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Abstract

We study principal-agent settings where the principal has private informa-
tion, both the principal and agent take actions, and the agent’s action is sub-
ject to moral hazard. Unlike past work focusing on explicit contracts, we allow
the principal to propose contracts that give them flexibility in their choice of
future actions. We develop an adaptation of sequential equilibrium called con-
tracting equilibrium for our principal-agent games, and prove its existence. In
environments where the principal’s type and agent’s action are complements,
we also apply a refinement called payoff-plausibility. The principal-optimal safe
outcomes, which are analogs of the least-cost separating outcomes of signaling
games, are always contracting equilibrium outcomes. They also provide an im-
portant payoff benchmark: Every principal type must obtain a weakly higher
payoff from any payoff-plausible equilibrium. Moreover, if there are complemen-
tarities between the principal’s type and their action, payoff-plausibility selects
the principal-optimal safe outcomes when the principal is restricted to offer-
ing deterministic mechanisms. Otherwise, pooling between principal types can
survive payoff-plausibility, and is more prevalent than would be predicted with
explicit contracts.
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1 Introduction

In many economic settings, a principal with private information interacts with an
agent whose actions are subject to moral hazard. For example, a firm that offers a
performance-based incentive contract to a prospective employee may have a better
sense than the employee of how the employee’s effort will translate into profit. If the
compensation specified by the contract depends on the firm’s profit, then the potential
employee’s perception of what the firm knows will be important for their decisions of
whether to accept the employment offer and, if they join the firm, how hard to work.!

This paper develops a framework for studying mechanism design by informed prin-
cipals in these settings, and shows how the resulting predictions differ from those made
when ignoring principal private information, as well as from the predictions in informed
principal environments without agent moral hazard. With an uninformed principal,
there are two natural benchmarks. One is the complete-information benchmark, which
obtains in the situation where the principal’s information is common knowledge be-
fore contracting occurs. The other is the ex-ante mechanism design benchmark. This
is what would be implemented by a principal who does not possess any asymmetric
information before contracting, but will learn their type after the contract is accepted.
The complete-information benchmarks are frequently not equilibrium outcomes be-
cause of incentive compatibility failures where “worse” principal types prefer to mimic
“better” ones. Even when the ex-ante mechanism design benchmarks are consistent
with equilibrium, they may implausibly rely on the agent believing that certain off-
path contract proposals were made by “bad” principal types when only “good” types
could reasonably gain from making the proposal. When this is the case, the ex-ante
mechanism design benchmarks can be ruled out by refinement.

The literature studying mechanism design by informed principals has focused on

LOther examples with informed principals and agent moral hazard include: (1) A publisher who is
more informed than a prospective author about the likely sales of a future book, and (2) An insurance
company offering a menu of policies when the company has better information about the likelihood
of various outcomes than a potential insuree.



settings without agent moral hazard, with the most relevant for comparison with our
setting being the “common values” environments first studied in Maskin and Tirole
[1992].2 There the principal’s information is payoff-relevant for the agent, but the agent
has no action other than accepting or rejecting the principal’s contract proposal. The
key outcomes are the “Rothschild-Stiglitz-Wilson (RSW) allocations.” An allocation is
a perfect Bayesian equilibrium outcome if and only if it is individually rational for the
agent and gives every principal type a weakly higher payoff than the RSW allocations.
Moreover, only the RSW allocations survive natural equilibrium refinements.

Several differences emerge with the presence of moral hazard. One difference is
that there can be equilibria that give lower payoffs than the principal-optimal safe
outcomes, which are the analogs of the least-cost separating equilibria of traditional
signaling games, as well as the generalizations of the RSW allocations to environments
with moral hazard. The reason for this discrepancy is that, with moral hazard, the
agent’s beliefs not only affect their decision of whether to accept a given contract
proposal but also their choice of action after a contract has been accepted. So even
when the agent accepts a proposed contract that would lead to a principal-optimal
safe outcome under certain agent beliefs, other beliefs might lead them to take worse
actions for the principal types. However, in a broad class of environments, a natural
equilibrium refinement restores the prediction that equilibria give higher payoffs than
the RSW allocations/principal-optimal safe outcomes. Still, outcomes other than those
which are principal-optimal safe survive refinement, including more efficient outcomes
that involve pooling.

We now preview our framework and results in more detail. In our model, mecha-
nisms constrain the future actions of the principal but not those taken by the agent.
The interaction between the principal and agent consists of (1) the proposal by the
principal of a contract detailing a mechanism, followed by the acceptance/rejection

of the offer by the agent, (2) the implementation of the mechanism in the contract

2We discuss this literature in more depth later, along with papers that consider restricted contracts
rather than full-fledged mechanism design in settings with informed principals and agent moral hazard.



and the resulting determination of the principal’s action, and (3) the agent’s ultimate
choice of action after observing the results of the mechanism. It is the final stage (3)
and the fact that a mechanism cannot directly constrain the agent’s action that mark
the presence of agent moral hazard.

Our mechanism design approach allows the principal to avoid committing to a single
pure action by proposing flexible contracts that allow them a non-trivial choice over
their future actions. This contrasts with the standard approach to informed principal
settings with agent moral hazard in which the principal is assumed to only propose
explicit contracts that precisely pin down the action they will take should the agent
accept the offer. Flexible contracts are an appropriate and realistic assumption for the
informed principal setting. As noted by Segal and Whinston [2003], publishers often
use contracts with multiple options concerning publication and copyrights of books.
Similarly, a firm may offer a contract to a prospective employee that places some
constraints on the possible tasks the firm could assign or the exact nature of how the
firm will compensate the employee, but does not completely narrow down the firm’s
possible actions.

We consider two classes of flexible contracts: The unrestricted class which can com-
mit to any mechanism, and a restricted class which can only commit to deterministic
mechanisms. Deterministic mechanisms are essentially menus of pure actions from
which the principal will later choose should the agent accept the associated contract,
whereas general mechanisms allow the principal to choose between non-degenerate
distributions over actions. The general-mechanism approach is consistent with the
standard mechanism design literature, and often affords useful analytical tools, such as
the Inscrutability Principle (Myerson [1983]). However, the deterministic-mechanism
approach seems likely to be of applied interest in some settings and often leads to
narrower predictions than the general-mechanism approach.

As in most of the principal-agent literature, we allow for infinite action spaces
for both the principal and the agent. Owing to this and the fact that the space of

possible mechanism proposals is infinite, the traditional solution concept of sequential



equilibrium cannot be directly applied to our game.? Instead, we develop and use an
adaptation of sequential equilibrium called contracting equilibrium. These equilibria
always exist, though this is not an immediate consequence of previous existence results.
The proofs for the existence of contracting equilibria, as well as the solution concept
itself, may be useful for analyses of other mechanism design games, such as those with
multiple agents or agent adverse selection in addition to agent moral hazard.

Like sequential equilibrium, contracting equilibrium is often excessively permissive,
so we also employ a refinement in the vein of the Intuitive Criterion called payoff-
plausibility. Payoff-plausibility makes strong predictions, and it frequently rules out
the ex-ante mechanism design benchmark. Where it is applied, payoff-plausibility is
a consequence of existing refinements, appropriately adapted for our principal-agent
games, such as robust neologism proofness (Clark [2021]) and strongly justified com-
munication equilibrium (Clark and Fudenberg [2021]). We discuss these connections
in more detail in Section 8.

We focus much of our analysis on monotone-concave-supermodular (MCS) envi-
ronments. MCS environments satisfy supermodularity conditions that capture com-
plementarities in the effects of the principal’s type and the agent’s action on payoffs.
These conditions are satisfied in many settings of interest, and they lead to a ten-
dency for higher principal types to separate from lower principal types. Indeed, the
principal-optimal safe outcomes are always payoff-plausible contracting equilibrium
outcomes. Moreover, payoff-plausibility selects only outcomes which give every type of
the principal a weakly higher payoff than they obtain from the principal-optimal safe
outcomes. If there are complementarities between the principal’s type and their action
on top of the standard complementarities in MCS environments, payoft-plausibility
selects the principal-optimal safe outcomes when the principal is restricted to offer-
ing deterministic mechanisms. Otherwise, pooling between principal types can survive

payoff-plausibility with flexible contracts. In contrast, when only explicit contracts can

3As we explain in Section 4.3.1, perfect Bayesian equilibrium is also inappropriate here, because
the game where general mechanisms can be proposed does not have perfectly observed actions.



be proposed, payoff-plausibility typically predicts complete separation.

The paper features a running example: An informed-principal version of a canon-
ical firm and worker problem, where the firm is more informed about the potential
profitability of the task on which they seek to employ the worker. Here the complete-
information benchmark is inconsistent with contracting equilibrium. Moreover, payoff-
plausibility eliminates not only the ex-ante mechanism design benchmark, but all equi-
librium outcomes that are Pareto-optimal from the perspective of the various firm
types.

The remainder of the paper proceeds as follows. Section 2 discusses the related
literature, while Section 3 formalizes and analyzes the firm and worker example. Sec-
tion 4 then presents our general framework and establishes the existence of contracting
equilibria for all payoff environments. In Section 5, we explore various properties of
contracting equilibria, before applying the refinement of payoff-plausibility to MCS
environments in Section 6. Section 7 compares informed principal environments with
moral hazard to those without moral hazard. Section 8 then discusses the foundations
payoff-plausibility has in robust neologism proofness and strongly justified communi-

cation equilibrium. Section 9 concludes.

2 Related Literature

Most analyses of principal-agent problems assume that the agent knows everything
that the principal does. Myerson [1983] introduced the study of mechanism design
by an informed principal. It analyzed a general setting in which the principal and
agents can all posses asymmetric information and the agents’ actions may be subject
to moral hazard. Unlike our focus, most of the analysis in Myerson [1983] was from
the perspective of cooperative rather than non-cooperative game theory. It established
the existence of “expectational equilibria” under the assumption that all action spaces
are finite. In contrast, throughout our analysis, we allow for infinite action spaces.

Moreover, we give the agent the choice of whether to accept the principal’s proposed



contract, whereas Myerson [1983] assumed that all agents were in a relationship with
the principal even before mechanism proposal.

The literature studying the design of general mechanisms by informed principals
has focused on two settings: those with private values and those with common values.
In both of these settings, there are no actions for the agent to take, so moral hazard
is not present. The private values setting, first studied by Maskin and Tirole [1990],
concerns situations in which both the principal and agent have asymmetric information,
but each player’s information is only relevant for their own payoff. Maskin and Tirole
[1992] defined the common-value informed principal problem to mean that only the
principal has private information. The common values setting is thus a special case
of the general informed principal with agent moral hazard setting where the agent’s
action space is null. The principal-agent game we develop adapts the games in Maskin
and Tirole [1990, 1992] to settings with moral hazard, and we study the differences that
arise from moral hazard relative to settings with private values and especially those
with common values.*

Unlike the general analysis presented here, Beaudry [1994], Inderst [2001], Chade
and Silvers [2002], Bénabou and Tirole [2003], and Martimort and Sand-Zantman [2006]
each studied specific settings with informed principals and agent moral hazard, and
assumed that contracts commit the principal to a single (pure) action. Beaudry [1994]
and Inderst [2001] in particular studied settings like the example presented in Section
3. Wagner et al. [2015], Bedard [2017], and Mekonnen [2021] allowed for unrestricted
contracts, but limited attention to very special environments.’

Payoff-plausibility is a consequence of two signaling game refinements, robust neol-

ogism proofness (RNP) (Clark [2021]) and strongly justified communication equilibrium

4Cella [2008] and Mylovanov and Tréger [2012, 2014] also studied private values, and Inderst [2005],
Severinov [2008], Balkenborg and Makris [2015], Koessler and Skreta [2016], DeMarzo and Frankel
[2020], and DeMarzo et al. [2020] analyzed the common-values case.

“Wagner et al. [2015] and Mekonnen [2021] assumed the agent’s first-best action is independent of
the principal’s type, and analyzed when the principal types could achieve the same payoff as if their
information were common knowledge. Bedard [2017] gave a sufficient condition for (what we call)
flexible contracts to enable outcomes that give both principal types higher payoffs than the least-cost
separating outcome when there are two principal types and two actions for the agent.



(SJCE) (Clark and Fudenberg [2021]), when they are extended to MCS informed princi-
pal environments.® RNP and SJCE were intended to capture effects of communication
from senders to receivers in signaling games. We discuss these refinements and their

relationship to payoff-plausibility in more detail in Section 8.

3 Firm and Employee Example

3.1 Setup

Consider a firm (principal) attempting to hire a potential employee (agent) to work
on a task. Both parties are risk neutral. The firm has private information 6 € {2, 4}
about the profitability or quality of the task, where @ is equally likely to be 2 or 4. If
the employee joins the firm, they will choose some effort level e € R, at cost €?/2; that
affects the probability of the task being successful. The firm will pay a transfer t € R to
the employee as well as a share s € [0, 1] of the profits. The expected profit given 6 and
e is fe, so the utility functions of the firm and employee are U(f, s,t,e) = 6(1 —s)e—t
and V(0,s,t,e) = Ose — e?/2 + t, respectively. Both the firm and employee have an
outside option that gives payoff 0.

To attempt to hire the employee, the firm offers them a contract that specifies how
s and t will be determined. In this example, the principal’s actions are simply the
payment scheme (s,t); more generally, they can be things like task assignment or an
investment. The contract cannot directly constrain the effort the employee exerts.

The standard approach of the literature to informed principals with agent moral
hazard, seen for instance in Beaudry [1994] and Inderst [2001], requires that the firm’s
contract commit to a single action, which in this case is a payment scheme. The
contracts can also contain a recommended action, so they correspond to (s, t, e) triples.

With such an ezplicit contract, the agent knows precisely what share of profits and

6Maskin and Tirole [1990, 1992] and Mylovanov and Troger [2012, 2014] applied notions of
neologism-proofness (Farrell [1993]), which is a stronger refinement than RNP and is not guaran-
teed existence in general informed principal environments.



transfer the firm will implement should the agent accept.

This modeling approach does not allow flexible contracts, which are both plausi-
ble and observed in the real world. In the present example, the firm might want to
leave themself some flexibility in the contract, e.g. about how much of the employee’s
compensation will be governed by profit sharing or transfers, rather than completely
pinning down their future actions.”

We study two classes of flexible contracts. The first, in keeping with the mech-
anism design literature, allows the firm’s contract to commit to any mechanism for
determining their future actions. Formally, a mechanism corresponds to some pair
(u, Mp), where Mp is the message space of the firm, and p : Mp — A([0, 1] x R x R;)
maps messages into distributions over (s, t,e). Explicit contracts committing to a spe-
cific (s,t,e) are a trivial example of a mechanism, but there are many other ways
of determining the firm’s profit share and transfers that correspond to more complex
mechanisms and less explicit contracts.

We also study the informed principal problem when contracts can only offer deter-
ministic mechanisms. In the firm and employee setting, these are mechanisms (p, Mp)
in which u(mpg) is a degenerate distribution putting probability 1 on some (s,t,e)
for each mp € Mp.® They are contractually forbidden from implementing any other
(s,t,e). Such mechanisms still allow for ambiguity in the contract, but do not require
the commitment (or complexity) needed to implement a mechanism where the firm’s
message determines a non-degenerate probability distribution from which (s,¢,e) is

ultimately drawn.

"Note that a contract is flexible only if it gives the firm a non-trivial choice over their future actions.

8Equivalently, a deterministic mechanism here can be thought of as the menu of pairs of profit
shares and transfers from which the firm can choose. Outside the specific context of this example, a
deterministic mechanism is simply the menu of principal action and recommendation pairs that the
principal could implement should the agent accept the contract.



3.2 Benchmarks

Before analyzing the equilibria of our contracting game, we first discuss two benchmark
solutions for contracting with symmetric information, as well as the hypothetical situ-
ation in which the firm directly controls the employee’s effort. These will enable us to
compare the predictions that emerge with an informed firm with those when the firm
is uninformed, and to compare the predictions made with and without moral hazard.

The complete-information benchmark is the outcome that would occur if the firm’s
type were commonly known to be #. Here the standard solution is that the employee
receives all of the profits (s = 1), the employee exerts first-best effort level (e = 6), and
the firm extracts all of the surplus (t = —6?/2). This results in payoffs of 2 to the type
2 firm, 8 to the type 4 firm, and 0 to the employee regardless of the firm’s type. This
outcome is not possible with asymmetric information, because the type 2 firm would
strictly prefer to mimic the type 4 firm, which would let them extract a higher fee from
the employee.

The ez-ante mechanism design benchmark is the outcome that would occur if the
firm could propose a contract ex-ante before learning their type. Here the solution
maximizes the firm’s ex-ante expected utility subject to incentive compatibility and
individual rationality constraints for the worker as well as incentive compatibility of
the interim firm types. Again, the solution has the employee receiving a full share of
profits and exerting the first-best effort level regardless of the firm types. However, here
both firm types extract the same fee of t = —5 and thus receive expected utilities of
5, equal to the total expected surplus. As we will see, while this outcome is consistent
with our notion of contracting equilibrium, it is not a plausible equilibrium outcome.”

To see what happens in the absence of employee moral hazard, suppose that the
payoffs of the firm and employee are as before, except now the firm has control over
the effort level the employee exerts. (Alternatively, we could keep control of effort

with the employee, but have the chosen effort level be directly observable and con-

9For a prior distribution with probability greater than 47/54 on 6 = 2, the ex-ante mechanism
design benchmark is not even a contracting equilibrium outcome.



tractible.) In this case, the unique equilibrium payoffs coincide with those in the
complete-information benchmark.!® The reason is that each principal type can secure
a payoff arbitrarily close to their complete-information benchmark by setting s = 0,
assigning the employee the same effort as in the benchmark, and giving the employee
a slightly greater total payment than in the benchmark. Moreover, given that ev-
ery principal type is attaining a weakly higher payoff than their complete-information
benchmark, no principal type could be attaining a strictly higher payoff. Otherwise,
the firm would, in ex-ante expectation, be extracting more than the maximum total

expected surplus, so the agent’s total expected utility would be strictly negative.

3.3 Equilibria

We now return to the setting with an ex-ante informed firm and employee moral haz-
ard. We first consider the possible equilibria when the firm can only propose explicit
contracts. Essentially, this amounts to a standard signaling game with a slightly more
convoluted timeline. First, the firm observes 6 and then proposes a contract. Subse-
quently, the employee either accepts or rejects the offer. If the employee rejects, both
parties get a payoff of 0. If instead the employee accepts, the employee will then exert
some effort e, after which profits and payoffs are realized.

Under an adaptation of sequential equilibrium to games with infinite action spaces,
the possible pairs of firm-type equilibrium payoffs, where U(f) denotes the equilibrium
payoff of type 6, are given in Figure 1.

To understand the possible equilibrium payoff pairs, observe that the type 2 firm
can never get a lower payoff than 2, their complete-information benchmark. The reason
is the firm can offer a contract corresponding to (s,t) = (1,2 —¢) for some € > 0, which
amounts to a perturbation of their optimal contract with complete information. Such
a proposal is guaranteed to be accepted and result in a payoff of 2 — ¢ to the firm. This

holds for all € > 0, so the firm can always get arbitrarily close to a payoff of 2. Moreover,

0The “Rothschild-Stiglitz-Wilson (RSW) allocations” in this example are all incentive compatible
outcomes that result in precisely these payoffs.
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Figure 1: The red region depicts the possible equilibrium payoff pairs. The diamond at (2, 8) denotes
the payoffs of the firm types in the complete-information benchmark.

the lowest payoff that the type 4 firm can be held to is 8/3, which comes from having
the employee believe § = 2 following any off-path contract proposal. Additionally, the
high type firm can never get a lower equilibrium payoff than the low type firm.
Having explained the various lower bounds on the set of equilibrium payoft pairs,
we now turn to understanding its upper envelope. The dot at (2,4) corresponds to
the least-cost separating outcome. In this outcome, the type 2 firm extracts the full
surplus as with complete information, while the type 4 firm offers a higher transfer of
t = 0 and a lower profit share of s = 1/2, leading the employee to exert effort e = 2.
This is also the principal-optimal safe outcome, an object that will feature in much of
our analysis. Here the principal-optimal safe outcome maximizes the payoff of both
firm types across the outcomes in which the employee’s decision of whether to join the
firm and subsequent effort choices are always optimally calibrated to the firm’s type.
All points to right of U(2) = 2 involve pooling. The reason is that the payoff of
the type 2 firm in all separating equilibria is 2. Thus, in a pooling equilibrium where

U(2) > 2, there must be some (s, t) played with positive probability by both firm types

11



where the employee’s posterior puts at least probability 1/2 on § = 2. This fact enables
the formulation of a constrained optimization problem that maximizes the payoff of
the type 4 firm subject to the type 2 firm’s payoff equaling U(2), employee incentive
compatibility, and an individual rationality constraint that averages across both 6 = 2
and # = 4. The solution to this problem, the analysis of which is given in Section
OA.1.2, characterizes the upper envelope in the U(2) > 2 region.

Now we consider the possible equilibria when the firm can propose flexible con-

tracts.!!

The timing of the corresponding game is the same as when only explicit
contracts can be proposed, with the following exception. Should the employee accept
the firm’s contract offer, the firm will choose some message mp € Mp. After this,
(s,t) is drawn according to p(mpg). The employee then observes the resulting (s,t)
before exerting some effort level e, following which profits and payoffs are realized.
Later we will develop contracting equilibrium, an adaptation of sequential equilibrium
that applies to our principal-agent game with flexible contracts. Figure 2 depicts the
contracting equilibrium payoffs with flexible contracts as well as those possible when
only explicit contracts can be proposed.

Observe that, with flexible contracts, the type 4 firm cannot be held to same min-
imum payoff as with explicit contracts. The reason is that the type 4 firm can always
get payoffs strictly higher than 8/3 because of the richer space of deviations. In par-
ticular, there are contracts in which all the sequential continuation equilibria following
their proposal give a higher payoff than 8/3 to the type 4 firm. For example, consider a
contract with two messages, where the first message results in (sq1,¢;) = (1, —199/100)
with probability 1 and the second results in (sq2,t2) = (2/3,—1) with probability 1.
If the contract were proposed and accepted, then the type 4 firm would always select
(s2,t2), and obtain a payoff of at least 25/9. The type 2 firm would only select (sa, t2)
when it induces the employee to exert effort at least e = 297/200. Given (so,t2) and
any belief that would induce the employee to exert effort higher than e = 297,/200, the

1The results with either general mechanisms or deterministic mechanisms are the same in this
example, but this is not in general true.
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Figure 2: The blue region depicts the equilibrium payoffs that can only be sustained with flexible
contracts, while the red region consists of equilibrium payoffs that can be sustained only with the re-
striction to explicit contracts. Equilibrium payoffs that can be sustained with both classes of contracts
are purple.

employee’s conditional expected utility must be at least (297/200)?/2 — 1 > 0. More-
over, the employee’s expected utility conditional on (sq,¢;) is always strictly positive.
Thus, the employee’s expected utility from accepting the proposal is strictly positive in
every sequential continuation equilibrium. So the type 4 firm’s payoff is at least 25/9
in every sequential continuation equilibrium following the proposal of this contract.!?

Additionally, with flexible contracts, the upper envelope is higher and smooth. It
also can be found through a constrained optimization problem, details of which are in
Section OA.1.1. However, unlike the case with explicit contracts, all the points on the
upper envelope with flexible contracts correspond to outcomes where the agent correctly
anticipates the principal’s type when they choose their effort. In particular, any payoft
on the upper envelope can be realized in an outcome where, conditional on the low

type 6 = 2, the employee receives the full profit share s = 1 and exerts efficient effort

12 A1l payoffs in the purple region weakly above U(4) = 3 can be sustained in contracting equilibrium
with flexible contracts as well as with explicit contracts, but it is not known which of the payoffs in
the purple region between U(4) = 25/9 and U(4) = 3 are consistent with contracting equilibrium
when flexible contracts can be proposed. A similar qualification holds for the right panel of Figure 3
below.
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level e = 2, and conditional on the high type 8 = 4, the employee exerts optimal effort
e = 4s for the corresponding profit share s. Intuitively, if this were violated, the payoffs
of both the firm and the worker when § = 2 could be weakly increased by increasing
the surplus to its maximum value of 2 and appropriately dividing it. Moreover, the
payoff of the high type 8 = 4 could only improve from not being mistaken for the low
type. The reason why these outcomes are possible with flexible contracts is that they
can be achieved with both firm types proposing the same contract. This leads the
employee to be willing to accept a relationship with a type 2 firm despite regretting it
later.

There are many equilibria with both explicit and flexible contracts, but not all
the equilibria are reasonable. Consider for instance equilibria with flexible contracts
in which both firm types obtain a payoff of 5, as in the ex-ante mechanism design
benchmark from Section 3.2. (Graphically, these equilibria correspond to the star in
the right-hand plot of Figure 3.) We should expect the high type firm to obtain a strictly
higher payoff than the low type firm, because the high type should be able to credibly
signal their identity to the employee when the prevailing equilibrium has both types
receiving the same payoff. For example, suppose the type 4 firm proposed a contract
committing to (s,t) = (1/2,—1.5). Every undominated response of the employee to
such a contract would involve effort levels less than 2 and thus give the type 2 firm
a strictly lower payoff than 5; however, the employee accepting and exerting effort 2,
as they would if they knew 6 = 4, would give the type 4 firm a strictly higher payoff
of 5.5. Because of this, payoff-plausibility, which is formally defined in Section 4.3,
rules out the equilibria in which both firm types obtain a payoff of 5. More generally,
payoff-plausibility eliminates equilibria when there is some type 6 and a contract that,
when the agent responds as if the type were 6, would give the type 0 principal a strictly
higher payoff than the equilibrium and all types below 8 a strictly lower payoff.!3

Payoff-plausibility selects precisely the green payoff pairs depicted in Figure 3.

13With two firm types, the Intuitive Criterion (Cho and Kreps [1987]) is equivalent to payoff-
plausibility. With more types, the Intuitive Criterion is usually much weaker.
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Figure 3: The left-hand figure depicts equilibrium payoffs with explicit contracts, with plausible payoffs
in green and all other payoffs in red. The right-hand figure depicts equilibrium payoffs with flexible
contracts, with plausible payoffs in green and all other payoffs in blue.

These are the payoffs that correspond to outcomes that can be obtained from the
least-cost separating outcome by uniformly reducing the transfers paid by the firm
types. With flexible contracts, there is a non-singleton line segment of such payoffs, as
shown in Section OA.1.3, while there is only one such payoff with explicit contracts. As
we will see in Section 6, in a broad class of environments nesting this example, payoft-
plausibility selects the least-cost separating equilibria when only explicit contracts can
be proposed, but frequently allows multiple equilibrium outcomes with flexible con-
tracts.

Intuitively, payoff-plausibility eliminates any equilibrium whose payoffs are beneath
the upper envelope with flexible contracts because, in any such equilibrium, the type
4 firm could propose a contract corresponding to a point on the upper envelope that
is above and to the left of the equilibrium payoffs. (This holds in the example here
for both when flexible contracts can be proposed and when only explicit contracts
can be proposed, because the payoffs on the upper envelope with flexible contracts
can be attained with deterministic contracts where the type 4 firm chooses a single
payment scheme.) The type 2 firm would do worse by such a proposal, while the type
4 firm would do better if the employee were to respond under the belief that 6 = 4.

15



The requirement that plausible payoffs lie on the upper envelopes holds generally in a
broad class of environments with two types. It is not clear that this always extends
with more than two types. However, there are general thresholds that the payoffs
in payoff-plausible equilibria must always meet. In particular, every principal type
must always obtain a weakly higher payoff than they do in the principal-optimal safe
outcomes (or least-cost separating outcomes if only explicit contracts can be proposed).
In this example, this amounts to the requirement that the type 4 firm always obtain a
weakly higher payoff than 4, which is the reason for the horizontal lines at U(4) = 4
in Figure 3.

Further, note that no equilibrium that is Pareto-optimal for the firm types survives
payoff-plausibility. This can be seen graphically by the fact that all the green payoffs
are to the left of the peaks in the upper envelopes. The reason is that, to sustain
relatively high equilibrium payoffs to the type 2 firm, the type 4 firm must give both a
high transfer ¢ and a high profit share s. (The increasing levels of s are reflected in the
bending of the upper envelopes.) However, the high type would do better by offering

a contract with a reduced profit share s and increased transfer ¢.

4 Framework and Existence Results

4.1 Primitives

The principal’s type is 8 € ©, where © = {0y,...,0y} is a finite type space. There
is a full-support prior distribution over © given by A € A(©).1* If a relationship is
formed, the principal’s action set is the compact metric space X, with x € X denoting
a typical principal action, while the agent’s action set is the compact metric space Y,
with y € Y denoting a typical agent action. Here, a principal action = could represent
an investment, task assignment, incentive scheme, or monitoring system, and an agent

action y could represent effort level, type of work, or social behavior. In addition to

MThroughout the paper, we denote the set of probability distributions over a set Q by A(Q), and,
whenever () is a metric space, we endow A(2) with the topology of weak convergence.
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choosing an x, the principal makes an action recommendation to the agent, which
the agent may or may not follow. An action recommendation r lies in a compact
metric space R. We assume that A(©) x [0,1]°H! x A(Y) C R. This allows the
principal to recommend any mixed action to the agent, since there is a dimension
of R that contains all of A(Y'), as well as describe various possible beliefs over the
principal type and mixture probabilities for the agent and the principal types. If a
relationship is formed, U(6,x,y) and V (0, x,y) are the utilities of the principal and
agent, respectively, when the principal’s type is 8, the principal takes action x, and the
agent takes action y. Both utility functions U : Ox X xY - Rand V : Ox X xY = R
are continuous. Note that neither the payoffs of the principal nor the agent depend on
the action recommendation 7.

