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Abstract

Trades in today’s financial system are inherently subject to settlement uncertainty.

This paper explores tokenization as a potential technological solution. A token sys-

tem, by enabling programmability of assets, can be designed to eradicate settlement

uncertainty. We study the allocations achieved in a decentralized market with either

the legacy settlement system or a token system. Tokenization can improve efficiency

in markets subject to a limited commitment problem. However, it also materially al-

ters the information environment, which in turn aggravates a hold-up problem. This

limits potential gains from resolving settlement uncertainty, particularly for markets

that depend on intermediaries.
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1 Introduction

Two traders agree on an asset sale. How can each party ensure that, when the time
comes to settle the trade, the other will keep their side of the bargain? Markets have
adopted various solutions to resolve the age-old problem of limited commitment. Third-
party intermediaries and platforms, such as exchanges or sponsors, facilitate the orderly
settlement of transactions. Margin requirements and other uses of collateral ensure that
future payments tied to contractual obligations are serviceable. Traders build long-term
relationships and a reputation for credibility.

Despite these practices, trades commonly fail to be settled (Fleming and Garbade,
2005). The potential for systematic settlement fails was put on full display during the
Global Financial Crisis. In 2008, settlement fails in Treasury markets reached a daily
volume of 400 billion dollars per day. Chronic settlement fails in the Treasury market
lead the Treasury Market’s Practices Group (TMPG) to introduce a “fails charge” to
decrease traders’ incentives to fail (see (Garbade et al., 2010)).1 While the fails charge
was effective at reducing the incidence of chronic fails, some fails continue to occur as
described by Fleming and Keane (2016).

Settlement fails reflect the institutional and technological feature of the current set-
tlement system – settlement depends on traders individually submitting settlement in-
structions that correspond to their contractual obligations from trading activity. When
incentives break down, so does settlement.

This paper explores the potential for a settlement system based on distributed ledger
technology (DLT) as a potential technological solution to the inability to commit inher-
ent in the current settlement system. In this paper, security tokenization refers to the
representation of traditional financial assets and collateral on a distributed ledger. The
innovation of tokenization we focus on is the programmability of assets.2 Programmability
allows traders to commit to settlement, thereby eliminating the potential for fails.

Does a token system strictly improve upon a legacy settlement system because it can
eliminate settlement risk? In a setting where trading is endogenous, we show that it
is not the case. With the gain of eliminating settlement risk, an information problem

1The Treasury Market Practices Group (TMPG) is a group of market professionals committed to sup-
porting the integrity and efficiency of the Treasury, agency debt, and agency mortgage-backed securities
markets. See: https://www.newyorkfed.org/tmpg.

2The idea of programmability is closely related to “smart contracts.” The Financial Stability Board
notes that “Smart contracts use computer protocols to execute, verify, and constrain the performance of
a contract. In doing so, they can automate decision-making, by allowing self-executing computer code
to take actions at specified times and/or based on reference to the occurrence (or non-occurrence) of an
action or event.” (Board, 2019)
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emerges. This is because eliminating settlement risk requires traders to reveal more
information to their counterparties regarding their positions, and this information can
materially impact equilibrium trade.

The intuition is simple but powerful. Suppose that A and B agree on a trade. To
guarantee settlement, A and B must jointly write a program that governs the change of
ownership of assets. In order to program an asset, a trader must have the ownership
right to that asset at the time the settlement must take place. Indeed, if the trader does
not already own the rights to the asset at the time of settlement, it is possible that the
trader will never acquire these rights, which would make ensuring settlement impossi-
ble. Knowing that a trader must own the asset she is trying to sell reveals information
that can be exploited by the buyer.

This information can lead to a hold-up problem and even breakdown trade alto-
gether. We consider a market where traders must enter inter-dependent trades in order
to achieve the optimal allocation of a long-lived asset. A key friction is limited commit-
ment. Traders are tempted to break their contracts when they learn that the private value
of holding onto an asset is high ex-post. We compare the effects of the two representa-
tive settlement systems on equilibrium trade: the “legacy system,” which represents the
current settlement system; and the “token system,” which allows for programming of
assets.

In a legacy system, when the commitment problem is too severe, some trades will
fail to settle. In contrast, a token system perfectly resolves settlement uncertainty arising
from limited commitment by equipping traders with technology to commit to future
settlement actions ex ante. However, some traders serve the role of an intermediary,
by bridging the transfer of assets across end sellers and buyers. Intermediaries may
not value the asset themselves, and buy and sell primarily to facilitate trade. Having to
reveal whether they own the asset exacerbates a hold-up problem because intermediaries
must purchase assets in advance to facilitate a transaction. When the hold-up problem
binds, trades may altogether fail to occur in equilibrium.

While tokenization is sought as a solution for decentralized markets, which are often
heavily reliant on intermediaries to make markets, designing a token system to resolve
settlement uncertainty may inadvertently exacerbate other frictions that are less signif-
icant under the legacy system. Notably, under the same conditions, we show that the
hold-up problem may not preclude trading in the legacy system. This is because the
legacy system ensures maximum privacy by decoupling trade execution and settlement.
In the legacy system, execution of a trade does not require possession of the asset being
sold, and so a buyer cannot assume that the seller has already obtained the security she
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is selling.
Programming assets to guarantee settlement is closely linked to the idea of “instant

settlement.” Instant settlement removes the time gap between trading and settlement,
thereby eliminating settlement uncertainty. This idea generalizes to a setting where
the commitment to future settlement, through programs, and trading happens simul-
taneously (See Lee et al. (2021a)). The information problem that arises from instant
settlement is highly relevant given that instant settlement is an explicit goal of several
industry projects. SIX, the company that runs the Swiss central securities depository as
well as the large value payment and repo trading system is building a “digital exchange”
that will have tokenized assets and cash on a blockchain to facilitate trading.3 SIX states
“the most fundamental of these changes is that trading and settlement will no longer be
separated. Instead, they will operate in the same cycle. We call this riskless trading.”
Similarly, Fnality, a project led by some large global banks, aims to provide instant set-
tlement. Finally, the Deutsche Börse is working with R3 to build a blockchain securities
platform HQLAx, which would allow instant settlement.

As in our model, the knowledge of ownership of an asset at the time of trade is a start-
ing point for all the existing designs of smart contract protocols. Thus, the implications
of our paper are orthogonal to other important design considerations, including consen-
sus mechanisms, privacy features, and commitment tools. In particular, our insight on
limitations of token systems apply to ongoing developments in cryptography aimed at
increasing privacy, which typically take as given an agreement to transfer, and examine
whether the transfer can be accomplished without revealing more detailed information
regarding identity.

Notably, our results are also orthogonal to the prevalent use of collateral observed in
decentralized finance (DeFi). Collateral is commonly used in environments of limited
commitment, and may not only protect lenders from credit risk, and but also improve
debtors’ incentives to fulfill obligations. In our model, programmability resolves set-
tlement risk, eliminating the need to provide debtor’s with incentives to fulfill their
obligations. An added benefit is that programmability enables traders in the tokenized
market to enter trades that are, de-facto insulated from credit and counterparty risk.
Specifically, the immutable transfer of assets in future periods ensures that future trans-
fers will occur regardless of a counter party’s solvency. In this respect, token systems are
“liquidity-efficient” – they require minimal tie-up of liquidity, such as collateral, com-
monly needed to secure transactions. This, of course, does not rule out arrangements

3Another relevant project is Broadridge’s Distributed Repo.
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where credit-risk sharing is desirable.4

The remainder of the paper is organized as follows. In Section 2, we relate our paper
to past works. Section 3 introduces our theoretical environment. Equilibrium analysis
is provided in 4. We make concluding remarks in Section 5. Proofs not provided in the
text can be found in the Appendix.

