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Abstract

Standard health insurance contracts generate nonlinear pricing through the presence of de-

ductibles and caps on out-of-pocket spending, in which the out-of-pocket price paid by consumers

decreases as the cumulative use of health care increases. This nonlinear benefit structure, cou-

pled with the uncertainty intrinsic to future health care demand, provides dynamic incentives

for consumers’ choices: health care utilization today reduces future expected prices. Standard

analyses of insurance contracts study the trade-off between the welfare gains from risk protec-

tion and the welfare losses from moral hazard, which I relabel as static moral hazard. In this

paper, I study a new source of moral hazard, dynamic moral hazard, which I define as the addi-

tional health care utilization when individuals internalize that current utilization lowers future

expected prices via the nonlinearities of the contract. By leveraging the random assignment of

families to health plans from the RAND Health Insurance Experiment, I am able to focus specif-

ically on moral hazard, avoiding the typically confounding adverse selection present in insurance

markets. I develop and estimate a dynamic, stochastic model of weekly health care utilization at

the family level that incorporates the dynamic pricing effects. My estimation framework allows

for flexibly-correlated multidimensional unobserved heterogeneity related to family health risk,

preferences for visiting a doctor, and price sensitivity. I document that 40 percent of total moral

hazard is attributed to dynamic moral hazard. Using my estimated model, I study the welfare

implications of dynamic moral hazard in the setting of employer-sponsored health insurance.

My results show that the presence of dynamic moral hazard can severely dampen the welfare

gains associated with higher cost-sharing and plays a crucial role, distinct from static moral

hazard, in determining optimal insurance contract design.
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1 Introduction

Typical health insurance contracts increasingly include sizable annual deductibles and caps on

consumers’ out-of-pocket expenditures. In the context of employer-sponsored health insurance in

the United States, 83 percent of covered workers had a deductible in 2020 and all had a plan with

a cap on out-of-pocket expenditures.1 The presence of deductibles and caps give rise to nonlinear

health insurance contracts, where the out-of-pocket price decreases as the cumulative use of health

care (over the covered year) increases. In a typical nonlinear contract, families pay the full price

of care below the deductible. After the deductible is exhausted, families pay only a portion of the

bill equal to the coinsurance rate, and, once they reach the cap, they face no cost-sharing and have

complete insurance coverage for the remainder of the year. These nonlinear benefit structures,

coupled with the uncertainty surrounding future health care demand, create dynamic incentives for

consumers because current health care utilization reduces future expected prices.

Standard analyses of insurance contracts study the trade-off between the welfare gains from

risk protection and the welfare losses when consumers do not face the full cost of their care (Arrow,

1963; Pauly, 1968). In the health insurance literature, the term “moral hazard”, which I relabel as

static moral hazard, is used to capture the notion that insurance coverage may increase health care

use by lowering the out-of-pocket price of care to the individual (Einav and Finkelstein, 2018).2

In this paper, I study a new source of moral hazard, dynamic moral hazard, which I define as the

extra health care utilization when individuals internalize that the more they consume today, the

closer they move towards the deductible and the cap, and the higher the probability they enjoy

lower prices for the remainder of the year. Thus, an additional benefit of health care utilization

today is lower future expected out-of-pocket prices.

The presence of dynamic moral hazard has implications for the standard analysis of moral

hazard. For example, a standard approach to reducing moral hazard is to increase consumer cost

sharing. But, if individuals anticipate a lower future price, they respond to a shadow price lower

than the spot price in the range below the deductible. Thus, much of the savings thought-to-be-

achieved in this range will not actually be realized. Given the concern about the size and rapid

growth of the health care sector, there is considerable academic and public policy interest in a better

understanding of moral hazard and the ways to mitigate its impact on social welfare. Dynamic

moral hazard is particularly relevant in this context, because nonlinear contracts are widely popular

not only in private health insurance but also, increasingly, in public health insurance programs,

such as Medicare Part D.

1These numbers are up from 70 percent and 82 percent a decade ago, respectively. Source: Employer Health
Benefits Survey 2020, Kaiser Family Foundation.

2As emphasized by Einav and Finkelstein (2018), the use of the term “moral hazard” is an abuse of the “hidden
action” origin of the term. In the health insurance literature, the “action”, i.e., the agent’s health care utilization
decision, is observed and contractible. The asymmetric information problem may be more accurately described as a
problem of “hidden information” regarding the agent’s health risk.
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Recognition of the possibility of dynamic moral hazard highlights potentially important limi-

tations of standard models of health insurance that have traditionally overlooked these dynamic

incentives and their implications in health insurance.3 Most empirical papers study health care

utilization decisions through the lens of annual models, which aggregate health care decisions up to

the annual level (see e.g., Einav et al. (2013), Kowalski (2015), Ho and Lee (2021), and Marone and

Sabety (2021)). In these models, individuals make a one-shot decision under full certainty about

the complete sequence of health shocks within the year. If future health care demand could be

predicted with certainty, the sequential decision problem would be the same as in the one-period

case. When uncertainty is present, any health care utilization in the range below the cap has the

additional benefit of reducing the remaining cap and, hence, reducing the expected costs of future

health care. Annual models thus abstract, by design, from the uncertainty intrinsic to health care

demand and the dynamic incentives induced by the nonlinearities of the contracts, which could have

important implications in health insurance design. This limitation is not unique to annual models

of health care utilization. More broadly, the dynamic pricing incentives are neglected whenever the

frequency of the consumer’s decision in the model coincides with the length of the contract or when

the individuals’ behavior is assumed to respond only to the spot price of care.

In this paper, I begin by providing compelling evidence showing that consumers respond to

the dynamic incentives of nonlinear contracts and I explore the nature of this response. I then

use my findings to develop a tractable, within-year model of health care demand that incorporates

the dynamic pricing effects via the nonlinearities of the contract. I estimate the model primitives

using a state-of-the-art technique that allows for multidimensional, flexibly-correlated unobserved

heterogeneity in health risks, preferences for doctor visits, and price sensitivity. Finally, I use my

model and estimates to study the implications of dynamic moral hazard for the optimal design of

nonlinear contracts in the context of employer-sponsored health insurance. To do so, I explore the

interplay between four contract features: (1) the deductible size, (2) the coinsurance rate after the

deductible, (3) the cap on out-of-pocket expenditures, and (4) the resetting time for deductibles

and caps. While the first three features are standard in the literature, the optimal resetting time

for deductibles and caps has not been studied before.4

I use rich, individual, line-item records from the RAND Health Insurance Experiment (New-

3Two exceptions are the early theoretical works of Keeler et al. (1977a) and Ellis (1986). Empirically, Cronin
(2019) allows the nonlinearities of the contract to affect the number of monthly health care visits, but not the dollar
amount consumed. Similarly, in Einav et al. (2015) individuals decide weekly whether to fill a prescription drug,
internalizing the impact on expected future prices. Neither of these papers quantifies dynamic moral hazard and its
implications for the design of health insurance contracts.

4I recently became aware of the concurrent work of Hong and Mommaerts (2021), which explores the implications
of deductibles that reset over 6 months versus 12 months. I also note that the early theoretical work of Keeler et al.
(1977b) analyzing individual versus family deductibles has a parallel with the optimal resetting time for deductibles.
A separate literature studies the optimal contract length (and therefore the optimal frequency of open enrollment),
holding the timespan over which deductibles and OOP limits aggregate to be annual (see e.g., Darmouni and Zeltzer
(2017) in health care, Ghili et al. (2020) and Atal et al. (2020) in long-term care, and Cabral (2017) in dental care).
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house and The Insurance Experiment Group, 1993). The RAND experiment is a large randomized

field trial of alternative insurance plans offered to approximately 2,500 families representing the

non-elderly U.S. population. The experiment randomly assigned families to one of 14 different fee-

for-service insurance plans that varied along two principal dimensions: the coinsurance rate and

the annual cap on out-of-pocket expenditures. By leveraging the random assignment of families

to plans, I can focus on the problem of moral hazard, avoiding the typically confounding adverse

selection present in insurance markets (Akerlof, 1970).5

To provide evidence of whether consumers internalize the dynamic incentives induced by typical

health insurance contracts, I first derive four testable implications within a linear regression of

weekly health care utilization on cumulative utilization (over the coverage year), contract week,

and their interaction. Using family fixed effects, I exploit the within-family variation in the shadow

price of care that comes from two different sources: the distance to the cap on out-of-pocket

expenditures and the number of weeks left in the contract before the price schedule resets. I also

leverage the staggered enrollment dates from the experimental design to separate seasonal variation

in health care demand from the dynamics of my model. Intuitively, the first two implications

capture that the further away from the cap and the closer to the end of the contract, the lower is

the likelihood of reaching the cap before the contract resets, which increases the shadow price and

discourages current utilization. The last two implications check that none of the first two effects

survive once families exceed their cap. Using two measures of health care utilization, I show that

the implications hold, suggesting that the observed behavior is consistent with forward-looking

families who internalize the dynamic pricing effects by updating their expected future prices over

the course of the year.

Informed by this evidence, I build a single-agent, finite-horizon, dynamic, stochastic model of

health care utilization at the family level combining elements of the annual model of health care

demand from Einav et al. (2013) and the within-year model of internet demand from Nevo et al.

(2016). I model families’ health care utilization decisions at the weekly level where they respond to

the shadow (or effective) price of health care, rather than the spot price or the realized end-of-year

price.6 Thus, families in my model act as though they face a shadow price lower than the spot

price in the range below the cap. In line with my regression estimates, the model implies that the

shadow price of care is weakly decreasing in the proportion of the cap consumed and in the number

of weeks left before the contract resets. In this way the model accounts for the fact that decisions

5Because of their nonlinear cost-sharing features, the RAND plans anticipated the design of modern health
insurance plans and still receive much theoretical and empirical attention (see e.g., Lin and Sacks (2019), Aron-Dine
et al. (2015), and Vera-Hernández (2003)).

6In general, nonlinear cost-sharing features of health insurance contracts imply that the out-of-pocket price of
health care declines as total utilization accumulates. Thus, at any point in time, the shadow price of a unit of health
care is the marginal (or spot) price minus the bonus for moving closer to the next kink in the budget set, past which
cost-sharing by the individual falls or is even eliminated. There are some exceptions. In the case of Medicare Part
D, where the coinsurance rates faced by the patients are not monotonically decreasing as total health care utilization
accumulates, the shadow price can potentially exceed the spot price of care.
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are made sequentially throughout the year and information is obtained gradually as health shocks

arrive and families move along their nonlinear budget set.

I then estimate my model by adapting the approach proposed by Ackerberg (2009), Bajari et al.

(2007), Fox et al. (2011), and Fox et al. (2016); and recently applied by Nevo et al. (2016) in the con-

text of demand for residential broadband and Blundell et al. (2020) in firms’ investment decisions

in pollution abatement technologies. This approach allows me to incorporate flexibly-correlated

unobserved heterogeneity in four dimensions related to family health risk (two dimensions), pref-

erences for visiting the doctor, and price sensitivity, and a fifth partially-observed dimension that

captures family income. The existence of multiple dimensions of individuals’ private information is

well documented in the literature (see e.g., Finkelstein and McGarry (2006) in the long-term care

insurance market and Fang et al. (2008) in the Medigap insurance market). Nevertheless, previous

literature has been constrained regarding the amount of heterogeneity they could allow for and

their correlation structure, mainly due to computational reasons. I overcome these constraints by

using the computationally advantageous estimator of Fox et al. (2011).

The estimator recovers the nonparametric distribution of unobserved heterogeneity using in-

equality constrained least squares on a fixed grid. While applying the method of Fox et al. (2011)

helps reducing the computational burden, there is still a curse of dimensionality as the number

of dimensions in the grid increases. I determine the grid of family types by adapting the method

of good lattice points (glp) introduced in economics by Judd (1998) in the context of integration

and simulation. Good lattice point sets have better space-filling properties than standard tensor

product point grids or random sequences and can produce more accurate approximations. As far

as I know, this paper is the first to apply this method to dynamic programming problems. Results

from a Monte Carlo exercise suggest that it improves computational efficiency by more than a

factor of ten. Fox et al. (2011) approach together with the glp method enables me to introduce

considerable unobserved heterogeneity in health care demand.

In order to decompose static moral hazard from dynamic moral hazard, I simulate a version of

my model in which families are myopic, and thus do not respond to the dynamic price incentives.

In this model, families respond only to the current spot price of care. I document that 40 percent

of total moral hazard is attributed to the dynamic moral hazard component, whereas the rest is

standard moral hazard. Moreover, I find that certain contract features exacerbate the impact of

dynamic moral hazard on utilization. This highlights the importance of accounting for the dynamic

pricing effect when thinking about the optimal cost-sharing features in health insurance.

To analyze the impact of dynamic moral hazard on welfare, I extend the welfare decomposition

of Azevedo and Gottlieb (2017) and Marone and Sabety (2021) and provide a novel decomposition

in three terms: the value of risk protection, the social cost of static moral hazard, and the social cost

of dynamic moral hazard. Using full insurance as a benchmark, I study the impact of dynamic moral

hazard on welfare under alternative contract designs not observed in the data. First, I find that for
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low caps dynamic moral hazard is particularly strong. So while welfare losses from higher caps due

to risk protection are also increasing with the cap, the presence of dynamic moral hazard implies

larger optimal caps than would be predicted otherwise. Second, zero deductibles are optimal for

low caps, but high deductibles are welfare-maximizing for high caps. In other words, what matters

is the distance between the deductible and the cap. So while a high deductible increases the gains

due to static moral hazard, a deductible too close to the cap exacerbates the losses due to dynamic

moral hazard. This implies, for example, that pure stop-loss contracts in which the deductible

and the cap coincide are never optimal. Finally, I find that longer resetting times increase the

probability of hitting the cap at some point during the coverage period, so resetting times shorter

than twelve months are welfare-maximizing.

Beyond the work noted above, my paper relates to several strands of literature. First, it adds

to the sparse literature that test whether individuals respond to the within-year dynamic incen-

tives induced by nonlinear health insurance contracts.7 The closest to my paper is Aron-Dine

et al. (2015) which exploits quasi-experimental variation due to timing of new hires enrolling in

employer-provided health insurance plans. The focus on dynamic incentives relates more generally

to empirical tests of forward-looking behavior, which plays a key role in many economic prob-

lems. Outside the context of health insurance, two works related to mine are Nevo et al. (2016)

who analyze the effect of nonlinear pricing schedules in the context of residential broadband use,

and Chevalier and Goolsbee (2009) who investigate whether durable goods consumers are forward

looking in their demand for college textbooks.

Second, my paper is one of the very few empirical papers which considers health care utilization

decisions for periods shorter than the standard contract length of twelve months. By doing so, I

incorporate the uncertainty intrinsic to the nature of health care demand and the dynamic incentives

throughout the year induced by the nonlinear pricing of typical health insurance contracts. I also

model explicitly how health care utilization decisions change with the number of periods left until

the contract resets. Thus, I leverage my structural model to explore contracts with shorter resetting

times for deductibles and caps, their impact on welfare, and the unique role played by dynamic

moral hazard.

My paper also relates to the literature that studies optimal design of health insurance contracts

emphasizing the trade-off between welfare gains from risk protection and welfare losses from moral

hazard. My paper is closest in spirit to the work of Kowalski (2015), Ho and Lee (2021), and Marone

and Sabety (2021), which propose a coherent and unified framework to evaluate risk protection and

moral hazard simultaneously. However, none of these papers study the dynamic moral hazard

component and its policy implications. Finally, my paper adds to the methodological literature for

estimating demand under rich and flexibly-correlated multidimensional unobserved heterogeneity

by adapting the methodology from Fox et al. (2011) and Nevo et al. (2016), combined with the use

7See e.g., Aron-Dine et al. (2015), Einav et al. (2015), Keeler and Rolph (1988), and Guo and Zhang (2019).
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of good lattice points.

The remainder of the paper proceeds as follows. Section 2 describes the data and Section 3

presents descriptive evidence of responses to the shadow price variation. Section 4 details the dy-

namic model of weekly health care utilization. In Section 5, I present the econometric specification

of my model and describe its estimation and identification. Section 6 presents the main results. Sec-

tion 7 examines optimal contract design within the setting of employer-sponsored health insurance.

The last section concludes.

2 Data and Sample

I use rich, individual, line-item records from the RAND Health Insurance Experiment (hereafter,

HIE). The RAND HIE is a randomized field trial of alternative insurance plans offered to approxi-

mately 2,500 non-elderly families in the U.S. Each line-item record contains information on the total

line-item cost, out-of-pocket expenses, insurance payment, date and place of service, and procedure

codes. The data are particularly suitable for the study of moral hazard because insurance plans were

randomly assigned to families. This forestalls the possibility that less-healthy people, anticipating

large health care expenditures, buy more generous insurance coverage (Akerlof, 1970). Specifically,

these data are ideal for studying dynamic moral hazard given the unique cross-randomization de-

sign of nonlinear cost-sharing features. In what follows I describe the experimental design and the

analysis sample.

