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Abstract

We study principal-agent settings where the principal has private informa-
tion, both the principal and agent take actions, and the agent’s action is sub-
ject to moral hazard. Unlike past work focusing on explicit contracts, we allow
the principal to propose contracts that give them flexibility in their choice of
future actions. We develop an adaptation of sequential equilibrium called con-
tracting equilibrium for our principal-agent games, and prove its existence. In
environments where the principal’s type and agent’s action are complements,
we also apply a refinement called payoff-plausibility. The principal-optimal safe
outcomes, which are analogs of the least-cost separating outcomes of signaling
games, are always contracting equilibrium outcomes. They also provide an im-
portant payoff benchmark: Every principal type must obtain a weakly higher
payoff from any payoff-plausible equilibrium. Moreover, if there are complemen-
tarities between the principal’s type and their action, payoff-plausibility selects
the principal-optimal safe outcomes when the principal is restricted to offer-
ing deterministic mechanisms. Otherwise, pooling between principal types can
survive payoff-plausibility, and is more prevalent than would be predicted with
explicit contracts.
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1 Introduction

In many economic settings, a principal with private information interacts with an

agent whose actions are subject to moral hazard. For example, a firm that offers a

performance-based incentive contract to a prospective employee may have a better

sense than the employee of how the employee’s effort will translate into profit. If the

compensation specified by the contract depends on the firm’s profit, then the potential

employee’s perception of what the firm knows will be important for their decisions of

whether to accept the employment offer and, if they join the firm, how hard to work.1

This paper develops a framework for studying mechanism design by informed prin-

cipals in these settings, and shows how the resulting predictions differ from those made

when ignoring principal private information, as well as from the predictions in informed

principal environments without agent moral hazard. With an uninformed principal,

there are two natural benchmarks. One is the complete-information benchmark, which

obtains in the situation where the principal’s information is common knowledge be-

fore contracting occurs. The other is the ex-ante mechanism design benchmark. This

is what would be implemented by a principal who does not possess any asymmetric

information before contracting, but will learn their type after the contract is accepted.

The complete-information benchmarks are frequently not equilibrium outcomes be-

cause of incentive compatibility failures where “worse” principal types prefer to mimic

“better” ones. Even when the ex-ante mechanism design benchmarks are consistent

with equilibrium, they may implausibly rely on the agent believing that certain off-

path contract proposals were made by “bad” principal types when only “good” types

could reasonably gain from making the proposal. When this is the case, the ex-ante

mechanism design benchmarks can be ruled out by refinement.

The literature studying mechanism design by informed principals has focused on

1Other examples with informed principals and agent moral hazard include: (1) A publisher who is
more informed than a prospective author about the likely sales of a future book, and (2) An insurance
company offering a menu of policies when the company has better information about the likelihood
of various outcomes than a potential insuree.
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settings without agent moral hazard, with the most relevant for comparison with our

setting being the “common values” environments first studied in Maskin and Tirole

[1992].2 There the principal’s information is payoff-relevant for the agent, but the agent

has no action other than accepting or rejecting the principal’s contract proposal. The

key outcomes are the “Rothschild-Stiglitz-Wilson (RSW) allocations.” An allocation is

a perfect Bayesian equilibrium outcome if and only if it is individually rational for the

agent and gives every principal type a weakly higher payoff than the RSW allocations.

Moreover, only the RSW allocations survive natural equilibrium refinements.

Several differences emerge with the presence of moral hazard. One difference is

that there can be equilibria that give lower payoffs than the principal-optimal safe

outcomes, which are the analogs of the least-cost separating equilibria of traditional

signaling games, as well as the generalizations of the RSW allocations to environments

with moral hazard. The reason for this discrepancy is that, with moral hazard, the

agent’s beliefs not only affect their decision of whether to accept a given contract

proposal but also their choice of action after a contract has been accepted. So even

when the agent accepts a proposed contract that would lead to a principal-optimal

safe outcome under certain agent beliefs, other beliefs might lead them to take worse

actions for the principal types. However, in a broad class of environments, a natural

equilibrium refinement restores the prediction that equilibria give higher payoffs than

the RSW allocations/principal-optimal safe outcomes. Still, outcomes other than those

which are principal-optimal safe survive refinement, including more efficient outcomes

that involve pooling.

We now preview our framework and results in more detail. In our model, mecha-

nisms constrain the future actions of the principal but not those taken by the agent.

The interaction between the principal and agent consists of (1) the proposal by the

principal of a contract detailing a mechanism, followed by the acceptance/rejection

of the offer by the agent, (2) the implementation of the mechanism in the contract

2We discuss this literature in more depth later, along with papers that consider restricted contracts
rather than full-fledged mechanism design in settings with informed principals and agent moral hazard.
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and the resulting determination of the principal’s action, and (3) the agent’s ultimate

choice of action after observing the results of the mechanism. It is the final stage (3)

and the fact that a mechanism cannot directly constrain the agent’s action that mark

the presence of agent moral hazard.

Our mechanism design approach allows the principal to avoid committing to a single

pure action by proposing flexible contracts that allow them a non-trivial choice over

their future actions. This contrasts with the standard approach to informed principal

settings with agent moral hazard in which the principal is assumed to only propose

explicit contracts that precisely pin down the action they will take should the agent

accept the offer. Flexible contracts are an appropriate and realistic assumption for the

informed principal setting. As noted by Segal and Whinston [2003], publishers often

use contracts with multiple options concerning publication and copyrights of books.

Similarly, a firm may offer a contract to a prospective employee that places some

constraints on the possible tasks the firm could assign or the exact nature of how the

firm will compensate the employee, but does not completely narrow down the firm’s

possible actions.

We consider two classes of flexible contracts: The unrestricted class which can com-

mit to any mechanism, and a restricted class which can only commit to deterministic

mechanisms. Deterministic mechanisms are essentially menus of pure actions from

which the principal will later choose should the agent accept the associated contract,

whereas general mechanisms allow the principal to choose between non-degenerate

distributions over actions. The general-mechanism approach is consistent with the

standard mechanism design literature, and often affords useful analytical tools, such as

the Inscrutability Principle (Myerson [1983]). However, the deterministic-mechanism

approach seems likely to be of applied interest in some settings and often leads to

narrower predictions than the general-mechanism approach.

As in most of the principal-agent literature, we allow for infinite action spaces

for both the principal and the agent. Owing to this and the fact that the space of

possible mechanism proposals is infinite, the traditional solution concept of sequential
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equilibrium cannot be directly applied to our game.3 Instead, we develop and use an

adaptation of sequential equilibrium called contracting equilibrium. These equilibria

always exist, though this is not an immediate consequence of previous existence results.

The proofs for the existence of contracting equilibria, as well as the solution concept

itself, may be useful for analyses of other mechanism design games, such as those with

multiple agents or agent adverse selection in addition to agent moral hazard.

Like sequential equilibrium, contracting equilibrium is often excessively permissive,

so we also employ a refinement in the vein of the Intuitive Criterion called payoff-

plausibility. Payoff-plausibility makes strong predictions, and it frequently rules out

the ex-ante mechanism design benchmark. Where it is applied, payoff-plausibility is

a consequence of existing refinements, appropriately adapted for our principal-agent

games, such as robust neologism proofness (Clark [2021]) and strongly justified com-

munication equilibrium (Clark and Fudenberg [2021]). We discuss these connections

in more detail in Section 8.

We focus much of our analysis on monotone-concave-supermodular (MCS) envi-

ronments. MCS environments satisfy supermodularity conditions that capture com-

plementarities in the effects of the principal’s type and the agent’s action on payoffs.

These conditions are satisfied in many settings of interest, and they lead to a ten-

dency for higher principal types to separate from lower principal types. Indeed, the

principal-optimal safe outcomes are always payoff-plausible contracting equilibrium

outcomes. Moreover, payoff-plausibility selects only outcomes which give every type of

the principal a weakly higher payoff than they obtain from the principal-optimal safe

outcomes. If there are complementarities between the principal’s type and their action

on top of the standard complementarities in MCS environments, payoff-plausibility

selects the principal-optimal safe outcomes when the principal is restricted to offer-

ing deterministic mechanisms. Otherwise, pooling between principal types can survive

payoff-plausibility with flexible contracts. In contrast, when only explicit contracts can

3As we explain in Section 4.3.1, perfect Bayesian equilibrium is also inappropriate here, because
the game where general mechanisms can be proposed does not have perfectly observed actions.
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be proposed, payoff-plausibility typically predicts complete separation.

The paper features a running example: An informed-principal version of a canon-

ical firm and worker problem, where the firm is more informed about the potential

profitability of the task on which they seek to employ the worker. Here the complete-

information benchmark is inconsistent with contracting equilibrium. Moreover, payoff-

plausibility eliminates not only the ex-ante mechanism design benchmark, but all equi-

librium outcomes that are Pareto-optimal from the perspective of the various firm

types.

The remainder of the paper proceeds as follows. Section 2 discusses the related

literature, while Section 3 formalizes and analyzes the firm and worker example. Sec-

tion 4 then presents our general framework and establishes the existence of contracting

equilibria for all payoff environments. In Section 5, we explore various properties of

contracting equilibria, before applying the refinement of payoff-plausibility to MCS

environments in Section 6. Section 7 compares informed principal environments with

moral hazard to those without moral hazard. Section 8 then discusses the foundations

payoff-plausibility has in robust neologism proofness and strongly justified communi-

cation equilibrium. Section 9 concludes.

2 Related Literature

Most analyses of principal-agent problems assume that the agent knows everything

that the principal does. Myerson [1983] introduced the study of mechanism design

by an informed principal. It analyzed a general setting in which the principal and

agents can all posses asymmetric information and the agents’ actions may be subject

to moral hazard. Unlike our focus, most of the analysis in Myerson [1983] was from

the perspective of cooperative rather than non-cooperative game theory. It established

the existence of “expectational equilibria” under the assumption that all action spaces

are finite. In contrast, throughout our analysis, we allow for infinite action spaces.

Moreover, we give the agent the choice of whether to accept the principal’s proposed
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contract, whereas Myerson [1983] assumed that all agents were in a relationship with

the principal even before mechanism proposal.

The literature studying the design of general mechanisms by informed principals

has focused on two settings: those with private values and those with common values.

In both of these settings, there are no actions for the agent to take, so moral hazard

is not present. The private values setting, first studied by Maskin and Tirole [1990],

concerns situations in which both the principal and agent have asymmetric information,

but each player’s information is only relevant for their own payoff. Maskin and Tirole

[1992] defined the common-value informed principal problem to mean that only the

principal has private information. The common values setting is thus a special case

of the general informed principal with agent moral hazard setting where the agent’s

action space is null. The principal-agent game we develop adapts the games in Maskin

and Tirole [1990, 1992] to settings with moral hazard, and we study the differences that

arise from moral hazard relative to settings with private values and especially those

with common values.4

Unlike the general analysis presented here, Beaudry [1994], Inderst [2001], Chade

and Silvers [2002], Bénabou and Tirole [2003], and Martimort and Sand-Zantman [2006]

each studied specific settings with informed principals and agent moral hazard, and

assumed that contracts commit the principal to a single (pure) action. Beaudry [1994]

and Inderst [2001] in particular studied settings like the example presented in Section

3. Wagner et al. [2015], Bedard [2017], and Mekonnen [2021] allowed for unrestricted

contracts, but limited attention to very special environments.5

Payoff-plausibility is a consequence of two signaling game refinements, robust neol-

ogism proofness (RNP) (Clark [2021]) and strongly justified communication equilibrium

4Cella [2008] and Mylovanov and Tröger [2012, 2014] also studied private values, and Inderst [2005],
Severinov [2008], Balkenborg and Makris [2015], Koessler and Skreta [2016], DeMarzo and Frankel
[2020], and DeMarzo et al. [2020] analyzed the common-values case.

5Wagner et al. [2015] and Mekonnen [2021] assumed the agent’s first-best action is independent of
the principal’s type, and analyzed when the principal types could achieve the same payoff as if their
information were common knowledge. Bedard [2017] gave a sufficient condition for (what we call)
flexible contracts to enable outcomes that give both principal types higher payoffs than the least-cost
separating outcome when there are two principal types and two actions for the agent.
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(SJCE) (Clark and Fudenberg [2021]), when they are extended to MCS informed princi-

pal environments.6 RNP and SJCE were intended to capture effects of communication

from senders to receivers in signaling games. We discuss these refinements and their

relationship to payoff-plausibility in more detail in Section 8.

3 Firm and Employee Example

3.1 Setup

Consider a firm (principal) attempting to hire a potential employee (agent) to work

on a task. Both parties are risk neutral. The firm has private information θ ∈ {2, 4}

about the profitability or quality of the task, where θ is equally likely to be 2 or 4. If

the employee joins the firm, they will choose some effort level e ∈ R+, at cost e2/2, that

affects the probability of the task being successful. The firm will pay a transfer t ∈ R to

the employee as well as a share s ∈ [0, 1] of the profits. The expected profit given θ and

e is θe, so the utility functions of the firm and employee are U(θ, s, t, e) = θ(1− s)e− t

and V (θ, s, t, e) = θse − e2/2 + t, respectively. Both the firm and employee have an

outside option that gives payoff 0.

To attempt to hire the employee, the firm offers them a contract that specifies how

s and t will be determined. In this example, the principal’s actions are simply the

payment scheme (s, t); more generally, they can be things like task assignment or an

investment. The contract cannot directly constrain the effort the employee exerts.

The standard approach of the literature to informed principals with agent moral

hazard, seen for instance in Beaudry [1994] and Inderst [2001], requires that the firm’s

contract commit to a single action, which in this case is a payment scheme. The

contracts can also contain a recommended action, so they correspond to (s, t, e) triples.

With such an explicit contract, the agent knows precisely what share of profits and

6Maskin and Tirole [1990, 1992] and Mylovanov and Tröger [2012, 2014] applied notions of
neologism-proofness (Farrell [1993]), which is a stronger refinement than RNP and is not guaran-
teed existence in general informed principal environments.
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transfer the firm will implement should the agent accept.

This modeling approach does not allow flexible contracts, which are both plausi-

ble and observed in the real world. In the present example, the firm might want to

leave themself some flexibility in the contract, e.g. about how much of the employee’s

compensation will be governed by profit sharing or transfers, rather than completely

pinning down their future actions.7

We study two classes of flexible contracts. The first, in keeping with the mech-

anism design literature, allows the firm’s contract to commit to any mechanism for

determining their future actions. Formally, a mechanism corresponds to some pair

(µ,MF ), where MF is the message space of the firm, and µ : MF → ∆([0, 1]×R×R+)

maps messages into distributions over (s, t, e). Explicit contracts committing to a spe-

cific (s, t, e) are a trivial example of a mechanism, but there are many other ways

of determining the firm’s profit share and transfers that correspond to more complex

mechanisms and less explicit contracts.

We also study the informed principal problem when contracts can only offer deter-

ministic mechanisms. In the firm and employee setting, these are mechanisms (µ,MF )

in which µ(mF ) is a degenerate distribution putting probability 1 on some (s, t, e)

for each mF ∈ MF .8 They are contractually forbidden from implementing any other

(s, t, e). Such mechanisms still allow for ambiguity in the contract, but do not require

the commitment (or complexity) needed to implement a mechanism where the firm’s

message determines a non-degenerate probability distribution from which (s, t, e) is

ultimately drawn.

7Note that a contract is flexible only if it gives the firm a non-trivial choice over their future actions.
8Equivalently, a deterministic mechanism here can be thought of as the menu of pairs of profit

shares and transfers from which the firm can choose. Outside the specific context of this example, a
deterministic mechanism is simply the menu of principal action and recommendation pairs that the
principal could implement should the agent accept the contract.
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3.2 Benchmarks

Before analyzing the equilibria of our contracting game, we first discuss two benchmark

solutions for contracting with symmetric information, as well as the hypothetical situ-

ation in which the firm directly controls the employee’s effort. These will enable us to

compare the predictions that emerge with an informed firm with those when the firm

is uninformed, and to compare the predictions made with and without moral hazard.

The complete-information benchmark is the outcome that would occur if the firm’s

type were commonly known to be θ. Here the standard solution is that the employee

receives all of the profits (s = 1), the employee exerts first-best effort level (e = θ), and

the firm extracts all of the surplus (t = −θ2/2). This results in payoffs of 2 to the type

2 firm, 8 to the type 4 firm, and 0 to the employee regardless of the firm’s type. This

outcome is not possible with asymmetric information, because the type 2 firm would

strictly prefer to mimic the type 4 firm, which would let them extract a higher fee from

the employee.

The ex-ante mechanism design benchmark is the outcome that would occur if the

firm could propose a contract ex-ante before learning their type. Here the solution

maximizes the firm’s ex-ante expected utility subject to incentive compatibility and

individual rationality constraints for the worker as well as incentive compatibility of

the interim firm types. Again, the solution has the employee receiving a full share of

profits and exerting the first-best effort level regardless of the firm types. However, here

both firm types extract the same fee of t = −5 and thus receive expected utilities of

5, equal to the total expected surplus. As we will see, while this outcome is consistent

with our notion of contracting equilibrium, it is not a plausible equilibrium outcome.9

To see what happens in the absence of employee moral hazard, suppose that the

payoffs of the firm and employee are as before, except now the firm has control over

the effort level the employee exerts. (Alternatively, we could keep control of effort

with the employee, but have the chosen effort level be directly observable and con-

9For a prior distribution with probability greater than 47/54 on θ = 2, the ex-ante mechanism
design benchmark is not even a contracting equilibrium outcome.
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tractible.) In this case, the unique equilibrium payoffs coincide with those in the

complete-information benchmark.10 The reason is that each principal type can secure

a payoff arbitrarily close to their complete-information benchmark by setting s = 0,

assigning the employee the same effort as in the benchmark, and giving the employee

a slightly greater total payment than in the benchmark. Moreover, given that ev-

ery principal type is attaining a weakly higher payoff than their complete-information

benchmark, no principal type could be attaining a strictly higher payoff. Otherwise,

the firm would, in ex-ante expectation, be extracting more than the maximum total

expected surplus, so the agent’s total expected utility would be strictly negative.

3.3 Equilibria

We now return to the setting with an ex-ante informed firm and employee moral haz-

ard. We first consider the possible equilibria when the firm can only propose explicit

contracts. Essentially, this amounts to a standard signaling game with a slightly more

convoluted timeline. First, the firm observes θ and then proposes a contract. Subse-

quently, the employee either accepts or rejects the offer. If the employee rejects, both

parties get a payoff of 0. If instead the employee accepts, the employee will then exert

some effort e, after which profits and payoffs are realized.

Under an adaptation of sequential equilibrium to games with infinite action spaces,

the possible pairs of firm-type equilibrium payoffs, where U(θ) denotes the equilibrium

payoff of type θ, are given in Figure 1.

To understand the possible equilibrium payoff pairs, observe that the type 2 firm

can never get a lower payoff than 2, their complete-information benchmark. The reason

is the firm can offer a contract corresponding to (s, t) = (1, 2−ε) for some ε > 0, which

amounts to a perturbation of their optimal contract with complete information. Such

a proposal is guaranteed to be accepted and result in a payoff of 2−ε to the firm. This

holds for all ε > 0, so the firm can always get arbitrarily close to a payoff of 2. Moreover,

10The “Rothschild-Stiglitz-Wilson (RSW) allocations” in this example are all incentive compatible
outcomes that result in precisely these payoffs.
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Figure 1: The red region depicts the possible equilibrium payoff pairs. The diamond at (2, 8) denotes
the payoffs of the firm types in the complete-information benchmark.

the lowest payoff that the type 4 firm can be held to is 8/3, which comes from having

the employee believe θ = 2 following any off-path contract proposal. Additionally, the

high type firm can never get a lower equilibrium payoff than the low type firm.

Having explained the various lower bounds on the set of equilibrium payoff pairs,

we now turn to understanding its upper envelope. The dot at (2, 4) corresponds to

the least-cost separating outcome. In this outcome, the type 2 firm extracts the full

surplus as with complete information, while the type 4 firm offers a higher transfer of

t = 0 and a lower profit share of s = 1/2, leading the employee to exert effort e = 2.

This is also the principal-optimal safe outcome, an object that will feature in much of

our analysis. Here the principal-optimal safe outcome maximizes the payoff of both

firm types across the outcomes in which the employee’s decision of whether to join the

firm and subsequent effort choices are always optimally calibrated to the firm’s type.

All points to right of U(2) = 2 involve pooling. The reason is that the payoff of

the type 2 firm in all separating equilibria is 2. Thus, in a pooling equilibrium where

U(2) > 2, there must be some (s, t) played with positive probability by both firm types

11



where the employee’s posterior puts at least probability 1/2 on θ = 2. This fact enables

the formulation of a constrained optimization problem that maximizes the payoff of

the type 4 firm subject to the type 2 firm’s payoff equaling U(2), employee incentive

compatibility, and an individual rationality constraint that averages across both θ = 2

and θ = 4. The solution to this problem, the analysis of which is given in Section

OA.1.2, characterizes the upper envelope in the U(2) > 2 region.

Now we consider the possible equilibria when the firm can propose flexible con-

tracts.11 The timing of the corresponding game is the same as when only explicit

contracts can be proposed, with the following exception. Should the employee accept

the firm’s contract offer, the firm will choose some message mF ∈ MF . After this,

(s, t) is drawn according to µ(mF ). The employee then observes the resulting (s, t)

before exerting some effort level e, following which profits and payoffs are realized.

Later we will develop contracting equilibrium, an adaptation of sequential equilibrium

that applies to our principal-agent game with flexible contracts. Figure 2 depicts the

contracting equilibrium payoffs with flexible contracts as well as those possible when

only explicit contracts can be proposed.

Observe that, with flexible contracts, the type 4 firm cannot be held to same min-

imum payoff as with explicit contracts. The reason is that the type 4 firm can always

get payoffs strictly higher than 8/3 because of the richer space of deviations. In par-

ticular, there are contracts in which all the sequential continuation equilibria following

their proposal give a higher payoff than 8/3 to the type 4 firm. For example, consider a

contract with two messages, where the first message results in (s1, t1) = (1,−199/100)

with probability 1 and the second results in (s2, t2) = (2/3,−1) with probability 1.

If the contract were proposed and accepted, then the type 4 firm would always select

(s2, t2), and obtain a payoff of at least 25/9. The type 2 firm would only select (s2, t2)

when it induces the employee to exert effort at least e = 297/200. Given (s2, t2) and

any belief that would induce the employee to exert effort higher than e = 297/200, the

11The results with either general mechanisms or deterministic mechanisms are the same in this
example, but this is not in general true.
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Figure 2: The blue region depicts the equilibrium payoffs that can only be sustained with flexible
contracts, while the red region consists of equilibrium payoffs that can be sustained only with the re-
striction to explicit contracts. Equilibrium payoffs that can be sustained with both classes of contracts
are purple.

employee’s conditional expected utility must be at least (297/200)2/2− 1 > 0. More-

over, the employee’s expected utility conditional on (s1, t1) is always strictly positive.

Thus, the employee’s expected utility from accepting the proposal is strictly positive in

every sequential continuation equilibrium. So the type 4 firm’s payoff is at least 25/9

in every sequential continuation equilibrium following the proposal of this contract.12

Additionally, with flexible contracts, the upper envelope is higher and smooth. It

also can be found through a constrained optimization problem, details of which are in

Section OA.1.1. However, unlike the case with explicit contracts, all the points on the

upper envelope with flexible contracts correspond to outcomes where the agent correctly

anticipates the principal’s type when they choose their effort. In particular, any payoff

on the upper envelope can be realized in an outcome where, conditional on the low

type θ = 2, the employee receives the full profit share s = 1 and exerts efficient effort

12All payoffs in the purple region weakly above U(4) = 3 can be sustained in contracting equilibrium
with flexible contracts as well as with explicit contracts, but it is not known which of the payoffs in
the purple region between U(4) = 25/9 and U(4) = 3 are consistent with contracting equilibrium
when flexible contracts can be proposed. A similar qualification holds for the right panel of Figure 3
below.

13



level e = 2, and conditional on the high type θ = 4, the employee exerts optimal effort

e = 4s for the corresponding profit share s. Intuitively, if this were violated, the payoffs

of both the firm and the worker when θ = 2 could be weakly increased by increasing

the surplus to its maximum value of 2 and appropriately dividing it. Moreover, the

payoff of the high type θ = 4 could only improve from not being mistaken for the low

type. The reason why these outcomes are possible with flexible contracts is that they

can be achieved with both firm types proposing the same contract. This leads the

employee to be willing to accept a relationship with a type 2 firm despite regretting it

later.

There are many equilibria with both explicit and flexible contracts, but not all

the equilibria are reasonable. Consider for instance equilibria with flexible contracts

in which both firm types obtain a payoff of 5, as in the ex-ante mechanism design

benchmark from Section 3.2. (Graphically, these equilibria correspond to the star in

the right-hand plot of Figure 3.) We should expect the high type firm to obtain a strictly

higher payoff than the low type firm, because the high type should be able to credibly

signal their identity to the employee when the prevailing equilibrium has both types

receiving the same payoff. For example, suppose the type 4 firm proposed a contract

committing to (s, t) = (1/2,−1.5). Every undominated response of the employee to

such a contract would involve effort levels less than 2 and thus give the type 2 firm

a strictly lower payoff than 5; however, the employee accepting and exerting effort 2,

as they would if they knew θ = 4, would give the type 4 firm a strictly higher payoff

of 5.5. Because of this, payoff-plausibility, which is formally defined in Section 4.3,

rules out the equilibria in which both firm types obtain a payoff of 5. More generally,

payoff-plausibility eliminates equilibria when there is some type θ and a contract that,

when the agent responds as if the type were θ, would give the type θ principal a strictly

higher payoff than the equilibrium and all types below θ a strictly lower payoff.13

Payoff-plausibility selects precisely the green payoff pairs depicted in Figure 3.

13With two firm types, the Intuitive Criterion (Cho and Kreps [1987]) is equivalent to payoff-
plausibility. With more types, the Intuitive Criterion is usually much weaker.
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Figure 3: The left-hand figure depicts equilibrium payoffs with explicit contracts, with plausible payoffs
in green and all other payoffs in red. The right-hand figure depicts equilibrium payoffs with flexible
contracts, with plausible payoffs in green and all other payoffs in blue.

These are the payoffs that correspond to outcomes that can be obtained from the

least-cost separating outcome by uniformly reducing the transfers paid by the firm

types. With flexible contracts, there is a non-singleton line segment of such payoffs, as

shown in Section OA.1.3, while there is only one such payoff with explicit contracts. As

we will see in Section 6, in a broad class of environments nesting this example, payoff-

plausibility selects the least-cost separating equilibria when only explicit contracts can

be proposed, but frequently allows multiple equilibrium outcomes with flexible con-

tracts.

Intuitively, payoff-plausibility eliminates any equilibrium whose payoffs are beneath

the upper envelope with flexible contracts because, in any such equilibrium, the type

4 firm could propose a contract corresponding to a point on the upper envelope that

is above and to the left of the equilibrium payoffs. (This holds in the example here

for both when flexible contracts can be proposed and when only explicit contracts

can be proposed, because the payoffs on the upper envelope with flexible contracts

can be attained with deterministic contracts where the type 4 firm chooses a single

payment scheme.) The type 2 firm would do worse by such a proposal, while the type

4 firm would do better if the employee were to respond under the belief that θ = 4.
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The requirement that plausible payoffs lie on the upper envelopes holds generally in a

broad class of environments with two types. It is not clear that this always extends

with more than two types. However, there are general thresholds that the payoffs

in payoff-plausible equilibria must always meet. In particular, every principal type

must always obtain a weakly higher payoff than they do in the principal-optimal safe

outcomes (or least-cost separating outcomes if only explicit contracts can be proposed).

In this example, this amounts to the requirement that the type 4 firm always obtain a

weakly higher payoff than 4, which is the reason for the horizontal lines at U(4) = 4

in Figure 3.

Further, note that no equilibrium that is Pareto-optimal for the firm types survives

payoff-plausibility. This can be seen graphically by the fact that all the green payoffs

are to the left of the peaks in the upper envelopes. The reason is that, to sustain

relatively high equilibrium payoffs to the type 2 firm, the type 4 firm must give both a

high transfer t and a high profit share s. (The increasing levels of s are reflected in the

bending of the upper envelopes.) However, the high type would do better by offering

a contract with a reduced profit share s and increased transfer t.

4 Framework and Existence Results

4.1 Primitives

The principal’s type is θ ∈ Θ, where Θ = {θ1, ..., θN} is a finite type space. There

is a full-support prior distribution over Θ given by λ ∈ ∆(Θ).14 If a relationship is

formed, the principal’s action set is the compact metric space X, with x ∈ X denoting

a typical principal action, while the agent’s action set is the compact metric space Y ,

with y ∈ Y denoting a typical agent action. Here, a principal action x could represent

an investment, task assignment, incentive scheme, or monitoring system, and an agent

action y could represent effort level, type of work, or social behavior. In addition to

14Throughout the paper, we denote the set of probability distributions over a set Ω by ∆(Ω), and,
whenever Ω is a metric space, we endow ∆(Ω) with the topology of weak convergence.

16



choosing an x, the principal makes an action recommendation to the agent, which

the agent may or may not follow. An action recommendation r lies in a compact

metric space R. We assume that ∆(Θ) × [0, 1]|Θ|+1 × ∆(Y ) ⊆ R. This allows the

principal to recommend any mixed action to the agent, since there is a dimension

of R that contains all of ∆(Y ), as well as describe various possible beliefs over the

principal type and mixture probabilities for the agent and the principal types. If a

relationship is formed, U(θ, x, y) and V (θ, x, y) are the utilities of the principal and

agent, respectively, when the principal’s type is θ, the principal takes action x, and the

agent takes action y. Both utility functions U : Θ×X×Y → R and V : Θ×X×Y → R

are continuous. Note that neither the payoffs of the principal nor the agent depend on

the action recommendation r.

If instead the principal and agent do not form a relationship, then both realize

their outside options; the payoffs to all types of the principal and the agent from their

outside options are normalized to 0. For convenience, we assume that there is some

action xo ∈ X that the principal can take when a relationship is formed with the agent

that automatically results in both parties realizing their outside option payoff: that is,

U(θ, xo, y) = 0 and V (θ, xo, y) = 0 for all θ ∈ Θ and y ∈ Y . Such an action is present,

for instance, when the principal has the ability to end their relationship with the agent

immediately upon its inception. This will let us appeal to the Inscrutability Principle

of Myerson [1983], which states that, with unrestricted mechanisms, it is without loss

of generality to assume that, on the path of play, all principal types propose the same

mechanism.

In many, if not most, principal-agent relationships of interest, the principal can pay

a transfer to the agent. To analyze such settings, we assume that the principal’s action

space is of the form X × T , where, for some large t ∈ R+, T = [−t, t] represents the

space of possible transfers and X represents the space of other actions the principal

could take.15

15We bound the transfers to maintain compactness, but this can be relaxed without much difficulty.
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Definition 1. An environment has transfers if there are continuous functions u :

Θ×X×Y → R, v : Θ×X×Y → R, and g : T → R such that U(θ, x, t, y) = u(θ, x, y)−t

and V (θ, x, t, y) = v(θ, x, y) + g(t) for all θ ∈ Θ, x ∈ X, t ∈ T , and y ∈ Y .

We assume that g is weakly increasing and continuous, and that there is some

xo ∈ X such that u(θ, xo, y) = v(θ, xo, y) = 0 for all y ∈ Y . This allows for the classic

setting of quasilinear transfers, i.e. g(t) = t for all t ∈ T , as well as the possibility e.g.

that the agent is risk averse over income.

Moreover, as with the informed firm and employee example, there are often com-

plementarities in the effects of the principal’s type and the agent’s action. For this,

we assume that the principal’s types are ordered so that θ1 < ... < θN , and that the

agent’s action space is an interval of real numbers, Y = [y, y].

Definition 2. An environment with transfers is monotone-concave-supermodular

(MCS) if

1. Monotone:

(a) u(θ, x, y) is weakly increasing in y for all θ ∈ Θ and x ∈ X.

(b) For all θ, θ′ ∈ Θ, x ∈ X, and y, y′ ∈ Y , u(θ, x, y) ≥ u(θ, x, y′) if and only if

u(θ′, x, y) ≥ u(θ′, x, y′).

(c) u(θ, x, y) and v(θ, x, y) are weakly increasing in θ for all x ∈ X and y ∈ Y .

2. Concave:

(a) g is weakly concave.

(b) y∗(λ̃, x) ≡ arg maxy∈Y Eλ̃[v(θ, x, y)] is singleton for all λ̃ ∈ ∆(Θ) and x 6=

xo.

3. Supermodular:

(a) y∗(λ̃, x) is weakly increasing in λ̃ according to the FOSD partial ordering of

∆(Θ) for all x 6= xo.