2 Related Literature

A new and growing literature examines the implications of blockchain technology in
financial settings (Townsend (2019)). This paper is the first to our knowledge that the-
oretically examines the impact of tokenization on markets with inter-dependent trades.
At heart, our paper provides a novel consideration in key design features widely shared
by initiatives to develop tokenized markets.

Several papers examine the use of blockchain technology in financial markets. A
key focus in these papers is the potential for decentralization, whether in the context
of cryptocurrencies (Chiu and Koeppl (2017)), settlement (Chiu and Koeppl (2019)), or
applications of smart contracts (Cong and He (2019)). In this context, important consid-
eration are costs and incentives for validators (Abadi and Brunnermeier (2018), Easley et
al. (2019)). While the protocols considered in our paper are potentially implementable in
a decentralized manner, this is not the contribution nor the focus. Rather, we highlight
the informational impact of key design features of tokenized securities, and outline how
these can adversely affect market efficiency. We do so by taking as given a token system
that resolves settlement risk, and consider how trade is endogenously determined. Lee
et al. (2021b) explicitly studies the design problem of zero settlement risk token systems,
taking as given a fixed set of trades.

Our paper contributes to studies of how the post-trade environment affects mar-
kets. Tokenized securities share properties of real-time gross settlement, which have
been studied extensively in the context of wholesale payments. Martin and McAndrews
(2008) explores how liquidity-saving mechanisms can enhance real-time gross settlement
systems, which resolve counterparty and credit risk but can be taxing on liquidity. This
tradeoff is explored in the context of clearing by Koeppl et al. (2012). Khapko and Zoican
(2020) explore how the option to choose faster settlement can lead to inefficiencies. We
highlight a novel concern that arises in the context of real-time gross settlement – the
implicit requirement that underlying assets must be owned at the time of settlement.
This novel form of inefficiency only arises when trade and commitment to settlement

4For examples of credit risk in settlement risk free systems, see Lee et al. (2021b).
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happen simultaneously – something that has become an increasingly relevant design
consideration with tokenization.

Our paper is related to the potential impact of post-trade information disclosure on
markets. Garratt et al. (2019) analyzes post-trade disclosure in the context of inter-dealer
markets, and shows that strategic platforms may choose inefficient disclosure policies.
Our paper shows that even though both the legacy and token system, within the context
of our framework, do not have access to timely, sensitive information, tokenization can
exhibit dramatic difference in equilibrium trade.

3 Model

We consider an asset market where traders enter bilateral trades that are interdepen-
dent, in the sense that an asset may be sold from one trader to another, and then sold fur-
ther to a third trader. Whether such trades are successfully settled, and whether traders
enter trades that maximize gains from trade can depend on the underlying settlement
environment. We consider two settlement systems: a legacy system, which represents
the current system where trade and settlement happen sequentially and independently;
and a token system, which uses programs to put in place irrevocable settlement instruc-
tions concurrently with trade.

Agents and Asset. There are three risk-neutral traders, i = {A, B, C}, and one indivisible
asset, which is initially owned by A. The model is divided into two stages: the trading
stage and the settlement stage. The model begins with the trading stage, during which
traders bilaterally meet with each other and negotiate trades. There are two meetings
that occur sequentially, which we represent as t = m1, m2. These meeting are between
A and B and between B and C. A and C never meet. In this sense, B is an intermediary
that facilitates transfers of the asset between A, who owns the asset in the beginning of
the model, and C, who can make better use of the asset in certain future periods. While
the role of B as an intermediary is assumed, for simplicity, it is important to recognize
that intermediaries can play an essential role in facilitating transactions that might not
otherwise occur. Specifically, in a more complex model, trades may not occur even if A
and C can meet. We expect that our results would extend to an environment where B
arises as an intermediary endogenously.

After the trading stage, the settlement stage starts. In the settlement stage, assets are
transferred between traders over three dates t = 1, 2, 3. In essence, the trades made in
t = m1, m2 consist of promises of exchanges in ownership of the asset, with the actual
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exchange scheduled to occur at dates t = 1, 2, 3.
Trader i derives some payoff vi

t from holding the asset at dates t = 1, 2, 3. Each trader
is endowed with multiple accounts where the asset can be held, and the ownership and
contents of accounts are assumed to be private. At any date t = 1, 2, 3, the asset must be
in the account of one of the traders and can be in only one account. We say that trader i
owns the asset at date t, and derives the associated payoff, if the asset is in one of trader
i’s account on that date.

Payoffs (summarized in Figure 1) vary between traders and across periods, and can
take values H, M, or L, where H > M > L > 0. A derives a payoff of L, L, and H for
holding the asset in t = 1, 2, 3, respectively. B derives a payoff of H for holding the asset
in t = 1, M̃ ∈ {0, M} in t = 2, and 0 in t = 3, where M̃ = M with probability λB and
0 otherwise. B privately learns M̃ in the beginning of date t = 2. C derives a payoff
0 in t = 1, H for holding the asset in t = 2, and H̃ ∈ {0, H} in t = 3, where H̃ = H
with probability λC and 0 otherwise. C privately learns H̃ at the beginning of t = 3.
Importantly, M̃ and H̃ are both revealed to B and C, respectively, in the settlement stage,
after trading has occurred. The revelation of M̃ and H̃ in the settlement stage, will be
the basis for B and/or C wanting to sometimes break agreements made in the trading
stage.

Traders’ time-dependent payoffs motivate trade. In each period, one of the three
traders gains the highest ex-ante payoff from owning the asset. In t = 1, B obtains H; in
t = 2, C obtains H; in t = 3, A obtains the H. Figure 2 depicts the optimal transfer of
the asset.

Meetings. All trading occurs in pair-wise meetings, which take place sequentially in the
trading stage t = m1, m2. B is matched with A and C, sequentially, but not necessarily
in that order. Matches between A and C never occur.5 With probability 1

2 , B is matched
with A first and then C; with equal probability, B is matched with C first. The order of
realized matches is known only to B, who participates in both matches. Communication
between traders is assumed to only occur during meetings. In other words, at any point
outside of meetings, traders are unable to send messages regarding who they met, the
contents of their accounts, or their private realizations.