If instead the principal and agent do not form a relationship, then both realize
their outside options; the payoffs to all types of the principal and the agent from their
outside options are normalized to 0. For convenience, we assume that there is some
action x, € X that the principal can take when a relationship is formed with the agent
that automatically results in both parties realizing their outside option payoft: that is,
U0, x0,y) =0and V(0,2,,y) =0 for all § € © and y € Y. Such an action is present,
for instance, when the principal has the ability to end their relationship with the agent
immediately upon its inception. This will let us appeal to the Inscrutability Principle
of Myerson [1983], which states that, with unrestricted mechanisms, it is without loss
of generality to assume that, on the path of play, all principal types propose the same
mechanism.

In many, if not most, principal-agent relationships of interest, the principal can pay
a transfer to the agent. To analyze such settings, we assume that the principal’s action
space is of the form X x T, where, for some large t € Ry, T" = [—{,{] represents the
space of possible transfers and X represents the space of other actions the principal

could take.'®

15We bound the transfers to maintain compactness, but this can be relaxed without much difficulty.
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Definition 1. An environment has transfers if there are continuous functions u :
OXXXY - R, v:OxXXY =R, andg: T — R such that U(0, x,t,y) = u(0,z,y)—t
and V(0,x,t,y) =v(0,x,y) +g(t) forall0 €O, x € X, t €T, andy €Y.

We assume that g is weakly increasing and continuous, and that there is some
z, € X such that u(6,z,,y) = v(0,z,,y) = 0 for all y € Y. This allows for the classic
setting of quasilinear transfers, i.e. g(t) =t for all t € T', as well as the possibility e.g.
that the agent is risk averse over income.

Moreover, as with the informed firm and employee example, there are often com-
plementarities in the effects of the principal’s type and the agent’s action. For this,
we assume that the principal’s types are ordered so that 6; < ... < @y, and that the

agent’s action space is an interval of real numbers, Y = [y, 7].

Definition 2. An environment with transfers is monotone-concave-supermodular
(MCS) if
1. Monotone:
(a) uw(0,x,y) is weakly increasing in y for all 0 € © and x € X.
(b) Forall0,0' € ©, x € X, and y,y' € Y, u(0,x,y) > u(d,z,y') if and only if
w(@,z,y) > u(@, x,y).
(c) w(B,z,y) and v(0,x,y) are weakly increasing in 0 for allx € X andy €Y.
2. Concave:
(a) g is weakly concave.
(b) y*(\,z) = arg max, .y E5[v(0, 7,y)] is singleton for all A€ A(O) and = #
To.
3. Supermodular:
(a) y*(\, x) is weakly increasing in X according to the FOSD partial ordering of
A(©) for all x # x,.
(b) For all 0,0 € ©, v € X, and y,y' € Y such that 0 > ¢ and y > v/,
w(@,x,y) —u(d, x,y) > ul@, x,y) —ul, z,y), with the inequality holding
strictly when u(0',x,y) —u(@', x,y") > 0.
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The monotonicity criteria state that (a) the principal always (weakly) prefers a
higher agent action, (b) holding fixed the principal’s action, the principal types share
the same preference over the agent’s action, and (c) both the agent and the principal
gain (weakly) more by forming a relationship when the principal’s type is higher. The
concavity criteria require the agent’s utility be (weakly) concave in the transfer they
receive, and their best response be a singleton, which is necessarily the case for v strictly
concave in y. The first supermodularity condition says that the agent’s best response
is weakly increasing in their posterior belief about the principal’s type.'® Finally, the
second supermodularity criterion requires that the difference in principal utility from a
higher agent action, holding fixed the principal’s action, is higher for a higher principal
type, and strictly so when the lower principal type strictly gains from the higher agent

action.

4.2 Contracts, Mechanisms, and the Principal-Agent Game

At the beginning of their interaction, the principal offers the agent a contract that
specifies the mechanism that will be used if the agent accepts. The principal can
constrain their own action through the mechanism they design, but they are unable
to impose any direct constraints on the action of the agent: If the principal and agent
form a relationship, the agent will be free to take any action they desire upon observing
the principal’s action and recommendation pair. Formally, a mechanism consists of a
message space for the principal of the form Mp = {1,..., M} for some M € N, and
a mapping i : Mp — A(X X R) taking principal messages into distributions over
principal action and recommendation pairs.'” We denote this mechanism by (u, Mp),

and we let M denote the set of all possible mechanisms. (Note that even if the action

16 A sufficient condition for this is that v(6,z,y) be differentiable with the derivative %Z(&m,y)
weakly increasing in 0 for all x # z, and y.

17 A mechanism could also contain a message space for the agent M4 and determine the distribution
over the principal’s action and recommendation pairs using the messages of both the principal and
agent. This would be especially natural in situations where the agent possesses some hidden infor-
mation. For notational simplicity, we ignore agent message spaces throughout; however, our results
extend to this setup.
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and recommendation sets were finite, there would be infinitely many mechanisms since
the number of messages M can be any number in N and, as long as X or R were
non-singleton, there would be infinitely many stochastic distributions over X x R.)
Formally, the principal-agent game proceeds as follows. The principal observes
their type 6, and proposes a mechanism (u, Mp) to the agent. The agent observes
the principal’s choice of mechanism and then decides whether to accept the offer. If
the agent rejects the offer, the game ends with the principal and agent each realizing
their outside options. If instead the agent accepts the offer, the principal and agent
form a relationship. Subsequently the principal chooses a message mp € Mp, and the
principal’s action and recommendation pair (z,r) is then drawn according to u(mp).
The agent then observes the principal’s action and recommendation pair and responds

with an action y. After this the payoffs are realized.

Deterministic Mechanisms Up to this point, we have assumed that the principal
can implement a mechanism that results in a stochastic determination of their action.
This is consistent with the standard mechanism design literature, as well as the lit-
erature studying informed principals in settings without moral hazard. We will also
consider a principal-agent game where the principal can only propose deterministic
mechanisms. These are mechanisms (p, Mp) in which pu(mp) is a degenerate distribu-
tion for each mp € Mp, i.e. p(mp) = (5 for some (z,7) € X x R.

Unlike most papers that have studied informed principal settings with agent moral
hazard, both the general-mechanism and deterministic-mechanism versions of the principal-
agent game allow the principal to avoid committing to a single pure action by proposing
flexible contracts. This strikes us as more realistic than insisting that the contract must
specify exactly how the principal would act. Whether it is realistic that the princi-
pal can directly commit to non-degenerate distributions over their actions is less clear
and likely depends on the application, which is why we consider both versions of the
principal-agent game. Throughout the paper, there will frequently be a pair of defi-

nitions for a given concept: one for the principal-agent game with general mechanism
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proposals and one for the game with the deterministic mechanism restriction.

4.3 Solution Concepts
4.3.1 Contracting Equilibrium

Because the space of mechanism proposals is infinite, we cannot apply the standard
definition of sequential equilibrium to our principal-agent games. Perfect Bayesian
equilibrium (Fudenberg and Tirole [1991]) cannot be applied to the general-mechanism
game, because it does not have observed actions, as there are mechanisms in which the
distributions over (x,r) pairs induced by distinct messages overlap.

Instead, we develop an adaptation of sequential equilibrium called contracting equi-
librium. We defer the formal definitions to Appendix A, but here we discuss some
of the important aspects of contracting equilibrium. As in PBE and sequential equi-
librium, each player has a strategy, and the uninformed agent has a belief about the
principal’s type at each of their information sets. Each principal type plays optimally:
Their expected payoff must be no less than the payoff they could get by playing an
arbitrary mechanism and subsequent message given the play of the agent. Moreover,
the agent plays optimally: For each mechanism, their acceptance decision and their
subsequent choice of actions conditional on the various principal action-message pairs
maximize their expected utility given their posterior belief about the principal’s type.
Additionally, the agent’s posterior belief at the mechanism proposal stage must come
from a regular conditional probability distribution obtained from their prior and the
mechanism proposal rules of the principal types. Likewise, the agent’s posterior be-
lief upon observing a given principal action-message pair must be consistent with the
agent’s interim belief about the principal’s type when the corresponding mechanism is

proposed and the distributions over messages used by the various principal types.'®

18The consistency requirement applied at this stage is essentially that of sequential equilibrium in
the subgame after the mechanism has been accepted. We can invoke it here because the message
space in any mechanism is finite.
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Theorem 1. Contracting equilibria exist in both the general-mechanism and deterministic-

mechanism principal-agent games.

Appendix B presents the proof of Theorem 1, which takes sequences of games, with
finite approximations of X and Y and finite sets of mechanisms that can be proposed.
It shows that the limits of the contracting equilibrium outcomes in these games are
contracting equilibrium outcomes in the true games. Broadly this involves showing
that the limits of the contracting equilibrium outcomes are consistent with both the
“off-path” and “on-path” requirements of contracting equilibrium. It seems likely that
the proof techniques involved may be useful for establishing equilibrium existence in
similar games, such as other informed principal settings.

The off-path requirement that must be satisfied is that, for every mechanism (p, Mp),
there is a sequential continuation equilibrium that deters every principal type from
proposing it. The difficulty here this is that the correspondence mapping mechanisms
into sequential continuation equilibria is not upper hemicontinuous, so we cannot sim-
ply take an arbitrary limit of sequential continuation equilibria that follow the pro-
posals of a sequence of mechanisms in the approximating games that converges to a
given (u, Mp). However, we show that, for every (u, Mp), there is a sequence of well-
calibrated mechanisms in the sequence of finite games whose sequential continuation
equilibria converge to sequential continuation equilibria after (u, Mp) is proposed.

The on-path requirement is that the outcome be consistent with a valid profile of
mechanism proposal distributions and rule governing sequential continuation equilibria
following the proposal of each mechanism. An obstacle here is that the space of mech-
anisms is not compact. With general mechanisms, this poses little difficulty because
of the Inscrutability Principle, which enables the construction of a single mechanism
that is proposed by all principal types and induces the outcome of interest. With de-
terministic mechanisms the Inscrutability Principle does not hold. Instead, we show
that every equilibrium in the approximation games can be realized with principal types

proposing binary and obedient mechanisms on-path. Binary mechanisms have precisely
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two messages for the principal, while the recommendations in an obedient mechanism
must be consistent with a sequential continuation equilibrium following its proposal.
The set of binary and obedient mechanisms is compact, so standard theorems regarding
the convergence of probability distributions on compact metric spaces apply, and the
obedience property simplifies the construction of the rule governing sequential contin-

uation equilibria consistent with the outcome of interest.

4.3.2 Payoff-Plausibility

Contracting equilibrium is often excessively permissive in the principal-agent game, so
in our analysis of MCS environments, we will frequently apply the criterion of payoff-

plausibility to refine the set of contracting equilibria.

Definition 3. Suppose the environment is MCS. In the general-mechanism game, the
profile of principal-type expected utilities (U*(0y), ...,U*(0y)) is plausible if
* > * —
U(0n) 2 max By [u(On, 2,y (0n, x)) — 1]
s.t. AIR: E [0(0,, 2,y (0n, 7)) + g(£)] = 0, (1)

PIC: Ey[u(0p, 2, y* (0, ) — t] < U*(0y) Vn' < n.

An equilibrium or outcome is payoff-plausible if the associated profile of principal-

type expected utilities is plausible.

Payoff-plausibility requires that each principal type 6 get a payoff at least that from
proposing any distribution y that satisfies the agent IR and principal IC constraints
when the agent responds under the belief that the type is 6. In particular, the agent IR
constraint guarantees that the agent obtains a weakly positive expected utility from y
under type 6. The principal IC constraint says that every principal type smaller than
f must obtain a weakly lower payoff from proposing y and having the agent respond
under the belief that the type is § than they obtain in equilibrium.

We adapt payoff-plausibility for the deterministic-mechanism game as follows.
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Definition 4. Suppose the environment is MCS. In the deterministic-mechanism game,
the profile of expected utilities (U(6,),...,U(fn)) is plausible if
Qn > Qm ) i Qm —1
Ultn) =2 max (0,2, y"(0n, v)
s.t. v(On, x,y"(On, x)) + g(t) >0, (2)

U(Onr, T,y (O, ) —t < U(On) V' <.

The difference between this and Definition 3 is that here the domain of optimization
is the set of (z,t) pairs, rather than the full set of distributions over them.

Section 8 discusses the relationship of payoff-plausibility to various adaptations
of signaling game refinements to the principal-agent game. In particular, payoff-
plausibility characterizes both the set of robust neologism proof (Clark [2021]) con-
tracting equilibria and the set of strongly justified communication equilibria (Clark

and Fudenberg [2021]) in MCS environments.

5 Properties of Contracting Equilibrium Outcomes

Here we focus on the possible outcomes that can emerge in contracting equilibria. An
outcome p € A(O x M x [0,1] x X x Y) is a probability distribution over tuples
0, pu, Mp, o, z,y), where (6, u, Mp,ca,x,y) € © x M x [0,1] x X x Y represents the
principal’s type being 6, mechanism (u, Mp) being proposed and accepted with prob-
ability «, and the action pair (z,y) occurring subsequent to acceptance. Because of
the Inscrutability Principle, in the general-mechanism game it will prove convenient to
identify an outcome p € A(O x M x [0, 1] x X X Y') with the corresponding distribution
P € A(O© x X xY) that is obtained from identifying each tuple (0, i, Mp, o, x,y) with
the binary distribution adg,z ) + (1 — )6 (g,20,y) for some y' € Y (the value of which is
irrelevant).

We first establish some necessary conditions that must hold in all contracting equi-
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librium outcomes. We then define a class of safe outcomes satisfying stronger versions
of these necessary conditions, and show that, in MCS environments, the principal-
optimal safe outcomes are always contracting equilibria. This then enables us to give

a partial characterization of the contracting equilibrium set in MCS environments.

5.1 Necessary Conditions

Here we give some conditions that outcomes must satisfy if they occur in equilibrium
in the general-mechanism game. For an arbitrary outcome p, we let U(6,p) denote
the expected utility of type 8 and U (0,p,0") denote the expected utility type € would
obtain by mimicking type #'.

Definition 5. In the general-mechanism game, outcome p satisfies principal incen-
tive compatibility if U(0,p) > U(Q,p, 0") for all 0,0 € ©. Moreover, p satisfies
principal individual rationality if U(0,p) > 0 for all 6 € ©.

In the general-mechanism game, principal incentive compatibility requires that every
principal type weakly prefers the conditional outcome given their type to the con-
ditional outcome given any other type, while individual rationality says that every
principal type weakly prefers their conditional outcome to their outside option. Since
every principal type can always mimic any other type or simply take their outside op-
tion, both incentive compatibility and individual rationality are necessary conditions
for principal optimization in equilibrium.

Even stronger incentive compatibility conditions must hold for equilibria in the
deterministic-mechanism game, because of the inability of the principal to commit
to non-degenerate distributions over actions. In particular, each principal type must
weakly prefer their conditional outcome to the conditional outcome given any type,
mechanism, and principal action triple in the outcome’s support. The general state-
ment of this condition is somewhat messy; however, it is considerably simpler for the
case of an always-accepting outcome p where Plav = 1] = 1, that is, there is probability

1 that the mechanism proposed is accepted. We can identify such an outcome with

25



the p € A(© x X x Y) formed by mapping each tuple (0, u, Mp,1,z,y) to (0, z,y).
Forpe A(Ox X xY), let U(@,p, 0,2y =E[U0,2',y)|(0',2")] be the expected utility
of type 6 from the conditional distribution given (¢’,z"). We then have the following

requirement.

Definition 6. In the deterministic-mechanism game, an always-accepting outcome sat-
isfies principal incentive compatibility (PIC) if P[U(0,p) > U(Q,p, 0',2")] =1 for
all 0 € ©. Moreover, p € A(© x X xY) satisfies principal individual rationality
(PIR) if U(0,p) >0 for all 0 € ©.

5.2 Safe Outcomes

Safe outcomes satisfy both the principal incentive compatibility and individual ratio-
nality conditions, and they additionally require that a relationship be formed with
probability 1 and that the prescribed play of the agent is optimal regardless of the
probability distribution over the principal’s type. For an arbitrary outcome p, let

V' (0, p) denote the expected utility of type the agent conditional on type 6.

Definition 7. In the general-mechanism game, outcome p € A(© x X xY) is safe
if it satisfies both the principal’s incentive compatibility and individual rationality con-
straints, and it further satisfies:

1. Agent-safe IC (ASIC): Ply € argmax, .y V(0,2,9')] = 1.

2. Agent-safe IR (ASIR): V(0,p) > 0 for all 0 € ©.

The same holds in the deterministic-mechanism game for always-accepting outcomes.

ASIC ensures that, whenever the agent takes a given action y, it is a best response
to the principal’s action and every principal type that has positive probability when
the agent is supposed to play y. ASIR says that the agent gets a weakly higher payoff

conditional on each principal type than from their outside option.
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5.3 Principal-Optimal Safe Outcomes and Contracting Equi-

libria in MCS Environments

Definition 8. Safe outcomep € A(©x X xY') is a principal-optimal safe outcome if
it gives every type of the principal a weakly higher payoff than every other safe outcome
p':U0,p) > U(0,p) for all € © and safe p' € A(O© x X x Y).*

Proposition 1. In both the general-mechanism and deterministic-mechanism game,

principal-optimal safe outcomes exist.

There is always at least one safe outcome, the degenerate outcome in which x,
occurs with probability 1, i.e. players obtain their outside option payoffs. The proof
of Proposition 1, given in Section OA.2, further shows that the set of safe outcomes
is sequentially compact. This guarantees that, for every principal type, there is a safe
outcome giving the type a higher payoff than any other safe outcome. Moreover, the
outcome which is constructed by assigning to each type the same conditional outcome
given their type as their most preferred safe outcome is itself safe, since no principal
type would want to mimic any other. Consequently, this outcome is a principal-optimal
safe outcome.

Since, in MCS environments, the principal prefers higher agent actions and the
agent’s optimal action increases with the principal’s type, higher principal types would
like to separate from lower principal types. Supermodularity between the principal’s
type and the agent’s action allows the higher principal types to credibly do so by paying
higher transfers to the agent. The following proposition characterizes the general-
mechanism game principal-optimal safe outcomes in MCS environments by determining
the corresponding conditional outcome distributions for each type. (For outcome ¢ €
AO x X xY), welet g(f) € A(X xY) denote the conditional outcome distribution
given type 0, and let y*(0,r) = argmax,y v(0,7,y) denote the agent’s best response

to  when the principal is type 6.)

19Tn environments without moral hazard, the principal-optimal safe outcomes are frequently referred
to as the “Rothschild-Stiglitz-Wilson (RSW) allocations.”
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Proposition 2. In MCS environments, the conditional distributions of the principal-
optimal safe outcomes {q*(0)}oco in the general-mechanism game are characterized
inductively by
¢ (0,) € argmax E,[u(f,,z,y)—1
GEA(X XTXY)
s.t. AIC: Py = y*(0n, )|z # 2,] = 1,
AIR: E,[v(0,, z,y) + g(t)] > 0,

PIC: Eg[u(by, z,y) — t] < Egeg ) [u(On, x,y) — t] ¥n' <n,

for all m € {1,....,N}. Moreover, the same inductive characterization holds for the
deterministic-mechanism game when the PIC constraint is strengthened to P,[u(6,/, x,y)—

t<U(@0,,q(0.))] =1 for alln’ <n.*

The first and second constraints are simply the agent’s incentive compatibility and
individual rationality conditions for a safe outcome in MCS environments. The third
constraint is a principal incentive compatibility condition guaranteeing that lower types
than 6,, weakly prefer their outcome to mimicking 6,,. The proof of Proposition 2 follows
standard lines and is given in Section OA.3. The strengthened principal incentive
compatibility constraint for the deterministic-mechanism game ensures that no lower

type would every want to deviate to a (x,t,y) in the support of the type 6,, distribution.

Theorem 2. In both the general-mechanism and deterministic-mechanism games, any
principal-optimal safe outcome is a contracting equilibrium outcome in MCS environ-

ments.

The proof, given in Appendix C.1 and Section OA.9 of the Online Appendix, con-
structs sequences of modified principal-agent games and shows that the payoffs to the
principal types in any limit of equilibrium outcomes in these games satisfy two con-

ditions. The first is that each principal type’s payoff is below their principal-optimal

20While the principal-optimal safe outcomes can differ between the two games because of the relaxed
constraints for safety in the general-mechanism game, they are the same in all of our examples.
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safe payoff. The second is that, for each mechanism, there is a sequential continu-
ation equilibrium after the mechanism is proposed in the true principal-agent game
that gives each principal type a lower payoff than they obtain from the limit of the
equilibrium outcomes. We then show that these two conditions together ensure that
the principal-optimal safe outcome is a contracting equilibrium outcome.

Here we describe the modifications made for the general-mechanism game. (The
modifications, and overall argument, for the deterministic-mechanism game are sim-
ilar.) One modification is that for each § € © and x € A(X x T, the mechanism
(fy.0, {0}) in which the principal commits to the distribution that draws (z,t) ac-
cording to x and always gives # as the recommendation to the agent is assumed to
induce the outcome in which the agent accepts the proposal and then plays y*(0, )
after observing any x # x,. (For the deterministic-mechanism game, this modification
only applies to mechanisms of the form (d((,)6),{0}), which commit to some pure
action-transfer pair (z,t).) Effectively, for such mechanisms, the agent’s individual ra-
tionality constraint is discarded and the agent chooses their action under a belief that
the type is certain to be the same as given in the recommendation. Aside from this
modification, the mechanisms and play of the principal and agent are as in the true
principal-agent game. (Thus, the possible sequential continuation equilibria after any
mechanism outside the modified class are the same as in the real game.) The point
of the modification is to prevent pooling between the principal types in equilibrium.
It accomplishes this since, if there were pooling, the highest type involved in pooling
would be strictly better off playing the mechanism that (a) commits to the same dis-
tribution over action-transfer pairs as they are realizing in equilibrium and (b) always
gives their type as the recommendation.?!

On its own, this modification could allow equilibrium outcomes that do not satisfy

incentive compatibility or agent individual rationality in the unmodified game. We

21Tt is possible that the highest type involved in pooling could be indifferent between their equilib-
rium outcome and playing this mechanism. We prevent this by giving a small additional benefit to
each type 6 from proposing mechanisms of the form (u, g, {0}).
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avoid these problems by modifying the utility functions of the principal types with costs
to using mechanisms of the form (u, ¢, {0}). In particular, we make it prohibitively
costly for a type @ principal to propose a (fiy,9, {0}) mechanism whenever (1) there
is some other principal type who would get a higher payoff from proposing (py.9,{0})
(if the agent were to accept and respond according to y*(#, x)) than they do from the
prevailing outcome, or (2) the agent’s total expected utility in the prevailing outcome
conditional on @ is too low. We are careful to ensure that all the modifications together
still ensure that no pooling can occur in equilibrium. These modifications also ensure
that, conditional on any principal type, every equilibrium outcome satisfies the agent’s
individual rationality constraint.

Thus, every principal type gets a lower payoff in any equilibrium than in the
principal-optimal safe outcomes. Moreover, there are sequential continuation equi-
libria in the true principal-agent game following the proposal of any mechanism that
give the principal types even lower payoffs because the principal optimizes in equilib-
rium, and every mechanism has the same sequential continuation equilibria as some
mechanism for which there are no modifications.

Before proceeding, we develop a sufficient condition for contracting equilibria in
MCS environments in the general-mechanism game. For an arbitrary outcome p, let

V' (p) denote the expected utility of the agent.

Definition 9. In the general-mechanism game, an outcome p € A(O x X X Y) is
incentive compatible if it satisfies the principal incentive compatibility and individual
rationality constraints, and it further satisfies:

1. Agent IC (AIC): Ply € argmaxycy E[V (0, 2,9)|(z,y)]] = 1.

2. Agent IR (AIR): V(p) > 0.

These agent incentive compatibility and individual rationality constraints weaken
those in the definition of safe outcomes. AIC ensures that the agent is only asked to
play actions y that are best responses to the conditional distribution of the principal’s

type given the principal’s action and the fact that the agent is supposed to play y.
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AIR says that the agent gets a weakly higher payoff from the outcome than from
their outside option. Both of these are necessary for an outcome to be consistent with
the agent playing optimally, so incentive compatibility is required of any contracting
equilibrium outcome.

Say that an outcome p principal-payoff-dominates the principal-optimal safe
outcome p’ if every principal type obtains a weakly higher payoff from p than p’.22 When
this is the case, incentive compatibility is not only necessary for p to be a contracting

equilibrium outcome but also sufficient.

Proposition 3. In the general-mechanism game in an MCS environment, an out-
come that principal-payoff-dominates the principal-optimal safe outcome is a contract-

ing equilibrium outcome if and only if it is incentive compatible.

Intuitively, if the principal types would be (weakly) deterred from proposing a
given mechanism when they are receiving their principal-optimal safe payoff, then they
would also be deterred should they receive a higher payoff. Moreover, due to the
Inscrutability Principle, it is easy to construct a single mechanism and subsequent
optimal play that results in any given incentive compatible outcome. These two facts
enable us to construct the desired contracting equilibrium. The formal proof is given
in Appendix C.2.

The boundary of the set of incentive compatible payoffs that principal-payoft-
dominate the principal-optimal safe outcome can be found using familiar design tech-
niques from (uninformed) principal-agent problems. Since, with general mechanisms,
the set of incentive compatible payoffs is convex, the full set of contracting equilibrium
payoffs that principal-payoff-dominate the principal-optimal safe payoffs then emerges

as the convex hull of this boundary.

ZFormally, p € A(O© x X x Y) principal-payoff-dominates p’ € A(© x X x Y) if E,[U(0,z,y)|0] >
E,[U(0,z,y)|0] for all 6 € ©.
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6 Payoff-Plausibility in MCS Environments

We now apply payoft-plausibility to refine the set of contracting equilibria in gen-
eral MCS environments. We show that the principal-optimal safe outcome provides
a payoff benchmark that every payoff-plausible contracting equilibrium must meet,
and we show that payoff-plausibility often eliminates the ex-ante mechanism design
benchmark. We also discuss how, with flexible contracts, payoff-plausibility can per-
mit outcomes with higher principal payoffs than the principal-optimal safe outcome,
while payoff-plausibility typically selects the least-cost separating equilibria when only
flexible contracts can be proposed. However, in a special subclass of MCS environ-
ments, payoff-plausibility selects precisely the principal-optimal safe outcome when

only deterministic flexible contracts can be proposed.

6.1 The Principal-Optimal Safe Benchmark

Section 5.3 showed that, in MCS environments, principal-optimal safe outcomes are al-
ways contracting equilibrium outcomes. They are additionally always payoff-plausible,

and they provide payoff benchmarks that every payoff-plausible equilibrium must meet.

Theorem 3. Suppose the environment is MCS. In both the general-mechanism and
deterministic-mechanism games:
1. Every payoff-plausible equilibrium principal-payoff-dominates the principal-optimal
safe outcomes.

2. The principal-optimal safe outcomes are payoff-plausible.

Theorem 3 follows from combining the characterizations of the principal-optimal safe
outcomes in Proposition 2 and the requirements of payoff-plausibility. In particular,
the proof of Theorem 3.1 shows that, for any equilibrium that does not principal-payoft-
dominate the principal-optimal safe outcome, there must be a lowest principal type
whose expected utility violates payoff plausibility. Theorem 3.2 is an immediate conse-

quence of the observation that, in the principal-optimal safe outcomes, each principal
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type’s payoff precisely equals their plausibility threshold.

6.2 Ruling Out the Ex-Ante Mechanism Design Benchmark

Here we generalize the finding from the firm and employee example that payoff-plausibility
eliminates the ex-ante mechanism design benchmark. In general environments, the
ex-ante mechanism design benchmarks are the outcomes that maximize the
principal’s ex-ante expected utility subject to incentive compatibility. Recall that in
the firm-employee example, the ex-ante mechanism design benchmark involves the
same profit shares and employee efforts as in the complete-information benchmark,
but has different transfers.?? In many other environments, the ex-ante mechanism de-
sign benchmarks also use the same actions but different expected transfers than the
complete-information benchmark. Moreover, when this is the case and each type gains
more from slight perturbations of their complete-information benchmark action than

any lower type, payoff-plausibility rules out the ex-ante mechanism design benchmark.

Proposition 4. For each 0 € O, let 2§57 € X be the principal action in the complete-
information benchmark when the principal’s type is known to be 6. Suppose the environ-
ment is MCS and that the ex-ante mechanism design benchmarks have the same actions
as the complete-information benchmark but different expected transfers for at least one
principal type. If, for each 0 € O, there is a sequence {x;} converging to x§* such that
w(®, @i, y* (0, 7)) —w(®, 267,y (0, 267)) > u(0', zi, y* (0, 25)) —u(0, 2§, y* (0, 2§")) for all

0" < 6 and i, then the ex-ante mechanism design benchmarks are not payoff-plausible.

Since the agent’s expected utility in an ex-ante mechanism design benchmark must
exactly equal 0, and the transfers are different than in the complete-information bench-
mark, which also gives the agent expected utility 0, some type 6 must give the agent a

strictly positive expected utility. By the inequality on payoff differences, we can find

23 As with the firm-employee example, in general environments, the complete-information bench-
mark are the outcomes that could occur if the agent were to always learn the principal’s type before
contracting.
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a slight perturbation of the action-transfer pair played by @ such that, when the agent
responds with the belief that the type is 8, (1) the type @ principal would be strictly
better off than in the ex-ante mechanism design benchmark, (2) all lower types would
be strictly worse off, and (3) the agent would attain a positive utility. These three con-
ditions mean that the payoff of the type 6 does not meet their plausibility threshold.
The formal proof is given in Section OA.4 of the Online Appendix.