(b) For all θ, θ′ ∈ Θ, x ∈ X, and y, y′ ∈ Y such that θ > θ′ and y > y′,

u(θ, x, y) − u(θ, x, y′) ≥ u(θ′, x, y) − u(θ′, x, y′), with the inequality holding

strictly when u(θ′, x, y)− u(θ′, x, y′) > 0.
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The monotonicity criteria state that (a) the principal always (weakly) prefers a

higher agent action, (b) holding fixed the principal’s action, the principal types share

the same preference over the agent’s action, and (c) both the agent and the principal

gain (weakly) more by forming a relationship when the principal’s type is higher. The

concavity criteria require the agent’s utility be (weakly) concave in the transfer they

receive, and their best response be a singleton, which is necessarily the case for v strictly

concave in y. The first supermodularity condition says that the agent’s best response

is weakly increasing in their posterior belief about the principal’s type.16 Finally, the

second supermodularity criterion requires that the difference in principal utility from a

higher agent action, holding fixed the principal’s action, is higher for a higher principal

type, and strictly so when the lower principal type strictly gains from the higher agent

action.

4.2 Contracts, Mechanisms, and the Principal-Agent Game

At the beginning of their interaction, the principal offers the agent a contract that

specifies the mechanism that will be used if the agent accepts. The principal can

constrain their own action through the mechanism they design, but they are unable

to impose any direct constraints on the action of the agent: If the principal and agent

form a relationship, the agent will be free to take any action they desire upon observing

the principal’s action and recommendation pair. Formally, a mechanism consists of a

message space for the principal of the form MP = {1, ...,M} for some M ∈ N, and

a mapping µ : MP → ∆(X × R) taking principal messages into distributions over

principal action and recommendation pairs.17 We denote this mechanism by (µ,MP ),

and we letM denote the set of all possible mechanisms. (Note that even if the action

16A sufficient condition for this is that v(θ, x, y) be differentiable with the derivative ∂v
∂y (θ, x, y)

weakly increasing in θ for all x 6= xo and y.
17A mechanism could also contain a message space for the agent MA and determine the distribution

over the principal’s action and recommendation pairs using the messages of both the principal and
agent. This would be especially natural in situations where the agent possesses some hidden infor-
mation. For notational simplicity, we ignore agent message spaces throughout; however, our results
extend to this setup.
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and recommendation sets were finite, there would be infinitely many mechanisms since

the number of messages M can be any number in N and, as long as X or R were

non-singleton, there would be infinitely many stochastic distributions over X ×R.)

Formally, the principal-agent game proceeds as follows. The principal observes

their type θ, and proposes a mechanism (µ,MP ) to the agent. The agent observes

the principal’s choice of mechanism and then decides whether to accept the offer. If

the agent rejects the offer, the game ends with the principal and agent each realizing

their outside options. If instead the agent accepts the offer, the principal and agent

form a relationship. Subsequently the principal chooses a message mP ∈MP , and the

principal’s action and recommendation pair (x, r) is then drawn according to µ(mP ).

The agent then observes the principal’s action and recommendation pair and responds

with an action y. After this the payoffs are realized.

Deterministic Mechanisms Up to this point, we have assumed that the principal

can implement a mechanism that results in a stochastic determination of their action.

This is consistent with the standard mechanism design literature, as well as the lit-

erature studying informed principals in settings without moral hazard. We will also

consider a principal-agent game where the principal can only propose deterministic

mechanisms. These are mechanisms (µ,MP ) in which µ(mP ) is a degenerate distribu-

tion for each mP ∈MP , i.e. µ(mP ) = δ(x,r) for some (x, r) ∈ X ×R.

Unlike most papers that have studied informed principal settings with agent moral

hazard, both the general-mechanism and deterministic-mechanism versions of the principal-

agent game allow the principal to avoid committing to a single pure action by proposing

flexible contracts. This strikes us as more realistic than insisting that the contract must

specify exactly how the principal would act. Whether it is realistic that the princi-

pal can directly commit to non-degenerate distributions over their actions is less clear

and likely depends on the application, which is why we consider both versions of the

principal-agent game. Throughout the paper, there will frequently be a pair of defi-

nitions for a given concept: one for the principal-agent game with general mechanism
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proposals and one for the game with the deterministic mechanism restriction.

4.3 Solution Concepts

4.3.1 Contracting Equilibrium

Because the space of mechanism proposals is infinite, we cannot apply the standard

definition of sequential equilibrium to our principal-agent games. Perfect Bayesian

equilibrium (Fudenberg and Tirole [1991]) cannot be applied to the general-mechanism

game, because it does not have observed actions, as there are mechanisms in which the

distributions over (x, r) pairs induced by distinct messages overlap.

Instead, we develop an adaptation of sequential equilibrium called contracting equi-

librium. We defer the formal definitions to Appendix A, but here we discuss some

of the important aspects of contracting equilibrium. As in PBE and sequential equi-

librium, each player has a strategy, and the uninformed agent has a belief about the

principal’s type at each of their information sets. Each principal type plays optimally:

Their expected payoff must be no less than the payoff they could get by playing an

arbitrary mechanism and subsequent message given the play of the agent. Moreover,

the agent plays optimally: For each mechanism, their acceptance decision and their

subsequent choice of actions conditional on the various principal action-message pairs

maximize their expected utility given their posterior belief about the principal’s type.

Additionally, the agent’s posterior belief at the mechanism proposal stage must come

from a regular conditional probability distribution obtained from their prior and the

mechanism proposal rules of the principal types. Likewise, the agent’s posterior be-

lief upon observing a given principal action-message pair must be consistent with the

agent’s interim belief about the principal’s type when the corresponding mechanism is

proposed and the distributions over messages used by the various principal types.18

18The consistency requirement applied at this stage is essentially that of sequential equilibrium in
the subgame after the mechanism has been accepted. We can invoke it here because the message
space in any mechanism is finite.
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Theorem 1. Contracting equilibria exist in both the general-mechanism and deterministic-

mechanism principal-agent games.

Appendix B presents the proof of Theorem 1, which takes sequences of games, with

finite approximations of X and Y and finite sets of mechanisms that can be proposed.

It shows that the limits of the contracting equilibrium outcomes in these games are

contracting equilibrium outcomes in the true games. Broadly this involves showing

that the limits of the contracting equilibrium outcomes are consistent with both the

“off-path” and “on-path” requirements of contracting equilibrium. It seems likely that

the proof techniques involved may be useful for establishing equilibrium existence in

similar games, such as other informed principal settings.

The off-path requirement that must be satisfied is that, for every mechanism (µ,MP ),

there is a sequential continuation equilibrium that deters every principal type from

proposing it. The difficulty here this is that the correspondence mapping mechanisms

into sequential continuation equilibria is not upper hemicontinuous, so we cannot sim-

ply take an arbitrary limit of sequential continuation equilibria that follow the pro-

posals of a sequence of mechanisms in the approximating games that converges to a

given (µ,MP ). However, we show that, for every (µ,MP ), there is a sequence of well-

calibrated mechanisms in the sequence of finite games whose sequential continuation

equilibria converge to sequential continuation equilibria after (µ,MP ) is proposed.

The on-path requirement is that the outcome be consistent with a valid profile of

mechanism proposal distributions and rule governing sequential continuation equilibria

following the proposal of each mechanism. An obstacle here is that the space of mech-

anisms is not compact. With general mechanisms, this poses little difficulty because

of the Inscrutability Principle, which enables the construction of a single mechanism

that is proposed by all principal types and induces the outcome of interest. With de-

terministic mechanisms the Inscrutability Principle does not hold. Instead, we show

that every equilibrium in the approximation games can be realized with principal types

proposing binary and obedient mechanisms on-path. Binary mechanisms have precisely

22



two messages for the principal, while the recommendations in an obedient mechanism

must be consistent with a sequential continuation equilibrium following its proposal.

The set of binary and obedient mechanisms is compact, so standard theorems regarding

the convergence of probability distributions on compact metric spaces apply, and the

obedience property simplifies the construction of the rule governing sequential contin-

uation equilibria consistent with the outcome of interest.

4.3.2 Payoff-Plausibility

Contracting equilibrium is often excessively permissive in the principal-agent game, so

in our analysis of MCS environments, we will frequently apply the criterion of payoff-

plausibility to refine the set of contracting equilibria.

Definition 3. Suppose the environment is MCS. In the general-mechanism game, the

profile of principal-type expected utilities (U∗(θ1), ..., U∗(θN)) is plausible if

U∗(θn) ≥ max
χ∈∆(X×T )

Eχ[u(θn, x, y
∗(θn, x))− t]

s.t. AIR: Eχ[v(θn, x, y
∗(θn, x)) + g(t)] ≥ 0,

PIC: Eχ[u(θn′ , x, y
∗(θn, x))− t] ≤ U∗(θn′) ∀n′ < n.

(1)

An equilibrium or outcome is payoff-plausible if the associated profile of principal-

type expected utilities is plausible.

Payoff-plausibility requires that each principal type θ get a payoff at least that from

proposing any distribution χ that satisfies the agent IR and principal IC constraints

when the agent responds under the belief that the type is θ. In particular, the agent IR

constraint guarantees that the agent obtains a weakly positive expected utility from χ

under type θ. The principal IC constraint says that every principal type smaller than

θ must obtain a weakly lower payoff from proposing χ and having the agent respond

under the belief that the type is θ than they obtain in equilibrium.

We adapt payoff-plausibility for the deterministic-mechanism game as follows.
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Definition 4. Suppose the environment is MCS. In the deterministic-mechanism game,

the profile of expected utilities (U(θ1), ..., U(θN)) is plausible if

U(θn) ≥ max
(x,t)∈X×T

u(θn, x, y
∗(θn, x))− t

s.t. v(θn, x, y
∗(θn, x)) + g(t) ≥ 0,

u(θn′ , x, y
∗(θn, x))− t ≤ U(θn′) ∀n′ < n.

(2)

The difference between this and Definition 3 is that here the domain of optimization

is the set of (x, t) pairs, rather than the full set of distributions over them.

Section 8 discusses the relationship of payoff-plausibility to various adaptations

of signaling game refinements to the principal-agent game. In particular, payoff-

plausibility characterizes both the set of robust neologism proof (Clark [2021]) con-

tracting equilibria and the set of strongly justified communication equilibria (Clark

and Fudenberg [2021]) in MCS environments.

5 Properties of Contracting Equilibrium Outcomes

Here we focus on the possible outcomes that can emerge in contracting equilibria. An

outcome p ∈ ∆(Θ × M × [0, 1] × X × Y ) is a probability distribution over tuples

(θ, µ,MP , α, x, y), where (θ, µ,MP , α, x, y) ∈ Θ ×M× [0, 1] × X × Y represents the

principal’s type being θ, mechanism (µ,MP ) being proposed and accepted with prob-

ability α, and the action pair (x, y) occurring subsequent to acceptance. Because of

the Inscrutability Principle, in the general-mechanism game it will prove convenient to

identify an outcome p ∈ ∆(Θ×M× [0, 1]×X×Y ) with the corresponding distribution

p′ ∈ ∆(Θ×X ×Y ) that is obtained from identifying each tuple (θ, µ,MP , α, x, y) with

the binary distribution αδ(θ,x,y) + (1−α)δ(θ,x0,y′) for some y′ ∈ Y (the value of which is

irrelevant).

We first establish some necessary conditions that must hold in all contracting equi-
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librium outcomes. We then define a class of safe outcomes satisfying stronger versions

of these necessary conditions, and show that, in MCS environments, the principal-

optimal safe outcomes are always contracting equilibria. This then enables us to give

a partial characterization of the contracting equilibrium set in MCS environments.

5.1 Necessary Conditions

Here we give some conditions that outcomes must satisfy if they occur in equilibrium

in the general-mechanism game. For an arbitrary outcome p, we let U(θ, p) denote

the expected utility of type θ and Û(θ, p, θ′) denote the expected utility type θ would

obtain by mimicking type θ′.

Definition 5. In the general-mechanism game, outcome p satisfies principal incen-

tive compatibility if U(θ, p) ≥ Û(θ, p, θ′) for all θ, θ′ ∈ Θ. Moreover, p satisfies

principal individual rationality if U(θ, p) ≥ 0 for all θ ∈ Θ.

In the general-mechanism game, principal incentive compatibility requires that every

principal type weakly prefers the conditional outcome given their type to the con-

ditional outcome given any other type, while individual rationality says that every

principal type weakly prefers their conditional outcome to their outside option. Since

every principal type can always mimic any other type or simply take their outside op-

tion, both incentive compatibility and individual rationality are necessary conditions

for principal optimization in equilibrium.

Even stronger incentive compatibility conditions must hold for equilibria in the

deterministic-mechanism game, because of the inability of the principal to commit

to non-degenerate distributions over actions. In particular, each principal type must

weakly prefer their conditional outcome to the conditional outcome given any type,

mechanism, and principal action triple in the outcome’s support. The general state-

ment of this condition is somewhat messy; however, it is considerably simpler for the

case of an always-accepting outcome p where P[α = 1] = 1, that is, there is probability

1 that the mechanism proposed is accepted. We can identify such an outcome with
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the p ∈ ∆(Θ × X × Y ) formed by mapping each tuple (θ, µ,MP , 1, x, y) to (θ, x, y).

For p ∈ ∆(Θ×X × Y ), let Û(θ, p, θ′, x′) = E[U(θ, x′, y)|(θ′, x′)] be the expected utility

of type θ from the conditional distribution given (θ′, x′). We then have the following

requirement.

Definition 6. In the deterministic-mechanism game, an always-accepting outcome sat-

isfies principal incentive compatibility (PIC) if P[U(θ, p) ≥ Û(θ, p, θ′, x′)] = 1 for

all θ ∈ Θ. Moreover, p ∈ ∆(Θ×X × Y ) satisfies principal individual rationality

(PIR) if U(θ, p) ≥ 0 for all θ ∈ Θ.

5.2 Safe Outcomes

Safe outcomes satisfy both the principal incentive compatibility and individual ratio-

nality conditions, and they additionally require that a relationship be formed with

probability 1 and that the prescribed play of the agent is optimal regardless of the

probability distribution over the principal’s type. For an arbitrary outcome p, let

V (θ, p) denote the expected utility of type the agent conditional on type θ.

Definition 7. In the general-mechanism game, outcome p ∈ ∆(Θ × X × Y ) is safe

if it satisfies both the principal’s incentive compatibility and individual rationality con-

straints, and it further satisfies:

1. Agent-safe IC (ASIC): P[y ∈ arg maxy′∈Y V (θ, x, y′)] = 1.

2. Agent-safe IR (ASIR): V (θ, p) ≥ 0 for all θ ∈ Θ.

The same holds in the deterministic-mechanism game for always-accepting outcomes.

ASIC ensures that, whenever the agent takes a given action y, it is a best response

to the principal’s action and every principal type that has positive probability when

the agent is supposed to play y. ASIR says that the agent gets a weakly higher payoff

conditional on each principal type than from their outside option.
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5.3 Principal-Optimal Safe Outcomes and Contracting Equi-

libria in MCS Environments

Definition 8. Safe outcome p ∈ ∆(Θ×X×Y ) is a principal-optimal safe outcome if

it gives every type of the principal a weakly higher payoff than every other safe outcome

p′: U(θ, p) ≥ U(θ, p′) for all θ ∈ Θ and safe p′ ∈ ∆(Θ×X × Y ).19

Proposition 1. In both the general-mechanism and deterministic-mechanism game,

principal-optimal safe outcomes exist.

There is always at least one safe outcome, the degenerate outcome in which xo

occurs with probability 1, i.e. players obtain their outside option payoffs. The proof

of Proposition 1, given in Section OA.2, further shows that the set of safe outcomes

is sequentially compact. This guarantees that, for every principal type, there is a safe

outcome giving the type a higher payoff than any other safe outcome. Moreover, the

outcome which is constructed by assigning to each type the same conditional outcome

given their type as their most preferred safe outcome is itself safe, since no principal

type would want to mimic any other. Consequently, this outcome is a principal-optimal

safe outcome.

Since, in MCS environments, the principal prefers higher agent actions and the

agent’s optimal action increases with the principal’s type, higher principal types would

like to separate from lower principal types. Supermodularity between the principal’s

type and the agent’s action allows the higher principal types to credibly do so by paying

higher transfers to the agent. The following proposition characterizes the general-

mechanism game principal-optimal safe outcomes in MCS environments by determining

the corresponding conditional outcome distributions for each type. (For outcome q ∈

∆(Θ×X × Y ), we let q(θ) ∈ ∆(X × Y ) denote the conditional outcome distribution

given type θ, and let y∗(θ, x) ≡ arg maxy∈Y v(θ, x, y) denote the agent’s best response

to x when the principal is type θ.)

19In environments without moral hazard, the principal-optimal safe outcomes are frequently referred
to as the “Rothschild-Stiglitz-Wilson (RSW) allocations.”

27



Proposition 2. In MCS environments, the conditional distributions of the principal-

optimal safe outcomes {q∗(θ)}θ∈Θ in the general-mechanism game are characterized

inductively by

q∗(θn) ∈ arg max
q∈∆(X×T×Y )

Eq[u(θn, x, y)− t]

s.t. AIC: Pq[y = y∗(θn, x)|x 6= xo] = 1,

AIR: Eq[v(θn, x, y) + g(t)] ≥ 0,

PIC: Eq[u(θn′ , x, y)− t] ≤ Eq∗(θn′ )[u(θn′ , x, y)− t] ∀n′ < n,

for all n ∈ {1, ..., N}. Moreover, the same inductive characterization holds for the

deterministic-mechanism game when the PIC constraint is strengthened to Pq[u(θn′ , x, y)−

t ≤ U(θ′n, q
∗(θn′))] = 1 for all n′ < n.20

The first and second constraints are simply the agent’s incentive compatibility and

individual rationality conditions for a safe outcome in MCS environments. The third

constraint is a principal incentive compatibility condition guaranteeing that lower types

than θn weakly prefer their outcome to mimicking θn. The proof of Proposition 2 follows

standard lines and is given in Section OA.3. The strengthened principal incentive

compatibility constraint for the deterministic-mechanism game ensures that no lower

type would every want to deviate to a (x, t, y) in the support of the type θn distribution.

Theorem 2. In both the general-mechanism and deterministic-mechanism games, any

principal-optimal safe outcome is a contracting equilibrium outcome in MCS environ-

ments.

The proof, given in Appendix C.1 and Section OA.9 of the Online Appendix, con-

structs sequences of modified principal-agent games and shows that the payoffs to the

principal types in any limit of equilibrium outcomes in these games satisfy two con-

ditions. The first is that each principal type’s payoff is below their principal-optimal

20While the principal-optimal safe outcomes can differ between the two games because of the relaxed
constraints for safety in the general-mechanism game, they are the same in all of our examples.
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safe payoff. The second is that, for each mechanism, there is a sequential continu-

ation equilibrium after the mechanism is proposed in the true principal-agent game

that gives each principal type a lower payoff than they obtain from the limit of the

equilibrium outcomes. We then show that these two conditions together ensure that

the principal-optimal safe outcome is a contracting equilibrium outcome.

Here we describe the modifications made for the general-mechanism game. (The

modifications, and overall argument, for the deterministic-mechanism game are sim-

ilar.) One modification is that for each θ ∈ Θ and χ ∈ ∆(X × T ), the mechanism

(µχ,θ, {0}) in which the principal commits to the distribution that draws (x, t) ac-

cording to χ and always gives θ as the recommendation to the agent is assumed to

induce the outcome in which the agent accepts the proposal and then plays y∗(θ, x)

after observing any x 6= xo. (For the deterministic-mechanism game, this modification

only applies to mechanisms of the form (δ((x,t),θ), {0}), which commit to some pure

action-transfer pair (x, t).) Effectively, for such mechanisms, the agent’s individual ra-

tionality constraint is discarded and the agent chooses their action under a belief that

the type is certain to be the same as given in the recommendation. Aside from this

modification, the mechanisms and play of the principal and agent are as in the true

principal-agent game. (Thus, the possible sequential continuation equilibria after any

mechanism outside the modified class are the same as in the real game.) The point

of the modification is to prevent pooling between the principal types in equilibrium.

It accomplishes this since, if there were pooling, the highest type involved in pooling

would be strictly better off playing the mechanism that (a) commits to the same dis-

tribution over action-transfer pairs as they are realizing in equilibrium and (b) always

gives their type as the recommendation.21

On its own, this modification could allow equilibrium outcomes that do not satisfy

incentive compatibility or agent individual rationality in the unmodified game. We

21It is possible that the highest type involved in pooling could be indifferent between their equilib-
rium outcome and playing this mechanism. We prevent this by giving a small additional benefit to
each type θ from proposing mechanisms of the form (µχ,θ, {0}).
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avoid these problems by modifying the utility functions of the principal types with costs

to using mechanisms of the form (µχ,θ, {0}). In particular, we make it prohibitively

costly for a type θ principal to propose a (µχ,θ, {0}) mechanism whenever (1) there

is some other principal type who would get a higher payoff from proposing (µχ,θ, {0})

(if the agent were to accept and respond according to y∗(θ, x)) than they do from the

prevailing outcome, or (2) the agent’s total expected utility in the prevailing outcome

conditional on θ is too low. We are careful to ensure that all the modifications together

still ensure that no pooling can occur in equilibrium. These modifications also ensure

that, conditional on any principal type, every equilibrium outcome satisfies the agent’s

individual rationality constraint.

Thus, every principal type gets a lower payoff in any equilibrium than in the

principal-optimal safe outcomes. Moreover, there are sequential continuation equi-

libria in the true principal-agent game following the proposal of any mechanism that

give the principal types even lower payoffs because the principal optimizes in equilib-

rium, and every mechanism has the same sequential continuation equilibria as some

mechanism for which there are no modifications.

Before proceeding, we develop a sufficient condition for contracting equilibria in

MCS environments in the general-mechanism game. For an arbitrary outcome p, let

V (p) denote the expected utility of the agent.

Definition 9. In the general-mechanism game, an outcome p ∈ ∆(Θ × X × Y ) is

incentive compatible if it satisfies the principal incentive compatibility and individual

rationality constraints, and it further satisfies:

1. Agent IC (AIC): P[y ∈ arg maxy′∈Y E[V (θ, x, y′)|(x, y)]] = 1.

2. Agent IR (AIR): V (p) ≥ 0.

These agent incentive compatibility and individual rationality constraints weaken

those in the definition of safe outcomes. AIC ensures that the agent is only asked to

play actions y that are best responses to the conditional distribution of the principal’s

type given the principal’s action and the fact that the agent is supposed to play y.
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AIR says that the agent gets a weakly higher payoff from the outcome than from

their outside option. Both of these are necessary for an outcome to be consistent with

the agent playing optimally, so incentive compatibility is required of any contracting

equilibrium outcome.

Say that an outcome p principal-payoff-dominates the principal-optimal safe

outcome p′ if every principal type obtains a weakly higher payoff from p than p′.22 When

this is the case, incentive compatibility is not only necessary for p to be a contracting

equilibrium outcome but also sufficient.

Proposition 3. In the general-mechanism game in an MCS environment, an out-

come that principal-payoff-dominates the principal-optimal safe outcome is a contract-

ing equilibrium outcome if and only if it is incentive compatible.

Intuitively, if the principal types would be (weakly) deterred from proposing a

given mechanism when they are receiving their principal-optimal safe payoff, then they

would also be deterred should they receive a higher payoff. Moreover, due to the

Inscrutability Principle, it is easy to construct a single mechanism and subsequent

optimal play that results in any given incentive compatible outcome. These two facts

enable us to construct the desired contracting equilibrium. The formal proof is given

in Appendix C.2.

The boundary of the set of incentive compatible payoffs that principal-payoff-

dominate the principal-optimal safe outcome can be found using familiar design tech-

niques from (uninformed) principal-agent problems. Since, with general mechanisms,

the set of incentive compatible payoffs is convex, the full set of contracting equilibrium

payoffs that principal-payoff-dominate the principal-optimal safe payoffs then emerges

as the convex hull of this boundary.

22Formally, p ∈ ∆(Θ×X × Y ) principal-payoff-dominates p′ ∈ ∆(Θ×X × Y ) if Ep[U(θ, x, y)|θ] ≥
Ep′ [U(θ, x, y)|θ] for all θ ∈ Θ.
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6 Payoff-Plausibility in MCS Environments

We now apply payoff-plausibility to refine the set of contracting equilibria in gen-

eral MCS environments. We show that the principal-optimal safe outcome provides

a payoff benchmark that every payoff-plausible contracting equilibrium must meet,

and we show that payoff-plausibility often eliminates the ex-ante mechanism design

benchmark. We also discuss how, with flexible contracts, payoff-plausibility can per-

mit outcomes with higher principal payoffs than the principal-optimal safe outcome,

while payoff-plausibility typically selects the least-cost separating equilibria when only

flexible contracts can be proposed. However, in a special subclass of MCS environ-

ments, payoff-plausibility selects precisely the principal-optimal safe outcome when

only deterministic flexible contracts can be proposed.

6.1 The Principal-Optimal Safe Benchmark

Section 5.3 showed that, in MCS environments, principal-optimal safe outcomes are al-

ways contracting equilibrium outcomes. They are additionally always payoff-plausible,

and they provide payoff benchmarks that every payoff-plausible equilibrium must meet.

Theorem 3. Suppose the environment is MCS. In both the general-mechanism and

deterministic-mechanism games:

1. Every payoff-plausible equilibrium principal-payoff-dominates the principal-optimal

safe outcomes.

2. The principal-optimal safe outcomes are payoff-plausible.

Theorem 3 follows from combining the characterizations of the principal-optimal safe

outcomes in Proposition 2 and the requirements of payoff-plausibility. In particular,

the proof of Theorem 3.1 shows that, for any equilibrium that does not principal-payoff-

dominate the principal-optimal safe outcome, there must be a lowest principal type θ

whose expected utility violates payoff plausibility. Theorem 3.2 is an immediate conse-

quence of the observation that, in the principal-optimal safe outcomes, each principal
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type’s payoff precisely equals their plausibility threshold.

6.2 Ruling Out the Ex-Ante Mechanism Design Benchmark

Here we generalize the finding from the firm and employee example that payoff-plausibility

eliminates the ex-ante mechanism design benchmark. In general environments, the

ex-ante mechanism design benchmarks are the outcomes that maximize the

principal’s ex-ante expected utility subject to incentive compatibility. Recall that in

the firm-employee example, the ex-ante mechanism design benchmark involves the

same profit shares and employee efforts as in the complete-information benchmark,

but has different transfers.23 In many other environments, the ex-ante mechanism de-

sign benchmarks also use the same actions but different expected transfers than the

complete-information benchmark. Moreover, when this is the case and each type gains

more from slight perturbations of their complete-information benchmark action than

any lower type, payoff-plausibility rules out the ex-ante mechanism design benchmark.

Proposition 4. For each θ ∈ Θ, let xCIθ ∈ X be the principal action in the complete-

information benchmark when the principal’s type is known to be θ. Suppose the environ-

ment is MCS and that the ex-ante mechanism design benchmarks have the same actions

as the complete-information benchmark but different expected transfers for at least one

principal type. If, for each θ ∈ Θ, there is a sequence {xi} converging to xCIθ such that

u(θ, xi, y
∗(θ, xi))−u(θ, xCIθ , y∗(θ, xCIθ )) > u(θ′, xi, y

∗(θ, xi))−u(θ′, xCIθ , y∗(θ, xCIθ )) for all

θ′ < θ and i, then the ex-ante mechanism design benchmarks are not payoff-plausible.

Since the agent’s expected utility in an ex-ante mechanism design benchmark must

exactly equal 0, and the transfers are different than in the complete-information bench-

mark, which also gives the agent expected utility 0, some type θ must give the agent a

strictly positive expected utility. By the inequality on payoff differences, we can find

23As with the firm-employee example, in general environments, the complete-information bench-
mark are the outcomes that could occur if the agent were to always learn the principal’s type before
contracting.
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a slight perturbation of the action-transfer pair played by θ such that, when the agent

responds with the belief that the type is θ, (1) the type θ principal would be strictly

better off than in the ex-ante mechanism design benchmark, (2) all lower types would

be strictly worse off, and (3) the agent would attain a positive utility. These three con-

ditions mean that the payoff of the type θ does not meet their plausibility threshold.

The formal proof is given in Section OA.4 of the Online Appendix.

Not only are the conditions of Proposition 4 satisfied in the firm-employee exam-

ple, but they are satisfied more generally in environments that feature profit-sharing

between the principal to the agent. In particular, suppose the principal’s action

space is of the form X × [0, 1] × T . Suppose further that the utilities are defined

by u(θ, x, s, y) = (1− s)π(θ, x, y)− κ(x) and v(θ, x, s, y) = sπ(θ, x, y)− c(y), where (1)

π(θ, x, y)−κ(x)− c(y) is strictly concave in (x, y), (2) π(θ, x, y) is strictly increasing in

θ for all x ∈ X and y > y, and (3) π(θ, x, y) and c(y) are differentiable in y and satisfy

∂π
∂y

(θ, x, y) > c′(y) as well as ∂π
∂y

(θ, x, y) > 0 for all y ∈ Y . Then the ex-ante mechanism

design benchmark will maximize the surplus conditional on each type, which requires

setting a profit-share of s = 1. Principal incentive compatibility then requires that all

the principal types obtain the same payoff, which necessarily involves different transfers

than in the complete-information benchmarks, since these would give higher principal

types strictly higher payoffs. Moreover, the payoff difference inequalities are satisfied

since π(θ, x, y) is increasing in the principal’s type, and payoff-plausibility intuitively

precludes the ex-ante mechanism design benchmark since some type would be better

off slightly decreasing the profit share below 1 while lower types would be worse off

mimicking them.

However, environments where one of the principal’s actions is the choice of a profit-

share level are by no means the only ones in which Proposition 4 applies. The following

is a modified example of the firm and employee in which the profit share is fixed. The

firm instead has a costly investment action that affects the profitability of the task

along with the firm’s type and the employee’s effort. (This example belongs to a class

of quasi-strict and doubly supermodular environments, that always satisfy the difference
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in payoffs inequality in the statement of Proposition 4. Quasi-strict is defined in Section

6.3, while doubly supermodular is defined in Section 6.4.)

Example with Firm Investment and Restricted Profit Sharing. As before, the firm has

private information θ ∈ {2, 4} about the profitability or quality of a task for which they

seek to hire an employee, a hired employee will choose an effort level e ∈ R+ that affects

the probability of the task being successful, and the firm will pay a transfer t to the

agent. However, unlike before, the profit share is fixed at s = 1/2 and the firm makes a

costly investment i ∈ R+ that increases the productivity of the employee’s effort. The

utility functions of the firm and employee are U(θ, i, s, t, e) = θ ln(1 + i)e/2− i2/2− t

and V (θ, i, s, t, e) = θ ln(1 + i)e/2− e2/2 + t, respectively. �

6.3 Flexible Versus Explicit Contracts

We show here that the implications of payoff-plausibility are very different with flexible

contracts than with explicit ones: With flexible contracts, payoff-plausibility does not

typically require separation between principal types, while when only explicit contracts

can be proposed, payoff-plausibility selects the least-cost separating outcomes under

broad conditions.

For an example where payoff-plausibility allows pooling under flexible contracts,

consider again the firm and employee of Section 3, except now suppose that Θ =

{1, 2, 4} and λ(1) = λ(2) = λ(4) = 1/3. Here there is an additional low type θ = 1,

and all three types are equally likely. One payoff-plausible pooling outcome is for

the low type and medium type to pool and give all profit residuals to the employee

(s(1) = s(2) = 1) along with the same base transfer of t(1) = t(2) = −2.05. The

corresponding level of effort exerted by the employee is e = 3/2. The high type

separates by giving half of the profit to the employee (s(4) = 1/2) along with a base

transfer of t(4) = −.05; the corresponding level of effort exerted by the employee is

e = 2. This outcome, which gives each principal type a strictly higher payoff than the

principal-optimal safe outcome, is payoff-plausible because both the low and medium
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types get at least their first-best payoff, while the high type’s payoff precisely equals

their plausibility threshold.

In contrast, if only explicit contracts can be proposed, payoff-plausibility selects the

least-cost separating outcome.24 Moreover, this selection holds in a broad set of MCS

environments.

Definition 10. An MCS environment is quasi-strict at x ∈ X if

1. Strict monotonicity: u(θ, x, y∗(λ̃, x)) and v(θ, x, y∗(λ̃, x)) are strictly increasing

in θ for all λ̃ ∈ ∆(Θ).

2. Strict supermodularity:

(a) y∗(λ̃, x) is strictly increasing in λ̃ according to the FOSD partial ordering of

∆(Θ).

(b) For all θ, θ′ ∈ Θ and y, y′ ∈ Y such that θ > θ′ and y > y′, u(θ, x, y) −

u(θ, x, y′) > u(θ′, x, y)− u(θ′, x, y′).

An MCS environment is quasi-strict if it is quasi-strict at every x 6= xo.

Quasi-strictness strengthens some of the MCS conditions to hold strictly.

Definition 11. An MCS environment has definite gains if the first-best payoff of

type θ1 under complete information is strictly positive.25

Definite gains means that the lowest principal type is assured a strictly positive payoff

in the complete information environment, which also ensures that each principal type

must obtain a strictly positive payoff in any contracting equilibrium.

Proposition 5. In quasi-strict MCS environments with definite gains, payoff-plausibility

selects the least-cost separating outcomes when contracts must be explicit.

Payoff-plausibility precludes pooling in quasi-strict MCS environments, because the

highest type θ would gain strictly more than the lower types from being recognized as θ,

24The criterion for payoff-plausibility when only explicit contracts can be proposed is the same
criterion as in the deterministic-mechanisms game.