During a meeting, traders negotiate a contract. Each trader knows only their history
and the current state of their own accounts. Given some price P, a contract Cτ1τ2

ij (P) is
a securities lending agreement that specifies the lender, trader i; the borrower, trader j;
the date τ1 at which the asset is transferred from i to j; and the date τ2 at which the

5As a result, we preclude any multilateral trading scheme.
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Figure 1: Traders’ payoffs. This figure shows the payoffs of traders A, B, and C over
t = 1, 2, 3.

asset is transferred back from j to i. We use Pτ1τ2
ij for shorthand to denote the price

corresponding to contract Cτ1τ2
ij (P), where j pays i at τ1, the date when the asset is first

transferred, for borrowing the asset. Note that an agreement to trade according to a
contract occurs during meetings t = m1, m2, whereas the actual exchange of the asset
and payments occur later in the settlement stage at t = 1, 2, 3. For example, if A agrees
to lend the asset to B for one period at price P, starting at t = 1, the contract is C12

AB(P).
To summarize, three obligations arise under contract Cτ1τ2

ij negotiated at some price Pτ1τ2
ij :

• at τ1, trader i transfers the ownership of the asset to trader j;

• at τ1, trader j transfers Pτ1τ2
ij to trader i; and

• at τ2, trader j returns asset to trader i.

We assume there exists some DvP settlement between assets and some numeraire used
for the exchange between traders i and j at τ1.6

For simplicity, the borrower j of the asset is assumed to make a take-it-or-leave-it
offer.7 This means that for the A− B pair, B makes a take-it-or-leave-it offer to A, and
for the B − C pair, C makes a take-it-or-leave-it offer to B. As a tie-breaking rule, we
assume that all else equal, traders prefer to trade.

Trades are “promises” made between traders. Whether these promises are kept de-
pends on whether settlement, the transfer of the asset from an trader to another, takes

6In a settlement system like Fedwire securities, settlement is initiated by the seller of the securities.
Upon sending securities, cash is automatically transferred from the account of the buyer to the account of
the seller.

7As will be evident, the lender in the sequence of trades will be privately informed. We adopt the
convention that the party without private information is making the offer, which simplifies the analysis
and is not crucial for the main results.
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place as stipulated in agreements made in the trading stage. We turn now to the de-
scription of the settlement technology.

Settlement. We consider two different type of settlement technology, which represent
the legacy system and the token system.

Under the legacy system, the asset moves out of an account only if the owner of the
account initiates a transfer. Formally, at dates t = 1, 2, 3, a trader currently in possession
of the asset unilaterally decides whether to transfer the asset to the account of another
trader or to keep it. The legacy system does not offer traders the ability to commit, so
the option not to transfer the asset holds regardless of existing contractual obligations.
As such, at each date in which a settlement action is required, traders explicitly choose
whether to execute the transfer of the asset pertaining to an outstanding trade or strate-
gically fail. To fix ideas, suppose that traders A and B entered a trade at either t = m1
or m2 that specifies that the asset must be transferred from A’s account to B’s account at
date 1. Then, at date 1, A can choose to initiate the transfer to B’s account, as specified
in the trade, or can choose not to do so and “fail.”

A trader that fails to settle suffers a cost ∆, which can be thought of as a reputational
cost or penalty. We make several assumptions on ∆ to allow for strategic fails to some-
times be attractive. First, we assume that ∆ ∈ (2L, 1

2 H), which motivates a commitment
problem.8 Second, we assume that M ≤ ∆.9

Under a tokenized system, an asset can be “programmed” during the trading stage
with transfer instructions to be completed in the settlement stage at future dates. This
allows traders to commit to settlement taking place as specified in the contract. The
transfer instructions associated with a contract are self-executing, so that the asset moves
from account to account without the need for any trader to take an action. Moreover, a
trader is unable to prevent a programmed transfer from occurring.

To add a transfer instruction to an asset, however, a trader must be the current holder
of that asset at the time the contract specifies it is to be transferred, and new instructions
must be feasible given all instructions already programmed in the asset. In the context
of our model, a trader making an agreement to lend the asset at the trading stage, as
per endowments or previous trade agreements, can program the asset to also make
sure that the asset will be returned at a specific date, as specified by the contract . This

8If ∆ is sufficiently high, no trader would enter a contract that they do not intend to honor. For similar
reasons, we do not consider collateralized contracts, which could remedy commitment issues if traders
are unconstrained. The lower bound on ∆ reduces the number of cases to consider, but our core results
do not depend on this assumption.

9This assumption is made purely to simplify the analysis.
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eliminates the commitment problem discussed above for the legacy system. Importantly,
this requires that bargaining over the terms of the trade and programming the asset occur
simultaneously. In this sense, programming assets according to contracts at the time of
negotiation achieves the same effect as if trades are immediately settled. As such, while
the actual settlement takes place in the future, we refer to the process by which assets are
irrevocably programmed to move in the future as constituting “immediate settlement.”
The operational features of a token system free of settlement risk is studied formally by
Lee et al. (2021b). An implication is that both parties of a negotiated trade confirm that
the conditions of the trade are satisfied.10

This requires that a contract must be feasible, as defined below:

Definition 1 (Feasibility Condition). A contract is feasible if at the time of agreement, the
terms of the contract can be settled immediately.

Equilibrium. Given a settlement system, a Perfect Bayesian equilibrium is a set of
traders’ offer strategies, acceptance strategies, and settlement strategies such that:

1. Traders’ offer and acceptance strategies maximize their expected payoffs;

2. Traders’ settlement strategies maximize their conditional expected payoffs;

3. Traders’ beliefs are consistent with Bayes’ Rule.

4 Equilibrium Trade and Settlement

The first-best allocation is a useful benchmark. The valuations of each trader lend
themselves to a clear first-best allocation. Figure 2 depicts the optimal transfer of the as-
set. This corresponds to the asset being under ownership of B at t = 1, C at t = 2, and A
or C at t = 3. In this section we consider whether the first-best allocation can be achieved
in a legacy and in a token settlement system. We derive the equilibrium under the legacy
system in section 4.1. We solve the problem by backward induction, analyzing the settle-
ment stage first, in section 4.1.1, and then the trading stage, in section 4.1.2., taking into
account the possible settlement outcomes. We consider the equilibrium under the token

10The requirements for programming asset under the token system free of settlement risk are consistent
with those found in Lee et al. (2021b), which formally studies operational features of token settlement
systems to achieve zero-settlement risk.
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Figure 2: Optimal allocation of asset. This figure shows the optimal asset allocation
between A, B, and C over t = 1, 2, 3, which is achieved through two contracts: C13

AB
and C23

BC. The red indicates ownership and transfer of the asset between traders. In the
beginning of t = 1, A starts with the asset, passes the asset to B, who holds it for one
period. Then, B passes the asset to C, who holds it for one period to the end of t = 2. At
the beginning of t = 3, the asset is transferred from C back to B to A, who holds it for
the final period.

system in section 4.2. Because the token system eliminates settlement uncertainty, the
trading and settlement stage are no longer analyze sequentially – instead, the incentives
to trade directly relate to whether desirable transactions are achieved.

4.1 Equilibrium under the Legacy System

There are two channels through which the first-best allocation may not be attained
in equilibrium. The first is a limited commitment problem and the second is a hold-up
problem. The commitment problem arises because the legacy system relies on incentive
compatibility of settlement actions. The fact that C may have an incentive to fail to return
the asset at date 3 in our model must be taken into account by the agents at the trading
stage. The hold-up problem arises because the value that B creates by intermediating
between A and C can exceed the value she derives from the ownership of the asset. C can
exploit this situation by making a “low-ball” offer to B. Taking this risk into account, B
may prefer not to intermediate. In the remainder of this section we consider each friction
in turn.