Not only are the conditions of Proposition 4 satisfied in the firm-employee exam-
ple, but they are satisfied more generally in environments that feature profit-sharing
between the principal to the agent. In particular, suppose the principal’s action
space is of the form X x [0,1] x 7. Suppose further that the utilities are defined
by w(f,x,s,y) = (1 —s)n(0,x,y) — k(x) and v(0, z, s,y) = s7(0,x,y) — c(y), where (1)
(0, x,y) — k(x) —c(y) is strictly concave in (z,y), (2) 7(0, x,y) is strictly increasing in
¢ for all z € X and y > y, and (3) 7(0, x,y) and c(y) are differentiable in y and satisfy
g—’y’(@, r,y) > c(y) as well as ‘g—’yT(Q, x,y) > 0 for all y € Y. Then the ex-ante mechanism
design benchmark will maximize the surplus conditional on each type, which requires
setting a profit-share of s = 1. Principal incentive compatibility then requires that all
the principal types obtain the same payoff, which necessarily involves different transfers
than in the complete-information benchmarks, since these would give higher principal
types strictly higher payoffs. Moreover, the payoff difference inequalities are satisfied
since 7(0, z,y) is increasing in the principal’s type, and payoff-plausibility intuitively
precludes the ex-ante mechanism design benchmark since some type would be better
off slightly decreasing the profit share below 1 while lower types would be worse off
mimicking them.

However, environments where one of the principal’s actions is the choice of a profit-
share level are by no means the only ones in which Proposition 4 applies. The following
is a modified example of the firm and employee in which the profit share is fixed. The
firm instead has a costly investment action that affects the profitability of the task
along with the firm’s type and the employee’s effort. (This example belongs to a class

of quasi-strict and doubly supermodular environments, that always satisfy the difference
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in payoffs inequality in the statement of Proposition 4. Quasi-strict is defined in Section

6.3, while doubly supermodular is defined in Section 6.4.)

Example with Firm Investment and Restricted Profit Sharing. As before, the firm has
private information 6 € {2,4} about the profitability or quality of a task for which they
seek to hire an employee, a hired employee will choose an effort level e € R, that affects
the probability of the task being successful, and the firm will pay a transfer ¢ to the
agent. However, unlike before, the profit share is fixed at s = 1/2 and the firm makes a
costly investment ¢ € R, that increases the productivity of the employee’s effort. The
utility functions of the firm and employee are U(6,i,s,t,e) = 01In(1 +i)e/2 —i%/2 — t
and V (0,14, s,t,e) = 0In(1 +i)e/2 — €?/2 + t, respectively. O

6.3 Flexible Versus Explicit Contracts

We show here that the implications of payoff-plausibility are very different with flexible
contracts than with explicit ones: With flexible contracts, payoff-plausibility does not
typically require separation between principal types, while when only explicit contracts
can be proposed, payoff-plausibility selects the least-cost separating outcomes under
broad conditions.

For an example where payoff-plausibility allows pooling under flexible contracts,
consider again the firm and employee of Section 3, except now suppose that © =
{1,2,4} and A(1) = A(2) = A(4) = 1/3. Here there is an additional low type 6 = 1,
and all three types are equally likely. Omne payoff-plausible pooling outcome is for
the low type and medium type to pool and give all profit residuals to the employee
(s(1) = s(2) = 1) along with the same base transfer of ¢(1) = #(2) = —2.05. The
corresponding level of effort exerted by the employee is e = 3/2. The high type
separates by giving half of the profit to the employee (s(4) = 1/2) along with a base
transfer of ¢(4) = —.05; the corresponding level of effort exerted by the employee is
e = 2. This outcome, which gives each principal type a strictly higher payoff than the

principal-optimal safe outcome, is payoff-plausible because both the low and medium
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types get at least their first-best payoff, while the high type’s payoff precisely equals
their plausibility threshold.

In contrast, if only explicit contracts can be proposed, payoff-plausibility selects the
least-cost separating outcome.?* Moreover, this selection holds in a broad set of MCS

environments.

Definition 10. An MCS environment is quasi-strict at = € X if
1. Strict monotonicity: w(0,z,y*(\, x)) and v(0,x,y*(\,x)) are strictly increasing
in 0 for all X € A(O).
2. Strict supermodularity:
(a) y*(\,z) is strictly increasing in X according to the FOSD partial ordering of
A(O).
(b) For all 0,0 € © and y,y € Y such that 0 > 0" and y > ¢/, u(0,z,y) —
uw(@,z,y") > u(@, z,y) —ul@, z,y).

An MCS environment is quasi-strict if it is quasi-strict at every x # x,.
Quasi-strictness strengthens some of the MCS conditions to hold strictly.

Definition 11. An MCS environment has definite gains if the first-best payoff of

type 01 under complete information is strictly positive.??

Definite gains means that the lowest principal type is assured a strictly positive payoff
in the complete information environment, which also ensures that each principal type

must obtain a strictly positive payoff in any contracting equilibrium.

Proposition 5. In quasi-strict MCS environments with definite gains, payoff-plausibility

selects the least-cost separating outcomes when contracts must be explicit.

Payoff-plausibility precludes pooling in quasi-strict MCS environments, because the

highest type 8 would gain strictly more than the lower types from being recognized as 6,

24The criterion for payoff-plausibility when only explicit contracts can be proposed is the same
criterion as in the deterministic-mechanisms game.
#Formally, U(01) > 0 where U(01) = max(, ) u(f1, x, y* (61, x)) —t s.t. v(01, 2z, y*(61,2)) +g(t) > 0.
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and the agent’s expected utility conditional on the highest pooling type must be weakly
positive.26 Moreover, when only explicit contracts can be proposed, payoff-plausibility
requires that every principal type obtain at least their least-cost separating payoff, just
as they must obtain at least their principal-optimal safe payoff when flexible contracts

can be proposed.?”

6.4 Doubly Supermodular Environments

With deterministic flexible contracts, payoft-plausibility does select the principal-optimal
safe outcomes in a class of MCS environments where there are complementarities be-
tween the principal’s action and the principal’s type and agent’s action.?® In these
environments, X = (X x Xy X ... x Xg)U{z,}, and that X; = [z,,7;] C R. To avoid
boundary issues, we assume that max,ey u(0,7,y)+t < 0 for all @ € ©, which ensures

that the highest value of z; is prohibitively costly.

Definition 12. An environment with transfers is doubly supermodular if it is MCS
and additionally satisfies:
1. y*( N\, 21, x_1) is weakly increasing in x1 for all \ € A(©) and x_, € X_;.
2. For all 6,0 € ©, z1,2) € Xy, vy € X1, and y € Y such that § > 0" and
xy > 2, w(@, e q,y) —uw(l, 2, xo1,y) > w@ e, q,y) — w2, xq,y),

with the inequality holding strictly when w(0, 2, x_1,y) > uw(0', 2}, x_1,y).

The first condition says the agent’s best response is weakly increasing in the x;
component of the principal’s action. The second condition requires that the difference
in principal utility from a higher x;, holding fixed the remaining components of the

principal’s action as well as the agent’s action, is higher for a higher principal type,

26 As seen in the earlier three-type firm and employee example, it can be that, with flexible contracts,
the agent’s expected utility conditional on each pooling type is strictly negative.

2TQuasi-strict MCS environments do not contain the firm-employee example, because the strict
supermodularity conditions fail at s = 0, and the strict monotonicity condition and second strict
supermodularity condition fail at s = 1. Section OA.10 states and proves a more general version of
Proposition 5 that does cover the example. Intuitively, neither the issues at s = 0 nor s = 1 prevent
the conclusion of Proposition 5, because quasi-strictness holds at arbitrarily close values of s.

28The result we develop does not hold with general flexible contracts.
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and strictly so at points where when the higher principal type gets a strictly higher
utility than the lower type.

These requirements are satisfied in many economic applications, including the in-
formed firm and employee example with firm investment from Section 6.2. (Addition-
ally, while profit sharing was restricted in the original presentation of that example,
the example would continue to be doubly supermodular if unrestricted profit sharing
were allowed.) The conditions of Definition 12 can be readily verified when taking ¢ to

be the first component of the firm’s action.

Proposition 6. In an environment with definite gains that is doubly supermodular
and quasi-strict, in the deterministic-mechanism game, the payoff-plausible contracting

equilibrium outcomes are the principal-optimal safe outcomes.

The proof, which is in Section OA.5 of the Online Appendix, shows that every
payoft-plausible contracting equilibrium outcome is always-accepting. Intuitively, for
any contracting equilibrium outcome that is not always-accepting, there is a mecha-
nism that is accepted with some probability a € (0,1), and an (z,t) allowed by the
mechanism such that some type @ is willing to propose the mechanism and play (x,t)
and the agent gets a conditionally positive expected utility when this occurs. Without
loss, we can take 6 to be the highest such type. Then @ could propose an action a’
with a slightly increased first component relative to x, and adjust their transfer so
that if the agent accepts and plays y*(0,2’), the agent obtains a strictly higher payoff
than 0, while 6 is strictly better off, and every lower type is strictly worse off than in
equilibrium. But this violates payoff-plausibility. The proof then uses a similar argu-
ment to show that no payoff-plausible contracting equilibrium has a principal type 6
playing an action z that gives the agent an expected utility strictly above 0 when the
agent plays y*(0, z). Tt follows that the expected utility of the agent conditional on any
principal type must be weakly less than 0. Since the agent’s unconditional expected
utility must be no less than 0, the expected utility of the agent conditional on any

principal type must exactly equal 0. These facts together imply that the lowest type
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involved in pooling would have to give the agent a strictly negative expected utility,
which we have established is not possible, so it follows that there can be no pooling
of types. Thus, every payoff-plausible outcome must be safe. Since, by Theorem 3.1,
every payoff-plausible outcome principal-payoff-dominates the principal-optimal safe
outcome, it follows that every payoff-plausible outcome must be a principal-optimal
safe outcome.

As previously noted, the firm and employee example is not quasi-strict, so Propo-
sition 6 does not apply. In Section OA.5, we state and prove a stronger version of the

proposition that covers the doubly supermodular firm and employee example.

7 Effects of Moral Hazard

We now discuss general differences between informed principal environments with and
those without moral hazard. A key difference between the sets of contracting equilibria
is that, without moral hazard, all contracting equilibria must principal-payoff-dominate
the RSW allocations/principal-optimal safe outcomes, whereas there can be contracting
equilibria that do not principal-payoff-dominate the principal-optimal safe outcomes
when moral hazard is present. Another difference is that, when payoff-plausibility is
applied, typically the RSW allocations are selected in the absence of moral hazard.
In contrast, when moral hazard is present, outcomes that are more efficient than the
principal-optimal safe outcomes and involve pooling can survive payoff-plausibility.
Also, while there are always safe equilibria in environments without moral hazard, this

is not the case in all environments with moral hazard outside of the MCS class.

7.1 Effects on the Set of Contracting Equilibria

Maskin and Tirole [1992] showed that, in the common values setting, contracting equi-
librium outcomes must principal-payoff-dominate the RSW allocations whenever there

is a sequence of strictly safe outcomes that converges to an RSW allocation, a condi-
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tion that always holds in environments with transfers.?® Additionally, in the private
values setting studied by Maskin and Tirole [1990], every contracting equilibrium must
give each principal type a weakly higher payoff than they could secure when their
information is publicly known, which is the payoff-benchmark corresponding to the
principal-optimal safe outcomes in that setting. However, with moral hazard, there
can be contracting equilibria where some principal types get less than their principal-
optimal safe payoff, as seen in the example in Section 3.3.

The reason why every contracting equilibrium principal-payoff-dominates the principal-
optimal safe outcome when there is no moral hazard is that the principal can always
propose a direct mechanism that induces a strictly safe outcome. Because the agent
does not act, each principal type strictly prefers to report their type truthfully if the
mechanism is accepted. Consequently, the agent must accept the proposal of any such
mechanism, so each principal type can obtain a payoff no less than their principal-
optimal safe payoff in any contracting equilibrium.

The Maskin and Tirole [1992] result does not extend to settings with agent moral
hazard, because the agent’s beliefs about the principal’s type can influence their play
should they accept a contract. In the context of the firm-worker example, it is possible
that the employee believes that the firm type is low after the proposal of any off-
path mechanism. If so, then when a strictly safe direct mechanism is proposed the
employee responds as if the firm is the low type, which deters the high type firm
from proposing it. If the firm could directly control the effort of the employee so
that there were no moral hazard, then the employee beliefs would only be relevant
for the decision of whether to accept a given contract, and every strictly safe direct
mechanism would necessarily be accepted. However, in MCS environments, payoff-

plausibility restores the qualitative prediction that equilibria principal-payoff-dominate

29Maskin and Tirole [1992] only analyzed general-mechanism proposal games. Formally, when
general mechanisms can be proposed in a common values setting, outcome p € A(© x X) is strictly
safe if the principal incentive compatibility condition is strengthened to U(6,p) > E,[U(0,x)|0'] for
all 6,0 € © and the agent individual rationality constraint is strengthened to V(6,p) > 0 for all
0 € O©. A similar condition for strictly safe outcomes applies when only deterministic mechanism can
be proposed.
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the principal-optimal safe outcomes.

7.2 Effects on the Set of Payoff-Plausible Equilibria

We saw earlier in Section 6.3 that payoff-plausibility can allow outcomes that give the
principal types strictly higher payoffs than the principal-optimal safe outcomes. In
contrast, Maskin and Tirole [1992] showed that in a class of environments without
moral hazard satisfying a “sorting condition,” the Intuitive Criterion selects precisely
the RSW allocations. (Payoff-plausibility makes precisely the same prediction in these
environments.) Moreover, unlike the RSW allocations, some of the payoff-plausible
outcomes with moral hazard do involve pooling, including the outcome in the example

of Section 6.3.

7.3 Effects on the Existence of Safe Equilibria

Outside of MCS environments, safe equilibria do not necessarily exist when moral

hazard is present. In contrast, safe equilibria always exist without moral hazard.

Proposition 7. In both the general-mechanism and deterministic-mechanism games:
1. Without moral hazard, the principal-optimal safe outcomes are always contracting
equilibrium outcomes.

2. With moral hazard, there may be no safe contracting equilibrium outcomes.

Maskin and Tirole [1992] originally proved Proposition 7.1 under two additional
assumptions: (1) that the principal-optimal safe outcome is “interim efficient” for some
full-support probability distribution over the principal’s type, and (2) that the principal
and agent have access to a public randomization device, ensuring the convexity of the

set of sequential continuation equilibria following any mechanism proposal.°

30Section OA.11 gives a proof of Proposition 7.1 that relaxes these assumptions and allows for
mechanisms with agent message spaces, as in Maskin and Tirole [1992]. DeMarzo and Frankel [2020]
proved an analog of the Maskin and Tirole [1992] result for a dynamic version of correlated equilibrium.
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The following example demonstrates Proposition 7.2. There the example, the
principal-optimal safe outcome is not a contracting equilibrium outcome. Since the
principal-optimal safe outcome is a contracting equilibrium outcome whenever any
safe outcome is, it follows that there are no safe contracting equilibrium outcomes in

the example.?!

Ezample 1. Suppose that © = {61,602}, X = {1, 22}, Y = {y1,y2}, and that U(0, z, y)
and V(0,z,y) are as shown below. (The first number in each pair is the principal’s

payoff, while the second is the agent’s.)

01 Y1 Y2 0 Y1 Y2
x| 4,—11] —1,2 x| —1,2 | 4,—1
To 1,1 1,1 T 1,1 1,1

In the principal-optimal safe outcome, both principal types play x5 and the agent
accepts the corresponding mechanism, resulting in a payoff of 1 to all parties. However,
there is no equilibrium with this outcome, since at least one type of the principal would
be strictly better off by instead proposing a mechanism that commits to z;. To see this,
note that the agent’s expected utility from accepting such a mechanism, regardless of
the agent’s belief over the principal’s type, is no less than 1, so the agent would accept
such a mechanism. Moreover, the sum of the expected utilities of the principal types
equals 3 for all agent responses to x1, so at least one of the principal types must obtain

a strictly higher expected utility than 1. 0

8 Foundations for Payoff-Plausible Equilibrium

Payoff-plausibility is not an ad hoc requirement imposed without justification; rather,
it precisely captures the predictions made by two communication-based signaling re-

finements when they are adapted to MCS informed principal environments. Such

31However, in Section OA.12, we show that, in any environment, there are always contracting
equilibria that principal-payoff-dominate the principal-optimal safe outcomes.
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refinements are natural here since communication is prevalent in many principal-agent
settings, as with a firm and employee, and can play an important role in determining
the resulting outcomes.?? Here we describe the two refinements, along with their moti-
vations and foundations, and discuss why they are characterized by payoff-plausibility

in MCS environments.

Robust Neologism Proofness: Robust neologism proofness (RNP) was developed
in Clark [2021] for traditional signaling games. Loosely, RNP is a refinement of con-
tracting equilibrium that that has a similar motivation to the “informal speech” moti-
vation of the Intuitive Criterion (Cho and Kreps [1987]). However, it allows the sender
(principal) to convince the agent they belong to a specific subset of types, rather than
just convincing the agent that they are a type for whom a given deviation is not equi-
librium dominated. We give the formal definition of RNP, as adapted for our informed

principal setting, in Section OA.13.

Strongly Justified Communication Equilibrium: Clark and Fudenberg [2021]
developed SJCE as a refinement of Nash equilibrium for signaling games with cheap-
talk communication and gave it a learning foundation.?® The learning foundation as-
sumes the typical sender has much more playing experience than the typical receiver.
Identifying senders with principals and receivers with agents, this assumption seems
particularly fitting for many principal-agent settings in which the principals are insti-
tutions such as firms and agents are individuals or other small units. In Section OA.13
we explain how to adapt SJCE to our informed principal setting.

Loosely, the focus of both RNP and SJCE is on analyzing various sets of types that
could gain by identifying themselves at an equilibrium p. In the general-mechanism

game, consider a distribution over actions y along with the mechanism (f,,{0}) com-

32Myerson [1983] noted that communication is likely to be important in informed principal problems.

33SJCE is a refinement of Nash equilibrium rather than contracting equilibrium because Nash
equilibrium is a necessary condition in the learning foundation of Clark and Fudenberg [2021], but
sequential equilibrium type solution concepts are not.
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mitting to x. There is a “credible robust neologism” corresponding to (4, {0}) and
the set of types © if, when the agent responds to the proposal of (ty, {0}) under a
belief that the type is in o, proposing (i, {0}) would give every type in O a strictly
higher payoff than in p and every type outside Oa strictly lower payoff. A contracting
equilibrium is RNP precisely when it has no credible robust neologisms. For SJCE,
the set of “strongly justified types” for (p,,{0}) is essentially the minimal set of types
©%7(x,p) that, when a mixture over agent best responses to (i, {0}) and beliefs that
the type is in ©97(y, p) would make a type weakly prefer proposing (i, {0}) over their
equilibrium outcome, some type in ©57(x, p) would strictly prefer to propose (i, {0}).
SJCE requires that there is some mixture over agent best responses to (f,,{0}) and
beliefs concentrating in ©97(, p) which deters every principal type from proposing
(fty,{0}). Analogous constructions hold for the deterministic-mechanism game, except
that the mechanisms of interest are those that commit to pure principal actions, rather
than possibly non-degenerate distributions over actions.

In OA.14, we show that payoff-plausibility characterizes the predictions of RNP
and SJCE in MCS environments. That is, the payoff-plausible outcomes are precisely
those that survive RNP and also precisely those that survive SJCE. Here we briefly
describe how this proceeds for RNP in the general-mechanism game; the procedures for
the deterministic-mechanism game and for SJCE are similar. Intuitively, if an outcome
is not payoff-plausible, there is some type 6 whose payoff falls below their plausibility
threshold. Then the distribution y that attains this type’s plausibility threshold either
gives a credible robust neologism corresponding to 6, or there is some higher type ¢’
who would also prefer proposing y to their equilibrium payoff when the agent responds
under the belief that the type is 6. In the latter case, using the monotonicity and
supermodularity conditions of MCS, we can modify y by increasing the transfer levels
so that 6" would strictly prefer to propose the resulting contract (assuming the agent
responds under a belief that the type is 6") and all lower types strictly prefer their
equilibrium payoffs. This either results in a credible robust neologism corresponding

to @', or there is some yet higher type 6” that would prefer to propose this modified x
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if the agent responds under the belief the type is #’. In the latter case, we carry out
the same procedure, which must eventually terminate in a credible robust neologism.

Arguing that payoff-plausible outcomes are RNP proceeds as follows. If there is
a credible robust neologism corresponding to y and é, then the lowest type @ in )
must get a strictly higher payoff than in equilibrium by proposing x when the agent
responds under a belief concentrating on §. Moreover, this agent response would lead
all types below 6 to get a strictly lower payoff by proposing y. But this implies that
the payoff of # does not meet their plausibility threshold.

9 Conclusion

We developed a general framework for studying informed principals in environments
with agent moral hazard, and we established the existence of contracting equilibria.
In MCS environments, the principal-optimal safe outcomes are always payoff-plausible
contracting equilibrium outcomes and they provide a lower bound for the principal
payoffs in any other payoff-plausible outcome. Furthermore, payoff-plausibility often
rules out the ex-ante mechanism design benchmarks, which underscores that signaling
issues arising from an informed principal’s private information at the time of contract-
ing should not be ignored. In contrast to informed principal environments without
moral hazard, there can be contracting equilibria that give the principal types lower
payoffs than the principal-optimal safe outcomes, and payoff-plausibility can allow more
efficient outcomes with pooling.

We conclude with some extensions and possible directions for future research. In
some settings, the agent may not be aware of the principal’s action until after taking
their own action. This can be captured by having the agent observe only the rec-
ommendation r before choosing y. Many of the results carry through to this setting;
however, the upper frontier of payoffs typically shifts upward due to the principal’s
greater concealment ability. This is true in particular with the informed firm and em-

ployee. For example, the highest equilibrium payoff that the type 4 firm can attain
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when the payoff of the type 2 firm is 2 shifts from 4 to 17/4.

Incorporating agent adverse selection alongside agent moral hazard seems desirable
for some informed principal settings. Another avenue would be to consider principal
information that is verifiable, potentially at some cost. This would lead to issues
of informed information design as well as mechanism design, and would relate to a
growing literature on information design by an informed designer. (See e.g. Perez-
Richet [2014], Hedlund [2017], Chen and Zhang [2020], and Koessler and Skreta [2021].)
An interesting possibility would be to consider situations where information can be

verified only after a principal-agent relationship has been formed.
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A Definition of Contracting Equilibrium

A.1 Sequential Continuation Equilibria

A first step is to define a sequential continuation equilibrium in the subgame in which an
arbitrary mechanism is accepted. Given mechanism (u, Mp), let IIp = A(Mp) be the
space of probability distributions over the principal’s message. An assessment is a tuple
(X, Ty, -oms Ton, N\, Ba) of (1) a probability distribution over the principal type A e A(©),
(2) a message strategy profile (my, , ..., mp,, ) € (IIp)®, and (3) a belief updating rule A :
(Umpempsupp(u(mp))) — A(O) and an agent action rule 54 : Uy penrpsupp(pu(mp)) —
A(Y'), which are measurable mappings taking principal action and recommendation
pairs that are possible under (i, Mp) into A(©) and A(Y), respectively.

We restrict attention to consistent assessments. Consistency requires that there be
a sequence of full-support beliefs and profiles of full-support message strategies such

that (1) the full-support beliefs converge to the belief in the assessment, (2) the profiles
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of full-support message strategies converge to the profile of message strategies in the
assessment, and (3) the agent’s belief update rule in the assessment equals the limit
of the agent’s beliefs obtained applying Bayes’ rule along the sequence of full-support
beliefs and profiles of full-support message strategies.

Given mechanism (p, Mp), let Ilp, = AL (Mp) be the space of full-support prob-
ability distributions over the principal message. Given a belief over the principal type
A€ A(©) and a profile of full-support principal message strategies (mg,, ..., Tgy) €
(Tpy)®, let A\, 7oy, ooy ) [(z,7)] € A(O) be the agent’s posterior after observing
(z,

1) € Umpempsupp(p(mp)).

Definition 13. An assessment (5\,7@1, oy Tony Ny Ba) after mechanism (u, Mp) is ac-

cepted is consistent if there is a sequence {(\j, T, ..., Tjgy)}; such that

hm)\ —)\ hm L Tjp = T for all 0 € © and

]—>OO

lim A(/\J,ﬂ'] 015 Ton ) (@, 1) = Az, 7) V(2,7) € Unpenm,supp(p(mp)).

]*)OO

Definition 14. A sequential continuation equilibrium after mechanism (y, Mp)
is accepted is a consistent assessment (5\,71'91, ey Ton, N, Ba) such that

1. For every 0 € ©,

By [Bptm ) [Epa(en U0, 2, 9)]]]

= max Euump [ Egy@n U0, z,y)]].

mpEMp

2. For every (2,7) € Uppentp supp(pi(mp)),

Ba(z,r) € AlargmaxEp [V (0, 2,y)])

yey

for all (z,7) € Uy penmpsupp(p(mp)).

Condition 1 of Definition 14 means that, for every 8 € ©, my puts support only on
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those messages which are optimal for the type 6 principal given the play of the agent
fa. Condition 2 requires that, for every (x,r) € Up,pempsupp(pu(mp)), fa(z,r) puts
support only on those agent actions which are optimal for the agent given x and belief
about the principal’s type A(z,r).

Suppose we fix a sequential continuation equilibrium after a given mechanism has
been accepted, and analyze whether the agent should choose to accept or reject the
principal’s proposal given the prescribed continuation play. Combining this sequential
continuation equilibrium with an optimal agent acceptance/rejection choice results in
a sequential continuation equilibrium in the earlier subgame where a mechanism has

been proposed but not yet accepted or rejected.

Definition 15. A sequential continuation equilibrium after mechanism (u, Mp)
is proposed consists of a sequential continuation equilibrium after the mechanism is
accepted as well as a (possibly randomized) agent acceptance decision that is optimal

given the prescribed future play and posterior belief about the principal type.

A.2 Definition of Contracting Equilibrium in the General-

Mechanism Game

We now define contracting equilibrium for the whole principal-agent game. By the
Inscrutability Principle (Myerson [1983]), it is without loss of generality to restrict
attention to equilibria in which, on the path of play, all principal types propose the
same direct and incentive compatible mechanism. (Of course, there is no restriction
on the mechanisms that the principal can propose off the path of play.) A direct
mechanism (u,0) is a special kind of mechanism in which the principal’s message
space coincides with their type space, i.e. Mp = ©. Additionally, every possible prin-
cipal recommendation must contain an explicit action recommendation to the agent.
A direct mechanism is incentive compatible if the induced “truthful and obedient”
outcome is an incentive compatible outcome in the sense of Definition 9. The truthful

and obedient outcome of a direct mechanism is the outcome that results when (1)

50



the agent accepts the mechanism proposal, (2) each principal type plays the message
corresponding to their type, and (3) the agent follows every on-path action recommen-

dation.

Definition 16. A contracting equilibrium in the general-mechanism game consists
of (1) an incentive compatible direct mechanism, which is proposed by every principal
type, and (2) a sequential continuation equilibrium for when any mechanism is proposed
that results in a weakly lower expected utility to each principal type than they obtain

from truthful and obedient outcome from the mechanism they are supposed to propose.

A.3 Definition of Contracting Equilibrium in the Deterministic-

Mechanism Game

As with the general-mechanism game, we consider sequential continuation equilibria
in both the subgames in which a mechanism is proposed and the subgames in which
a a mechanism is accepted. The original general-mechanism sequential equilibrium
definitions carry over to the restricted setting. When analyzing contracting equilibria in
the deterministic-mechanism game, we shall use 7 to denote a rule mapping mechanisms

into sequential continuation equilibria, so that

T(Mv MP) = ()‘<:u7 MP)? o, (M? MP)? < Toy (:u7 MP>7 04(/% Mp), A(Mv MP)? BA(:Uu MP))

is the sequential continuation equilibrium following the proposal of (i, Mp). Addition-
ally, we will let U(0, 7(u, Mp)) denote the expected payoff to the type 0 principal from
proposing mechanism (u, Mp) when subsequent play is governed by 7(u, Mp).

Unlike with the general-mechanism game, we cannot make use of the Inscrutability
Principle to justify a restriction to equilibria where all principal types propose the same
direct and incentive compatible mechanism. Instead, here we must explicitly consider

the possibility that the type 6 principal proposes a non-degenerate distribution over
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mechanisms 77, € A(M). The set of such probability distributions that we consider are
the Borel distributions corresponding to the topology induced by the following metric
over deterministic mechanisms. To define this metric, denote the metrics over X and
R by dx : X? — R, and dp : R> — R, respectively. Let dxxr : (X x R)? = R, be
the metric over X X R given by dx«r((z,7), (2/,r")) = max{dx(z,2"),dg(r,r")}, and

fix an A > max, o, dxxr((x,7), (@, 1")).

Definition 17. The deterministic mechanism metric d : M? — R is given by

the following:

At (1, Mp), (1, Mb)) = MaxX,, penrp dxxr(supp(u(mp)), supp(i/'(mp))) if Mp = M} |
A if Mp # Mp

We will require that the mechanism proposal distributions chosen by the princi-
pal types be optimal given the prevailing rule mapping mechanisms into sequential

continuation equilibrium play.

Definition 18. The profile of mechanism proposal distributions {7’(3}966 1s optimal
given sequential equilibrium rule T if 77,(arg max,, s,y U(0,7(11, Mp))) =1 for all 6 €
@‘34

Finally, we will require that the agent’s intermediate belief about the principal’s
type at the mechanism proposal stage M > A(O) comes from a regular condi-
tional distribution derived from their prior A and the profile of mechanism proposal

distributions {77,}¢ce used by the principal types.