25Formally, U(θ1) > 0 where U(θ1) = max(x,t) u(θ1, x, y
∗(θ1, x))− t s.t. v(θ1, x, y

∗(θ1, x))+g(t) ≥ 0.
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and the agent’s expected utility conditional on the highest pooling type must be weakly

positive.26 Moreover, when only explicit contracts can be proposed, payoff-plausibility

requires that every principal type obtain at least their least-cost separating payoff, just

as they must obtain at least their principal-optimal safe payoff when flexible contracts

can be proposed.27

6.4 Doubly Supermodular Environments

With deterministic flexible contracts, payoff-plausibility does select the principal-optimal

safe outcomes in a class of MCS environments where there are complementarities be-

tween the principal’s action and the principal’s type and agent’s action.28 In these

environments, X = (X1×X2× ...×XK)∪ {xo}, and that X1 = [x1, x1] ⊂ R. To avoid

boundary issues, we assume that maxy∈Y u(θ, x1, y)+ t < 0 for all θ ∈ Θ, which ensures

that the highest value of x1 is prohibitively costly.

Definition 12. An environment with transfers is doubly supermodular if it is MCS

and additionally satisfies:

1. y∗(λ̃, x1, x−1) is weakly increasing in x1 for all λ̃ ∈ ∆(Θ) and x−1 ∈ X−1.

2. For all θ, θ′ ∈ Θ, x1, x
′
1 ∈ X1, x−1 ∈ X−1, and y ∈ Y such that θ > θ′ and

x1 > x′1, u(θ, x1, x−1, y) − u(θ, x′1, x−1, y) ≥ u(θ′, x1, x−1, y) − u(θ′, x′1, x−1, y),

with the inequality holding strictly when u(θ, x′1, x−1, y) > u(θ′, x′1, x−1, y).

The first condition says the agent’s best response is weakly increasing in the x1

component of the principal’s action. The second condition requires that the difference

in principal utility from a higher x1, holding fixed the remaining components of the

principal’s action as well as the agent’s action, is higher for a higher principal type,

26As seen in the earlier three-type firm and employee example, it can be that, with flexible contracts,
the agent’s expected utility conditional on each pooling type is strictly negative.

27Quasi-strict MCS environments do not contain the firm-employee example, because the strict
supermodularity conditions fail at s = 0, and the strict monotonicity condition and second strict
supermodularity condition fail at s = 1. Section OA.10 states and proves a more general version of
Proposition 5 that does cover the example. Intuitively, neither the issues at s = 0 nor s = 1 prevent
the conclusion of Proposition 5, because quasi-strictness holds at arbitrarily close values of s.

28The result we develop does not hold with general flexible contracts.
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and strictly so at points where when the higher principal type gets a strictly higher

utility than the lower type.

These requirements are satisfied in many economic applications, including the in-

formed firm and employee example with firm investment from Section 6.2. (Addition-

ally, while profit sharing was restricted in the original presentation of that example,

the example would continue to be doubly supermodular if unrestricted profit sharing

were allowed.) The conditions of Definition 12 can be readily verified when taking i to

be the first component of the firm’s action.

Proposition 6. In an environment with definite gains that is doubly supermodular

and quasi-strict, in the deterministic-mechanism game, the payoff-plausible contracting

equilibrium outcomes are the principal-optimal safe outcomes.

The proof, which is in Section OA.5 of the Online Appendix, shows that every

payoff-plausible contracting equilibrium outcome is always-accepting. Intuitively, for

any contracting equilibrium outcome that is not always-accepting, there is a mecha-

nism that is accepted with some probability α ∈ (0, 1), and an (x, t) allowed by the

mechanism such that some type θ is willing to propose the mechanism and play (x, t)

and the agent gets a conditionally positive expected utility when this occurs. Without

loss, we can take θ to be the highest such type. Then θ could propose an action x′

with a slightly increased first component relative to x, and adjust their transfer so

that if the agent accepts and plays y∗(θ, x′), the agent obtains a strictly higher payoff

than 0, while θ is strictly better off, and every lower type is strictly worse off than in

equilibrium. But this violates payoff-plausibility. The proof then uses a similar argu-

ment to show that no payoff-plausible contracting equilibrium has a principal type θ

playing an action x that gives the agent an expected utility strictly above 0 when the

agent plays y∗(θ, x). It follows that the expected utility of the agent conditional on any

principal type must be weakly less than 0. Since the agent’s unconditional expected

utility must be no less than 0, the expected utility of the agent conditional on any

principal type must exactly equal 0. These facts together imply that the lowest type
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involved in pooling would have to give the agent a strictly negative expected utility,

which we have established is not possible, so it follows that there can be no pooling

of types. Thus, every payoff-plausible outcome must be safe. Since, by Theorem 3.1,

every payoff-plausible outcome principal-payoff-dominates the principal-optimal safe

outcome, it follows that every payoff-plausible outcome must be a principal-optimal

safe outcome.

As previously noted, the firm and employee example is not quasi-strict, so Propo-

sition 6 does not apply. In Section OA.5, we state and prove a stronger version of the

proposition that covers the doubly supermodular firm and employee example.

7 Effects of Moral Hazard

We now discuss general differences between informed principal environments with and

those without moral hazard. A key difference between the sets of contracting equilibria

is that, without moral hazard, all contracting equilibria must principal-payoff-dominate

the RSW allocations/principal-optimal safe outcomes, whereas there can be contracting

equilibria that do not principal-payoff-dominate the principal-optimal safe outcomes

when moral hazard is present. Another difference is that, when payoff-plausibility is

applied, typically the RSW allocations are selected in the absence of moral hazard.

In contrast, when moral hazard is present, outcomes that are more efficient than the

principal-optimal safe outcomes and involve pooling can survive payoff-plausibility.

Also, while there are always safe equilibria in environments without moral hazard, this

is not the case in all environments with moral hazard outside of the MCS class.

7.1 Effects on the Set of Contracting Equilibria

Maskin and Tirole [1992] showed that, in the common values setting, contracting equi-

librium outcomes must principal-payoff-dominate the RSW allocations whenever there

is a sequence of strictly safe outcomes that converges to an RSW allocation, a condi-
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tion that always holds in environments with transfers.29 Additionally, in the private

values setting studied by Maskin and Tirole [1990], every contracting equilibrium must

give each principal type a weakly higher payoff than they could secure when their

information is publicly known, which is the payoff-benchmark corresponding to the

principal-optimal safe outcomes in that setting. However, with moral hazard, there

can be contracting equilibria where some principal types get less than their principal-

optimal safe payoff, as seen in the example in Section 3.3.

The reason why every contracting equilibrium principal-payoff-dominates the principal-

optimal safe outcome when there is no moral hazard is that the principal can always

propose a direct mechanism that induces a strictly safe outcome. Because the agent

does not act, each principal type strictly prefers to report their type truthfully if the

mechanism is accepted. Consequently, the agent must accept the proposal of any such

mechanism, so each principal type can obtain a payoff no less than their principal-

optimal safe payoff in any contracting equilibrium.

The Maskin and Tirole [1992] result does not extend to settings with agent moral

hazard, because the agent’s beliefs about the principal’s type can influence their play

should they accept a contract. In the context of the firm-worker example, it is possible

that the employee believes that the firm type is low after the proposal of any off-

path mechanism. If so, then when a strictly safe direct mechanism is proposed the

employee responds as if the firm is the low type, which deters the high type firm

from proposing it. If the firm could directly control the effort of the employee so

that there were no moral hazard, then the employee beliefs would only be relevant

for the decision of whether to accept a given contract, and every strictly safe direct

mechanism would necessarily be accepted. However, in MCS environments, payoff-

plausibility restores the qualitative prediction that equilibria principal-payoff-dominate

29Maskin and Tirole [1992] only analyzed general-mechanism proposal games. Formally, when
general mechanisms can be proposed in a common values setting, outcome p ∈ ∆(Θ×X) is strictly
safe if the principal incentive compatibility condition is strengthened to U(θ, p) > Ep[U(θ, x)|θ′] for
all θ, θ′ ∈ Θ and the agent individual rationality constraint is strengthened to V (θ, p) > 0 for all
θ ∈ Θ. A similar condition for strictly safe outcomes applies when only deterministic mechanism can
be proposed.
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the principal-optimal safe outcomes.

7.2 Effects on the Set of Payoff-Plausible Equilibria

We saw earlier in Section 6.3 that payoff-plausibility can allow outcomes that give the

principal types strictly higher payoffs than the principal-optimal safe outcomes. In

contrast, Maskin and Tirole [1992] showed that in a class of environments without

moral hazard satisfying a “sorting condition,” the Intuitive Criterion selects precisely

the RSW allocations. (Payoff-plausibility makes precisely the same prediction in these

environments.) Moreover, unlike the RSW allocations, some of the payoff-plausible

outcomes with moral hazard do involve pooling, including the outcome in the example

of Section 6.3.

7.3 Effects on the Existence of Safe Equilibria

Outside of MCS environments, safe equilibria do not necessarily exist when moral

hazard is present. In contrast, safe equilibria always exist without moral hazard.

Proposition 7. In both the general-mechanism and deterministic-mechanism games:

1. Without moral hazard, the principal-optimal safe outcomes are always contracting

equilibrium outcomes.

2. With moral hazard, there may be no safe contracting equilibrium outcomes.

Maskin and Tirole [1992] originally proved Proposition 7.1 under two additional

assumptions: (1) that the principal-optimal safe outcome is “interim efficient” for some

full-support probability distribution over the principal’s type, and (2) that the principal

and agent have access to a public randomization device, ensuring the convexity of the

set of sequential continuation equilibria following any mechanism proposal.30

30Section OA.11 gives a proof of Proposition 7.1 that relaxes these assumptions and allows for
mechanisms with agent message spaces, as in Maskin and Tirole [1992]. DeMarzo and Frankel [2020]
proved an analog of the Maskin and Tirole [1992] result for a dynamic version of correlated equilibrium.
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The following example demonstrates Proposition 7.2. There the example, the

principal-optimal safe outcome is not a contracting equilibrium outcome. Since the

principal-optimal safe outcome is a contracting equilibrium outcome whenever any

safe outcome is, it follows that there are no safe contracting equilibrium outcomes in

the example.31

Example 1. Suppose that Θ = {θ1, θ2}, X = {x1, x2}, Y = {y1, y2}, and that U(θ, x, y)

and V (θ, x, y) are as shown below. (The first number in each pair is the principal’s

payoff, while the second is the agent’s.)

θ1 y1 y2

x1 4,−1 −1, 2

x2 1, 1 1, 1

θ2 y1 y2

x1 −1, 2 4,−1

x2 1, 1 1, 1

In the principal-optimal safe outcome, both principal types play x2 and the agent

accepts the corresponding mechanism, resulting in a payoff of 1 to all parties. However,

there is no equilibrium with this outcome, since at least one type of the principal would

be strictly better off by instead proposing a mechanism that commits to x1. To see this,

note that the agent’s expected utility from accepting such a mechanism, regardless of

the agent’s belief over the principal’s type, is no less than 1, so the agent would accept

such a mechanism. Moreover, the sum of the expected utilities of the principal types

equals 3 for all agent responses to x1, so at least one of the principal types must obtain

a strictly higher expected utility than 1. �

8 Foundations for Payoff-Plausible Equilibrium

Payoff-plausibility is not an ad hoc requirement imposed without justification; rather,

it precisely captures the predictions made by two communication-based signaling re-

finements when they are adapted to MCS informed principal environments. Such

31However, in Section OA.12, we show that, in any environment, there are always contracting
equilibria that principal-payoff-dominate the principal-optimal safe outcomes.
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refinements are natural here since communication is prevalent in many principal-agent

settings, as with a firm and employee, and can play an important role in determining

the resulting outcomes.32 Here we describe the two refinements, along with their moti-

vations and foundations, and discuss why they are characterized by payoff-plausibility

in MCS environments.

Robust Neologism Proofness: Robust neologism proofness (RNP) was developed

in Clark [2021] for traditional signaling games. Loosely, RNP is a refinement of con-

tracting equilibrium that that has a similar motivation to the “informal speech” moti-

vation of the Intuitive Criterion (Cho and Kreps [1987]). However, it allows the sender

(principal) to convince the agent they belong to a specific subset of types, rather than

just convincing the agent that they are a type for whom a given deviation is not equi-

librium dominated. We give the formal definition of RNP, as adapted for our informed

principal setting, in Section OA.13.

Strongly Justified Communication Equilibrium: Clark and Fudenberg [2021]

developed SJCE as a refinement of Nash equilibrium for signaling games with cheap-

talk communication and gave it a learning foundation.33 The learning foundation as-

sumes the typical sender has much more playing experience than the typical receiver.

Identifying senders with principals and receivers with agents, this assumption seems

particularly fitting for many principal-agent settings in which the principals are insti-

tutions such as firms and agents are individuals or other small units. In Section OA.13

we explain how to adapt SJCE to our informed principal setting.

Loosely, the focus of both RNP and SJCE is on analyzing various sets of types that

could gain by identifying themselves at an equilibrium p. In the general-mechanism

game, consider a distribution over actions χ along with the mechanism (µχ, {0}) com-

32Myerson [1983] noted that communication is likely to be important in informed principal problems.
33SJCE is a refinement of Nash equilibrium rather than contracting equilibrium because Nash

equilibrium is a necessary condition in the learning foundation of Clark and Fudenberg [2021], but
sequential equilibrium type solution concepts are not.
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mitting to χ. There is a “credible robust neologism” corresponding to (µχ, {0}) and

the set of types Θ̃ if, when the agent responds to the proposal of (µχ, {0}) under a

belief that the type is in Θ̃, proposing (µχ, {0}) would give every type in Θ̃ a strictly

higher payoff than in p and every type outside Θ̃ a strictly lower payoff. A contracting

equilibrium is RNP precisely when it has no credible robust neologisms. For SJCE,

the set of “strongly justified types” for (µχ, {0}) is essentially the minimal set of types

ΘSJ(χ, p) that, when a mixture over agent best responses to (µχ, {0}) and beliefs that

the type is in ΘSJ(χ, p) would make a type weakly prefer proposing (µχ, {0}) over their

equilibrium outcome, some type in ΘSJ(χ, p) would strictly prefer to propose (µχ, {0}).

SJCE requires that there is some mixture over agent best responses to (µχ, {0}) and

beliefs concentrating in ΘSJ(χ, p) which deters every principal type from proposing

(µχ, {0}). Analogous constructions hold for the deterministic-mechanism game, except

that the mechanisms of interest are those that commit to pure principal actions, rather

than possibly non-degenerate distributions over actions.

In OA.14, we show that payoff-plausibility characterizes the predictions of RNP

and SJCE in MCS environments. That is, the payoff-plausible outcomes are precisely

those that survive RNP and also precisely those that survive SJCE. Here we briefly

describe how this proceeds for RNP in the general-mechanism game; the procedures for

the deterministic-mechanism game and for SJCE are similar. Intuitively, if an outcome

is not payoff-plausible, there is some type θ whose payoff falls below their plausibility

threshold. Then the distribution χ that attains this type’s plausibility threshold either

gives a credible robust neologism corresponding to θ, or there is some higher type θ′

who would also prefer proposing χ to their equilibrium payoff when the agent responds

under the belief that the type is θ. In the latter case, using the monotonicity and

supermodularity conditions of MCS, we can modify χ by increasing the transfer levels

so that θ′ would strictly prefer to propose the resulting contract (assuming the agent

responds under a belief that the type is θ′) and all lower types strictly prefer their

equilibrium payoffs. This either results in a credible robust neologism corresponding

to θ′, or there is some yet higher type θ′′ that would prefer to propose this modified χ
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if the agent responds under the belief the type is θ′. In the latter case, we carry out

the same procedure, which must eventually terminate in a credible robust neologism.

Arguing that payoff-plausible outcomes are RNP proceeds as follows. If there is

a credible robust neologism corresponding to χ and Θ̃, then the lowest type θ in Θ̃

must get a strictly higher payoff than in equilibrium by proposing χ when the agent

responds under a belief concentrating on θ. Moreover, this agent response would lead

all types below θ to get a strictly lower payoff by proposing χ. But this implies that

the payoff of θ does not meet their plausibility threshold.

9 Conclusion

We developed a general framework for studying informed principals in environments

with agent moral hazard, and we established the existence of contracting equilibria.

In MCS environments, the principal-optimal safe outcomes are always payoff-plausible

contracting equilibrium outcomes and they provide a lower bound for the principal

payoffs in any other payoff-plausible outcome. Furthermore, payoff-plausibility often

rules out the ex-ante mechanism design benchmarks, which underscores that signaling

issues arising from an informed principal’s private information at the time of contract-

ing should not be ignored. In contrast to informed principal environments without

moral hazard, there can be contracting equilibria that give the principal types lower

payoffs than the principal-optimal safe outcomes, and payoff-plausibility can allow more

efficient outcomes with pooling.

We conclude with some extensions and possible directions for future research. In

some settings, the agent may not be aware of the principal’s action until after taking

their own action. This can be captured by having the agent observe only the rec-

ommendation r before choosing y. Many of the results carry through to this setting;

however, the upper frontier of payoffs typically shifts upward due to the principal’s

greater concealment ability. This is true in particular with the informed firm and em-

ployee. For example, the highest equilibrium payoff that the type 4 firm can attain
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when the payoff of the type 2 firm is 2 shifts from 4 to 17/4.

Incorporating agent adverse selection alongside agent moral hazard seems desirable

for some informed principal settings. Another avenue would be to consider principal

information that is verifiable, potentially at some cost. This would lead to issues

of informed information design as well as mechanism design, and would relate to a

growing literature on information design by an informed designer. (See e.g. Perez-

Richet [2014], Hedlund [2017], Chen and Zhang [2020], and Koessler and Skreta [2021].)

An interesting possibility would be to consider situations where information can be

verified only after a principal-agent relationship has been formed.
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A Definition of Contracting Equilibrium

A.1 Sequential Continuation Equilibria

A first step is to define a sequential continuation equilibrium in the subgame in which an

arbitrary mechanism is accepted. Given mechanism (µ,MP ), let ΠP ≡ ∆(MP ) be the

space of probability distributions over the principal’s message. An assessment is a tuple

(λ̃, πθ1 , ..., πθN ,Λ, βA) of (1) a probability distribution over the principal type λ̃ ∈ ∆(Θ),

(2) a message strategy profile (πθ1 , ..., πθN ) ∈ (ΠP )Θ, and (3) a belief updating rule Λ :

(∪mP∈MP
supp(µ(mP )))→ ∆(Θ) and an agent action rule βA : ∪mP∈MP

supp(µ(mP ))→

∆(Y ), which are measurable mappings taking principal action and recommendation

pairs that are possible under (µ,MP ) into ∆(Θ) and ∆(Y ), respectively.

We restrict attention to consistent assessments. Consistency requires that there be

a sequence of full-support beliefs and profiles of full-support message strategies such

that (1) the full-support beliefs converge to the belief in the assessment, (2) the profiles
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of full-support message strategies converge to the profile of message strategies in the

assessment, and (3) the agent’s belief update rule in the assessment equals the limit

of the agent’s beliefs obtained applying Bayes’ rule along the sequence of full-support

beliefs and profiles of full-support message strategies.

Given mechanism (µ,MP ), let ΠP,+ ≡ ∆+(MP ) be the space of full-support prob-

ability distributions over the principal message. Given a belief over the principal type

λ̃ ∈ ∆(Θ) and a profile of full-support principal message strategies (πθ1 , ..., πθN ) ∈

(ΠP,+)Θ, let Λ̂(λ̃, πθ1 , ..., πθN )[(x, r)] ∈ ∆(Θ) be the agent’s posterior after observing

(x, r) ∈ ∪mP∈MP
supp(µ(mP )).

Definition 13. An assessment (λ̃, πθ1 , ..., πθN ,Λ, βA) after mechanism (µ,MP ) is ac-

cepted is consistent if there is a sequence {(λ̃j, πj,θ1 , ..., πj,θN )}j such that

lim
j→∞

λ̃j = λ̃, lim
j→∞

πj,θ = πθ for all θ ∈ Θ and

lim
j→∞

Λ̂(λ̃j, πj,θ1 , ..., πj,θN )(x, r) = Λ(x, r) ∀(x, r) ∈ ∪mP∈MP
supp(µ(mP )).

Definition 14. A sequential continuation equilibrium after mechanism (µ,MP )

is accepted is a consistent assessment (λ̃, πθ1 , ..., πθN ,Λ, βA) such that

1. For every θ ∈ Θ,

Eπθ [Eµ(mP )[EβA(x,r)[U(θ, x, y)]]]

= max
mP∈MP

Eµ(mP )[EβA(x,r)[U(θ, x, y)]].

2. For every (x, r) ∈ ∪mP∈MP
supp(µ(mP )),

βA(x, r) ∈ ∆(arg max
y∈Y

EΛ(x,r)[V (θ, x, y)])

for all (x, r) ∈ ∪mP∈MP
supp(µ(mP )).

Condition 1 of Definition 14 means that, for every θ ∈ Θ, πθ puts support only on
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those messages which are optimal for the type θ principal given the play of the agent

βA. Condition 2 requires that, for every (x, r) ∈ ∪mP∈MP
supp(µ(mP )), βA(x, r) puts

support only on those agent actions which are optimal for the agent given x and belief

about the principal’s type Λ(x, r).

Suppose we fix a sequential continuation equilibrium after a given mechanism has

been accepted, and analyze whether the agent should choose to accept or reject the

principal’s proposal given the prescribed continuation play. Combining this sequential

continuation equilibrium with an optimal agent acceptance/rejection choice results in

a sequential continuation equilibrium in the earlier subgame where a mechanism has

been proposed but not yet accepted or rejected.

Definition 15. A sequential continuation equilibrium after mechanism (µ,MP )

is proposed consists of a sequential continuation equilibrium after the mechanism is

accepted as well as a (possibly randomized) agent acceptance decision that is optimal

given the prescribed future play and posterior belief about the principal type.

A.2 Definition of Contracting Equilibrium in the General-

Mechanism Game

We now define contracting equilibrium for the whole principal-agent game. By the

Inscrutability Principle (Myerson [1983]), it is without loss of generality to restrict

attention to equilibria in which, on the path of play, all principal types propose the

same direct and incentive compatible mechanism. (Of course, there is no restriction

on the mechanisms that the principal can propose off the path of play.) A direct

mechanism (µ,Θ) is a special kind of mechanism in which the principal’s message

space coincides with their type space, i.e. MP = Θ. Additionally, every possible prin-

cipal recommendation must contain an explicit action recommendation to the agent.

A direct mechanism is incentive compatible if the induced “truthful and obedient”

outcome is an incentive compatible outcome in the sense of Definition 9. The truthful

and obedient outcome of a direct mechanism is the outcome that results when (1)
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the agent accepts the mechanism proposal, (2) each principal type plays the message

corresponding to their type, and (3) the agent follows every on-path action recommen-

dation.

Definition 16. A contracting equilibrium in the general-mechanism game consists

of (1) an incentive compatible direct mechanism, which is proposed by every principal

type, and (2) a sequential continuation equilibrium for when any mechanism is proposed

that results in a weakly lower expected utility to each principal type than they obtain

from truthful and obedient outcome from the mechanism they are supposed to propose.

A.3 Definition of Contracting Equilibrium in the Deterministic-

Mechanism Game

As with the general-mechanism game, we consider sequential continuation equilibria

in both the subgames in which a mechanism is proposed and the subgames in which

a a mechanism is accepted. The original general-mechanism sequential equilibrium

definitions carry over to the restricted setting. When analyzing contracting equilibria in

the deterministic-mechanism game, we shall use τ to denote a rule mapping mechanisms

into sequential continuation equilibria, so that

τ(µ,MP ) = (λ̃(µ,MP ), πθ1(µ,MP ), ..., πθN (µ,MP ), α(µ,MP ),Λ(µ,MP ), βA(µ,MP ))

is the sequential continuation equilibrium following the proposal of (µ,MP ). Addition-

ally, we will let U(θ, τ(µ,MP )) denote the expected payoff to the type θ principal from

proposing mechanism (µ,MP ) when subsequent play is governed by τ(µ,MP ).

Unlike with the general-mechanism game, we cannot make use of the Inscrutability

Principle to justify a restriction to equilibria where all principal types propose the same

direct and incentive compatible mechanism. Instead, here we must explicitly consider

the possibility that the type θ principal proposes a non-degenerate distribution over
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mechanisms m
θ
∈ ∆(M). The set of such probability distributions that we consider are

the Borel distributions corresponding to the topology induced by the following metric

over deterministic mechanisms. To define this metric, denote the metrics over X and

R by dX : X2 → R+ and dR : R2 → R+, respectively. Let dX×R : (X × R)2 → R+ be

the metric over X × R given by dX×R((x, r), (x′, r′)) = max{dX(x, x′), dR(r, r′)}, and

fix an A > maxx,x′,r,r′ dX×R((x, r), (x′, r′)).

Definition 17. The deterministic mechanism metric dM :M2 → R+ is given by

the following:

dM((µ,MP ), (µ′,M ′
P )) =

maxmP∈MP
dX×R(supp(µ(mP )), supp(µ′(mP ))) if MP = M ′

P

A if MP 6= M ′
P

.

We will require that the mechanism proposal distributions chosen by the princi-

pal types be optimal given the prevailing rule mapping mechanisms into sequential

continuation equilibrium play.

Definition 18. The profile of mechanism proposal distributions {m
θ
}θ∈Θ is optimal

given sequential equilibrium rule τ if m
θ
(arg max(µ,MP ) U(θ, τ(µ,MP ))) = 1 for all θ ∈

Θ.34

Finally, we will require that the agent’s intermediate belief about the principal’s

type at the mechanism proposal stage λ̃ : M → ∆(Θ) comes from a regular condi-

tional distribution derived from their prior λ and the profile of mechanism proposal

distributions {m
θ
}θ∈Θ used by the principal types.

Definition 19. A contracting equilibrium in the deterministic-mechanism game

consists of a profile of mechanism proposal distributions {m
θ
}θ∈Θ and rule governing

sequential continuation equilibria τ such that (1) {m
θ
}θ∈Θ is optimal given τ , and (2)

34Note that this implicitly assumes that arg max(µ,MP ) U(θ, τ(µ,MP )) is measurable. This will be
established in the proof of Theorem 1.
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The component of τ giving the agent’s intermediate belief about the principal’s type at

the mechanism proposal stage λ̃ :M→ ∆(Θ) comes from a regular conditional distri-

bution derived from their prior λ and the profile of mechanism proposal distributions

{m
θ
}θ∈Θ used by the principal types.

B Existence of Contracting Equilibria

B.1 Proof of Theorem 1 for the General-Mechanism Principal-

Agent Game

To prove Theorem 1, we construct a sequence of finite approximations of the action

and recommendation spaces, and show that the limits of the associated contracting

equilibrium outcomes are contracting equilibrium outcomes in the limit environment.

We do so by proving a general upper hemicontinuity result concerning the correspon-

dence mapping the primitives of the principal-agent game to its contracting equilibrium

outcomes.

Before developing our upper hemicontinuity result, we first define convergence of a

sequence of primitives.35 Throughout, we hold the type space Θ fixed, and we assume

that there is some larger metric space that embeds all the principal action spaces

and agent action spaces. We use P to denote a collection of primitives, consisting of

a prior λ, principal action space X, agent action space Y , principal payoff function

U : Θ×X × Y → R, and agent payoff function V : Θ×X × Y → R.

Definition 20. A sequence of primitives {Pj}j∈N converges to P if

1. limj→ µj = µ,

2. limj→∞Xj = X and limj→∞ Yj = Y according to the Hausdorff metric, and

3. For all ε > 0, there exists J and δ > 0 such that |Uj(θ, x′, y′) − U(θ, x, y)| < ε

and |Vj(θ, x′, y′)− V (θ, x, y)| < ε if |x′ − x| < δ, |y′ − y| < δ, and j > J .

35Our convergence notion is related to similar notions in e.g. Milgrom and Weber [1985] and
Fudenberg and Levine [1986].
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Proposition 8. Suppose that {Pj}j∈N is a sequence of primitives that converges to P.

Suppose further that pj ∈ ∆(Θ×Xj × Yj) is a contracting equilibrium outcome for Pj
and limj→∞ pj = p for some p ∈ ∆(Θ ×X × Y ). Then p is a contracting equilibrium

outcome for P.

Aside from its usefulness for the proof of the existence of contracting equilibria, the

upper hemicontinuity established Proposition 8 is a desirable property in its own right.

In particular, it shows that small perturbations in the underlying primitives do not

result in drastically different contracting equilibrium outcomes. This helps justify the

study of principal-agent games with continuum action spaces even if the action spaces

in reality are finite, as long as the action spaces are very fine.

To prove Proposition 8, we first show that the correspondence mapping primitives

into incentive compatible outcomes is upper hemicontinuous.

Lemma 1. Consider a sequence of primitives {Pj}j∈N that converges to the primitives

P, and suppose that pj ∈ ∆(Θ × X × Y ) is an incentive compatible outcome in the

game corresponding to Pj for each j ∈ N. If limj→∞ pj = p, then p is an incentive

compatible outcome in the game corresponding to P.

Proof. Since each pj is incentive compatible, Epj [U(θ, x, y)|θ] ≥ Epj [U(θ, x, y)|θ′] for all

θ and θ′. As limj→∞ pj = p, it follows that limj→∞ Epj [U(θ, x, y)|θ] = Ep[U(θ, x, y)|θ]

and limj→∞ Epj [U(θ, x, y)|θ′] = Ep[U(θ, x, y)|θ′]. Therefore, Ep[U(θ, x, y)|θ] ≥ Ep[U(θ, x, y)|θ′],

so Condition 1 of the definition of incentive compatibility is satisfied. Similar argu-

ments show that Conditions 2 and 3 are satisfied as well.

It remains to show that P[y ∈ arg maxy′∈Y E[V (θ, x, y′)|(x, y)]] = 1. Suppose oth-

erwise that P[y ∈ arg maxy′∈Y E[V (θ, x, y′)|(x, y)]] < 1. Then there are closed sets

X̃ ⊆ X and Ỹ ⊆ Y , as well as an agent action ŷ, such that Ep[1X̃×Ỹ (x, y)V (θ, x, ŷ)] >

Ep[1X̃×Ỹ (x, y)V (θ, x, y)]. For every ε > 0, let X̃<ε = {x ∈ X : d(x, X̃) < ε} and

X̃≤ε = {x ∈ X : d(x, X̃) ≤ ε}, and similarly let Ỹ<ε, Ỹ≤ε denote the corresponding sets

for Y . Additionally, let V = min(θ,x,y)∈Θ×X×Y V (θ, x, y). By continuity, there exists
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some ε̃ > 0 such that

Ep[1X̃<ε̃×Ỹ<ε̃(x, y)(V (θ, x, ŷ)− V )] + Ep[(1− 1X̃≤ε̃×Ỹ≤ε̃(x, y))(V (θ, x, y)− V )]

>Ep[V (θ, x, y)]− V .

As 1X̃<ε̃×Ỹ<ε̃(x, y)(V (θ, x, ŷ)−V ) is a lower semicontinuous function of (x, y), it follows

that lim infj→∞ Epj [1X̃<ε̃×Ỹ<ε̃(x, y)(V (θ, x, ŷ)−V )] ≥ Ep[1X̃<ε̃×Ỹ<ε̃(x, y)(V (θ, x, ŷ)−V )].

Likewise, (1 − 1X̃≤ε̃×Ỹ≤ε̃(x, y))(V (θ, x, y) − V ) is a lower semicontinuous function of

(x, y) ∈ X × Y , so lim infj→∞ Epj [(1 − 1X̃≤ε̃×Ỹ≤ε̃(x, y))(V (θ, x, y) − V )] ≥ Ep[(1 −

1X̃≤ε̃×Ỹ≤ε̃(x, y))(V (θ, x, y)− V )]. Consequently, for sufficiently high j ∈ N,

Epj [1X̃<ε̃×Ỹ<ε̃(x, y)(V (θ, x, ŷ)− V )] + Ep[(1− 1X̃≤ε̃×Ỹ≤ε̃(x, y))(V (θ, x, y)− V )]

>Epj [V (θ, x, y)]− V .

This implies that Epj [1X̃<ε̃×Ỹ<ε̃(x, y)V (θ, x, ŷ)] + Ep[(1 − 1X̃≤ε̃×Ỹ≤ε̃(x, y))V (θ, x, y)] >

Epj [V (θ, x, y)], which contradicts pj being incentive compatible. �

All that remains to be shown is that, for every mechanism, there is a sequential

continuation equilibrium that deters every principal type from proposing the mech-

anism. This is non-trivial because, as illustrated by example in Section OA.6, the

correspondence from mechanisms to sequential continuation equilibria is not in general

upper hemicontinuous. In Section OA.7, we prove the following lemma, which shows

that, for any mechanism in the limit environment, there is a sequence of mechanisms

corresponding to the approximating primitives for which any limit of sequential con-

tinuation equilibrium outcomes is a sequential continuation equilibrium outcome after

the mechanism in the limit environment is proposed. Since each of the mechanisms in

the sequence must have a sequential continuation equilibrium outcome that gives every

principal type a lower payoff than the corresponding contracting equilibrium outcome,

this enables us to show that the final contracting equilibrium outcome condition is

satisfied.
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Lemma 2. Consider a sequence of primitives {Pj}j∈N that converges to the original

primitives P. For every mechanism (µ,MP ) ∈ M, there is a sequence of mechanisms

(µj,MP ) ∈ Mj such that any limit of sequential continuation equilibrium outcomes

after these mechanisms are proposed is a sequential continuation equilibrium outcome

after (µ,MP ) is proposed.

