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Abstract
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growth, time-varying uncertainty, and fat tails. We also incorporate newly available
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1 Introduction

Assessing macroeconomic conditions in real time is challenging. The most important indicators,
such as Gross Domestic Product (GDP), are published only on a quarterly basis and with
considerable delay, while many related but noisy indicators are available in a more timely
fashion; most macroeconomic series are revised over time, and many are plagued with missing
observations or have become available only very recently. On top of these peculiarities of the
data collection and publication process, the first two decades of this century have made clear
that secular change, evolving uncertainty and large shocks are pervasive features of modern
macroeconomic fluctuations.

This paper advances macroeconomic “nowcasting” by proposing a novel Bayesian dynamic
factor model (DFM) that explicitly incorporates these features. We show that our model
outperforms benchmark statistical models at real-time predictions of GDP growth, and improves
upon survey expectations of professional forecasters. Modeling long-run growth as time-varying
eliminates a bias often present in long-horizon forecasts. Moreover, our explicit treatment of
non-linearities and fat tails is important throughout the postwar period; it becomes critical to
track economic activity in crisis periods, such as the Great Recession of 2008-2009, and most
notably the 2020 recession caused by the COVID-19 pandemic, which has created challenges
for the estimation of existing macroeconometric models (Lenza and Primiceri, 2020; Ng, 2021).
We also propose a method to incorporate newly available high-frequency data on consumer
behaviour, such as credit card transactions (Chetty et al., 2020), driving trips, or restaurant
reservations, into DFMs. Our analysis highlights that the new data are helpful for tracking
activity during the pandemic, but that a careful econometric specification is just as important.

DFMs are based on the idea that the variation in a large number of macroeconomic time series
is driven by a small number of shocks, whose propagation can be summarized by a few common
factors (Sargent and Sims, 1977; Stock and Watson, 1989; Forni et al., 2003). Our Bayesian DFM is
estimated on 29 key US macroeconomic time series, and incorporates low-frequency variation in
the mean and variance of the series, heterogeneous lead-lag patterns in the responses of variables
to common shocks, and fat tails. Figure 1 illustrates the importance of these features in US data.
Panel (a) plots the annual growth rate of US GDP, together with its mean and standard deviation
in selected subsamples. It highlights the presence of secular economic trends such as the recent
stagnation in long-term growth or the “Great Moderation” in macroeconomic volatility. Panel
(b) compares the annual growth rate of selected indicators to that of GDP. It makes clear that
lead-lag dynamics are a systematic feature of the data, with investment and durable spending
leading GDP and labor variables lagging it. Panel (c) illustrates how large, one-off outliers in
individual series, typically in the level of the series, and usually caused by tax changes, strikes or
natural disasters, are endemic to macroeconomic data. Despite their prominent role, the above
features of the data are often left unmodeled in current nowcasting practice. In this paper we
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Figure 1: SALIENT FEATURES OF THE MACROECONOMIC DATA FLOW 2000 - 2019

(a) Time-varying mean and volatility of US real GDP growth
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(c) Fat tails in macroeconomic data
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Notes. Panel (a) plots four-quarter US real GDP growth as the black line. The red line and shaded area display the average

and standard deviation over selected subsamples, with meaningful changes visible across the subsamples. Panel (b) plots the

twelve-month growth rate of selected indicators of economic activity (black) together with four-quarter real GDP growth (red).

This illustrates how the business-cycle comovement of macroeconomic variables features heterogeneous patterns of leading and

lagging dynamics. Panel (c) presents raw data series for selected indicators of economic activity. These highlight the presence of

fat-tailed outliers in macroeconomic time series. The gray shaded areas indicate NBER recessions.
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show that explicitly introducing them into a DFM improves our understanding of economic
developments in real time.1 Our methodological contribution is the development of a fast and
efficient algorithm to approximate the posterior distribution. Building on ideas from Moench,
Ng, and Potter (2013), we propose a hierarchical structure that avoids large state-spaces. Our
algorithm can handle non-linearities and non-Gaussianities without losing the intuition and
computational ease of Kalman Filtering and Gibbs sampling. Our Bayesian methods give an
important role to probabilistic assessments of economic conditions, a departure from existing
approaches which favor classical estimation techniques and focus on point forecasts.