2.1 Experimental design and randomization

The RAND HIE is a large social experiment conducted between 1974 and 1982 in four urban and two

rural sites, chosen to be broadly representative of the nonelderly U.S. population.8 Families offered

enrollment in the experiment represent a random sample from each site, subject to certain eligibility

criteria. The criteria excluded those whose health care delivery systems differed from options

available to the general population.9 At a given site and enrollment date, families were randomly

assigned to one of 14 different fee-for-service insurance plans or to a prepaid group practice.10 In

8The sites were: Dayton, Ohio; Seattle, Washington; Fitchbury-Leominster and Franklin County, Massachusetts;
and Charleston and Georgetown County, South Carolina.

9The experiment excluded people age 62 or over at the time of enrollment since they were or would become eligible
for Medicare during the experiment or people under age 62 who were eligible for the Medicare program; those with
family incomes greater than $25,000 (in 1973 dollars); those who were institutionalized (jail or long-term hospital);
those in the military and their dependents; and veterans with service-connected disabilities.

10The RAND HIE assigned families to treatments using the Finite Selection Model (Morris, 1979), which explicitly
balanced a subset of observable characteristics across plans. Potential selection bias can be introduced if there is
differential refusal or attrition across plans. To reduce refusals, families were given a Participation Incentive (PI)
if their experimental plans provided less coverage than their existing health insurance policies. For details about
the PI payments see Appendix A of Codebook 203 (Newhouse, 1999). A Completion Bonus was offered to reduce

7



addition, each family was randomly assigned to either three or five years of participation. Families

were enrolled in the experiment as a unit, with only eligible family members participating.11

The fee-for-service plans varied along two principal features: (1) the coinsurance rate, which

is the fraction of billed charges paid by the participant, and (2) the maximum dollar expenditure

(MDE), which is the cap on family out-of-pocket expenditures. The coinsurance rates were set

at either 0 (free care), 25, 50, or 95 percent. Except for the free care plan, each plan had a

MDE of 5, 10, or 15 percent of family income in the previous year (hereafter, PY).12 To further

limit participants’ financial exposure, the MDE was capped at $1,000 in 1973 dollars, unadjusted

for inflation.13 Beyond the MDE, the insurance plan paid all covered health care utilization in

full for the remainder of the contract year. Associated with the MDE, it will become useful to

introduce the concept of a Total Annual Threshold (hereafter, TAT), defined as the ceiling placed

on accumulated health care utilization during the coverage period above which health care is free

to the family members. The TAT differs from the MDE because the former includes both the

portion paid by the insurance and the portion paid out-of-pocket by the patient, while the latter

only includes the patient’s portion.

All experimental plans feature a zero-dollar deductible, a coverage length of 12 months, and no

premiums. Every plan covered inpatient and outpatient health care, as well as vision, prescription

drugs, medical supplies, and mental and dental health.14 A contract year was defined as the 12-

month period following each anniversary of the enrollment date, which was not always January 1.

New families were enrolled over several start dates, but all members of a given family shared the

same enrollment date, even those added later.15

Figure 1 shows an example of a health insurance plan offered by the RAND HIE. The total dollar

amount of annual health care utilization is summarized on the horizontal axis, as the sum of both

insurer payments and out-of-pocket payments by the beneficiary family. The vertical axis indicates

how this particular insurance contract translates total utilization into out-of-pocket spending. The

figure illustrates the case of a family assigned to a 25 percent coinsurance rate plan with a MDE

withdrawal from the experiment subsequent to enrollment.
11After the enrollment date, families could not incorporate new members into the insurance plan. The only

exceptions were newborns and adopted children under one year of age. Families who either lost or acquired members
during a given contract year were given a new identifier in the following contract year to reflect their change in
composition. Hence, a RAND HIE participant might belong to different families throughout the experiment.

12There was a group of mixed plans, in which the coinsurance rate differed between medical services and dental
or outpatient psychiatric services. Regarding the MDE, one plan limited the out-of-pocket expenditure to either
$150 (individual) or $450 (family). These plans are not analyzed in the present study. Since the MDE is tied to the
family’s previous year’s income, it varied from year to year. Families with zero income in the previous year received
de facto free care, regardless of the plan.

13An MDE of $1,000 in 1973 dollars would correspond to about $6,000 in 2020 dollars, based on the U.S. Consumer
Price Index (CPI-U). Source: U.S. Bureau of Labor Statistics.

14The following services were excluded: non-preventive orthodontic services, cosmetic surgery for pre-existing
conditions, and outpatient mental health visits exceeding 52 per contract year. See Appendix D of Codebook 203
(Newhouse, 1999) for a thorough list of possible reasons for noncoverage of a service by the RAND HIE.

15Table A1 in the Appendix shows enrollment dates by site.
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equals to 10 percent of PY income. Since family income in the previous year is greater than $10,000,

the MDE is capped at $1,000 (the horizontal red dashed line). In this case, the family would pay

25 percent of the first $4,000 in health care utilization, and $0 beyond that for the current contract

year. Hence, a 25 percent coinsurance rate coupled with a MDE of $1,000 has an associated TAT

of $4,000 (the vertical blue dotted line).

Figure 1: Health insurance plan with 25 percent coinsurance rate and MDE=min{0.10 ×
income, $1, 000} for a family with PY income greater than $10,000

Except for the absence of a deductible, Figure 1 shows a stylized example of a typical health

insurance contract in the U.S. This example shows a concave, piece-wise linear schedule with two

“arms”. First, the “coinsurance” arm, where the family faces a price of 25 percent for every dollar

of health care utilization, and second, the “catastrophic” arm that provides full coverage. While

the plans in my data do not include deductibles, the same forces that govern health care utilization

behavior below the cap also apply to the deductibles, and allow me to use my estimated model to

study behavior under plans with deductibles (see Section 7).

2.2 Sample

For the purpose of studying family behavior within a contract year, I aggregate health care utiliza-

tion to the family-week-year level.16 The variable date of service defines whether a line-item claim

belongs to one week or another.17 In addition to the claims data, I use the eligibility file to record

16A week refers to a contract week, as opposed to a calendar week. The same applies to a year.
17Each claim has multiple dates, including the admission and discharge dates in case of hospitalization, the date

of service and the date filed.
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coverage and family structure, and the episodes of care file to recover the family MDE by year.

The weekly consumption totals represent only the health care utilization that was covered by the

RAND HIE and for which claims were submitted. The weekly covered health care utilization used

for the analysis includes both the portion paid out-of-pocket by the family and the portion paid by

the insurer. If no family member used covered health care services during a given week-year pair,

the utilization value for that family-week-year observation equals zero. Note that observations with

zero utilization are kept in the sample.

I make five restrictions to create my baseline sample. First, I exclude fee-for-service plans with

different coinsurance rates for different providers (i.e., the so-called mixed plans) and the prepaid

group practice.18 Second, I exclude the first contract year from Dayton, Ohio.19 Third, I exclude

family-year observations in which no member enjoyed coverage for the whole contract year. Fourth,

for families reassigned to a different plan after a relocation, I exclude the year of the move as well as

the following years. Finally, I exclude family-year observations with missing MDE information.20

After these exclusions, my baseline sample consists of 2,145 families and 4,763 family-years. Table 1

provides details about the remaining sample size after sequentially applying each exclusion criterion.

Table 1: Analysis sample derivation

Row Description Sample Size Percent

1 Family-years (end-of-experiment point of view) 9,388
2 and not in mixed-plans or HMO (after exclusion 1) 5,279 56.23% of row 1
3 and not first year in Dayton (after exclusions 1-2) 4,891 92.65% of row 2
4 and full year participation (after exclusions 1-3) 4,790 90.74% of row 2
5 and plan change (after exclusions 1-4) 4,767 90.30% of row 2
6 and complete MDE data (after exclusions 1-5) 4,763 90.23% of row 2

7 Family-years in analysis sample 4,763

Table 2 provides summary statistics by plan type for the baseline sample. I group the insurance

plans into four categories based on the coinsurance rate. In the first panel, I explain the features

of the plans. In the second panel, I provide statistics at the annual level as well as a break down

by category of expenditure. Finally, in the third panel I present statistics regarding the behavior

above the cap. Between 17 and 36 percent of families in the cost-sharing plans hit the TAT in a

given year. This is important, as my identification strategy relies on having enough families with

a positive probability of exceeding the TAT during the contract year. Families in the less generous

plans are more likely to hit the TAT due to the higher cost sharing, but end-of-year prices are

18My model does not distinguish between providers of service (e.g., physician versus dentist) or whether the
provider belongs to a prepaid group network.

19Dental and mental health services were treated differently in the first year of the experiment in Dayton, Ohio.
Dental services for adults were covered only on the free-care plan (dental services for children were covered on all
plans). Outpatient mental services were not covered.

20For details about each exclusion step, see Appendix H.
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increasing with the coinsurance rate of the plan. The reported average realized end-of-year price

per dollar of health care consumption is the coinsurance rate times the fraction of family-years who

do not hit the TAT by the end of the coverage year. It varies between 0 in the free-care plan and

0.61 in the 95 percent coinsurance rate plans.

Table 2: Plan characteristics and descriptive statistics of annual health care utilization

Coinsurance rate 0 percent 25 percent 50 percent 95 percent

Number of family-years 2,393 832 499 1,248

Plan features
Premium ($) 0.00 0.00 0.00 0.00
Deductible ($) 0.00 0.00 0.00 0.00
Contract length (in years) 1.00 1.00 1.00 1.00
Coinsurance rate below TAT 0.00 0.25 0.50 0.95
Mean Total Annual Threshold ($) 0.00 2557.45 1560.65 744.54

Family total annual consumption
Percentage with zero claims 4.47 6.13 8.22 12.74
Mean annual consumption ($) 1851.01 1284.92 1303.34 1159.95
Median annual consumption ($) 1022.35 598.37 436.57 329.305
Mean realized end-of-year OOP price 0.00 0.21 0.40 0.61
Mean outpatient share 0.34 0.37 0.40 0.35
Mean inpatient share 0.15 0.13 0.12 0.13
Mean dental share 0.30 0.27 0.235 0.25
Mean drug and supply share 0.14 0.15 0.15 0.13
Mean mental share 0.02 0.02 0.01 0.01

Family total annual consumption above TAT
Proportion of family-years over TAT 1.00 0.1683 0.2084 0.3566
Mean share of TAT used 1.00 0.9559 1.8100 4.0620
Median share of TAT used 1.00 0.2468 0.2851 0.4917
Family-years over TAT | any inpatient 1.00 0.5150 0.6484 0.9040
Mean consumption above TAT ($) 1851.01 2428.09 3260.28 2219.70
Median consumption above TAT ($) 1022.35 1120.715 1130.375 1246.49

Notes: All expenditures are in dollars and cents for the year of service, unadjusted for inflation.

These differences in plan generosity translate into differences in average annual health care

utilization. An average family in the free-care plan consumes $1,851 in health care services during

a contract year. At the other extreme, an average family in the 95 percent coinsurance rate plan

consumes $1,160 in health care services during a contract year. This implies that average health

care utilization in the most generous plan is about 60 percent higher than that in the least generous

plan. Table 2 also shows a steady increase of the percentage of family-years with zero annual health

care utilization as the coinsurance rate increases. On average, the zero annual utilization rate is
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almost 3 times higher in the 95 percent coinsurance rate plans versus the free-care plan.

3 Evidence of Response to the Shadow Price of Care

Under standard nonlinear health insurance plans, an additional benefit of health care utilization

today is lower future expected prices within the coverage period (typically one year). This section

examines whether families’ health care utilization decisions within the year respond to these dy-

namic pricing incentives. To do so, I derive a set of four testable implications for families who face

a nonlinear pricing scheme coupled with uncertainty regarding future health care demand. The

implications derived have only one key unobserved mechanism at play: the change in the shadow

price of care within the year. Specifically, the higher the cumulative consumption and the more

weeks left in the coverage period, the stronger are these incentives, i.e., the lower the shadow price

of consumption. However, this is only true while families are below the cap. After they hit the cap

they enjoy free care, and these dynamic incentives disappear.

In order to test these implications, I estimate linear regressions of the following form, where

the dependent variable, yjtq, is a measure of family j’s health care utilization in contract week t of

experimental year q:

yjtq = NonLastY earjq
∑

s=
below cap,
above cap

[
βs0 + βs1 (T − t+ 1) + βs2

Cumjtq

TATjq
+ βs3 (T − t+ 1)

Cumjtq

TATjq

]

+ LastY earjq α
above cap + Familyj + γ xjtq + ϵjtq.

(1)

The variable (T − t+1) is the number of weeks left in the coverage period and the variable Cumjtq

is family j’s cumulative health care utilization up to the beginning of week t of experimental year q.

The variable LastY earjq is an indicator variable that equals 1 if q is the last year of participation in

the experiment for family j and 0 otherwise (the opposite is true for NonLastY earjq). As defined

in the previous section, the variable TATjq stands for “Total Annual Threshold” and captures

the family- and year-specific level of cumulative health care utilization above which the family

enjoys free care for the remainder of the year. I also include family fixed effects, Familyj , to

remove persistent heterogeneity across families, and dummy variables for calendar month, xjtq.

By leveraging the experimental design, I can separate seasonality in health care demand from the

dynamics of my model, since families have staggered enrollment dates.21

The key coefficients of interest are βs1, β
s
2, and β

s
3, which capture the response of weekly health

care demand to the variation of the shadow price of care. Using equation (1), I derive four testable

21This is a unique feature since standard health insurance coverage begins and ends on the same date for almost
all individuals (unless it is terminated due to job separation or death).
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implications to evaluate whether families are sensitive to the dynamic incentives generated via the

nonlinearities of health insurance plans.22 The first two implications examine the behavior when

families are below the cap on OOP spending, where the spot price is fixed but the shadow price

varies. Focusing on the behavior after families exceed the cap, the last two implications address

potential threats to identification of the response to the shadow price captured by the first two

implications.

∂
(
yjtq

∣∣Cumjtq < TATjq, NonLastY earjq
)

∂(T − t+ 1)
= βbelow cap

1 + βbelow cap
3

Cumjtq

TATjq
> 0, (2a)

∂
(
yjtq

∣∣Cumjtq < TATjq, NonLastY earjq
)

∂(Cumjtq/TATjq)
= βbelow cap

2 + βbelow cap
3 (T − t+ 1) > 0, (2b)

∂
(
yjtq

∣∣Cumjtq ≥ TATjq, NonLastY earjq
)

∂(T − t+ 1)
= βabove cap

1 + βabove cap
3

Cumjtq

TATjq
= 0, (2c)

∂
(
yjtq

∣∣Cumjtq ≥ TATjq, NonLastY earjq
)

∂(Cumjtq/TATjq)
= βabove cap

2 + βabove cap
3 (T − t+ 1) = 0. (2d)

Implication (2a) states that a forward-looking family, whose accumulated health care utilization

is held fixed at some level below the cap, should increase its utilization as the number of weeks left

in the contract increases. This is because the family has more remaining opportunities to consume

within the current contract, and, therefore, a higher probability of hitting the cap on OOP spending

and enjoying free care for the remainder of the contract, all else equal. This situation drives the

shadow price of care down and, therefore, encourages current utilization. An empirical test for

Implication (2a) amounts to a test on the sign of the coefficients βbelow cap
1 and βbelow cap

3 . This is

because the ratio Cumjtq/TATjq is always between 0 and 1. Therefore, a sufficient condition for

Implication (2a) to hold is that βbelow cap
1 and βbelow cap

3 be jointly positive.

Implication (2b) states that, as the share of the cap consumed moves closer to 1, current health

care utilization should increase holding the contract week fixed. The rate at which it increases

depends on the number of weeks left in the contract. This response is driven by a decrease in the

shadow price of care by taking into account the benefits of moving closer to the cap and potentially

enjoying free care for the remainder of the contract. An empirical test for Implication (2b) accords

naturally to a test on the sign of the coefficients βbelow cap
2 and βbelow cap

3 . Notice that the variable

(T − t+ 1) varies between 1 and 52. Therefore, a sufficient condition for Implication (2b) to hold

is that βbelow cap
2 and βbelow cap

3 be jointly positive.

Up to this point, the key identifying assumption that allows me to interpret the estimates of

Implication (2a) and (2b) as evidence of dynamic response to the shadow price of care is that

22The implications are tailored to the specific cost-sharing features and nature of the RAND HIE, in that they
assume zero-dollar deductibles and exclude the last experimental year to avoid the end-of-experiment effect. They
can easily be adapted to more general nonlinear contracts and insurance settings.
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there are no confounding effects on health care demand as the family approaches the end of the

coverage horizon and the cap on OOP spending, conditional on being below the cap. In other

words, any differential patterns of weekly health care demand that I observe across contracts weeks

and proportion of the cap consumed are caused by differences in the shadow price. However, this

identifying assumption might not be correct if health care shocks are correlated across time (even

after controlling for persistent heterogeneity at the family level) or if families increase health care

utilization toward the end of the experiment in anticipation of being enrolled in a less generous

plan after the experiment ends. The first scenario will bias my estimate of Implication (2b) away

from 0, while the second scenario will bias my estimate of Implication (2a) toward 0. To investigate

the validity of the identifying assumption, next I discuss the last two implications using families’

health care utilization behavior once they exceed the cap on OOP spending.