Proof of Proposition 8. Fix a sequence of primitives {Pj}j∈N that converges to the

original primitives P , and let pj ∈ ∆(Θ×X×Y ) be a contracting equilibrium outcome

in the game corresponding to Pj. By restricting attention to a convergent subsequence

if necessary, there is some p ∈ ∆(Θ×X × Y ) such that limj→∞ pj = p. By Lemma 1,

p is incentive compatible.

We now argue that, for every mechanism (µ,MP ) ∈ M, there is a sequential con-

tinuation equilibrium after the mechanism is proposed which gives every principal type

a weakly lower expected utility than p. Since each pj is a contracting equilibrium out-

come, there is a sequential continuation equilibrium after any mechanism is proposed

that gives each principal type a lower payoff than pj. Moreover, by Lemma 2, there is

a sequence of mechanisms {(µj,MP )}j∈N such that any limit of sequential continuation

equilibria after these mechanisms are proposed is a sequential continuation equilibrium

after (µ,MP ) is proposed. Therefore, there is some sequential continuation equilibrium

after (µ,MP ) is proposed that gives each principal type a lower payoff than p. �

Now we establish the existence of contracting equilibria when the action and rec-

ommendation spaces are finite but we do not restrict the space of mechanisms. Since

every action and recommendation space can be approximated to arbitrary accuracy

by a sequence of finite action/recommendation spaces, this existence result combined

with Proposition 8 implies that contracting equilibria exist in general.

Lemma 3. If the principal’s action space X, recommendation space R, and agent

action space are all finite, then a contracting equilibrium exists.

Proof. For a given j ∈ N, consider the set of mechanisms Mj that (1) have no more

than j principal messages and (2) are such that the probability of a given principal
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action-recommendation pair conditional on any message is some integer multiple of

1/j:

Mj =
{

(µ,MP ) ∈M : (1) |MP | ≤ j,

(2) ∀mP ∈MP , x ∈ X, r ∈ R, ∃k ∈ {1, ..., j} s.t. µ(x, r|mP ) =
k

j

}
.

Because both X and R are finite,Mj is well-defined and non-empty for all sufficiently

high j. For the remainder of the proof, we restrict attention to such j.

Consider the modified principal-agent game in which the principal can only propose

a mechanism belonging to Mj. Since Mj is finite, standard arguments show that

this game has a contracting equilibrium. Let pj ∈ ∆(Θ × X × Y ) be an outcome

corresponding to a contracting equilibrium, and suppose (by restricting attention to

a convergent subsequence if necessary) that limj→∞ pj = p. As each pj is incentive

compatible, Lemma 1 ensures that p is incentive compatible.

We now show that, for every mechanism (µ,MP ) ∈ M, there is a sequential

continuation equilibrium after the mechanism is proposed which gives every princi-

pal type a weakly lower expected utility than p. By construction, there is some se-

quence of mechanisms satisfying (µj,Mj,P ) ∈ Mj such that Mj,P = MP for all j, and

limj→∞ µj(x, r|mP ) = µ(x, r|mP ) for all x, r, and mP . For each j, there is a sequential

continuation equilibrium after (µj,Mj,P ,Mj,A) is proposed which gives each principal

type a weakly lower payoff than pj. Let (λ̃j, πj,θ1 , ..., πj,θN , πj,A,Λj, βj,A) be the cor-

responding sequential continuation equilibrium after (µj,Mj,P ,Mj,A) is accepted. By

restricting attention to a convergent subsequence if necessary, there is some consistent

assessment (λ̃, πθ1 , ..., πθN ,Λ, βA) after mechanism (µ,MP ) is accepted that is the limit

of the (λ̃j, πj,θ1 , ..., πj,θN , πj,A,Λj, βj,A). Since X, R, and A are all finite, standard ar-

guments show that (λ̃, πθ1 , ..., πθN ,Λ, βA) is a sequential continuation equilibrium after

mechanism (µ,MP ) is accepted. Moreover, either all principal types get a lower payoff

than p from this sequential continuation equilibrium, or it is optimal for the agent to

reject the proposal of (µ,MP ). In either case, there is a sequential continuation equi-
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librium such that every principal type gets a lower payoff than from p by proposing

(µ,MP ). �

Proof of Theorem 1. Fix a sequence of primitives {Pj}j∈N that converges to the original

primitives P and is such that the principal action space Xj, recommendation space Rj,

and agent action space Yj are all finite for every j ∈ N. For each j, let pj ∈ ∆(Θ×X×Y )

be a contracting equilibrium outcome in the game corresponding to Pj, the existence of

which is guaranteed by Lemma 3. By restricting attention to a convergent subsequence

if necessary, there is some p ∈ ∆(Θ×X×Y ) such that limj→∞ pj = p. By Proposition

8, p is a contracting equilibrium outcome. �

B.2 Proof of Theorem 1 for the Deterministic-Mechanism Principal-

Agent Game

Our general approach will be to take a sequence of finite principal-agent games that

converges in the limit to the true game. We will show that the limits of the equilibrium

outcomes of these games correspond to contracting equilibrium outcomes in the true

principal-agent game.

Let {Xj}j∈N, {Yj}j∈N, {Rj}j∈N be sequences of finite action and recommendation

sets such that limj→∞Xj = X, limj→∞ Yj = Y , and limj→∞Rj = R. For a given

j ∈ N++, consider the set of mechanisms

Mj =
{

(µ,MP ) ∈M : (1) |MP | ≤ j,

(2) ∀mP ∈MP , ∃x ∈ Xj, r ∈ Rj, s.t. µ(x, r|mP ) = 1
}

that (1) have no more than j principal messages and (2) are such that every principal

message results in some principal-action-transfer-recommendation tuple that belongs

to Xj ×Rj.

We now describe the strategy space of the type θ principal in the (j, k) game. Part

of this player’s choice is over which mechanisms to propose. We force θ to propose all
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mechanisms with probability at least 1/k, so the distribution over mechanism proposals

used by θ must belong to

∆j,k,θ(Mj) =
{
m ∈ ∆(Mj) : m[(µ,MP )] ≥ 1

k
∀(µ,MP ) ∈Mj \M0

j,θ

}
.

Moreover, when a given mechanism is accepted, we force θ to tremble and play every

message in the mechanism with probability at least 1/k. Formally, the distribution

over messages used by θ when mechanism (µ,MP ) is accepted must belong to

Πj,k,P (µ,MP ) =
{
πP ∈ ∆(MP ) : πP [mP ] ≥ 1

k
∀mP ∈MP

}
.

A valid strategy for θ in the (j, k) game is any pair (m
θ
,πθ(·)) consisting of a m

θ
∈

∆j,k,θ(Mj) and a rule πθ(·) for how to play when an arbitrary mechanism is accepted

that satisfies πθ(µ,MP ) ∈ Πj,k,P (µ,MP ).

The strategy space of the agent is unaltered from the principal-agent game, aside

from the addition of trembles. For every mechanism (µ,MP ), we require the probability

α that the agent accepts its proposal to be no less than 1/k. Additionally, we require

the agent to tremble in their choices of actions. In particular, for every mechanism

(µ,MP ) and principal action-recommendation pair (x, r), the agent’s choice of action

must be a distribution belonging to

∆k(Yk) =

{
y ∈ ∆(Yk) : y[y] ≥ 1

k|Yk|
∀y ∈ Yk

}
.

A valid strategy for the agent in the (j, k) game is any pair (α(·),β(·)) consisting of (1)

a rule governing the probability of mechanism acceptance, α(·), satisfying α(µ,MP ) ≥

1/k for all (µ,MP ) ∈ Mj and (2) a rule governing the agent’s choice of actions β(·)

satisfying β(µ,MP ) ∈ ∆k(Yk)
Xj×Rj for all (µ,MP ) ∈Mj.

The payoffs of both the principal and agent are exactly as in the true principal-

agent game. Standard arguments show that Nash equilibria exist in the (j, k) game
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and that the play after any mechanism is proposed (combined with the corresponding

distribution over the principal’s type) constitutes a sequential continuation equilib-

rium in the k → ∞ limit. Throughout the remainder of the argument, we will let

pj,k ∈ ∆(Θ×Mj × [0, 1]×Xj × Yk) denote an equilibrium outcome of the (j, k) game.

Additionally, we assume (by restricting attention to convergent subsequences if nec-

essary) that limk→∞ pj,k = pj for some pj ∈ ∆(Θ ×Mj × [0, 1] × Xj × Y ), and that

limj→∞ pj = p for some p ∈ ∆(Θ ×M× [0, 1] × X × Y ). (Recall that the topology

over mechanisms that we use in defining appropriate Borel sets is that induced by the

metric in Definition 17.)

Lemma 4. There is a profile of mechanism proposal distributions {m
θ
}θ∈Θ and a mea-

surable mapping τ ∗ : M → ∆(Θ) × ∆([0, 1] × X × Y )Θ that takes each mechanism

(µ,MP ) ∈ M into a tuple consisting of a distribution over the principal’s type and a

distribution over (α, x, y) ∈ [0, 1] ×X × Y for each principal type that corresponds to

a single sequential continuation equilibrium after (µ,MP ) is proposed such that

1. There is a regular conditional probability distribution obtained from λ and {m
θ
}θ∈Θ

that, for every (µ,MP ) ∈ M, induces the ∆(Θ) component of τ ∗(µ,MP ) as the

belief over the principal’s type following the proposal of (µ,MP ) ∈M,

2. U(θ, τ ∗(µ,MP )) ≤ U(θ, p) for all θ ∈ Θ and (µ,MP ) ∈M, and

3. {m
j,θ
}θ∈Θ combined with τ ∗(µ,MP ) following the proposal of each (µ,MP ) ∈ M

induces the same distribution over (θ, α, x, y) as outcome p.

We handle the proof of Lemma 4, which is given in Section OA.8, in two steps. The

first involves constructing valid on-path play consistent with the same distribution

over (θ, α, x, y) as in p occurring in a contracting equilibrium outcome. (In terms of

the conditions of Lemma 4, this amounts to satisfying Condition 1 and Condition 3 as

well as Condition 2 for all on-path mechanisms (µ,MP ).) The second involves showing

that there is valid off-path play that deters every principal type when they receive the

same payoff as in p. (This corresponds to Condition 2 being satisfied for all off-path

mechanisms.)
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Whereas in the general-mechanism game the main difficulty in showing the exis-

tence of contracting equilibria was identifying sequential continuation equilibria that

deterred the principal types from proposing off-path mechanisms, here the main obsta-

cle is handling the first step. Part of the reason for this is the inability to invoke the

Inscrutability Principle, which arises from the lessened design power of the principal.

Additionally, the space of mechanisms is not compact. These two features compli-

cate the finding of valid distributions over mechanisms that lead to a desired outcome

distribution.

We approach the first step by focusing on the class of binary and obedient mech-

anisms. These are mechanisms with precisely two messages in which the recommen-

dations tied to the messages encode information that gives a direct recommendation

to the agent about which actions to take as well as which beliefs to hold about the

principal’s type when the mechanism is proposed and the probability distribution over

the messages in the mechanism the various principal types use. Such a mechanism

is obedient when the content conveyed by the recommendations exactly captures the

sequential continuation equilibrium played after the mechanism is proposed.

We focus on these mechanisms for two reasons. First, binary and obedient mecha-

nisms suffice to replicate each of the pj. Flexible contracts enable outcomes in which

there are positive probabilities of principal actions for which the agent’s conditional ex-

pected utility is negative because these actions can be incorporated in contracts which

also incorporate principal actions for which the agent’s conditional expected utilities

are positive. The second reason for focusing on binary and obedient mechanisms is that

the space of such mechanisms is compact, and obedience ensures that the sequential

continuation equilibrium following mechanism proposal is a continuous function of the

mechanism. These features aid the demonstration of various convergence properties,

and facilitate the proofs of various facts about sequential continuation equilibria. Ul-

timately, we show that there are mechanism proposal distributions concentrating on

the class of binary and obedient mechanisms that, when combined with obedient play

following the proposal of any mechanism in the support of these distributions, induces
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p as the outcome.

Intuitively, two messages are sufficient because principal actions for which the

agent’s conditional expected utilities are positive can be paired off with principal ac-

tions for which the agent’s conditional expected utilities. By appropriately choosing

the proposal probabilities of these paired-off mechanisms as well as the relative prob-

abilities of each of the two actions being chosen when after mechanism acceptance, we

can ensure that the agent is still willing to accept contracts with actions that give them

negative conditional expected utility.

To handle the second step, we consider the class of revealing mechanisms in which,

for each message, the recommendation received by the agent precisely reveals the mes-

sage chosen by the principal. This class is useful because the correspondence mapping

revealing mechanisms into sequential continuation equilibria following their proposal

is upper hemicontinuous. (This upper hemicontinuity property fails when considering

the full class of mechanisms, as can be seen by example in Section OA.6.) Addition-

ally, there is a canonical way which identifies each mechanism with a unique revealing

mechanism. We ultimately use the upper hemicontinuity property discussed above

to identify certain measurable mappings from revealing mechanisms into sequential

continuation equilibria of interest, and then extend these mappings to the full set of

mechanisms using the canonical mapping discussed above.

Proof of Theorem 1 for the Deterministic-Mechanism Game. Let τ̂ ∗ be a rule govern-

ing sequential continuation equilibria that, for every mechanism in M, results in the

same sequential continuation equilibrium outcome as that given by τ ∗. We will argue

that {m
θ
}θ∈Θ and τ̂ ∗ together constitute a contracting equilibrium. Condition 2 of Defi-

nition 19 follows from Condition 1 of Lemma 4. Moreover, the measurability of τ ∗ guar-

antees that {(µ,MP ) ∈ M : U(θ, τ ∗(µ,MP )) = U(θ, p)} is a measurable subset of M,

and Conditions 2 and 3 of Lemma 4 imply that m
θ
[{(µ,MP ) ∈M : U(θ, τ ∗(µ,MP )) =

U(θ, p)}] = 1 for all θ ∈ Θ. This, along with Condition 2 of Lemma 4, implies that

arg max(µ,MP ) U(θ, τ(µ,MP )) = {(µ,MP ) ∈ M : U(θ, τ ∗(µ,MP )) = U(θ, p)} for all
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θ ∈ Θ, so we conclude that Condition 1 of Definition 19 is satisfied. �

C Other Proofs

C.1 Proof of Theorem 2

C.1.1 Proof of Theorem 2 for the General-Mechanism Game

The following lemma shows that there is a sequence of outcomes that has various

properties that are useful in the proof of Theorem 2.

Lemma 5. In MCS environments, there are sequences of full-support distributions over

the principal type {λk}k∈N and outcomes {pk}k∈N such that

1. margΘpk = λk for all k ∈ N,

2. lim infk→∞ Epk [v(θ, x, y) + g(t)|θ] ≥ 0 for all θ ∈ Θ,

3. Epk [u(θ, x, y)− t|θ] ≥ Epk [u(θ, x, y)− t|θ′] for all θ, θ′ ∈ Θ and k ∈ N,

4. Ppk [y = y∗(θ, x)|θ, x 6= xo] = 1 for all θ ∈ Θ and k ∈ N, and

5. For each mechanism (µ,MP ) ∈M and k ∈ N, there is a sequential continuation

equilibrium after (µ,MP ) is proposed that gives every principal type a payoff no

more than 1/k greater than that from pk.

The first condition simply states that each outcome pk is consistent with the corre-

sponding distribution over principal types λk. The second condition says that, in the

k → ∞ limit, the agent receives a non-negative expected utility conditional on each

principal type. The third condition captures principal incentive compatibility with the

outcomes, while the fourth says that, with probability 1, the agent takes the same

action they would given the knowledge of the principal’s type.

The proof of Lemma 5, which is in Section OA.9.1, constructs a sequence of hypo-

thetical games and establishes that the outcomes and distributions over principal types

corresponding to the equilibria of these games have the desired properties. Section 5.2
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gave a brief description of some of the modifications we make to the principal-agent

games in this sequence. Here we give a fuller description.

As discussed before, the principal-agent game is modified so that there are costs

(and benefits) to the principal types from using mechanisms of the form (µχ,θ, {0}), the

proposal of which is assumed to automatically induce the outcome in which the agent

accepts and then plays y∗(θ, x) after observing any x 6= xo. To avoid possible violations

of agent incentive compatibility this modification may cause, we make it prohibitively

costly for (or equivalently do not allow) a type θ principal to propose any mechanism

of the form (µχ,θ′ , {0}) where θ′ 6= θ. We also make it costly for the type θ principal

to propose a (µχ,θ, {0}) mechanism whenever (1) there is some other principal type

who would get a higher payoff from proposing (µχ,θ, {0}) (if the agent were to accept

and respond according to y∗(θ, x)) than they do from the prevailing outcome, or (2)

the agent’s total expected utility in the prevailing outcome conditional on θ is too low.

The costs arising from Case (1) ensure principal incentive compatibility. The costs

arising from from Case (2) ensure that the agent’s expected utility conditional on any

principal type who uses this class of mechanisms is not much lower than their outside

option. To encourage pooling when these costs are 0 and a type θ principal would

otherwise be indifferent with proposing a (µχ,θ, {0}) mechanism, we give the type θ

principal a flat benefit of 1/k from proposing mechanisms of this form.

Even with these costs, pooling cannot occur in equilibrium. This follows from the

modifications described above for the case where the agent’s expected utility condi-

tional on the highest principal type involved in pooling is not too low. This is because

the highest type involved in pooling would be strictly better off proposing a mechanism

that commits to a distribution over action-transfer pairs that matches the distribution

they realize in equilibrium but for an increase in the transfer level. By supermodular-

ity, the increase in the transfer level can be chosen so that only the highest type would

want to make this proposal. We also rule out the possibility of pooling being sustained

by the highest principal type involved in pooling giving the agent a significantly lower

conditional expected utility than their outside option. We do so by adding a hypothet-
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ical third player to the game who selects the distribution over principal types with the

objective of minimizing the agent’s total expected utility from play over mechanisms

outside the class of (µχ,θ, {0}) mechanisms. Since the agent’s play regarding mecha-

nisms outside of this class is unrestricted, their total expected utility from such play

must (weakly) exceed that of their outside option. So each principal type either (a)

only plays mechanisms outside of (µχ,θ, {0}) class, in which case they must be giving

the agent an expected utility close to the outside option, or (b) plays mechanisms in the

(µχ,θ, {0}) class, which, as noted before, they are only willing to do when the agent’s

expected utility conditional on their type is not too low.

Proof of Theorem 2 for the General-Mechanism Game. For each θ ∈ Θ and k ∈ N,

let qk(θ) denote the conditional distribution obtained from pk given θ. By restricting

attention to a convergent subsequence if necessary, there is some q(θ) ∈ ∆(X×T ×Y )

such that limk→∞ qk(θ) = q(θ) for all θ ∈ Θ. Conditions 2, 3, and 4 of Lemma 5, along

with continuity, imply that (1) Pq(θ)[y = y∗(θ, x)|x 6= xo] = 1, (2) Eq(θ)[v(θ, x, y) +

g(t)] ≥ 0, and (3) Eq(θ)[u(θ, x, y) − t] ≤ Eq(θ′)[u(θ, x, y) − t] for all θ, θ′ ∈ Θ. By

Proposition 2, it follows that each principal type θ obtains a weakly lower payoff from

q(θ) than they do from the principal-optimal safe outcomes. Condition 5 of Lemma

5 implies that, for every mechanism, there is a sequential continuation equilibrium

after the mechanism is proposed that gives every principal type a weakly lower payoff

than q(θ), and thus from the principal-optimal safe outcomes. Combining this with

the incentive compatibility of the principal-optimal safe outcome shows that it is a

contracting equilibrium outcome. �

C.1.2 Proof of Theorem 2 for the Deterministic-Mechanism Game

The following lemma plays an analogous role in the proof of Theorem 2 game to that

of Lemma 5 in the proof for the general-mechanism game.

Lemma 6. In MCS environments, there are sequences of full-support distributions over

the principal type {λk}k∈N and outcomes {pk}k∈N such that
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1. margΘpk = λk for all k ∈ N,

2. lim infk→∞ Epk [α(v(θ, x, y) + g(t))|θ] ≥ 0 for all θ ∈ Θ,

3. Ppk [U(θ, pk) ≥ α(u(θ, x, y∗(θ′, x))− t)|θ′, x, t, α] = 1 for all θ, θ′ ∈ Θ and k ∈ N,

4. Ppk [y = y∗(θ, x)|θ, x 6= xo] = 1 for all θ ∈ Θ and k ∈ N, and

5. For each mechanism (µ,MP ) ∈M and k ∈ N, there is a sequential continuation

equilibrium after (µ,MP ) is proposed that gives every principal type a payoff no

more than 1/k greater than that from pk.

Conditions 1, 2, 4, and 5 are exactly as in Lemma 5. Condition 3 is similar to

the corresponding principal incentive compatibility condition in Lemma 5, though it

is strengthened to fit the principal’s lower commitment power in the deterministic-

mechanism game.

The proof of Lemma 6, which is in Section OA.9.2, proceeds in a similar fashion

to the proof of Lemma 5: It too constructs a sequence of hypothetical games and

uses essentially the same arguments, adapted to the deterministic-mechanism game,

to establish that the outcomes and distributions over principal types corresponding to

the equilibria of these games have the desired properties.

Proof of Theorem 2 for the Deterministic-Mechanism Game. For each θ ∈ Θ and k ∈

N, let qk(θ) denote the conditional distribution obtained from pk given θ. By re-

stricting attention to a convergent subsequence if necessary, there is some q(θ) ∈

∆([0, 1] × X × T × Y ) such that limk→∞ qk(θ) = q(θ) for all θ ∈ Θ. Conditions 2,

3, and 4 of Lemma 6, along with continuity, imply that (1) Pq(θ)[y = y∗(θ, x)|x 6=

xo] = 1, (2) Eq(θ)[α(v(θ, x, y) + g(t))] ≥ 0, and (3) Pq(θ)[U(θ′, q(θ′)) ≥ α(u(θ′, x, y) −

t)|θ, x, t, α] = 1 for all θ, θ′ ∈ Θ. Thus, for each θ ∈ Θ, there is some (x, t) ∈ X × T

and α ∈ [0, 1] such that (1) U(θ, q(θ)) = α(u(θ, x, y∗(θ, x)) − t), (2) U(θ′, q(θ′)) ≥

α(u(θ′, x, y∗(θ, x)) − t) for all θ′ 6= θ, and (3) v(θ, x, y∗(θ, x)) + g(t) ≥ 0. Observe

that, for t′ = αt + (1 − α)u(θ, x, y∗(θ, x)), (1) U(θ, q(θ)) = u(θ, x, y∗(θ, x)) − t′, (2)

U(θ′, q(θ′)) ≤ u(θ′, x, y∗(θ, x)) = t′, and (3) v(θ, x, y∗(θ, x)) + g(t) ≥ 0. By Proposition

OA 6, it follows that each principal type θ obtains a weakly lower payoff from q(θ)
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than they do from the principal-optimal safe outcomes. Condition 5 of Lemma 6 im-

plies that, for every mechanism, there is a sequential continuation equilibrium after the

mechanism is proposed that gives every principal type a weakly lower payoff than q(θ),

and thus from the principal-optimal safe outcomes. We conclude the principal-optimal

safe outcomes are contracting equilibrium outcomes. �

C.2 Proof of Proposition 3

Proof. Consider a principal-optimal safe outcome p ∈ ∆(Θ × X × Y ), and suppose

that p′ ∈ ∆(Θ × X × Y ) is an incentive compatible outcome that payoff dominates

p. Because p is a contracting equilibrium outcome, by definition there is a sequential

continuation equilibrium after any mechanism is proposed that gives each principal

type a weakly lower payoff than they obtain from p. Combining this with the fact that

p′ payoff dominates p, we conclude that (µ′,Θ) corresponds to a contracting equilibrium

with outcome p′. �

C.3 Proof of Theorem 3.1

Proof of Theorem 3.1 for the General-Mechanism Game. Let p be a payoff-plausible

outcome. Suppose towards a contradiction that there is some n ∈ {1, ..., N} for which

θn obtains a lower expected utility than their principal-optimal safe payoff, and let n

be the lowest such value. Let q∗(θn) be the conditional outcome given θn in a principal-

optimal safe outcome. By definition, margX×T q
∗(θn) satisfies the agent individual ra-

tionality constraints in the type-θn optimization problem in (1). Moreover, since each

θn′ for n < n′ obtains a weakly higher expected utility than their principal-optimal

safe payoff, it follows that margX×T q
∗(θn) satisfies the third constraint in the opti-

mization problem. Thus, we have U(θn, p) ≥ Eq∗(θn)[u(θn, x, y)− t], which contradicts

θn obtaining a lower expected utility than their principal-optimal safe payoff. �

Proof of Theorem 3.1 for the Deterministic-Mechanism Game. Let p be a payoff-plausible

outcome. Suppose towards a contradiction that there is some n ∈ {1, ..., N} for which
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θn obtains a lower expected utility than their principal-optimal safe payoff, and let

n be the lowest such value. Let (x, t, y∗(θn, x)) be such that it gives type θn their

principal-optimal safe payoff, it gives every lower type θn′ for n′ < n a weakly lower

payoff than their principal-optimal safe payoff, and it gives the agent a weakly positive

utility conditional on type θn. Then (x, t) satisfies the agent incentive compatibil-

ity and individual rationality constraints in the type-θn optimization problem in (2).

Moreover, since each θn′ for n < n′ obtains a weakly higher expected utility than their

principal-optimal safe payoff, it follows that (x, t) satisfies the third constraint in the

optimization problem. Thus, we have U(θn, p) ≥ u(θn, x, y) − t, which contradicts θn

obtaining a lower expected utility than their principal-optimal safe payoff. �
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OA.1 Firm-Worker Equilibrium Payoffs Computa-

tions

OA.1.1 Upper Envelope with Flexible Contracts

Proposition OA 1. The upper envelope of the firm payoffs sustainable in contracting

equilibrium with flexible contracts is

{
(U(2), U(4)) ∈ R2 :2 ≤ U(2) ≤ 3 and U(4) = U(2) + 2, or

3 ≤ U(2) ≤ 5 and U(4) = −1

2
U(2)2 + 4U(2)− 5

2

}
.

Lemma OA 1. In any Pareto-optimal contracting equilibrium, P[(s, e) = (1, 2)|θ =

2] = 1.

Proof. Consider an outcome p for which Pp[(s, e) = (1, 2)|θ = 2] < 1. Let p′ be

the outcome obtained by modifying p as follows: Conditional on 2, every (s, t, e) is

changed to (1,−U(2, p), 2), and, conditional on 4, every (s, t, e) is shifted to (s, t, 4s).
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By construction, the expected utility of the 2 firm is the same under p and p′. Moreover,

since e ≤ 4s holds with probability 1 under p, it follows that the expected utility of

the 4 firm is weakly higher under p′. Finally, observe that setting s = 1 and having the

agent take effort e = 2 uniquely maximizes the total surplus given type 2. Combining

this with the fact that the type 2 firm gets the same utility under p and p′ as well

as the fact that the worker’s best response to any s is 4s given type 4, we conclude

that the worker’s expected utility is strictly higher under p′ than p. Thus, p is not

Pareto-optimal. �

Lemma OA 2. In any Pareto-optimal contracting equilibrium, there is some s∗ ∈ [0, 1]

such that P[(s, e) = (s∗, 4s∗)|θ = 4] = 1.

Proof. Consider a Pareto-optimal contracting equilibrium outcome p. By Lemma OA

1, Pp[(s, e) = (1, 2)|θ = 2] = 1, which implies that there is no pooling between the two

firm types. Since e = 4s is the worker’s best response to any s under the belief that

the firm’s type is 4, we have that Pp[e = 4s|θ = 4] = 1. Therefore, the expected utility

of each firm type θ from the conditional distribution of p given 4 is Ep[U(θ, s, t, e)|θ =

4] = Ep[s(1− s)|θ = 4]θ − Ep[t|θ = 4], while the corresponding expected utility of the

worker is Ep[V (4, s, t, e)|θ = 4] = 8Ep[s2|θ = 4] + Ep[t|θ = 4]. Let s∗ =
√
Ep[s2|θ = 4].

Since, for s ≥ 0, s(1−s) is a strictly concave function of s2, Jensen’s inequality implies

that Ep[s(1− s)|θ = 4] ≤ s∗(1− s∗), with the inequality strict if Pp[s = s∗|θ = 4] < 1.

Consider t′ = Ep[t|θ = 4] + 4(s∗(1 − s∗) − Ep[s(1 − s)|θ = 4]). By construction,

the outcome p′ obtained from modifying p so that, conditional on 4, every (s, t, e)

is changed to (s∗, t′, 4s∗) is incentive compatible and gives both firm types the same

payoff as p. Moreover, p′ would give the employee a strictly higher payoff than p if

Pp[s = s∗|θ = 4] < 1. We thus conclude that Pp[s = s∗|θ = 4] = 1 since p is the

outcome of a Pareto-optimal contracting equilibrium. �

Proof of Proposition OA 1. First, observe that the type 2 firm can never get a lower

payoff than 2 in a contracting equilibrium. The reason is that, for any ε > 0, the

employee will accept the offer (s, t) = (1,−2 + ε), which results in a payoff of 2− ε to
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the type 2 firm. Moreover, the type 2 firm can never achieve get a higher payoff than

the maximum total expected surplus of 5 in a contracting equilibrium. This is because

the payoff of the type 2 firm must always be weakly lower than the payoff of the type

4 firm, and the expected value of the firm’s payoff can be no more than the maximum

total expected surplus.

By Lemmas OA 1 and OA 2, the maximum payoff that the type 4 firm can obtain

across the contracting equilibria in which the type 2 firm obtains a payoff of U(2) is

given by

max
(s,t)∈[0,1]×R

16s(1− s)− t

s.t. AIR:
1

2

(
8s2 + t

)
+

1

2
(2− U(2)) ≥ 0,

PIC: 8s(1− s)− t ≤ U(2).

(OA 1)

To understand the AIR constraint, observe that 8s2 + t is the agent’s expected utility

given (s, t) and type 4 when they respond with 4s, and the agent’s expected utility

must be 2 − U(2) when the type 2 firm plays s = 1 with probability 1 and receives a

payoff of U(2).

We first solve this problem under the assumption that only the AIR constraint

binds. When this is the case, t = −8s2 + U(2) − 2 must hold at the optimum, so the

optimization problem in (OA 1) reduces to

max
s∈[0,1]

16s(1− s) + 8s2 + U(2)− 2.

The objective function is strictly increasing in s, and so has a unique maximizer of

s∗ = 1 (which gives a corresponding value of t∗ = −10+U(2)), from which we obtain a

type 4 firm payoff of 10−U(2). This solution satisfies the PIC constraint if and only if

10−U(2) ≤ U(2), which is equivalent to U(2) ≥ 5. As observed above, the type 2 firm

can never achieve a payoff strictly above this threshold, so we conclude that U(2) = 5

is the unique contracting equilibrium payoff of type 2 at which only the AIR constraint
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binds, and the corresponding maximum payoff that the type 4 firm can obtain is also

U(4) = 5.

Now we solve (OA 1) under the assumption that the AIR constraint does not

bind. When this is the case, t = 8s(1 − s) − U(2) must hold at the optimum, so the

optimization problem in (OA 1) reduces to

max
s∈[0,1]

U(2) + 8s(1− s).

The objective function is single-peaked with a unique maximizer of s∗ = 1/2 (which

gives a corresponding value of t∗ = 2 − U(2)), from which we obtain a type 4 firm

payoff of U(2) + 2.

We determine the values of U(2) for which this solution actually constitutes the

optimum. Given s = 1/2 and t = 2 − U(2), the agent’s expected utility is 3 − U(2).

Thus, the AIR constraint is satisfied when U(2) ≤ 3.

We thus have that type 2 payoffs of U(2) ∈ [2, 3] are possible in contracting equi-

librium, and the corresponding maximum payoff of the type 4 firm is U(2) + 2.

Now we solve (OA 1) for U(2) ∈ [3, 5]. We have established that here both the AIR

and PIC constraints must bind at the optimum. Setting the AIR and PIC inequalities

to be equalities and then solving for t and U(2) gives

t = −4s2 + 4s(1− s)− 1,

U(2) = 4s2 + 8s(1− s) + 1.

Consequently, the payoffs of the two firm types, as parametrized by s ∈ (1/2, 1) are

U(2) = −4s2 + 8s+ 1,

U(4) = −8s2 + 12s+ 1.

Solving for U(4) in terms of U(2) then gives U(4) = −U(2)2/2 + 4U(2)− 5/2. �
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OA.1.2 Upper Envelope with Explicit Contracts

Proposition OA 2. The upper envelope of the firm payoffs sustainable in contracting

equilibrium with explicit contracts is

{
(U(2), U(4)) ∈ R2 :(U(2), U(4)) = (2, 4), 2 < U(2) ≤ 21

8
and U(4) = U(2) +

3

2
, or

21

8
≤ U(2) ≤ 9

2
and U(4) = 5U(2)− 6

√
36− 6U(2)− 36

}
.