Beyond our methodological contribution, we provide three empirical contributions. First,
we construct daily estimates of US real GDP growth covering January 2000 to August 2020.
To this end, we build a new real-time database which is updated every day in which data are
released, and re-estimate the model with each update.2 Figure 2 presents the resulting daily
estimate of current-quarter GDP growth, together with the estimated uncertainty around it,
using information only up to each point in time. As the data arrive, the model tracks in real time
important developments of the last two decades. We formally evaluate the accuracy of these
estimates over the period 2000-2019, by comparing the nowcasts of the model with the official
data subsequently published by the Bureau of Economic Analysis. We find that our model
delivers a large and highly significant improvement relative to various model benchmarks: a
basic DFM, and the model maintained by the New York Fed. Both point and density forecasting
improve in a statistically and economically significant manner, and each of the new model
components adds to the improvement. We also find that our model’s nowcasts are more
accurate than 80% of individual panelists from the Survey of Professional Forecasters (SPF),
and indistinguishable from the survey median. A comparison with the Federal Reserve staff
Greenbook projections reveals that early in quarter, our model forecasts are as accurate as
the Greenbook’s, with the latter taking an advantage later on.3 We thus document, contrary
to earlier results by Faust and Wright (2009), that short-horizon forecasts from state-of-the-
art econometric models, private-sector survey expectations, and the Fed’s Greenbook, can be
competitive with each other, though the Fed appears to display an informational advantage
(Romer and Romer, 2000; Nakamura and Steinsson, 2018). At longer horizons, both SPF surveys
and FOMC projections display a noticeable upward bias in the last decade, which our model
eliminates thanks to the addition of time-varying long-run growth.

Our second empirical contribution is to use the model to study in detail the developments in
the US economic during the recession of spring 2020 caused by the COVID-19 pandemic. The

1While Figure 1 focuses on the US, instabilities in the data of the sort we are modeling in our framework are even more likely
to be a challenge for nowcasting in other countries, especially emerging and developing economies.

2Despite the efficiency of our Monte Carlo Markov Chain algorithm, the sheer scale of such an exercise would be infeasible
using standard computer power. We enable it through the use of modern cloud computing.

3Human forecasters are a high benchmark for econometric models in particular for short-run forecasts, as they have access
to a large information set including news, political developments, and information about structural change. Consensus measures,
such as the SPF median and institutional forecasts, are an even higher benchmark as they aggregate the opinions of a multitude
of forecasters (Sims, 2002).
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Figure 2: DAILY REAL-TIME ESTIMATES: 2000-2019 VS. 2020

(a) Current-quarter US real GDP growth, daily assessment

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

-8

-6

-4

-2

0

2

4

6

8

10

%
 G

ro
w

th
 S

A
A

R

-10

-8

-6

-4

-2

0

2

4

6

8

10
2000-2019

9/11
Lehman
bankrupcy

European sovereign
debt crisis

Jan Feb Mar Apr May Jun Jul Aug
-25

-20

-15

-10

-5

0

5

10

15

20

25

-25

-20

-15

-10

-5

0

5

10

15

20

25
2020

National
emergency

declared

Stimulus
payments
start

(b) Volatility of current-quarter growth, daily assessment
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Notes. Panel (a) plots the daily estimate of US real GDP growth (blue line) with associated uncertainty (green shaded areas)

computed from our Bayesian DFM. The left chart plots this estimate from 2000 through to the end of 2019, the right chart for

the period January-August 2020 (note the different scale). The vertical red lines indicate significant events and gray shaded areas

indicate NBER recessions. Panel (b) provides an analogous chart for the volatility of the daily activity estimate in Panel (a).