Definition 19. A contracting equilibrium in the deterministic-mechanism game
consists of a profile of mechanism proposal distributions {r@}ge@ and rule governing

sequential continuation equilibria T such that (1) {77, }ece is optimal given 7, and (2)

'Note that this implicitly assumes that arg max, rs,) U(6,7(u, Mp)) is measurable. This will be
established in the proof of Theorem 1.
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The component of T giving the agent’s intermediate belief about the principal’s type at
the mechanism proposal stage A M — A(O) comes from a regular conditional distri-

bution derived from their prior A and the profile of mechanism proposal distributions

{71,}0co used by the principal types.

B Existence of Contracting Equilibria

B.1 Proof of Theorem 1 for the General-Mechanism Principal-

Agent Game

To prove Theorem 1, we construct a sequence of finite approximations of the action
and recommendation spaces, and show that the limits of the associated contracting
equilibrium outcomes are contracting equilibrium outcomes in the limit environment.
We do so by proving a general upper hemicontinuity result concerning the correspon-
dence mapping the primitives of the principal-agent game to its contracting equilibrium
outcomes.

Before developing our upper hemicontinuity result, we first define convergence of a
sequence of primitives.? Throughout, we hold the type space © fixed, and we assume
that there is some larger metric space that embeds all the principal action spaces
and agent action spaces. We use P to denote a collection of primitives, consisting of
a prior A, principal action space X, agent action space Y, principal payoff function

U:0x X xY — R, and agent payoff function V: O x X xY — R.

Definition 20. A sequence of primitives {P;};en converges to P if
1. limj, pj = p,
2. limj oo X; = X and lim;_, Y; =Y according to the Hausdorff metric, and
3. For all e > 0, there exists J and 6 > 0 such that |U;(0,2",y") —U(0,z,y)| < ¢
and |V;(0,2",y') =V (0,z,y)| <cif |2/ —z| <0, |y —y| <4, and j > J.

350ur convergence notion is related to similar notions in e.g. Milgrom and Weber [1985] and
Fudenberg and Levine [1986].
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Proposition 8. Suppose that {P;}jen is a sequence of primitives that converges to P.
Suppose further that p; € A(© x X; X Y;) is a contracting equilibrium outcome for P;
and lim;_,o p; = p for some p € A(© x X xY). Then p is a contracting equilibrium

outcome for P.

Aside from its usefulness for the proof of the existence of contracting equilibria, the
upper hemicontinuity established Proposition 8 is a desirable property in its own right.
In particular, it shows that small perturbations in the underlying primitives do not
result in drastically different contracting equilibrium outcomes. This helps justify the
study of principal-agent games with continuum action spaces even if the action spaces
in reality are finite, as long as the action spaces are very fine.

To prove Proposition 8, we first show that the correspondence mapping primitives

into incentive compatible outcomes is upper hemicontinuous.

Lemma 1. Consider a sequence of primitives {P;};en that converges to the primitives
P, and suppose that p; € A(O© x X xY) is an incentive compatible outcome in the
game corresponding to P; for each j € N. If lim; ., p; = p, then p is an incentive

compatible outcome in the game corresponding to P.

Proof. Since each p; is incentive compatible, E, [U (0, x,y)|0] > E,, [U(0,r,y)|0'] for all
0 and 0'. As lim;_,. p; = p, it follows that lim; . E, [U(0,z,y)|0] = E,[U(0, z,y)|0]
and lim;_,o K, [U(0, z,y)|0'] = E,[U(0, z,y)|¢]. Therefore, E,[U(0,z,y)|0] > E,[U(0,z,y)|¢'],
so Condition 1 of the definition of incentive compatibility is satisfied. Similar argu-
ments show that Conditions 2 and 3 are satisfied as well.

It remains to show that Ply € argmax, o E[V (0, 7,y')|(7,y)]] = 1. Suppose oth-
erwise that Ply € argmax, .y E[V(0,2,y')[(z,y)]] < 1. Then there are closed sets
X CXandY CV, as well as an agent action §, such that Ep[1g, 5(z,9)V(0,2,9)] >
E []1;(“7(33 YV (0,2,y)]. For every e > 0, let X_. = {z € X : d(z,X) < ¢} and

<. ={z € X :d(z,X) < ¢}, and similarly let Y., Y. denote the corresponding sets
for Y. Additionally, let V = ming,)coxxxy V(0,2,y). By continuity, there exists
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some £ > 0 such that

Epllg v (2, 0)(V(O,2,9) = V)| + B [(1 = 155 (2,9)(V(0,2,y) = V)]
>E, [V (0,z,y)] -V

Aslz v .(z,y)(V(0,2,9) —V) is a lower semicontinuous function of (z,y), it follows
that iminf; oo By [Lz .5 (z,y)(V(0,2,9)-V)] 2 E)[l5_ .5 (2,9)(V(0,2,9)-V)].
Likewise, (1 — 15__v_.(z,9))(V(0,z,y) — V) is a lower semicontinuous function of
(z,y) € X xY, so liminf; , E, [(1 — ﬂggéxf,gg(x,y))(vw,az,y) - V)] > E,[(1 -

13 5. () (V(0,2,y) — V)]. Consequently, for sufficiently high j € N,

By Ly, (0. 0)(VO,2,0) ~ V) + B[ — Ly (0.0))(V(O.2,9) — V)
>E, [V(0,2,y)] -V

This implies that B, [1z 5 (2,9)V(0,2,9)] + E,[(1 — Il)zgéx%é(:p,y))V(Q,x,y)] >

E,, [V (0, z,y)], which contradicts p; being incentive compatible. [

All that remains to be shown is that, for every mechanism, there is a sequential
continuation equilibrium that deters every principal type from proposing the mech-
anism. This is non-trivial because, as illustrated by example in Section OA.6, the
correspondence from mechanisms to sequential continuation equilibria is not in general
upper hemicontinuous. In Section OA.7, we prove the following lemma, which shows
that, for any mechanism in the limit environment, there is a sequence of mechanisms
corresponding to the approximating primitives for which any limit of sequential con-
tinuation equilibrium outcomes is a sequential continuation equilibrium outcome after
the mechanism in the limit environment is proposed. Since each of the mechanisms in
the sequence must have a sequential continuation equilibrium outcome that gives every
principal type a lower payoff than the corresponding contracting equilibrium outcome,
this enables us to show that the final contracting equilibrium outcome condition is

satisfied.
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Lemma 2. Consider a sequence of primitives {P;};en that converges to the original
primitives P. For every mechanism (pu, Mp) € M, there is a sequence of mechanisms
(nj, Mp) € M; such that any limit of sequential continuation equilibrium outcomes
after these mechanisms are proposed is a sequential continuation equilibrium outcome

after (u, Mp) is proposed.

Proof of Proposition 8. Fix a sequence of primitives {P;} ey that converges to the
original primitives P, and let p; € A(O x X xY') be a contracting equilibrium outcome
in the game corresponding to P;. By restricting attention to a convergent subsequence
if necessary, there is some p € A(© x X x Y) such that lim; ,,, p; = p. By Lemma 1,
p is incentive compatible.

We now argue that, for every mechanism (u, Mp) € M, there is a sequential con-
tinuation equilibrium after the mechanism is proposed which gives every principal type
a weakly lower expected utility than p. Since each p; is a contracting equilibrium out-
come, there is a sequential continuation equilibrium after any mechanism is proposed
that gives each principal type a lower payoff than p;. Moreover, by Lemma 2, there is
a sequence of mechanisms {(;, Mp)};en such that any limit of sequential continuation
equilibria after these mechanisms are proposed is a sequential continuation equilibrium
after (u, Mp) is proposed. Therefore, there is some sequential continuation equilibrium

after (u, Mp) is proposed that gives each principal type a lower payoff than p. [ |

Now we establish the existence of contracting equilibria when the action and rec-
ommendation spaces are finite but we do not restrict the space of mechanisms. Since
every action and recommendation space can be approximated to arbitrary accuracy
by a sequence of finite action/recommendation spaces, this existence result combined

with Proposition 8 implies that contracting equilibria exist in general.

Lemma 3. If the principal’s action space X, recommendation space R, and agent

action space are all finite, then a contracting equilibrium exists.

Proof. For a given j € N, consider the set of mechanisms M; that (1) have no more

than j principal messages and (2) are such that the probability of a given principal
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action-recommendation pair conditional on any message is some integer multiple of

1/j:

M; = {(5. Mp) € M (1) [Mp| <

k
(2) Vmp € Mp,x € X,r € R,k € {1,....,5} s.t. u(x,rimp) = ;}

Because both X and R are finite, M, is well-defined and non-empty for all sufficiently
high j. For the remainder of the proof, we restrict attention to such j.

Consider the modified principal-agent game in which the principal can only propose
a mechanism belonging to M;. Since M; is finite, standard arguments show that
this game has a contracting equilibrium. Let p; € A(© x X x Y) be an outcome
corresponding to a contracting equilibrium, and suppose (by restricting attention to
a convergent subsequence if necessary) that lim; ., p; = p. As each p; is incentive
compatible, Lemma 1 ensures that p is incentive compatible.

We now show that, for every mechanism (u, Mp) € M, there is a sequential
continuation equilibrium after the mechanism is proposed which gives every princi-
pal type a weakly lower expected utility than p. By construction, there is some se-
quence of mechanisms satisfying (u;, M; p) € M, such that M; p = Mp for all j, and
lim; o0 pij(x, 7mp) = p(x, r/mp) for all z, r, and mp. For each j, there is a sequential
continuation equilibrium after (u;, M; p, M; 4) is proposed which gives each principal
type a weakly lower payoff than p;. Let (S\j,ﬂjﬂl, s Tions T4, \j, Bj.4) be the cor-
responding sequential continuation equilibrium after (p;, M; p, M; 4) is accepted. By
restricting attention to a convergent subsequence if necessary, there is some consistent
assessment (5\, Toys -, Toy, N, Ba) after mechanism (u, Mp) is accepted that is the limit
of the (S\j,ﬂj,gl, o Tions T4, Nj, Bj.4). Since X, R, and A are all finite, standard ar-
guments show that (5\, Ty, - Ton, [\, Ba) 1s a sequential continuation equilibrium after
mechanism (u, Mp) is accepted. Moreover, either all principal types get a lower payoff
than p from this sequential continuation equilibrium, or it is optimal for the agent to

reject the proposal of (u, Mp). In either case, there is a sequential continuation equi-
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librium such that every principal type gets a lower payoff than from p by proposing
(:u , Mp ) u

Proof of Theorem 1. Fix a sequence of primitives {P; } ey that converges to the original
primitives P and is such that the principal action space X, recommendation space R;,
and agent action space Y; are all finite for every j € N. For each j, let p; € A(©OxX xY)
be a contracting equilibrium outcome in the game corresponding to P;, the existence of
which is guaranteed by Lemma 3. By restricting attention to a convergent subsequence
if necessary, there is some p € A(© x X xY') such that lim;_,., p; = p. By Proposition

8, p is a contracting equilibrium outcome. |

B.2 Proof of Theorem 1 for the Deterministic-Mechanism Principal-

Agent Game

Our general approach will be to take a sequence of finite principal-agent games that
converges in the limit to the true game. We will show that the limits of the equilibrium
outcomes of these games correspond to contracting equilibrium outcomes in the true
principal-agent game.

Let {X,}ien, {Yj}jen, {R;} en be sequences of finite action and recommendation
sets such that lim; .o X; = X, lim;,Y; = Y, and lim; ., R; = R. For a given

j € Ny, consider the set of mechanisms

M; = {(5 Mp) € M (1) [Mp| <

(2) Vmp € Mp, 3z € X;,r € Rj, s.t. p(z,rimp) = 1}

that (1) have no more than j principal messages and (2) are such that every principal
message results in some principal-action-transfer-recommendation tuple that belongs
to X; X R;.

We now describe the strategy space of the type 6 principal in the (j, k) game. Part

of this player’s choice is over which mechanisms to propose. We force 6 to propose all
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mechanisms with probability at least 1/k, so the distribution over mechanism proposals

used by € must belong to

1
BjolMy) = {70 € AMy) s 2l Mp)] = 7 ¥(, Mp) € My \ M }.
Moreover, when a given mechanism is accepted, we force 6 to tremble and play every
message in the mechanism with probability at least 1/k. Formally, the distribution

over messages used by # when mechanism (u, Mp) is accepted must belong to
1
s .p(, Mp) = {7p € A(Mp) s mplme] = 3 Vmp € Mp}.

A valid strategy for 6 in the (j, k) game is any pair (r7,, ms(-)) consisting of a 77, €
Ajro(M;) and a rule 7y(-) for how to play when an arbitrary mechanism is accepted
that satisfies my(p, Mp) € IL, . p(p, Mp).

The strategy space of the agent is unaltered from the principal-agent game, aside
from the addition of trembles. For every mechanism (u, Mp), we require the probability
« that the agent accepts its proposal to be no less than 1/k. Additionally, we require
the agent to tremble in their choices of actions. In particular, for every mechanism
(1, Mp) and principal action-recommendation pair (z,r), the agent’s choice of action

must be a distribution belonging to

Ap(Yy) = {y e AY:) yly] > %YH Yy € Yk} .

A valid strategy for the agent in the (j, k) game is any pair (a(+), 3(-)) consisting of (1)
a rule governing the probability of mechanism acceptance, a(-), satisfying a(u, Mp) >
1/k for all (u, Mp) € M; and (2) a rule governing the agent’s choice of actions 3(-)
satisfying B(u, Mp) € Ag(Y)*7>*%i for all (u, Mp) € M,;.

The payoffs of both the principal and agent are exactly as in the true principal-

agent game. Standard arguments show that Nash equilibria exist in the (j, k) game
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and that the play after any mechanism is proposed (combined with the corresponding
distribution over the principal’s type) constitutes a sequential continuation equilib-
rium in the & — oo limit. Throughout the remainder of the argument, we will let
Pik € A(O© x M, x [0,1] x X; X Y}) denote an equilibrium outcome of the (j, k) game.
Additionally, we assume (by restricting attention to convergent subsequences if nec-
essary) that limy_,., p;rx = p; for some p; € A(© x M; x [0,1] x X; x Y), and that
lim; oo p; = p for some p € A(© x M x [0,1] x X xY). (Recall that the topology
over mechanisms that we use in defining appropriate Borel sets is that induced by the

metric in Definition 17.)

Lemma 4. There is a profile of mechanism proposal distributions {%}969 and a mea-
surable mapping 7 : M — A(O) x A([0,1] x X x Y)® that takes each mechanism
(u, Mp) € M into a tuple consisting of a distribution over the principal’s type and a
distribution over (a, x,y) € [0,1] x X XY for each principal type that corresponds to
a single sequential continuation equilibrium after (u, Mp) is proposed such that
1. There is a reqular conditional probability distribution obtained from \ and {%}969
that, for every (p, Mp) € M, induces the A(©) component of T*(u, Mp) as the
belief over the principal’s type following the proposal of (u, Mp) € M,
2. U0, 7"(u, Mp)) < U(B,p) for all 0 € © and (u, Mp) € M, and
3. {71, 4yoce combined with 7*(p, Mp) following the proposal of each (n, Mp) € M

induces the same distribution over (6, «,z,y) as outcome p.

We handle the proof of Lemma 4, which is given in Section OA.8, in two steps. The
first involves constructing valid on-path play consistent with the same distribution
over (0, a,z,y) as in p occurring in a contracting equilibrium outcome. (In terms of
the conditions of Lemma 4, this amounts to satisfying Condition 1 and Condition 3 as
well as Condition 2 for all on-path mechanisms (u, Mp).) The second involves showing
that there is valid off-path play that deters every principal type when they receive the
same payoff as in p. (This corresponds to Condition 2 being satisfied for all off-path

mechanisms.)
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Whereas in the general-mechanism game the main difficulty in showing the exis-
tence of contracting equilibria was identifying sequential continuation equilibria that
deterred the principal types from proposing off-path mechanisms, here the main obsta-
cle is handling the first step. Part of the reason for this is the inability to invoke the
Inscrutability Principle, which arises from the lessened design power of the principal.
Additionally, the space of mechanisms is not compact. These two features compli-
cate the finding of valid distributions over mechanisms that lead to a desired outcome
distribution.

We approach the first step by focusing on the class of binary and obedient mech-
anisms. These are mechanisms with precisely two messages in which the recommen-
dations tied to the messages encode information that gives a direct recommendation
to the agent about which actions to take as well as which beliefs to hold about the
principal’s type when the mechanism is proposed and the probability distribution over
the messages in the mechanism the various principal types use. Such a mechanism
is obedient when the content conveyed by the recommendations exactly captures the
sequential continuation equilibrium played after the mechanism is proposed.

We focus on these mechanisms for two reasons. First, binary and obedient mecha-
nisms suffice to replicate each of the p;. Flexible contracts enable outcomes in which
there are positive probabilities of principal actions for which the agent’s conditional ex-
pected utility is negative because these actions can be incorporated in contracts which
also incorporate principal actions for which the agent’s conditional expected utilities
are positive. The second reason for focusing on binary and obedient mechanisms is that
the space of such mechanisms is compact, and obedience ensures that the sequential
continuation equilibrium following mechanism proposal is a continuous function of the
mechanism. These features aid the demonstration of various convergence properties,
and facilitate the proofs of various facts about sequential continuation equilibria. Ul-
timately, we show that there are mechanism proposal distributions concentrating on
the class of binary and obedient mechanisms that, when combined with obedient play

following the proposal of any mechanism in the support of these distributions, induces
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p as the outcome.

Intuitively, two messages are sufficient because principal actions for which the
agent’s conditional expected utilities are positive can be paired off with principal ac-
tions for which the agent’s conditional expected utilities. By appropriately choosing
the proposal probabilities of these paired-off mechanisms as well as the relative prob-
abilities of each of the two actions being chosen when after mechanism acceptance, we
can ensure that the agent is still willing to accept contracts with actions that give them
negative conditional expected utility.

To handle the second step, we consider the class of revealing mechanisms in which,
for each message, the recommendation received by the agent precisely reveals the mes-
sage chosen by the principal. This class is useful because the correspondence mapping
revealing mechanisms into sequential continuation equilibria following their proposal
is upper hemicontinuous. (This upper hemicontinuity property fails when considering
the full class of mechanisms, as can be seen by example in Section OA.6.) Addition-
ally, there is a canonical way which identifies each mechanism with a unique revealing
mechanism. We ultimately use the upper hemicontinuity property discussed above
to identify certain measurable mappings from revealing mechanisms into sequential
continuation equilibria of interest, and then extend these mappings to the full set of

mechanisms using the canonical mapping discussed above.

Proof of Theorem 1 for the Deterministic-Mechanism Game. Let 7* be a rule govern-
ing sequential continuation equilibria that, for every mechanism in M, results in the
same sequential continuation equilibrium outcome as that given by 7*. We will argue
that {77, }ece and 7* together constitute a contracting equilibrium. Condition 2 of Defi-
nition 19 follows from Condition 1 of Lemma 4. Moreover, the measurability of 7% guar-
antees that {(u, Mp) € M : U(0,7" (1, Mp)) = U(6,p)} is a measurable subset of M,
and Conditions 2 and 3 of Lemma 4 imply that 77, [{(1, Mp) € M : U(0, 7" (1, Mp)) =
U(0,p)}] = 1 for all # € ©. This, along with Condition 2 of Lemma 4, implies that
argmax, v, U (0, 7(p, Mp)) = {(n, Mp) € M : U(0,7"(n, Mp)) = U(0,p)} for all
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0 € O, so we conclude that Condition 1 of Definition 19 is satisfied. |

C Other Proofs

C.1 Proof of Theorem 2
C.1.1 Proof of Theorem 2 for the General-Mechanism Game

The following lemma shows that there is a sequence of outcomes that has various

properties that are useful in the proof of Theorem 2.

Lemma 5. In MCS environments, there are sequences of full-support distributions over
the principal type { i }ren and outcomes {pgtren such that
1. marggpr = A for all k € N,
2. liminf, . E,, [v(6,2,y) + g(t)]|0] > 0 for all 6 € O,
3. B, [u(@,z,y) —t|0] > E,, [u(d,z,y) —t|0] for all 6,0' € © and k € N,
4. Pply=y"(0,2)|0,2 #x,] =1 forall € © and k € N, and
5. For each mechanism (p, Mp) € M and k € N, there is a sequential continuation
equilibrium after (u, Mp) is proposed that gives every principal type a payoff no
more than 1/k greater than that from py.

The first condition simply states that each outcome py is consistent with the corre-
sponding distribution over principal types A;. The second condition says that, in the
k — oo limit, the agent receives a non-negative expected utility conditional on each
principal type. The third condition captures principal incentive compatibility with the
outcomes, while the fourth says that, with probability 1, the agent takes the same
action they would given the knowledge of the principal’s type.

The proof of Lemma 5, which is in Section OA.9.1, constructs a sequence of hypo-
thetical games and establishes that the outcomes and distributions over principal types

corresponding to the equilibria of these games have the desired properties. Section 5.2
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gave a brief description of some of the modifications we make to the principal-agent
games in this sequence. Here we give a fuller description.

As discussed before, the principal-agent game is modified so that there are costs
(and benefits) to the principal types from using mechanisms of the form (g, ¢, {0}), the
proposal of which is assumed to automatically induce the outcome in which the agent
accepts and then plays y* (0, x) after observing any = # z,. To avoid possible violations
of agent incentive compatibility this modification may cause, we make it prohibitively
costly for (or equivalently do not allow) a type 6 principal to propose any mechanism
of the form (¢, {0}) where 8 # 6. We also make it costly for the type 6 principal
to propose a (fty9,{0}) mechanism whenever (1) there is some other principal type
who would get a higher payoff from proposing (y,¢,{0}) (if the agent were to accept
and respond according to y*(#,x)) than they do from the prevailing outcome, or (2)
the agent’s total expected utility in the prevailing outcome conditional on 6 is too low.
The costs arising from Case (1) ensure principal incentive compatibility. The costs
arising from from Case (2) ensure that the agent’s expected utility conditional on any
principal type who uses this class of mechanisms is not much lower than their outside
option. To encourage pooling when these costs are 0 and a type € principal would
otherwise be indifferent with proposing a (f,,, {0}) mechanism, we give the type 6
principal a flat benefit of 1/k from proposing mechanisms of this form.

Even with these costs, pooling cannot occur in equilibrium. This follows from the
modifications described above for the case where the agent’s expected utility condi-
tional on the highest principal type involved in pooling is not too low. This is because
the highest type involved in pooling would be strictly better off proposing a mechanism
that commits to a distribution over action-transfer pairs that matches the distribution
they realize in equilibrium but for an increase in the transfer level. By supermodular-
ity, the increase in the transfer level can be chosen so that only the highest type would
want to make this proposal. We also rule out the possibility of pooling being sustained
by the highest principal type involved in pooling giving the agent a significantly lower
conditional expected utility than their outside option. We do so by adding a hypothet-
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ical third player to the game who selects the distribution over principal types with the
objective of minimizing the agent’s total expected utility from play over mechanisms
outside the class of (p,,9, {0}) mechanisms. Since the agent’s play regarding mecha-
nisms outside of this class is unrestricted, their total expected utility from such play
must (weakly) exceed that of their outside option. So each principal type either (a)
only plays mechanisms outside of (9, {0}) class, in which case they must be giving
the agent an expected utility close to the outside option, or (b) plays mechanisms in the
(fx0,{0}) class, which, as noted before, they are only willing to do when the agent’s

expected utility conditional on their type is not too low.

Proof of Theorem 2 for the General-Mechanism Game. For each § € © and k € N,
let g (0) denote the conditional distribution obtained from py given 6. By restricting
attention to a convergent subsequence if necessary, there is some ¢() € A(X xT' xY)
such that limy_,. qx(6) = q(0) for all 8 € ©. Conditions 2, 3, and 4 of Lemma 5, along
with continuity, imply that (1) Pyg)ly = y*(0,2)|z # o] = 1, (2) Eyg)lv(d,z,y) +
g(t)] > 0, and (3) Egp[u(f,z,y) —t] < Egenlu(f,z,y) —t] for all 0,0 € ©. By
Proposition 2, it follows that each principal type 6 obtains a weakly lower payoff from
q(0) than they do from the principal-optimal safe outcomes. Condition 5 of Lemma
5 implies that, for every mechanism, there is a sequential continuation equilibrium
after the mechanism is proposed that gives every principal type a weakly lower payoft
than ¢(f), and thus from the principal-optimal safe outcomes. Combining this with
the incentive compatibility of the principal-optimal safe outcome shows that it is a

contracting equilibrium outcome. [ |

C.1.2 Proof of Theorem 2 for the Deterministic-Mechanism Game

The following lemma plays an analogous role in the proof of Theorem 2 game to that

of Lemma 5 in the proof for the general-mechanism game.

Lemma 6. In MCS environments, there are sequences of full-support distributions over

the principal type { i }ren and outcomes {pg tren such that
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margepr = g for all k € N,

liminfy o E,, [a(v(8, 2, y) + g(t))|0] >0 for all 0 € O,

P, [U(0,pr) > a(u(®,z,y*(¢,z)) —t)|¢',x,t,a] =1 for all 0,6 € © and k € N,
P, ly =vy*(0,2)|0,x # z,) =1 for all € © and k € N, and

G o &

For each mechanism (u, Mp) € M and k € N, there is a sequential continuation
equilibrium after (u, Mp) is proposed that gives every principal type a payoff no
more than 1/k greater than that from py.

Conditions 1, 2, 4, and 5 are exactly as in Lemma 5. Condition 3 is similar to
the corresponding principal incentive compatibility condition in Lemma 5, though it
is strengthened to fit the principal’s lower commitment power in the deterministic-
mechanism game.

The proof of Lemma 6, which is in Section OA.9.2, proceeds in a similar fashion
to the proof of Lemma 5: It too constructs a sequence of hypothetical games and
uses essentially the same arguments, adapted to the deterministic-mechanism game,
to establish that the outcomes and distributions over principal types corresponding to

the equilibria of these games have the desired properties.

Proof of Theorem 2 for the Deterministic-Mechanism Game. For each § € © and k €
N, let gx(f) denote the conditional distribution obtained from p; given #. By re-
stricting attention to a convergent subsequence if necessary, there is some () €
A([0,1] x X x T' x Y) such that limy_,. qx(f) = ¢(#) for all # € ©. Conditions 2,
3, and 4 of Lemma 6, along with continuity, imply that (1) Pye)ly = y*(0,2)|x #
2l = 1, (2) By la(v(,2,9) + g(t))] = 0, and (3) Py [U(0',(8)) = afu(®,z,y) —
)]0, z,t,a] =1 for all 6,0" € ©. Thus, for each § € O, there is some (z,t) € X x T
and a € [0,1] such that (1) U(0,q(0)) = a(u(d,z,y*(0,x)) —t), (2) U, q(0)) >
a(u(@,z,y*(0,z)) —t) for all ¢ # 60, and (3) v(0,z,y*(0,x)) + g(t) > 0. Observe
that, for ' = at + (1 — a)u(0,z,y*(0,z)), (1) U(0,q(0)) = w(d,z,y*(0,z)) — t', (2)
U@,q@)) <u@,z,y*(0,z)) =t, and (3) v(0,x,y*(0,z)) + g(t) > 0. By Proposition
OA 6, it follows that each principal type 6 obtains a weakly lower payoff from ¢(0)

66



than they do from the principal-optimal safe outcomes. Condition 5 of Lemma 6 im-
plies that, for every mechanism, there is a sequential continuation equilibrium after the
mechanism is proposed that gives every principal type a weakly lower payoff than (),
and thus from the principal-optimal safe outcomes. We conclude the principal-optimal

safe outcomes are contracting equilibrium outcomes. [

C.2 Proof of Proposition 3

Proof. Consider a principal-optimal safe outcome p € A(O© x X x Y'), and suppose
that p’ € A(O© x X x Y) is an incentive compatible outcome that payoff dominates
p. Because p is a contracting equilibrium outcome, by definition there is a sequential
continuation equilibrium after any mechanism is proposed that gives each principal
type a weakly lower payoff than they obtain from p. Combining this with the fact that
P’ payoff dominates p, we conclude that (1, ©) corresponds to a contracting equilibrium

with outcome p'. [ |

C.3 Proof of Theorem 3.1

Proof of Theorem 3.1 for the General-Mechanism Game. Let p be a payoff-plausible
outcome. Suppose towards a contradiction that there is some n € {1, ..., N} for which
f,, obtains a lower expected utility than their principal-optimal safe payoff, and let n
be the lowest such value. Let ¢*(6,,) be the conditional outcome given 6,, in a principal-
optimal safe outcome. By definition, margy, ,¢*(6,) satisfies the agent individual ra-
tionality constraints in the type-6,, optimization problem in (1). Moreover, since each
0, for n < n’ obtains a weakly higher expected utility than their principal-optimal
safe payoff, it follows that margy,,q*(6,) satisfies the third constraint in the opti-
mization problem. Thus, we have U(6,,p) > Eg,)[u(6,,x,y) — t], which contradicts
f,, obtaining a lower expected utility than their principal-optimal safe payoft. [

Proof of Theorem 3.1 for the Deterministic-Mechanism Game. Let p be a payoff-plausible

outcome. Suppose towards a contradiction that there is some n € {1, ..., N} for which
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0, obtains a lower expected utility than their principal-optimal safe payoff, and let
n be the lowest such value. Let (z,t,y*(0,,2)) be such that it gives type 6, their
principal-optimal safe payoff, it gives every lower type 6, for n’ < n a weakly lower
payoff than their principal-optimal safe payoff, and it gives the agent a weakly positive
utility conditional on type 6,,. Then (z,t) satisfies the agent incentive compatibil-
ity and individual rationality constraints in the type-6, optimization problem in (2).
Moreover, since each 6, for n < n’ obtains a weakly higher expected utility than their
principal-optimal safe payoff, it follows that (x,t) satisfies the third constraint in the
optimization problem. Thus, we have U(0,,p) > u(0,,z,y) — t, which contradicts 6,

obtaining a lower expected utility than their principal-optimal safe payoff. [
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OA.1 Firm-Worker Equilibrium Payoffs Computa-

tions

OA.1.1 Upper Envelope with Flexible Contracts

Proposition OA 1. The upper envelope of the firm payoffs sustainable in contracting

equilibrium with flexible contracts is

{(U2),U14)) eR*:2<U2) <3 and U(4) =U(2) +2, or

3<U(2)<5andU(4) = —%U(2)2 +4U(2) — g}.