Lemma OA 3. In an equilibrium with payoff U(2) > 2 to the type 2 firm, the payoff

of the type 4 firm is bounded from above by

max
(s,t)∈[0,1]×R

12s(1− s)− t

s.t. AIR: t+
9

2
s2 ≥ 0,

PIC: 6s(1− s)− t = U(2).

(OA 2)

Proof. For the type 2 firm to obtain a payoff strictly higher than 2 with explicit con-

tracts, the type 2 firm must pool with the type 4 firm with probability 1. There would

then need to be (s, t) and λ̃(2) ∈ [1/2, 1] such that both types of the firm obtain their

equilibrium payoff from (s, t) when the employee responds with some play consistent

with a posterior belief putting probability λ̃(2) on θ = 2. Since the type 2 firm obtains

a strictly higher payoff, the employee must accept the proposal with strictly positive

probability α, so U(2) = α(4(2− λ̃(2))s(1− s)− t), U(4) = α(8(2− λ̃(2))s(1− s)− t),

and t+ (2− λ̃(2))2s2/2 ≥ 0. Thus, the payoff of the type 4 firm is bounded from above
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by

max
(s,t,λ̃(2),α)∈[0,1]×R×[ 1

2
,1]×(0,1]

α(8(2− λ̃(2))s(1− s)− t)

s.t. λ̃(2) ∈
[

1

2
, 1

]
,

AIR: t+
1

2
(2− λ̃(2))2s2 ≥ 0,

PIC: α(4(2− λ̃(2))s(1− s)− t) = U(2).

Observe that, for any λ̃ > 1/2, decreasing λ̃ to 1/2 and increasing t by 4(λ̃(2) −

1/2)s(1−s) preserves the AIR constraint, keeps the PIC constraint satisfied, and weakly

increases the payoff of the type 4 firm. A similar shift can be done for any α < 1. Thus,

the optimum must be attained with λ̃(2) = 1/2 and α = 1. Substituting these values

into the constrained optimization problem and deleting the belief constraint results in

(OA 2). �

Lemma OA 4. With explicit contracts, the payoff of the type 2 firm in a contracting

equilibrium can never be more than 9/2.

Proof. As established in the proof of Lemma OA 3, there must be some (s, t), λ̃(2) ∈

[1/2, 1], and α ∈ [0, 1] such that U(2) = α(4(2 − λ̃(2))s(1 − s) − t) and t + (2 −

λ̃(2))2s2/2 ≥ 0. Thus, we have U(2) ≤ α(4(2−λ̃(2))s(1−s)+(2−λ̃(2))2s2/2). Standard

computations show that max(s,t,λ̃(2),α) α(4(2−λ̃(2))s(1−s)+(2−λ̃(2))2s2/2) = 9/2. �

Proof of Proposition OA 2. The same argument as in the proof of Proposition OA

1 shows that the type 2 firm can never get a lower payoff than 2 in a contracting

equilibrium. Moreover, Proposition OA 1 established that 4 is the maximum payoff

that the type 4 firm can get in equilibrium with flexible contracts when the type 2

firm receives a payoff of 2. This is also true when only explicit contracts. The reason

is that because it is the maximum payoff of the type 4 firm with flexible contracts, 4

provides an upper bound for the payoff of the type 4 firm with explicit contracts, and

this upper bound is attained at the least-cost separating outcome.
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We now turn our attention to when the type 2 firm receives a higher equilibrium

payoff than 2. We first solve (OA 2) under the assumption that the AIR constraint

does not bind. When this is the case, t = 6s(1− s)−U(2) must hold at the optimum,

so the optimization problem in (OA 1) reduces to

max
s∈[0,1]

U(2) + 6s(1− s).

The objective function is single-peaked with a unique maximizer of s∗ = 1/2 (which

gives a corresponding value of t∗ = 3/2 − U(2)), from which we obtain a type 4 firm

payoff of U(2) + 3/2.

We determine the values of U(2) for which this solution actually constitutes the

optimum. Given s = 1/2 and t = 3/2−U(2), the agent’s expected utility is 21/8−U(2).

Thus, the AIR constraint is satisfied when U(2) ≤ 21/8.

We thus have that type 2 payoffs of U(2) ∈ (2, 21/8] are possible in contracting

equilibrium, and the corresponding maximum payoff of the type 4 firm is U(2) + 3/2.

Now we solve (OA 1) for U(2) ∈ [21/8, 9/2]. We have established that here the AIR

constraint must bind in must bind at the optimum. Setting the AIR to be an equality,

combining this with the PIC equality, and then solving for t and U(2) gives

t = −9

2
s2,

U(2) =
9

2
s2 + 6s(1− s).

Consequently, the payoffs of the two firm types, as parametrized by s ∈ (1/2, 1) are

U(2) = −3

2
s2 + 6s,

U(4) = −15

2
s2 + 12s.

Solving for U(4) in terms of U(2) then gives U(4) = 5U(2)− 6
√

36− 6U(2)− 36. �
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OA.1.3 Plausible Payoffs with Flexible Contracts

Proposition OA 3. The set of firm payoffs sustainable in payoff-plausible contracting

equilibria with flexible contracts is

{
(U(2), U(4)) ∈ R2 : 2 ≤ U(2) ≤ 3, U(4) = U(2) + 2

}
.

Proof. We first establish that no equilibrium where the payoffs are below the upper

envelope characterized in Proposition OA 1 is payoff-plausible. This is because, in

any contracting equilibrium, the worker’s expected utility conditional on 2 is weakly

negative, so the AIR constraint in (OA 1) implies the AIR constraint for the type 4

payoff-benchmark problem in (1). Thus, given a payoff-plausible equilibrium where the

type 2 firm obtains a payoff of U(2), the payoff of the type 4 firm must exceed that

given in (OA 1).

We now argue that none of the payoff profiles in the upper envelope with U(2) > 3

are plausible. Fix such a payoff profile, and note that it corresponds to an outcome in

which, conditional on 4, the profit share is s > 1/2 and the worker’s expected utility

is strictly positive. If this outcome were payoff-plausible, then the payoff of the type 4

firm would exceed that obtained from

max
(s,t)∈[0,1]×R

16s(1− s)− t

s.t. AIR: 8s2 + t ≥ 0,

PIC: 8s(1− s)− t ≤ U(2).

This alters the optimization problem in (OA 1) so that the AIR constraint only requires

8s2 + t ≥ 0, i.e. that the worker’s expected utility conditional on 4 be weakly positive.

Since the worker’s expected utility conditional on 4 is strictly positive in the outcome

being considered, this relaxed AIR constraint is slack. However, this relaxed AIR

constraint cannot be slack at an optimal solution of s > 1/2, for essentially the same
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reason that the true AIR constraint in (OA 1) cannot be slack at an optimal solution

of s > 1/2. Thus, the payoff of the type 4 firm does not exceed the required benchmark

for plausibility.

We conclude by showing that every payoff profile in the upper envelope with U(2) ≤

3 is plausible. Each of these payoffs can be attained by taking the principal-optimal

safe outcome and shifting the expected transfers given by both firm types down by the

same amount. The resulting outcome necessarily satisfies the payoff-plausibility bounds

for each firm type. Otherwise, the firm type whose payoff-plausibility bound exceeded

their payoff from this outcome could obtain a safe payoff equal to the payoff-plausibility

bound minus the transfer shift, which would exceed their optimal safe payoff and thus

result in a contradiction. �

OA.2 Proof of Proposition 1

Proposition 1. In both the general-mechanism and deterministic-mechanism game,

principal-optimal safe outcomes exist.

Here we give the proof for the general-mechanism game. The proof for the deterministic-

mechanism game is similar.

Proof of Proposition 1 for the General-Mechanism Game. LetMsafe denote the set of

safe mechanisms. Throughout the proof, we identify every direct mechanism with the

corresponding collection of allocations {q(θ)}θ∈Θ induced for each type. Moreover, for

each principal type θ ∈ Θ we let U(θ, q) ≡ Eq[U(θ, x, y)] and V (θ, q) ≡ Eq[V (θ, x, y)]

denote the expected utility of the principal and the agent, respectively, from allocation

q when the principal’s type is θ. We first note that Msafe is non-empty since every

direct mechanism in which each principal type commits to xo, i.e. q(θ)[xo] = 1 for all

θ ∈ Θ, is safe.

We argue that Msafe is a sequentially compact space. Let {{qj(θ)}θ∈Θ}j∈N be an

arbitrary sequence of safe mechanisms. Since ∆(X × Y ) is itself sequentially com-
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pact, it follows that {{qj(θ)}θ∈Θ}j∈N has a limit point. Let {q∗(θ)}θ∈Θ denote such

a limit point, and suppose without loss of generality (by restricting attention to a

convergent subsequence if necessary) that limj→∞ qj(θ) = q∗(θ) for all θ ∈ Θ. Since

U(θ, qj(θ)) ≥ max{maxθ′∈Θ U(θ, qj(θ
′)), 0} for all j ∈ N and θ ∈ Θ, continuity im-

plies that U(θ, q∗(θ)) ≥ max{maxθ′∈Θ U(θ, q∗(θ′)), 0} for all θ ∈ Θ. For identical

reasons, V (θ, q(θ)) ≥ 0 also holds for all θ ∈ Θ. To conclude that {q∗(θ)}θ∈Θ is an

safe mechanism, all that remains is to show that Pq∗(θ)[y ∈ arg maxy′∈Y V (θ, x, y′)] = 1

for all θ ∈ Θ. Suppose otherwise that Pq∗(θ)[y ∈ arg maxy′∈Y V (θ, x, y′)] < 1 for

some θ. Then there is some closed set X̃ ⊆ X and agent action ỹ ∈ Y such that

Eq∗(θ)[1X̃(x)V (θ, x, ỹ)] > Eq∗(θ)[1X̃(x)V (θ, x, y)]. For every ε > 0, let X̃<ε = {x ∈ X :

d(x, X̃) < ε}, X̃=ε = {x ∈ X : d(x, X̃) = ε}, and X̃>ε = {x ∈ X : d(x, X̃) > ε}. Ad-

ditionally, let V (θ) = min(x,y)∈X×Y V (θ, x, y). By continuity, there exists some ε̃ > 0

such that

Eq∗(θ)[1X̃<ε̃(x)(V (θ, x, ỹ)− V (θ))] + Eq∗(θ)[1X̃>ε̃(x)(V (θ, x, y)− V (θ))]

>Eq∗(θ)[V (θ, x, y)]− V (θ).

As 1X̃<ε̃(x)(V (θ, x, ỹ) − V (θ)) is a lower semicontinuous function of x ∈ X, it follows

that lim infj→∞ Eq∗(θ)[1X̃<ε̃(x)(V (θ, x, ỹ)− V (θ))] ≥ Eq∗(θ)[1X̃<ε̃(x)(V (θ, x, ỹ)− V (θ))].

Likewise, 1X̃>ε̃(x)(V (θ, x, y)−V (θ)) is a lower semicontinuous function of (x, y) ∈ X×

Y , so lim infj→∞ Eq∗(θ)[1X̃>ε̃(x)(V (θ, x, y)−V (θ))] ≥ Eq∗(θ)[1X̃>ε̃(x)(V (θ, x, y)−V (θ))].

Consequently, for sufficiently high j ∈ N,

Eqj(θ)[1X̃<ε̃(x)(V (θ, x, ỹ)− V (θ))] + Eqj(θ)[1X̃>ε̃(x)(V (θ, x, y)− V (θ))]

>Eqj(θ)[V (θ, x, y)]− V (θ).

This implies that Eqj(θ)[1X̃<ε̃(x)V (θ, x, ỹ)]+Eqj(θ)[1X̃=ε̃∪X̃>ε̃(x)V (θ, x, y)] > Eqj(θ)[V (θ, x, y)],

which contradicts qj(θ) being safe.

Let U safe(θ) ≡ sup{q(θ′)}θ′∈Θ∈Msafe
U(θ, q(θ)) denote the supremum of the type θ

principal’s payoff over all safe mechanisms. Let {{qj,θ(θ′)}θ′∈Θ}j∈N be a sequence
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of safe mechanisms that converges to the safe mechanism {q∗θ(θ′)}θ′∈Θ and attains

U safe(θ) for the type θ principal: that is, limj→∞ U(θ, qj(θ)) = U safe(θ). By conti-

nuity, U(θ, q∗θ(θ)) = U safe(θ). Consider the direct mechanism given by {q∗θ(θ)}θ∈Θ.

By construction, this mechanism satisfies the agent’s incentive compatibility require-

ments. Moreover, U(θ, q∗θ(θ)) = U safe(θ) ≥ U(θ, q∗θ′(θ
′)) for all θ, θ′ ∈ Θ. Thus, this

mechanism is safe and attains each principal type’s highest possible payoff over all safe

mechanisms. �

OA.3 Proof of Proposition 2

Proposition 2. In MCS environments, the conditional distributions of the principal-

optimal safe outcomes {q∗(θ)}θ∈Θ in the general-mechanism game are characterized

inductively by

q∗(θn) ∈ arg max
q∈∆(X×T×Y )

Eq[u(θn, x, y)− t]

s.t. AIC: Pq[y = y∗(θn, x)|x 6= xo] = 1,

AIR: Eq[v(θn, x, y) + g(t)] ≥ 0,

PIC: Eq[u(θn′ , x, y)− t] ≤ Eq∗(θn′ )[u(θn′ , x, y)− t] ∀n′ < n,

for all n ∈ {1, ..., N}. Moreover, the same inductive characterization holds for the

deterministic-mechanism game when the PIC constraint is strengthened to Pq[u(θn′ , x, y)−

t ≤ U(θ′n, q
∗(θn′))] = 1 for all n′ < n.

Lemma OA 5. In MCS environments, the conditional distributions of the principal-

optimal safe outcomes {q∗(θ)}θ∈Θ in the general-mechanism game are characterized
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inductively by

q∗(θn) ∈ arg max
q∈∆(X×T×Y )

Eq[u(θn, x, y)− t]

s.t. AIC: Pq[y = y∗(θn, x)|x 6= xo] = 1,

AIR: Eq[v(θn, x, y) + g(t)] ≥ 0,

PIC: Eq[u(θn′ , x, y)− t] ≤ Eq∗(θn′ )[u(θn′ , x, y)− t] ∀n′ < n,

(OA 3)

for all n ∈ {1, ..., N}.

Proof. The conditional distributions of a principal-optimal safe outcome solve the con-

straints given in (OA 3). Thus, any conditional distributions which solve the problem

necessarily result in a weakly higher payoff to the corresponding principal type than

their principal-optimal safe payoff.

To complete the proof, we show that every outcome whose conditional distribution

for every type is a solution to the problem in (OA 3) is safe. Fix such an outcome,

and, for each θ ∈ Θ, let q∗(θ) the corresponding conditional distribution. The agent

incentive compatibility and individual rationality constraints are satisfied by defini-

tion. So all that remains is to check that principal incentive compatibility holds.

Consider a principal type θn. By construction, every type θn′ with n′ < n (weakly)

prefers their conditional distribution q∗(θn′) to q∗(θn). Therefore, we need only con-

sider whether some type θn′ with n′ > n would prefer the conditional distribution

q∗(θn) than q∗(θn′). Suppose that there is such a type and that θn′ is the smallest type

for which this is true. Consider now the distribution q̃(θn′) ∈ ∆(X × T × Y ) that is

obtained from q∗(θn) by setting y = y∗(θn′ , x) whenever x 6= xo and shifting every t to

t+ Eq∗(θn)[u(θn′ , x, y
∗(θn′ , x))− u(θn′ , x, y

∗(θn, x))]. This conditional distribution gives

θn′ the same expected utility as q∗(θn), and, by supermodularity and the fact that

y∗(θn′ , x) > y∗(θn, x) for all x 6= xo, satisfies the corresponding constraints in (OA 3).

This means that θn′ must obtain a payoff from q∗(θn′) that is weakly higher than the

payoff they obtain from q∗(θn), which is a contradiction. �
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Lemma OA 6. In MCS environments, the conditional distributions of the principal-

optimal safe outcomes {q∗(θ)} in the deterministic-mechanism game are characterized

inductively by

q∗(θn) = arg max
q∈∆(X×T×Y )

Eq[u(θn, x, y
∗(θn, x))− t]

s.t. AIC: Pq[y = y∗(θn, x)|x 6= xo] = 1,

AIR: Eq[v(θn, x, y) + g(t)] ≥ 0,

PIC: Pq[u(θn′ , x, y)− t ≤ U(θ′n, q
∗(θn′))] = 1 ∀n′ < n,

(OA 4)

for all n ∈ {1, ..., N}.

Proof. A similar argument to those in the proof of Proposition 2 shows that any of

these outcomes are safe. Since the conditional distributions of any principal-optimal

safe outcome solve the constraints given in (OA 4), we conclude that the conditional

distributions identified by (OA 4) do in fact characterize the principal-optimal safe

outcomes. �

OA.4 Proof of Proposition 4

Proposition 4. For each θ ∈ Θ, let xCIθ ∈ X be the principal action in the complete-

information benchmark when the principal’s type is known to be θ. Suppose the environ-

ment is MCS and that the ex-ante mechanism design benchmarks have the same actions

as the complete-information benchmark but different expected transfers for at least one

principal type. If, for each θ ∈ Θ, there is a sequence {xi} converging to xCIθ such that

u(θ, xi, y
∗(θ, xi))−u(θ, xCIθ , y∗(θ, xCIθ )) > u(θ′, xi, y

∗(θ, xi))−u(θ′, xCIθ , y∗(θ, xCIθ )) for all

θ′ < θ and i, then the ex-ante mechanism design benchmarks are not payoff-plausible.

Proof. Fix an ex-ante mechanism design benchmark. The complete-information bench-

mark for each type θ gives the agent a utility of exactly 0. Combining this with the

fact that the agent’s expected utility in any individually rational outcome must be non-
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negative, it follows that, in the ex-ante mechanism design benchmark, there must be at

least one type, say θ, that gives the agent a strictly positive expected utility. Let tθ be

the expected transfer played by θ in the ex-ante mechanism design benchmark. For each

i ∈ N, consider the transfer given by ti = tθ + u(θ, xi, y
∗(θ, xi))− u(θ, xCI

θ
, y∗(θ, xCI

θ
)).

By construction, the type θ would obtain the same payoff from (xi, ti) and the agent

responding with y∗(θ, xi) as in the ex-ante mechanism design benchmark, while all

lower types would obtain a strictly lower payoff. Thus, for all sufficiently large i, there

is a small but strictly positive ε such that (xi, ti − ε) and the agent responding with

y∗(θ, xi) gives the type θ a strictly higher payoff than the ex-ante mechanism design

benchmark, all types lower than θ a strictly lower payoff than the ex-ante mechanism

design benchmark, and the agent a strictly positive expected utility when the type is θ,

which means that the payoff of the type θ does not meet their plausibility threshold. �

OA.5 Proof of Proposition 6

The following is a generalization of Proposition 6 that implies that payoff-plausibility

selects the principal-optimal safe outcomes in the deterministic-mechanism game of the

doubly supermodular firm and employee example.

Proposition 4′. Suppose the environment is MCS with definite gains and that, for

every λ̃ ∈ ∆(Θ) and x 6= xo, either quasi-strictness holds at x, or there exists a

sequence {xi} converging to x such that y∗(λ̃, xi) converges to y∗(λ̃, x), quasi-strictness

holds at each xi, and either one of the following conditions hold:

1. (a) u(θ, x, y∗(λ̃, x)) is constant in θ.

(b) u(θ, xi, y
∗(λ̃, xi)) > u(θ, x, y∗(λ̃, x)) for all i.

(c) v(θ, xi, y
∗(λ̃, xi)) > v(θ, x, y∗(λ̃, x)) for all i.

2. (a) u(θ, x, y∗(λ̃, x)) is constant in θ.

(b) v(θ, x, y∗(λ̃, x)) is strictly increasing in θ.

Then payoff-plausibility selects the principal-optimal safe outcomes in the deterministic-
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mechanism game.

Proof. We first show that every payoff-plausible contracting equilibrium outcome must

be always-accepting. Suppose that p is a contracting equilibrium that is not always-

accepting. Then there is some θ ∈ Θ, x ∈ X, t ∈ T , λ̃ ∈ ∆(Θ), and α ∈ (0, 1) such that

(1) α(u(θ, x, y∗(λ̃, x))− t) = U(θ, p), (2) α(u(θ, x, y)− t) ≤ U(θ, p) for all θ 6= θ, (3) λ̃

is weakly below δθ under FOSD, and (4) v(θ, x, y∗(θ, x)) + g(t) ≥ 0. Consider (x′, t′)

such that t′ = αt + u(θ, x′, y∗(θ, x′)) − αu(θ, x, y∗(λ̃, x)). By construction, this (x′, t′)

is such that, when the agent responds with y∗(θ, x′), the type θ principal obtains the

same payoff as in p. Moreover, we can take x′ > x to be close enough to x so that all

lower type principals would achieve a strictly lower payoff from (x′, t′, y∗(θ, x′)) than

p and the agent gets a strictly higher utility from θ playing (x′, t′) than their outside

option. Thus, for sufficiently small ε > 0, (x′, t′ − ε) would satisfy the constraints of

the type θ optimization problem in (2) and give θ a strictly higher payoff than in p, so

p cannot be payoff-plausible.

We now show that P[v(θ, x, y) + g(t) ≤ 0] = 1 in any payoff-plausible outcome.

Suppose towards a contradiction that there is some θ such that P[v(θ, x, y) + g(t) >

0|θ] > 0, and suppose that θ is the highest type for which this is true. Then there

is some x ∈ X, t ∈ T , and λ̃ ∈ ∆(Θ) such that (1) u(θ, x, y∗(λ̃, x)) − t = U(θ, p),

(2) u(θ, x, y) − t ≤ U(θ, p) for all θ 6= θ, (3) λ̃ is weakly below δθ under FOSD, and

(4) v(θ, x, y∗(θ, x)) + g(t) > 0. Consider (x′, t′) such that t′ = t + u(θ, x′, y∗(θ, x′)) −

u(θ, x, y∗(λ̃, x)). By construction, this (x′, t′) is such that, when the agent responds

with y∗(θ, x′), the type θ principal obtains the same payoff as in p. Moreover, we can

take x′ > x to be close enough to x so that all lower type principals would achieve a

strictly lower payoff from (x′, t′, y∗(θ, x′)) than p and the agent gets a strictly higher

utility from θ playing (x′, t′) than their outside option. Thus, for sufficiently small

ε > 0, (x′, t′ − ε) would satisfy the constraints of the type θ optimization problem in

(2) and give θ a strictly higher payoff than in p, which contradicts payoff-plausibility.

Since the agent’s total expected utility must be weakly positive, it thus follows
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that P[v(θ, x, y) + t = 0] = 1 must hold in any payoff-plausible contracting equilib-

rium outcome p. Since the agent’s utility is strictly increasing in the principal’s type,

this means that there can be no pooling between different principal types, so any out-

come that is payoff-plausible must be safe. As every payoff-plausible outcome must

principal-payoff-dominate the principal-optimal safe outcome, it thus follows that only

the principal-optimal safe outcomes can be payoff-plausible. �

OA.6 Omitted Example

We show by example that the correspondence mapping mechanisms into sequential

continuation equilibria is not necessarily upper hemicontinuous.

Example OA 1. Suppose that Θ = {−1, 1}, X = [−1, 1]2, Y = R = [−1, 1], U(θ, x1, x2, y) =

θy − x2, and V (θ, x1, x2, y) = x1y − α|x1|+ x2 for some α ∈ (1, 3/2). Consider the se-

quence of mechanisms (µj,MP ) indexed by j ∈ N, where MP = {mP,1,mP,2,mP,3,mP,4}

and

µj(mP ) =



δ(( 1
j+1

,0),0) if mP = mP,1

δ((− 1
j+1

,0),0) if mP = mP,2

δ((1, 1
2),1) if mP = mP,3

δ((−1, 1
2),−1) if mP = mP,4

.

As j →∞, this sequence of mechanisms converges to the mechanism (µ,MP ) given by

µ(mP ) =


δ((0,0),0) if mP ∈ {mP,1,mP,2}

δ((1, 1
2),1) if mP = mP,3

δ((−1, 1
2),−1) if mP = mP,4

.

The unique sequential continuation equilibrium after mechanism (µj,MP ) is ac-

cepted has the type 1 principal playing mP,1, the type −1 principal playing mP,2, and

the agent responding with y = 1 to any positive x1 and with y = −1 to any negative
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x1. Consequently, the agent’s expected utility from accepting this mechanism is strictly

negative, so mechanism (µj,MP ) must be rejected in any contracting equilibrium.

In every sequential continuation equilibrium where mechanism (µ,MP ) is accepted,

either the type 1 principal plays mP,3 or the type −1 principal plays mP,4. Thus the

agent’s expected utility from accepting this mechanism is weakly positive conditional

on either principal type and strictly positive conditional on at least one type, so it

must be accepted in any contracting equilibrium. �

OA.7 Proof of Lemma 2

Lemma 2. Consider a sequence of primitives {Pj}j∈N that converges to the original

primitives P. For every mechanism (µ,MP ) ∈ M, there is a sequence of mechanisms

(µj,MP ) ∈ Mj such that any limit of sequential continuation equilibrium outcomes

after these mechanisms are proposed is a sequential continuation equilibrium outcome

after (µ,MP ) is proposed.

Construction of Mechanism. Let ν =
∑

mP
µ(mP )/|MP | be the distribution over prin-

cipal action-recommendation pairs that is obtained by drawing (x, r) from µ(mP ) with

probability 1/|MP | uniform over each (mP ). Let fmP : ∪m′P supp(µ(m′P )) → [0, |MP |]

be the Radon-Nikodym derivative of the µ(mP ) distribution with respect to ν. Note

that
∑

mP
f(mP )(x, r)/|MP | = 1 for all (x, r) ∈ ∪m′P supp(µ(m′P )).

Let P+(MP ) = P (MP ) \ {∅} be the set of non-empty subsets of MP . For a given

(x, r) ∈ ∪m′P supp(µ(m′P )), let M(x, r) = {(mP ) ∈ MP : f(mP )(x, r) > 0} be the set

of principal messages for which the corresponding distribution over principal action-

recommendation pairs has a strictly positive Radon-Nikodym derivative at (x, r).

We enlarge the principal recommendation space so that, in addition to some r ∈ R,

each recommendation includes a non-empty subset of MP . Formally, the enlarged

recommendation space corresponds to R̃ = R × P+(MP ). The modified mechanism

is (µ̃,MP ), where the principal message space is the same as in (µ,MP ), and the
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µ̃ is induced from µ by replacing each principal-action recommendation pair (x, r) ∈

∪m′P supp(µ(m′P )) with (x, (r,M(x, r))). Let ν̃ =
∑

mP
µ̃(mP )/|MP | and f̃(mP ) : ∪m′P supp(µ̃(m′P ))→

[0, |MP |] be the Radon-Nikodym derivative of the µ̃(mP ) distribution with respect to

ν̃. Then, by construction, f̃(mP )(x, (r,M(x, r))) = f(mP )(x, r) for all mP ∈ MP and

(x, r) ∈ X × R, while f̃mP (x, (r,M)) = 0 for all mP ∈ MP , (x, r) ∈ X × R, and

M 6= M(x, r). Moreover, both (µ,MP ) and (µ̃,MP ) have the same sequential continu-

ation equilibrium outcomes. �

Construction of Sequences of Mechanisms. Suppose, by restricting attention to a sub-

sequence if necessary, that there is a finite X̃j ⊆ Xj such that, for all j ∈ N and x ∈ X,

there is an x′ ∈ X̃j satisfying |x− x′| ≤ 1/j. Additionally, suppose that there is some

finite R̃j ⊂ R such that |R̃j| ≤ |Rj|/2|MP | and, for all r ∈ R, there is an r′ ∈ R̃j

satisfying |r − r′| ≤ 1/j. The requirement on the relative sizes of R̃j and Rj means

that, for each r′ ∈ R̃j and M′ ∈ P+(MP ), we can identify (r′,M′) with some element

of Rj. Consider the mechanism (µ̃j,MP ), where µ̃j is determined as follows. For each

x ∈ X̃j, r ∈ R̃j, and M ∈ P+(MP ), let

µ̃j(mP )[x′, (r′,M′)] = E(x,r)∼µ(mP )

1(M(x, r) = M′)1
(
|x− x′| ≤ 1

j

)
1

(
|r − r′| ≤ 1

j

)
∑

(x′′,r′′)∈X̃j×R̃j 1
(
|x− x′′| ≤ 1

j

)
1

(
|r − r′′| ≤ 1

j

)


and µ̃j(mP )[x′, (r′,M′′)] = 0 for all M′′ 6= M′. By construction, µ̃j(mP )[x′, (r′,M′)] ≥ 0

for all x ∈ X̃j, r ∈ R̃j, and M ∈ P+(MP ), and
∑

x′,r′,M′ µ̃j(mP )[x′, (r′,M′)] = 1. There-

fore, µ̃j(mP ) ∈ ∆(X̃j×R̃j×P+(MP )). Moreover, µ̃j(mP )[M′] = E(x,r)∼µ(mP )[1(M(x, r) =

M′)] is the probability of realizing some (x, r) for which M(x, r) = M′ under µ(mP ). �

Lemma OA 7. For all mP ∈MP , limj→∞ µ̃j(mP ) = µ̃(mP ).

Proof. Let O be an arbitrary open subset of X ×R and M be an arbitrary element of

P+(MP ). We need to show that lim infj→∞ µ̃j(mP )[O×{M}] ≥ µ̃(mP )[O×{M}]. For

any ε > 0, let ((X×R̃)\O)≥ε = {(x, r) ∈ O : ∀ (x′, r′) 6∈ O, |x−x′| ≥ ε or |r−r′| ≥ ε}

be the subset of points in O that are of distance at least ε from (X × R) \ O. By
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construction, for every j > 1/ε, we have µ̃j(mP )[O×{M}] ≥ µ̃(mP )[((X× R̃)\O)≥ε×

{M}]. Since limε→0 µ̃(mP )[((X × R̃) \ O)≥ε × {M}] = µ̃(mP )[O × {M}], the claim

follows. �

Lemma OA 8. Fix an M ∈ P+(MP ) and mP ,m
′
P ∈MP such that mP ,m

′
P ∈ M. For

any j ∈ N, let qj ∈ ∆(X̃j × R̃j × Yj) and q′j ∈ ∆(X̃j × R̃j × Yj) be the distributions

induced by the conditional distributions given M of µ̃j(mP ) and µ̃j(m
′
P ), respectively,

when the agent responds to any (x, r) according to a fixed action rule βj,A(x, r) ∈ ∆(Yj).

Suppose that limj→∞ qj = q and limj→∞ q
′
j = q′. Then, with probability 1 under both q

and q′, the conditional distribution of y given any (x, r) is the same under q and q′.

Proof. Suppose otherwise that the conditional distributions are different under q and

q′. Then there is some closed C ⊆ X × R̃, closed Ŷ ⊆ Y , and κ > 0 such that either

(1) Pq[C] > 0 and Pq[Ŷ |x, r] > (1 + κ)Pq′ [Ŷ |x, r] for all (x, r) ∈ C, or (2) Pq′ [C] > 0

and Pq′ [Ŷ |x, r] > (1 + κ)Pq[Ŷ |x, r] for all (x, r) ∈ C. Assume without loss of generality

that the former holds. Since h(x, r) ≡ f̃mP (x, r)/f̃m′P (x, r) is measurable, Lusin’s

theorem implies that there is some closed C̃ ⊆ C satisfying Pq[C̃] > 0 and on which h

is continuous.

Fix η > 0. Since h is continuous and strictly positive on C̃, for any (x, r) ∈ C̃, there

exists some δ(x,r) > 0 such that (1 − η)h(x, r) < h(x′, r′) < (1 + η)h(x, r) whenever

|x′ − x|, |r′ − r| ≤ δ(x,r). Consider the open cover of C̃ given by {Bδ(x,r)(x, r)}(x,r)∈C̃,

where, for any (x, r) ∈ C̃ and δ > 0, Bδ(x, r) = {(x′, r′) ∈ C̃ : |x′ − x|, |r′ − r| <

δ} is the set of points in C̃ of distance less than δ to (x, r). As C̃ is compact, this

open cover has a finite sub-cover {Bδ(xk,rk)
(xk, rk)}1≤k≤K . Thus, for at least one k ∈

{1, ..., K}, Pq[Bδ(xk,rk)
(xk, rk)] > 0. Throughout the remainder of the proof, we let Ĉ =

Bδ(xk,rk)
(xk, rk). Note that, by construction, (1− η)ρ < f̃mP (x, r)/f̃m′P (x, r) < (1 + η)ρ
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for all (x, r) ∈ Ĉ where ρ = f̃mP (xk, rk)/f̃m′P (xk, rk) > 0. From this, it follows that

Pq′ [Ĉ × Ŷ ] = Eq′ [1Ĉ(x, r)Pq′ [Ŷ |x, r]]

= Eq

[
f̃m′P (x, r)

f̃mP (x, r)
1Ĉ(x, r)Pq′ [Ŷ |x, r]

]

≤
(

1 + η

1 + κ

)
ρEq[1Ĉ(x, r)Pq[Ŷ |x, r]]

=

(
1 + η

1 + κ

)
ρPq[Ĉ × Ŷ ],

where the second equality follows from the Radon-Nikodym theorem. Similarly,

Pq′ [Ĉ] = Eq′ [1Ĉ(x, r)]

= Eq

[
f̃m′P (x, r)

f̃mP (x, r)
1Ĉ(x, r)

]
≥ (1− η) ρEq[1Ĉ(x, r)]

= (1− η) ρPq[Ĉ].