In the legacy system, traders may find it ex-post optimal to renege on contractual
obligations. In the context of the model, this problem arises when a trader chooses not
to return an asset at the designated date for private benefits. As an example, consider
the case of C. Since H > ∆, if C is able to acquire the asset at any date prior or equal
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Settlement stageTrading stage

t = m1

C learns his pri-

vate value, decides
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asset to B.

t = m2 t = 1

A transfers asset

to B.

t = 2 t = 3

B learns his pri-

vate value, decides

whether to transfer

asset to C.

Figure 3: Settlement in Legacy System. This figure highlights key decisions that take
place in the settlement stage conditional on C13

AB and C23
BC. At t = 3, H̃ is realized, and C

decides on whether to return the asset to B (which is then returned to A). At t = 2, M̃ is
realized, and B decides on whether to transfer the asset to C.

to t = 3, C will renege on any promise to return the asset at t = 3, as the cost ∆ is not
sufficient to deter a fail:

Lemma 1 (Strategic Fail). Suppose that C obtains the asset at t = 2 with a contractual obliga-
tion to return the asset at t = 3. C strategically fails on this promise if H̃ = H.

A, who is endowed with the asset initially, strictly prefers owning the asset at t = 3.
As a result, A may only agree to lend the asset to B, knowing that B will on-lend it to
C, if A believes that the likelihood of getting the asset back is sufficiently high, and/or
if he is compensated for taking on the risk.

The second channel is a hold-up problem. B is the only trader who is matched with
both the lender A and the borrower C.11 For C to acquire ownership of the asset in
t = 2, B must successfully negotiate two sides of the intermediation chain. As trades
occur asynchronously, this requires B to “make markets” by completing one side of the
chain in advance of the other, anticipating the outcome of that other trade.

It is common knowledge that gains from trade arise whenever the asset is transferred
from A to C in t = 2. Furthermore, when B’s expected valuation of t = 2 ownership,
E[M̃] is lower than the valuation of A or C, B’s incentives are aligned with acting strictly
as an intermediary, by running a “matched book.” In fact, if the possibility of successfully
building a matched book is low, B would be reluctant to make markets on behalf of the
other traders.

Herein lies the potential for a hold-up problem. As B privately values the asset
less than its owner A, he must pay a price in excess of his own valuation in order to

11This is reminiscent of over-the-counter markets, where intermediaries commonly play an outsized role
in reallocating assets between final buyers and sellers.
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acquire the asset on behalf of C. This creates the potential for C to strategically make a
discounted offer, based on the possibility that B has already acquired the asset from A.

With these two tensions in mind, let us consider the equilibrium under the legacy
system. We solve by backward induction. The optimal allocation requires traders to
successfully negotiate two trades in the trading period: C13

AB, which transfers the asset
from A to B for dates t = 1, 2, and C23

BC, which transfers the asset from B to C for dates
t = 2. In order for these trades to occur in equilibrium, we must verify whether it is
incentive compatible for traders to settle accordingly, and to enter such trades in the first
place.

4.1.1 Settlement stage in the legacy system

As a starting point, suppose that in the trading stage, B entered contracts C13
AB and

C23
BC with A and C, respectively, for some prices P13

AB, P23
BC. In the settlement stage, there

are two key settlement decisions to consider that are associated with C13
AB and C23

BC (See
Figure 3). The first settlement decision arises at t = 3 regarding C’s incentives to return
the asset to B as promised in C23

BC, which B needs in order to return it to A. In the
beginning of t = 3, C is supposed to return the asset back to B. By Lemma 1, C will
choose not to return the asset if H̃ = H is realized. If C fails to return the asset to B,
then B also fail to return the asset to A, resulting in a “daisy chain” of settlement fails.
By sometimes failing to return the asset to A, B incurs an expected cost λC∆.

The second settlement decision relates to B’s incentives to give the asset to C after
realizing M̃ = M. In the beginning of t = 2, B learns M̃, i.e. his updated valuation of
the asset in t = 2. Just as C reneges on his contract if H̃ = H, B may also want to renege
on his contract with C if profitable.

Figures 5 and 6 summarizes the settlement actions and terminal payoffs under C13
AB

and C23
BC. By Lemma 1, we have already characterized C’s settlement strategy at t = 3.

Given this, consider B’s decision in the beginning of t = 2 of whether to keep or break
his contract C23

BC with C. B reneges on his agreement to transfer the asset to C if holding
onto the asset, net of the penalty ∆, is more profitable than transferring the asset to C as
promised:

M̃− ∆︸ ︷︷ ︸
B’s valuation

> P23
BC − λC∆,︸ ︷︷ ︸

expected payoff from trade

(1)

which we can rewrite as P23
BC < M̃− (1− λC)∆. Only when the price P23

BC offered by C to
B for C23

BC is sufficiently high, will B want to honor the trade ex post.
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quentially with B

to negotiate trade.

Settlement stageTrading stage

t = m1 t = m2 t = 1 t = 2 t = 3

Figure 4: Trading in Legacy System. In the trading stage, A and C meet sequentially
with B to negotiate trades. However, neither A nor C know the order of meetings.

Alternatively, suppose that B entered contract C13
AB with A but fails to negotiate C23

BC.
As shown in Figure 5, B faces a settlement decision at t = 1 of whether to execute
according to the contract C13

AB or fail.12 Failing is particularly costly to B, since in addition
to the direct cost of failing, B would have to forgo payoff H associated with obtaining
the asset at t = 1. Honoring the trade associated with C13

AB is optimal if and only if

H + E[M̃]− P13
AB︸ ︷︷ ︸

expected payoff from settling

> −∆.︸︷︷︸
cost of failing

(2)

Finally, B could have entered contract C12
AB with A. This corresponds to the third tree

in Figure 5. Under the contract, B makes two settlement actions. At t = 1, B must pay
P12

AB to A in order to acquire the asset from A at t = 1. At t = 2, B must return the asset
to A. Failing to do either action constitutes a fail that results in cost ∆.13 Since M < ∆,
retaining the asset at t = 2 is not profitable. It is straightforward to see that there exists
a price P12

AB (e.g. L) that A would accept, and B is strictly better off paying in exchange
for the asset at t = 1.

4.1.2 Trading stage in the legacy system

So far, we characterized traders’ strategies in the settlement stage. Anticipating these
strategies, traders bargain in the trading stage. As shown in Figure 4, two meetings

12B can fail by returning the asset to A. Since we assumed that the system is DvP, this means that B
received his cash back as if no transfer of assets had occurred.

13In a settlement system like Fedwire securities, the seller of a security can fail by choosing not to send
the security to the buyer, since all settlements are initiated by the seller. The buyer can fail by returning the
security she has received to the buyer. This automatically undoes the transfer of cash that was associated
with the initial settlement of the security.
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occur sequentially at t = m1, m2, and the order of meetings is only known to B, who
participates in both.

Let us start with the bargaining problem between B and C in the trading stage. Note,
at this stage, neither B nor C know their valuations (e.g. the realized value of M̃ and H̃).
C does not know whether B has already traded with A, but knows that B’s reservation
price will depends on whether B and C trade in t = m1 or t = m2.