dramatic speed and size of the recent recession poses unique challenges to macroeconometric
models. The new components of the model, in combination, are critical to obtain a timely reading
of the US economy during the Great Lockdown. Two important insights are that fat-tailed
observations were a pervasive feature of macroeconomic time series even before the pandemic,
and that the recession of March and April 2020 is more than just a “macroeconomic outlier.”
Instead, through the lens of the model this recession is a massive drop in aggregate activity,
a large increase in overall uncertainty, and a strong departure from the usual business cycle
comovement patterns of investment, employment, and consumption. Specifically, the lockdown
produced outsized contractions in sectors such as services which normally display little
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cyclicality. Moreover, the aggressive policy response eliminated the typical comovement between
different variables, such as filings for unemployment insurance and aggregate consumption
which are usually strongly negatively correlated. This is problematic for factor models, which
rely on the average comovement between different series to estimate the factors. Our model
can distinguish between persistent increases in aggregate volatility, and transitory ones that
are specific to individual indicators. It is therefore able to separate the aggregate shock from
large, purely transitory outliers which are detected only on a handful of series directly impacted
by the lockdown. It can also capture different shapes of recoveries, in line with the divergent
behavior of durable and non-durable spending recently highlighted by Beraja and Wolf (2021).
For the recession in 2020, it tracks an unprecedented fall in economic activity, followed by an
unusual rebound which is quick but partial.

Finally, in response to the pandemic a number of high-frequency data on consumer behavior,
such as credit card transactions (Chetty et al., 2020), driving trips, or restaurant reservations,
have become available. These “alternative data” offer the promise of a more timely reading of
economic conditions than the traditional monthly indicators, and observers in media and policy
circles pay close attention to them. Each of them however provides only a partial and noisy
signal of underlying conditions, so it is important to exploit their joint information in a systematic
way, and quantify their contribution to our assessment of the economy. This was precisely the
motivation behind the development of factor models (Geweke, 1977; Stock and Watson, 1989).
A key challenge is that many of the new series have extremely short histories, sometimes as
short as two months, complicating econometric inference. To overcome this, we take a Bayesian
approach to condition the yet-to-be-released observations of closely-related traditional series,
for which a long history is available, with the value implied by the more timely novel series. For
example, we use information on credit card transactions or cell phone mobility data to produce
updated estimates of aggregate consumption or vehicle miles traveled, both of which are part
of the panel on which we estimate our DFM. We find that the information contained in the
newly available series contributes to a more timely reading of economic conditions in 2020,
but the model’s ability to handle changes in volatility and fat tails is just as important. Since
the COVID-19 episode will remain part of macroeconomic times series, in the same way that a
binding Zero Lower Bound on interest rates became a permanent feature of the data after 2008,
the introduction of nonlinearities and fat tails into empirical macro models will become pressing
even as the pandemic moves into the rear-view mirror.

Contribution to the literature. Methodologically, our work advances the literature that models
macroeconomic time series with DFMs. Important contributions include Stock and Watson
(2002a,b) and Aruoba, Diebold, and Scotti (2009). Giannone, Reichlin, and Small (2008)
formalized the application of DFMs to nowcasting.4 Our paper gives a prominent role to

4See also Aruoba and Diebold (2010), and Banbura et al. (2013) and Stock and Watson (2017) for useful surveys.
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what Sims (2012) calls “recurrent phenomena” of macroeconomic time series that the DFM
literature has traditionally treated as “nuisance parameters to be worked around”: low-frequency
changes in trends, sustained periods of persistently high or low volatility, and large outliers.
In Antolin-Diaz, Drechsel, and Petrella (2017) we made the case for allowing both shifts in
long-run growth and changes in volatility. Here we develop the DFM framework further
to include heterogeneous dynamics and student-t distributed outliers, and study in detail
their importance for the nowcasting problem. The present paper is the first to investigate
the introduction of student-t distributed outliers within DFMs.5 Moreover, in contrast to the
majority of the literature, we take a Bayesian perspective to estimation, and give emphasis
to probabilistic prediction and real-time density forecasts. More broadly, we contribute to an
empirical literature that stresses the importance of modelling time-variation, non-linearities and
departures from normality in macroeconomic models, including Vector Autoregressions (VARs)
and Dynamic Stochastic General Equilibrium (DSGE) models. See, e.g. Cogley and Sargent
(2005), Primiceri (2005), Cúrdia, Del Negro, and Greenwald (2014), Fernández-Villaverde et al.
(2015), or Brunnermeier et al. (2020).