Combining these two inequalities gives

Pq′ [Ŷ |Ĉ] =
Pq′ [Ĉ × Ŷ ]

Pq′ [Ĉ]
≤
(

1

1 + κ

)(
1 + η

1− η

)
Pq[Ŷ |Ĉ]. (OA 5)

For any ε > 0, let Ĉ≤ε = {(x, r) ∈ X × R̃ : ∃(x′, r′) ∈ Ĉ s.t. |x− x′|, |r − r′| ≤ ε}

be the set of points in X ×R that are of distance no more than ε from Ĉ. Likewise, let

Ŷ≤ε = {y ∈ Y : ∃ ŷ ∈ Ŷ s.t. |y− ŷ| ≤ ε} be the set of points in Y that are of distance

no more than ε from Ŷ . Note that Pq′ [Ĉ × Ŷ ] = limε→0 lim infj→∞ Pq′j [Ĉ≤ε × Ŷ≤ε]. For
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any j > 1/ε,

Pqj [Ĉ≤ε × Ŷ≤ε]

=
∑

(x,r)∈(X̃j×R̃j)∩Ĉ≤ε

µ̃j(mP )[x, (r,M)]∑
(x′,r′)∈X̃j×R̃j µ̃j(mP )[x′, (r′,M)]

βj,A(x, r)[Ŷ≤ε]

≤Eq

1((x, r) ∈ Ĉ)

∑
(x′,r′)∈(X̃j×R̃j)∩Ĉ≤ε 1

(
|x− x′| ≤ 1

j

)
1

(
|r − r′| ≤ 1

j

)
∑

(x′′,r′′)∈X̃j×R̃j 1
(
|x− x′′| ≤ 1

j

)
1

(
|r − r′′| ≤ 1

j

) βj,A(x′, r′)[Ŷε]


+ Pq[Ĉ≤2ε \ Ĉ],

where the first equality follows by definition and the inequality follows from the con-

struction of µ̃j(mP ) and the fact that no (x, r) of distance more than 2ε from Ĉ con-

tributes positive probability to any (x′, r′) ∈ (X̃j × R̃j) ∩ Ĉε. Similarly,

Pq′j [Ĉ≤ε × Ŷ≤ε]

=
∑

(x,r)∈(X̃j×R̃j)∩Ĉ≤ε

µ̃j(m
′
P )[x, (r,M)]∑

(x′,r′)∈X̃j×R̃j µ̃j(m
′
P )[x′, (r′,M)]

βj,A(x, r)[Ŷ≤ε]

≥Eq′

1((x, r) ∈ Ĉ)

∑
(x′,r′)∈(X̃j×R̃j)∩Ĉ≤ε 1

(
|x− x′| ≤ 1

j

)
1

(
|r − r′| ≤ 1

j

)
∑

(x′′,r′′)∈X̃j×R̃j 1
(
|x− x′′| ≤ 1

j

)
1

(
|r − r′′| ≤ 1

j

) βj,A(x′, r′)[Ŷε]


=Eq

 f̃m′P (x, r)

f̃mP (x, r)
1((x, r) ∈ Ĉ)

∑
(x′,r′)∈(X̃j×R̃j)∩Ĉ≤ε 1

(
|x− x′| ≤ 1

j

)
1

(
|r − r′| ≤ 1

j

)
∑

(x′′,r′′)∈X̃j×R̃j 1
(
|x− x′′| ≤ 1

j

)
1

(
|r − r′′| ≤ 1

j

) βj,A(x′, r′)[Ŷε]


≥(1− η)ρEq

1((x, r) ∈ Ĉ)

∑
(x′,r′)∈(X̃j×R̃j)∩Ĉ≤ε 1

(
|x− x′| ≤ 1

j

)
1

(
|r − r′| ≤ 1

j

)
∑

(x′′,r′′)∈X̃j×R̃j 1
(
|x− x′′| ≤ 1

j

)
1

(
|r − r′′| ≤ 1

j

) βj,A(x′, r′)[Ŷε]


≥(1− η)ρPqj [Ĉ≤ε × Ŷ≤ε]− (1− η)ρPq[Ĉ≤2ε \ Ĉ],

where the last inequality comes from the previously established inequality for Pqj [Ĉ≤ε×

Ŷ≤ε]. Since limε→0 Pq[Ĉ≤2ε\Ĉ] = 0, we thus have Pq′j [Ĉ×Ŷ ] = limε≥0 lim infj→∞ Pq′j [Ĉ≤ε×
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Ŷ≤ε] ≥ (1− η)ρ limε→0 lim infj→∞ Pqj [Ĉ≤ε × Ŷ≤ε] = (1− η)ρPqj [Ĉ × Ŷ ]. Moreover, since

Pq′ [Ĉ] = Eq′ [1Ĉ(x, r)]

= Eq

[
f̃m′P (x, r)

f̃mP (x, r)
1Ĉ(x, r)

]
≤ (1 + η)ρEq[1Ĉ(x, r)]

= (1 + η)ρPq[Ĉ],

we obtain

Pq′ [Ŷ |Ĉ] =
Pq′ [Ĉ × Ŷ ]

Pq′ [Ĉ]
≥
(

1− η
1 + η

)
Pq[Ŷ |Ĉ]. (OA 6)

For any κ > 0, (OA 5) and (OA 6) contradict each other for η sufficiently close to 0.

Hence, the conditional distributions under q and q′ must be the same. �

Proof of Lemma 2. The mechanism (µ̃,MP ) has the same sequential continuation equi-

librium outcomes as (µ,MP ). Thus, to prove Lemma 2, we will show that any limit

of sequential continuation equilibrium outcomes after the mechanisms (µ̃j,MP ) in the

constructed sequence are proposed is a sequential continuation equilibrium outcome

after (µ̃,MP ) is proposed. To do so, we need only show that any limit of sequential

continuation equilibrium outcomes after the mechanisms (µ̃j,MP ) in the constructed

sequence are accepted is a sequential continuation equilibrium outcome after (µ̃,MP )

is accepted. The reason is that this, along with the convergence of the agent’s util-

ity function, implies that a limit of the agent’s acceptance probabilities in the j-th

game must be an optimal acceptance probability in the true game given the sequential

continuation equilibrium after (µ̃,MP ) is accepted.

Let (λ̃j, πj,θ1 , ..., πj,θN ,Λj, βj,A) be a consistent assessment in a sequential continu-

ation equilibrium after (µ̃j,MP ) is accepted in the j-th game. We will use this se-

quence to construct an assessment (λ̃∗, π∗θ1 , ..., π
∗
θN
,Λ∗, β∗A) in the limit game. (In doing

so, we assume that all relevant objects have a j → ∞ limit, which is without loss

since we can always restrict attention to subsequences of j.) Let λ̃∗ = limj→∞ λ̃j and
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π∗θ = limj→∞ πj,θ for all θ ∈ Θ. For any M ∈ P+(MP ) such thatM(mP ) = M for some

mP ∈ MP , let pj(M) ∈ ∆(Θ × X × R̃ × Y ) be the conditional distribution given M

that is induced by this assessment, and let p∗(M) = limj→∞ pj(M). The agent’s belief

updating rule Λ∗ is such that Λ∗(x, (r,M(x, r))) equals the conditional distribution of

θ given (x, r) under p∗(M(x, r)) for all (x, r) ∈ ∪mP∈MP
supp(µ(mP )). Likewise, the

agent’s action rule β∗A is such that β∗A(x, (r,M(x, r))) equals the conditional distribu-

tion of y given (x, r) under p∗(M(x, r)) for all (x, r) ∈ ∪mP∈MP
supp(µ(mP )). The

construction of (λ̃∗, π∗θ1 , ..., π
∗
θN
,Λ∗, β∗A) guarantees that it is consistent.

We now argue that (λ̃∗, π∗θ1 , ..., π
∗
θN
,Λ∗, β∗A) constitutes a contracting equilibrium

after (µ̃,MP ) is accepted. For any mP ∈MP , let qj(mP ) ∈ ∆(X × Y ) be the distribu-

tion that results from µ̃j(mP ) and the agent responding according to βj,A. Likewise, let

q∗(mP ) ∈ ∆(X×Y ) be the distribution that results from µ̃(mP ) and the agent respond-

ing according to β∗A. Lemmas OA 7 and OA 8 imply that limj→∞ qj(mP ) = q∗(mP )

for all mP ∈ MP . Then, since the message choices of the principal prescribed in

(πj,θ1 , ..., πj,θN ) are optimal given the other’s play, it follows that the message choices

prescribed in (π∗θ1 , ..., π
∗
θN

) are also optimal given the other’s play. Moreover, a similar

argument to that used in the proof of Lemma 1 establishes that the agent’s action rule

β∗A assigns probability 1 to best responses to their posterior beliefs about the principal’s

type. �

OA.8 Proof of Lemma 4

Lemma 4. There is a profile of mechanism proposal distributions {m
θ
}θ∈Θ and a mea-

surable mapping τ ∗ : M → ∆(Θ) × ∆([0, 1] × X × Y )Θ that takes each mechanism

(µ,MP ) ∈ M into a tuple consisting of a distribution over the principal’s type and

a conditional distribution over (α, x, y) for each principal type that corresponds to a

single sequential continuation equilibrium after (µ,MP ) is proposed such that

1. There is a regular conditional probability distribution obtained from λ and {m
θ
}θ∈Θ

that, for every (µ,MP ) ∈ M, induces the ∆(Θ) component of τ ∗(µ,MP ) as the
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belief over the principal’s type following the proposal of (µ,MP ) ∈M,

2. U(θ, τ ∗(µ,MP )) ≤ U(θ, p) for all θ ∈ Θ and (µ,MP ) ∈M, and

3. {m
j,θ
}θ∈Θ combined with τ ∗(µ,MP ) following the proposal of each (µ,MP ) ∈ M

induces the same distribution over (θ, α, x, y) as outcome p.

We first develop the class of binary and obedient mechanisms, described in Ap-

pendix B.2, that we use to show that there is valid on-path play consistent with

the same distribution over (θ, α, x, y) as in p occurring in a contracting equilibrium

outcome. For any (x1, x2) ∈ X × X, let µ(x1,x2) : {1, 2} → ∆(X × N) be the map-

ping given by µ(x1,x2)(m) = δ(xm,m) for both m ∈ {1, 2}, and let σ(x1, x2) be the

set of sequential continuation equilibria after (µ(x1,x2), {1, 2}) is proposed. Let Σ =

{(x1, x2, λ̃, πθ1 , ..., πθN , α, β) ∈ X2×∆(Θ)×∆({1, 2})Θ×[0, 1]×∆(Y )2 : (λ̃, πθ1 , ..., πθN , α, β) ∈

σ(x1, x2)}. Observe that Σ is a compact subset of X2 ×∆(Θ)×∆({1, 2})Θ × [0, 1]×

∆(Y )2.

Let

Mbin∗ ={(µ, {1, 2}) ∈M : ∃(x1, x2, λ̃, πθ1 , ..., πθN , α, β) ∈ Σ s.t.

supp(µ(1)) = (x1, (λ̃, πθ1 , ..., πθN , α, β(1))) and supp(µ(2)) = (x2, (λ̃, πθ1 , ..., πθN , α, β(2)))}.

We will say that there is obedient play following the proposal of the mechanism inMbin∗

corresponding to (x1, x2, λ̃, πθ1 , ..., πθN , α, β) ∈ Σ if each principal type θ plays according

to πθ and the agent plays according to (α, β). For every θ and (µ, {1, 2}) ∈ Mbin∗,

we let τ obed(µ, {1, 2}) ∈ ∆(Θ) × ∆([0, 1] × X × Y )Θ denote the tuple consisting of

the distribution over the principal’s type λ̃ and the distribution over (α, x, y) for each

principal type that results from the proposal of (µ, {1, 2}) if it is followed by obedient

play.

Lemma OA 9. There is a profile of mechanism proposal distributions {m
j,θ
}θ∈Θ ⊂

∆(Mbin∗) such that

1. There is a regular conditional probability distribution obtained from λ and {m
j,θ
}θ∈Θ

that, for every (x1, x2, λ̃, πθ1 , ..., πθN , α, β) ∈ Σ, induces λ̃ as the belief over the
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principal’s type following the proposal of the mechanism in Mbin∗ corresponding

to (x1, x2, λ̃, πθ1 , ..., πθN , α, β).

2. {m
j,θ
}θ∈Θ combined with the principal and agent playing obediently for each mech-

anism in Mbin∗ induces the same distribution over (θ, α, x, y) as outcome pj.

3. U(θ, τ obed(µ, {1, 2})) ≤ U(θ, pj) for all θ ∈ Θ and (µ, {1, 2}) ∈ ∪θ′∈Θsupp(m
j,θ′

).

We prove Lemma OA 9 in the following way. For any mechanism (µ,MP ) that

is proposed with positive probability under pj, we construct a joint distribution over

principal types and mechanisms inMbin∗ that, when coupled with obedient play, leads

to the same distribution over (θ, α, x, y) as the conditional distribution of pj given

the proposal of (µ,MP ). The key will be to pair off the various actions that occur

with positive probability in pj after the acceptance of (µ,MP ) into separate binary

mechanisms in such a way that the agent is willing to accept these mechanisms with

precisely the same probability with which they accept (µ,MP ) in pj. This requires

appropriately choosing the various mechanism proposal probabilities and probabilities

of each of the two actions being chosen after any given mechanism is accepted. We

then aggregate over the distributions of principal types and mechanisms in Mbin∗

identified separately for each on-path mechanism inMj to obtain a profile of proposal

distributions over mechanisms in Mbin∗ that results in an outcome of pj.

Proof. Consider the equilibrium ((m∗
j,k,θ1

,π∗j,k,θ1), ..., (m∗
j,k,θN

,π∗j,k,θN ), (α∗j,k(·),β∗j,k(·)))

of the (j, k) game, and, restricting attention to a convergent subsequence if necessary,

let

((m∗
j,θ1
,π∗j,θ1), ..., (m∗

j,θN
,π∗j,θN ), (α∗j(·),β∗j (·)))

= lim
k→∞

((m∗
j,k,θ1

,π∗j,k,θ1), ..., (m∗
j,k,θN

,π∗j,k,θN ), (α∗j,k(·),β∗j,k(·))).

Fix an arbitrary (µ,MP ) ∈ Mj that is proposed with positive probability under

(m∗
j,θ1
, ...,m∗

j,θN
). Let λ̃∗j(µ,MP ) ∈ ∆(Θ) be the posterior distribution over the princi-

pal’s type conditional on the proposal of (µ,MP ). Further, let (x1,y1), ..., (xM ,yM) ∈
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Xj × ∆(Y ) be the pairs of principal actions and agent action distributions that oc-

cur with positive probability under (π∗j,θ1(µ,MP ), ...,π∗j,θN (µ,MP ),β∗j (·)) when (µ,MP )

is accepted. For every θ ∈ Θ and m ∈ {1, ...,M}, we use qj,(xm,ym)(θ) to denote

the probability of (xm,ym) conditional on type θ and (µ,MP ) being accepted under

(π∗j,θ1(µ,MP ), ...,π∗j,θN (µ,MP ),β∗j (·)).

The k →∞ limit of the expected utility of the agent from accepting (µ,MP ) in the

(j, k) equilibrium is thus Vj(µ,MP ) =
∑

m∈{1,...,M}
∑

θ∈Θ λ̃
∗
j(θ|µ,MP )qj,(xm,ym)(θ)Eym [V (θ, xm, y)].

Observe that there are collections of pairs {(ml,1,ml,2)}l∈{1,...,L} and {(sl,1, sl,2)}l∈{1,...,L}
for some L ∈ N such that

(a) sl,1 > 0 and sl,2 ≥ 0 for all l ∈ {1, ..., L},

(b)
∑

l∈{1,...,L}(1ml,1=m(l)sl,1 + 1ml,2=m(l)sl,2) = 1 for all m ∈ {1, ...,M}, and

(c) For all l ∈ {1, ..., L},

sign
(
sl,1
∑
θ∈Θ

λ̃∗j(θ|µ,MP )qj,l,1(θ)Eyl,1 [V (θ, xl,1, y)]

+ sl,2
∑
θ∈Θ

λ̃∗j(θ|µ,MP )qj,l,2(θ)Eyl,2 [V (θ, xl,2, y)]
)

=sign (Vj(µ,MP )) ,

where xl,1 = xml,1 , xl,2 = xml,2 , qj,l,1(θ) = qj,(xml,1 ,yml,1 )(θ), and qj,l,2(θ) = qj,(xml,2 ,yml,2 )(θ)

for all θ ∈ Θ and l ∈ {1, ..., L}.

For each l ∈ {1, ..., L}, we create a mechanism (µl, {1, 2}) ∈Mbin∗ in which mP = 1

maps to xl,1 and a recommended action distribution of yl,1, and mP = 2 maps to xl,2

and a recommended action distribution of yl,2. We will have each type θ to propose the

(µl, {1, 2}) mechanism with probability sl,1qj,l,1(θ) +sl,2qj,l,2(θ). Conditions (a) and (b)

ensure that this constitutes a valid mechanism proposal distribution. Moreover, after

the acceptance of a (µl, {1, 2}) that they propose with positive probability, we will have

the type θ principal play mP = 1 with probability sl,1qj,l,1(θ)/(sl,1qj,l,1(θ) + sl,2qj,l,2(θ))

and mP = 2 with complementary probability sl,2qj,l,2(θ)/(sl,1qj,l,1(θ)+sl,2qj,l,2(θ)). (For

any mechanism that they propose with 0 probability, we will have the type θ play
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mP = 1 whenever they weakly prefer (xl,1,yl,1) to (xl,2,yl,2) and otherwise play mP = 2,

but the precise message selection rules in these cases are irrelevant.) We will also

have the agent follow every action recommendation. Condition (c) then implies that

the agent’s expected utility conditional on the acceptance of any of the (µl, {1, 2})

mechanisms has the same sign as their expected utility from accepting (µ,MP ) in the

k → ∞ limit of the (j, k) equilibria. Thus, the agent will be willing to accept each of

the (µl, {1, 2}) mechanisms with the same probability α∗j(µ,MP ), and indeed we will

have them do so. This means that the conditional distribution of (α, x, y) given type

θ is exactly as when (µ,MP ) is proposed in the k →∞ limit of the (j, k) equilibria.

The specific mechanisms are as follows. For each (ml,1,ml,2), consider the (µl, {1, 2}) ∈

Mbin∗ given by

supp(µ(1)) = (xl,1, (λ̃
∗
j,l, π

∗
j,l,θ1

, ..., π∗j,l,θN ,α
∗
j(µ,MP ),yl,1)),

supp(µ(2)) = (xl,2, (λ̃
∗
j,l, π

∗
j,l,θ1

, ..., π∗j,l,θN ,α
∗
j(µ,MP ),yl,2)),

where, for each θ ∈ Θ,

λ̃∗j,l(θ) =
λ̃∗j(θ|µ,MP )(sl,1qj,l,1(θ) + sl,2qj,l,2(θ))∑

θ′∈Θ λ̃
∗
j(θ
′|µ,MP )(sl,1qj,l,1(θ′) + sl,2qj,l,2(θ′))

,

π∗j,l,θ(1) =


sl,1qj,l,1

sl,1qj,l,1(θ)+sl,2qj,l,2(θ)
if sl,1qj,l,1(θ) + sl,2qj,l,2(θ) > 0

0 if Eyl,1 [U(θ, xl,1, y)] < Eyl,2 [U(θ, xl,2, y)]

1 otherwise

,

π∗j,l,θ(2) = 1− π∗j,l,θ(1).

Note that λ̃∗j,l is the posterior distribution induced by having each type θ propose the

(µl, {1, 2}) mechanism with probability sl,1qj,l,1(θ) + sl,2qj,l,2(θ) given prior distribution

λ̃∗j(µ,MP ), while π∗j,l,θ gives the mechanism selection probabilities for each type θ as

discussed above.

We have already established that if each principal type θ proposes the binary mech-
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anism corresponding to (ml,1,ml,2) with probability sl,1qj,l,1(θ) + sl,2qj,l,2(θ) and the

subsequent play is obedient, then the resulting outcome distribution is the same as

that which follows the proposal of (µ,MP ). We now argue that obedient play is con-

sistent with these proposal probabilities and sequential continuation equilibrium. To

see this, observe that, the only (x,y) pairs that occur with positive probability con-

ditional on type θ are those which occurred with positive probability conditional on θ

under the k → ∞ limit of the (j, k) equilibrium outcome following the acceptance of

(µ,MP ). Because the principal’s trembles vanish in the k → ∞ limit, these must be

the optimal (x,y) pairs for the principal type. Additionally, in the mechanism corre-

sponding to (ml,1,ml,2), the posterior over the principal’s type after (xl,1,yl,2) is the

same as the posterior after (xml,1 ,yl,2) in the k →∞ of the (j, k) equilibrium. Likewise,

for (xl,1,yl,2). So the prescribed agent play (after acceptance) is always optimal since

the agent also has vanishing trembles (and the agent’s action space converges to their

true action space) as k →∞. Finally, as noted above, Condition (c) ensures that the

prescribed acceptance probability of α∗j(µ,MP ) is optimal for the agent.

We have thus obtained a profile of mechanism proposal distributions {m
j,µ,MP ,θ

}θ∈Θ

corresponding to an arbitrary on-path (in the k → ∞ limit of the (j, k) equilibrium)

mechanism (µ,MP ) ∈Mj that satisfies the three conditions of Lemma OA 9 with the

following qualification: In Condition 2, the outcome pj needs to be replaced with the

outcome conditional on (µ,MP ) being proposed. This can be done for every mechanism

in Mon
j = {(µ,MP ) ∈ M : ∃θ ∈ Θ s.t. m∗

j,θ
(µ,MP ) > 0}, the set of on-path mecha-

nisms (according to the k → ∞ limit of the (j, k) equilibrium). Averaging over the

mechanism proposal distributions for type θ weighted by the probability of proposing

each (µ,MP ) then gives m
j,θ

=
∑

(µ,MP )∈Mj
m∗
j,θ

(µ,MP )m
j,µ,MP ,θ

. The profile of these

mechanism proposal distributions satisfies all the conditions of Lemma OA 9. �

Lemma OA 10. There is a profile of mechanism proposal distributions {m
θ
}θ∈Θ ⊂

∆(Mbin∗) such that

1. There is a regular conditional probability distribution obtained from λ and {m
θ
}θ∈Θ
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that, for every (x1, x2, λ̃, πθ1 , ..., πθN , α, β) ∈ Σ, induces λ̃ as the belief over the

principal’s type following the proposal of the mechanism in Mbin∗ corresponding

to (x1, x2, λ̃, πθ1 , ..., πθN , α, β).

2. {m
θ
}θ∈Θ combined with the principal and agent playing obediently for each mech-

anism in Mbin∗ induces the same distribution over (θ, α, x, y) as outcome p.

3. U(θ, τ obed(µ, {1, 2})) ≤ U(θ, p) for all θ ∈ Θ and (µ, {1, 2}) ∈ ∪θ′∈Θsupp(m
θ′

).

Proof. For each θ ∈ Θ, let m
θ
∈ ∆(M) be a limit point of the sequence {m

j,θ
}j∈N.

Without loss, suppose that limj→∞m
j,θ

= m
θ

for all θ ∈ Θ. Since ∆(Mbin∗) is closed,

it follows that each m
θ
∈ ∆(Mbin∗).

We first demonstrate Condition 1. For every j ∈ N, let m
j

=
∑

θ∈Θ λ(θ)m
j,θ
∈

∆(Mbin∗), and likewise let m =
∑

θ∈Θ λ(θ)m
θ
∈ ∆(Mbin∗). Let pj,Θ×Mbin∗ ∈ ∆(Θ ×

Mbin∗) be the probability distribution over pairs of principal types and binary and obe-

dient mechanisms induced by m
j

as the distribution over mechanisms and λ̃(·|(M,µP ))

the conditional distribution over the principal’s type given mechanism (M,µP ) ∈

Mbin∗. Similarly, let pΘ×Mbin∗ ∈ ∆(Θ × Mbin∗) be the probability distribution in-

duced by m and λ̃(·|(M,µP )). Fix θ ∈ Θ and letM be a closed subset ofMbin∗. Since

λ̃(θ|(M,µP ))1M(M,µP ) is an upper semicontinuous function of (M,µP ) ∈ Mbin∗, it

follows that

Pp
Θ×Mbin∗ [{θ} ×M] = Em[λ̃(θ|(M,µP ))1M(M,µP )]

≥ lim sup
j→∞

Em
j
[λ̃(θ|(M,µP ))1M(M,µP )]

= lim sup
j→∞

Pp
j,Θ×Mbin∗ [{θ} ×M].

Because θ andM are arbitrary, we conclude that limj→∞ pj,Θ×Mbin∗ = pΘ×Mbin∗ , which

means Condition 1 is satisfied.

Now we show that Condition 2 holds. Fix θ ∈ Θ and let X, A, and Y be arbi-

trary closed subsets of X, [0, 1], and Y , respectively. Since λ̃(θ|(µ, {1, 2}))τ obed(X ×

A × Y |θ, µ, {1, 2}) is a continuous function of (µ, {1, 2}) ∈ Mbin∗, it follows that
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Em[λ̃(θ|(µ, {1, 2}))τ obed(X×A×Y |θ, µ, {1, 2})] = limj→∞ Em
j
[λ̃(θ|(µ, {1, 2}))τ obed(X×

A× Y |θ, µ, {1, 2})] = limj→∞ Ppj [{θ} ×X × A× Y ] = Pp[{θ} ×X × A× Y ]. Because

θ, X, A, and Y are arbitrary, we conclude that {m
θ
}θ∈Θ, together with obedient play,

induces p.

Finally, since U(θ, τ obed(µ, {1, 2})) ≤ U(θ, pj) for all θ ∈ Θ and (µ, {1, 2}) ∈

∪θ′∈Θsupp(m
j,θ′

), standard continuity arguments show that U(θ, τ obed(µ, {1, 2})) ≤

U(θ, p) for all θ ∈ Θ and (µ, {1, 2}) ∈ ∪θ′∈Θsupp(m
θ′

). �

We now develop the class of revealing mechanisms, also described in Appendix B.2,

to show that there is valid off-path play consistent with contracting equilibria in which

the principal types receive the same payoffs as they get in p.

For every M ∈ N, let

Mrev,M = {(µ, {1, ...,M}) ∈M : ∃(x1, ..., xM) ∈ XM s.t. supp(µ(m)) = (xm,m) ∀m ∈ {1, ...,M}}.

be the set of deterministic mechanisms with M messages in which the message chosen

by the principal constitutes the recommendation received by the agent.

Lemma OA 11. For every M ∈ N and (µ, {1, ...,M}) ∈Mrev,M , there is a sequential

continuation equilibrium after (µ, {1, ...,M}) is proposed that gives every principal type

a weakly lower payoff than U(θ, p).

Proof. Note that any (µ, {1, ...,M}) ∈ Mrev,M can be approximated to arbitrary ac-

curacy by some sequence of mechanisms {(µj, {1, ...,M})}j∈N, where (µj, {1, ...,M}) ∈

Mj for all large enough j. Because of the vanishing trembles of the principal, it follows

that, in the k →∞ limit, for the proposal of any mechanism inMj, there is a sequen-

tial continuation equilibrium which gives the principal types a lower payoff than what

they receive from pj. For all sufficiently large j, let (λ̃j, πj,θ1 , ..., πj,θN , αj, βj) denote

such a sequential continuation equilibrium for the proposal of (µj, {1, ...,M}). Stan-

dard arguments show that any limit point of these sequential continuation equilibria

is itself a sequential continuation equilibrium following the proposal of (µj, {1, ...,M}).
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Continuity ensures that this sequential continuation equilibrium gives each principal

type a lower payoff than what they receive from p. �

Lemma OA 12. For every M ∈ N, there is a measurable mapping τM∗ : Mrev,M →

∆(Θ)×∆({1, ...,M})Θ× [0, 1]×∆(Y )M such that, for every (µ, {1, ...,M}) ∈Mrev,M ,

τM∗(µ, {1, ...,M}) is a sequential continuation equilibrium after (µ, {1, ...,M}) is pro-

posed that gives every principal type a weakly lower payoff than U(θ, p).

Proof. For each (µ, {1, ...,M}) ∈Mrev,M , let σM∗(µ, {1, ...,M}) be the set of sequential

continuation equilibria after (µ,MP ) is proposed which give the principal types weakly

lower payoffs than they obtain from p.

By Lemma OA 12, σM∗(µ, {1, ...,M}) is non-empty for all (µ, {1, ...,M}) ∈Mrev,M .

Additionally, standard arguments show that σM∗ :Mrev,M ⇒ ∆(Θ)×∆({1, ...,M})Θ×

[0, 1]×∆(Y )M is an upper hemicontinuous correspondence. SinceMrev,M is compact,

Lemma 1 in Section D of Hildenbrand [1974] guarantees that there is a measurable

selection of σM∗ and hence the desired τM∗. �

Lemma OA 13. There is a measurable mapping τ † : M → ∆(Θ) × ∆([0, 1] × X ×

Y )Θ that takes each mechanism (µ,MP ) ∈ M into a tuple consisting of a distribution

over the principal’s type and a distribution over (α, x, y) for each principal type that

corresponds to a single sequential continuation equilibrium outcome after (µ,MP ) is

proposed that gives every principal type a weakly lower payoff than U(θ, p).

Proof. Consider arbitraryM ∈ N and the mapping τM∗ :Mrev,M → ∆(Θ)×∆({1, ...,M})Θ×

[0, 1] × ∆(Y )M identified in Lemma OA 12. Let τM† : Mrev,M → ∆(Θ) × ∆([0, 1] ×

X × Y )Θ be the mapping that specifies the probability distribution over types and the

distributions over (α, x, y) corresponding to τM∗(µ, {1, ...,M}) for each (µ, {1, ...,M}).

Note that τM† is measurable.

Fix some M ∈ N. ConsiderMeff,M = {(µ,MP ) ∈M : |∪m∈MP
supp(µ(m))| = M},

the set of mechanisms which can effectively induce exactly M distinct principal action-

recommendation pairs. For each (µ,MP ) ∈ Meff,M , let XM(µ,MP ) = (x1, ..., xM) be
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the M -tuple of principal actions where, for every m ∈ {1, ...,M}, xm is the action in-

duced by the m-th distinct principal action-transfer pair, as determined by the natural

order from the messages MP = {1, ...,M ′}. Further, let f : Meff,M → Mrev,M be

the mapping such that f(µ,MP ) = XM(µ,MP ) for every (µ,MP ) ∈ Meff,M . By con-

struction, f is measurable. Moreover, the sets of sequential continuation equilibrium

outcomes following the proposal of (µ,MP ) or f(µ,MP ) are precisely the same for all

(µ,MP ) ∈Meff,M . Thus, the composition τM∗ ◦ f :Meff,M → ∆(Θ)×∆([0, 1]×X ×

Y )Θ is a measurable mapping that, for any (µ,MP ) ∈ Meff,M , gives a distribution

over the principal’s type and a distribution over (α, x, y) for each principal type that

corresponds to a single sequential continuation equilibrium outcome after (µ,MP ) is

proposed in which every principal type receives a weakly lower payoff than U(θ, p).

Since theMeff,M are disjoint, measurable subsets ofM satisfying ∪M∈NMeff,M =

M, the mapping τ † : M → ∆(Θ) × ∆([0, 1] × X × Y )Θ such that τ †(µ,MP ) =

τM∗(f(µ,MP )) for any (µ,MP ) ∈Meff,M has all the desired properties. �

Proof of Lemma 4. Let the profile of mechanism proposal distributions be the same

{m
θ
}θ∈Θ as identified in Corollary OA 10. Additionally, consider the mapping τ ∗ :

M→ ∆(Θ)×∆([0, 1]×X × Y )Θ defined by

τ ∗(µ,MP ) =

τ
obed(µ, {1, 2}) if (µ,MP ) = (µ, {1, 2}) ∈ ∪θ∈Θsupp(m

θ
)

τ †(µ,MP ) if (µ,MP ) 6∈ ∪θ∈Θsupp(m
θ
).

By construction, τ ∗ is measurable. Additionally, Lemma OA 10 guarantees that Con-

ditions 1 and 3 of Lemma 4 hold with this {m
θ
}θ∈Θ and τ ∗, while Lemmas OA 10 and

OA 13 together ensure that Condition 2 of Lemma 4 is satisfied. �
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OA.9 Proofs of Lemmas 5 and 6

OA.9.1 Proof of Lemma 5

Lemma 5. In MCS environments, there are sequences of full-support distributions over

the principal type {λk}k∈N and outcomes {pk}k∈N such that

1. margΘpk = λk for all k ∈ N,

2. lim infk→∞ Epk [v(θ, x, y) + g(t)|θ] ≥ 0 for all θ ∈ Θ,

3. Epk [u(θ, x, y)− t|θ] ≥ Epk [u(θ, x, y)− t|θ′] for all θ, θ′ ∈ Θ and k ∈ N,

4. Ppk [y = y∗(θ, x)|θ, x 6= xo] = 1 for all θ ∈ Θ and k ∈ N, and

5. For each mechanism (µ,MP ) ∈M and k ∈ N, there is a sequential continuation

equilibrium after (µ,MP ) is proposed that gives every principal type a weakly lower

payoff than pk.