Conditional on being above the cap, having more remaining opportunities to consume within the

contract year should not impact current behavior. In other words, there are no further dynamics

coming from the nonlinearities of the contract once above the cap, so weekly utilization should

remain constant. An empirical test for Implication (2c) amounts to a joint test of the coefficients

βabove cap
1 = 0 and βabove cap

3 = 0. This could fail in the presence of an end-of-experiment effect, for

example, which I document in Appendix B, and constitutes the reason why I condition on non-last

experimental years.23 Implication (2c) could also fail if seasonality in health care demand cannot

be separated from the dynamics via the nonlinear pricing (e.g., seasonal flu). To overcome this,

I exploit the experimental design and use the variation in families’ enrollment month to isolate

seasonal demand.

After hitting the cap, families enjoy free care for the remainder of the contract year. Since

current utilization does not affect within-the-year future prices, an increase in the share of the cap

consumed should not impact current behavior. An empirical test for Implication (2d) amounts to

a joint test of the coefficients βabove cap
2 = 0 and βabove cap

3 = 0. This could fail in the presence of

correlated health shocks across time, even after removing persistent heterogeneity.24 In order to

capture this potential week-to-week correlation, I include family fixed effects in equation (1). The

correlation I fail to capture with family fixed effects will show up in Implication (2d), and this is why

this implication is central to my identification strategy. Since there is no shadow price variation

left to exploit after exceeding the cap, any effect captured by βabove cap
2 points to week-to-week

correlation in health shocks.

Table 3 displays the results of equation (1) using two measures of health care demand: an

23Families participating in the RAND HIE knew that the experiment would end either after 3 or 5 years (randomly
assigned before enrollment). This might induce an increase in health care utilization toward the end of the experiment
if families anticipate being enrolled in less generous coverage plans after the experiment ends.

24Consider the situation of a family member who undergoes a hip replacement surgery at some point during the
year. This situation most probably creates demand for further care (e.g., follow-up visits or further tests), which
could generate positive serial correlation. This would contaminate the estimate of βbelow cap

2 because I would attribute
to a shadow price response a merely week-to-week correlation in health shocks.
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indicator for whether the family had any claim over the week and the level of health care utilization

(in dollars) over the week. The first three rows show the estimates related with behavior below the

cap on OOP spending, and the subsequent three rows show their counterpart once families exceed

the cap. As predicted, families increased their weekly health care utilization level the further they

were from the end of the contract year and the closer they were to the cap on OOP spending,

conditional on being below the cap. This is consistent with families facing uncertainty about future

health care demand, updating their probability of exceeding the cap over the course of the contract

year, and having a positive discount factor. Once families exceed the cap, I find no statistically

significant relationship between health care demand and weeks left or share of the cap consumed.

I interpret this as supportive of the identifying assumption. Table 3 also confirms that the four

testable implications hold as shown by the p-values from the joint F -tests.

To further delineate the dynamic response to the shadow price variation, I evaluate Implication

(2a) at the mean level of the ratio Cumjtq/TATjq in the middle of the contract year (i.e., at the

beginning of week t = 27). I estimate that moving one month farther away from the end of the

contract year is associated with a 1 percentage point increase in the probability of any weekly claim

and a 2.8 percent increase in weekly family health care utilization, on average.25 This estimate is

in line with Aron-Dine et al. (2015) who find that enrollment a month earlier (and thus having one

month more to reach the unadjusted deductible) is associated with a 1 percentage point increase

in the probability of any claim and a 2.2 to 7.5 percent increase in health care utilization in the

first three contract months.

Regarding Implication (2b), a 10 percentage point increase in the ratio Cumjtq/TATjq is asso-

ciated with a 1 percentage point increase in the probability of any weekly claim and a 5.9 percent

increase in weekly family health care utilization, on average, when evaluated at the beginning of

week t = 27.26 To my knowledge, these are the first estimates of the relationship between within-

year health care demand and proportion of the cap consumed using variation in the shadow price

of care. These effects are exacerbated the further the family is from the end of the contract year

or, in other words, when families have more opportunities remaining to consume. For example,

when there are 11 months remaining, a 10 percentage point increase in the ratio Cumjtq/TATjq

is associated with a 2 percentage point increase in the probability of any weekly claim and a 10.9

percent increase in weekly health care utilization, on average.

Collectively, my results provide support for the hypothesis that families internalize the nonlinear

nature of the incentive scheme and are responsive, in an statistically and economically meaningful

way, to variation in the shadow price of care within the coverage period. While these regression

models are useful for showing associations between variables, they are less useful for predicting

25%∆y ≈ 100× 52
12

×
[
βbelow cap
1 + βbelow cap

3 × Cumj(27)q

TATjq

]
, with

Cumj(27)q

TATjq
= 0.1778.

26%∆y ≈ 100× 0.10× [βbelow cap
2 + βbelow cap

3 × (T − 27 + 1)], with T = 52.
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Table 3: Weekly response to the variation in the shadow price of care

(1) (2)
Share

with any
utilization

Utilization
in 2019 $

(in logs)

βbelow cap
1 : weeks left, non-last year 0.001∗∗∗ 0.003∗∗∗

(0.000) (0.001)

βbelow cap
2 : cum to TAT ratio, non-last year 0.017 0.023

(0.020) (0.100)

βbelow cap
3 : interaction, non-last year 0.004∗∗∗ 0.021∗∗∗

(0.001) (0.004)

βabove cap
1 : weeks left, non-last year 0.000 -0.002

(0.001) (0.004)

βabove cap
2 : cum to TAT ratio, non-last year 0.000 0.003

(0.000) (0.002)

βabove cap
3 : interaction, non-last year 0.000 -0.000

(0.000) (0.000)

Cost Sharing Plans Y Y
Free Care Plan N N
Family fe Y Y
Clustered se Y Y
Families 1791 1791
Family-weeks 160784 160784
Adjusted R2 0.23 0.22

p-value Implication 1: βbelow cap
1 = 0 and βbelow cap

3 = 0 0.000 0.000

p-value Implication 2: βbelow cap
2 = 0 and βbelow cap

3 = 0 0.000 0.000

p-value Implication 3: βabove cap
1 = 0 and βabove cap

3 = 0 0.898 0.675

p-value Implication 4: βabove cap
2 = 0 and βabove cap

3 = 0 0.638 0.279

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table reports selected least-squares coefficients estimates from equation (1). Log
variables are defined as log(var + 1) to accommodate zero values. I inflate health care utilization to
2019 prices using the monthly CPI-U. Standard errors clustered at the family level are in parentheses
below the coefficients.

how behavior may change in response to exogenous changes in policy. Estimation of the structural

parameters of the explicit optimization problem provides for a better understanding of factors

affecting health care demand and for the evaluation of alternative health insurance contracts. In-

formed by these findings, in the next section I develop a dynamic model of weekly health care

utilization decisions at the family level.
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4 Model

My model is built around the problem of a forward-looking family who is enrolled in a general

nonlinear health insurance plan for a given contract length. The nonlinearity of the plan arises

from deductibles, coinsurance rates, and maximum out-of-pocket expenditures. In order to study

the family’s problem, I develop a single-agent, finite-horizon, dynamic, stochastic model of health

care utilization at the family level combining elements of the annual model of health care demand

from Einav et al. (2013) and the within-year model of internet demand from Nevo et al. (2016). An

important feature of my model is that it explicitly incorporates the possibility of zero health care

utilization as the optimal choice for a given period. Moreover, the generosity of insurance coverage

can potentially affect the decision of whether or not to consume any health care.27

A period in my model is a contract week. After observing its realized health state, an expected-

utility-maximizing family makes an optimal health care utilization decision every period. Since

families are forward-looking, they form expectations on future health care utilization and inter-

nalize the dynamic pricing effect induced by the nonlinearities of the plan. This way, the model

incorporates the fact that utilization decisions are made throughout the coverage period, before

the uncertainty about subsequent health states is fully resolved.

4.1 Preliminaries

Families in my model are heterogeneous along several dimensions, which are unobserved to the

econometrician and potentially correlated. For clarity of exposition, I omit the family subscript for

now, and then in Section 5, I describe how families vary.

At the time of each weekly utilization choice, a family is characterized by its current health state

realization ν, the beliefs about its subsequent health realizations Fν(.), and its price sensitivity ω.

The random variable ν captures the uncertain aspect of demand for health care, with higher ν

representing sicker family members who demand greater health care utilization. The parameter

ω determines how responsive health care utilization decisions are to insurance coverage. In other

words, ω affects the family’s price elasticity of demand for health care. Families with higher ω

increase their utilization more sharply in response to more generous insurance coverage.

4.2 Utility Function

From the family’s point of view, insurance coverage, denoted by k, is taken as given, and its health

care utilization decision maximizes a trade-off between health and money. Following Einav et al.

27The proportion of zeros is not a prominent feature in annual models of health care demand, so the literature
has traditionally avoided corner solutions or defined a plan-invariant proportion of zeros.

17



(2013), the family’s per-period utility is separable in health and money and can be written as

follows:

u(ct; νt, ω, k) =

[
(ct − νt)−

1

2ω
(ct − νt)

2

]
︸ ︷︷ ︸

b(ct−νt;ω)

+

[
yt − premiumtk −OOP (ct, Ct−1; k)

]
︸ ︷︷ ︸

x(ct)

, (3)

where ct ≥ 0 represents the dollar consumption of covered health care goods and services for contract

week t, including both the portion paid out-of-pocket by the family (if any) and the part paid by the

insurance company; νt is the monetized health realization; and Ct−1 represents accumulated health

care utilization entering week t. I explicitly write the per-period residual income, x(ct), as the initial

period-income yt minus the per-period premium associated with coverage k and the out-of-pocket

expenditure OOP (ct, Ct−1; k) associated with utilization ct under coverage k.
28 Naturally, x(ct) is

(weakly) decreasing in ct at a rate that depends on coverage k.29

The first term b(ct − νt;ω) is quadratic in its first argument, with ω affecting its curvature.

It is increasing for low levels of utilization, when treatment improves health, and is decreasing

eventually, when there is only marginal health benefit from treatment and time costs dominate.

Thus, the marginal benefit from incremental utilization is decreasing. Using this formulation, the

underlying health realization νt plays the role of shifting the level of optimal health care utilization,

c⋆t . Since ω is constrained to be strictly positive, period utility is increasing in ω.

To facilitate intuition, I consider here optimal utilization under a linear coverage contract where

the OOP price remains constant throughout the year irrespective of past cumulative utilization.

Thus, OOP (c, .; k) = coinsk × c, where coinsk represents the constant coinsurance rate of coverage

k, coinsk ∈ [0, 1]. Per-period optimal health care utilization is given by

c⋆(ν, ω; k) = max
[
0, ν + ω × (1− coinsk)

]
. (4)

Abstracting from the potential truncation of utilization at zero, the family optimally chooses c⋆ = ν

under no insurance, i.e., when coinsk = 1, and c⋆ = ν+ω under full insurance, i.e., when coinsk = 0.

Thus, ω can be thought of as the incremental utilization attributed to the change in coverage from

no insurance to full insurance or, in other words, the full scope of moral hazard (per period).

As can be seen from equation (3), families enrolled in a general nonlinear health insurance plan

do not always pay the total price of health care because of the plan’s cost-sharing arrangement.

Rather, a family pays a dollar amount out-of-pocket that is determined by the total price of health

care, insurance plan characteristics, and accumulated health care utilization during the coverage

28I denote the remaining consumption before the TAT is reached as Ct = Ct(Ct−1; k) ≡ max{TATk − Ct−1, 0}.
Then, under zero-deductible contracts, I can define OOP (ct, Ct−1; k) ≡ coinsk ×min{ct, Ct}.

29This structure assumes that a family consumes all per-period income by the end of each contract week, as saving
decisions are not observed in the data. This is a standard assumption in this literature.
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period. As a consequence, the family faces a nonlinear budget set. The out-of-pocket expenditure

function, OOP (.), contains these nonlinearities.

Consider the case of a family enrolled in a plan with no deductible, a 25 percent coinsurance

rate, and maximum out-of-pocket expenditure of $750. Entering a given week with $0 accumulated

health care consumption, this family is charged $1,000 for a medical visit. In this case, the family

pays $250 out of pocket (i.e., min[0.25 × 1, 000, 750]). However, if the same family were to have

accumulated $2,500 in health care utilization prior to the visit, including both the portion paid

out-of-pocket and the part paid by the insurance company, then it would pay only $125, which is

the minimum between $250 and what is left to hit the family’s maximum out-of-pocket expenditure

of $750.30

The timing of the model is as follows. At the beginning of contract week t, families learn

their realization of the period-t health state, νt. Taking into account the plan characteristics, the

accumulated health care utilization, and the expected future health risk, families choose the optimal

level of health care utilization for period t. By the end of contract week t, families update their

accumulated health care utilization level, which under a general nonlinear contract determines the

price of health care for the subsequent contract week.

Utility from covered health care services is assumed to be additively separable over all weeks

in the coverage period. For any given health insurance plan k, denote the number of weeks in the

coverage period by Tk. Conditional on being enrolled in insurance plan k, the family’s problem is

as follows:

max
{c1,...,cTk}∈R

Tk
+

Tk∑
t=1

δt−1
E[u(ct; νt, ω, k)], s.t.

OOP (CTk
, 0; k) + YTk

+ premiumk ≤ I ,

CTk
=

∑Tk
t=1 ct, YTk

=
∑Tk

t=1 yt ,
(5)

where δ represents the weekly discount rate. From a period-t point of view, the expectation is taken

with respect to the uncertainty involving the future health realizations νm, m = {t+ 1, . . . , Tk}. I
assume that wealth, I, is large enough so that it does not constrain covered health care utilization

decisions.31

4.3 The Dynamic Optimization Problem

The family’s objective is to maximize the expected discounted future utility by selecting the optimal

sequence of health care utilization, ct, for t = 1, . . . , Tk. In this subsection, I describe the family’s

30A family enrolled in a zero-deductible plan, with a 25 percent coinsurance rate, and maximum out-of-pocket
expenditure of $750 has an associated TAT of $750/0.25 = $3000. Following the notation of equation (3),
OOP (1000, 2500; k) = 0.25×min[1000, (3000− 2500)] = $125.

31This is a reasonable assumption in the context of my data since the RAND HIE features low caps relative to
income.
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dynamic optimization problem that captures the health care utilization decisions made repeatedly

over the course of a coverage period, taking into account the uncertainty about subsequent health

states.

In the last contract week of the coverage period, Tk, the model becomes static: cumulative

health care utilization resets to zero at the beginning of the following coverage period despite the

period-Tk decision. Denote the period-Tk optimal level of covered health care utilization by the

function c⋆Tk
= c⋆Tk

(CTk−1, νTk
; k). The family’s utility in the terminal period is then given by

VTk
(CTk−1, νTk

; k) = (c⋆Tk
− νTk

)− 1

2ω
(c⋆Tk

− νTk
)2 + x(c⋆Tk

) . (6)

For any other week t < Tk, covered health care utilization counts toward the family’s TAT

and affects the next period’s state, so the optimal policy function for a family incorporates this.

I therefore solve for the optimal health care utilization decision recursively. Then the family’s

optimal decision in period t satisfies

c⋆t (Ct−1, νt; k) = max

[
0, νt + ω

(
1− ∂OOP (ct, Ct−1; k)

∂ct
+ δ

∂E
[
Vt+1(Ct−1 + ct, νt+1; k)

]
∂ct

)]
, (7)

where the term ∂OOP (.)/∂ct represents the spot price of care and the term ∂E
[
Vt+1(.)

]
/∂ct cap-

tures the reduction in future expected prices via the nonlinearities of the contract.

In each decision period t, the state is defined by three components. First, the contract week t

which determines the number of weeks left until the end of the coverage period, Tk− t+1. Second,

the accumulated health care utilization up until period t, Ct−1. And third, the stochastic health

state νt which is known to the family at the beginning of period t. So the vector (t, Ct−1, νt)

provides a complete description of the state at time t. For brevity, I describe the state vector as

(Ct−1, νt) and index the policy and value functions by t.

The value function for each ordered pair (Ct−1, νt) and for any t < Tk is given by

Vt(Ct−1, νt; k) = max
ct

[
u
(
ct; νt, ω, k) + δE

[
Vt+1(Ct, νt+1; k)

]]
, (8)

where ct ≥ 0 and Ct = Ct−1 + ct.

To provide a clear understanding of the dynamic pricing effect, abstract for a moment from

the discontinuous nature of the nonlinear price structure and the potential truncation of utilization

at zero. Then, the solution to equation (8) would be characterized by the following first-order

condition:
∂u

∂ct
+
∂u

∂xt

∂xt
∂ct

+ δE

[
∂Vt+1

∂Ct

]
= 0 . (9)
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The first term reflects the consumption value of health care. The second term reflects the direct

monetary cost of that consumption, expressed in utility terms. Finally, the third term reflects the

effect of current health care utilization on future expected prices. It is this last effect that is of

central interest in this paper.

4.4 The Shadow Price of Health Care

The shadow price of health care is a combination of the spot price and the option value associated

with lower future expected prices. In a multi-period model with uncertain future health needs

and a nonlinear price schedule, any health care expenditure below the TAT reduces the remaining

distance to the TAT and, hence, the future expected prices. I define the shadow price of covered

health care as

s̃pt(ct, Ct−1; k) =


∂OOP (ct, Ct−1; k)

∂ct
− δ

∂E
[
Vt+1(Ct−1 + ct, νt+1; k)

]
∂ct

, if Ct−1 + ct < TATk

0 , if Ct−1 + ct ≥ TATk

,

(10)

where the first part of equation (10) represents the shadow price for families who have not reached

their caps on OOP spending yet, while the second part shows the shadow price once they hit the

cap. The shadow price of care is equal to the marginal out-of-pocket price, ∂OOP (.)/∂ct, minus

the marginal value of reducing the remaining distance to hit the cap. This latter value is the rate a

family would pay (ex ante) to exchange the current insurance policy for one with the TAT reduced

by one dollar.