Lemma OA 1. In any Pareto-optimal contracting equilibrium, P[(s,e) = (1,2)|0 =
9] =1.

Proof. Consider an outcome p for which P,[(s,e) = (1,2)|0 = 2] < 1. Let p’ be
the outcome obtained by modifying p as follows: Conditional on 2, every (s,t,e) is

changed to (1,—U(2,p),2), and, conditional on 4, every (s,t,¢) is shifted to (s,t,4s).
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By construction, the expected utility of the 2 firm is the same under p and p’. Moreover,
since e < 4s holds with probability 1 under p, it follows that the expected utility of
the 4 firm is weakly higher under p’. Finally, observe that setting s = 1 and having the
agent take effort e = 2 uniquely maximizes the total surplus given type 2. Combining
this with the fact that the type 2 firm gets the same utility under p and p’ as well
as the fact that the worker’s best response to any s is 4s given type 4, we conclude
that the worker’s expected utility is strictly higher under p’ than p. Thus, p is not
Pareto-optimal. [

Lemma OA 2. In any Pareto-optimal contracting equilibrium, there is some s* € [0, 1]

such that P[(s,e) = (s*,4s%)|0 = 4] = 1.

Proof. Consider a Pareto-optimal contracting equilibrium outcome p. By Lemma OA
L, P,[(s,e) = (1,2)|6 = 2] = 1, which implies that there is no pooling between the two
firm types. Since e = 4s is the worker’s best response to any s under the belief that
the firm’s type is 4, we have that P,[e = 45|60 = 4] = 1. Therefore, the expected utility
of each firm type 0 from the conditional distribution of p given 4 is E,[U(6, s,t, €)|0 =
4 =E,[s(1 — s)|0 = 4]0 — E,[t|0 = 4], while the corresponding expected utility of the
worker is E,[V (4,s,t,e)|0 = 4] = 8E,[s|0 = 4] + E,[t|0 = 4]. Let s* = \/E,[s%]0 = 4].
Since, for s > 0, s(1 —s) is a strictly concave function of s?, Jensen’s inequality implies
that E,[s(1 — s)|0 = 4] < s*(1 — s*), with the inequality strict if P,[s = s*|0 = 4] < 1.
Consider t' = E,[t|0 = 4] + 4(s*(1 — s*) — E,[s(1 — s)|@ = 4]). By construction,
the outcome p’ obtained from modifying p so that, conditional on 4, every (s,t,e)
is changed to (s*,t',4s*) is incentive compatible and gives both firm types the same
payoff as p. Moreover, p’ would give the employee a strictly higher payoff than p if
P,[s = s*|6 = 4] < 1. We thus conclude that P,[s = s*|6 = 4] = 1 since p is the

outcome of a Pareto-optimal contracting equilibrium. [ |

Proof of Proposition OA 1. First, observe that the type 2 firm can never get a lower
payoff than 2 in a contracting equilibrium. The reason is that, for any € > 0, the

employee will accept the offer (s,t) = (1, —2 + ), which results in a payoff of 2 — ¢ to
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the type 2 firm. Moreover, the type 2 firm can never achieve get a higher payoff than
the maximum total expected surplus of 5 in a contracting equilibrium. This is because
the payoff of the type 2 firm must always be weakly lower than the payoff of the type
4 firm, and the expected value of the firm’s payoff can be no more than the maximum
total expected surplus.

By Lemmas OA 1 and OA 2, the maximum payoff that the type 4 firm can obtain
across the contracting equilibria in which the type 2 firm obtains a payoff of U(2) is
given by

(s,t)rg[g,}f} " 16s(1 —s) —t

s.t. AIR: % (852 +1) + % (2-U(2) >0, (OA 1)

PIC: 8s(1 — s) —t < U(2).

To understand the AIR constraint, observe that 8s? + ¢ is the agent’s expected utility
given (s,t) and type 4 when they respond with 4s, and the agent’s expected utility
must be 2 — U(2) when the type 2 firm plays s = 1 with probability 1 and receives a
payoff of U(2).

We first solve this problem under the assumption that only the AIR constraint
binds. When this is the case, t = —8s* + U(2) — 2 must hold at the optimum, so the

optimization problem in (OA 1) reduces to

max 16s(1 — s) + 8s> + U(2) — 2.
s€[0,1]

The objective function is strictly increasing in s, and so has a unique maximizer of
s* =1 (which gives a corresponding value of t* = —10+U(2)), from which we obtain a
type 4 firm payoff of 10 — U(2). This solution satisfies the PIC constraint if and only if
10—U(2) < U(2), which is equivalent to U(2) > 5. As observed above, the type 2 firm
can never achieve a payoff strictly above this threshold, so we conclude that U(2) =5

is the unique contracting equilibrium payoff of type 2 at which only the AIR constraint



binds, and the corresponding maximum payoff that the type 4 firm can obtain is also
U(4) =5.

Now we solve (OA 1) under the assumption that the AIR constraint does not
bind. When this is the case, t = 8s(1 — s) — U(2) must hold at the optimum, so the
optimization problem in (OA 1) reduces to

U(2) +8s(1 — s).
max (2) +8s(1 — s)

The objective function is single-peaked with a unique maximizer of s* = 1/2 (which
gives a corresponding value of t* = 2 — U(2)), from which we obtain a type 4 firm
payoff of U(2) + 2.

We determine the values of U(2) for which this solution actually constitutes the
optimum. Given s = 1/2 and t = 2 — U(2), the agent’s expected utility is 3 — U(2).
Thus, the AIR constraint is satisfied when U(2) < 3.

We thus have that type 2 payoffs of U(2) € [2, 3] are possible in contracting equi-
librium, and the corresponding maximum payoff of the type 4 firm is U(2) + 2.

Now we solve (OA 1) for U(2) € [3,5]. We have established that here both the AIR
and PIC constraints must bind at the optimum. Setting the AIR and PIC inequalities
to be equalities and then solving for ¢ and U(2) gives

t=—4s+4s(1 —s) — 1,

U(2) = 4s® +8s(1 — 5) + 1.
Consequently, the payoffs of the two firm types, as parametrized by s € (1/2,1) are

U(2) = —45* 4+ 8s + 1,

U(4) = —8s* +12s + 1.

Solving for U(4) in terms of U(2) then gives U(4) = —U(2)?/2 +4U(2) — 5/2. [ |



OA.1.2 Upper Envelope with Explicit Contracts

Proposition OA 2. The upper envelope of the firm payoffs sustainable in contracting

equilibrium with explicit contracts is

{(U(2),U(4)) € R2(U(2),U(4)) = (2,4), 2< U(2) < % and U(4) = U(2) + ; or
21
B

and U(4) = 5U(2) — 61/36 — 6U(2) — 36}.

<U((2) <

| ©

Lemma OA 3. In an equilibrium with payoff U(2) > 2 to the type 2 firm, the payoff
of the type 4 firm is bounded from above by
max 12s(1 —s) —t
(s,t)€[0,1] xR

s.t. AIR: t+ 232 >0, (OA 2)

PIC: 6s(1 —s) —t=U(2).

Proof. For the type 2 firm to obtain a payoff strictly higher than 2 with explicit con-
tracts, the type 2 firm must pool with the type 4 firm with probability 1. There would
then need to be (s,t) and A(2) € [1/2,1] such that both types of the firm obtain their
equilibrium payoff from (s,t) when the employee responds with some play consistent
with a posterior belief putting probability 5\(2) on = 2. Since the type 2 firm obtains
a strictly higher payoff, the employee must accept the proposal with strictly positive
probability a, so U(2) = a(4(2—=N2))s(1—s) —t), U(4) = a(8(2 — X\(2))s(1 — 5) — 1),
and £+ (2 — \(2))%s2/2 > 0. Thus, the payoff of the type 4 firm is bounded from above



max a(8(2—A(2))s(1 —s)—1t)

(s:£,A(2),0)€[0,1] xR x [ £,1] x(0,1]
< 1
A2 -1
st 3@ € 51
1 ~
AIR: t + 5(2 - A(2))%s* >0,

PIC: a(4(2 — A(2))s(1 — s) — t) = U(2).

Observe that, for any X\ > 1/2, decreasing A to 1/2 and increasing ¢ by 4(A(2) —
1/2)s(1—s) preserves the AIR constraint, keeps the PIC constraint satisfied, and weakly
increases the payoff of the type 4 firm. A similar shift can be done for any aw < 1. Thus,
the optimum must be attained with A\(2) = 1/2 and o = 1. Substituting these values
into the constrained optimization problem and deleting the belief constraint results in

(OA 2). n

Lemma OA 4. With explicit contracts, the payoff of the type 2 firm in a contracting
equilibrium can never be more than 9/2.

Proof. As established in the proof of Lemma OA 3, there must be some (s,t), \(2) €
[1/2,1], and a € [0,1] such that U(2) = a(4(2 — A\(2))s(1 — s) — t) and t + (2 —
X(2))2s2/2 > 0. Thus, we have U(2) < a(4(2—X(2))s(1—5)+(2—X(2))%s2/2). Standard
computations show that max , ; 5.2 ) a(4(2—=X(2))s(1—s)+(2—X(2))%s2/2) =9/2. W

Proof of Proposition OA 2. The same argument as in the proof of Proposition OA
1 shows that the type 2 firm can never get a lower payoff than 2 in a contracting
equilibrium. Moreover, Proposition OA 1 established that 4 is the maximum payoff
that the type 4 firm can get in equilibrium with flexible contracts when the type 2
firm receives a payoff of 2. This is also true when only explicit contracts. The reason
is that because it is the maximum payoff of the type 4 firm with flexible contracts, 4
provides an upper bound for the payoff of the type 4 firm with explicit contracts, and

this upper bound is attained at the least-cost separating outcome.
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We now turn our attention to when the type 2 firm receives a higher equilibrium
payoff than 2. We first solve (OA 2) under the assumption that the AIR constraint
does not bind. When this is the case, t = 6s(1 — s) — U(2) must hold at the optimum,

so the optimization problem in (OA 1) reduces to

U(2) + 6s(1 — s).
max (2) +65(1 = s)

The objective function is single-peaked with a unique maximizer of s* = 1/2 (which
gives a corresponding value of t* = 3/2 — U(2)), from which we obtain a type 4 firm
payoff of U(2) + 3/2.

We determine the values of U(2) for which this solution actually constitutes the
optimum. Given s = 1/2 and t = 3/2—U(2), the agent’s expected utility is 21/8—U(2).
Thus, the AIR constraint is satisfied when U(2) < 21/8.

We thus have that type 2 payoffs of U(2) € (2,21/8] are possible in contracting
equilibrium, and the corresponding maximum payoff of the type 4 firm is U(2) + 3/2.

Now we solve (OA 1) for U(2) € [21/8,9/2]. We have established that here the AIR
constraint must bind in must bind at the optimum. Setting the AIR to be an equality,

combining this with the PIC equality, and then solving for ¢ and U(2) gives

t= —252,
2
U2) = 232 + 6s(1 — s).

Consequently, the payoffs of the two firm types, as parametrized by s € (1/2,1) are

3
U(2) = —532 + 6s,

15
U4) = —552 + 12s.

Solving for U(4) in terms of U(2) then gives U(4) = 5U(2) — 64/36 —6U(2) — 36. W



OA.1.3 Plausible Payoffs with Flexible Contracts

Proposition OA 3. The set of firm payoffs sustainable in payoff-plausible contracting

equilibria with flexible contracts is

{(U2),U4)) eR*:2<U((2) <3,U(4) =U(2) +2}.

Proof. We first establish that no equilibrium where the payoffs are below the upper
envelope characterized in Proposition OA 1 is payoff-plausible. This is because, in
any contracting equilibrium, the worker’s expected utility conditional on 2 is weakly
negative, so the AIR constraint in (OA 1) implies the AIR constraint for the type 4
payoff-benchmark problem in (1). Thus, given a payoff-plausible equilibrium where the
type 2 firm obtains a payoff of U(2), the payoff of the type 4 firm must exceed that
given in (OA 1).

We now argue that none of the payoff profiles in the upper envelope with U(2) > 3
are plausible. Fix such a payoff profile, and note that it corresponds to an outcome in
which, conditional on 4, the profit share is s > 1/2 and the worker’s expected utility
is strictly positive. If this outcome were payoff-plausible, then the payoff of the type 4
firm would exceed that obtained from

(s,t)%l[éa,)f]xﬂ& 16s(1 —s) —t

s.t. AIR: 85>+t > 0,
PIC: 8s(1 —s) —t < U(2).

This alters the optimization problem in (OA 1) so that the AIR constraint only requires
8s2 4+t > 0, i.e. that the worker’s expected utility conditional on 4 be weakly positive.
Since the worker’s expected utility conditional on 4 is strictly positive in the outcome
being considered, this relaxed AIR constraint is slack. However, this relaxed AIR

constraint cannot be slack at an optimal solution of s > 1/2, for essentially the same
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reason that the true AIR constraint in (OA 1) cannot be slack at an optimal solution
of s > 1/2. Thus, the payoff of the type 4 firm does not exceed the required benchmark
for plausibility.

We conclude by showing that every payoff profile in the upper envelope with U(2) <
3 is plausible. Each of these payoffs can be attained by taking the principal-optimal
safe outcome and shifting the expected transfers given by both firm types down by the
same amount. The resulting outcome necessarily satisfies the payoff-plausibility bounds
for each firm type. Otherwise, the firm type whose payoff-plausibility bound exceeded
their payoft from this outcome could obtain a safe payoff equal to the payoff-plausibility
bound minus the transfer shift, which would exceed their optimal safe payoff and thus

result in a contradiction. [ |

OA.2 Proof of Proposition 1

Proposition 1. In both the general-mechanism and deterministic-mechanism game,

principal-optimal safe outcomes exist.

Here we give the proof for the general-mechanism game. The proof for the deterministic-

mechanism game is similar.

Proof of Proposition 1 for the General-Mechanism Game. Let Mg, s, denote the set of
safe mechanisms. Throughout the proof, we identify every direct mechanism with the
corresponding collection of allocations {q(#)}sco induced for each type. Moreover, for
each principal type 6 € © we let U(0,q) = E,[U(0,x,y)] and V(0,q) = E,[V (0, z,y)]
denote the expected utility of the principal and the agent, respectively, from allocation
g when the principal’s type is §. We first note that M, s, is non-empty since every
direct mechanism in which each principal type commits to z,, i.e. ¢(0)[x,] = 1 for all
0 € O, is safe.

We argue that M, is a sequentially compact space. Let {{g;(0)}sco}jen be an

arbitrary sequence of safe mechanisms. Since A(X X Y) is itself sequentially com-



pact, it follows that {{g;(#)}sco}jen has a limit point. Let {¢*(f)}sco denote such
a limit point, and suppose without loss of generality (by restricting attention to a
convergent subsequence if necessary) that lim;_,. ¢;(8) = ¢*(#) for all § € ©. Since
U(0,q;(0)) > max{maxgeco U(0,q;(¢')),0} for all j € N and § € O, continuity im-
plies that U(6,q¢*(#)) > max{maxgyeco U(0,¢*(0')),0} for all # € ©. For identical
reasons, V' (0,q(#)) > 0 also holds for all # € ©. To conclude that {g*(f)}sco is an
safe mechanism, all that remains is to show that Py-()[y € argmax, .y V(0,2,y')] = 1
for all & € ©. Suppose otherwise that Py € argmax, ., V(0,7,y')] < 1 for
some 0. Then there is some closed set X C X and agent action y € Y such that
Eg o) [15(2)V(0,2,9)] > Eg=9)[15(2)V (0, 2,y)]. For every € > 0, let Xee={zeX:
dz,X) <e}, Xee={z e X :dx,X)=¢}, and Xo. = {z € X : d(z,X) > e}. Ad-
ditionally, let V() = ming yexxy V(0,2,y). By continuity, there exists some £ > 0

such that

Ege o)1z (2)(V(0,2,9) = V(0)] + Ego)[1 5 () (V (0, 2, y) = V(0))]
>Eq*(9) [V(ev Z, y)] - K(e)

As 15 (z)(V(0,2,9) — V(0)) is a lower semicontinuous function of z € X, it follows
that liminf; e Bg(o)[L5_. (2)(V(0,2,§) — V(0))] = Ege9)[Lz_.(2)(V (0, 2, 7) — V(0))].
Likewise, 15 _(2)(V (6, z,y)—V(6)) is a lower semicontinuous function of (z,y) € X x
Y, 50 liminty o By [Lg @)V (8,,5) ~ V8))] > EgolLg_, (2)(V(0,,9) ~ V(O)))

Consequently, for sufficiently high j € N,

Egj)[1x_ (2)(V(0,2,9) = V(0)] + Eqgy0)[ 15, . (2)(V(0, 2, 9) = V(0))]
>]qu(0) [V(97 €, y)] - K(e)

This implies that Eq, ) [1z__ (2)V (0, 2, 9)|+Eq,0) [13_ oz, @)V (0, 2,9)] > Eqy0) [V (0, 2,9)],
which contradicts g;(6) being safe.
Let Ugape(6) = SUP{4(0)} 1 eMoase U (0,4(0)) denote the supremum of the type

principal’s payoff over all safe mechanisms. Let {{g;s(0')}oco}jen be a sequence
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of safe mechanisms that converges to the safe mechanism {g;(¢')}yco and attains
Usase(9) for the type 6 principal: that is, lim; . U(6,¢;(0)) = Usape(f). By conti-
nuity, U(0,q;(0)) = Usape(f). Consider the direct mechanism given by {g;(0)}sco-
By construction, this mechanism satisfies the agent’s incentive compatibility require-
ments. Moreover, U(0,q;(0)) = Usare(0) > U(0,q;(0')) for all 6,0’ € ©. Thus, this
mechanism is safe and attains each principal type’s highest possible payoff over all safe

mechanisms. [ |

OA.3 Proof of Proposition 2

Proposition 2. In MCS environments, the conditional distributions of the principal-
optimal safe outcomes {q*(0)}oco in the general-mechanism game are characterized
inductively by
¢ (0,) € argmax E,[u(f,,z,y)—1]
GEA(X XTXY)
s.t. AIC: Pyly = y*(0n, v)|z # ) = 1,
AIR: E [v(0, z,y) + g(t)] > 0,
<

PIC: Eq[u(Op, x,y) — t] < Egeg, ) [u(Onr, 2, y) — ] V' <n,

for all n € {1,...,N}. Moreover, the same inductive characterization holds for the

deterministic-mechanism game when the PIC constraint is strengthened to Py[u(0,, x,y)—

t<U(@,q0)] =1 foraln <n.

Lemma OA 5. In MCS environments, the conditional distributions of the principal-

optimal safe outcomes {q*(0)}gco in the general-mechanism game are characterized
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inductively by
¢"(0,) € argmax E,[u(f,,z,y) — 1]
gEA(X XTXY)
s.it. AIC: Ply = y* (O, )|z # o) = 1, (OA 3)
AIR: Bylv(0n, z,y) + g(t)] > 0,

PIC: Eq[u(bp,z,y) — t] < Egeg, ) [u(Onr, 2, y) —t] V0" <n,
foralln € {1,...,N}.

Proof. The conditional distributions of a principal-optimal safe outcome solve the con-
straints given in (OA 3). Thus, any conditional distributions which solve the problem
necessarily result in a weakly higher payoff to the corresponding principal type than
their principal-optimal safe payoff.

To complete the proof, we show that every outcome whose conditional distribution
for every type is a solution to the problem in (OA 3) is safe. Fix such an outcome,
and, for each 0 € O, let ¢*(#) the corresponding conditional distribution. The agent
incentive compatibility and individual rationality constraints are satisfied by defini-
tion. So all that remains is to check that principal incentive compatibility holds.
Consider a principal type 6,. By construction, every type 6,, with n’ < n (weakly)
prefers their conditional distribution ¢*(6,/) to ¢*(0,). Therefore, we need only con-
sider whether some type 6, with n’ > n would prefer the conditional distribution
q*(0,) than ¢*(#,/). Suppose that there is such a type and that 6, is the smallest type
for which this is true. Consider now the distribution ¢(6,/) € A(X x T x Y') that is
obtained from ¢*(6,,) by setting y = y*(0,,, x) whenever x # z, and shifting every ¢ to
t+ Eg0,)[u(b, 2,y (0, ) — u(ln, z,y*(0n, x))]. This conditional distribution gives
0,, the same expected utility as ¢*(#,), and, by supermodularity and the fact that
y*(0p, ) > y*(0,, ) for all z # x,, satisfies the corresponding constraints in (OA 3).
This means that 6,y must obtain a payoff from ¢*(6,/) that is weakly higher than the
payoff they obtain from ¢*(6,,), which is a contradiction. [ |
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Lemma OA 6. In MCS environments, the conditional distributions of the principal-
optimal safe outcomes {q*(0)} in the deterministic-mechanism game are characterized
inductively by
¢ (0,) = argmax E,[u(f,,z,y"(0,,2)) —t]
geEA(X XTXY)
s.t. AIC: Pyly = y* (0, o) |2 # x,) = 1, (OA 4)
AIR: Ey[v(0n, z,y) + g(t)] > 0,

PIC: Py[u(Op,x,y) —t <U(B,,,¢"(0))] =1 Vn' <n,
foralln e {1,..,N}.

Proof. A similar argument to those in the proof of Proposition 2 shows that any of
these outcomes are safe. Since the conditional distributions of any principal-optimal
safe outcome solve the constraints given in (OA 4), we conclude that the conditional
distributions identified by (OA 4) do in fact characterize the principal-optimal safe

outcomes. |

OA.4 Proof of Proposition 4

Proposition 4. For each 0 € O, let 2§57 € X be the principal action in the complete-
information benchmark when the principal’s type is known to be . Suppose the environ-
ment 1s MCS and that the ex-ante mechanism design benchmarks have the same actions
as the complete-information benchmark but different expected transfers for at least one
principal type. If, for each 0 € O, there is a sequence {x;} converging to x§* such that
w0, 2057 (0, 2:))—u(0, 25", y* (9,251)) > w(@, 21, y* (0, 2:)) @, 25", y* (9, 251)) for al

0" < 0 and i, then the ex-ante mechanism design benchmarks are not payoff-plausible.

Proof. Fix an ex-ante mechanism design benchmark. The complete-information bench-
mark for each type 6 gives the agent a utility of exactly 0. Combining this with the

fact that the agent’s expected utility in any individually rational outcome must be non-
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negative, it follows that, in the ex-ante mechanism design benchmark, there must be at
least one type, say 6, that gives the agent a strictly positive expected utility. Let tg7 be
the expected transfer played by @ in the ex-ante mechanism design benchmark. For each
i € N, consider the transfer given by t; = t5 + u(0, 2z, y* (0, z;)) — w(0, 257, y*(0,257)).
By construction, the type 6 would obtain the same payoff from (z;,¢;) and the agent
responding with 3*(0, x;) as in the ex-ante mechanism design benchmark, while all
lower types would obtain a strictly lower payoff. Thus, for all sufficiently large i, there
is a small but strictly positive € such that (z;,¢; — ¢) and the agent responding with
y* (0, x;) gives the type 0 a strictly higher payoff than the ex-ante mechanism design
benchmark, all types lower than 6 a strictly lower payoff than the ex-ante mechanism

design benchmark, and the agent a strictly positive expected utility when the type is 6,
which means that the payoff of the type 6 does not meet their plausibility threshold. W

OA.5 Proof of Proposition 6

The following is a generalization of Proposition 6 that implies that payoff-plausibility
selects the principal-optimal safe outcomes in the deterministic-mechanism game of the

doubly supermodular firm and employee example.

Proposition 4'. Suppose the environment is MCS with definite gains and that, for
every A € A(O) and x # x,, either quasi-strictness holds at x, or there exists a
sequence {x;} converging to x such that y*(\, z;) converges to y*(\, z), quasi-strictness
holds at each x;, and either one of the following conditions hold:
1. (a) u(B,z,y*(\,x)) is constant in 6.
(b) u(B, s,y (N, ;) > w(d, z,y*(\, ) for all i.
(c) v(0,zi,y* (N, x)) > v(0, z,y*(\, ) for all i.
2. (a) w0,z y*(\ x)) is constant in 0.

y L

(b) v(8, x,y*(S\,x)) is strictly increasing in 6.

Then payoff-plausibility selects the principal-optimal safe outcomes in the deterministic-
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mechanism game.

Proof. We first show that every payoff-plausible contracting equilibrium outcome must
be always-accepting. Suppose that p is a contracting equilibrium that is not always-
accepting. Then there is some € ©, z € X, t €T, \ € A(O), and a € (0, 1) such that
(1) a(u(@, z,y* (N, x)) —t) = U0, p), (2) a(u(f,z,y) —t) < U(O,p) for all 6 # 6, (3) A
is weakly below d7 under FOSD, and (4) v(0,z,y*(0,z)) + g(t) > 0. Consider (z/,t')
such that t' = ot + u(0, 2, y*(0,2)) — au(0, z, y*(\, x)). By construction, this (2/,t')
is such that, when the agent responds with y*(@, x'), the type @ principal obtains the
same payoff as in p. Moreover, we can take z’ > x to be close enough to x so that all
lower type principals would achieve a strictly lower payoff from (', y*(6,2')) than
p and the agent gets a strictly higher utility from @ playing (2/,t') than their outside
option. Thus, for sufficiently small ¢ > 0, (2/,# — €) would satisfy the constraints of
the type @ optimization problem in (2) and give 6 a strictly higher payoff than in p, so
p cannot be payoff-plausible.

We now show that P[v(6,z,y) + g(t) < 0] = 1 in any payoff-plausible outcome.
Suppose towards a contradiction that there is some 6 such that Plv(0, z,y) + g(t) >
0/6] > 0, and suppose that @ is the highest type for which this is true. Then there
is some € X, t € T, and A\ € A(O) such that (1) u(@,z,y*(\,x)) —t = U(,p),
(2) w(@,z,y) —t < U(8,p) for all § # 8, (3) X is weakly below d; under FOSD, and
(4) v(0,2,y*(0,2)) + g(t) > 0. Consider (2',#') such that ¢ =t + u(, 2, y*(0,2")) —
u(@,z,y*(X\, z)). By construction, this (2/,t') is such that, when the agent responds
with y*(@, x'), the type f principal obtains the same payoff as in p. Moreover, we can
take 2’ > = to be close enough to x so that all lower type principals would achieve a
strictly lower payoff from (z/,#,y*(0,2')) than p and the agent gets a strictly higher
utility from @ playing (2/,#') than their outside option. Thus, for sufficiently small
e >0, (2/,t' — e) would satisfy the constraints of the type # optimization problem in
(2) and give 6 a strictly higher payoff than in p, which contradicts payoff-plausibility.

Since the agent’s total expected utility must be weakly positive, it thus follows
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that Plv(0,z,y) +t = 0] = 1 must hold in any payoff-plausible contracting equilib-
rium outcome p. Since the agent’s utility is strictly increasing in the principal’s type,
this means that there can be no pooling between different principal types, so any out-
come that is payoff-plausible must be safe. As every payoff-plausible outcome must
principal-payoff-dominate the principal-optimal safe outcome, it thus follows that only

the principal-optimal safe outcomes can be payoff-plausible. [ |

OA.6 Omitted Example

We show by example that the correspondence mapping mechanisms into sequential

continuation equilibria is not necessarily upper hemicontinuous.

Example OA 1. Supposethat © = {—1,1}, X = [-1,12Y = R=[-1,1}, U(0, 21,22, y) =
Oy — x9, and V (0, 21, x2,y) = x1y — o|x1| + 22 for some a € (1,3/2). Consider the se-
quence of mechanisms (u;, Mp) indexed by j € N, where Mp = {mp1,mpa, mp3, mp4}

and

O(sr0)0)  ifmp=mp

) 1 if mp=mpg
pimp) = § (C7T00)
5((17%»1) if mp=mpg3

O((ag)my) e = e

As j — o0, this sequence of mechanisms converges to the mechanism (u, Mp) given by

9((0,0),0) if mp € {mpy, mpa}

p(mp) = 5((1 1)

71) if mp=mpg3

(13- Hme = e

The unique sequential continuation equilibrium after mechanism (p;, Mp) is ac-
cepted has the type 1 principal playing mp;, the type —1 principal playing mps, and

the agent responding with y = 1 to any positive 7 and with y = —1 to any negative
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x1. Consequently, the agent’s expected utility from accepting this mechanism is strictly
negative, so mechanism (u;, Mp) must be rejected in any contracting equilibrium.

In every sequential continuation equilibrium where mechanism (u, Mp) is accepted,
either the type 1 principal plays mps or the type —1 principal plays mpy. Thus the
agent’s expected utility from accepting this mechanism is weakly positive conditional
on either principal type and strictly positive conditional on at least one type, so it

must be accepted in any contracting equilibrium. 0

OA.7 Proof of Lemma 2

Lemma 2. Consider a sequence of primitives {P;}jen that converges to the original
primitives P. For every mechanism (pu, Mp) € M, there is a sequence of mechanisms
(nj, Mp) € M; such that any limit of sequential continuation equilibrium outcomes
after these mechanisms are proposed is a sequential continuation equilibrium outcome

after (u, Mp) is proposed.