With probability 1
2 , B matches with C first at t = m1. In this case, B can adapt his

trading strategy with A conditional on the trading outcome with C. B accepts an offer
P23

BC from C only if:

P23
BC ≥ max{ E[P13

AB − P12
AB]︸ ︷︷ ︸

expected price of t = 2 ownership

, E[M̃]}+ λC∆. (3)

The first term in the max operator represents the price at which B expects to acquire
t = 2 ownership. The second term represents the expected value of retaining ownership
of the asset at t = 2. If E[M̃] > L, then B’s private valuation of t = 2 ownership of the
asset may become relevant. The final term λC∆ represents the daisy chain premium.

Suppose instead that B matched with C at t = m2, and had already agreed to C13
AB at

t = m1 at some price P13
AB. In this case B has already acquired t = 2 ownership of the

asset from A by the time he meets with C at t = m2. B accepts an offer P23
BC only if:

E[max{H + P23
BC − P13

AB − λC∆, H + M̃− P13
AB − ∆,−2∆}]

≥E[max{H + M̃− P13
AB,−∆}]. (4)

The term on the left hand side of the inequality represents B’s payoff from accepting C’s
offer and corresponds to B’s expected payoff at node 1 in Figure 5. The first term in

the max operator is B’s payoff if he settles both trades (reaching either node 1a or 1b ),
the second term is the payoff when B accepts but fails to deliver the asset to C at t = 2

(node 1c ), and the third term is the payoff when B fails on both contracts (node 1d ).
The term on the right hand side of the inequality represents B’s payoff from rejecting C’s
offer and corresponds to B’s expected payoff at node 2 in Figure 5. The first term in

the max operator is B’s payoff from retaining the asset (node 2a ) and the second term

is the payoff when B fails on the contract with A at t = 1 (node 2b ).
We can now derive C’s equilibrium offer strategy. Recall, C chooses his offer strategy,

without knowing whether his meeting with B is taking place at t = m1 or t = m2. Given
the fact that B could reject an offer from C and, even if the offer is accepted, may fail to
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t=1 t=2 t=3

B

settle with A

fails on C13
AB and C23

BC

B

settle with C

fails on C23
BC

C

settle with B

fails on C23
BC

C learns H̃B learns M̃

B

settles with A

fails on C13
AB

B

settle with A

fails on C13
AB

B

settle with A

fails on C12
AB

B

settle with A

fails on C12
AB

C13
AB and C23

BC

C13
AB

C12
AB

1

2

3

Trading stage Settlement stage

1a

1b

1d

1c

2c

3c

3b

3a

2a

2b

Figure 5: Contracts and settlement actions under legacy system. This figure summa-
rizes the key settlement actions that arise at t = 1, 2, 3 given a set of contracts, specified
on the left. B and C privately learn their t = 2 and t = 3 payoffs M̃ and H̃ in the begin-
ning of t = 2 and t = 3, respectively. Private values factor into their settlement strategies,
where M̃ = M with probability λM, and 0 otherwise; and H̃ = H with probability λH
and 0 otherwise. The terminal payoffs for A, B, and C at the end of t = 3 is provided in
Figure 6.
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Node A’s Payoff B’s Payoff C’s Payoff

C13
AB and C23

BC 1a P13
AB + H -P13

AB + H + P23
BC - P23

BC + H

1b P13
AB -P13

AB + H + P23
BC − ∆ - P23

BC + H + H̃ − ∆

1c P13
AB + H -P13

AB + H + M̃− ∆ 0

1d 2L + H -2∆ 0

C13
AB only 2a P13

AB + H -P13
AB + H + M̃ 0

2b P13
AB -P13

AB + H + M̃− ∆ 0

2c 2L + H -∆ 0

C12
AB only 3a P12

AB + L + H -P12
AB + H 0

3b P12
AB + H -P12

AB + H + M̃− ∆ 0

3c 2L + H -∆ 0

Figure 6: Summary of traders’ payoffs. This figure shows the terminal payoffs for the
three traders conditional on the set of contracts and settlement actions. Nodes starting
with 1 correspond to C13

AB and C23
BC; nodes starting with 2 correspond to C13

AB only; and
nodes starting with 3 correspond to C12

AB. Traders’ payoffs from owning the asset at
t = 1, 2, 3 are as follows: A obtains L, L, H; B obtains H, M̃, 0; and C obtains 0, H, H̃.
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settle the trade with C, we can express C’s expected payoff as:

Prob(B accepts)Prob(B honors)

H − P23
BC + λC(H − ∆)︸ ︷︷ ︸

net gain from retaining asset at t = 3


(5)

In this expression, the likelihood of B accepting the trade, and the probability that B
settles as specified in the contract increase (weakly) in offer price P23

BC, while the payoff
conditional on successful trade and settlement decreases in P23

BC. The lowest possible
price that is accepted with positive probability must satisfy Condition (4), which corre-
sponds to the case where B has already acquired the asset from from A.

At what price P23
BC does B always accept and honor his agreement with C? First, note

that whenever B meets with C first at t = m1, B can choose his trading strategy with
A, conditional on the outcome of his trade with C. Specifically, B has the option to enter
C12

AB with A instead of C13
AB, if C makes an unattractive offer P23

BC. Only when C makes a
sufficiently attractive offer for C23

BC, would B also choose to enter C13
AB with A at t = m2.

As such, Condition 3 is (weakly) stricter than Condition 4. Second, if A expects that B
will enter contract C23

BC with C, A requires a settlement risk premium of λCH associated
with the risk of C failing to return the asset at t = 3. Third, if E[M̃] < L, B does not have
an incentive to obtain ownership of the asset beyond t = 1 without arranging a contract
with C. As such, A’s reservation price for C12

AB is his valuation L. Together, under B’s
expected cost of acquiring t = 2 ownership of the asset from A is given by:

E[P13
AB − P12

AB] = L︸︷︷︸
A’s t = 2 valuation

+ λCH︸︷︷︸
settlement risk premium

(6)

This expression represents the reservation price at which A is willing to lend the asset
at t = 2, which also corresponds to the price difference between P13

AB and P12
AB. The first

term is A’s payoff from holding onto the asset at t = 2, L. A also anticipates that B may
lend the asset to C at t = 2, in which case he may not reacquire the asset. The second
term represents the compensation A requires for that possibility.

A special case is when B’s valuation is sufficiently high, i.e. when E[M̃] > E[P13
AB −

P12
AB]. This occurs when λB is large enough that E[M̃] > L, and λC is sufficiently small.

In this case, B’s valuation is binding regardless of the order of trades, and B accepts a
contract C23

BC if and only if P23
BC ≥ E[M̃] + λC∆:
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Lemma 2. Suppose that B’s t = 2 valuation of the asset is greater than that of A’s t = 2
valuation (E[M̃] > L), and C’s limited commitment problem is not too severe (λC < E[M̃]−L

H+∆ ). B
accepts offer C23

BC only if P23
BC ≥ E[M̃] + λC∆.

When the conditions for Lemma 2 are violated, because λC is too large, the cost asso-
ciated with intermediating between A and C is strictly greater than B’s private valuation
of the asset. Hence, Condition 3 reduces to:

P23
BC ≥ L + λCH + λC∆. (7)

The first two terms on the right hand side represent the expected opportunity cost for A
to lend the asset to B, given that B will lend the asset to C. The third term represents the
expected cost of a daisy chain fail for B. As λC increases, C must pay a steeper price in
order to acquire the asset with certainty, because of the expected cost of a fail on both A
and B.