Construction of Hypothetical Games. Let V = max(θ,x,t,y) v(θ, x, y)+g(t). For all k ∈ N

satisfying k > |Θ|, let

V †k = −(|Θ|V + 1)/(k − |Θ|). (OA 7)

Note that V †k is such that (1 − (|Θ| − 1)/k)V †k + (|Θ| − 1)V /k < −1/k. This means

that, if the agent’s conditional expected utility given some principal type is weakly

lower than V †k and the probability of this type is at least 1 − (|Θ| − 1)/k, the agent’s

total expected utility is less than −1/k.

Let {Xj}j∈N, {Tj}j∈N, {Yj}j∈N, {Rj}j∈N be sequences of finite action, transfer, and

recommendation sets such that limj→∞Xj = X, limj→∞ Tj = T , limj→∞ Yj = Y , and

limj→∞Rj = R. For a given j ∈ N++, consider the set of mechanisms

Mj =
{

(µ,MP ) ∈M : (1) |MP | ≤ j,

(2) ∀mP ∈MP , x ∈ Xj, t ∈ Tj, r ∈ Rj,∃k ∈ N s.t. µ((x, t), r|mP ) =
k

j|Xj||Tj||Rj|

}
that (1) have no more than j principal messages and (2) are such that the probability

of a given principal action-transfer-recommendation tuple conditional on any message
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is some integer multiple of 1/(j|Xj||Tj|). Similarly, let

∆j(Xj ×Tj) =

{
χ ∈ ∆(Xj × Tj) : ∀x ∈ Xj, t ∈ Tj, ∃k ∈ N s.t. χ[(x, t)] =

k

j|Xj||Tj|

}

be the set of distributions over Xj × Tj such that the probability of a given principal

action-transfer pair is some integer multiple of 1/(j|Xj||Tj|). We suppose that, for all

j ∈ N, the recommendation space is strictly larger than the set of principal types, i.e.

|Rj| > |Θ|. For notational convenience, we will assume that the power set of principal

types is in fact a strict subset of the recommendation spaces.

We now describe the strategy space of the type θ principal in the j-th game. Part

of this player’s choice is over which mechanisms to propose. We force θ to propose al-

most all mechanisms with positive probability. The exceptions are mechanisms which

commit to some χ as the distribution over principal actions and some θ′ 6= θ as the

recommendation received by the agent; θ is required to propose these mechanisms

with 0 probability. Formally, let µχ,θ′ ∈ ∆(X × T × R) be the distribution satisfying

margXµχ,θ′ = χ and µχ,θ′ [θ
′] = 1, and let Mc

j,θ′ = {(µχ,θ′ , {0}) : χ ∈ ∆j(Xj × Tj), θ′ 6=

θ} be the set of mechanisms in the j-th game that commit to some χ as the distribution

over principal actions and θ′ as the recommendation received by the agent. Addition-

ally, letM0
j,θ = ∪θ′ 6=θMc

j,θ′ . The distribution over mechanism proposals used by θ must

belong to

∆j,θ(Mj) =
{
m ∈ ∆(Mj) : (1) m[(µ,MP )] ≥ 1

j|Mj|
∀(µ,MP ) ∈Mj \M0

j,θ,

(2) m[(µ,MP )] = 0 ∀(µ,MP ) ∈M0
j,θ

}
.

Moreover, when a given mechanism is accepted, we force θ to tremble and play every

message in the mechanism with positive probability. Formally, the distribution over

messages used by θ when mechanism (µ,MP ) is accepted must belong to

Πj,P (µ,MP ) =
{
πP ∈ ∆(MP ) : πP [mP ] ≥ 1

j|MP |
∀mP ∈MP

}
.
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A valid strategy for θ in the j-th game is any pair (m
θ
,πθ(·)) consisting of a m

θ
∈

∆j,θ(Mj) and a rule πθ(·) for how to play when an arbitrary mechanism is accepted

that satisfies πθ(µ,MP ) ∈ Πj,P (µ,MP ).

The strategy space of the agent is unaltered from the principal-agent game, aside

from the addition of trembles. For every mechanism (µ,MP ), we require the probability

α that the agent accepts its proposal to be no less than 1/j. Additionally, we require

the agent to tremble in their choices of actions. In particular, for every mechanism

(µ,MP ) and principal action-recommendation pair (x, r), the agent’s choice of action

must be a distribution belonging to

∆j(Yj) =

{
y ∈ ∆(Yj) : y[y] ≥ 1

j|Yj|
∀y ∈ Yj

}
.

A valid strategy for the agent in the j-th game is any pair (α(·),β(·)) consisting of (1)

a rule governing the probability of mechanism acceptance, α(·), satisfying α(µ,MP ) ≥

1/j for all (µ,MP ) ∈ Mj and (2) a rule governing the agent’s choice of actions β(·)

satisfying β(µ,MP ) ∈ ∆j(Yj)
Xj×Tj×Rj for all (µ,MP ) ∈Mj.

In addition to the principal types and agent, we introduce a hypothetical player

who determines the distribution over principal types. This player can choose any

distribution that puts probability at least 1/k on every type. Formally, the strategy

space of this player is {λ′ ∈ ∆(Θ) : λ′(θ) ≥ 1/k ∀θ ∈ Θ}.

We now develop the payoffs of the various players for an arbitrary strategy profile

ζ. For any θ ∈ Θ, let Ũj(θ, µ,MP ,α,πP ,βA) and Ṽj(θ, µ,MP ,α,πP ,βA) be the un-

modified expected payoffs to the principal and agent, respectively, when the principal’s

type is θ, the mechanism (µ,MP ) ∈ Mj is proposed, the agent uses the acceptance

probability rule α ∈ [0, 1]Mj , and subsequent play is governed by the rules πP and βA.

The agent’s payoff is

Vj(ζ) =
∑
θ∈Θ

λ′(θ)

 ∑
(µ,MP )∈Mj\(∪θ′∈ΘMc

j,θ′ )

m
θ
[(µ,MP )]Ṽj(θ, µ,MP ,α,πθ,βA)

 .
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This is precisely the agent’s total expected utility from play over mechanisms in M\

(∪θ∈ΘMc
j,θ). The payoff of the player who controls the distribution of principal types

is Wj(ζ) = −Vj(ζ), i.e. the negative of the agent’s payoff. Thus, this player desires

to minimize the agent’s total expected utility from play over mechanisms in M \

(∪θ∈ΘMc
j,θ).

We require more notation to specify the payoffs of the principal types.

Ûj(θ, ζ) =
∑

(µ,MP )∈Mj\(∪θ′∈ΘMc
j,θ′ )

m
θ
[(µ,MP )]Ũj(θ, µ,MP ,α,πθ,βA)

+
∑

(µχ,θ,{0})∈Mc
j,θ

m
θ
[(µχ,θ, {0})]

∑
x,t

χ[(x, t)](u(θ, x, y∗(θ, x))− t) and

V̂j(θ, ζ) =
∑

(µ,MP )∈Mj\(∪θ′∈ΘMc
j,θ′ )

m
θ
[(µ,MP )]Ṽj(θ, µ,MP ,α,πθ,βA)

+
∑

(µχ,θ,{0})∈Mc
j,θ

m
θ
[(µχ,θ, {0})]

∑
x,t

χ[(x, t)](v(θ, x, y∗(θ, x)) + g(t))

would be the total expected utilities of the principal and agent, respectively, when the

principal’s type is θ, the principal follows the mechanism proposal rule m
θ
, and the

play that follows a mechanism proposal of (µ,MP ) ∈ Mj proceeds as follows: For

(µ,MP ) ∈ Mj \ (∪θ′∈ΘMc
j,θ′), play proceeds according to the rules α, πP , and βA;

for (µχ,θ′ , {0}) ∈ Mc
j,θ′ , the agent accepts with probability 1 and then takes action

y∗(θ′, x) after observing any x ∈ Xj. We will impose modifications to the payoffs of

the principal types so that it is costly for θ to propose any (µχ,θ, {0}) ∈Mc
j,θ whenever

either some principal type θ′ 6= θ would prefer to propose (µχ,θ, {0}) (and have the

agent respond according to y∗(θ, x)) to their outcome or the agent gets a low expected

utility conditional on θ. Let A > 2 max(θ,x,t,y) |u(θ, x, y) − t|, and let fj : R → R+ be

the family of continuous functions given by fj(z) = max{0, Amin{jz, 1}}. Note that

fj(z) = 0 for all z ≤ 0 and j, and limj→∞ fj(z) = A for all z > 0. Let cj,θ,ζ :Mc
j,θ → R+
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be the “cost” function given by

cj,θ,ζ(µχ,θ, {0}) =
∑
θ′ 6=θ

fj

(∑
x,t

χ[x, t](u(θ′, x, y∗(θ, x))− t)− Ûj(θ′, ζ)

)
+fj

(
V †k − V̂j(θ, ζ)

)
.

Note that cj,Θ̃,ζ(µχ,θ, {0}) ≥ A if some principal type θ′ 6∈ Θ̃ would get a payoff from

proposing (µχ,θ, {0}) that exceeds their payoff from ζ by 1/j, while cj,Θ̃,ζ(µχ,θ, {0}) = 0

if every principal type θ′ 6∈ Θ̃ gets a weakly higher payoff from ζ than they would by

proposing (µχ,θ, {0}). We set the payoff of θ from the strategy profile ζ in the j-th

game to be

Uj(θ, ζ) = Ûj(θ, ζ)−
∑

(µχ,θ,{0})∈Mc
j,θ

m
θ
[(µχ,θ, {0})]

(
cj,θ,ζ(µχ,θ, {0})−

1

k

)
.

The important feature of the cost terms is that θ would never want to propose a

(µχ,θ, {0}) ∈ Mc
j,θ if either

∑
x,t χ[x, t](u(θ′, x, y∗(θ, x))− t) ≥ Ûj(θ

′, ζ) + 1/j for some

θ′ 6= θ or V̂j(θ, ζ) ≤ V †k − 1/j. On the other hand, if
∑

x,t χ[x, t](u(θ′, x, y∗(θ, x))− t) ≤

Ûj(θ
′, ζ) holds for all θ′ 6= θ and V̂j(θ, ζ) ≥ V †k , then the artificial cost from proposing

(µχ,θ, {0}) is 0 for θ. In this case, θ would want to propose such a mechanism (if the

agent responded according to y∗(θ, x)) whenever they would get a higher payoff from

it than from the outcome under ζ. �

Construction of Limit Outcomes and Distributions over Principal Types. Fixing k ∈ N,

standard arguments show that the j-th game has a Nash equilibrium. Let λj,k be the

distribution over the principal’s type induced by a Nash equilibrium of the j-th game.

For the same Nash equilibrium, let pj,k ∈ ∆(Θ×X×T×Y ) be the outcome induced by

the corresponding mechanism proposal strategies used by the principal types and the

following continuation play for each mechanism: For any (µ,MP ) ∈Mj \ (∪θ∈ΘMc
j,θ),

the principal types and agent play as they do in the Nash equilibrium, i.e. θ plays ac-

cording to πθ(µ,MP ) while the agent accepts the mechanism with probability α(µ,MP )

and then plays according to βA(µ,MP ); for any (µχ,θ, {0}) ∈ Mc
j,θ, the agent accepts

37



with probability 1 and then plays y∗(θ, x) when they observe x. Suppose (by restrict-

ing attention to a convergent subsequence if necessary) that limj→∞ pj,k = pk and

limj→∞ λj,k = λk. Since margΘpj,k = λj,k and λj,k(θ) ≥ 1/k hold for each θ ∈ Θ and

j ∈ N, we have that margΘpk = λk and λk(θ) ≥ 1/k for all θ ∈ Θ. �

Proof of Lemma 5. Condition 1 of Lemma 5 holds by construction. The remainder of

this proof shows that the other four conditions are satisfied.

To establish Condition 2, it suffices to show that Epk [v(θ, x, y) + g(t)|θ] ≥ V †k holds

for all θ, for V †k defined in (OA 7), since limk→∞ V
†
k = 0. To see that Epk [v(θ, x, y) +

g(t)|θ] ≥ V †k , consider the following two exhaustive possibilities: Case (1) in which the

Nash equilibria inducing the pj,k outcomes put probabilities on θ proposing mechanisms

inMc
j,θ that are uniformly bounded away from 0 for infinitely many j, and Case (2) in

which the Nash equilibria inducing the pj,k outcomes put probabilities on θ proposing

mechanisms in Mc
j,θ that converge to 0 for some subsequence of j. Recall that the

construction of the hypothetical games ensures that θ is willing to propose mechanisms

inMc
j,θ only if the agent’s conditional expected utility in the prevailing outcome given

θ is no less than V †k . Thus, in Case (1), it must be that Epj,k [v(θ, x, y) + g(t)|θ] ≥ V †k

for infinitely many j, which guarantees Epk [v(θ, x, y) + g(t)|θ] ≥ V †k by continuity.

For Case (2), suppose towards a contradiction that there is some ε > 0 such that

Epj,k [v(θ, x, y)+g(t)|θ] < V †k −ε holds along a subsequence of j for which the probability

that θ proposes mechanisms in Mc
j,θ converges to 0. By construction, this means that

the distribution over the principal types is such that the agent’s conditional expected

utility from the play over mechanisms belonging to Mj \ (∪θ′∈ΘMc
j,θ′) is less than

−1/k for sufficiently high j in the subsequence. However, the agent’s conditional

expected utility from the play over mechanisms belonging toMj \ (∪θ′∈ΘMc
j,θ′) cannot

be uniformly bounded below 0 as j →∞. Thus, it must be that Epk [v(θ, x, y)+g(t)|θ] ≥

V †k .

To see that Condition 3 holds, observe that whenever θ′ 6= θ is willing to play a

mechanism in Mc
j,θ′ , θ must (weakly) prefer to not play said mechanism given the
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prevailing outcome. Moreover, since θ can always mimic the play of θ′ in mechanisms

in Mj \Mc
j,θ′ , it follows that, θ must weakly prefer their conditional outcome under

pj,k to that of θ′ in the j →∞ limit, which gives Condition 3.

We establish Condition 4 by induction over θn, beginning with θN as the base case.

Suppose towards a contradiction that Ppk [x 6= xo|θN ] > 0 and Ppk [y = y∗(θN , x)|θN , x 6=

xo] < 1. Then, since it is never optimal for an agent to play any action strictly greater

than y∗(θN , x) given an x 6= xo, it must be that Ppk [y > y∗(θN , x)|θN , x 6= xo] = 0 and

Ppk [y < y∗(θN , x)|θN , x 6= xo] > 0. Consider the distribution χ ∈ ∆(X × T ) that is

obtained from taking the conditional distribution of pk given θN and shifting every t

to t + Epk [u(θN , x, y
∗(θN , x)) − u(θN , x, y)|θN ]. When the agent accepts a mechanism

committing to χ and plays y∗(θN , x) in response to any x, θN obtains the same expected

utility as they do under pk while every other type obtains a weakly lower expected utility

than under pk. Moreover, as previously established, the agent’s expected utility from pk

conditional on θN is no less than V †k . Thus, the agent would obtain an expected utility

that is weakly greater than V †k from accepting a proposal of χ by θN . So for sufficiently

high j, the type θN principal can achieve a payoff in the j-th game that is uniformly

bounded above their payoff from pk by proposing some mechanism (µχ′j ,θ, {0}) where

χ′j ∈ ∆j(Xj×Tj) sufficiently closely approximates χ′, but this contradicts the fact that

their payoff should be no more than that under pk in the j →∞ limit.

Since Ppk [y = y∗(θN , x)|θN , x 6= xo] = 1, it follows from the fact that λk puts strictly

positive probability on θN−1 that Ppk [y > y∗(θN−1, x)|θN−1, x 6= xo] = 0 (assuming

Ppk [x 6= xo|θN−1] > 0 so that this conditional probability is even relevant). Therefore,

if Ppk [y = y∗(θN−1, x)|θN−1, x 6= xo] < 1, it must be that Ppk [y < y∗(θN−1, x)|θN−1, x 6=

xo] > 0. The same argument as for the θN case shows that this is not possible.

Proceeding with this argument inductively by moving down the θn establishes that

Condition 4 holds for all θ.

To see why Condition 5 holds, note that, in the j → ∞ limit, every θ must get a

weakly higher payoff from pj,k than 1/k less the payoff they would get from propos-

ing any (µ,MP ) ∈ Mj \ M0
j,θ. Fix some r ∈ Rj \ Θ. For any χ ∈ ∆j(Xj × Tj),
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every mechanism of the form (µχ,θ′ , {0}) for some θ′ ∈ Θ can be identified with

(µχ,r, {0}) ∈ Mj \ (∪θ′∈ΘM0
j,θ′). This means that, for every mechanism in Mj, there

is a corresponding outcome that occurs after either this mechanism is proposed in the

equilibrium of the j-th game or, if the mechanism belongs to some M0
j,θ′ , after the

proposal of the mechanism in which the action recommendation θ′ is replaced by r.

Thus, in the j → ∞ limit, every principal type must get a weakly higher payoff from

pj,k than 1/k less the payoff they would get from proposing some mechanism in Mj if

the subsequent play results in this outcome. Similar arguments to those in the proof of

Lemma 2 then show that there is a sequential continuation equilibrium outcome after

an arbitrary mechanism (µ,MP ) ∈ M is proposed which gives every principal type a

weakly lower payoff than they obtain from pk. �

OA.9.2 Proof of Lemma 6

Lemma 6. In MCS environments, there are sequences of full-support distributions over

the principal type {λk}k∈N and outcomes {pk}k∈N such that

1. margΘpk = λk for all k ∈ N,

2. lim infk→∞ Epk [α(v(θ, x, y) + g(t))|θ] ≥ 0 for all θ ∈ Θ,

3. Ppk [U(θ, pk) ≥ α(u(θ, x, y∗(θ′, x))− t)|θ′, x, t, α] = 1 for all θ, θ′ ∈ Θ and k ∈ N,

4. Ppk [y = y∗(θ, x)|θ, x 6= xo] = 1 for all θ ∈ Θ and k ∈ N, and

5. For each mechanism (µ,MP ) ∈M and k ∈ N, there is a sequential continuation

equilibrium after (µ,MP ) is proposed that gives every principal type a weakly lower

payoff than pk.

Construction of Hypothetical Games. Let {Xj}j∈N, {Tj}j∈N, {Yj}j∈N, {Rj}j∈N be se-

quences of finite action, transfer, and recommendation sets such that limj→∞Xj = X,

limj→∞ Tj = T , limj→∞ Yj = Y , and limj→∞Rj = R. For a given j ∈ N++, consider
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the set of mechanisms

Mj =
{

(µ,MP ) ∈M : (1) |MP | ≤ |Xj||Tj||Rj|,

(2) ∀mP ∈MP , ∃x ∈ Xj, t ∈ Tj, r ∈ Rj s.t. µ((x, t), r|mP ) = 1
}

that (1) have no more than |Xj||Tj||Rj| principal messages and (2) are such that

every principal message results in some principal-action-transfer-recommendation tuple

that belongs to Xj × Tj × Rj. We suppose that, for all j ∈ N, the recommendation

space is strictly larger than the set of principal types, i.e. |Rj| > |Θ|. For notational

convenience, we will assume that the power set of principal types is in fact a strict

subset of the recommendation spaces.

We now describe the strategy space of the type θ principal in the j-th game. Part

of this player’s choice is over which mechanisms to propose. We force θ to propose

almost all mechanisms with positive probability. The exceptions are mechanisms which

commit to some (x, t) ∈ Xj × Tj as the principal action and some θ′ 6= θ as the

recommendation received by the agent; θ is required to propose these mechanisms

with 0 probability. Formally, let Mc
j,θ′ = {(δ((x,t),θ′), {0}) : (x, t) ∈ Xj × Tj, θ′ 6= θ} be

the set of mechanisms in the j-th game that commit to some (x, t) ∈ Xj × Tj as the

distribution over principal actions and θ′ as the recommendation received by the agent.

Additionally, let M0
j,θ = ∪θ′ 6=θMc

j,θ′ . The distribution over mechanism proposals used

by θ must belong to

∆j,θ(Mj) =
{
m ∈ ∆(Mj) : (1) m[(µ,MP )] ≥ 1

j|Mj|
∀(µ,MP ) ∈Mj \M0

j,θ,

(2) m[(µ,MP )] = 0 ∀(µ,MP ) ∈M0
j,θ

}
.

Moreover, when a given mechanism is accepted, we force θ to tremble and play every

message in the mechanism with positive probability. Formally, the distribution over
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messages used by θ when mechanism (µ,MP ) is accepted must belong to

Πj,P (µ,MP ) =
{
πP ∈ ∆(MP ) : πP [mP ] ≥ 1

j|MP |
∀mP ∈MP

}
.

A valid strategy for θ in the j-th game is any pair (m
θ
,πθ(·)) consisting of a m

θ
∈

∆j,θ(Mj) and a rule πθ(·) for how to play when an arbitrary mechanism is accepted

that satisfies πθ(µ,MP ) ∈ Πj,P (µ,MP ).

The strategy space of the agent is unaltered from the principal-agent game, aside

from the addition of trembles. For every mechanism (µ,MP ), we require the probability

α that the agent accepts its proposal to be no less than 1/j. Additionally, we require

the agent to tremble in their choices of actions. In particular, for every mechanism

(µ,MP ) and principal action-recommendation pair (x, r), the agent’s choice of action

must be a distribution belonging to

∆j(Yj) =

{
y ∈ ∆(Yj) : y[y] ≥ 1

j|Yj|
∀y ∈ Yj

}
.

A valid strategy for the agent in the j-th game is any pair (α(·),β(·)) consisting of (1)

a rule governing the probability of mechanism acceptance, α(·), satisfying α(µ,MP ) ≥

1/j for all (µ,MP ) ∈ Mj and (2) a rule governing the agent’s choice of actions β(·)

satisfying β(µ,MP ) ∈ ∆j(Yj)
Xj×Tj×Rj for all (µ,MP ) ∈Mj.

In addition to the principal types and agent, we introduce a hypothetical player

who determines the distribution over principal types. This player can choose any

distribution that puts probability at least 1/k on every type. Formally, the strategy

space of this player is {λ′ ∈ ∆(Θ) : λ′(θ) ≥ 1/k ∀θ ∈ Θ}.

We now develop the payoffs of the various players for an arbitrary strategy profile

ζ. For any θ ∈ Θ, let Ũj(θ, µ,MP ,α,πP ,βA) and Ṽj(θ, µ,MP ,α,πP ,βA) be the un-

modified expected payoffs to the principal and agent, respectively, when the principal’s

type is θ, the mechanism (µ,MP ) ∈ Mj is proposed, the agent uses the acceptance

probability rule α ∈ [0, 1]Mj , and subsequent play is governed by the rules πP and βA.
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The agent’s payoff is

Vj(ζ) =
∑
θ∈Θ

λ′(θ)

 ∑
(µ,MP )∈Mj\(∪θ′∈ΘMc

j,θ′ )

m
θ
[(µ,MP )]Ṽj(θ, µ,MP ,α,πθ,βA)

 .
This is precisely the agent’s total expected utility from play over mechanisms in M\

(∪θ∈ΘMc
j,θ). The payoff of the player who controls the distribution of principal types

is Wj(ζ) = −Vj(ζ), i.e. the negative of the agent’s payoff. Thus, this player desires

to minimize the agent’s total expected utility from play over mechanisms in M \

(∪θ∈ΘMc
j,θ).

We require more notation to specify the payoffs of the principal types.

Ûj(θ, ζ) =
∑

(µ,MP )∈Mj\(∪θ′∈ΘMc
j,θ′ )

m
θ
[(µ,MP )]Ũj(θ, µ,MP ,α,πθ,βA)

+
∑

(δ((x,t),θ),{0})∈Mc
j,θ

m
θ
[(δ((x,t),θ), {0})](u(θ, x, y∗(θ, x))− t) and

V̂j(θ, ζ) =
∑

(µ,MP )∈Mj\(∪θ′∈ΘMc
j,θ′ )

m
θ
[(µ,MP )]Ṽj(θ, µ,MP ,α,πθ,βA)

+
∑

(δ((x,t),θ),{0})∈Mc
j,θ

m
θ
[(δ((x,t),θ), {0})](v(θ, x, y∗(θ, x)) + g(t))

would be the total expected utilities of the principal and agent, respectively, when the

principal’s type is θ, the principal follows the mechanism proposal rule m
θ
, and the

play that follows a mechanism proposal of (µ,MP ) ∈ Mj proceeds as follows: For

(µ,MP ) ∈ Mj \ (∪θ′∈ΘMc
j,θ′), play proceeds according to the rules α, πP , and βA;

for (δ((x,t),θ′), {0}) ∈ Mc
j,θ′ , the agent accepts with probability 1 and then takes action

y∗(θ′, x). We will impose modifications to the payoffs of the principal types so that it is

costly for θ to propose any (δ((x,t),θ), {0}) ∈ Mc
j,θ whenever either some principal type

θ′ 6= θ would prefer to propose (δ((x,t),θ), {0}) (and have the agent respond according

to y∗(θ, x)) to their outcome or the agent gets a low expected utility conditional on θ.

Let A > 2 max(θ,x,t,y) |u(θ, x, y) − t|, and let fj : R → R+ be the family of continuous
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functions given by fj(z) = max{0, Amin{jz, 1}}. Note that fj(z) = 0 for all z ≤ 0 and

j, and limj→∞ fj(z) = A for all z > 0. Let cj,θ,ζ : Mc
j,θ → R+ be the “cost” function

given by

cj,θ,ζ(µχ,θ, {0}) =
∑
θ′ 6=θ

fj

(
u(θ′, x, y∗(θ, x))− t− Ûj(θ′, ζ)

)
+ fj

(
V †k − V̂j(θ, ζ)

)
.

Note that cj,Θ̃,ζ(δ((x,t),θ), {0}) ≥ A if some principal type θ′ 6∈ Θ̃ would get a payoff from

proposing (δ((x,t),θ), {0}) that exceeds their payoff from ζ by 1/j, while cj,Θ̃,ζ(δ((x,t),θ), {0}) =

0 if every principal type θ′ 6∈ Θ̃ gets a weakly higher payoff from ζ than they would by

proposing (δ((x,t),θ), {0}). We set the payoff of θ from the strategy profile ζ in the j-th

game to be

Uj(θ, ζ) = Ûj(θ, ζ)−
∑

(δ((x,t),θ),{0})∈Mc
j,θ

m
θ
[(δ((x,t),θ), {0})]

(
cj,θ,ζ(δ((x,t),θ), {0})−

1

k

)
.

The important feature of the cost terms is that θ would never want to propose a

(δ((x,t),θ), {0}) ∈ Mc
j,θ if either u(θ′, x, y∗(θ, x))− t ≥ Ûj(θ

′, ζ) + 1/j for some θ′ 6= θ or

V̂j(θ, ζ) ≤ V †k − 1/j. On the other hand, if u(θ′, x, y∗(θ, x)) − t ≤ Ûj(θ
′, ζ) holds for

all θ′ 6= θ and V̂j(θ, ζ) ≥ V †k , then the artificial cost from proposing (δ((x,t),θ), {0}) is 0

for θ. In this case, θ would want to propose such a mechanism (if the agent responded

according to y∗(θ, x)) whenever they would get a higher payoff from it than from the

outcome under ζ. �

Construction of Limit Outcomes and Distributions over Principal Types. Fixing k ∈ N,

standard arguments show that the j-th game has a Nash equilibrium. Let λj,k be

the distribution over the principal’s type induced by a Nash equilibrium of the j-th

game. For the same Nash equilibrium, let pj,k ∈ ∆(Θ ×Mj × [0, 1] × X × T × Y )

be the outcome induced by the corresponding mechanism proposal strategies used by

the principal types and the following continuation play for each mechanism: For any

(µ,MP ) ∈ Mj \ (∪θ∈ΘMc
j,θ), the principal types and agent play as they do in the
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Nash equilibrium, i.e. θ plays according to πθ(µ,MP ) while the agent accepts the

mechanism with probability α(µ,MP ) and then plays according to βA(µ,MP ); for any

(δ((x,t),θ), {0}) ∈ Mc
j,θ, the agent accepts with probability 1 and then plays y∗(θ, x)

when they observe x. Suppose (by restricting attention to a convergent subsequence

if necessary) that limj→∞ pj,k = pk and limj→∞ λj,k = λk. Since margΘpj,k = λj,k

and λj,k(θ) ≥ 1/k hold for each θ ∈ Θ and j ∈ N, we have that margΘpk = λk and

λk(θ) ≥ 1/k for all θ ∈ Θ. �

Proof of Lemma 6. Precisely the same arguments as in the proof of Lemma 5 shows

that Conditions 1, 2, and 5 hold. The remainder of this proof shows that the other

two conditions are satisfied.

To see that Condition 3 holds, observe that whenever θ′ 6= θ is willing to play a

mechanism in Mc
j,θ′ , θ must (weakly) prefer to not play said mechanism given the

prevailing outcome. Moreover, since θ can always mimic the play of θ′ in mechanisms

in Mj \ Mc
j,θ′ , it follows that, for all ε > 0, θ must get a weakly higher payoff from

their conditional outcome under pj,k than their payoff from the conditional outcome

given θ′, x, t, and α for almost all (x, t) ∈ Xj × Tj and α ∈ [0, 1] in the j → ∞ limit,

which gives Condition 3.

We establish Condition 4 by induction over θn, beginning with θN as the base case.

Suppose towards a contradiction that Ppk [x 6= xo|θN ] > 0 and Ppk [y = y∗(θN , x)|θN , x 6=

xo] < 1. Then, since it is never optimal for an agent to play any action strictly greater

than y∗(θN , x) given an x 6= xo, it must be that Ppk [y > y∗(θN , x)|θN , x 6= xo] = 0 and

Ppk [y < y∗(θN , x)|θN , x 6= xo] > 0. Take some (x, t) ∈ Xj × Tj and α ∈ [0, 1] such that

Epk [α(u(θN , x, y)− t)|θN , x, t, α] = U(θN , pk), Epk [α(u(θ, x, y)− t)|θN , x, t, α] ≤ U(θ, pk)

for all θ 6= θN , and Epk [α(v(θN , x, y) + g(t))|θN , x, t, α] ≥ V †k . (This is possible because

Epk [v(θ, x, y) + g(t)|θ] ≥ V †k holds for all θ and the V †k defined in (OA 7), which

can be shown as in the proof of Lemma 5.) Consider shifting t up to t̃ = αt +

u(θN , x, y
∗(θN , x))−Epk [αu(θN , x, y)|θN , x, t, α]. When the agent accepts a mechanism

committing to (x, t̃) and plays y∗(θN , x) in response, θN obtains the same expected
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utility as they do under pk while every other type obtains a weakly lower expected

utility than under pk. Moreover, the agent would obtain an expected utility that is

weakly greater than V †k from accepting a proposal of (x, t̃) by θN . So for sufficiently

high j, the type θN principal can achieve a payoff in the j-th game that is uniformly

bounded above their payoff from pk by proposing some mechanism (δ((x′,t′),θN ), {0})

where (x′, t′) ∈ Xj×Tj sufficiently closely approximates (x, t̃), but this contradicts the

fact that their payoff should be no more than that under pk in the j →∞ limit.

Since Ppk [y = y∗(θN , x)|θN , x 6= xo] = 1, it follows from the fact that λk puts strictly

positive probability on θN−1 that Ppk [y > y∗(θN−1, x)|θN−1, x 6= xo] = 0 (assuming

Ppk [x 6= xo|θN−1] > 0 so that this conditional probability is even relevant). Therefore,

if Ppk [y = y∗(θN−1, x)|θN−1, x 6= xo] < 1, it must be that Ppk [y < y∗(θN−1, x)|θN−1, x 6=

xo] > 0. The same argument as for the θN case shows that this is not possible.

Proceeding with this argument inductively by moving down the θn establishes that

Condition 4 holds for all θ. �

OA.10 Generalization of Proposition 5

Proposition OA 4. Suppose the environment is MCS with definite gains and that,

for every λ̃ ∈ ∆(Θ) and x 6= xo, either quasi-strictness holds at x, or there exists a

sequence {xi} converging to x such that y∗(λ̃, xi) converges to y∗(λ̃, x), quasi-strictness

holds at each xi, and either one of the following conditions hold:

1. (a) u(θ, x, y∗(λ̃, x)) is constant in θ.

(b) u(θ, xi, y
∗(λ̃, xi)) > u(θ, x, y∗(λ̃, x)) for all i.

(c) v(θ, xi, y
∗(λ̃, xi)) > v(θ, x, y∗(λ̃, x)) for all i.

2. (a) u(θ, x, y∗(λ̃, x)) is constant in θ.

(b) v(θ, x, y∗(λ̃, x)) is strictly increasing in θ.

Then payoff-plausibility selects the least-cost separating outcomes when contracts

must be explicit.
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Observe that the sufficient conditions cover the firm-employee example (the issues

with s = 0 are handled by Condition 3′ in particular, while Condition 3′′ takes care of

s = 1), as well as the quasi-strict environments of Definition 10.