Finally, this paper tackles the challenge of time series modeling with macroeconomic data
from 2020 and thereafter. Other attempts in this direction include Primiceri and Tambalotti
(2020), Lenza and Primiceri (2020), Schorfheide and Song (2020), and Cimadomo et al. (2020),
all of which discuss the challenges to using VAR models in 2020. Diebold (2020) studies the
performance of the Aruoba, Diebold, and Scotti (2009) model during the pandemic. Ng (2021)
uses COVID indicators as controls to clean the data prior to estimation of different econometric
models. Our framework helps us interpret the 2020 data, and shows that prominent features of
the data during this period, such as time-varying volatility and outliers, were already critical to
understanding economic activity in the previous two decades. Lewis et al. (2020) highlight the
usefulness of using weekly data for macroeconomic monitoring during the pandemic. Chetty
et al. (2020) propose to use newly available high-frequency data to track the economy in real
time. To the best of our knowledge, we are the first to systematically integrate these time series
into the DFM framework.

Structure of the paper. Section 2 introduces the econometric framework. Section 3 illustrates
how major challenges in nowcasting are addressed with the novel components of the model. The
results for the out-of-sample evaluation exercise for 2000-2019 are presented in Section 4. Section
5 investigates the COVID-19 recession and recovery through the lens of our model and analyzes
the importance of incorporating newly available high-frequency data for the nowcasting process.
Section 6 concludes.

5Doz, Ferrara, and Pionnier (2020) also emphasize the importance of low-frequency trends. Marcellino, Porqueddu,
and Venditti (2016) were the first to introduce time varying volatility in DFMs, whereas Camacho and Perez-Quiros (2010)
and D’Agostino, Giannone, Lenza, and Modugno (2016) stress the importance of accounting for the asynchronous nature of
macroeconomic data within a DFM.
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2 Econometric framework

2.1 The dynamic factor model

Let yt be an n× 1 vector of observable macroeconomic time series. A small number, k << n, of
latent common factors, ft, is assumed to capture the majority of the comovement between the
growth rates of the series. Moreover, the raw data display outliers, denoted ot. Formally,

∆(yt − ot) = ct + Λ(L)ft + ut, (1)

where Λ(L) is a matrix polynomial of order m in the lag operator containing the loadings on the
contemporaneous and lagged common factors, and ut is a vector of idiosyncratic components.
The first difference operator, ∆, is applied to yt − ot, which makes clear that the level of the
variables displays outliers, while the factor structure is present in the growth rates.6 This
captures the fact that many time series related to real economic activity feature large one-off
innovations to the level, such as strikes and weather related disturbances, that are purely
transitory in nature, with the series returning to its original level once their effect dissipates.
This often leads to consecutive outliers with opposite sign in the growth rate, as is visible in
Panel (c) of Figure 1.

Low-frequency changes in the long-run growth rate of yt are captured by time-variation in
ct. One could allow time-varying intercepts in all or a subset of the variables in the system, and
time-variation could be shared between different series. For instance, balanced-growth theory
would suggest that the long-run growth component is shared between output and consumption.
In our application, we specify ct as

ct = c + bat, (2)

where at is a common time-varying long-run growth rate, b is a selection vector taking value 1
for the series representing the expenditure and income measures of GDP, as well as consumption,
and 0 for all other variables. c is a vector of constants.7 We estimate the model on a panel of real
activity variables and focus on the case of a single factor (k = 1, ft = ft). The relevant laws of
motion are specified as

(1− φ(L))ft = σεtεt, (3)

(1− ρi(L))ui,t = σηi,tηi,t, i = 1, . . . , n (4)

oi,t
iid∼ tvi(0, σ

2
o,i), i = 1, . . . , n (5)

6We measure ∆yt in the data as the percentage change, i.e. 100 × (yt − yt−1)/yt−1. Some variables, e.g. surveys, are
stationary in levels, so the difference operator would not apply to them.