Knowing that B’s private valuation of t = 2 ownership is much lower than that
required by Condition 7, C may want to offer a price that is so low that it will only
be accepted by B if B already acquired the asset from A. If making such low offer is
attractive, a hold-up problem arises.

Using Condition 4, we can find the lowest price P23 that B is willing to accept. To
simplify Condition 4, we first show that −∆ < H + E[M̃] − P13

AB. Note that P12
AB = L

since A’s valuation of the asset at t = 1 is L, which implies that P13
AB = 2L + λCH, from

equation (7). Thus, we have

−∆ < H + E[M̃]− P13
AB (8)

= H + λBM− (2L + λCH), (9)

which holds since ∆ > 2L.14

Consequently, we have that conditional on having entered C13
AB, the lowest price which

B accepts from C is P23
AB = λBM + λC∆. So, when would C be tempted to offer a price

P23
BC that is lower than the price required for B to acquire the asset from A? The main

tradeoff arises between the (1) likelihood of trade and (2) the payoff conditional on trade.
Since C does not know whether B has met with A prior to their meeting, C cannot

make an offer contingent on the order of matches. B will accept an offer of P23
BC =

λBM + λC∆ only if he has already entered C13
AB, which occurs with probability 1

2 . With
probability 1

2 , B has not yet matched with A and will reject such an offer. Despite this, C

14This assumption is made only to economize on cases, and does not qualitatively matter.
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will find it optimal to offer P23′
BC = E[M̃] + λC∆ instead of P23′′

BC = P13
AB + λC∆ if15

1
2

[
H − P23′

BC + λC(H − ∆)
]
≥ H − P23′′

BC + λC(H − ∆). (10)

The next result summarizes the optimal offer strategy of C, taking as given that B suc-
cessfully trades C13

AB with A when matched:

Lemma 3. Suppose that C’s limited commitment problem is severe (λC > E[M̃]−L
H+∆ ), and C

expects that B enters contract C13
AB. C’s optimal strategy is to offer a contract C23

BC at price
P23

BC = L + λC(H + ∆) if λC < λ̄, and P23
BC = E[M̃] + λC∆ if λC > λ̄, for some threshold λ̄.

The offer strategy in Lemma 3 assumes that whenever B matches with A first, B
acquires t = 2 ownership from A prior to matching with C. However, this is an equi-
librium strategy only if B at least breaks even by doing so. When C finds it optimal to
offer some P23

BC such that B’s net payoff from intermediating drops below zero, B ex-ante
strictly prefers C12

AB (node 3 ) to C13
AB (node 1 ) and intermediation breaks down. This

is exactly the case when P23
BC = E[M̃] + λC∆, implying:

Lemma 4. Suppose that C’s limited commitment problem is severe (i.e. λC > E[M̃]−L
H+∆ ) and B

believes that C will offer the hold-up price of P23
BC = E[M̃] + λC∆. Then, B’s optimal trading

strategy with A is to offer contract C12
AB at price P12

AB = L.

We can combine Lemmas 3 and 4 to fully characterize the equilibrium. By Lemma
3, C’s optimal offer, expecting that B will intermediate the asset (by entering C13

AB with
A), is to hold up B whenever λC is greater than λ̄. In turn, Lemma 4 states that if B
anticipates C to attempt a hold-up, B forgoes any attempt to intermediate the asset at
all. Together this implies that whenever λC > λ̄, the asset cannot be intermediated with
probability 1 in equilibrium.

As an intermediary, B can weaken C’s incentives to attempt a hold-up by buying the
asset on behalf of C with probability less than 1. Specifically, whenever B matches with
A first, B can offer C13

AB with some probability µ < 1, and C12
AB otherwise. By doing so,

B lowers the expected probability that C believes he will obtain the asset conditional on
offering a hold-up price E[M̃] + λC∆ from 1

2 to µ
2 . As long as µ is sufficiently low, C’s

dominant strategy is to offer L + λCH + λC∆, which lets B break even in expectation
from intermediation.

The next proposition summarizes the conditions under which, in equilibrium, the set
of optimal trades are achieved under the legacy system:

15It is straightforward to verify that B never finds it optimal to renege ex-post on C after accepting an
offer as M ≤ ∆.
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Proposition 1 (Equilibrium under legacy system). Suppose that trade and settlement occurs
under the legacy system. If C’s limited commitment problem is not too severe (i.e. λC < λ̄ for
some cutoff λ̄ ∈ (0, 1)), there exists an equilibrium in which the optimal trades are achieved with
certainty.16 If C’s limited commitment problem is severe (i.e. λC < λ̄), C obtains the asset with
probability 1

2(1 + µ∗) < 1, where µ∗ decreases in λC and µ∗ ∈ [0, 1).

In the legacy environment, trades are unrestricted by the feasibility of settlement.
Instead, whether settlement actions consistent with the agreed-upon trades are carried
out ultimately depends on traders’ incentives, given the costs associated with failing to
keep promises. As a result, settlement breaks down whenever the costs of failing are not
high enough to deter traders from reneging on contractual obligations ex-post.

In the context of the model, C’s payoff from retaining the asset at t = 3 is sometimes
too large for the cost ∆ to provide sufficient incentives to return the asset to B. Expecting
C’s limited commitment problem, both A and B require higher prices to compensate
for the possibility of settlement to fail. This, however, in turn makes a “low-ball” offer
ever more attractive. When λC is too large, intermediation completely breaks down as
intermediating is no longer profitable for B.

At the same time, the complete decoupling between trade and settlement enables
traders to enter into a contract without having to explicitly prove to their counterparty
that they can fulfill the terms of that contract. In the context of the model, B is able to
enter C23

BC with C, regardless of whether he has already acquired t = 2 ownership from
A. As a consequence, when B matches with C, B preserves private information about
whether he has met with A or not.

An important takeaway is the interplay between the trading system and the settle-
ment system. Trading occurs asynchronously, with little transparency over the history
of trades. Taken in isolation, both the opacity of a trading system and the reliance of
a settlement system on ex-post incentive compatibility could be viewed as suboptimal,
from the standpoint of market design. However, we show that, when paired, this combi-
nation is fundamental to facilitating the efficient transfer of ownership between multiple
traders. Even with the potential for a hold-up problem, traders successfully agree to an
interdependent set of contracts, as long as the limited commitment problem is not too
severe (i.e. λC is small enough).

16In the legacy system, the trades are optimal, but the allocation may not be optimal ex-post due to the
positive probability that C fails in t = 3, resulting in a deadweight loss of 2∆.
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[I]

[II]

Trading stage

t = m1 t = m2

B and C meet.
No trade occurs.

A and B meet, and
negotiate C12

AB.

A and B meet, and
negotiate C12

AB or C13
AB.

B and C meet. If B entered
C13

AB with A, negotiate C23
BC .

Figure 7: Trading in Token System. This figure outlines the events under the two
possible sequence of meetings. In sequence [I], B meets with C, then with A. In sequence
[II], B meet with A, then with C.

4.2 Tokenized Market

In a token system, traders can program the asset to guarantee the future settlement
of the trade they are negotiating. This commitment technology implies that settlement
occur regardless of whether an trader would like to strategically fail ex post.