The presence of the term ∂E
[
Vt+1(.)

]
/∂ct is the crucial distinction between my model and

annual models or multi-period, static models of health care demand. In annual models, the shadow

price of care always coincides with the end-of-year price. This is because families make a one-shot

decision regarding their total annual health care utilization, which place them either below the

deductible, between the deductible and the cap, or above the cap with certainty. In other words,

annual models remove the uncertainty about future health care needs, so that families have perfect

foresight about their end-of-year price and adjust their annual health care utilization decision

accordingly. Multi-period static models assume that families are myopic and respond only to the

out-of-pocket price of the period they are taking the decision. So in these models, the shadow price

always coincides with the spot price of health care.

Figure 2 provides a graphical illustration of the properties of the shadow price for a family

with a zero-deductible plan, a 95 percent coinsurance rate, and a $1,000 cap on OOP spending. In

order to compute the option value component of the shadow price I need to specify values for the

distribution of health shocks Fν and the price sensitivity ω, although the patterns displayed in the

figure hold generally. In panel 2(a) I use values corresponding to a low mean of Fν and in panel
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2(b) a high mean. There are three main properties to highlight. First, the shadow price ranges

from 0 (once the cap is hit) to the coinsurance rate of 0.95. Second, as cumulative expenditures

increase and the TAT remaining falls, the shadow price also falls. Third, the rate at which it

falls is increasing in the amount of time left. These last two properties capture the mechanisms

I document using data from the RAND Health Insurance Experiment (see Implications (2a) and

(2b) in Section 3).

Figure 2: Model properties of the shadow price of care

(a) Shadow price, low mean of Fν (b) Shadow price, high mean of Fν

The shadow price of care also depends on expected future health care needs. Intuitively, the

marginal value of reducing the remaining distance to hit the cap is lower for relatively healthy

people, whose probability of becoming sick in the future is low, compared to people with poor health,

ceteris paribus. Figure 2(b) shows the shadow price for a family sicker than the one considered in

Figure 2(a), in that it has a higher mean of the health shocks distribution. As can be seen, the

shadow price curves shift inwards, implying that the shadow price falls as the mean health risk

increases. It can also be shown that if the variance of the shocks rises, given a constant mean, the

shadow price curves become less steep (see Appendix C).

5 Econometric Specification

I estimate the model developed in Section 4 by extending the approach proposed by Ackerberg

(2009), Bajari et al. (2007), Fox et al. (2011), and Fox et al. (2016); and recently applied by

Nevo et al. (2016) in the context of demand for residential broadband and Blundell et al. (2020)

in firms’ investment decisions in pollution abatement technologies. This framework allows me to

incorporate flexibly-correlated unobserved heterogeneity in several dimensions related to family

health risk, preferences for visiting a doctor, and price sensitivity, without requiring parametric
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assumptions. The structural estimation of the model proceeds by combining a method-of-moments

approach with a simple nonparametric estimator for the distribution of the correlated random

coefficients. This section presents the estimation approach and discusses identification.

5.1 Parameterization

Families in my model are defined by their beliefs about their subsequent health status Fν(.), their

price sensitivity parameter ω, and their previous year (PY) income. I allow all these objects to

flexible vary across families, but assume they remain constant within a contract year. Yet the family

type can change across experimental years to capture cross-year differences in family composition

that may affect health care demand.

The health state νth is a time-varying and type-specific health shock, which represents the

period-t shock to the family’s health capital stock.32 Health realizations νth are assumed to be

independently and identically distributed and drawn from a (shifted) log-normal distribution with

support (κh,∞). The assumption of no cross-week correlation in health shocks after conditioning

on family type is in line with my estimates of implication (2d) in Section 3 and the findings in

previous literature.33

Before the uncertainty is resolved, families believe that

log(νth − κh) ∼ N(µh, σ
2
h) , (11)

and these beliefs are correct. Assuming a log-normal distribution for ν is natural, as the distribution

of weekly health care utilization is highly skewed. The additional parameter κh is used to capture

the significant fraction of families who have zero health care utilization within a week. When κh

is negative, the support of the implied distribution of νth is expanded, allowing for νth to obtain

negative values, which may lead to zero health care demand. Therefore, expected health care needs

for a week are given by

ν̄(µ, σ, κ) = exp(µ+ 0.5σ2) + κ . (12)

Finally, I include PY income as a component of the family type to capture the variability of

the cap on out-of-pocket expenditures within each experimental plan.34

32νth captures the composite shock from illnesses at period t plus health capital depreciation from period t− 1 to
period t.

33See e.g., Einav et al. (2015) in the context of Medicare Part D, who find that conditional on allowing for
unobserved heterogeneity across individuals in their permanent health state, the remaining week-to-week correlation
is not very important.

34Income is the only dimension of family heterogeneity in the model that is observable to the econometrician,
although only partially. The income distribution is censored from above, because I can only recover income from
those families with MDEs strictly smaller than $1,000.
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5.2 Estimation

I estimate the joint distribution of unobserved heterogeneity using a method-of-moments approach

similar to the two-step algorithms proposed by Ackerberg (2009), Bajari et al. (2007), and Fox et al.

(2011); and first applied by Nevo et al. (2016). This estimator is flexible, easy to program, and

computationally advantageous compared to alternative estimators for random coefficient models.

For complex structural dynamic models, one does not need to nest a solution to the economic model

during optimization. The estimator uses a finite and fixed grid of random coefficient vectors as

mixture components to construct the distribution from the estimated probability weight of every

component. The methodology exploits a re-parametrization of the underlying model so that the

new parameters of interest (the weights on each type) enter linearly. Because of this linearity, the

model can be estimated using inequality constrained least squares (ICLS). The ICLS minimization

problem is convex, so a standard least squares algorithm will find a global optimum. By reducing the

computational burden, the methodology allows me to relax several strong assumptions frequently

imposed on the joint distribution of random coefficients. I do not need to assume that the random

coefficients are mutually independent or that they are symmetrically distributed. The statistical

and shape properties of the distributions are learned directly from the data once the parameters

are estimated.

These advantages of the Fox et al. (2011) estimator are in contrast to previous approaches in

the literature, which are highly nonlinear and computationally expensive. Researchers have tended

to specify a parametric distribution and estimate its parameters. Estimation usually proceeds by

simulation: maximum likelihood or the method of moments. These methods are computational de-

manding, specially for high-dimensional vectors of random coefficients (Bajari et al., 2007). More-

over, the specified distributions usually feature undesired properties.35 Nonparametric methods

offer the possibility of not being as constrained by distributional assumptions. The most common

frequentist, mixtures estimator is nonparametric maximum likelihood (Heckman and Singer, 1984).

Often the expectation-maximization (EM) algorithm is used for computation, which is sensitive to

its starting values and is not guaranteed to converge to a global optimum. Moreover, the number

of support points allowed is generally small, often only two or three, and can take the wrong sign

if estimation is not constrained. Hierarchical Bayesian estimation is an alternative (Rossi et al.,

1996). For example, Einav et al. (2013) employ a Bayesian hierarchical model to approximate the

random coefficients’ distribution. The estimator uses a Markov Chain Monte Carlo Gibbs sampling,

which requires training and monitoring by the user. Moreover, the procedure usually involves eval-

uating the objective function many times, which is computational demanding specially in complex

dynamic models.

35The normal distribution is probably the most widely used; however, its support on both sides of zero makes
it problematic for coefficients that are necessarily signed. Lognormal distributions are usually used to avoid wrong
signs. Yet they have relatively thick tails extending without bound, which implies that a share of the population has
implausibly large values for the relevant coefficients (Train, 2008).
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I overcome these limitations by using the methodology of Fox et al. (2011), which consists of

two steps: a computational step and an estimation step. For the computational step, I fix a large

but finite grid of H types in the five-dimensional space, where a family type is characterized by

the vector βh = (µh, σh, κh, ωh, PY incomeh). Then, for each plan k and family type h, I solve the

finite-horizon dynamic programming problem described in Section 4 recursively, starting from the

last period Tk, and solving backwards period-by-period until the first contract week, and collecting

the sequence of decision rules in each t. This way I construct the optimal policy given initial

condition C0 = 0 and any realization of {νt}Tk
t=1. Because a family does not know the realization

of the health demand shock νt prior to period t, I integrate over its support. The solution to the

dynamic programming problem for each plan and family type can be characterized by the expected

value functions, E[Vt(Ct−1; k, h)], and expected policy functions, E[c⋆t (Ct−1; k, h)]. The solution

to the dynamic program implies a distribution for the number of weeks spent in particular states

(t, Ct−1) over a coverage period.

In the second stage, I estimate the weight associated with each family type, θkh, to match

the weighted average of the behavior predicted by the model to moments from the data using

inequality constrained least squares. Each moment Gj(θk) can be written as the difference between

some moment in the data and the weighted average of the type moments predicted by the model:36

Gj(θk) = mdata
kj −mmodel

kj (θk) = mdata
kj −

H∑
h=1

θkh ×mmodel
kjh (βh). (13)

The key insight from equation (13) is that the new parameters of interest θk enter linearly, ir-

respective of the highly nonlinear model used to compute the type-specific moments mmodel
kjh (βh).

Formally, for each plan k, the methodology chooses weights θ̂k to satisfy

θ̂k = argminθkG
′(θk)G(θk) subject to


θkh ≥ 0 ∀h∑H

h=1 θkh = 1∑H
h=1 θkh × 1[MDEkh ∈ binr] = πdatakr

(14)

The first two sets of constraints in equation (14) restrict the weights to be non-negative and to

sum up to 1 for each plan. The last set of constraints uses the plan-specific empirical distribution

of OOP limits to partition the type distribution according to the type-specific PY income.37 For

36Following Bajari et al. (2007), the second term of equation (13) is a series estimator that approximates an
unknown function m̃model

kj with the approximation m̃model
kj ≈

∑H
h=1 θkh×m

model
kjh (βh). The basis functions are not the

flexible mathematical functions from traditional series estimators, but the predictions of a single-agent, finite-horizon,
dynamic, stochastic model of health care demand for a family of type h enrolled in health insurance plan k. The
unknown frequencies θkh are structural objects, not just the approximation weights from series estimation.

37For each plan, I partition the empirical distribution of OOP limits in 11 bins. The first ten bins correspond to
the deciles of the distribution. The last bin collects all types with caps equal to $1,000.
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each plan k, the number of unknown parameters is the number of types, dim(θk) = H. Then, I

construct the estimated cumulative distribution function for the random coefficients as

F̂ (β; k) =
H∑

h=1

θ̂k × 1[βh ≤ β] , (15)

where 1[βh ≤ β] = 1 when βh ≤ β. Thus, this method provides a structural estimator for the

distribution of random parameters for each plan k. This estimator is consistent under standard

regularity conditions.38

Following Nevo et al. (2016), I choose the following moments because they have a clean con-

nection to weekly and cumulative utilization. For each plan k, I match three sets of moments. The

first set of moments is related to the mass of families at a particular state (Ct−1, t) or, in other

words, the fraction of observations at each state. These moments capture the distribution of cu-

mulative utilization at the end of each contract week. For example, the end-of-year distribution of

cumulative utilization, which reflects the distribution of annual utilization, is a subset of moments

in this set. Formally, moments in this set are given by

mmodel
kjh,set 1(βh) =

H∑
h=1

γkjh(Ct−1 = Cs), (16)

where j indexes combinations of time t and thresholds s, and γkjh(Ct−1 = Cs) represents the

probability that a family of type h enrolled in plan k reaches contract week t with Cs dollars in

accumulated health care utilization within the coverage period.

For the second set of moments, I use the mean health care utilization at each state (Ct−1, t),

which captures the weekly utilization level and how it varies with the cap remaining and the weeks

left:

mmodel
kjh,set 2(βh) =

H∑
h=1

γkjh(Ct−1 = Cs)×E
[
c⋆kht|Ct−1 = Cs

]
, (17)

where E
[
c⋆kht|Ct−1 = Cs

]
is the mean weekly utilization in contract week t for a family of type h

enrolled in plan k, conditional on past accumulated utilization level Ct−1 = Cs.

Finally, the third set of moments is the mean probability of zero utilization at each state

(Ct−1, t). These moments are different from Nevo et al. (2016). Unlike internet usage and annual

health care demand, zeros are a much more prominent feature in my weekly health care utilization

38See Andrews (2002) who show that consistency is not affected by linear inequality constraints.
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data. Formally,

mmodel
kjh,set 3(βh) =

H∑
h=1

γkjh(Ct−1 = Cs)× Pr
[
c⋆kht = 0|Ct−1 = Cs

]
, (18)

where Pr
[
c⋆kht = 0|Ct−1 = Cs

]
is the probability that a family of type h enrolled in plan k does

not consume covered health care services in contract week t, conditional on past accumulated

utilization level Ct−1 = Cs. Note that in all three sets of moments, the average is taken across all

types of families in the plan, not just those that arrive at the particular state (Ct−1, t) with positive

probability. This keeps the moments linear in the parameters θk, which is particularly attractive

from the perspective of computational ease. Appendix D provides additional details regarding how

I construct the data counterparts of these three sets of moments.

Similar to Nevo et al. (2016) and Blundell et al. (2020), I use a nonparametric block-resampling

procedure to obtain standard errors for my structural parameters estimates, θk. Specifically, I

sample the original data by family-year with replacement, keeping all 52 weeks for each of the

family-years drawn. For each of 1,000 bootstrap samples, I recalculate the three sets of moments and

then re-estimate the weights separately for each plan. I calculate confidence intervals for subsequent

statistics and counterfactual analyses by repeating the calculation using the 1,000 different estimates

of the weights.39

5.3 Choice of Grid Points

As mentioned earlier in this section, the methodology treats the grid of random coefficients as

known and fixed. Thus, it requires the ex-ante specification of parameter grid values. In order to

choose the points for the discrete five-dimensional family-type space, I follow the method of good

lattice points (hereafter, glp). This approach has been proposed in economics by Judd (1998) in

the context of integration and simulation, but to the best of my knowledge has not been applied to

the estimation of dynamic programming problems. The glp method generates a finite set of “quasi-

random” points with the property of low discrepancy.40 The discrepancy of a set is a measure of

how dispersed a collection of points is. Essentially, it measures the deviations from uniformity of

different sets of points and provides a formal way to rank them.41 A small discrepancy says that

the collection of points evenly fills up the hypercube Id, where d is the dimension of the grid. More

details about the glp method can be found in Appendix E.

39A step-by-step description of the bootstrap procedure is provided in Appendix D.4.
40Blundell et al. (2020) choose their grid values by using co-prime Halton sequences, an alternative method to

generate quasi-random numbers.
41Roughly speaking, the discrepancy of a collection of points in the interval [0, 1] is low if the proportion of points

in the set falling into an arbitrary subinterval [a, b], 0 ≤ a ≤ b ≤ 1, is proportional to the length of that interval. For
a more formal treatment of low-discrepancy methods, see Section 9.2 of Judd (1998).
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A more common approach for the choice of grid points is the one followed by Nevo et al. (2016),

which I call the method of tensor product points (hereafter, tpp). This standard approach consists

of choosing the support points in each dimension separately, and then building the grid with all the

possible combinations of them. For example, Nevo et al. (2016) choose seven points of support for

each of their five dimensions of unobserved heterogeneity and build a grid with 75 = 16, 807 types.

The tpp approach generates a lot of overlap between the points. I find that the tpp approach needs

at least 50 times more points than the glp approach to achieve the same fit. Results of this Monte

Carlo exercise are presented in Appendix F.

In order to assess the discrepancy of the sets produced by these two methods, I apply a simple

discrepancy test.42 I generate 1,000 random hypercubes of dimension five, check their discrepancy,

and report the maximum discrepancy as the desired statistic. It is relevant to emphasize that, the

smaller the discrepancy, the more uniformly distributed the points are inside the hypercube, and the

more accurate mass points can be captured. I calculate the discrepancy for 1,000 sets of 1,069 glp

and 1,000 sets of 16,807 tpp coming from seven uniformly distributed points on [0,1] in each of the

5 dimensions. The maximum discrepancies are 0.0135 and 0.3996, respectively. Therefore, the glp’s

measure is 30 times smaller than the tpp’s measure. This means that in the worst scenario, the glp

method produces points that are 30 times more uniformly distributed than the ones generated by

the tpp method. From a statistical standpoint, a collection of points with the smaller discrepancy

captures the joint distribution of random coefficients more accurately.

5.4 Identification

Conditional on the model described in Section 4, the objective is to identify the joint distribution

of the parameters governing the health risk distribution, Fν(.), the price sensitivity, ω, and the PY

income. Following Fox et al. (2011), I use a nonparametric finite mixture model by fixing a large but

finite grid of five-dimensional points. This way, the support points of the multivariate distribution,

{βh}Hh=1 = {(µh, σh, κh, ωh,PY incomeh)}Hh=1, are treated as known, and the parameters to identify

are the weights, {θkh}Hh=1, on the support points. Since equation (14) accords to a linear regression

subject to inequality constraints, the weights are identified as long as the matrix of model moments

has full rank. In other words, the weights are identified as long as the behavior predicted by different

types is not collinear over all the moments and all states used in estimation. Next I discuss how each

parameter in the type vector βh = (µh, σh, κh, ωh,PY incomeh) impacts the variation in predicted

behavior across moments and states.

