire if and only if b ≤ η(x0)3KF
4 . This region of the parameters is

represented by the green area in Figure 2.

B A special case: the firm and the regulator have the same audit

technology

For the sake of generality, the main text assumes very general and flexible formulations for audit

efficacy η(x) and the cost of compliance Ψ(x, p). In particular, we don’t specify how these two

functions may relate to each other. However, it may be useful to microfound how an increase in

explainability will concurrently facilitate both the undertaking of compliance and the efficacy of

regulatory audits. For example, η(x) may simply be interpreted as the probability that the regulator
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will “see through” the algorithm and perfectly understand its functioning. With probability 1−η(x)

the algorithm remains obscure and no fine can be imposed. Symmetrically, it may be natural to

assume that the firm also “sees through” its own algorithm with the same probability, given that

both forms of audits (internal or regulatory) involve human beings with arguably similar technical

skills. To reflect this, we specify the compliance costs as follows:

Ψ(x, p) =
p2

η2(x)
(10)

This cost function ensures that an increasing and convex effort of e2 = Ψ(x, p) results in a prob-

ability of compliance of p = η(x)e. In other words, the possibility of increasing compliance is

conditional on seeing through the algorithm, which happens with probability η(x). Failing that,

the effort is wasted.

Applying this specification to Proposition 1, we have that firms invest in explainability if and

only if pn > 2/3, or equivalently (using Lemma 1), η4(xn)FK > 4. We retrieve the intuitive result

that if regulatory audits are not efficacious, fine is small and environmental damage is small, firms

don’t invest in explainability.

C Technology-specific regulation

C.1 Proof of Proposition 4: Explainability does not affect audit efficacy

Recall that Ψpx < 0,Ψpp > 0. When audit efficacy does not depend on explainability (i.e., ηx = 0),

we derive the following results by applying the implicit function theorem to (TS:p) and (TS:m)

and solving for ms
x and psx:

ms
x =

KηΨpx

KFη2 + γmmΨpp
< 0 (11)

psx =
−Ψxpγmm

KFη2 + γmmΨpp
> 0 (12)

The equilibrium investment xs is solution to this equation:

Ψx = −Cx − (1− ps∗)ηFms∗
x > 0 (13)
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We now follow the proof derived in Maxwell and Decker (2006), Proposition 1(B). As the

authors notice, we cannot in general compare equilibrium investment between technology-neutral

and technology-specific regulations directly because doing so involves making comparisons across

two separate models. Following Brander and Spencer (1983), though, such a comparison is possible

in our model. The proof makes use of the mean value theorem, which we recall here. Let h(x) be

a continuously differentiable function defined over the set of real numbers R2 and let x∗ and xn be

two points on this function. Then there exists a point xc such that

∆h = h(xs)− h(xn) =
∂h

∂x
|x=xc(xs − xn) (14)

where xc = xn + θ(xs − xn) and θ ∈ (0, 1).

Using this, we first define ∆x = xs, where xs and xn are investments in explainability in the

responsive and unresponsive cases, respectively. Let h(x) be ∂FCs(x)
∂x . We then apply 14 as follows:

∆∂FCs∗

∂x = ∂FCs

∂x |x=xs −
∂FCs∗

∂x |x=xn = ∂2FCs

∂x2
|x=xc(xs − xn). Re-arranging terms we can get

(xs − xn) =
∂Es

∂x |x=xs −
∂FCs

∂x |x=xn
∂2FCs

∂x2
|x=xc

(15)

From (13) we know that ∂Es

∂x |x=xs = 0 and ∂FCs

∂x |x=xn < 0. Therefore, the numerator in (15) is

positive. Since cost minimization requires that∂
2FCs

∂x2
|x=xc > 0, we can conclude that (xs−xn) > 0.

As Brander and Spencer (1983) note, existence and uniqueness are difficult to establish in stage

games, so second-order partials derived from such games are difficult to sign in practice. In our

case, we find that:

∂2FCs

∂x2
|x=xc = Cxx + Ψxx − ∂ms

∂x
∂ps

∂x ηF + (1− ps)ηF ∂2ms

∂x2

Note that the first three terms in this equation are positive, but the third term is indeterminate

because ∂2ms

∂x2
cannot, in general, be signed. Straightforward differentiation shows that each com-

ponent of ∂2ms

∂x2
involves third-order cross partial derivatives from our Ψ(x, p) function. As a result

∂2ms

∂x2
is ambiguous. In practice, such third -and higher- order effects are reasonably assumed to

be relatively small. Because the first two terms in the preceding equation are higher-order effects

of the correct sign, we follow Brander and Spencer (1983) and reasonably assume that, overall,
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∂2ms∗

∂x2
< 0.

C.2 Proof of Proposition 5: Explainability affects audit efficacy

From the comparison of (TN:x) and (TS:x) we observe that technology-specific regulation induces

greater explainability and compliance than technology-neutral regulation if and only if explainabil-

ity induces less robust audit efforts by the regulator (ms
x < 0). Recall that Ψxp < 0, Ψpp > 0.

An analysis of the terms in Equation (4) proves Proposition 5. The following lemma provides the

specific formal condition for explainability to be greater in technology-specific than in technology-

neutral regulation:

Lemma 3 (technology-neutral or technology-specific regulation). Technology-specific regulation

induces more explainability and compliance than technology-neutral regulation if and only if :

η′(xs)

η(xs)
· 1

−Ψxp(xs, ps)

(
(1− ps)Ψpp(x

s, ps)−Ψp(x
s, ps)

)
< 1 (16)

Proof. Inserting (TS:p) in Equation (4) with the condition that ms
x < 0, we obtain condition

(16).

The expression of Lemma 3 is not easy to interpret. With the specification of Appendix A, we

may derive conditions for technology-specific regulation to dominate technology-neutral regulation

that are easier to interpret. From the comparison of (TN:x) and (TS:x) we know that this is the

case if and only if ms
x < 0. Using Equation (4) and the expressions of Ψxp and Ψpp, this condition

reduces to :

2b(1− 2ps) < η(xs)2m(xs)F (17)

Audit sensitivity to explainability b, as well as the term to the right of the inequality are always

nonnegative. We conclude that condition (17) is met if and only if either of these conditions is met:

• condition 1: ps > 1/2, which by (TS:m) and (TS:p) is equivalent to η(xs)2FK(xs +a) > 2

• condition 2: b < η(xs)3KF
4

1−ps
1/2−ps
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This means that technology-specific regulation outperforms technology-neutral regulation if and

only if equilibrium compliance is high (Condition 1 requires that base explainability, social damage,

fine, and explainability effect on compliance costs are high), or if the audit efficacy is not too

sensitive to explainability (Condition 2). If neither of these conditions is met, technology-neutral

regulation outperforms technology-specific regulation.
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