7Antolin-Diaz et al. (2017) study the specification of trends in DFMs, and find that the long-run growth rates of interest are
retrieved correctly even if any low frequency component of a remaining variable is incorrectly specified as a constant. This is also
true if the long-run components are shared with GDP.
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where φ(L) and ρi(L) denote polynomials in the lag operator of orders p and q. The idiosyncratic
components are cross-sectionally orthogonal and uncorrelated with the common factor at all
horizons, i.e. εt

iid∼ N(0, 1) and ηi,t
iid∼ N(0, 1). The outliers are modeled as independent additive

Student-t innovations, with scale and the degrees of freedom, σo,i and vi, to be estimated jointly
with the other parameters of the model. The fat-tailed components are independent from the
factor and idiosyncratic innovations. Following Primiceri (2005), the time-varying parameters
are driftless random walks:

at = at−1 + va,t, va,t
iid∼ N(0, ω2

a) (6)

log σεt = log σεt−1 + vε,t, vε,t
iid∼ N(0, ω2

ε) (7)

log σηi,t = log σηi,t−1 + vηi,t , vηi,t
iid∼ N(0, ω2

η,i) i = 1, . . . , n (8)

where σεt and σηi,t capture the stochastic volatility (SV) of the innovations to factor and
idiosyncratic components.

2.2 Dealing with mixed frequencies and missing data

The model is specified at monthly frequency. Following Mariano and Murasawa (2003), the
(observed) growth rates of quarterly variables, xqt , are linked to the (unobserved) monthly
growth rate xmt , where every third observation of xqt is observed, by

xqt =
1

3
xmt +

2

3
xmt−1 + xmt−2 +

2

3
xmt−3 +

1

3
xmt−4. (9)

This reduces the presence of mixed frequencies to a problem of missing data in a monthly
model.8 Our Bayesian method exploits the state space representation of the DFM and jointly
estimates the latent factors, the parameters, and the missing data points using the Kalman filter.

2.3 Priors and model settings

The number of lags in Λ(L), φ(L), and ρi(L) is set to m = 1, p = 2, and q = 2. We found
that m = 1 is enough to allow for rich heterogeneity in the dynamics. By setting p = q = 2,
which follows Stock and Watson (1989), the model allows for the hump-shaped responses to
aggregate shocks commonly thought to characterize macroeconomic time series. Longer lags
did not alter any results. One of the advantages of our Bayesian approach is that an a-priori
preference for simpler models can be naturally encoded by shrinking the parameters towards
a more parsimonious specification. We follow the tradition of applying stronger shrinkage
to more distant lags initiated by Doan et al. (1986). “Minnesota”-style priors are applied to
the coefficients in Λ(L), φ(L) and ρi(L). For φ(L) the prior mean is set to 0.9 for the first lag,

8Additional sources of missing data include the “ragged edge” at the sample end coming from the non-synchronicity of data
releases, and missing data at the beginning of the sample for more recent series.

9



and to zero in subsequent lags. This reflects a belief that the common factor captures a highly
persistent but stationary business cycle process. For the factor loadings, Λ(L), the prior mean
for the contemporaneous coefficient is set to ŝi, an estimate of the standard deviation of each
of the variables, and to zero in subsequent lags. This prior reflects the belief that the factor is
a cross-sectional average of the standardized variables, see D’Agostino et al. (2016). For the
autoregressive coefficients of the idiosyncratic components, ρi(L) the prior is set to zero for
all lags, shrinking towards a model with no serial correlation in ui,t. In all cases, the variance
on the priors is set to γ

h2
, where γ is a parameter governing the tightness of the prior, and h

is equal to the lag number of each coefficient. We set γ = 0.2, the reference value used in the
Bayesian VAR literature. For the variances of the innovations to the time-varying parameters
ω2
a, ω2