Construction of Mechanism. Let v =% u(mp)/|Mp| be the distribution over prin-
cipal action-recommendation pairs that is obtained by drawing (z,r) from p(mp) with
probability 1/|Mp| uniform over each (mp). Let fr., : Upysupp(p(mp)) — [0, |Mp]]
be the Radon-Nikodym derivative of the p(mp) distribution with respect to v. Note
that > . finp)(2,7)/|Mp| =1 for all (z,7) € Upy supp(pu(m’p)).

Let P.(Mp) = P(Mp) \ {0} be the set of non-empty subsets of Mp. For a given
(z,7) € Upysupp(p(mp)), let M(z,r) = {(mp) € Mp : finp)(z,7) > 0} be the set
of principal messages for which the corresponding distribution over principal action-
recommendation pairs has a strictly positive Radon-Nikodym derivative at (z,r).

We enlarge the principal recommendation space so that, in addition to some r € R,
each recommendation includes a non-empty subset of Mp. Formally, the enlarged
recommendation space corresponds to R = R x P (Mp). The modified mechanism

is (f1, Mp), where the principal message space is the same as in (u, Mp), and the
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i is induced from p by replacing each principal-action recommendation pair (z,r) €
U supp(pe(mlp)) with (2, (r, M(z,1))). Let 7 = 3, i(mp)/|Mp| and finp) : Ungsupp(ii(m})) —
[0, |Mp|] be the Radon-Nikodym derivative of the fi(mp) distribution with respect to
. Then, by construction, fu,,)(z, (r, M(z,7))) = fimp)(z,7) for all mp € Mp and
(z,r) € X x R, while f,,.(z,(r,M)) = 0 for all mp € Mp, (z,r) € X x R, and
M # M(z,r). Moreover, both (u, Mp) and (i, Mp) have the same sequential continu-

ation equilibrium outcomes. [ |

Construction of Sequences of Mechanisms. Suppose, by restricting attention to a sub-
sequence if necessary, that there is a finite X ; € X such that, for all j € Nand z € X,
there is an 2/ € X ; satisfying |z — 2’| < 1/j. Additionally, suppose that there is some
finite Ej C R such that |§J| < |R;|/2MP| and, for all r € R, there is an 1’ € éj
satisfying |r — 7’| < 1/j. The requirement on the relative sizes of Ej and R; means
that, for each ' € Ej and M’ € P, (Mp), we can identify (', M’) with some element
of R;. Consider the mechanism (fi;, Mp), where fi; is determined as follows. For each

e X;,reR;, and M e P, (Mp), let

ﬁj (mp)[ZB/, (T/v M/)] = E(:v,r)rv,u(mp)

and fi;(mp)[@, (r',M")] = 0 for all M” # M'. By construction, fi;(mp)[z’, (r',M')] >0
for all z € )N(j, re }N%j, and M € P, (Mp), and _, ., \p fij(mp)[2’, (', M')] = 1. There-
fore, ji;(mp) € A(X;x R;x P (Mp)). Moreover, fi;(mp)[M'] = E (e r)mp(me) [ L(M(z,7) =
M’)] is the probability of realizing some (z, r) for which M(z,r) = M’ under pu(mp). B

Lemma OA 7. For all mp € Mp, lim;_, ji;(mp) = fi(mp).

Proof. Let O be an arbitrary open subset of X x R and M be an arbitrary element of
P (Mp). We need to show that liminf;_, fi;(mp)[O x {M}] > f(mp)[O x {M}]. For
any £ > 0, let (X X R)\O)se = {(z,7) € O :V (/,1") € O, |[z—2/| > e or |r—r'| > &}
be the subset of points in O that are of distance at least £ from (X x R) \ O. By
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construction, for every j > 1/e, we have fi;(mp)[O x {M}] > a(mp)[((X x R)\O)s. X
{M}]. Since lim._ fi(mp)[(X x R)\ O)sc x {M}] = fi(mp)[© x {M}], the claim
follows. [

Lemma OA 8. Fiz an M € P.(Mp) and mp, m', € Mp such that mp, m', € M. For
any j € N, let q; € A()Z'j X ﬁj x Yj) and q; € A()?j X Ej X Y;) be the distributions
induced by the conditional distributions given M of fij(mp) and fi;(m'p), respectively,
when the agent responds to any (x,r) according to a fived action rule B a(x,r) € A(Y;).
Suppose that lim; .. q; = q and lim;_, q; = ¢'. Then, with probability 1 under both q

and ¢, the conditional distribution of y given any (x,r) is the same under q and ¢ .

Proof. Suppose otherwise that the conditional distributions are different under ¢ and
¢’. Then there is some closed C C X x ﬁ, closed Y C Y, and k > 0 such that either
(1) P,[C] > 0 and By[Y|z,r] > (1 + k)Py[Y]|z,7] for all (z,7) € C, or (2) By[C] > 0
and P Y]z, r] > (1+ k)P, [V|z, 7] for all (z,7) € C. Assume without loss of generality
that the former holds. Since h(z,7) = fin, (x,r)/fmfp (x,r) is measurable, Lusin’s
theorem implies that there is some closed cce satisfying IP, [5] > 0 and on which h
is continuous.

Fix n > 0. Since h is continuous and strictly positive on C. , for any (x,r) € 5, there
exists some 0(;,) > 0 such that (1 —n)h(z,r) < h(z',7") < (14 n)h(x,r) whenever
2" — x|, |r" = r| < 0@gy). Consider the open cover of C given by {Bs,..,(@:7)} wryec
where, for any (z,7) € C and § > 0, Bs(x,r) = {(2/,r") € C : |2/ —z|,|r' — 1| <
0} is the set of points in C of distance less than § to (x,r). As C is compact, this

open cover has a finite sub-cover {B(;(Ek 7»k)<$k7 k) hi<k<rx. Thus, for at least one k €

{1,...K}, P[Bs,,

Tp,TE)

(g, )] > 0. Throughout the remainder of the proof, we let C=
(g, 7). Note that, by construction, (1 —n)p < fom,(z, r)/fmfp(x, r) < (14+n)p

6(3%7%)
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for all (z,r) € C where p = Frnp (wk,rk)/fm%(a:k, r,) > 0. From this, it follows that

where the second equality follows from the Radon-Nikodym theorem. Similarly,

Py [é\] =Ey []15(51:7 7)]

=E, [—fm;(x, r) Ls(x, 7“)]

oy (,7)
> (1 —mn) pEqg[1a(z,7)]
= (1 — ) pP,[C].

Combining these two inequalities gives

~

P,[V|C] = Pq,ﬂgq,[i]?] : ( ; ) (1+n> P,[Y[C]. (OA 5)

For any ¢ > 0, let C<. = {(z,r) € X x R: 3(2/,7") €Cst. |z —a|,|r—1| <e}
be the set of points in X x R that are of distance no more than ¢ from C. Likewise, let
}Afga ={yeY: dyge Y s.t. ly — 9| < e} be the set of points in Y that are of distance

no more than ¢ from Y. Note that P, [é\ X }7] = lim,. o liminf; ]P’q;_ [é\gs X ?Ss]- For
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any j > 1/¢,

qu [é\gg X }/}SE]

= jis(mp)[z, (r, M)] ()P
) Z Z(I’m’)e)@xﬁj /]j(mP)[x’,(r’,M)]ﬁj’A( 1) [Y<e]

(1‘,7‘)6(2]' Xﬁj)mégg
1 1
_ D (are(®, xync. | (‘5’3 — 2| < 3) 1 (|7" -7 < ;)

SEq ]1((1‘,7‘) c C) : - ﬁj,A(fly’f‘/)[?g]
2@ ryek,x iy L (lf — 2" < ;) I (I?“ - < 3>

+ Py[Cese \ €],

where the first equality follows by definition and the inequality follows from the con-
struction of fi;(mp) and the fact that no (z,r) of distance more than 2¢ from C con-

tributes positive probability to any (z/,7") € ()~(] X ]%) NC.. Similarly,

_ 3 i (m’p) [, (r, M)] B; (e, 1) [Vl]

(x r)e()?~><1§')nc7< Z(w’,r’)e)?j xﬁj ﬂj (mIP>[xIa (’I“’, M)]
) g X )Nk <e

o Dt Vel B x BAAE. ﬂ<|x—x’|§l)ﬂ<|r—r’|§l
ZEq/ 1(($77") S C) (@, e (X x Rj)NC<e 1 J 1 J
Z(x”,r”)ef{jxf{j 1 (’x - :U//| S ;> 1 <|7’ - T//| S ;)

r 1 / 1

m, (T, 7 D )e(Ry <y 551<|x—x’|§f>11<|7“—7‘|§—~

=E, —Ji P( )IL((%T) €C) (@ (X x Bj)NC< 1 J : j
e (21) S ey 1l =1 <) 1 (Jr = < 3)
/\Zx’r’ X xR;)NC- IL(‘I_LLJ|§l>ﬂ(|7ﬂ_rl|§l
>(1—=n)pEq | 1((x,7) €C) () (% X ) nCee : j : j
D (@ meX;x ity L (V?C -2 < ;) 1 (\r — 7 < 3)

>(1 —n)pPy, [Ce % Yeu] — (1 —17)pPy[Cea. \ C],

> Biala',r)[Y.]

) Biale',r)[Y.]

> Biala',r)[Y.]

where the last inequality comes from the previously established inequality for P, [CAS8 X

Y<.]. Since lim._,o Py[C<5:\C] = 0, we thus have Py [CxY] = lim.so lim inf;_,o Py [C<. %
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i}ga] > (1 —n)plim._,oliminf;_, P, [CASE X }Afgg] = (1 —mn)pP,, [C x Y]. Moreover, since

Py [é\] =Ey []15(“:» 7)]

we obtain

P,[710] = Pqﬁiq/%” > (152) rire (04 6)

For any x > 0, (OA 5) and (OA 6) contradict each other for n sufficiently close to 0.

Hence, the conditional distributions under ¢ and ¢’ must be the same. [ |

Proof of Lemma 2. The mechanism (i, Mp) has the same sequential continuation equi-
librium outcomes as (u, Mp). Thus, to prove Lemma 2, we will show that any limit
of sequential continuation equilibrium outcomes after the mechanisms (fi;, Mp) in the
constructed sequence are proposed is a sequential continuation equilibrium outcome
after (fi, Mp) is proposed. To do so, we need only show that any limit of sequential
continuation equilibrium outcomes after the mechanisms (fi;, Mp) in the constructed
sequence are accepted is a sequential continuation equilibrium outcome after (i, Mp)
is accepted. The reason is that this, along with the convergence of the agent’s util-
ity function, implies that a limit of the agent’s acceptance probabilities in the j-th
game must be an optimal acceptance probability in the true game given the sequential
continuation equilibrium after (f, Mp) is accepted.

Let (:\j, Tjoys - Tj0xn,Nj, Bj.4) be a consistent assessment in a sequential continu-
ation equilibrium after (fi;, Mp) is accepted in the j-th game. We will use this se-
quence to construct an assessment (5\*, Tp s+ Ty A5 B4) in the limit game. (In doing
so, we assume that all relevant objects have a 7 — oo limit, which is without loss

since we can always restrict attention to subsequences of j.) Let = lim;_, S\j and
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7y = lim; o 7 for all # € ©. For any M € P, (Mp) such thatM(mp) = M for some
mp € Mp, let p;(M) € A(© x X x R xY) be the conditional distribution given M
that is induced by this assessment, and let p*(M) = lim;_,o, p;(M). The agent’s belief
updating rule A* is such that A*(x, (r, M(x,r))) equals the conditional distribution of
0 given (x,r) under p*(M(z,r)) for all (z,7) € Uppenmpsupp(u(mp)). Likewise, the
agent’s action rule 3% is such that g% (z, (r, M(z,r))) equals the conditional distribu-
tion of y given (z,7) under p*(M(z,r)) for all (z,7) € Unpempsupp(u(mp)). The
construction of (:\*, Tp, > - Moy A¥, B74) guarantees that it is consistent.

We now argue that (5\*,7@‘1, vy T A (%) constitutes a contracting equilibrium
after (fi, Mp) is accepted. For any mp € Mp, let g;(mp) € A(X xY') be the distribu-
tion that results from fi;(mp) and the agent responding according to ;4. Likewise, let
¢*(mp) € A(X xY) be the distribution that results from fi(mp) and the agent respond-
ing according to f%. Lemmas OA 7 and OA 8 imply that lim;_,. g;(mp) = ¢*(mp)
for all mp € Mp. Then, since the message choices of the principal prescribed in
(7j6,,---»Tj0y) are optimal given the other’s play, it follows that the message choices
prescribed in (7 , ..., W;N) are also optimal given the other’s play. Moreover, a similar
argument to that used in the proof of Lemma 1 establishes that the agent’s action rule
(% assigns probability 1 to best responses to their posterior beliefs about the principal’s

type. [ |

OA.8 Proof of Lemma 4

Lemma 4. There is a profile of mechanism proposal distributions {%}969 and a mea-
surable mapping 7™ : M — A(O) x A([0,1] x X x Y)® that takes each mechanism
(u, Mp) € M into a tuple consisting of a distribution over the principal’s type and
a conditional distribution over (c,x,y) for each principal type that corresponds to a
single sequential continuation equilibrium after (u, Mp) is proposed such that

1. There is a reqular conditional probability distribution obtained from \ and {r@}ge@

that, for every (u, Mp) € M, induces the A(O) component of 7*(u, Mp) as the
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belief over the principal’s type following the proposal of (u, Mp) € M,
2. U0, 7"(u, Mp)) < U(,p) for all @ € © and (u, Mp) € M, and
3. {I’Zje}geg combined with 7*(u, Mp) following the proposal of each (u, Mp) € M

induces the same distribution over (0, «,x,y) as outcome p.

We first develop the class of binary and obedient mechanisms, described in Ap-
pendix B.2, that we use to show that there is valid on-path play consistent with
the same distribution over (0, «,z,y) as in p occurring in a contracting equilibrium
outcome. For any (z1,22) € X X X, let fi(z,00) : {1,2} = A(X x N) be the map-
ping given by fi(z, 2,)(M) = O(z,,,m) for both m € {1,2}, and let o(x1,22) be the
set of sequential continuation equilibria after (i (s, s, {1,2}) is proposed. Let ¥ =
{(x1, 2, \, gy, ooy Moy v, B) € XEXA(O)XA({1,2})O %[0, 1] xA(Y)2 : (N, gy, ..., Tgy, @, B) €
o(r1,72)}. Observe that ¥ is a compact subset of X2 x A(Q) x A({1,2})® x [0,1] x
A(Y)2.

Let

Mln'n* :{(/jj’ {1’2}) c M . 3(x17x275\77]'917 ...77T9N,Oé,ﬁ> € Y s.t.

Supp(u(l)) = (mlﬂ (5"71—917 "'77T9N’0"6(1>>) and SHPP(M(Q)) = ($2> (5‘77T91? ""7T9N>O‘75(2>>)}'

We will say that there is obedient play following the proposal of the mechanism in Mb"*
corresponding to (1, x2, A, Ty, - Moy, @, B) € X if each principal type 6 plays according
to my and the agent plays according to (a, 3). For every 6 and (u,{1,2}) € MY,
we let 7% (1, {1,2}) € A(O) x A([0,1] x X x Y)® denote the tuple consisting of
the distribution over the principal’s type X and the distribution over (cv, z,y) for each

principal type that results from the proposal of (i, {1,2}) if it is followed by obedient

play.

Lemma OA 9. There is a profile of mechanism proposal distributions {i’[] 9}96@ -
A(Mb™) such that

1. There is a reqular conditional probability distribution obtained from A and {7@ 9}966

that, for every ($1,$2,5\,7T91, oy Ty, @, B) € X, induces \ as the belief over the
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principal’s type following the proposal of the mechanism in MY™ corresponding
to (33'1, T, 5‘7 Ty 5 -y TN s O /8)
2. {’@ 9}969 combined with the principal and agent playing obediently for each mech-

anism in MP™ induces the same distribution over (0, a, x,y) as outcome p;.

3. U0, 7w, {1,2})) < U(0,p;) for all 0 € © and (u,{1,2}) € Uglegsupp(rza. o)

We prove Lemma OA 9 in the following way. For any mechanism (u, Mp) that
is proposed with positive probability under p;, we construct a joint distribution over
principal types and mechanisms in M that, when coupled with obedient play, leads
to the same distribution over (0, «,z,y) as the conditional distribution of p; given
the proposal of (u, Mp). The key will be to pair off the various actions that occur
with positive probability in p; after the acceptance of (u, Mp) into separate binary
mechanisms in such a way that the agent is willing to accept these mechanisms with
precisely the same probability with which they accept (i, Mp) in p;. This requires
appropriately choosing the various mechanism proposal probabilities and probabilities
of each of the two actions being chosen after any given mechanism is accepted. We
then aggregate over the distributions of principal types and mechanisms in M
identified separately for each on-path mechanism in M; to obtain a profile of proposal

distributions over mechanisms in M%"* that results in an outcome of p;.

Proof. Consider the equilibrium ((@,kﬁl’ﬂ;kﬁl)’ o O’G,k,ej\,?ﬂ;,kﬁzv)’ (4 (): Bix(+))
of the (j, k) game, and, restricting attention to a convergent subsequence if necessary,

let

(70 g, T700)s oo (P05 Tr0x )5 (25(), B5 ()

= i (74 0 o) oo U s T ) (@5(), Bri(4))).

k—o0

Fix an arbitrary (p, Mp) € M, that is proposed with positive probability under
(/z’;ﬁl, ...,rZ;ﬂN). Let S\j (1, Mp) € A(O) be the posterior distribution over the princi-
pal’s type conditional on the proposal of (u, Mp). Further, let (z1,y1), ..., (xp, yum) €
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X; x A(Y') be the pairs of principal actions and agent action distributions that oc-
cur with positive probability under (77, (1, Mp), ..., 7o (11, Mp), B;(-)) when (u1, Mp)
is accepted. For every § € © and m € {1,...,M}, we use ¢j(z,,y.n.) () to denote
the probability of (z,,,y.) conditional on type 6 and (i, Mp) being accepted under
(750, (1, Mp), ... 75 g (1, Mp), B3 ().

The k — oo limit of the expected utility of the agent from accepting (u, Mp) in the

.....

for some L € N such that
(a) s;1 >0and 5,0 >0foralll e {1,..,L},

7777

(c) Foralll €{1,...,L},

sign (511 Y X5 (0111, Mp)gja (0)Ey, [V (0,31, 9)]
0cO

+ Si2 Z 5\;(‘9‘% MP)qj,l,2<9)Eyz,2 [V(ea 12, y)])
IC)

=sign (Vj(u, Mp)),

where 211 = Ty, T12 = Ty s @11 (0) = Qj,(xmlyl,ymlyl)(e)’ and g;;2(0) = Qj,(a:mlyz,ymm)(e)
forall§ € © and [ € {1, ..., L}.

For each | € {1, ..., L}, we create a mechanism (1, {1,2}) € M®™ in which mp = 1
maps to x;; and a recommended action distribution of y; 1, and mp = 2 maps to ;9
and a recommended action distribution of y; . We will have each type 6 to propose the
(tu, {1,2}) mechanism with probability s;1¢;,.1(0) + s12¢;,,2(¢). Conditions (a) and (b)
ensure that this constitutes a valid mechanism proposal distribution. Moreover, after
the acceptance of a (p, {1, 2}) that they propose with positive probability, we will have
the type 0 principal play mp = 1 with probability s;1¢;:,1(6)/(s1,1¢;1,1(8) + 512¢;.,2(0))
and mp = 2 with complementary probability s;2¢;12(0)/(s11¢5.,1(0) +512¢5.2(0)). (For
any mechanism that they propose with 0 probability, we will have the type 6 play
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mp = 1 whenever they weakly prefer (x;1,y;1) to (212, y:2) and otherwise play mp = 2,
but the precise message selection rules in these cases are irrelevant.) We will also
have the agent follow every action recommendation. Condition (c) then implies that
the agent’s expected utility conditional on the acceptance of any of the (u,{1,2})
mechanisms has the same sign as their expected utility from accepting (u, Mp) in the
k — oo limit of the (7, k) equilibria. Thus, the agent will be willing to accept each of
the (s, {1,2}) mechanisms with the same probability a(u, Mp), and indeed we will
have them do so. This means that the conditional distribution of («,x,y) given type
0 is exactly as when (u, Mp) is proposed in the k — oo limit of the (j, k) equilibria.
The specific mechanisms are as follows. For each (my 1, m;2), consider the (1, {1,2}) €

MY given by

Supp(:u(l)) = (‘rl,h (/\;f,b W;,l,@p ) 7-‘-;':Z,HJ\N a;(luv MP)7 yl,l))a

supp(u(2)) = (~73l,2> ()‘;,la W;,l,ela oo W;,z,eNa 0‘; (1, Mp), YI,2))7

where, for each 0 € ©,

T (0) = 5\;(6“% Mp)(s1145,,1(0) + 51,2q5,,2(0))
(0) = — :
’ > oeo MO, Mp) (51151 (0") + s125.,2(0"))
p
81,1Qj,z,1s(lé;?:8’ll’,12q]',l,2(9) if Sl’lq]"l’l(e) + 5172(]]‘7[72(0) >0
mi0(1) =10 if By, ,[U(0,211,9)] < Ey,,[U(0, 212, 9)] »
1 otherwise
\

W;,z,e(z) =1- 77;,1,0(1)-

Note that S\jl is the posterior distribution induced by having each type 6 propose the
(tu, {1,2}) mechanism with probability s;1¢;:1(6) + s1.2¢;,,2(8) given prior distribution
S\j(,u, Mp), while 77, , gives the mechanism selection probabilities for each type 0 as
discussed above.

We have already established that if each principal type 6 proposes the binary mech-
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anism corresponding to (my1,my2) with probability s;1¢;,1(0) + $1,2¢:2(6) and the
subsequent play is obedient, then the resulting outcome distribution is the same as
that which follows the proposal of (i, Mp). We now argue that obedient play is con-
sistent with these proposal probabilities and sequential continuation equilibrium. To
see this, observe that, the only (x,y) pairs that occur with positive probability con-
ditional on type 6 are those which occurred with positive probability conditional on 6
under the k& — oo limit of the (j, k) equilibrium outcome following the acceptance of
(1, Mp). Because the principal’s trembles vanish in the & — oo limit, these must be
the optimal (z,y) pairs for the principal type. Additionally, in the mechanism corre-
sponding to (my1,m;z2), the posterior over the principal’s type after (z;1,y;2) is the
same as the posterior after (z,,, ,,y12) in the & — oo of the (j, k) equilibrium. Likewise,
for (x;1,y12). So the prescribed agent play (after acceptance) is always optimal since
the agent also has vanishing trembles (and the agent’s action space converges to their
true action space) as k — oo. Finally, as noted above, Condition (c) ensures that the
prescribed acceptance probability of a(u, Mp) is optimal for the agent.

We have thus obtained a profile of mechanism proposal distributions {rl” Mp, 0}969
corresponding to an arbitrary on-path (in the k& — oo limit of the (j, k) equilibrium)
mechanism (p, Mp) € M; that satisfies the three conditions of Lemma OA 9 with the
following qualification: In Condition 2, the outcome p; needs to be replaced with the
outcome conditional on (i, Mp) being proposed. This can be done for every mechanism
in M$" = {(u, Mp) € M : 30 € O st. rz;fﬁ(,u, Mp) > 0}, the set of on-path mecha-
nisms (according to the k& — oo limit of the (j, k) equilibrium). Averaging over the
mechanism proposal distributions for type 6 weighted by the probability of proposing
each (u, Mp) then gives g = D Mp)EM, IC,Q(M’MP),@,M,MP,G' The profile of these

mechanism proposal distributions satisfies all the conditions of Lemma OA 9. [ |

Lemma OA 10. There is a profile of mechanism proposal distributions {”19}969 -
A(MY™) such that

1. There is a reqular conditional probability distribution obtained from \ and {r@}ge@

28



that, for every (ZL‘l,ZEQ,S\,’ﬂ'gl, e Ty, @, B) € X, induces \ as the belief over the
principal’s type following the proposal of the mechanism in MP™ corresponding
to (:cl,xQ,S\,ng, ey Ty O, ).

2. {%}969 combined with the principal and agent playing obediently for each mech-
anism in MP"™ induces the same distribution over (0, a,x,y) as outcome p.

3. U0, 7w, {1,2})) < U(H,p) for all 0 € © and (u, {1,2}) € Upcosupp(ry,)-

Proof. For each 0 € ©, let 77, € A(M) be a limit point of the sequence {l’aj’e}jeN.
Without loss, suppose that lim; 7l = "l for all § € ©. Since A(M"™) is closed,
it follows that each 77, € A(M""™).

We first demonstrate Condition 1. For every j € N, let 77, = Y oo )\(0)}74.’0 €
A(MP"), and likewise let 77 = 3" ,.0 A(0)77, € A(M"™). Let p;gurpin- € A(O %
M" ") he the probability distribution over pairs of principal types and binary and obe-
dient mechanisms induced by 7; as the distribution over mechanisms and \(-|(M, up))
the conditional distribution over the principal’s type given mechanism (M, up) €
MO Similarly, let pgyapine € A(O x MP™*) be the probability distribution in-
duced by 77 and A(|(M, pup)). Fix 6 € © and let M be a closed subset of M""*. Since
A(O|(M, pp))L5g(M, pup) is an upper semicontinuous function of (M, up) € MY it
follows that

Prg . yoine {0} X M] = By [MO|(M, 1)) Lie(M, pip)]

> limsup E,, [A0](M, 1)) Lz (M, jup)]
j—oo

= limsupP, 0. {6} x M|.
j—o0
Because 6 and M are arbitrary, we conclude that im0 Pj@x Mbine = Pox ppins, Which
means Condition 1 is satisfied.
Now we show that Condition 2 holds. Fix # € © and let X, A, and Y be arbi-
trary closed subsets of X, [0,1], and Y, respectively. Since A(6|(y, {1,2}))7°"4(X x
A x Y|0,1,{1,2}) is a continuous function of (i, {1,2}) € M it follows that
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B M6 (1, {1, 21)) 74X x A x V16, , {1, 21)] = lim e B, N6, {1, 21)) 74X
AxY|0,1,{1,2})] =limj o P, [{0} X X x Ax Y] =P,[{6} x X x AxY]. Because
9, X, A, and Y are arbitrary, we conclude that {%}969, together with obedient play,
induces p.

Finally, since U(f, 7%*!(p,{1,2})) < U(f,p;) for all § € © and (u,{1,2}) €
Upcosupp(77, ), standard continuity arguments show that U (0, 7%, {1,2})) <
U(0,p) for all § € © and (u, {1,2}) € Upcosupp(ry,,)- |

We now develop the class of revealing mechanisms, also described in Appendix B.2,
to show that there is valid off-path play consistent with contracting equilibria in which
the principal types receive the same payoffs as they get in p.

For every M € N, let

MM = L {1, MY) € Mz (2, .., 20r) € XM st supp(p(m)) = (2, m) Ym €

be the set of deterministic mechanisms with M messages in which the message chosen

by the principal constitutes the recommendation received by the agent.

Lemma OA 11. For every M € N and (u, {1, ..., M}) € MM there is a sequential
continuation equilibrium after (u, {1, ..., M'}) is proposed that gives every principal type

a weakly lower payoff than U (0, p).

Proof. Note that any (u, {1,..., M}) € MM can be approximated to arbitrary ac-
curacy by some sequence of mechanisms {(y;, {1, ..., M'})}jen, where (p;,{1,...,M}) €
M for all large enough j. Because of the vanishing trembles of the principal, it follows
that, in the k — oo limit, for the proposal of any mechanism in M, there is a sequen-
tial continuation equilibrium which gives the principal types a lower payoff than what
they receive from p;. For all sufficiently large j, let (S\j,ﬂ'jﬂl, s Tjon» @, Bj) denote
such a sequential continuation equilibrium for the proposal of (u;,{1,...,M}). Stan-
dard arguments show that any limit point of these sequential continuation equilibria

is itself a sequential continuation equilibrium following the proposal of (y;, {1, ..., M}).
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Continuity ensures that this sequential continuation equilibrium gives each principal

type a lower payoff than what they receive from p. [ |

Lemma OA 12. For every M € N, there is a measurable mapping 7* : Mrev-M
A(O) x A({1,..., M})® x[0,1] x A(Y)M such that, for every (u,{1,..., M}) € MrevM,
TM*(u, {1,..., M}) is a sequential continuation equilibrium after (u,{1,..., M}) is pro-
posed that gives every principal type a weakly lower payoff than U(6,p).

Proof. For each (i, {1,..., M}) € MM et o™*(u, {1, ..., M}) be the set of sequential
continuation equilibria after (u, Mp) is proposed which give the principal types weakly
lower payoffs than they obtain from p.

By Lemma OA 12, oM* (i, {1, ..., M'}) is non-empty for all (u, {1,..., M}) € MM,
Additionally, standard arguments show that o™* : MM = A(©)x A({1, ..., M})® x
[0,1] x A(Y)M is an upper hemicontinuous correspondence. Since MM is compact,
Lemma 1 in Section D of Hildenbrand [1974] guarantees that there is a measurable

selection of o™* and hence the desired 7M*. [ |

Lemma OA 13. There is a measurable mapping 77 : M — A(©) x A([0,1] x X x
Y)® that takes each mechanism (p, Mp) € M into a tuple consisting of a distribution
over the principal’s type and a distribution over (a,x,y) for each principal type that
corresponds to a single sequential continuation equilibrium outcome after (u, Mp) is

proposed that gives every principal type a weakly lower payoff than U(6, p).