The intuition works similarly to Nevo et al. (2016), although I adapt and extend it to my

context.43 In Nevo et al. (2016), all dimensions of the space of types are unobserved by the

42I thank Ken Judd for suggesting this empirical test.
43The logic behind the identification follows closely the formal argument in Kasahara and Shimotsu (2009).
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econometrician. In my context, four out of the five dimensions are unobserved, while family’s PY

income is censored from above. As a consequence, my identification strategy differs according to

the observability of the source of permanent heterogeneity. In what follows, I first discuss the

identification of the distribution of each unobserved dimension and then explain how I can provide

additional identification by exploiting the variation of PY income. The identification of unobserved

dimensions relies on matching the moments related to the timing and the level of weekly health

care consumption observed in the data with their counterpart moments predicted by the model.

The identification of the income dimension comes through the constraints imposed on the weights.

Fixing σh and κh, a higher value of µh generates a higher value of the weekly health shock

νh, which in turns induces a (weakly) higher average weekly health care consumption.44 Here, the

panel dimension of my data emerges as an important determinant for identification. By modeling

weekly decisions, I can identify the persistence in health care consumption that comes through the

time-invariant health risk distribution of the family.

Fixing µh and κh, a change in σh impacts the variance of weekly consumption and therefore

the likelihood of reaching certain states. This is because the lower the variance, the lower the

likelihood of reaching extreme states (i.e., cumulative consumption states far apart from what the

mean consumption would dictate).

The parameter κ governs the shift of the log-normal distribution of weekly health shocks. When

κ is negative, the weekly shocks can take negative values, which can lead to zero consumption.

Hence, κ affects primarily the extensive margin of weekly health care consumption. In particu-

lar, the set of moments related to the probability of zero consumption in each state aids in the

identification of the distribution of κ.

Identification of the price sensitivity parameter ω exploits the nonlinearity of the contracts

induced by the presence of the cap on annual out-of-pocket expenditures. Within plan and fixing

ω, changes in the shadow price of care generate variation in the consumption level that aids in the

identification of ω. Hence, how likely and early a family hits the cap provides a dynamic source of

identification for ω. Table 2 in Section 2 showed that between 17 and 36 percent of family-years

on plans with nonlinear pricing exceed their cap. This is important, as one source of variation

needed to identify the distribution of ω relies on having enough families with a positive probability

of exceeding the TAT during the contract year.

On top of the four unobserved dimensions of the type space, each type has one observed com-

ponent: the family’s PY income, which impacts behavior only through the cap on out-of-pocket

expenditures. Hence, even though the distribution of income is censored from above in the data,

the distribution of MDE is fully observed. I divide the possible MDE values in eleven groups, in

44Since log(νh − κh) ∼ N(µh, σ
2
h), the average health shock not only depends on µh but also σh as well as κh. For

the exact formula, see equation (12).
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an attempt to balance the trade-off between adding more sources of identification versus putting

more pressure on the fit. The share of family-years in each MDE bin provides information on the

type distribution. In the model, each type belongs to one and only one MDE bin. So family’s PY

income and plan characteristics split the type space into distinct groups. In other words, they put

a weight on each group of types equal to the share of family-years who belong to each MDE bin.

6 Results

This section begins with a discussion of the estimated type distribution, implied quantities, and

model fit. I then provide estimates of the impact that moral hazard has on health care consumption

and compare these estimates to the literature.

6.1 Type Distribution

I estimate a weight greater than 0.01 percent (i.e., θh > 0.0001) for 134 types out of 1,069 considered.

The first feature I find is substantial heterogeneity in the distribution of weights. The most common

type accounts for 13.3 percent of the total mass, the top 5 types account for 45 percent, the top

10 for 60.4 percent, and the top 20 for 75.8 percent. Figure 3 shows the cumulative distribution of

weights ordered from the most to least common type.

Figure 3: Estimated distribution of types

The second feature I find is that this heterogeneity drives a wide variety of health care utilization

behavior. To get an idea of what the results imply, Table 4 presents selected statistics for the top 5
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types with the highest estimated mass. The most frequent type (h = 1) is the healthiest, but likes

going to the doctor the most. Indeed, there is only 1 percent probability that this type ends the

year with zero accumulated health care demand, despite being particularly healthy (i.e., low mean

of the shock ν). The second most common type is the sickest and the poorest, which results in a

lower TAT, so it exceeds the cap with probability close to one even in the least generous plan. The

third and fourth most common types are relatively healthy and have a strong distaste for going to

the doctor, so they rarely have positive annual health care demand. The fifth type has the largest

variance of the health shocks distribution, which implies a large dispersion in the distribution of

annual health care demand.

Table 4: Estimates of type weights

Top 5 types
h = 1 h = 2 h = 3 h = 4 h = 5

Mean of the shock, with λ ∼ LN(µh, σh) 11.24 66.73 22.85 61.22 54.28
Standard deviation of the shock 20.4 162.4 24.4 11.0 376.2
κh: shift of the LN distribution -20.9 -132.8 -177.8 -203.0 -172.0
ωh: static moral hazard 17.7 72.4 121.0 140.0 141.9
annual incomeh 10,945 1,459 16,558 11,646 2,862

Free care plan E[annual utilization]: free 457 2,168 131 187 2,583

Least generous plan

E[annual utilization] 231 2,161 1 0 2,509
TAT: Total Annual Threshold 1,053 230 1,053 1,053 452
P[hit TAT]: <0.001 0.995 <0.001 <0.001 0.742
P[annual utilization = 0]: 0.012 <0.001 0.989 1 0.061

θh: type weight 0.13 0.10 0.10 0.06 0.05

Characteristics
healthiest sickest lowest κ highest SD
highest κ poorest wealthiest highest ω

In Figure 4, I present the estimated marginal distributions of unobserved heterogeneity. Overall,

the estimates imply an average health risk E(νt) of $26.33 per family-week. I estimate an average

price sensitivity parameter ω of $26.89. I estimate large heterogeneity in both health risk and price

sensitivity. One standard deviation of expected health risk E(νt) is equal to $32.74, or a coefficient

of variation of 1.24. Price sensitivity ω is also estimated to be highly heterogeneous, with a standard

deviation across families of $15.82, or a coefficient of variation of 0.59.

I also find that allowing for flexible-correlated heterogeneity is important. As an illustration,

in Figure 5 I plot the price sensitivity ω separately for families with a low versus high preference

for doctor visits (κ). First, there is a big range in terms of how price sensitive families are.

Families increase their weekly health care utilization between 0 and 180 dollars when moved from no

insurance to full insurance. Second, there is a strong negative correlation between price sensitivity

and preference for doctor visits. Families who like to go to the doctor are less likely to increase

spending due to moral hazard.

In Table 5, I report the unconditional correlations implied by the estimated type distribution.

As shown in Figure 5, the unconditional correlation between ω and κ is -0.41. I also find that
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Figure 4: Estimated marginal distributions of unobserved type heterogeneity

(a) Marginal distribution of µ (b) Marginal distribution of σ

(c) Marginal distribution of κ (d) Marginal distribution of ω

Figure 5: Price sensitivity ω, by preference for doctor visits κ

Price sensitivity ω, by preference for doctor visits κ
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the unconditional correlation between µ and σ is negative and sizeable (-0.45). This implies that

the health shocks of sicker individuals are less volatile and more concentrated around the mean.

However, this is only part of the picture. The correlation between µ and κ is also negative and

important (-0.33). Thus, higher means of the normal distribution of log(ν + κ) are also associated

with higher shifts towards the left.

µ σ κ ω income

µ 1.00 -0.45 -0.33 -0.26 0.31
σ -0.45 1.00 0.08 0.30 -0.03
κ -0.33 0.08 1.00 -0.41 -0.10
ω -0.26 0.30 -0.41 1.00 -0.09

income 0.31 -0.03 -0.10 -0.09 1.00

Table 5: Unconditional correlations

6.2 Model Fit

Figure 6 reports the actual and predicted distributions of annual health care utilization for the

overall sample. This measure includes both the portion paid out-of-pocket by the family (if any)

and the portion covered by the insurance company. Overall, the fit is quite good. For example,

actual average annual health care utilization is $1,188, while the estimate from the model is $1,217,

a difference of 2 percent. The fraction of families who have zero annual health care demand is also

tightly fitted, 0.066 in the data versus 0.063 in the model. This is a very nice feature of the model,

since previous papers either abstract from the corner solution at zero or display poor fit on this

dimension.

Figure 7(a) shows the observed and estimated proportion of families with zero accumulated

health care demand as a function of weeks left until the end of the contract. Assessing whether

the model is able to accurately replicate these proportions is key for studying the optimal resetting

time for deductibles and caps, which I do in the following section. As can be seen, the model fits

these proportions remarkably well. Figure 7(b) reports the observed and predicted probabilities

of hitting the annual OOP limit by the beginning of each contract week for the overall sample.

These moments are not targeted in the estimation procedure. The model fits these probabilities

remarkably well.

6.3 Dynamic Moral Hazard Estimates

In my model, ω captures the full scope of moral hazard per week. The estimated average of

ωh is about $77, which induces a 45 percent increase in annual utilization from no insurance to
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Figure 6: Observed and Estimated Distribution of Annual Health Care Utilization

Notes: Observed (light) and estimated (dark) annual health care utilization in dollars. This figure
uses a log scale: each bin k = 1, . . . , 26 corresponds to utilization in the range exp(0.4× (k− 1))−
exp(0.4 × k), with all utilization above exp(0.4 × 26) ≈ 22K contained in last bin. The labels on
the x-axis show the corresponding dollar amounts for each bin.

Figure 7: Model Fit

(a) Proportion of families starting each contract week
with zero accumulated health care consumption

(b) Proportion of families starting each contract week
above the annual cap on OOP spending
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full insurance, relative to full insurance. However, knowing the full scope of moral hazard is not

very useful for policy makers and contract designers given the wide popularity of nonlinear health

insurance contracts. Under a typical nonlinear contract, forward-looking families internalize that

current health care utilization reduces future expected prices. As a consequence, the distribution

of ω does not provide a complete picture of moral hazard.

At the core of this paper is the concept of dynamic moral hazard. To disentangle the contribu-

tion of dynamic moral hazard to total moral hazard, I simulate the weekly health care utilization

behavior using my estimated model but assuming families behave myopically.45 Under this assump-

tion, families respond only to the current spot price of care, thus shutting down dynamic moral

hazard.

The additional health care utilization due to the presence of dynamic moral hazard comes from

two sources: (1) the difference in weekly utilization between myopic and forward-looking families

in weeks in which both are below the cap, and (2) the difference in the number of weeks spent

above the cap between myopic and forward-looking families. Equation (19) below shows these two

sources, and a third scenario where dynamic moral hazard is zero because both the myopic family

and its forward-looking counterpart are above the cap.

Dynamic MHt =


ωδ
∂E[Vt+1(Ct−1 + ct, νt+1; k)]

∂ct
, if Cmyopic

t < TATk and Ct < TATk

ω
∂OOP (cmyopic

t , Cmyopic
t−1 ; k)

∂cmyopic
t

, if Cmyopic
t < TATk and Ct ≥ TATk

0 , if Cmyopic
t ≥ TATk and Ct ≥ TATk

(19)

Using the estimated distribution of types in the overall sample, I simulate the behavior of

forward-looking and myopic families. I decompose annual moral hazard in the portion explained

by static moral hazard and the portion explained by dynamic moral hazard. As is standard in the

literature, moral hazard is defined as the change in annual health care utilization in dollars relative

to no insurance. To see the impact of different contract features on the importance of dynamic

moral hazard, I perform this decomposition for each of the nonlinear experimental plans studied

here.

Figure 8 shows the difference in average annual health care utilization comparing no insurance

to one of the nonlinear experimental plans. Light-blue bars correspond to the estimates for myopic

families while green bars correspond to forward-looking families. I list the plan features below the

horizontal axis and the estimated contribution of dynamic moral hazard to total moral hazard in the

45I randomly draw 20,000 sequences of 52 health shocks for each family type with estimated weight greater than
or equal to 0.01 percent, i.e., θ̂h ≥ 0.0001. I simulate the two models forward for each type and nonlinear plan in
the sample. Then I average across the 20,000 simulations to compute annual health care utilization for myopic and
forward-looking families for each type and plan.
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last row. According to my estimates, dynamic moral hazard explains between 8 and 50 percent of

total moral hazard, depending on the plan, and 40 percent on average across plans. Dynamic moral

hazard is more important when [1] the coinsurance rate is higher, and [2] the cap on out-of-pocket

spending is smaller. This is because lower caps are more likely to be reached and higher coinsurance

rates increase OOP spending relative to total utilization, which increase the likelihood of hitting

the cap. This analysis highlights that health care utilization under plans with high coinsurance

rates and/or low caps is particularly affected by the dynamic moral hazard. Abstracting away from

these dynamic pricing incentives underestimates the cost from moral hazard, and may likely lead

towards socially inefficient levels of coverage. In the next section I examine the impact of each

contract feature thoroughly and study the mechanisms at play.

Figure 8: Dynamic Moral Hazard by Experimental Plan

7 Optimal Design of Employer-Sponsored Health Insurance

I now use my model and estimates to explore the impact of dynamic incentives and the associated

dynamic moral hazard on welfare and optimal health insurance design. I do so in the context of

employer-sponsored health insurance, in which a hypothetical employer offers a single plan in which

all employees are enrolled. This allows me to focus on the welfare trade-off between risk protection

and (static and dynamic) moral hazard across different plan structures, abstracting away from

questions related to competition across plans. Moreover, this setting also describes a reasonable

proportion of 43 percent in the U.S. population46 and is consistent with recent papers finding that

the optimal menu to offer features a single plan.47 In the interest of exploring broader questions

46Proportion of employees in private-sector establishments offered only one health insurance option through their
employer. Source: Agency for Healthcare Research and Quality, Medical Expenditure Panel Survey (MEPS) Insurance
Component National-Level Summary Tables, 2020.

47See Ho and Lee (2021) and Marone and Sabety (2021).
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related to the current discussion about insurance market, the counterfactual analysis considers the

impact of dynamic moral hazard outside the scope of the plans offered in the RAND HIE. The

contracts I study in this section vary across four features: (1) the size of the deductible, (2) the

coinsurance rate after the deductible, (3) the cap on OOP spending, and (4) the resetting time for

deductibles and caps.48

In order to rank alternative contracts, I follow the recent literature and use a measure of

welfare that incorporates the benefits of risk protection and the social costs of utilization induced

by insurance in a consistent framework.49 In particular, I use the welfare metric from Einav et al.

(2013) and extend the welfare decomposition in Marone and Sabety (2021) by incorporating the

impact of dynamic moral hazard separate from traditional (i.e., static) moral hazard.

7.1 Measuring Welfare

Following Einav et al. (2013), I assume that families have constant absolute risk aversion (CARA)

preferences and measure welfare using a certainty equivalent approach. This approach equates the

expected utility for each health plan with a certain monetary payment at the beginning of the

coverage year. Formally, for a family defined by the type vector βh = (Fν(.;h), ωh,PY incomeh),

the certainty equivalent to a plan j, ehj , is determined by solving

− exp(−ψ ehj) = −
∫

exp(−ψ u⋆(ν;βh, j))dFν(ν), (20)

where ψ is the annual coefficient of absolute risk aversion and u⋆(.) is the maximum annual utility

for a given sequence of realized health shocks ν.50 The assumption of CARA preferences over the

annual utility implies that (1) risk preferences only impact plan utilities but not within-the-year

health care utilization decisions, and (2) family income does not impact relative plan utilities.

48Even though all plans in the RAND HIE feature zero deductibles, the 95 percent coinsurance plans in the study
closely resemble the high-deductible catastrophic plans offered today (Brook et al., 2006). Regarding the variation
needed to study shorter resetting times for deductibles and caps, I leverage my within-year dynamic model of health
care utilization, in which demand is affected by the number of weeks left in the contract, among other things. The
key identifying variation comes from the variation in the proportion of families in the data that starts each contract
week with zero accumulated health care utilization. For example, a family with zero accumulated health care demand
at the beginning of contract week 27 is de facto facing a resetting time of six months.

49See e.g., Kowalski (2015), Ho and Lee (2021), and Marone and Sabety (2021).
50The risk aversion parameter is difficult to identify in the absence of insurance plan choice data. Hence, for the

counterfactuals, I borrow from Einav et al. (2013) the estimate of the average coefficient of absolute risk aversion,
ψ = 0.0019. This value implies that to make families indifferent between (i) a payoff of zero and (ii) an equal-odds
gamble between gaining $100 and losing $X, the mean value of $X is $84.0.
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Hence, the certainty equivalent for a type-h family and plan j can be written as:51

ehj(βh) = − 1

ψ
ln

[ ∫
exp(−ψ ũ⋆(ν;βh, j))dFν(ν)

]
+(Yh−premiumj) ≡ ẽhj(βh)+(Yh−premiumj),

(21)

where ẽhj(βh) captures the family’s welfare from coverage, and residual income, Yh − premiumj ,

enters additively.52 Using this notation, differences in ẽh(.) across contracts with different coverages

capture the willingness to pay for coverage. For example, a type-h family is willing to pay at most

ẽhk(βh)− ẽhj(βh) in order to increase its coverage from j to k.