ε and ω2
η,i we also use priors to shrink these variances towards zero, i.e. towards a DFM

without time-varying long-run growth and SV. In particular, for ω2
a we set an inverse gamma

prior with one degree of freedom and scale equal to 0.001. For ω2
ε and ω2

η,i we set an inverse
gamma prior with one degree of freedom and scale equal to 0.0001.9 For vi, we use a weakly
informative prior specified as a Gamma distribution Γ(2, 10) discretized on the support [3; 40].
The lower bound at 3 enforces the existence of a conditional variance.

2.4 Estimation algorithm

We build a highly efficient Gibbs sampler algorithm to approximate the joint posterior
distribution of the parameters and latent objects, adapting ideas from Moench et al. (2013)
and Bai and Wang (2015). The SV step follows Kim et al. (1998), and we draw the Student-t
distributed innovations using the mixture-of-Normals approximation proposed by Jacquier et al.
(2004). The standard approach for writing the state-space of the model in (1)-(9) would involve
including idiosyncratic and Student-t terms as additional state variables (see, e.g. Banbura and
Modugno, 2014). This is problematic, as computation time increases with the number of states,
which in turn would depend on n, the number of variables. Our contribution is a hierarchical
algorithm that avoids large state-spaces and allows parallelization of many steps, leading to
extremely fast computation. In addition, we implement a vectorized version of the Kalman
filter/smoother (sometimes referred to as precision sampler, see Chan and Jeliazkov, 2009),
which we extend to allow for missing observations (see Online Appendix A). The vectorized
approach leads to substantial gains in computational time. The Online Appendix presents the
details of our algorithm. Below we provide a sketch.

Algorithm 1. This algorithm draws from the posterior distribution of the unobserved components and
parameters of the model described in Section 2.1

1. Initialize the parameters of the model as well as the stochastic volatility processes at their prior
means; the latent components ct,ot, and ft, are initialized by running the Kalman filter and

9Antolin-Diaz et al. (2017) provide a number of robustness checks around the choice of priors in a Bayesian DFM.
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smoother conditional on the initial values of the parameters.
2. For each variable, i = 1, . . . , N :

2.1. Compute ∆yi,t − ci,t − λi(L)ft = ui,t + ∆oi,t.
2.2. Use the Kalman filter and simulation smoother to independently draw the idiosyncratic and

Student-t components. Draw the associated parameters σo,i, vi.
2.3. Compute outlier adjusted variable ∆yOAi,t = ∆(yi,t − oi,t) = ci,t + λi(L)ft + ui,t and

interpolate the quarterly variables as described in Section 2.2.
3. Conditional on the outlier adjusted variables:

3.1. Use the Kalman filter and simulation smoother to draw {ct, ft}.
3.2. Conditional on the factors, long-run trends and the idiosyncratic components draw the

remaining parameters of the model, Λ(L), φ(L) and ρi(L), as well as the stochastic volatility
processes, and the innovations to the time-varying parameters, ω2

a, ω2
ε and ω2

η,i.
4. Go back to Step 2 until convergence has been achieved.

We note several points. First, the algorithm iterates between a univariate state space in Step
2, which performs outlier adjustment, and a multivariate one in Step 3, which estimates a DFM
on the outlier adjusted variables. It therefore mimics the usual practice of using independently
outlier adjusted data in the model, but incorporates the uncertainty inherent in the outlier
adjustment process, which is typically disregarded. Second, the univariate state space in Step 2
is independent across variables, so it can be run in parallel using multi-core processors. Finally,
the maximum size of the state-space in Step 3 is limited if the system is re-written in terms of
quasi-differences, avoiding the inclusion of idiosyncratic components as state variables (see Kim
and Nelson, 1999 or Bai and Wang, 2015).