Let us revisit the limited commitment problem posed by C’s ex-post incentive to
retain the asset in t = 3. Suppose that, during the trading stage, A and B meet at t = m1
and agree to some contract C13

AB. In a token environment, a corresponding program is
jointly submitted by A and B, which instantly transfers t = 1, 2 ownership of the asset
from A’s to B’s, while guaranteeing that the ownership of the asset is transferred back to
A at t = 3. By entering C13

AB A relinquishes any ownership (and thus control) of the asset
for dates t = 1, 2 the moment they trade; concurrently, B immediately gains the right to
enter any transfer of t = 1, 2 ownership of the asset.

At t = m2, B and C meet and agree to some contract C23
BC. Since B acquired control

over t = 2 ownership of the asset, C23
BC is feasible. C instantly gains the right to enter any

transfer of t = 2 ownership of the asset. However, the asset is programmed to return
to A at date t = 3, and C exercises no control over the asset beyond t = 2. In this way,
the token system resolves settlement uncertainty arising from C’s limited commitment
problem.

Despite its clear advantage over the legacy system in resolving settlement uncertainty,
the token system poses two new issues that were not present under the legacy system.
They both arise due to the requirement that contracts must be feasible.

Critically, when B meets with C, B must reveal to C about whether he has t = 2
ownership of the asset. In the token system, a contract is feasible only if the seller of the
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asset already holds the ownership rights of the asset for the date at which the asset must
settle. As such, when B and C negotiate a contract, both traders can verify whether the
terms of negotiation are feasible. In effect, C can verify at the time of trade that B holds
the asset, since otherwise the program corresponding to C23

BC would not be permissible.
This information, which was not revealed in the legacy system, exacerbates the pos-

sibility of a hold-up. In contrast to the legacy system, C chooses his offer P23
BC conditional

on verifying that B has already acquired t = 2 ownership of the asset. With this certainty,
the optimal offer strategy of C is to offer just B’s reservation price, E[M̃]. The revelation
of information regarding the order of trades magnifies the hold-up problem that was
possible in the legacy system but not always binding. The hold-up problem now can
directly prevent desired allocations from being achieved in equilibrium:

Theorem 1 (Equilibrium with Tokens). Suppose that trade and settlement occurs under the
token system. For λB > L

M , there exists an equilibrium where B and C enter C23
BC with probability

1
2 . For λB < L

M , C is unable to acquire the asset in equilibrium.

Additionally, the order of trades directly affects whether the asset can be intermedi-
ated by B. In order for B to enter a contract C23

BC with C, B must at the time of their match
own the rights to the asset at t = 2. This implies that B must have acquired the relevant
rights from A prior to trading with C:

Corollary 1. C23
BC is a feasible contract only if B matches with A first and obtains t = 2 ownership

of the asset.

An implication is that the intermediation chain between A, B, and C can only arise
with at most probability 1

2 , when B matches with A at t = m1, before matching with C
at t = m2.17

There are two things to note. First, due to the requirement of matching orders, the
equilibrium with tokens fails to achieve ex-ante first-best allocations. This result, which
arises due to the random match sequence, is not, in general a problem when trade and
settlement are segregated, as in a typical legacy system. This points to an efficiency
loss that can arise when immediate settlement is implemented. Second, the hold-up
problem becomes acute with C’s revelation of B’s ownership of the asset (and the order
of trades). In fact, when A values t = 2 ownership of the asset strictly less than L, C will
always finds it profitable to offer a low price, which B accepts conditional on owning the

17Of course, this inefficiency is borne directly from our simplifying assumption that the sequence of
matches are random. One could consider an environment where B could take (costly) actions to endoge-
nously determine the order of matches. As discussed earlier, this alone will not materially improve the
outcomes in token system as it does not address the hold-up problem.
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Token
Dominance

Legacy
Dominance

Figure 8: Relative efficiency of settlement systems. This plot shows the relative effi-
ciency of the equilibrium under the legacy system and the token system for λB and λC,
which each capture the degree to which a hold-up or limited commitment problem exist.
Parameters are set at L = 3, H = 12, M = 5, ∆ = 6. Efficiency is greater under the legacy
system in the blue region, the token system in the orange region, and equivalent in the
grey region.

asset. However, anticipating this, B opts not to acquire the asset in the first place, thus
thwarting intermediation. The next theorem summarizes the relative efficiency between
a legacy and token system:

Theorem 2 (Relative Efficiency). Suppose that λB < L
M . Then, efficiency is greater under the

legacy system if λC < H−L
2∆ , and equivalent when λC > H−L

2∆ . If λB > L
M , then efficiency is

greater under the token system if λC > λ̂ and lower when λC < λ̂, for some threshold λ̂ > λ̄.

Discussion. The main takeaway is that token systems are not unambiguously superior
to the legacy system. Rather, our model highlights two key issues that arise in decen-
tralized, heavily intermediated markets. First, the scope of intermediation drops under
tokenization, as intermediaries’ valuations play a much more significant role in their
ability to assist with the reallocation of the asset. Second, while tokenization can eradi-
cate settlement uncertainty when two parties can agree to a desirable trade, the fact that
each trade must be feasible at the time of trade puts undue emphasis on the need for the
sequence of meetings to coincide with the order of intermediation.

Our results motivate a natural question on what solutions could address potential
inefficiencies arising with token systems. As our paper shows, token systems may reveal
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too much information in environments where optimal allocations depend on intermedi-
aries. Markets involving trading mechanisms with direct matching between sellers and
buyers are more attractive candidates for applying token systems. In general, an obvious
proposition is to re-design the trading system in conjunction with the settlement system
in order to maximize the potential of zero settlement uncertainty. This, however, ignores
the frictions, outside of our model, that may support or necessitate the trading environ-
ment taken as given in our environment. In the context of our model, while the role of B
as an intermediary is assumed, it is important to recognize that intermediaries can play
an essential role in facilitating transactions that might not otherwise occur. Specifically,
in a more complex model, trades may not occur even if A and C can meet. We expect
that our results would extend to an environment where B arises as an intermediary
endogenously.

The two key sources of inefficiency arise due to the revelation of information regard-
ing ownership at the time of trade. Our results might suggest that another solution is
to relax the conditions of trade, so that traders could enter trades without revealing this
information. At first glance, it seems like it could resolve the issues pertinent to the
token system. In the context of our model, this would be akin to enabling B and C to
enter a state-contingent contract, whereby a trade is executed only if at the end of the
trading stage, B’s account holds t = 2 ownership of the asset.

However, allowing for such a contract re-introduces a commitment problem and with
it settlement fails. A small modification of the model suffices using an argument related
to that made by (Lee et al., 2021b). Suppose that B’s valuation of the asset at t = 2
for a range between O and H, and B learns it after the meeting at t = m2. The state-
contingent contract introduces a “gap”, whereby B now has the option to forgo his trade
with C by failing to satisfy the conditions of trade. In particular, even if B obtains t = 2
ownership of the asset from A, if B wants to hold onto it for himself, then B simply
needs to hold ownership in, for example, a separate account unknown to C. This means
that B honors the trade with C only when his t = 2 valuation is realized as low. It is
straightforward to see that, in equilibrium, C would offer a price less than H, which
means that, generically, trade fails with a positive probability. In other words, there
is an implicit form of strategic settlement failure. The re-introduction of a commitment
problem can become even more problematic for token systems as, technically, the agreed
upon trade, which reference accounts, was executed without fault by the joint program.
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5 Conclusion

This paper studies how tokenization affects equilibrium trade in a theoretical model
of an over-the-counter market. Tokenization has clear advantages: We illustrate how
tokenization it can eliminate a limited commitment problem, by committing settlement
actions at the time that contracts are forged. Collapsing trade and settlement, however,
comes at a cost. We show that doing so necessitates that traders reveals more private
information relative to the traditional environment. This creates a hold-up problem and
may destory an intermediation chain necessary for efficient outcomes.