I further assume that insurance providers are risk neutral. Thus, the provider’s welfare when a

type-h family is enrolled in contract j is given by his expected profits, or

πhj(βh) = premiumj − Eν

[
kj
(
C⋆
T (ν;βh, j)

)]
, (22)

where C⋆
T (.) represents the optimal annual health care utilization and the function kj(.) maps this

dollar amount to the portion covered by the provider under the rules of contract j.

Finally, the social welfare generated by allocating a type-h family to contract j is the sum of

family and provider welfare. To define a measure of social welfare that does not depend on family

income, I follow the literature (see e.g., Ho and Lee (2021) and Marone and Sabety (2021)) and

measure social welfare relative to full insurance, which can be expressed as the difference between

willingness to pay and expected insurer cost:53

RSShj(βh) =WTPhj(βh)− Eν

[
kj
(
C⋆
T (ν;βh, j)

)
− C⋆

T (ν;βh, full)
]
. (23)

To aggregate the welfare measure across all families according to a utilitarian social welfare function,

I define the average relative social welfare across all families for contract j:

RSSj(β,θ) =
H∑

h=1

θh ×RSShj(βh). (24)

Decomposition of Relative Social Welfare. I extend the discussion in Azevedo and Gottlieb

(2017) and the generalization in Marone and Sabety (2021) and show that relative social welfare,

RSShj(βh), can be decomposed in three terms: (1) the value of risk protection, (2) the social cost of

static moral hazard, and (3) the social cost of dynamic moral hazard. This last component is novel

51ũ⋆(ν;βh, j) =
∑T

t=1((c
⋆
t − νt)− 1

2ω
(c⋆t − νt)

2 −OOP (c⋆t , Ct−1; j)).
52Equation (21) highlights that in this setup, the design of an optimal employer-sponsored insurance plan and the

choice of how much to contribute towards employee premiums are separable problems for the employer, as long as
employer contributions take the form of a fixed dollar amount.

53Note that because of the CARA assumption, premiums are transfers that do not affect social welfare.
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to the literature and captures that a potentially important part of the welfare gains thought to

be achieved by moving families away from full insurance are not actually realized because families

anticipate reaching the deductible and/or the cap and adjust utilization accordingly.

The social welfare generated by allocating a type-h family to contract j (relative to allocating

the same family to the free-care contract) can also be written as:

RSShj(βh) = Ψ(j,βh)︸ ︷︷ ︸
Relative value of
risk protection

−

[
Eν

[ T∑
t=1

ωh

2
p⋆thj

(
p⋆thj − 2

)]
︸ ︷︷ ︸

Relative social cost of
static moral hazard

+Eν

[ T∑
t=1

ωh

2

(
(s̃p⋆thj − 1)2 − (p⋆thj − 1)2

)]
︸ ︷︷ ︸

Relative social cost of
dynamic moral hazard

]
,

(25)

where p⋆thj represents the spot price of care and s̃p⋆thj is the shadow price of care from equation

(10), evaluated at the optimal health care utilization level.54

Premium Setting. As in Ho and Lee (2021), I require that insurance premiums cover families’

total expected health care utilization, net of out-of-pocket payments that they make in the form of

deductibles or coinsurance.55

Following the welfare decomposition in equation (25), three forces shape the design of health

insurance contracts. Two of them are standard in the literature: risk protection and static moral

hazard. In general, these forces go in opposite directions: more generous contracts provide higher

protection against health risks but at the same time induce consumers to purchase additional care

that they would not have bought had they faced the full cost. The third force is dynamic moral

hazard, which is new to the discussion of how to manage the spending coverage trade-off. As the

probability of exceeding the deductible/OOP limit increases, families internalize this and purchase

more health care than they otherwise would. As I illustrate below, the presence of dynamic moral

hazard can severely dampen the welfare gains associated with higher cost-sharing and plays a crucial

role, distinct from static moral hazard, in determining optimal insurance contract design. In what

follows, I analyze the deductible, coinsurance rate, OOP limit, and resetting time (for deductibles

and OOP limits) that maximize average welfare when the employer only offers a single plan. I

define the annual deductible in $250 increments between $0 and $2000, the level of coinsurance

to vary from 0-100 percent in 10 percent increments, annual OOP maximum ranges from $0 (full

insurance) to $2000 in $250 increments, and resetting times at either 3, 6, or 12 months. All dollar

amounts are expressed in 1973 dollars.56

54In Appendix G, I provide details about how to arrive from the definition of relative social welfare in equation
(23) to the decomposition in equation (25).

55These premiums are before loading costs. When loading costs are passed on to consumers, they are just transfers
from the agents to the insurer. Therefore, loading costs do not affect average welfare.

56I refer to deductibles and OOP limits corresponding to those in the metal-tiered plans (i.e., Gold, Silver, Bronze)
offered on Affordable Care Act exchanges as “low”, “middle”, and “high”, respectively. The deductibles, coinsurance
rates, and out-of-pocket maximums in 2016 were $1,169, 21%, $2,564 for Gold; $3,060, 34%, $4,872 for Silver; and
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7.2 The determinants of the optimal deductible size

High deductible health plans have become increasingly common. In 2020, 31 percent of workers

in the U.S. with employer-sponsored insurance were in such plans (Kaiser Family Foundation). To

better understand the role played by the deductible, I fix the resetting time at the standard twelve-

months level and study the optimal deductible size for different caps on OOP spending. I analyze

two levels of OOP limits: a low-cap scenario, where I set the annual cap at $750, and a high-cap

scenario, where I set the cap at $1500. In Figure 9, I plot the average social welfare from low-

cap (left panel) and high-cap (right panel) plans with different deductible sizes as a function of the

coinsurance rate, relative to full insurance. I find that under a low-cap plan, a zero-dollar deductible

would be optimal, paired with a 40 percent coinsurance rate after the deductible. However, under

a high-cap contract, a $750 deductible would be optimal, also paired with a 40 percent coinsurance

rate after the deductible.

Figure 9: Change in Average Social Welfare, Relative to Full Insurance

(a) Low cap on OOP spending (b) High cap on OOP spending

To assess the role that each welfare component plays behind these findings, I fix the coinsurance

rate at 40 percent and take advantage of the welfare decomposition in equation (25). Figure 10(a)

shows each welfare component as a function of the deductible size under the low-cap scenario. Clear

bars represent the average welfare due to static moral hazard, relative to full insurance. Since full

insurance is the most generous plan, this component is always non-negative. As one would expect,

the gains from static moral hazard are increasing in the deductible as families bear a higher portion

of the bill.

Gray bars represent the average welfare due to dynamic moral hazard, relative to full insurance.

This component is always non-positive under typical health insurance contracts, as consuming more

$5,771, 48%, $7,436 for Bronze. In 1973 dollars, the deductibles and out-of-pocket maximums are $210, $461 for
Gold; $550, $876 for Silver; and $1,038, $1,337 for Bronze.

40



Figure 10: Welfare Decomposition Relative to Full Insurance

(a) Low cap on OOP spending (b) High cap on OOP spending

today reduces future expected prices. It has the biggest gradient with respect to the deductible due

to two mechanisms that reinforce each other. Higher deductibles increase OOP spending relative

to total utilization, which increases the likelihood of hitting the cap. Forward-looking families

respond by increasing utilization. In turn, both of these forces increase the expected number of

periods spent above the deductible/cap which in turn increases utilization due to the lower prices

faced after exceeding the deductible/cap. Therefore, a zero-dollar deductible, which minimizes

these forces, achieves the minimum welfare loss due to dynamic moral hazard.

Lastly, black bars represent the average welfare due to risk protection, relative to full insurance.

Since full insurance provides full protection against risks, this component is always non-positive.

The loss due to decreased risk protection is small and roughly constant across deductible sizes

because most of the risk protection comes from the low cap.

Combining the three welfare components, the dashed line represents average relative social

welfare as a function of the deductible size. The big losses from dynamic moral hazard more

than offset the gains from static moral hazard as the deductible increases, which makes zero-dollar

deductibles optimal under low-cap contracts. Average social welfare increases $237 per year relative

to full insurance, which represents 16 percent of the annual premium in full insurance, and average

annual health care utilization decreases 20 percent compared to full insurance. To further highlight

that dynamic moral hazard plays a key role in making zero deductibles optimal under a low-cap

scenario, I shut down dynamics and re-rank plans according to welfare. I find that a zero-dollar

deductible is no longer optimal. The optimal deductible is $250, and even a $500 deductible achieves

higher welfare than a zero deductible (absent dynamic moral hazard).

In contrast, for high caps on OOP spending, the optimal deductible size is no longer zero. Figure

10(b) presents the welfare decomposition for the high-cap scenario as a function of the deductible
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size. The main difference with the low-cap scenario is that under the high cap, the likelihood of

hitting the cap is significantly smaller. This reduces the difference between the spot price and the

shadow price, thus lowering the losses due to dynamic moral hazard, which were penalizing higher

deductibles in the low-cap scenario. The losses from dynamic moral hazard are still increasing in

the deductible, but smaller. The losses from decreased risk protection are more important now,

and even bigger than the losses from dynamic moral hazard. As a result, the static moral hazard

gains from higher deductibles drive the optimal deductible to $750. Social welfare is $312 higher

and annual health care utilization is 33 percent lower compared to full insurance.

In summary, I find that zero-dollar deductibles are optimal for low to medium caps, while for

high caps on OOP spending, high deductibles are welfare-maximizing. The first result coincides

with the findings in Ho and Lee (2021), who focus on fairly generous (low) OOP maximums. The

second result highlights that the optimal deductible size depends importantly on the cap on OOP

spending, precisely due to the presence of dynamic moral hazard.

7.3 The determinants of the optimal coinsurance rate

To study how average welfare changes with the coinsurance rate, I continue to fix the resetting time

at twelve months and set the cap at the high level ($1,500). Figure 11 depicts the welfare decom-

position from equation (25) as a function of the coinsurance rate, under a zero-dollar deductible

(left panel) and a high deductible ($750, right panel).

Figure 11: Welfare Decomposition Relative to Full Insurance

(a) Zero deductible (b) High deductible

Under a zero-dollar deductible (Figure 11(a)), the gains from static moral hazard are increasing

in the coinsurance rate because consumers’ cost-sharing is increasing. The welfare losses from

dynamic moral hazard are also increasing in the coinsurance rate, because higher coinsurance rates
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allow forward-looking families to approach the cap at a faster rate. However, their magnitude is

small due to the combination of zero deductible and high cap, and thus static moral hazard plays

the dominant role. The losses due to decreased risk protection increase with the coinsurance rate as

families pay a higher proportion out-of-pocket, but the magnitudes are also small relative to static

moral hazard. Thus, static moral hazard drives the optimal coinsurance rate, which is 80 percent.

For the high-deductible scenario (Figure 11(b)), the picture is quite different. First, the gains

from static moral hazard are significantly flatter across coinsurance rates, compared to the zero-

deductible scenario. The reason is that the high deductible discourages health care demand, so even

very low coinsurance rates after the deductible accrue big gains from static moral hazard. The loss

in risk protection is increasing in the coinsurance rate, which pushes the optimal coinsurance rate

down. However, for very low coinsurance rates, the losses due to dynamic moral hazard are now

sizable. This is because now the dynamic moral hazard effect operates through two thresholds, the

deductible and the cap, as opposed to just the cap in Figure 11(a). Under this new mechanism,

low coinsurance rates make hitting the deductible very appealing. As a consequence, the shadow

price decreases and utilization increases. The optimal coinsurance rate is 40 percent.

In summary, there are two main takeaways from this section. First, the optimal coinsurance

rate and deductible are negatively related, as they are substitutes in providing the incentives to

achieve welfare gains from static moral hazard, relative to full insurance. Second, under typical

health insurance contracts that feature a deductible and a cap, dynamic moral hazard operates

distinctively through these two thresholds. As a consequence, very low and very high coinsurance

rates exacerbate the losses from dynamic moral hazard.

7.4 The determinants of the optimal cap on OOP spending

I now turn to the determinants of the optimal cap on OOP spending again fixing the resetting time

at twelve months. I only focus on the high-deductible ($750) scenario, but the results for other

deductibles are similar both qualitatively and quantitatively. In Figure 12(a), I plot the average

social welfare from high-deductible plans with different caps on OOP spending as a function of the

coinsurance rate, relative to full insurance. The first takeaway is that pure stop-loss contracts57 are

never optimal, irrespective of the coinsurance rate (and the deductible size, not shown). This can

be seen by comparing the welfare level of the straight horizontal line, with the other curves in the

plot. The second takeaway is that the optimal cap on OOP spending lies within the range of high

caps for all coinsurance rates, but not very high (below $1750). The optimum across coinsurance

rates occurs at a cap of $1500.

To unpack the contribution of each welfare component, I fix again the coinsurance rate at 40

57Pure stop-loss contracts have no insurance up to a point, and full insurance thereafter, so that the deductible
and the cap on OOP spending coincide.
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Figure 12: Change in Average Social Welfare Relative to Full Insurance

(a) High deductible (b) High deductible - 40 percent coinsurance rate

percent, and present in Figure 12(b) the welfare decomposition as a function of the cap on OOP

spending. The losses due to decreased risk protection are increasing in the cap since large caps leave

families more exposed to health risks. Welfare gains from static moral hazard are also increasing

in the cap because consumers’ cost-sharing is increasing. Finally, the losses due to dynamic moral

hazard are decreasing in the cap, as higher caps are less likely to be reached, thus decreasing the

incentives to increase spending. Interestingly, the cap on OOP spending is the only contract feature

for which the impact of static and dynamic moral hazard on welfare go in the same direction. This

is why pure stop-loss contracts, in which the deductible and the cap coincide, are never optimal.

Ultimately, the trade-off between net moral hazard and risk protection determines the optimal cap,

achieved at $1500 (classified as high) under the high-deductible scenario.

So far I have studied the three popular cost-sharing features while fixing the resetting time

at the standard twelve-months level. The overall optimal plan features a high deductible, 40

percent coinsurance rate after the deductible, and a high cap on OOP spending (equal to twice the

deductible).58 Under this optimal plan, average social welfare increases $312 per year relative to

full insurance, which represents 21 percent of the annual premium under full insurance. Moreover,

annual health care utilization is 33 percent lower compared to full insurance, on average.

7.5 Optimal resetting time for deductibles and OOP limits

Finally, I examine the impact of varying the timespan over which deductibles and OOP limits reset

(six versus twelve months) holding fixed the contract length at the annual level. When I compare

58The optimal deductible size is consistent with the average family deductible in the so-called High-Deductible
Health Plans (HDHP) in employer-sponsored settings in 2020, which was $4552 in 2020 dollars (or $752 in 1973
dollars). Source: Employer Health Benefits, 2020 Survey, Kaiser Family Foundation.

44



welfare between these policies, I adjust the deductible and cap proportionally to the resetting time.

For instance, if I fix the standard deductible at $1000, I compare welfare between a $500 deductible

that resets every six months and a $1000 deductible that resets every twelve months.

Shorter resetting times provide more risk protection through smaller caps. The consumers’

financial losses from medium to severe health shocks are more likely to be capped under shorter

resetting times.59

A change in the resetting time for deductibles and caps may exacerbate or hinder static moral

hazard. Intuitively, in the first six-month period there is (weakly) more overspending due to static

moral hazard under a six-month resetting contract than a standard resetting contract. In the last

six-month period, static moral hazard in the six-month resetting policy is the same as in the first

six-month period, on average. However, under a standard resetting policy, the overspending due

to static moral hazard in the last six-month period is (weakly) higher than in the first six-month

period. Which resetting policy leads to higher overspending due to static moral hazard ultimately

depends on the empirical distribution of health shocks. Relatively healthy people overspend more

due to static moral hazard under shorter resetting times, while the opposite is true for relatively

sick families.

At the family level, the optimal resetting time for deductibles depends on (a) the deductible

size, and (b) the family’s health status and price sensitivity. In general, relatively healthy families

achieve higher welfare in longer resetting times, while relatively sick families have higher welfare in

shorter resetting times. This is because sick families, who anticipate reaching the deductible with

high probability, induce bigger losses from dynamic moral hazard in longer resetting times.

At the aggregate level, I find that the six-months resetting deductible policy is welfare-maximizing

because it limits the escalation of dynamic moral hazard. Figure 13(a) shows the average welfare

for pure-deductible plans as a function of the deductible size, relative to full insurance. The figure

shows that the six-months deductible achieves higher welfare for all deductible sizes, on average. In

Figure 13(b) I fix the annual deductible at $500 (medium size) and plot the welfare decomposition

from equation (25) for the two resetting policies. In this case, the gains from static moral hazard

(clear bars) and the losses from risk protection (black bars) are similar between the two policies.

However, the gray bars show that the twelve-months deductible is associated with bigger losses due

to dynamic moral hazard, so the six-months deductible achieves higher welfare. In general, the

gains from static moral hazard increase in the resetting time, while both the losses from dynamic

moral hazard and the losses from risk protection worsen with the resetting time. This trade-off

assures an interior solution for the optimal resetting time.