Proof. We first establish that every contracting equilibrium outcome that is payoff-

plausible must be separating. Let p be a contracting equilibrium outcome with pooling,

and let θ be the highest type that does not fully separate. There must be some

x ∈ X, t ∈ R, λ̃ ∈ ∆(Θ), and α ∈ [0, 1] such that U(θ, p) = α(u(θ, x, y∗(λ̃, x)) − t),

U(θ, p) ≤ α(u(θ, x, y∗(λ̃, x))−t) for all θ 6= θ, acceptance probability α is optimal for an

agent with belief λ̃ facing a contract committing to (x, t), and λ̃ is strictly lower than

δθ under FOSD. Since there are definite gains, U(θ, p) > 0, so u(θ, x, y∗(λ̃, x))− t > 0

and α > 0. Because α > 0, we have that v(θ, x, y∗(λ̃, x)) + g(t) ≥ 0.

We now analyze two cases depending on whether (x, λ̃) satisfies Condition 3 or it

satisfies either of the 3′ or 3′′ conditions.

Case 1: Condition 3 holds for (x, λ̃). Consider t′ = αt+u(θ, x, y∗(θ, x))−αu(θ, x, y∗(λ̃, x)) >

t. Observe that u(θ, x, y∗(θ, x)) − t′ = U(θ, p), u(θ, x, y∗(θ, x)) − t′ > U(θ, p) for all

θ < θ, and v(θ, x, y∗(θ, x)) + g(t′) > 0. Thus, (x, t′) strictly satisfies the constraints

in the type θ principal’s plausibility threshold problem given by (2). Moreover, when

the agent responds to a contract proposing (x, t′) under the belief that θ = θ, the

type θ principal obtains a payoff equal to that they get from p. The constraints would

continue to be satisfied if t′ were decreased slightly, and type θ would get a strictly

higher payoff than U(θ, p), which means that p is not payoff-plausible.

Case 2: Condition 3′ or 3′′ holds for (x, λ̃). Consider t′i = αt + u(θ, xi, y
∗(θ, xi)) −

αu(θ, x, y∗(λ̃, x)) > t. By construction, u(θ, xi, y
∗(θ, xi))−t′i = U(θ, p), u(θ, xi, y

∗(θ, xi))−

t′i < U(θ, p) for all θ < θ, and v(θ, x, y∗(θ, x)) + g(t′i) > 0. A similar argument to that

in Case 1 then shows that p can not be payoff-plausible.

Having shown that every payoff-plausible contracting equilibrium is separating, we

conclude the proof by observing that payoff-plausibility requires that every principal

type obtain a weakly higher payoff than their least-cost separating payoff. It follows
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that payoff-plausibility selects the least-cost separating outcomes. �

OA.11 Proof of Proposition 7.1

Proof. Consider an arbitrary mechanism (µ,MP ,MA). Throughout the proof, let

U(θ,mP ,mA) ≡ Eµ(mP ,mA)[U(θ, x)] and V (θ,mP ,mA) ≡ Eµ(mP ,mA)[V (θ, x)] denote the

expected utility of the principal and agent, respectively, when the principal’s type is θ

and x is drawn according to µ(mP ,mA).

Let Ψ : ∆(MP )Θ ×∆(MA) ⇒ ∆(Θ) be the correspondence given by

Ψ(πθ1 , ..., πθN , πA) = ∆(arg min
θ∈Θ

Eπθ×πA [V (θ,mP ,mA)]).

Ψ maps profiles of principal and agent behavior strategies into beliefs that put support

only on the principal types that minimize the agent’s conditional expected utility.

For every θ ∈ Θ, let Πθ : ∆(MA) ⇒ ∆(MP ) be the correspondence given by

Πθ(πA) = ∆(arg max
mP∈MP

EπA [U(θ,mP ,mA)]).

Πθ maps agent behavior strategies into the corresponding optimal behavior strategies

for the type θ principal in the subgame in which (µ,MP ,MA) has been accepted.

Let ΠA : ∆(Θ)×∆(MP )Θ ⇒ ∆(MA) be the correspondence given by

ΠA(λ̃, πθ1 , ..., πθN ) = ∆(arg max
mA∈MA

Eλ̃[Eπθ [V (θ,mP ,mA)]]).

ΠA maps profiles of beliefs over the principal’s type and behavior strategies into

the corresponding optimal behavior strategies for the agent in the subgame in which

(µ,MP ,MA) has been accepted.

For every j ∈ N, let Φj : ∆(Θ)×∆(MP )Θ ×∆(MA) ⇒ ∆(Θ)×∆(MP )Θ ×∆(MA)
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be the correspondence given by

Φj(λ̃, πθ1 , ..., πθN , πA)

={(λ′, π′θ1 , ..., π
′
θN
, π′A) ∈ ∆(Θ)×∆(MP )Θ ×∆(MA) :

(1) ∃λ′′ ∈ Ψ(πθ1 , ..., πθN , πA) s.t. λ′(θ) =
1

j + 1

1

|Θ|
+

j

j + 1
λ′′(θ) ∀θ ∈ Θ,

(2) π′θ ∈ Πθ(πA) ∀θ ∈ Θ, and

(3) ∃π′A ∈ ΠA(λ̃, πθ1 , ..., πθN )}.

By construction, Φj is everywhere non-empty-valued, compact-valued, convex-valued,

and upper hemicontinuous, and ∆(Θ) × ∆(MP )Θ × ∆(MA) is a compact and con-

vex subset of a Euclidean space. Thus, by Kakutani’s fixed point theorem, some

(λj, πj,θ1 , ..., πj,θN , πj,A) satisfies (λj, πj,θ1 , ..., πj,θN , πj,A) ∈ Φj(λj, πj,θ1 , ..., πj,θN , πj,A). Since

∆(Θ)×∆(MP )Θ×∆(MA) is sequentially compact, there is a limit point (λ∗, π∗θ1 , ..., π
∗
θN
, π∗A)

of the sequence {(λj, πj,θ1 , ..., πj,θN , πj,A)}j∈N. Suppose (by restricting attention to a

convergent subsequence if necessary) that limj→∞(λj, πj,θ1 , ..., πj,θN , πj,A) = (λ∗, π∗θ1 , ..., π
∗
θN
, π∗A).

Standard arguments show that (π∗θ1 , ..., π
∗
θN
, π∗A) is a sequential continuation equilibrium

when mechanism (µ,MP ,MA) is accepted given belief λ∗.

We conclude by arguing that, when the principal types receive their principal-

optimal safe payoffs, there is a sequential continuation equilibrium that deters every

principal type from proposing (µ,MP ,MA). Suppose first that Eπ∗θ×π∗A [V (θ,mP ,mA)] ≤

0 for some θ. Then it must be that λ∗ puts positive probability only on those types

for which the conditional expected utility of the agent is weakly less than their outside

option utility. This means that Eλ∗ [Eπθ×πA [V (θ,mP ,mA)]] ≤ 0, so it is a sequential con-

tinuation equilibrium outcome for the agent to reject (µ,MP ,MA) when offered. Such

an outcome deters every principal type from proposing (µ,MP ,MA). Now suppose that

Eπ∗θ×π∗A [V (θ,mP ,mA)] > 0 for all θ ∈ Θ. Since (π∗θ1 , ..., π
∗
θN
, π∗A) is a sequential continu-

ation equilibrium when mechanism (µ,MP ,MA) is accepted, incentive compatibility of

the principal types implies that Eπ∗θ×π∗A [U(θ,mP ,mA)] ≥ Eπ∗
θ′×π

∗
A

[U(θ,mP ,mA)] for all
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θ, θ′ ∈ Θ. Thus, (π∗θ1 , ..., π
∗
θN
, π∗A) induces an safe allocation, which means that every

principal type obtains an expected utility from proposing (µ,MP ,MA) that is weakly

lower than their principal-optimal safe payoff. �

OA.12 Contracting Equilibrium Payoffs Outside of

MCS Environments

Outside of MCS environments, payoff-plausibility is not defined, and so does not elimi-

nate contracting equilibria that fail to principal-payoff-dominate the principal-optimal

safe outcomes in non-MCS environments. Despite this, it may still be reasonable to

expect the principal types to achieve at least their payoffs from the principal-optimal

safe outcomes, especially when a principal-optimal safe outcome can be approximated

by strictly safe outcomes. Indeed, suppose the principal proposed a direct mechanism

corresponding to a strictly safe outcome and told the agent that they would report

their type truthfully should the mechanism be accepted. Then it would be optimal for

the agent, assuming they believed the principal’s claim, to accept the offer and obedi-

ently follow any action recommendation regardless of their beliefs about the principal’s

type. To the extent that such communication is focal, equilibria in which any principal

type receives a lower payoff than in the principal-optimal safe outcome seem unlikely

to arise. The following proposition shows that there are always equilibria in which

every principal type achieves a weakly higher payoff than in the principal-optimal safe

outcomes.

Proposition OA 5. With or without moral hazard, there are always contracting equi-

librium outcomes that principal-payoff-dominate the principal-optimal safe outcomes in

both the general-mechanism and deterministic-mechanism games.

We handle the proof for the general-mechanism game. An analogous argument

proves it for the deterministic-mechanism game.
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Proof of Proposition OA 5 for the General-Mechanism Game. Consider an alternate principal-

agent game where the principal has the option to forgo proposing any of the usual

mechanisms and can instead unilaterally implement an alternative “outside option” x′o

that results in the same payoffs as a principal-optimal safe outcome. Formally, this

game proceeds as follows: The principal observes their type θ, and either chooses x′o

or proposes a mechanism (µ,MP ) to the agent. If the principal chooses x′o, both the

principal and agent receive their conditional expected utility from a principal-optimal

safe outcome given the principal’s type. If the principal proposes a mechanism to the

agent, the game proceeds and the payoffs of the principal and agent are the same as in

the standard principal-agent game.

Arguments that are almost identical to the proof of Theorem 1 imply the existence

of a contracting equilibrium in this environment, which we denote by p ∈ ∆(Θ× (X ∪

{x′o})×Y ). Standard arguments show that this outcome is incentive compatible in the

original principal-agent game.

Let q∗ = ∆(Θ×X × Y ) be a principal-optimal safe outcome, and for each θ ∈ Θ,

let q∗(θ) ∈ ∆(X × Y ) be conditional distribution of q∗ given type θ. Consider the di-

rect mechanism (µ∗,Θ) where µ∗ is given by µ∗(θ) = Pp[{θ}×X × Y ]marg{θ}×X×Y p+

Pp[{θ} × {x′o} × Y ]q∗(θ). This mechanism maps the principal type into the distribu-

tions over principal action and recommendation pairs that are identical to outcome

p, except that instances of x′o are replaced by the q∗ allocation corresponding to the

principal’s type. By construction, this mechanism is incentive compatible, individu-

ally rational, and results in each type obtaining a weakly higher expected utility than

their principal-optimal safe payoff. Additionally, because p is a contracting equilibrium

outcome in the alternate principal-agent game defined earlier, there is a sequential con-

tinuation equilibrium after any mechanism is proposed that gives each principal type a

weakly lower payoff than they obtain from proposing (µ∗,Θ). We conclude that (µ∗,Θ)

corresponds to a contracting equilibrium outcome that principal-payoff-dominates the

principal-optimal safe mechanism. �

51



OA.13 Communication-Based Refinements

OA.13.1 Definitions for the General-Mechanism Game

Robust Neologism Proofness: We now formally develop an adaptation of RNP

for our informed principal setting. For every Θ̃ ⊆ Θ, let B(Θ̃) be the set of agent

action rules taking principal actions into agent responses that are best responses to

some fixed belief supported on Θ̃:

B(Θ̃) = {β ∈ ∆(Y )X : β is measurable, and

∃λ̃ ∈ ∆(Θ̃) s.t. β(x) ∈ ∆(arg max
y∈Y

Eλ̃[V (θ, x, y)]) ∀x ∈ X}.

Also, let U(θ, p) ≡ Ep[U(θ, x, y)|θ] denote the expected utility of the type θ ∈ Θ

principal from outcome p ∈ ∆(Θ×X × Y ).

Definition OA 1. Contracting equilibrium outcome p has a credible robust neol-

ogism if there exists some χ ∈ ∆(X) and non-empty subset of principal types Θ̃ ⊆ Θ

such that

1. minλ̃∈∆(Θ̃) Eχ[maxy∈Y Eλ̃[V (θ, x, y)]] > 0,

2. minβ∈B(Θ̃) Eχ[Eβ(x)[U(θ, x, y)]] > U(θ, p) for some θ ∈ Θ̃, and

3. maxβ∈B(Θ̃) Eχ[Eβ(x)[U(θ′, x, y)]] < U(θ′, p) for all θ′ 6∈ Θ̃.

The first condition says that the agent strictly prefers to accept a contract proposal in

which the principal commits to χ for any belief about the principal’s type supported

on Θ̃.1 The second condition says that there is some principal type in Θ̃ that would

obtain a strictly higher payoff than they do from p by proposing χ, as long as the agent

believes the principal’s type belongs to Θ̃, while the third condition says that every

type outside of Θ̃ would do strictly worse by proposing χ given such agent beliefs.

1In our formalism, the principal cannot directly propose a χ ∈ ∆(X). However, they can propose
a mechanism (µχ, {0}) in which the message space of both the principal and agent is empty, and the
resulting distribution over principal actions is χ, i.e. margXµχ = χ.
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Definition OA 2. A contracting equilibrium outcome is robust neologism proof

(RNP) if it does not have a credible robust neologism.

Strongly Justified Communication Equilibrium: For every Θ̃ ⊆ Θ and distri-

bution over principal actions χ ∈ ∆(X), let C(Θ̃, χ) be the set of agent responses to a

proposal of χ given by

C(Θ̃, χ) = {(α, β) ∈ [0, 1]×B(Θ) : ∃λ̃ ∈ ∆(Θ̃) s.t.

(1) β(x) ∈ ∆(arg max
y∈Y

Eλ̃[V (θ, x, y)]) ∀x ∈ X,

(2) α = 0 if Eχ[max
y∈Y

Eλ̃[V (θ, x, y)]] < 0, and

(3) α = 1 if Eχ[max
y∈Y

Eλ̃[V (θ, x, y)]] > 0}.

A given agent response consists of a probability α ∈ [0, 1] of accepting the proposal and

an action rule β ∈ B(Θ) governing the agent’s play should they accept the proposal.

Condition 1 ensures that β is optimal for some fixed belief λ̃ with support on Θ̃, while

Conditions 2 and 3 say that the agent’s decision of whether to accept the proposal is

also optimal given belief λ̃. We let Γ(Θ̃, χ) ≡ ∆(C(Θ̃, χ)) be the set of distributions

over all such agent responses.

Fixing χ ∈ ∆(X) and outcome p ∈ ∆(Θ×X×Y ), consider the following procedure

for computing sets of principal types. Initialize Θ
−1

(χ, p) = Θ. For k ∈ N, let

D̃k
θ (χ, p) = {γ ∈ Γ(Θ

k−1
(χ, p), χ) : Eγ[αEχ[Eβ(x)[U(θ, x, y)]]] > U(θ, p)},

D̃0,k
θ (χ, p) = {γ ∈ Γ(Θ

k−1
(χ, p), χ) : Eγ[αEχ[Eβ(x)[U(θ, x, y)]]] = U(θ, p)},

Θ†,k(χ, p) = {θ ∈ Θ : D̃k
θ (χ, p) ∪ D̃

0,k
θ (χ, p) 6⊆ ∪θ′ 6=θD̃θ′(χ, p)},

Θ
k
(χ, p) =

Θ†,k(χ, p) if Θ†,k(χ, p) 6= ∅

Θ
k−1

(χ, p) if Θ†,k(χ, p) = ∅
, and then set

Θ
∞

(χ, p) = ∩k∈NΘ
k
(χ, p).
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D̃k
θ (χ, p) gives the set of distributions over agent best responses to a belief supported

in Θ
k−1

(χ, p) that would make type θ strictly better off by proposing χ than sticking

with the outcome p. D̃0,k
θ (χ, p) gives the analogous set of distributions that make type

θ indifferent between proposing χ and sticking with p. Θ†,k(χ, p) is the set of principal

types for which there is some mixture over agent best responses to the proposal of χ and

beliefs supported on Θ
k−1

(χ, p) that makes that type (weakly) prefer to propose such a

mechanism than stick with p and makes every other type (weakly) prefer sticking with

p. Θ
k
(χ, p) equals Θ†,k(χ, p) if Θ†,k(χ, p) is non-empty and otherwise equals Θ

k−1
(χ, p),

and Θ
∞

(χ, p) is the limit of Θ
k
(χ, p) as k →∞.

Let ΘSJ,†(χ, p) = {θ ∈ Θ
∞

(χ, p) : ∃(1, β) ∈ C(Θ
∞

(χ, p), χ) s.t. Eχ[Eβ(x)[U(θ, x, y)]] ≥

U(θ, p)} be the set of principal types in Θ
∞

(χ, p) for which there is some agent best

response to the proposal of χ and beliefs supported on Θ
∞

(χ, p) that accepts the pro-

posal and makes that type (weakly) prefer to propose such a mechanism than stick

with p. Then let

ΘSJ(χ, p) =

ΘSJ,†(χ, p) if ΘSJ,†(χ, p) 6= ∅

Θ
∞

(χ, p) if ΘSJ,†(χ, p) = ∅
.

Definition OA 3. The set of strongly justified types for χ given outcome p is

ΘSJ(χ, p).

Definition OA 4. Outcome p is a strongly justified communication equilibrium

(SJCE) if it is incentive compatible and, for every χ ∈ ∆(X), there is some γ ∈

Γ(ΘSJ(χ, p), χ) such that Eγ[αEχ[Eβ(x)[U(θ, x, y)]]] ≤ U(θ, p) for all θ ∈ Θ.

OA.13.2 Definitions for the Deterministic-Mechanism Game

Robust Neologism Proofness:

Definition OA 5. Contracting equilibrium outcome p has a credible robust neolo-

gism if there exists some x ∈ X and non-empty subset of principal types Θ̃ ⊆ Θ such
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that

1. minλ̃∈∆(Θ̃) maxy∈Y Eλ̃[V (θ, x, y)] > 0,

2. miny∈BR(Θ̃,x) U(θ, x, y)] > U(θ, p) for all θ ∈ Θ̃, and

3. maxy∈BR(Θ̃,x) U(θ′, x, y)] < U(θ′, p) for all θ′ 6∈ Θ̃.

Definition OA 6. A contracting equilibrium outcome is robust neologism proof

(RNP) if it does not have a credible robust neologism.

Strongly Justified Communication Equilibrium: For every Θ̃ ⊆ Θ and x ∈ X,

let C(Θ̃, x) be the set of agent responses to a proposal of x given by

C(Θ̃, x) = {(α, β) ∈ [0, 1]×∆(Y ) : ∃λ̃ ∈ ∆(Θ̃) s.t.

(1) β ∈ ∆(arg max
y∈Y

Eλ̃[V (θ, x, y)]),

(2) α = 0 if max
y∈Y

Eλ̃[V (θ, x, y)] < 0, and

(3) α = 1 if max
y∈Y

Eλ̃[V (θ, x, y)] > 0}.

We let Γ(Θ̃, x) ≡ ∆(C(Θ̃, x)) be the set of distributions over all such agent responses.

Fixing x ∈ X and outcome p ∈ ∆(Θ × X × Y ), consider the following procedure

for computing sets of principal types. Initialize Θ
−1

(x, p) = Θ. For k ∈ N, let

D̃k
θ (x, p) = {γ ∈ Γ(Θ

k−1
(x, p), x) : Eγ[αEβ[U(θ, x, y)]] > U(θ, p)},

D̃0,k
θ (x, p) = {γ ∈ Γ(Θ

k−1
(x, p), x) : Eγ[αEβ[U(θ, x, y)]] = U(θ, p)},

Θ†,k(x, p) = {θ ∈ Θ : D̃k
θ (x, p) ∪ D̃

0,k
θ (x, p) 6⊆ ∪θ′ 6=θD̃θ′(x, p)},

Θ
k
(x, p) =

Θ†,k(x, p) if Θ†,k(x, p) 6= ∅

Θ
k−1

(x, p) if Θ†,k(x, p) = ∅
, and then set

Θ
∞

(x, p) = ∩k∈NΘ
k
(x, p).

Let ΘSJ,†(x, p) = {θ ∈ Θ
∞

(x, p) : ∃(1, β) ∈ C(Θ
∞

(x, p), x) s.t. Eβ[U(θ, x, y)] ≥

U(θ, p)} be the set of principal types in Θ
∞

(x, p) for which there is some agent best

55



response to the proposal of x and beliefs supported on Θ
∞

(x, p) that accepts the

proposal and makes that type (weakly) prefer to propose such a mechanism than stick

with p. Then let

ΘSJ(x, p) =

ΘSJ,†(x, p) if ΘSJ,†(x, p) 6= ∅

Θ
∞

(x, p) if ΘSJ,†(x, p) = ∅
.

Definition OA 7. The set of strongly justified types for x given outcome p is

ΘSJ(x, p).

Definition OA 8. Outcome p is a strongly justified communication equilib-

rium (SJCE) if it is incentive compatible and, for every x ∈ X, there is some

γ ∈ Γ(Θ
∞

(x, p), x) such that Eγ[αEβ[U(θ, x, y)]] ≤ U(θ, p) for all θ ∈ Θ.

OA.14 Payoff-Plausibility Characterizes RNP and

SJCE

Proposition OA 6. Suppose the environment is MCS. In both the general-mechanism

and deterministic-mechanism games, any RNP or SJCE outcome must be payoff-

plausible, and every payoff-plausible outcome is both RNP and SJCE.

Here we give the proof for the general-mechanism game. The proof for the deterministic-

mechanism game is analogous.

Lemma OA 14. Suppose the environment is MCS. In the general-mechanism game,

any RNP or SJCE outcome must be payoff-plausible.

Proof of Lemma OA 14 for RNP. Let p be an RNP outcome. We proceed by induction

on the type index n beginning with the base case n = N . Take any χ ∈ ∆(X×T ) that

solves the type θN optimization problem in (1). For every ε > 0, let χε ∈ ∆(X × T )

be the distribution obtained from χ by shifting every t to t + ε. Then the constraints
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in (1) are strictly satisfied by qε. Robust neologism proofness demands that the type

θN principal obtain a payoff at least Eχ[u(θN , x, y
∗(θN , x))− t]− ε. Since this holds for

all ε > 0, it follows that U(θN , p) ≥ Eχ[u(θN , x, y
∗(θN , x))− t].

Now suppose that payoff-plausibility holds for all n′′ > n but not for n itself. Take

any χ ∈ ∆(X × T ) that solves the type θn optimization problem in (1), and let q ∈

∆(X×T ×Y ) be the distribution obtained from χ by setting y = y∗(θn, x) and shifting

every t to t + κ, where κ > 0 is chosen so that Eq[u(θn, x, y
∗(θn, x)) − t] = U(θn, p).

Additionally, let χ′ = margX×T q and, for every ε > 0, let χ′ε ∈ ∆(X × T ) be the

distribution obtained from χ′ by shifting every t to t − ε. Every type below θn gets

a strictly lower payoff from q than p. Moreover, since payoff-plausibility holds for all

n′′ > n, all types above θn must get a weakly lower payoff from q than p. If additionally

every type above θn were to get a strictly lower payoff from q than p, then there would be

a credible robust neologism corresponding to χ′ε and θn for some sufficiently small ε > 0,

a contradiction. Suppose instead that there are types above θn that would be indifferent

between q and p, and let Θn be the set of such types with θn′′ being the maximum of Θn.

Then either (1) there is a credible robust neologism corresponding to χ′ε and {θn}∪Θn

for some sufficiently small ε > 0, or (2) there is a type outside of {θn}∪Θn, say θ̃n that

would weakly prefer playing χ′ when the agent responds under the belief that θ = θn′′

over their outcome in p. Case (1) contradicts p being RNP. In Case (2), it must be that

θ̃n obtains a strictly higher payoff from playing χ′ when the agent responds under the

belief that θ = θn′′ than when the agent responds under the belief that θ = θn. This

implies that Eχ′ [u(θn′′ , x, y
∗(θn′′ , x)) − u(θn′′ , x, y

∗(θn, x))] > Eχ′ [u(θn′ , x, y
∗(θn′′ , x)) −

u(θn′ , x, y
∗(θn, x))] for all n′ < n′′. Consider the χ′′ ∈ ∆(X × T ) obtained from χ′ by

shifting every t up to t+Eχ′ [u(θn′′ , x, y
∗(θn′′ , x))−u(θn′′ , x, y

∗(θn, x))]. This χ′′ strictly

satisfies the constraints in the plausibility threshold problem of type θn′′ given in (1)

and gives θn′′ the same payoff as p. This means that payoff-plausibility does not hold

for θn′′ , contradicting our inductive assumption. �

Proof of Lemma OA 14 for SJCE. Let p be an SJCE outcome. We again proceed
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by induction, beginning with the base case n = N . Take any χ ∈ ∆(X × T )

that solves the type θN optimization problem in (1), and let χε ∈ ∆(X × T ) be

the distribution obtained from taking χ and shifting every t to t + ε. Suppose that

U(θN , p) < Eχ[u(θN , x, y
∗(θN , x)) − t]. Then θN is the unique strongly justified type

for χε for all sufficiently small ε > 0. Consequently, SJCE demands that the type θN

principal obtain a payoff of at least Eχ[u(θN , x, y
∗(θN , x))− t]− ε, and since this holds

for all ε > 0, a payoff of at least Eχ[u(θN , x, y
∗(θN , x))− t].

Now suppose that payoff-plausibility holds for all n′′ > n but not for n itself.

Take any χ ∈ ∆(X × T ) that solves the type θn optimization problem in (1), and let

χε ∈ ∆(X×T ) be the distribution obtained from taking χ and shifting every t to t+ε.

Let ε > 0 be sufficiently small so that U(θn, p) < Eχ[u(θN , x, y
∗(θN , x))− t]− ε. If all

strongly justified types for χε are above θn, a similar argument to the case for θN above

then implies that U(θn, p) ≥ Eχ[u(θn, x, y
∗(θn, x)) − t] − ε, a contradiction. Suppose

instead that there is a strongly justified type for χε below θn. There must be some

n′′ > n such that type θn′′ is also strongly justified. Without loss of generality, assume

that n′′ is the highest such value. Consequently, there must be some q′ ∈ ∆(X×T×Y )

and α ∈ (0, 1] such that margX×T q
′ = χε, Pq′ [y ≤ y∗(θn′′ , x)] = 1, either α < 1 or

Pq′ [u(θn′′ , x, y) < u(θn′′ , x, y
∗(θn′′ , x))] > 0, and (1 − α)Eq′ [u(θn′′ , x, y) − t] = U(θn′′ , p)

and (1− α)Eq′ [u(θn′ , x, y)− t] ≤ U(θn′ , p) for all n′ < n′′. Consider now the allocation

q′′ ∈ ∆(X × T × Y ) obtained from q′ by shifting every y to y∗(θn′′ , x) and shifting

every t up to t + Eq′ [u(θn′′ , x, y
∗(θn′′ , x))] − αEq′ [u(θn′′ , x, y)]. The allocation given by

q′′ strictly satisfies the constraints in the type θn′′ optimization problem given in (1)

and gives θn′′ a payoff of U(θn′′ , p). This means that the payoff-plausibility threshold

for θn′′ is strictly higher than U(θn′′ , p), contradicting our inductive assumption. �

Lemma OA 15. Suppose the environment is MCS. In the general-mechanism game,

any payoff-plausible outcome is both RNP and SJCE.

Proof of Lemma OA 15 for RNP. Suppose towards a contradiction that there is a cred-

ible robust neologism corresponding to χ and some non-empty Θ̃. Let θ = min(Θ̃), and
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consider the conditional distribution q∗(θ) ∈ ∆(X × T × Y ) where margX×T q
∗(θ) = χ

and y = y∗(θ, x) for all x 6= xo. By the definition of a credible robust neologism,

Eq∗(θ)[v(θ, x, y) + g(t)] > 0 and Eq∗(θ)[u(θ, x, y) − t] < U∗(θ) for all θ 6∈ Θ̃, so q∗(θ)

satisfies the constraints in (1) for type θ. Consequently, θ’s payoff must be weakly

greater that from q∗(θ), but this contradicts there being a credible robust neologism

corresponding to χ and Θ̃. �

Proof of Lemma OA 15 for SJCE. Fix some χ ∈ ∆(X × T ) and let p∗ denote the

outcome of the contracting equilibrium. We will show by induction that, for all k ∈

N, there is a best response γ ∈ Γ(Θ
k
(χ, p∗), χ) that deters all principal types from

proposing χ.

We begin with the base case k = 0. If every agent best response to χ makes every

principal type no better off than in p∗, then we are done. Suppose instead that there

is some agent best response to χ that makes some principal type strictly better off

than in p∗. To obtain some γ ∈ Γ(Θ
0
(χ, p∗), χ) that deters the principal types, it will

be sufficient to consider the family of agent posterior beliefs Λ0 = {λ̃ ∈ ∆(Θ) : ∃n ∈

{1, ..., N} s.t. λ̃(θm) = 0 if m < n or m > n + 1} that put positive probability on at

most two principal types, which must be adjacent. Note that FOSD gives a complete

ordering over Λ0. Since the mapping from agent beliefs to agent best responses is

upper hemicontinuous, there is some smallest (according to FOSD) λ ∈ Λ0 for which

there is an agent best response that makes some principal type in Θ
0
(χ, p∗) weakly

better off than in p∗. If the agent strictly prefers to either accept or reject χ under

belief λ, the associated best response is pinned down. If instead the agent is precisely

indifferent between accepting or rejecting χ, fix the agent best response to λ that

accepts the proposal with the smallest probability among the best responses for which

some principal type in Θ
0
(χ, p∗) weakly prefers χ to p∗. Let q ∈ ∆(X × T × Y ) be the

distribution obtained from χ under this agent best response, and let θn be the smallest

type in Θ
0
(χ, p∗) which weakly prefers q to p∗. We handle three cases: (1) λ(θn) = 1,

(2) λ(θ) > 0 for some θ > θn, and (3) λ(θ) > 0 for some θ < θn. In Cases (1) and (2),
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there is an agent best response to a belief fully supported on θn ∈ Θ
0
(χ, p∗) that deters

all principal types. We now establish that this is also true for Case (3). If there is

an agent best response to χ and a belief fully supported on θn that rejects χ, then we

are done. Otherwise, let q′ ∈ ∆(X × T × Y ) be the distribution obtained from χ and

the agent best response to a belief fully supported on θn. If θn were to get a strictly

higher payoff from q′ than p∗, then, for sufficiently small ε > 0, the χ′ε ∈ ∆(X × T )

that results from taking χ and shifting every t to t+Eq′ [u(θn, x, y)]−Eq[u(θn, x, y)]−ε,

satisfies the constraints in (1) and gives type θn a strictly higher payoff than p∗, which

violates payoff-plausibility. Since θn gets a weakly lower payoff from q′ than p∗, this

must hold for all lower types as well. Suppose that some higher type θ′′ would get a

strictly higher payoff from q′ than p∗, and suppose without loss of generality that θ′ is

the lowest such type. Then the χ′′ which results from taking χ and shifting every t to

t + Eχ[u(θ′′, x, y∗(θ′′, x)) − u(θ′′, x, y∗(θn, x))] would satisfy the constraints in (1) and

give type θ′′ a strictly higher payoff than p∗, violating payoff-plausibility.

We now establish the claim for arbitrary K ∈ N assuming that it is true for all

k < K. Since Θ
K

(χ, p∗) ⊆ Θ
K−1

(χ, p∗), if every γ ∈ Γ(Θ
K−1

(χ, p∗), χ) makes every

principal type no better than in p∗, then we are done. Suppose instead that there is

some γ ∈ Γ(Θ
K−1

(χ, p∗), χ) that makes some principal type strictly better off than in

p∗. Consider the family of agent posterior beliefs ΛK that are supported on Θ
K−1

(χ, p∗)

and put positive probability on at most two principal types, which must be adjacent.

A similar argument to the K = 0 case shows that there is some smallest (according to

FOSD) λ ∈ ΛK for which there is an agent best response that makes some principal

type in Θ
K

(χ, p∗) weakly better off than in p∗. As before, if the agent is precisely

indifferent between accepting or rejecting χ under belief λ, fix the agent best response

to λ that accepts the proposal with the smallest probability among the best responses

for which some principal type in Θ
K

(χ, p∗) weakly prefers χ to p∗. Let q ∈ ∆(X×T×Y )

be the distribution obtained from χ under this agent best response, and let θn be the

smallest type in Θ
K

(χ, p∗) that weakly prefers q to p∗. A similar argument to the base
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case above then shows that there must be some agent best response to a belief fully

supported on θn which deters all principal types from proposing χ.

Since there is some K ∈ N such that Θ
k
(χ, p∗) = Θ

∞
(χ, p∗) for all k > K, it follows

that there is a best response γ ∈ Γ(Θ
∞

(χ, p∗), χ) that deters all principal types from

proposing χ. Using this fact, a similar argument to those above then shows that there

is a best response γ ∈ Γ(ΘSJ(χ, p∗), χ) that deters all principal types from proposing

χ, which means that p∗ is an SJCE outcome. �
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