Whether a settlement protocol is efficient is intricately tied to the whether it is paired
with a congruent trading mechanism. Due to the potential for decentralization, tok-
enized markets have been viewed as particularly disruptive for over-the-counter mar-
kets. However, some features are not amenable to the current market structure, which
depends highly on intermediaries to facilitate complex intermediation chains. Our paper
offers a concrete illustration of this problem.
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Proofs

Proof of Lemma 1. Follows from text.

Proof of Lemma 2. Note that E[M̃] > L + λC(H + ∆) for λC > E[M̃−L]
H+∆ , which requires

E[M̃] > L since λC > 0.

Proof of Lemma 3. Following the argument in the text, it suffices to consider whether
C finds it optimal to make an offer which is accepted with probability 1, or E[M̃] +

λC∆, which is accepted with probability 1
2 conditional on B already having acquired

t = 2 ownership from A. Consider a price at which B always accepts, which requires
Condition 3. The minimum price satisfying the condition is L + λCH + λC∆. C’s payoff
for offering L + λCH + λC∆ is greater than offering E[M̃] + λC∆ if:

H − (L + λCH + λC∆) + λC(H − ∆) (11)

≥1
2
(

H − (E[M̃] + λC∆) + λC(H − ∆)
)

(12)

Reorganizing this inequality, we get the inequality holds only if λC <
1
2 H−L+ 1

2 E[M̃]
1
2 H+(1− 1

2 )2∆
. Note,

C’s payoff is positive given price L+λCH+λC∆ only if λC < H−L
2∆ , and (1− 1

2 )H−L+ 1
2 E[M̃]

1
2 H+(1− 1

2 )2∆
<

H−L
2∆ . Also, note that (1− 1

2 )H−L+ 1
2 E[M̃]

1
2 H+(1− 1

2 )2∆
> E[M̃−L]

H+∆ . Hence, for some threshold λ̄ ≡
1
2 H−L+ 1

2 E[M̃]
1
2 H+∆

,

C offers L + λC(H + ∆) for λC < λ̄, and E[M̃] + λC∆ otherwise.

Proof of Lemma 4. Note that given P23
BC = L + λC(H + ∆), B breaks even in expectation.

This implies that any lower price violates B’s participation condition, and the optimal
strategy for B is to make offer P12

AB = L to A. Hence if λC > λ̄, B’s optimal offer strategy
is P12

AB = L.
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Proof of Theorem 1. We first show existence of an equilibrium where traders agree to C13
AB

and C23
BC, independent of the order of matches when λC < λ̄. Assume λC > λ̄. A always

accepts B’s offer P13
AB = 2L + λH, which is equal to his reservation price taking into

account C’s strategic fail as outlined in Lemma 1. Under Lemma 3, C’s offer strategy is
P23

BC = L + λC(H + ∆), which B accepts conditional on having or expected to enter C13
AB,

since it is equal to his reservation price and a premium λC∆ associated with the daisy
chain fail.

Next, we show that when when λC > λ̄, there does not exist an equilibrium where C
obtains the asset with probability 1. By Lemma 3, conditional on B always entering C13

AB
with A, C’s optimal offer strategy is P23

BC = E[M̃] + λC∆, which violates B’s participation
condition. Following Lemma 4, B’s dominant strategy to choose P12

AB = L. Together
this implies that C fails to obtain the asset with certainty. we show that there is an
equilibrium where C obtains the asset with some probability µ∗ 1

2 + (1 − 1
2) for some

µ∗ ∈ [0, 1). Consider a candidate equilibrium in which B enters C13
AB with probability

µ, and C12
AB otherwise if matched with A first, and enter C13

AB if he accepts C23
BC when

matched with C first. C maximizes his payoff from offering P23
BC = L + λC(H + ∆) if:

(µ
1
2
+ (1− 1

2
))[H − (L + λCH + λC∆) + λC(H − ∆)] ≥ µ

1
2
[H − (λBL + λC∆) + λC(H − ∆)]

(13)

Note that the inequality becomes monotonically tighter as µ increases, and holds when
µ → 0. This implies that there exists some µ′ such that equality holds. Let µ∗ be given
by max

{
0, H−L−2λC∆

L+λC H−λBL

}
. Since for price P23

BC = L + λC(H + ∆), B exactly breaks even,

B is indifferent between any µ conditional on P23
BC = L + λC(H + ∆). This establishes

existence.

Proof of Corollary 1. Follows from text.

Proof of Theorem 1. Suppose that the order of matches is B− C and A− B. Since B does
not own any rights to the asset when she matches with C, no contract is feasible. Hence,
trade only occurs between A− B.

Suppose that the order of matches is A− B and B−C. The order of trades is common
knowledge, since trade between B and C requires B to own the asset. Suppose that B
acquires rights to the asset for t = 2 with probability 1. Suppose that C offers λCL. Then,
B accepts with probability 1. Note, however, that B must offer A at least L in order to
obtain t = 2 ownership. Since doing so leads to negative profits, it is optimal for B to
only acquire t = 1 ownership. Hence, in equilibrium C never obtains the asset if λB < 1,
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and there exists an equilibrium with intermediation only if λB = 1.

Proof of Theorem 2. First, consider when λB < L
M . In the legacy system, if λC < H−L

2∆ , total
payoff is given by 3H− 2λC∆ for λC < λ̄; 2H + (µ∗ 1

2 + (1− 1
2))(H− 2λC∆) + (1− µ∗)1

2 L
otherwise; if λC > H−L

2∆ , total payoff is 2H + L. In the token system, total payoff is 2H + L.
Hence, payoff is greater in the legacy system for λC < H−L

2∆ and equal otherwise.
Next, consider when λB > L

M . As before, in the legacy system, if λC < H−L
2∆ , total

payoff is given by 3H− 2λC∆ for λC < λ̄; 2H + (µ∗ 1
2 + (1− 1

2))(H− 2λC∆) + (1− µ∗)1
2 L

otherwise; if λC > H−L
2∆ , total payoff is 2H + L. In the token system, total payoff is 5

2 H +
1
2 L. Note that µ∗ decreases in λC and 2H + (µ∗ 1

2 + (1− 1
2))(H − 2λC∆) + (1− µ∗)1

2 L →
2H + L as λC → H−L

2∆ . This implies that there exists some cutoff λ̂ ≡ µ∗

1+µ∗
H−L

2∆ ∈ (λ̄, H−L
2∆ )

such that 2H + (µ∗ 1
2 + (1− 1

2))(H− 2λC∆) + (1− µ∗)1
2 L = 2H + 1

2 H + (1− 1
2)L. Hence,

the token system dominates for λC > λ̂.
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