Longer resetting times induce bigger welfare losses due to dynamic moral hazard because families

59In general, the financial losses from severe health shocks are equally likely to be capped under shorter or standard
resetting times.
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Figure 13: Welfare under deductibles that reset after six versus twelve months

(a) High deductible, high cap on OOP spending (b) High deductible, high cap on OOP spending

enjoy more periods above the deductible per year, on average. The longer the resetting time for the

deductible, the more appealing it is to reach it soon because the family will enjoy the benefits of

being above the deductible for more periods.60 As a consequence, in the standard deductible policy,

families spend more in health care when they are under the deductible, which puts them above

the deductible proportionally earlier than in the six-months resetting policy, enjoying more periods

in free care. For example, families enjoy 10.4 weeks above the $500 deductible in the standard

policy, and only 9.1 weeks above the $250 deductibles in total in the two consecutive six-months

resetting policies. This behavior leads to bigger welfare losses from dynamic moral hazard in the

twelve-months resetting deductible policy.

To summarize, I find that the optimal resetting time is heterogeneous across the distribution

of health risks and that shorter-than-standard resetting times are associated with higher welfare

precisely due to their smaller losses from dynamic moral hazard. This last finding suggests that

abstracting from dynamic moral hazard would favor longer resetting times, which provides an

answer to the more fundamental question of why deductibles and OOP limits at shorter frequencies

are not offered. Finally, whether or not different resetting times might coexist in the market would

be an interesting avenue for further research.

8 Conclusion

In this paper, I study a new source of moral hazard that has been overlooked in most of the prior

literature, mainly due to the use of annual models to study health care utilization decisions. I label

60Abstracting from truncation at zero, the utility function in equation (3) implies that for every period above the
cap, a family enjoys positive utility equal to ω/2.
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this source as dynamic moral hazard to contrast with the traditional moral hazard present in static

and annual models of health care demand. Under the typical nonlinear pricing scheme generated

by the presence of deductibles and consumers’ out-of-pocket limits in health insurance contracts,

current health care utilization lowers future expected prices. Using data from the RAND Health

Insurance Experiment, I show that families respond to these dynamic pricing incentives through

two mechanisms: distance to the cap and time left until the contract resets. I then build and

estimate a dynamic model of health care demand that incorporates consumer heterogeneity along

multiple and flexible-correlated dimensions. Using my model and estimates, I document that 40

percent of total moral hazard can be attributed to the dynamic moral hazard component.

Finally, I explore the impact of these dynamic incentives and the associated dynamic moral

hazard on welfare and optimal health insurance design in the context of employer-sponsored health

insurance. I show that the presence and significance of dynamic moral hazard have important

implications, distinct from static moral hazard, for health care demand, optimal health insurance

design, and costs of the health care sector. For example, a standard approach to curbing the social

cost of moral hazard is to increase consumer cost sharing. Following this rationale, there is a recent

trend towards offering high deductible plans. My results imply that introducing high deductibles is

an efficient measure of cost containment only if the caps on consumers’ out-of-pocket spending are

not too close to the deductibles. Otherwise, dynamic moral hazard severely dampens the savings

thought-to-be-achieved due to static moral hazard.
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Appendix A Experimental enrollment dates by site

The RAND HIE defined a contract year as the 12-month period following each anniversary of the

enrollment date. The staggered enrollment dates provide the variation needed to separate the effect

of time trends and seasonal demand shocks on the timing of health care utilization decisions.

Table A1: Enrollment dates

Dayton Seattle Massachusetts South Carolina

11-01-74 01-01-76 07-01-76 11-01-76 (5 yr.)
12-01-74 02-01-76 08-01-76 12-01-76 (5 yr.)
01-01-75 03-01-76 09-01-76 12-31-76 (5 yr.)
02-01-75 04-01-76 10-01-76 01-31-77 (5 yr.)

05-01-76 11-01-78 (3 yr.)
06-01-76 12-01-78 (3 yr.)
07-01-76 01-01-79 (3 yr.)
08-01-76 02-01-79 (3 yr.)
09-01-76

Note: The three-year and five-year groups enrolled at the
same times in the locations above, and thus exited two
years apart. In South Carolina, the three-year and five-
year groups enrolled two years apart and exited at the same
time.
Source: Table 4, Codebook 208, Newhouse (1999).

Appendix B Beginning- and end-of-experiment effects

Families enrolled in the RAND HIE were informed before they agree to participate that the exper-

iment would end after either 3 or 5 years (randomly assigned before the start of the experiment).

This might induce an increase in utilization during the last year of the experiment. Once the

experiment is over, enrolled families would most probably return to the insurance plans they had

before. Families assigned to full insurance during the experiment would be weakly worse off after

the experiment ends, since their experimental plan was probably the most generous plan avail-

able in the market. For those enrolled in cost-sharing plans, there is some probability that their
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before-the-experiment plans were less generous compared to their experimental plan, so they would

potentially be worse off once the experiment ends. Similar reasoning applies to the first year of the

experiment.

The presence of transitory effects on the demand of health care is not unique to RCTs. Using

data from a large self-insured firm, Brot-Goldberg et al. (2017) find that consumer health care

utilization ramps up at the end of the year after which a required plan shift from full insurance to a

less generous plan took place. They use the term anticipatory spending to describe the extra health

care utilization by consumers before the required plan switch actually occurred, when health care

was cheaper. In the context of the RAND HIE, the presence of transitory effects has been overlooked

until recently. To my knowledge, Lin and Sacks (2019) is the first to document graphically that

health care utilization in the RAND HIE free-care plan ramps up over the last months of the

experiment. In a concurrent work, Devereux et al. (2019) use the term deadline effect to describe

a spike in health care utilization in the final year of the RAND HIE.

In my context, identifying the presence of beginning- and end-of-experiment effects is important

for obtaining a true impact of dynamic moral hazard in health insurance contracts. Without

recognizing the presence of an end-of-experiment effect, for example, my estimates of how weekly

utilization changes as the end of the contract nears could potentially be positive, contradicting the

implication from my model of forward-looking families, on average and ceteris paribus. To uncover

the presence of these transitory effects, I introduce first and last contract year fixed effects to the

empirical specification of Aron-Dine et al. (2013).

As a baseline, first consider their empirical framework:

yiq = λp + τt + αlm + ϵiq, (26)

which estimates a set of HIE plan p effects given by λp on several measures of health care utilization

y for individual i in contract year q. Because plan assignment was only random conditional on

location and enrollment month, the specification includes a full set of location l by start month m

interactions, αlm. Calendar year fixed effects, τt, account for any underlying time trend in the cost

of health care. Because plans were assigned at the family rather than individual level, all regression

results cluster the standard errors on the family.

Now define by Termi the enrollment term for individual i, with Termi ∈ {3, 5}. I introduce

two dummy variables to capture the beginning- and end-of-experiment effects in the first and last

contract year, respectively, in the following equation:

yiq = λp + ι× 1(q = 1) + δ × 1(q = Termi) + τt + αlm + ϵiq, (27)
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where the parameters ι and δ capture the additional health care utilization in the first and last year

of the experiment, respectively, compared to middle years. I limit the sample to non-attriters and

exclude infants born during the experiment, who enter the experiment as part of the family unit.

This ensures a balanced panel. I also exclude the first contract year from Dayton, Ohio, because

some health services were treated differently.

Table A2 reports the results based on estimating equation (27) for various measures of health

care utilization. In column 1, the dependent variable is the amount of annual health care utilization

(in 2011 dollars). I fail to detect any transitory effect in health care utilization when I aggregate all

health care categories. This is consistent with some early technical reports by the original RAND

investigators. I find that it is necessary to disaggregate utilization by inpatient versus outpatient

health care services in order to uncover a significant end-of-experiment effect. Column 3 shows that

individuals increase outpatient health care utilization by $203 in their last year of the experiment,

relative to middle years, on average. For this reason, I exclude from the estimation sample the last

contract year.

Table A2: Beginning- and end-of-experiment effects

(1) (2) (3)

Total
utilization

in
2011 $

Inpatient
utilization

in
2011 $

Outpatient
utilization

in
2011 $

First Contract Year -71.14 -159.12 87.03
(150.60) (127.80) (69.68)

Last Contract Year 189.70 -13.38 203.27∗∗∗

(130.87) (108.17) (55.59)

Adjusted R2 0.011 0.004 0.030
Site x enrol. Y Y Y
Cal. years fe Y Y Y
Family fe N N N
Clustered se Y Y Y
Families 2076 2076 2076
N 12535 12535 12535

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Table A2 reports selected least-squares coefficients esti-
mates from equation (27). Standard errors, clustered on family, are
in parentheses below the coefficients. All spending variables are in-
flation adjusted to 2011 dollars (adjusted using the CPI-U). Site by
start month and calendar year dummy variables are de-meaned so
that the coefficients reflect estimates for the “average” site-month-
year mix.
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Appendix C Model properties of the shadow price of care

Appendix D Econometric Details

D.1 Step 1: Solving the Model

As I describe in Section 5 of the main text, in the first step of the estimation algorithm, I solve the

dynamic problem for a large number of types, once for each type, and store the optimal policy.

For a plan, k, and family type, h, I solve the finite-horizon dynamic program recursively. To

do so, I discretize the Ct state to a grid of 1,000 points with spacing of size ∆c dollars. Time

is naturally discrete (t = 1, 2, . . . , 52 over a contract year with T = 52 weeks) for my weekly

data. These discretizations leave νt as the only continuous state variable. Because the family does

not know νt prior to period t, I can integrate it out and the solution to the dynamic programming

problem for each type of family can be characterized by the expected value functions, E[Vhkt(Ct−1)],

and policy functions, E[c⋆hkt(Ct−1)]. To perform the numerical integration over the bounded support

of νt, [0, ν], I use adaptive Simpson quadrature.

Having solved the dynamic program for a family of type h, I generate the transition process for

the state vector implied by the solution. The transition probabilities between the 52,000 possible

states (1000 x 52) are implicitly defined by threshold values for νt. For example, consider a family

of type h on plan k, that has consumed Ct−1 prior to period t. The threshold, νt(z), is defined as

the value of νt that makes a family indifferent between consuming z units of size ∆c dollars and

z + 1 units, such that the marginal utility (net of any out-of-pocket expenditures) of an additional

unit of consumption

uh
(
(z + 1)∆c, yt, νt(z); k

)
− uh

(
z∆c, yt, νt(z); k

)
is equated to the loss in the net present value of future utility

E
[
Vhk(t+1)

(
Ct−1 + (z + 1)∆c

)]
− E

[
Vhk(t+1)

(
Ct−1 + z∆c

)]
.

These thresholds, along with all families’ initial condition (C0 = 0), define the transition process

between states. For each family type h and plan k, I characterize this transition process by the

CDF of cumulative health care consumption that it generates,

Γhkt(C) = Prob(Ct−1 < C),

the proportion of families that have consumed less than C through period t of the contract year.
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Figure 14: Model properties of the shadow price of care

(a) Shadow price, low variance of Fν , low ω
(b) Expected future demand, low variance of Fν , low
ω

(c) Shadow price, high variance of Fν (d) Expected future demand, high variance of Fν

(e) Shadow price, high ω (f) Expected future demand, high ω
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Due to the discretized state space, Γhkt(C) is a step function.

D.2 Step 2: Estimation

The second step of my estimation approach matches empirical moments I recover from the data to

those predicted by my model by choosing weights for each family type.

As I describe in Section 5 in the main text, my estimates of the weights are chosen to maximize

the objective function. I set the weighting matrix V̂ −1 equal to the identity matrix.

To recover the cumulative distribution of Ct−1 for each contract week t and plan k, I use a

smooth version of a simple Kaplan-Meier estimator,

Γ̂kt(C) =
1

Nk

Nk∑
i=1

1[Ci(t−1) < C],

where Nk denotes the number of family-years in plan k and C represents each of the points of the

discretized state Ct−1. I estimate these moments for each k and t, considering values of C such

that Γ̂kt(C) ∈ [0, 1], ensuring that I fit the tails of the annual health care utilization distribution.

I recover the moments of health care utilization at each state by estimating a smooth surface

using a nearest-neighbor approach. Consider a point in the state space, (Ct−1, t). A neighbor is

an observation in the data for which the family is t weeks into the contract year and cumulative

health care utilization up until contract week t is within five percent of Ct−1. Denote the number of

neighbors by Nkt(Ct−1). Then, I estimate the conditional (on reaching the state) mean at (Ct−1, t)

using

Ê[c⋆kt(Ct−1)] =
1

Nkt(Ct−1)

Nkt(Ct−1)∑
i=1

ci,

where i ∈ {1, . . . , Nkt(Ct−1)} indexes the set of nearest neighbors. If Nkt(Ct−1) > 500, I use those

500 neighbors nearest to Ct−1. Note that this gives me the average expenditure conditional on a

family arriving at the state. To recover the unconditional mean, I multiply Ê[c⋆kt(Ct−1)] by the

probability of observing a family at state (Ct−1, t), recovered from the estimated CDF of cumulative

expenditure.

I estimate both moments at the same set of state space points used when numerically solving

the dynamic programming problem for each family type. This results in 104,000 moments for each

plan of the 10 plans, or 10 x 104,000 = 1,040,000 moments in total.

56



D.3 The choice of moments

Following Nevo et al. (2016), I recover the first set of moments at each state by estimating a

smooth surface using a nearest-neighbor approach. Consider a point in the state space, (Ct−1, t).

A neighbor is an observation in the data for which the family is t weeks into the contract year

and cumulative health care consumption up until week t is within five percent of Ct−1. Denote the

number of neighbors by NNkt(Ct−1). Then, I estimate the unconditional (on reaching the state)

mean at (Ct−1, t) using

m̂dat
k,1 (C, t) =

Prob
(
Chk(t−1) = C, t

)
N
(
Cdat
k(t−1) = C, t

) N
(
Cdat

k(t−1)
=C,t

)∑
i=1

cdatikt .

D.4 Bootstrap Procedure for Inference

As described in Lahiri (2003), the basic idea behind the bootstrap method is to recreate the

relation between the population and the sample using the sample itself. For dependent data,

the most common approach to this problem is to resample “blocks” of observations instead of

single observations, which preserves the dependence structure of the underlying process within the

resampled blocks.

My block-bootstrap estimator proceeds with the following repeated procedure:

1. I first draw an alternative dataset sampling with replacement at the family-year level. Specif-

ically, I sample the data by family-year with replacement, keeping all 52 weeks for each

family-year drawn. The new dataset has the same number of family-years as the original

data.

2. I then use this new dataset to recalculate the proportion of family-years in each plan. These

plan weights will be useful for recovering the overall distribution of heterogeneity.

3. For each plan k = 1, . . . , 10 separately, I recalculate the inputs to the moments, mdat
k , and

then re-estimate the structural parameters of my model, i.e., the plan-specific weights θ̂k.

4. Finally, I calculate the overall type distribution by weighting each θ̂k with the corresponding

proportion of family-years in plan k and summing across plans.

For a given type h, the bootstrap confidence interval with 1−α coverage can be constructed as

CI(1−α)% =

[
θ̂h − q⋆h

(
1− α

2

)
, θ̂h − q⋆h

(
α

2

)]
, (28)
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where q⋆h is the quantile function of θ̂⋆h − θ̂h.

I report results from 1,000 bootstrap draws.

Appendix E Details about the construction of the grid of family types

I use the method of good lattice points to generate a finite collection of points in the five-dimensional

space of type heterogeneity. This method was proposed by Korobov (1959) for numerical evaluation

of multivariate integrals. The basic idea of a quasi-Monte Carlo method is to replace random

samples in a Monte Carlo method by well-chosen deterministic points. The criterion for the choice

of deterministic points depends on the numerical problem at hand. For the important problem of

numerical integration, the selection criterion is easy to find and leads to the concepts of uniformly

distributed sequence and discrepancy. The discrepancy can be viewed as a quantitative measure

for the deviation from uniform distribution.

E.1 Discrepancy

The concept of discrepancy provides a measure of how dispersed a collection of points is. Let

xj ∈ I ≡ [0, 1], j = 1, . . . , N , be a sequence of scalars. If S ⊂ I, define the cardinality of a set X

in a set S, card(S ∩X), to be the number of elements of X which are also in S. Following Judd

(1998), I define a notion of discrepancy for finite sets.

Definition E.1 (Niederreiter, 1992) The star discrepancy D⋆
N of the set X ≡ {x1, x2, . . . , xN} ⊂

[0, 1] is

D⋆
N (X) = sup

0≤t≤1

∣∣∣∣card([0, t) ∩X)

N
− t

∣∣∣∣.
Note that 0 ≤ D⋆

N (X) ≤ 1 always. This definition allow us to measure the deviations from

uniformity of sets. Even though a continuum of intervals is used in the definition, we need only to

check open intervals of the form (0, xl), 1 ≤ l ≤ N . In the one-dimensional case, a simple explicit

formula for D⋆
N (X) can be given.

Theorem E.1 (Niederreiter, 1992) If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1, then

D⋆
N (X) =

1

2N
+ max

1≤n≤N

∣∣∣∣xn − 2n− 1

2N

∣∣∣∣.
Proof. See Theorem 2.6 in Niederreiter (1992).