Proof. Consider arbitrary M € N and the mapping 7M* : MM — A(O©)xA({1,..., M})®x
[0,1] x A(Y)M identified in Lemma OA 12. Let 7Mf : MM 5 A(O) x A([0, 1] x
X x Y)® be the mapping that specifies the probability distribution over types and the
distributions over (a, z,y) corresponding to 7M*(u, {1, ..., M}) for each (u, {1,..., M}).
Note that 7T is measurable.

Fix some M € N. Consider MM = {(u, Mp) € M : |Upenr, supp(p(m))| = M},
the set of mechanisms which can effectively induce exactly M distinct principal action-

recommendation pairs. For each (u, Mp) € MFM et XM (u, Mp) = (1, ..., 25) be
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the M-tuple of principal actions where, for every m € {1, ..., M}, x,, is the action in-
duced by the m-th distinct principal action-transfer pair, as determined by the natural
order from the messages Mp = {1,...,M'}. Further, let f : MM — AMrevM he
the mapping such that f(u, Mp) = XM (u, Mp) for every (u, Mp) € MHM By con-
struction, f is measurable. Moreover, the sets of sequential continuation equilibrium
outcomes following the proposal of (u, Mp) or f(u, Mp) are precisely the same for all
(p, Mp) € MeEM_ Thus, the composition 7™* o f : MM — A(©) x A(][0,1] x X x
Y)® is a measurable mapping that, for any (u, Mp) € MM gives a distribution
over the principal’s type and a distribution over («,z,y) for each principal type that
corresponds to a single sequential continuation equilibrium outcome after (u, Mp) is
proposed in which every principal type receives a weakly lower payoff than U (0, p).
Since the M¢/7M are disjoint, measurable subsets of M satisfying Uyen MM =
M, the mapping 77 : M — A(O) x A([0,1] x X x Y)® such that 71(u, Mp) =
M f(p, Mp)) for any (u, Mp) € MHM has all the desired properties. |

Proof of Lemma 4. Let the profile of mechanism proposal distributions be the same
{%}969 as identified in Corollary OA 10. Additionally, consider the mapping 7* :
M — A(O) x A([0,1] x X x Y)® defined by

Tobd(p, {1,2}) i (1, Mp) = (1, {1,2}) € Upeosupp(77,)

(1, Mp) if (11, Mp) & Ugeosupp(7,).

T (u, Mp) =

By construction, 7* is measurable. Additionally, Lemma OA 10 guarantees that Con-
ditions 1 and 3 of Lemma 4 hold with this {7, }sce and 7, while Lemmas OA 10 and
OA 13 together ensure that Condition 2 of Lemma 4 is satisfied. [ |
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OA.9 Proofs of Lemmas 5 and 6

OA.9.1 Proof of Lemma 5

Lemma 5. In MCS environments, there are sequences of full-support distributions over
the principal type { A\, }ren and outcomes {py}ren such that

1. marggpr = A\ for all k € N,

2. liminfy o E,, [v(6, 2, y) + g(¢)]|0] > 0 for all 6 € O,

3. Ep, [u(@,z,y) —t|0] > E,, [u(d,z,y) —t|¢] for all 6,0' € © and k € N,

4. P ly=vy"(0,2)|0,x #x,) =1 for all € © and k € N, and

5. For each mechanism (u, Mp) € M and k € N, there is a sequential continuation

equilibrium after (u, Mp) is proposed that gives every principal type a weakly lower

payoff than py.

Construction of Hypothetical Games. Let V = Max(gq ¢y V(0, 2, y)+g(t). Forallk € N
satisfying k& > |0, let
Vi=—(0V+1)/(k el (OA7)

Note that V;' is such that (1 — (|6 — 1)/k)V{ + (|©] — 1)V /k < —1/k. This means
that, if the agent’s conditional expected utility given some principal type is weakly
lower than V;| and the probability of this type is at least 1 — (|©] — 1)/k, the agent’s
total expected utility is less than —1/k.

Let {X,}jen, {T}}jen, {Yj}jen, {R;}jen be sequences of finite action, transfer, and
recommendation sets such that lim; ,., X; = X, lim; ., T; = T, lim; ., Y; = Y, and

lim; ., R; = R. For a given j € N, , consider the set of mechanisms

M; = {(5, Mp) € M (1) [Mp| <

k
(2) Ymp € Mp,x € X;,t € T;,r € R;, Ik € N s.t. p((z,t),r/mp) = —}
’ ’ ’ J1XGIT5 Ry

that (1) have no more than j principal messages and (2) are such that the probability

of a given principal action-transfer-recommendation tuple conditional on any message
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is some integer multiple of 1/(j|X;||7}|). Similarly, let

Aj(X; xT;) = {X e AX; xT;): Vo e X;,t€T;, 3k € Ns.t. x[(z,t)] = L}

7151151
be the set of distributions over X; x T} such that the probability of a given principal
action-transfer pair is some integer multiple of 1/(j|X;||T;]). We suppose that, for all
j € N, the recommendation space is strictly larger than the set of principal types, i.e.
|R;| > |©|. For notational convenience, we will assume that the power set of principal
types is in fact a strict subset of the recommendation spaces.

We now describe the strategy space of the type 6 principal in the j-th game. Part
of this player’s choice is over which mechanisms to propose. We force 6 to propose al-
most all mechanisms with positive probability. The exceptions are mechanisms which
commit to some y as the distribution over principal actions and some ' # 0 as the
recommendation received by the agent; 6 is required to propose these mechanisms
with 0 probability. Formally, let p1, ¢ € A(X x T x R) be the distribution satisfying
margy fiyo = X and gy o[0'] = 1, and let M55 = {(1y 0, {0}) 1 x € A;(X; x Tj), 0 #
0} be the set of mechanisms in the j-th game that commit to some y as the distribution
over principal actions and ¢ as the recommendation received by the agent. Addition-
ally, let M?,e = Up29Mj . The distribution over mechanism proposals used by ¢ must

belong to

1
BjoMy) = {r0€ AM) = (1) 7l(n, Mp)) 2 S

(2) 7l Mp)] = 0 ¥(11, Mp) € M3}

V(,LL, MP) S Mj \M?,%

Moreover, when a given mechanism is accepted, we force 6 to tremble and play every
message in the mechanism with positive probability. Formally, the distribution over

messages used by 6 when mechanism (u, Mp) is accepted must belong to

1,.0( M) = {mp € A(Mp) s mplmp] > ——— Vmp € Mp}.

1
JIMp|
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A valid strategy for 0 in the j-th game is any pair (77, mg(+)) consisting of a 77, €
Aj9(M;) and a rule my(-) for how to play when an arbitrary mechanism is accepted
that satisfies 7y (p, Mp) € IL; p(p, Mp).

The strategy space of the agent is unaltered from the principal-agent game, aside
from the addition of trembles. For every mechanism (u, Mp), we require the probability
« that the agent accepts its proposal to be no less than 1/j5. Additionally, we require
the agent to tremble in their choices of actions. In particular, for every mechanism
(1, Mp) and principal action-recommendation pair (x, ), the agent’s choice of action

must be a distribution belonging to

A (Y;) = {y € A(Y): yly > —

Yy € Y}.
JY;l ’

A valid strategy for the agent in the j-th game is any pair (a(-), 3(-)) consisting of (1)
a rule governing the probability of mechanism acceptance, a(-), satisfying a(u, Mp) >
1/7 for all (u, Mp) € M; and (2) a rule governing the agent’s choice of actions 3(-)
satisfying B(u, Mp) € A;(Y;)%*Ti*8i for all (u, Mp) € M;.

In addition to the principal types and agent, we introduce a hypothetical player
who determines the distribution over principal types. This player can choose any
distribution that puts probability at least 1/k on every type. Formally, the strategy
space of this player is {\ € A(©) : N'(0) > 1/k VO € O}.

We now develop the payoffs of the various players for an arbitrary strategy profile
(. For any 0 € O, let ﬁj(é,,u, Mp, o, wp,34) and \N/j(ﬁ,,u, Mp, o, wp, 34) be the un-
modified expected payoffs to the principal and agent, respectively, when the principal’s
type is 6, the mechanism (u, Mp) € M; is proposed, the agent uses the acceptance
probability rule a € [0, 1], and subsequent play is governed by the rules wp and 3.

The agent’s payoft is

Vi(Q) =) _X(0) > 7511 Mp)IV (0, 11, Mpp, 0, 55, B.)

= (1 Mp)EMNUprcoMS )
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This is precisely the agent’s total expected utility from play over mechanisms in M \
(UgE@Mi@). The payoff of the player who controls the distribution of principal types
is W;(¢) = —V;((), i.e. the negative of the agent’s payoff. Thus, this player desires
to minimize the agent’s total expected utility from play over mechanisms in M \
(Useo M o).

We require more notation to specify the payoffs of the principal types.

U;(0.¢) = > 70, (11 Mp))U; (0. 11, Mp, &, 709, Ba)

(MvMP)eMj\(UG/eeM(? 9/)

+ D (e {0})] met (0, 2,y (6, 2)) — t) and

(.0 {ONEME

V;(0,¢) = > 72,11 Mp)V;(0, 1, Mp, ex, g, Ba)

(M,MP)EMj\(U'g/e@MC. 9,)

+ > 7l(mye {0})] wat v(f,2,y7(0,7)) +g(t))

(Mx 65 {0})6/\/‘; 0

would be the total expected utilities of the principal and agent, respectively, when the
principal’s type is 6, the principal follows the mechanism proposal rule 77,, and the
play that follows a mechanism proposal of (u, Mp) € M; proceeds as follows: For
(1, Mp) € M; \ (Upeco M5, ), play proceeds according to the rules a, wp, and Ba;
for (pyer,{0}) € MS,, the agent accepts with probability 1 and then takes action
y*(0', z) after observing any z € X;. We will impose modifications to the payoffs of
the principal types so that it is costly for ¢ to propose any (1,6, {0}) € M, whenever
either some principal type 6" # 6 would prefer to propose (j,,,{0}) (and have the
agent respond according to y*(6,x)) to their outcome or the agent gets a low expected
utility conditional on 0. Let A > 2max(g ¢, |u(0,2,y) —t|, and let f; : R — R, be
the family of continuous functions given by f;(z) = max{0, Amin{jz, 1}}. Note that
fi(z) =0forall 2 < 0and j, and lim; ., f;(z) = Aforall 2 > 0. Let ¢jgc : MSy — Ry
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be the “cost” function given by

cjo.c(tiyo, {0}) = Zﬁ(met (0,2, y"(0,2) —t) — U;(0' C))ﬂ%(‘” j(é’,é))-

/40

Note that c;g (ty,0,{0}) > A if some principal type ¢’ ¢ © would get a payoff from
proposing (4,0, {0}) that exceeds their payoff from ¢ by 1/3, while ¢; 5 (41,0, {0}) = 0
if every principal type ¢’ ¢ 5) gets a weakly higher payoff from ¢ than they would by
proposing (fty,0, {0}). We set the payoff of § from the strategy profile ¢ in the j-th

game to be

00.0=060.0~ 5 Rl 0] (actnan 0~ 1)

(/Lx,Gv{O})eMig

The important feature of the cost terms is that 6 would never want to propose a
(ty.0,{0}) € M, if either Y-, x[x, t](u(¢, z,y*(0,x)) — ) > U;(¢',¢) + 1/ for some
0" #£ 6 or Vj(«9, ¢) < Vi —1/4. On the other hand, if Y Xl (w0, 2, y7(0,2)) —t) <
(7]-(9’, ¢) holds for all  # 6 and ‘A/j(ﬁ, () > VJ, then the artificial cost from proposing
(fx0,{0}) is O for #. In this case, § would want to propose such a mechanism (if the
agent responded according to y*(, z)) whenever they would get a higher payoff from

it than from the outcome under (. |

Construction of Limit Outcomes and Distributions over Principal Types. Fixing k € N,
standard arguments show that the j-th game has a Nash equilibrium. Let \;; be the
distribution over the principal’s type induced by a Nash equilibrium of the j-th game.
For the same Nash equilibrium, let p;, € A(Ox X xT xY') be the outcome induced by
the corresponding mechanism proposal strategies used by the principal types and the
following continuation play for each mechanism: For any (1, Mp) € M; \ (Upeo M),
the principal types and agent play as they do in the Nash equilibrium, i.e. 6 plays ac-
cording to my(u, Mp) while the agent accepts the mechanism with probability a (i, Mp)
and then plays according to Ba(u, Mp); for any (p,0,{0}) € M5, the agent accepts
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with probability 1 and then plays y*(0, z) when they observe z. Suppose (by restrict-
ing attention to a convergent subsequence if necessary) that lim; ,..p;r = pi and
lim; o0 Ajx = M. Since marggp;r = Aj, and Aj,(6) > 1/k hold for each § € © and
j € N, we have that marggpr = A\ and \g(0) > 1/k for all § € O©. |

Proof of Lemma 5. Condition 1 of Lemma 5 holds by construction. The remainder of
this proof shows that the other four conditions are satisfied.

To establish Condition 2, it suffices to show that E,, [v(6,z,v) + g(t)|6] > VI holds
for all @, for V| defined in (OA 7), since limy_., V) = 0. To see that E, [v(0, z,y) +
g(t)]6] > V;I, consider the following two exhaustive possibilities: Case (1) in which the
Nash equilibria inducing the p; ; outcomes put probabilities on ¢ proposing mechanisms
in M, that are uniformly bounded away from 0 for infinitely many j, and Case (2) in
which the Nash equilibria inducing the p;; outcomes put probabilities on ¢ proposing
mechanisms in M, that converge to 0 for some subsequence of j. Recall that the
construction of the hypothetical games ensures that 6 is willing to propose mechanisms
in M, only if the agent’s conditional expected utility in the prevailing outcome given
6 is no less than V,/. Thus, in Case (1), it must be that E,,  [v(0,2,y) + g(t)|0] > A
for infinitely many j, which guarantees E,, [v(6,z,y) + g(t)|0] > V,j by continuity.
For Case (2), suppose towards a contradiction that there is some € > 0 such that
Ey, 00, 2,y)+9(t)]0] < V! —& holds along a subsequence of j for which the probability
that 6 proposes mechanisms in M, converges to 0. By construction, this means that
the distribution over the principal types is such that the agent’s conditional expected
utility from the play over mechanisms belonging to M; \ (Upco M, ) is less than
—1/k for sufficiently high j in the subsequence. However, the agent’s conditional
expected utility from the play over mechanisms belonging to M \ (Uglee./\/ljg,) cannot
be uniformly bounded below 0 as j — oco. Thus, it must be that E,, [v(0, z,y)+g(t)|0] >
v

To see that Condition 3 holds, observe that whenever 6’ # 6 is willing to play a

mechanism in M¢,, ¢ must (weakly) prefer to not play said mechanism given the
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prevailing outcome. Moreover, since § can always mimic the play of #” in mechanisms
in M; \j\/l;?’@,, it follows that, § must weakly prefer their conditional outcome under
pjk to that of " in the j — oo limit, which gives Condition 3.

We establish Condition 4 by induction over 6,,, beginning with 6y as the base case.
Suppose towards a contradiction that P, [x # x,|0n] > 0 and P, [y = y*(On, ) |0,z #
x,] < 1. Then, since it is never optimal for an agent to play any action strictly greater
than y*(0y,x) given an x # x,, it must be that P, [y > y*(On, 2)|0n,z # x,] = 0 and
P,y < y*(On,2)|0N,x # x,] > 0. Consider the distribution y € A(X x T') that is
obtained from taking the conditional distribution of p, given 6y and shifting every ¢
tot+E, [u(@n,z,y*(On, ) — u(@y,x,y)|0n]. When the agent accepts a mechanism
committing to x and plays y*(fy, ) in response to any x, f obtains the same expected
utility as they do under p; while every other type obtains a weakly lower expected utility
than under p,. Moreover, as previously established, the agent’s expected utility from py
conditional on Ay is no less than V,j. Thus, the agent would obtain an expected utility
that is weakly greater than V,j from accepting a proposal of x by 0x. So for sufficiently
high 7, the type 0y principal can achieve a payoff in the j-th game that is uniformly
bounded above their payoff from p, by proposing some mechanism (/LX;_79, {0}) where
X € Aj(X; x Tj) sufficiently closely approximates x’, but this contradicts the fact that
their payoff should be no more than that under p; in the 7 — oo limit.

Since P, [y = y*(On, x)|0N,  # x,) = 1, it follows from the fact that \; puts strictly
positive probability on Oy_; that P, [y > y*(On_1,2)|0n-1,2 # z,] = 0 (assuming
P, [z # o|0n-1] > 0 so that this conditional probability is even relevant). Therefore,
if P, [y = y*(On—1,2)|0N_1, 2 # z,] < 1, it must be that P, [y < y*(On_1,2)|0n_1, T #
x,] > 0. The same argument as for the 0y case shows that this is not possible.
Proceeding with this argument inductively by moving down the 6, establishes that
Condition 4 holds for all 6.

To see why Condition 5 holds, note that, in the j — oo limit, every 6§ must get a
weakly higher payoff from p; than 1/k less the payoff they would get from propos-
ing any (u, Mp) € M;\ M}y. Fix some r € R; \ ©. For any x € A;(X; x Tj),

39



every mechanism of the form (u,¢,{0}) for some ¢ € O can be identified with
(tyr {0}) € M\ (UprcoMJy). This means that, for every mechanism in M;, there
is a corresponding outcome that occurs after either this mechanism is proposed in the
equilibrium of the j-th game or, if the mechanism belongs to some Mﬁeu after the
proposal of the mechanism in which the action recommendation €' is replaced by r.
Thus, in the j — oo limit, every principal type must get a weakly higher payoff from
p;k than 1/k less the payoff they would get from proposing some mechanism in M; if
the subsequent play results in this outcome. Similar arguments to those in the proof of
Lemma 2 then show that there is a sequential continuation equilibrium outcome after
an arbitrary mechanism (u, Mp) € M is proposed which gives every principal type a

weakly lower payoff than they obtain from py. [ |

OA.9.2 Proof of Lemma 6

Lemma 6. In MCS environments, there are sequences of full-support distributions over
the principal type { g tren and outcomes {pg tren such that
1. marggpr = A\ for all k € N,
2. liminfy o E,, [a(v(0, z,y) + g(t))|0] > 0 for all 6 € O,
3. P, U0, pp) > a(u(d,z,y" (0, x)) —t)|0,z.t,a| =1 for all 6,60 € © and k € N,
4. P ly=vy"(0,2)|0,x #x,) =1 for all € © and k € N, and
5. For each mechanism (u, Mp) € M and k € N, there is a sequential continuation

equilibrium after (u, Mp) is proposed that gives every principal type a weakly lower

payoff than py.

Construction of Hypothetical Games. Let {X;}jen, {T}}jen, {Y;}jen, {R;}jen be se-
quences of finite action, transfer, and recommendation sets such that lim;_,., X; = X,

lim; .o T = T, lim; o Y; = Y, and lim;_,, R; = R. For a given j € N, consider
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the set of mechanisms

My = {(, Mp) € Mt (1) [Mp| < |X;|IT5| ),

(2) Vmp € Mp, 3z € X;,t € Tj,r € R;j s.t. p((x,t),rlmp) = 1}

that (1) have no more than |Xj||T}||R;| principal messages and (2) are such that
every principal message results in some principal-action-transfer-recommendation tuple
that belongs to X; x T; x R;. We suppose that, for all j € N, the recommendation
space is strictly larger than the set of principal types, i.e. |R;| > |0|. For notational
convenience, we will assume that the power set of principal types is in fact a strict
subset of the recommendation spaces.

We now describe the strategy space of the type 6 principal in the j-th game. Part
of this player’s choice is over which mechanisms to propose. We force 6 to propose
almost all mechanisms with positive probability. The exceptions are mechanisms which
commit to some (z,t) € X; x T} as the principal action and some 6" # 6 as the
recommendation received by the agent; 6 is required to propose these mechanisms
with 0 probability. Formally, let M$, = {(0().01), {0}) : (7,1) € X; x T}, ¢ # 0} be
the set of mechanisms in the j-th game that commit to some (z,t) € X; x T} as the
distribution over principal actions and €’ as the recommendation received by the agent.
Additionally, let ./\/1270 = UpzoMj . The distribution over mechanism proposals used

by 6 must belong to

1
Aja(My) = {re € AM) = (1) 7l Mp)) 2 S

(2) 7l( Mp)] = 0 ¥(p1, Mp) € M3}

V(,U,, MP) S Mj \Mg,ea

Moreover, when a given mechanism is accepted, we force 6 to tremble and play every

message in the mechanism with positive probability. Formally, the distribution over
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messages used by 6 when mechanism (u, Mp) is accepted must belong to

1
I p(p, Mp) = {WP € A(Mp) : mplmp| > AL VYmp € Mp}.

A valid strategy for 0 in the j-th game is any pair (77, my(-)) consisting of a 77, €
Aj9(M;) and a rule my(-) for how to play when an arbitrary mechanism is accepted
that satisfies 7y (p, Mp) € IL; p(p, Mp).

The strategy space of the agent is unaltered from the principal-agent game, aside
from the addition of trembles. For every mechanism (u, Mp), we require the probability
« that the agent accepts its proposal to be no less than 1/j5. Additionally, we require
the agent to tremble in their choices of actions. In particular, for every mechanism
(1, Mp) and principal action-recommendation pair (z,7), the agent’s choice of action

must be a distribution belonging to

a0 = fyeamiviz o wey |

J1¥;]
A valid strategy for the agent in the j-th game is any pair (a(-), 3(-)) consisting of (1)
a rule governing the probability of mechanism acceptance, a(-), satisfying a(u, Mp) >
1/7 for all (4, Mp) € M; and (2) a rule governing the agent’s choice of actions 3(-)
satisfying B(u, Mp) € A;(Y;)%*Ti*8i for all (u, Mp) € M;.

In addition to the principal types and agent, we introduce a hypothetical player
who determines the distribution over principal types. This player can choose any
distribution that puts probability at least 1/k on every type. Formally, the strategy
space of this player is {\ € A(©) : N(0) > 1/k V0 € O}.

We now develop the payoffs of the various players for an arbitrary strategy profile
(. For any 0 € O, let (7]»(9,#, Mp, o, wp,34) and \N/j(ﬁ,,u, Mp, o, wp, 34) be the un-
modified expected payoffs to the principal and agent, respectively, when the principal’s
type is 6, the mechanism (u, Mp) € M; is proposed, the agent uses the acceptance

probability rule a € [0, 1], and subsequent play is governed by the rules 7wp and 3.
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The agent’s payoft is

Vi(¢) =) _N(®) > 7511 M)V (0, 11, Mpp, 0, 55, )

= (1, Mp)EMNUprcoMS )

This is precisely the agent’s total expected utility from play over mechanisms in M \
(Uge@/\/li@). The payoff of the player who controls the distribution of principal types
is W;(¢) = —V;((), i.e. the negative of the agent’s payoff. Thus, this player desires
to minimize the agent’s total expected utility from play over mechanisms in M \
(Useo M o).

We require more notation to specify the payoffs of the principal types.

U;(0,¢) = > 72, [(1t, Mp))U;(0, j1, Mp, t, 79, B)

(NvMP)EMj\(UG’e(—)ME’gl)

T > 70,1 ((wr.0), {0 (w(0, 2,y (0, x)) — t) and

(8((x,t),0),{0})EMS 4

V;(0,¢) = Z Al Mp)|V;(0, i, Mp, o, g, Ba)

(M,Mp)EMj\(Ue’GGM?,e’)

+ > 7|8 1,0, {ON](0(0, 2, 5™ (0, ) + g(t))

(6((a,£),0){0})EMS 4

would be the total expected utilities of the principal and agent, respectively, when the
principal’s type is 6, the principal follows the mechanism proposal rule /7,, and the
play that follows a mechanism proposal of (u, Mp) € M; proceeds as follows: For
(1, Mp) € M; \ (Upeo M5, ), play proceeds according to the rules o, wp, and Ba;
for (0((z,1),01,{0}) € M4, the agent accepts with probability 1 and then takes action
y*(0',x). We will impose modifications to the payoffs of the principal types so that it is
costly for 0 to propose any (§¢(z,),0),{0}) € M, whenever either some principal type
¢" # 0 would prefer to propose (J((z¢),0),{0}) (and have the agent respond according
to y*(0,x)) to their outcome or the agent gets a low expected utility conditional on 6.

Let A > 2max(g ) |u(f,z,y) — t|, and let f; : R — R, be the family of continuous
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functions given by f;(z) = max{0, Amin{jz, 1}}. Note that f;(z) = 0 for all z <0 and
J, and lim; o fj(2) = A for all 2 > 0. Let ¢jg¢ : M5y — Ry be the “cost” function

given by

oo {01) = D i (w25 (0,2) =t = U300, Q)) + £ (Vi = Vi(60,0)) .
0'#0
Note that ¢, g C((5 (0,0, 10}) > A if some principal type 0" ¢ O would get a payoff from
proposing (d((1),0), {0}) that exceeds their payoff from ¢ by 1/, while ¢; 5 (0((z1),0): {0})
0 if every principal type 0’ & ) gets a weakly higher payoff from ¢ than they would by
proposing (§¢(z,1),0), {0}). We set the payoff of § from the strategy profile ¢ in the j-th

game to be

U;(0,¢) = U;(0,¢) — > 7[00, 10})] <CJ9<(5< 0.0 10}) = —)

(O((x,),0),{0})EMS 4

The important feature of the cost terms is that 6 would never want to propose a
(O((x0),0), {0}) € M, if either u(0', z,y*(0,2)) —t > ﬁj(ﬁ’, ¢) + 1/j for some ¢ # 6 or
Vi(6,¢) < Vi —1/4. On the other hand, if u(¢',z,y*(0,z)) —t < (7(9' ¢) holds for
all 0" # 0 and V (6,¢) > V!, then the artificial cost from proposing (0((z,1),0), 10}) is O
for 0. In this case, # would want to propose such a mechanism (if the agent responded
according to y*(#, x)) whenever they would get a higher payoff from it than from the

outcome under (. [ |

Construction of Limit Outcomes and Distributions over Principal Types. Fixing k € N,

standard arguments show that the j-th game has a Nash equilibrium. Let A;; be
the distribution over the principal’s type induced by a Nash equilibrium of the j-th
game. For the same Nash equilibrium, let p;r, € A(© x M; x [0,1] x X x T xY)
be the outcome induced by the corresponding mechanism proposal strategies used by
the principal types and the following continuation play for each mechanism: For any

(1, Mp) € M; \ (Upco M), the principal types and agent play as they do in the
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Nash equilibrium, i.e. 6 plays according to my(u, Mp) while the agent accepts the
mechanism with probability e (i, Mp) and then plays according to Ba(u, Mp); for any
(O((t),0): 10}) € MS,, the agent accepts with probability 1 and then plays y*(6, x)
when they observe z. Suppose (by restricting attention to a convergent subsequence
if necessary) that lim; ,.opjr = pr and lim; oo A\j;, = Ag. Since marggp;r = A
and A () > 1/k hold for each § € © and j € N, we have that marggp, = A\, and
Ak(0) > 1/k for all 6 € ©. |

Proof of Lemma 6. Precisely the same arguments as in the proof of Lemma 5 shows
that Conditions 1, 2, and 5 hold. The remainder of this proof shows that the other
two conditions are satisfied.

To see that Condition 3 holds, observe that whenever 6’ £ 6 is willing to play a
mechanism in M¢,, ¢ must (weakly) prefer to not play said mechanism given the
prevailing outcome. Moreover, since  can always mimic the play of #’ in mechanisms
in M;\ M g, 1t follows that, for all € > 0, § must get a weakly higher payoff from
their conditional outcome under p;; than their payoftf from the conditional outcome
given ¢, z, t, and « for almost all (z,t) € X; x T; and a € [0,1] in the j — oo limit,
which gives Condition 3.

We establish Condition 4 by induction over 6,,, beginning with 6y as the base case.
Suppose towards a contradiction that P, [x # x,|0n] > 0 and P, [y = y*(On, ) |0, © #
x,] < 1. Then, since it is never optimal for an agent to play any action strictly greater
than y*(0n, ) given an x # x,, it must be that P, [y > y*(On, x)|0n,z # z,] = 0 and
P, [y < y*(On,2)|0n,x # x,] > 0. Take some (z,t) € X; x T; and o € [0, 1] such that
E,, [a(u(0n, x,y)—t)|0Nn, z, t, ) = U(On, pr), By, [a(u(l, z,y) —1)|0n, x,t, ] < UG, p)
for all 6 # Oy, and E,, [(v(On, z,y) + g(t))|0x, 2, t, ] > V. (This is possible because
E,, [v(8,z,y) + g(t)|§] > V] holds for all # and the V; defined in (OA 7), which
can be shown as in the proof of Lemma 5.) Consider shifting t up to t = at +
uw(On, z,y* (On, ) — E,, [au(@n, z,y)|0N, z,t,a]. When the agent accepts a mechanism

committing to (x,t) and plays y*(fx,x) in response, 6y obtains the same expected
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utility as they do under p, while every other type obtains a weakly lower expected
utility than under p,. Moreover, the agent would obtain an expected utility that is
weakly greater than VkT from accepting a proposal of (z,%) by fx. So for sufficiently
high 7, the type 6y principal can achieve a payoff in the j-th game that is uniformly
bounded above their payoff from pj by proposing some mechanism (0((+),05),10})
where (2/,t') € X; x T; sufficiently closely approximates (z, ), but this contradicts the
fact that their payoff should be no more than that under py in the j — oo limit.
Since P,, [y = y*(On, 2)|0n, v # x,] = 1, it follows from the fact that \; puts strictly
positive probability on Oy_; that P, [y > y*(On_1,2)|0n_1,2 # z,] = 0 (assuming
P, [T # x,|0N-1] > 0 so that this conditional probability is even relevant). Therefore,
if Py ly = y*(On-1,2)|0n_1,7 # z,] < 1, it must be that P, [y < y*(On_1,2)|0n_1, 7 #
x,] > 0. The same argument as for the 0y case shows that this is not possible.
Proceeding with this argument inductively by moving down the 6, establishes that

Condition 4 holds for all 6. [ |

OA.10 Generalization of Proposition 5

Proposition OA 4. Suppose the environment is MCS with definite gains and that,
for every \ € A(O) and x # x,, either quasi-strictness holds at x, or there exists a
sequence {x;} converging to x such that y*(;\, x;) converges to y*(j\, x), quasi-strictness
holds at each x;, and either one of the following conditions hold:
1. (a) w(@,z,y*(\,x)) is constant in 6.
(b) u(B, s,y (N, ;) > w(d, z,y*(\,z)) for all i.
(c) v(0,z,y* (N x5)) > v(b, 2, y* (N, z)) for all i.
2. (a) u(®,z,y*(\ x)) is constant in 0.
(b) v(B, 2, y*(\,z)) is strictly increasing in 6.
Then payoff-plausibility selects the least-cost separating outcomes when contracts

must be explicit.
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Observe that the sufficient conditions cover the firm-employee example (the issues
with s = 0 are handled by Condition 3’ in particular, while Condition 3" takes care of

s = 1), as well as the quasi-strict environments of Definition 10.

Proof. We first establish that every contracting equilibrium outcome that is payoff-
plausible must be separating. Let p be a contracting equilibrium outcome with pooling,
and let @ be the highest type that does not fully separate. There must be some
ze€ X, teR, A€ A©), and o € [0,1] such that U(0,p) = a(u(@,z,y*(\, z)) —t),
Ud,p) < a(u(d,z, y*(S\, x))—t) for all § # 6, acceptance probability « is optimal for an
agent with belief A facing a contract committing to (z,t), and ) is strictly lower than
&5 under FOSD. Since there are definite gains, U(6,p) > 0, so u(6, (N x)) —t >0
and o > 0. Because a > 0, we have that v(0, z,y*(\, z)) + g(t) > 0.

We now analyze two cases depending on whether (z, 5\) satisfies Condition 3 or it
satisfies either of the 3’ or 3" conditions.

Case 1: Condition 3 holds for (z, \). Consider t' = at+u(f, z,y*(0, z))—au(d, z,y*(\, x)) >
t. Observe that u(f,z,y*(0,z)) —t' = U(0,p), u(f,z,y*(0,2)) —t' > U(H,p) for all
0 < 0, and v(0,z,y*(0,2)) + g(t') > 0. Thus, (z,t') strictly satisfies the constraints
in the type 6 principal’s plausibility threshold problem given by (2). Moreover, when
the agent responds to a contract proposing (z,%') under the belief that § = 6, the
type 6 principal obtains a payoff equal to that they get from p. The constraints would
continue to be satisfied if ¢’ were decreased slightly, and type 6 would get a strictly
higher payoff than U (6, p), which means that p is not payoff-plausible.

Case 2: Condition 3 or 3” holds for (z, ). Consider ¢, = at + u(8, z;,y*(0, z;)) —
au(0,z,y*(\, x)) > t. By construction, u(0, z;, y*(0, x;))—t, = U(0, p), u(0, x;, y*(0, x;))—
th < U(0,p) for all § < 0, and v(0, z,y*(0,x)) + g(t}) > 0. A similar argument to that
in Case 1 then shows that p can not be payoff-plausible.

Having shown that every payoff-plausible contracting equilibrium is separating, we
conclude the proof by observing that payoff-plausibility requires that every principal
type obtain a weakly higher payoff than their least-cost separating payoff. It follows
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that payoff-plausibility selects the least-cost separating outcomes. [

OA.11 Proof of Proposition 7.1

Proof. Consider an arbitrary mechanism (u, Mp, M4). Throughout the proof, let
U@, mp,ma) = EuompmaUG,2)] and V(0,mp,ma) = EympmaV (0, 2)] denote the
expected utility of the principal and agent, respectively, when the principal’s type is
and z is drawn according to pu(mp,ma).

Let W : A(Mp)® x A(Ma) = A(O) be the correspondence given by

W (T, s vey Top s TA) = A(arg IginEﬂgmA (V(0,mp,ma)l).
€

U maps profiles of principal and agent behavior strategies into beliefs that put support
only on the principal types that minimize the agent’s conditional expected utility.

For every 6 € O, let 11y : A(M,) = A(Mp) be the correspondence given by

y(ma) = A(argmax E,, [U(0, mp,m4)]).

mpeMp

[Ty maps agent behavior strategies into the corresponding optimal behavior strategies
for the type € principal in the subgame in which (u, Mp, M) has been accepted.
Let 114 : A(©) x A(Mp)® = A(M,) be the correspondence given by

HA(S\, Toys -y Toy ) = Alarg max Ex [E, [V (0, mp,ma)]]).

maEMa

[T, maps profiles of beliefs over the principal’s type and behavior strategies into
the corresponding optimal behavior strategies for the agent in the subgame in which
(u, Mp, M) has been accepted.

For every j € N, let ®; : A(0) x A(Mp)® x A(Ma) = A(0) x A(Mp)® x A(My,)
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be the correspondence given by

<I>j(/~\,7r91, s TTon s TTA)

(N7 e T ) € A(O) x A(Mp)® x A(My) :

11
H3IN ev 2 NO) = ——+ 2N () V€O
( ) <7T917 77T9N77TA>S ( ) ]+1|@|+]+1 ( ) ,

(2) mp € ly(ma) VO € O, and
(3) 3’y € TLa(\, g, ..., mo,, ) }-

By construction, ®; is everywhere non-empty-valued, compact-valued, convex-valued,

and upper hemicontinuous, and A(Q) x A(Mp)® x A(M,) is a compact and con-

vex subset of a Euclidean space. Thus, by Kakutani’s fixed point theorem, some

(Njs .01y s Tjon, Tj4) satisies (A, Ti0,, oo, Tjon s T5.4) € (N, Ty, s Moy, Tj4). Since
A(O)xA(Mp)®x A(My,) is sequentially compact, there is a limit point (X*, 75 , ..., 75, %)

of the sequence {(Aj,m;0,,..., 0y, Tj4)}jen. Suppose (by restricting attention to a
convergent subsequence if necessary) that lim; ..o (A, 70,5 -+, Tjon, Tja) = (N 75 5 oy T T)-
Standard arguments show that (; , ..., 7,7} ) is a sequential continuation equilibrium

when mechanism (u, Mp, M,) is accepted given belief A\*.

We conclude by arguing that, when the principal types receive their principal-
optimal safe payoffs, there is a sequential continuation equilibrium that deters every
principal type from proposing (11, Mp, Ma). Suppose first that Ers s [V (0, mp, ma)] <
0 for some #. Then it must be that \* puts positive probability only on those types
for which the conditional expected utility of the agent is weakly less than their outside
option utility. This means that Ex«[Er,«x, [V (0, mp,ma)]] <0, soit is a sequential con-
tinuation equilibrium outcome for the agent to reject (u, Mp, M4) when offered. Such
an outcome deters every principal type from proposing (i, Mp, M4). Now suppose that
Erssrs [V(0,mp,ma)] > 0 for all 0 € ©. Since (7, ..., 7, ,74) is a sequential continu-
ation equilibrium when mechanism (u, Mp, M) is accepted, incentive compatibility of

the principal types implies that Eqs.+ U0, mp,ma)| > Eﬂ;/mz [U(0,mp, ma)] for all
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0,0" € ©. Thus, (75 ,...,m5 ,74) induces an safe allocation, which means that every
principal type obtains an expected utility from proposing (u, Mp, M) that is weakly

lower than their principal-optimal safe payoff. |

OA.12 Contracting Equilibrium Payoffs Outside of
MCS Environments

Outside of MCS environments, payoff-plausibility is not defined, and so does not elimi-
nate contracting equilibria that fail to principal-payoff-dominate the principal-optimal
safe outcomes in non-MCS environments. Despite this, it may still be reasonable to
expect the principal types to achieve at least their payoffs from the principal-optimal
safe outcomes, especially when a principal-optimal safe outcome can be approximated
by strictly safe outcomes. Indeed, suppose the principal proposed a direct mechanism
corresponding to a strictly safe outcome and told the agent that they would report
their type truthfully should the mechanism be accepted. Then it would be optimal for
the agent, assuming they believed the principal’s claim, to accept the offer and obedi-
ently follow any action recommendation regardless of their beliefs about the principal’s
type. To the extent that such communication is focal, equilibria in which any principal
type receives a lower payoff than in the principal-optimal safe outcome seem unlikely
to arise. The following proposition shows that there are always equilibria in which
every principal type achieves a weakly higher payoff than in the principal-optimal safe

outcomes.

Proposition OA 5. With or without moral hazard, there are always contracting equi-
librium outcomes that principal-payoff-dominate the principal-optimal safe outcomes in

both the general-mechanism and deterministic-mechanism games.

We handle the proof for the general-mechanism game. An analogous argument

proves it for the deterministic-mechanism game.
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Proof of Proposition OA 5 for the General-Mechanism Game. Consider an alternate principal-
agent game where the principal has the option to forgo proposing any of the usual
mechanisms and can instead unilaterally implement an alternative “outside option” x/,
that results in the same payoffs as a principal-optimal safe outcome. Formally, this
game proceeds as follows: The principal observes their type 6, and either chooses z)
or proposes a mechanism (u, Mp) to the agent. If the principal chooses x/, both the
principal and agent receive their conditional expected utility from a principal-optimal
safe outcome given the principal’s type. If the principal proposes a mechanism to the
agent, the game proceeds and the payoffs of the principal and agent are the same as in
the standard principal-agent game.

Arguments that are almost identical to the proof of Theorem 1 imply the existence
of a contracting equilibrium in this environment, which we denote by p € A(© x (X U
{z/}) xY). Standard arguments show that this outcome is incentive compatible in the
original principal-agent game.

Let ¢* = A(© x X x Y) be a principal-optimal safe outcome, and for each 6 € ©,
let ¢*(0) € A(X x Y) be conditional distribution of ¢* given type 6. Consider the di-
rect mechanism (4%, ©) where p* is given by p*(0) = P,[{0} x X x Y]marg gy, xyp +
P,[{6} x {z} x Y]q*(#). This mechanism maps the principal type into the distribu-
tions over principal action and recommendation pairs that are identical to outcome
p, except that instances of x! are replaced by the ¢* allocation corresponding to the
principal’s type. By construction, this mechanism is incentive compatible, individu-
ally rational, and results in each type obtaining a weakly higher expected utility than
their principal-optimal safe payoff. Additionally, because p is a contracting equilibrium
outcome in the alternate principal-agent game defined earlier, there is a sequential con-
tinuation equilibrium after any mechanism is proposed that gives each principal type a
weakly lower payoff than they obtain from proposing (u*, ©). We conclude that (u*, ©)
corresponds to a contracting equilibrium outcome that principal-payoff-dominates the

principal-optimal safe mechanism. |
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OA.13 Communication-Based Refinements

OA.13.1 Definitions for the General-Mechanism Game

Robust Neologism Proofness: We now formally develop an adaptation of RNP
for our informed principal setting. For every o C O, let B (é) be the set of agent
action rules taking principal actions into agent responses that are best responses to

some fixed belief supported on o:

B(©) = {8 € A(Y)" : 3 is measurable, and
3\ € A(O) s.t. B(z) € AlargmaxE;[V (0, z,y)]) Vo € X}.
yey
Also, let U(0,p) = E,[U(0,x,y)|f] denote the expected utility of the type 6 € ©
principal from outcome p € A(© x X x Y).

Definition OA 1. Contracting equilibrium outcome p has a credible robust neol-
ogism if there exists some x € A(X) and non-empty subset of principal types ©Co
such that

1. mins 5 gy Ey[maxyey Ex[V(0, 2, y)]] > 0,

2. ming,p g Ex[Egw)[U(0, 2,y)]] > U(0,p) for some 0 € O, and

5. maxy.p gy Ex[Esw) (U (¢, z,y)]] < U0, p) for all 0 ¢ ©.

The first condition says that the agent strictly prefers to accept a contract proposal in
which the principal commits to y for any belief about the principal’s type supported
on ©.1 The second condition says that there is some principal type in O that would
obtain a strictly higher payoff than they do from p by proposing x, as long as the agent
believes the principal’s type belongs to é, while the third condition says that every
type outside of O would do strictly worse by proposing y given such agent beliefs.

In our formalism, the principal cannot directly propose a x € A(X). However, they can propose
a mechanism (u,, {0}) in which the message space of both the principal and agent is empty, and the
resulting distribution over principal actions is x, i.e. margyp, = X.
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Definition OA 2. A contracting equilibrium outcome is robust neologism proof

(RNP) if it does not have a credible robust neologism.

Strongly Justified Communication Equilibrium: For every © C O and distri-
bution over principal actions x € A(X), let C(O, x) be the set of agent responses to a
proposal of y given by

C(O,x) = {(o, B) €[0,1] x B(©) : IA € A(O) s.t.
(1) B(x) € A(argmaxE;[V (0, z,y)]) Vo € X,

yey

(2) a=0if Ex[mag(E;\[V(H, z,y)]] <0, and

ye

(3) a =1if E,[maxE;[V (0, z,y)]] > 0}.

yey

A given agent response consists of a probability « € [0, 1] of accepting the proposal and
an action rule § € B(©) governing the agent’s play should they accept the proposal.
Condition 1 ensures that 3 is optimal for some fixed belief A with support on (:5, while
Conditions 2 and 3 say that the agent’s decision of whether to accept the proposal is
also optimal given belief A. We let (0, y) = A(C(6, X)) be the set of distributions
over all such agent responses.

Fixing x € A(X) and outcome p € A(O x X xY), consider the following procedure
for computing sets of principal types. Initialize @_1()(, p) =0O. For k € N, let

Di(x,p) = {7 € 7O (x, ), X) : By [aBy [Ey[U (6, 2, 9)]]] > U(6,p)},
DY*(x,p) = {7 €TO" " (x,p). X) : E,[aB [Es)[U (6, 2, y)]]] = U6, p)},

O™ (x,p) = {6 € © : DE(x,p) UDS*(x,p) € Upza Do (x, 1)},

_ Ok (y,p) if OFF(y,p) #£ 0
@k(X;p) =\ EX ) bep) # , and then set

0 (x.p) fOM(x,p)=10

=00 =k
O (x,p) = Nken® (X, p)-
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ﬁg(x, p) gives the set of distributions over agent best responses to a belief supported
in @k_l(x, p) that would make type 6 strictly better off by proposing y than sticking
with the outcome p. ﬁg’k(x, p) gives the analogous set of distributions that make type
¢ indifferent between proposing x and sticking with p. ©"*(y,p) is the set of principal
types for which there is some mixture over agent best responses to the proposal of x and
beliefs supported on @k_l(x, p) that makes that type (weakly) prefer to propose such a
mechanism than stick with p and makes every other type (weakly) prefer sticking with
p. @k(x,p) equals ©HF(y, p) if ©7*(x, p) is non-empty and otherwise equals @kil(x,p),
and ©(y, p) is the limit of @k(x,p) as k — oo.

Let ©51(x,p) = {0 € 8~ (x,p) : 3(1, 8) € C(O7(x,p), X) 8.t By[Ep([U (0, ,)]] >
U(6,p)} be the set of principal types in ©° (x,p) for which there is some agent best
response to the proposal of x and beliefs supported on @m(x, p) that accepts the pro-
posal and makes that type (weakly) prefer to propose such a mechanism than stick

with p. Then let

05 (x,p) if ©5(x,p) £ 0

07 (x,p) if @ (x,p) =0

0% (x,p) =

Definition OA 3. The set of strongly justified types for x given outcome p is

0%/ (x,p).

Definition OA 4. Outcome p is a strongly justified communication equilibrium
(SJCE) if it is incentive compatible and, for every x € A(X), there is some y €
(0% (x,p), x) such that E,[aE, [Eg.) U0, z,y)]]] < U(9,p) for all 6 € O.

OA.13.2 Definitions for the Deterministic-Mechanism Game

Robust Neologism Proofness:

Definition OA 5. Contracting equilibrium outcome p has a credible robust neolo-

gism if there exists some x € X and non-empty subset of principal types © C O such
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that
1. ming g maxyey Ex[V(0,z,y)] > 0,
2. min cpps ) UG, 2,y)] > U(6,p) forall 0 € O, and
5. max,cpp@ . U0z, y)] <U(,p) for all ¢ ¢ ©.
Definition OA 6. A contracting equilibrium outcome is robust neologism proof

(RNP) if it does not have a credible robust neologism.

Strongly Justified Communication Equilibrium: For every OCOandze X ,

let C (é, x) be the set of agent responses to a proposal of x given by

C(0,z) ={(a,8) € [0,1] x A(Y) : IX € A(O) s.t.
(1) 8 € Alargmax Es[V (6, z, y)]),

yey

(2) a =0 if maxE;[V(0,z,y)] <0, and

yey

(3) a=11if maxE;[V(0,z,y)] > 0}.

yey

We let T'(0, 2) = A(C(O, z)) be the set of distributions over all such agent responses.
Fixing € X and outcome p € A(O x X x Y), consider the following procedure

for computing sets of principal types. Initialize @_1(33, p) = 0. For k € N, let

~ e
Di(w.p) = {y €T(O ' (2.p), ) : Ey[aEsU (6,2, y)]] > U8, )},
Dy*(x.p) = {7 € T(®" ' (w,p), 7) : B, [aBs[U (0, 2, y)]] = U (0, p)},
@Tyk('rap> = {6 € @ : 55(33,])) U Bg’k(wap) Z U@’#0E9’<x7p)}7
Otk (z,p) if OVF(z,p) #0
O (z,p) = (@) (.0) # , and then set
0" (z,p) if OV (x,p) =10
@Oo(xap> - mkEN@k(x7p>‘
Let ©57t(z,p) = {# € @ (z,p) : 3(1,8) € C(O7(z,p),z) s.t. EglU(0,2,y)] >
U(0,p)} be the set of principal types in ©° (z, p) for which there is some agent best
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response to the proposal of x and beliefs supported on @oo(a:,p) that accepts the
proposal and makes that type (weakly) prefer to propose such a mechanism than stick

with p. Then let

@SJ<CC,p) _ ®SJ7T(x7p) if GSLT(J;?p) 7é @

07 (z,p)  if O (z,p) =0

Definition OA 7. The set of strongly justified types for x given outcome p is
0% (z,p).

Definition OA 8. Outcome p is a strongly justified communication equilib-
rium (SJCE) if it is incentive compatible and, for every v € X, there is some

v € T(O©7 (x,p), x) such that E,[aEs[U(0,z,y)]] < U8, p) for all 6 € ©.

OA.14 Payoff-Plausibility Characterizes RNP and
SJCE

Proposition OA 6. Suppose the environment is MCS. In both the general-mechanism
and deterministic-mechanism games, any RNP or SJCE outcome must be payoff-

plausible, and every payoff-plausible outcome is both RNP and SJCE.

Here we give the proof for the general-mechanism game. The proof for the deterministic-

mechanism game is analogous.

Lemma OA 14. Suppose the environment is MCS. In the general-mechanism game,

any RNP or SJCE outcome must be payoff-plausible.

Proof of Lemma OA 14 for RNP. Let p be an RNP outcome. We proceed by induction
on the type index n beginning with the base case n = N. Take any x € A(X x T') that
solves the type 6y optimization problem in (1). For every ¢ > 0, let x. € A(X x T))
be the distribution obtained from y by shifting every ¢t to t + €. Then the constraints
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in (1) are strictly satisfied by g.. Robust neologism proofness demands that the type
6n principal obtain a payoff at least E, [u(0y,x, y*(0n,x)) —t] — €. Since this holds for
all € > 0, it follows that U(Oy,p) > E, [u(0n,z, y* (O, 2)) —1].

Now suppose that payoff-plausibility holds for all n” > n but not for n itself. Take
any x € A(X x T) that solves the type 6, optimization problem in (1), and let ¢ €
A(X xT xY) be the distribution obtained from y by setting y = y*(0,,, x) and shifting
every t to t + k, where x > 0 is chosen so that E,[u(0,,z,y*(0,,2)) — t] = U(6,,p).
Additionally, let X’ = margy,rq and, for every ¢ > 0, let x. € A(X x T) be the
distribution obtained from x’ by shifting every ¢t to ¢t — . Every type below 6,, gets
a strictly lower payoff from ¢ than p. Moreover, since payoff-plausibility holds for all
n” > n, all types above 0, must get a weakly lower payoff from ¢ than p. If additionally
every type above 8, were to get a strictly lower payoff from ¢ than p, then there would be
a credible robust neologism corresponding to x. and 6,, for some sufficiently small € > 0,
a contradiction. Suppose instead that there are types above 6,, that would be indifferent
between ¢ and p, and let ©,, be the set of such types with 6,,» being the maximum of ©,,.
Then either (1) there is a credible robust neologism corresponding to . and {6, }U®©,
for some sufficiently small & > 0, or (2) there is a type outside of {6, } U©,, say 0, that
would weakly prefer playing x’ when the agent responds under the belief that 6 = 6,
over their outcome in p. Case (1) contradicts p being RNP. In Case (2), it must be that
6,, obtains a strictly higher payoff from playing x” when the agent responds under the
belief that # = 6, than when the agent responds under the belief that § = 6,,. This
implies that E,/[u(0pr, 2, y* (0, x)) — w(Opr, z, y* (On, x))] > Epu(@p, z,y* (0, x)) —
w(lp, x, y*(0n, x))] for all n’ < n”. Consider the x” € A(X x T') obtained from x’ by
shifting every ¢ up to t + E/[u(0,, z, y*(Onr, x)) — u(Onr, x, y* (0, x))]. This x” strictly
satisfies the constraints in the plausibility threshold problem of type 6, given in (1)
and gives 6,,» the same payoff as p. This means that payoff-plausibility does not hold

for 6,, contradicting our inductive assumption. [ |

Proof of Lemma OA 14 for SJCE. Let p be an SJCE outcome. We again proceed
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by induction, beginning with the base case n = N. Take any y € A(X x T)
that solves the type 6y optimization problem in (1), and let x. € A(X x T) be
the distribution obtained from taking y and shifting every ¢ to t 4+ €. Suppose that
U(On,p) < Ey[u(@n,z,y*(0n,x)) — t]. Then Oy is the unique strongly justified type
for x. for all sufficiently small € > 0. Consequently, SJCE demands that the type 0y
principal obtain a payoff of at least E, [u(0n, z, y*(On,z)) —t] — ¢, and since this holds
for all € > 0, a payoff of at least E, [u(On,z,y*(On,x)) — t].

Now suppose that payoff-plausibility holds for all n” > n but not for n itself.
Take any x € A(X x T) that solves the type 6,, optimization problem in (1), and let
Xe € A(X xT) be the distribution obtained from taking y and shifting every ¢ to t +e¢.
Let € > 0 be sufficiently small so that U(6,,p) < E,[u(dn,z,y*(On,2)) —t] —e. If all
strongly justified types for . are above 6,,, a similar argument to the case for 65 above
then implies that U(6,,p) > E,[u(b,,z,y*(0,,z)) — t] — €, a contradiction. Suppose
instead that there is a strongly justified type for x. below 6,. There must be some
n” > n such that type 6, is also strongly justified. Without loss of generality, assume
that n” is the highest such value. Consequently, there must be some ¢ € A(X xT' xY')
and a € (0,1] such that margy,,¢' = xe, Pyly < y*(0nr,x)] = 1, either o < 1 or
Py w(Opr, z,y) < w(Opr, z,y* (0, x))] > 0, and (1 — a)Ey[u(byr, z,y) —t] = U(6yr,p)
and (1 — o)Ey[u(by,z,y) —t] < U(b,,p) for all n’ < n”. Consider now the allocation
¢" € A(X x T xY) obtained from ¢' by shifting every y to y*(6,~,x) and shifting
every t up to t + Ey[u(0pr, z,y* (0pr, x))] — aEy[u(Bnr, x,y)]. The allocation given by
q" strictly satisfies the constraints in the type 6, optimization problem given in (1)
and gives 0, a payoff of U(0,~,p). This means that the payoff-plausibility threshold

for 0, is strictly higher than U(6,,p), contradicting our inductive assumption. |

Lemma OA 15. Suppose the environment is MCS. In the general-mechanism game,

any payoff-plausible outcome is both RNP and SJCE.

Proof of Lemma OA 15 for RNP. Suppose towards a contradiction that there is a cred-

ible robust neologism corresponding to x and some non-empty ©. Let 6 = min((:)), and
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consider the conditional distribution ¢*(f) € A(X x T x Y) where margy,.rq*(8) = x
and y = y*(0,z) for all z # x,. By the definition of a credible robust neologism,
Epq @ [v(@, z,y) + g(t)] > 0 and Egg[u(f,z,y) —t] < U*(0) for all § & O, so ¢*(0)
satisfies the constraints in (1) for type §. Consequently, §’s payoff must be weakly
greater that from ¢*(#), but this contradicts there being a credible robust neologism

corresponding to y and o. [ |

Proof of Lemma OA 15 for SJCE. Fix some x € A(X x T) and let p* denote the
outcome of the contracting equilibrium. We will show by induction that, for all k£ €
N, there is a best response v € T(@k(x,p*), X) that deters all principal types from
proposing x.

We begin with the base case k = 0. If every agent best response to x makes every
principal type no better off than in p*, then we are done. Suppose instead that there
is some agent best response to x that makes some principal type strictly better off
than in p*. To obtain some v € F(@O(X, p*), x) that deters the principal types, it will
be sufficient to consider the family of agent posterior beliefs Ag = {\ € A(©) : 3In €
{1,....,N} s.t. AM(0,,) = 0if m < n or m > n + 1} that put positive probability on at
most two principal types, which must be adjacent. Note that FOSD gives a complete
ordering over Ay. Since the mapping from agent beliefs to agent best responses is
upper hemicontinuous, there is some smallest (according to FOSD) A € Ay for which
there is an agent best response that makes some principal type in @O(X,p*) weakly
better off than in p*. If the agent strictly prefers to either accept or reject y under
belief A\, the associated best response is pinned down. If instead the agent is precisely
indifferent between accepting or rejecting y, fix the agent best response to A that
accepts the proposal with the smallest probability among the best responses for which
some principal type in @O(X,p*) weakly prefers x to p*. Let ¢ € A(X X T xY') be the
distribution obtained from x under this agent best response, and let 0,, be the smallest
type in @O(X, p*) which weakly prefers ¢ to p*. We handle three cases: (1) A(6,) = 1,
(2) A(#) > 0 for some 0 > 6, and (3) A(f) > 0 for some 6 < 6,,. In Cases (1) and (2),
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there is an agent best response to a belief fully supported on 6,, € 8’ (x, p*) that deters
all principal types. We now establish that this is also true for Case (3). If there is
an agent best response to x and a belief fully supported on 6,, that rejects x, then we
are done. Otherwise, let ¢ € A(X x T x Y') be the distribution obtained from y and
the agent best response to a belief fully supported on 60,,. If 0,, were to get a strictly
higher payoff from ¢’ than p*, then, for sufficiently small ¢ > 0, the x. € A(X x T)
that results from taking x and shifting every ¢ to t +E [u(0,, z,y)] —E,[u(b,, z,y)] —¢,
satisfies the constraints in (1) and gives type 6, a strictly higher payoff than p*, which
violates payoff-plausibility. Since 6, gets a weakly lower payoff from ¢’ than p*, this
must hold for all lower types as well. Suppose that some higher type #” would get a
strictly higher payoff from ¢’ than p*, and suppose without loss of generality that ¢’ is
the lowest such type. Then the x” which results from taking y and shifting every t to
t+E, [u(@,z,y" (0", 2)) — u(, x,y*(0,, z))] would satisfy the constraints in (1) and
give type 0" a strictly higher payoff than p*, violating payoff-plausibility.

We now establish the claim for arbitrary K € N assuming that it is true for all
k < K. Since © (v,p*) € 0" (x,p*), if every v € T(®" '(x,p*), x) makes every
principal type no better than in p*, then we are done. Suppose instead that there is
some y € F(@K_l(x, p*), x) that makes some principal type strictly better off than in
p*. Consider the family of agent posterior beliefs A i that are supported on et (x,p")
and put positive probability on at most two principal types, which must be adjacent.
A similar argument to the K = 0 case shows that there is some smallest (according to
FOSD) A € Ak for which there is an agent best response that makes some principal
type in @K(X,p*) weakly better off than in p*. As before, if the agent is precisely
indifferent between accepting or rejecting y under belief A, fix the agent best response
to A that accepts the proposal with the smallest probability among the best responses
for which some principal type in @K(X, p*) weakly prefers y to p*. Let ¢ € A(X xT'xY)
be the distribution obtained from x under this agent best response, and let 6,, be the
smallest type in @K(X, p*) that weakly prefers ¢ to p*. A similar argument to the base
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case above then shows that there must be some agent best response to a belief fully
supported on 6, which deters all principal types from proposing x.

Since there is some K € N such that @k(x,p*) =07 (x,p*) for all k > K, it follows
that there is a best response v € I'(© (x, p*), x) that deters all principal types from
proposing x. Using this fact, a similar argument to those above then shows that there
is a best response v € I'(0%/(x, p*), x) that deters all principal types from proposing
X, which means that p* is an SJCE outcome. [
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