It follows from the theorem that we always have D⋆
N (X) ≥ 1/(2N), and equality holds if xn =

(2n − 1)/(2N) for 1 ≤ n ≤ N . This implies that in the one-dimensional case, the minimum of
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the star discrepancy D⋆
N (X) is 1/(2N) and the classical N-panel midpoint rule for the interval

[0, 1] achieves this bound. Thus, for low-discrepancy sets in the one-dimensional case, quasi-Monte

Carlo methods are not so important. Below I consider the concept of star discrepancy in the

multidimensional case.

Definition E.2 (Niederreiter, 1992) The star discrepancy D⋆
N of the set X ≡ {x1, x2, . . . , xN} ⊂

Id is

D⋆
N (X) = sup

0≤t1,...,td≤1

∣∣∣∣card([0, t1)× · · · × [0, td) ∩X)

N
−

d∏
j=1

tj

∣∣∣∣,
where Id is the closed d-dimensional unit cube.

A small discrepancy says that the set evenly fills up the hypercube Id. A set of points X

consisting of N elements of Id is called a low-discrepancy set if D⋆
N (X) is small.

E.2 The method of good lattice points

The good lattice point method was proposed by Korobov (1959) for numerical evaluation of multi-

variate integrals. The method of good lattice points begins with an integer N and a vector of good

lattice points g ∈ {0, 1, . . . , N − 1}d, forms the finite collection of points

xl =

{
l

N
g

}
, l = 1, . . . , N, (29)

and computes the quasi-Monte Carlo approximation

∫
Id
f(x)dx =̇

1

N

N∑
l=1

f(xl), (30)

where the expression {z} denotes the fractional part of z.61 The task is to find combinations of N

and g such that the approximation in equation (30) is good. In other words, we want to minimize

the error in the approximation of equation (30), which can be written as

R =

∣∣∣∣ ∫
Id
f(x)dx− 1

N

N∑
l=1

f(xl)

∣∣∣∣
The value of R is closely related to the star discrepancy D⋆

N (X), if F (x) satisfies certain conditions.

The error analysis for quasi-Monte Carlo integration in Niederreiter (1992) has demonstrated that

small errors are guaranteed if sets with small star discrepancy are used. From the view point of

61The fractional part of z is formally defined by {z} ≡ z −max{k ∈ Z|k ≤ z}.
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numerical analysis, we demand not only the star discrepancy of X should be low but also the set

of points X should be convenient for computation.

Good choices of N and g are difficult to compute (Judd, 1998). A strategy pursued by Korobov

and others is to examine lattice points that are simply generated and evaluate their performance

in integrating certain test functions with known integrals. One test function that is particularly

valuable is

F (x) =
d∏

j=1

(
1− π2

6
+
π2

2
(1− 2{xj})2

)
,

which is defined on Id and integrate to 1. Note that F is the function in the class of functions having

Fourier series in Id whose Fourier coefficients converge at the slowest possible rate. Korobov (1959)

proposes an algorithm for finding lattice points by minimizing R for the function F (x). Keast

(1973) extends this algorithm and proves that the lattice points obtained are optimal in Korobov’s

sense. He first chooses J distinct primes, pj , j = 1, . . . , J , and lets their product p be the sample

size N in equation (29). He then chooses a sequence of integers aj , j = 1, . . . , J . First, a1 is chosen

to minimize

H1(a) ≡
3d

p1

p1∑
k=1

d∏
j=1

(
1− 2

{
k
aj−1

p

})2

over a ∈ {1, . . . , p1 − 1}. More generally, for l = 1, . . . , J , al minimizes

Hl(a) ≡
3d

p1 . . . pl

p1...pl∑
k=1

d∏
j=1

(
1− 2

{
k

(
aj−1
1

p1
+ · · ·+

aj−1
l−1

pl−1
+
aj−1

p

)})2

for a ∈ {1, . . . , pl − 1}. The Keast good lattice point g is then defined to be

gj =
J∑

l=1

p

pl
aj−1
l , j = 1, . . . , d.

As pointed out in Judd (1998), there is no assurance that the approximations are monotonically

better as we increase p, the number of points. Therefore, in constructing a sequence of lattice

formulas, one should keep only those formulas that do better in integrating F (x) than formulas with

fewer points. HJ(g) serves as a performance index to rank various lattice point rules. Fortunately,

there exist tables of good lattice points, g, for specific sample sizes N and dimensions d. The good

lattice points have the form gd = (1, gd2 , . . . , g
d
d) ∈ Rd.62

62See e.g., Table 9.4 in Judd (1998), Tables 1 and 2 in Bourdeau and Pitre (1985), and Hua and Wang (2012).

60



E.3 Implementation

I use the method of good lattice points to generate a finite collection of points in the five-dimensional

space of type heterogeneity. Following Table 9.4 in Judd (1998) which was made according to

Keast’s method, I fix N = 1, 069 and d = 5, and find the vector of good lattice points g =

(1, 63, 762, 970, 177). Using equation (29), I then construct the grid of 1,069 points within the [0, 1)

hypercube of dimension five. The last step is to redefine the bounds of the [0, 1) hypercube to

capture the support of each dimension of heterogeneity.

Appendix F glp method versus tpp method: Monte Carlo Evidence

Up until now I have only highlighted one of the main advantages of the glp method: better coverage

of the parameter space. However, there is another benefit of using glp versus tpp: computational

efficiency. Next, I perform a small Monte Carlo exercise to illustrate the gains in computational

time, without any loss in precision. To do that, I compare the performance of the good-lattice-

points grid versus the tensor-product-points grid within the context of this paper. I fix the number

of family-years to 300, and use M = 100 replications. I generate data using two alternative

distributions F (β) for the random coefficients. In the first design, the true distribution has the

first three characteristics (i.e., µ, σ and κ) heterogeneous across types but correlated within type,

and the remaining two components of the type-space are homogeneous across all types. In the

second design, all five characteristics of the true distribution are heterogeneous across types and

uncorrelated within type. In both designs the underlying true CDF has continuous support.

I use health care consumption data at the family-week-year level, where the true data generating

process is the dynamic stochastic model in Section 4. For each fake data set, I compute the moments

in Section 5.2 and estimate a type distribution F̂ (β) by matching the moments I recover from the

data to the weighted average of the behavior predicted by the model. For each run, after I compute

the estimate F̂ (β), I evaluate its squared difference from the true distribution function F0(β) at

S = 10, 000 points uniformly spaced. I use root mean integrated squared error (RMISE) to assess

performance of both estimators. My definition of RMISE for an estimator F̂ is

√√√√ 1

M

M∑
m=1

[
1

S

S∑
s=1

(
F̂m(βs)− F0(βs)

)2]
, (31)

where I use M = 100 replications, each with a new fake data set. I also report the integrated

absolute error (IAE), which for a given replication m is

61



1

S

S∑
s=1

∣∣∣∣F̂m(βs)− F0(βs)

∣∣∣∣ . (32)

This is a measure of the mean absolute value of the estimation error, taken across the points of

evaluation for a given replication. I compute the mean, minimum, and maximum IAE’s across the

M replications.

The results are given in Table A3. The first column reports the sample size N , which refers

to the number of family-years used for the simulation. The second column describes the method

used to populate the grid of types. Whenever the tpp method is used, column 2 also provides

details about how many points in each dimension were used. The third column reports the number

H of types (or basis points) used in the estimation. The next column reports the RMISE of the

estimated distribution functions. The following three columns report the mean, minimum, and

maximum of the IAE. The final three columns report the mean, minimum, and maximum of the

number of types that have positive weight.63

While performance of the tpp method generally increases with the number of types, it is worth

noting that the fit can decrease with increases in H, as the tpp grids do not necessarily nest each

other for marginal increases in H. In the case where one tpp grid is nested inside another one, the

RMISE measure should decrease with the number of types R. One example of this can be noted

in the first design (i.e., 3D correlated), where the tpp grid with 5 points per dimension is nested

inside the tpp grid with 9 points per dimension.

In the context of correlated random coefficients, the glp method provides more flexibility to pick

the grid points, as opposed to the tpp method. This appealing feature should help in capturing

the true underlying distribution more accurately. The results in Panel A of Table A3 suggest that

the glp grid exhibits much better performance than the tpp grid, even with 10 times less points in

the grid. By and large, RMISE and IAE are lower in the glp design than in the tpp designs. The

RMISE of the glp grid with 101 points is 0.1066, while the RMISE of the tpp grid with 1000 points

is 22 percent higher. With only 42.8 grid points with positive mass (on average), the glp grid does

an excellent job compared to the 170.87 grid points with positive mass (on average) of the tpp grid

with 10 points per dimension.

63A type is considered to have a positive weight if the estimated weight is greater than or equal to 0.01 percent.

62



Table A3: Monte Carlo results: 3D correlated and 5D uncorrelated

Integrated Absolute Error No. of Positive Weights

N Method R RMISE Mean Min Max Mean Min Max

Panel A: 3D correlated

300

glp 101 0.1066 0.0538 0.0354 0.0681 42.80 33 53
tpp 53 =125 0.1414 0.0723 0.0586 0.0877 47.11 17 66
tpp 63 =216 0.1292 0.0657 0.0487 0.0868 71.90 21 98
tpp 73 =343 0.1277 0.0655 0.0427 0.0880 89.22 18 147
tpp 83 =512 0.1347 0.0694 0.0409 0.0888 121.83 21 208
tpp 93 =729 0.1338 0.0676 0.0427 0.0954 135.91 21 276
tpp 103 =1000 0.1299 0.0661 0.0441 0.0948 170.87 20 352
tpp 113 =1331 0.1301 0.0655 0.0416 0.0950 203.20 20 455
tpp 123 =1728 0.1303 0.0661 0.0421 0.0910 240.53 21 582
tpp 133 =2197 0.1307 0.0652 0.0423 0.0937 283.48 21 729
tpp 143 =2744 0.1311 0.0653 0.0469 0.0899 309.30 19 649
tpp 153 =3375 0.1264 0.0635 0.0385 0.0939 409.96 21 785
tpp 163 =4096 0.1253 0.0638 0.0461 0.0895 454.66 21 849
tpp 173 =4913 0.1236 0.0629 0.0433 0.0901 560.74 23 1093
tpp 183 =5832 0.1164 0.0587 0.0393 0.0890 601.30 22 1264
tpp 193 =6859 0.1225 0.0628 0.0383 0.0896 725.76 18 1496
tpp 203 =8000 0.1186 0.0605 0.0439 0.0884 871.84 26 1765
tpp 213 =9261 0.1201 0.0611 0.0400 0.0897 898.19 23 1855
tpp 223 =10648 0.1193 0.0607 0.0400 0.0898 1001.6 21 2246
tpp 233 =12167 0.1260 0.0640 0.0422 0.0916 1101.8 25 2434
tpp 243 =13824 0.1206 0.0621 0.0439 0.0867 1031.1 25 2670

Panel B: 5D uncorrelated

300

glp 1069 0.0866 0.0400 0.0285 0.0651 119.77 16 323
tpp 55 =3125 0.0919 0.0484 0.0351 0.0877 329.74 35 567
tpp 65 =7776 0.0849 0.0442 0.0273 0.0761 715.57 41 1227
tpp 75 =16807 0.0873 0.0462 0.0313 0.0915 1143.70 69 2472

Appendix G Decomposition of Relative Social Surplus

The certainty equivalent to a contract j at premium premiumj for a type-h family with initial

income Y is given by ehj(βh), as defined in equation (21) and repeated here:

ehj(βh) ≡ − 1

ψ
ln

[ ∫
exp(−ψ ũ⋆(ν,βh, j))dFν(ν)

]
+ (Y − premiumj).
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The certainty equivalent can also be expressed as

ehj(βh) = EV (j, h)− 1

ψ
ln

[ ∫
exp(−ψ ũ⋆(ν,βh, j))dFν(ν)

]
+ (Y − premiumj)− EV (j, h)

= EV (j, h) + Y − premiumj −RP (j, h),

where EV (j, h)+Y −premiumj is the expected payoff and RP (j, h) is the risk premium associated

with the lottery. In particular,

EV (j, h) = Eν

[ Tj∑
t=1

((c⋆t − νt)−
1

2ω
(c⋆t − νt)

2 − O(c⋆t , Ct−1; j))

]
, and

RP (j, h) = EV (j, h) +
1

ψ
ln

[ ∫
exp(−ψ ũ⋆(ν,βh, j))dFν(ν)

] (33)

The corresponding insurance provider’s welfare for a type-h family enrolled in contract j is

given by his expected profits, as defined in equation (22) and repeated here:

πhj(βh) ≡ premiumj − Eν

[
kj
(
C⋆
Tj
(ν,βh, j)

)]
,

where kj(.) is the function that maps family’s total health care utilization to the portion covered

by the provider under the price scheme of contract j.

The social surplus generated by allocating a type-h family to contract j is given by

SShj(βh) = ehj(βh) + πhj(βh)

Finally, the relative social surplus generated by allocating a type-h family to contract j (relative

to allocating the same family to the free-care contract) is given by RSShj , as defined in equation

(23) and repeated here:

RSShj(βh) ≡ SShj(βh)− SSh,free(βh)

The relative social surplus can also be expressed as

RSShj(βh) = ẽhj(βh)− ẽh,free(βh)− Eν [kj
(
C⋆
Tj
(ν,βh, j)

)
− C⋆

Tj
(ν,βh, free)]

= [EV (j, h)−RP (j, h)]− [EV (free, h)−RP (free, h)]− Eν [kj
(
C⋆
Tj
(ν,βh, j)

)
− C⋆

Tj
(ν,βh, free)] . . .

+
[
EV myopic(j, h)− Eν [kj

(
C⋆,myopic
Tj

(ν,βh, j)
)]
. . .

−
[
EV myopic(j, h)− Eν [kj

(
C⋆,myopic
Tj

(ν,βh, j)
)
]
]

= Ψ(j, h)︸ ︷︷ ︸
Relative value of
risk protection

−
[

Σ(j, h)︸ ︷︷ ︸
Relative social cost of
static moral hazard

+ ∆(j, h)︸ ︷︷ ︸
Relative social cost of
dynamic moral hazard

]
,
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where

Ψ(j, h) = RP (free, h)−RP (j, h) ≤ 0,

Σ(j, h) =
[
− EV myopic(j, h) + Eν [kj

(
C⋆,myopic
Tj

(ν,βh, j)
)
]
]
+
[
EV (free, h)− Eν [C

⋆
Tj
(ν,βh, free)]

]
≤ 0,

∆(j, h) =
[
− EV (j, h) + Eν [kj

(
C⋆
Tj
(ν,βh, j)

)
]
]
+
[
EV myopic(j, h)− Eν [kj

(
C⋆,myopic
Tj

(ν,βh, j)
)
]
]

≥ 0.

The (relative) value of risk protection, Ψ(j, h), is non-positive because any contract j provides a

weakly riskier distribution of payoffs than the free-care contract.

Appendix H Details about the RAND HIE design and the construction of the

analysis sample

Approximately 2,500 nonelderly families (or 7,700 individuals) were assigned to one of 14 fee-for-

service (FFS) insurance plans or to a prepaid group practice. The fee-for-service plans varied along

two principal dimensions: the coinsurance rate (the fraction of billed charges paid by the partic-

ipant) and the maximum dollar expenditure (MDE), a cap on family out-of-pocket expenditures

during a 12-month accounting period. The design used four coinsurance percentages (0, 25, 50, and

95) and three levels of MDE (5, 10, or 15 percent of family income, up to a maximum of $1,000).

In one exceptional plan the MDE was set at $150 per person or $450 per family. These various

coinsurance and MDE rates were combined as follows:

� FFS plan 1: one plan with zero coinsurance (free care).

� FFS plans 2 to 4: three plans with 25 percent coinsurance and MDEs of 5, 10, or 15 percent

of family income or $1,000, whichever was less.

� FFS plans 5 to 7: three plans with 50 percent coinsurance and MDEs of 5, 10, or 15 percent

of family income or $1,000, whichever was less.

� FFS plans 8 to 10: three plans with 50 percent coinsurance and MDEs of 5, 10, or 15

percent of family income or $1,000, whichever was less.

� FFS mixed plans 11 to 13: three plans with 25 percent coinsurance for all services except

outpatient mental health and dental, which were subject to 50 percent coinsurance; and MDEs

of 5, 10, or 15 percent of family income or $1,000, whichever was less.

� FFS mixed plan 14: one plan with 95 percent coinsurance for outpatient services and 0

percent coinsurance (free care) for inpatient services and a MDE of $150 per person, subject

to a maximum of $450 per family.
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� Prepaid group practice plan 15: one plan with 0 percent coinsurance (free care) if care was

received at a Seattle Health Maintainance Organization (HMO), Group Health Cooperative

of Puget Sound; 95 percent coinsurance if care was received outside the HMO.

I make four restrictions to create my baseline sample.

1. My model does not distinguish between providers of service (e.g., physician versus dentist)

or whether the provider belongs to the prepaid group network.

2. Dental and mental health services were treated differently in the first year of the experiment

in Dayton, Ohio. Dental services for adults were covered only on the free-care plan (dental

services for children were covered on all plans). Outpatient mental services were not covered.

3. For any family-year observation in the free-care plan with missing MDE, I imputed a MDE

equal to zero.

The number of families at enrollment does not necessarily coincide with the number of families

that completed the experiment, even in the absence of attrition (see Footnote 11). Indeed, absent

attrition, the number of families at enrollment is the lower bound for the number of families that

completed the experiment.
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