2.5 Variable selection

Our DFM includes variables measuring US real economic activity, excluding prices, monetary
and financial variables, and is specified with a single common factor.10 We include all of the
available surveys of consumer and business sentiment. The timeliness of these data series
(they are released around the end of each month, referring to conditions prevailing during the
month) make them especially valuable for nowcasting. We do not use disaggregated data (e.g.
sector-level production measures) and rely only on the headline indicators for each category.11

In total, we include 29 series, which are listed with detailed explanations in Online Appendix B.

10Giannone et al. (2008) conclude that that prices and monetary indicators do not improve GDP nowcasts. Banbura et al.
(2013), Forni et al. (2003) and Stock and Watson (2003) find mixed results for financial indicators.

11Banbura et al. (2013), among others, argue that the strong correlation in the idiosyncratic components of disaggregated series
of a given category results in misspecification that can worsen the in-sample fit and out-of-sample performance of DFMs.
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3 General implications for tracking economic activity

We discuss the implications of our modeling assumptions for tracking US economic activity. We
highlight the importance of capturing slow-moving trends in long-run growth and volatility,
the evidence for heterogeneity in the responses of macro variables to common shocks, and the
implications of fat-tailed observations for updating beliefs about the state of the economy. This
is an in-sample analysis that excludes the COVID-19 episode, which we cover in Section 5.

3.1 Secular trends: long-run growth and drifting volatilities

Figure 3 displays the estimate of the time-varying long-run growth rate of GDP as well as the
SV of the common factor. These estimates condition on the full sample and account for both
filtering and parameter uncertainty. Panel (a) presents the posterior median and the 68% and
90% high posterior density (HPD) intervals of the long-run growth rate of US real GDP, together
with the raw data series for real GDP growth. The estimate from our model conforms with the
established narrative about US postwar growth, including the “productivity slowdown” of the
1970’s or the 1990’s boom. Importantly, it reveals the gradual slowdown since the start of the
2000’s, with most of the decline before the Great Recession. At the end of the sample, there is a
slight improvement but the average rate of long-run growth remains just above 2%, highlighting
the persistence of the slowdown (Antolin-Diaz et al., 2017).

Panel (b) presents the posterior estimate of the SV of the common factor. Volatility declines
over the sample, with the Great Moderation clearly visible and still in place. Just prior to
the COVID-19 pandemic, output volatility reached a historically low level of less than 1% in
annualized terms. The plot also shows that volatility spikes during recessions, in line with the
findings of Bloom (2014) and Jurado et al. (2015), so the random walk specification is flexible
enough to capture cyclical changes in volatility as well as permanent ones. Online Appendix C
presents the estimates of the SV in the idiosyncratic components of individual indicators.

3.2 Heterogeneous lead-lag dynamics

In any filtering problem, prediction errors for the observables map into updates of the estimate
of the latent states. In our model, updates to the factor are revisions to the estimate of current
economic conditions. A poorly specified process for each observable series will lead to large
errors, and therefore to erratic updates of the factor. The revisions in the forecasts of individual
series can be thought of as impulse response functions (IRFs) of the series to an innovation in
the factor process, i.e. a common shock. In a standard DFM, in which no lags of the factor are
included in the measurement equation (m = 0), these IRFs are proportional to the dynamics
of the common factor.12 This proportionality is broken by the inclusion of lags of the factor in

12Specifically, the IRF of variable yi at time t and horizon h is given by that of the factor, scaled by the loading coefficient λi,

i.e.
∂yi,t+h

∂εt
= λi

∂ft+h

∂εt
.
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Figure 3: ESTIMATED LOW-FREQUENCY COMPONENTS OF US GDP GROWTH

(a) Real GDP growth and long-run trend
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Notes. Panel (a) plots the growth rate of US real GDP (solid black line), the posterior median (solid red) and the 68% and 90% (solid

and dotted blue) High Posterior Density intervals of the time-varying long-run growth rate. The estimate uncovers meaningful

time-variation in the long-run growth rate, which lines up familiar episodes of US postwar growth. Panel (b) presents the median

(solid red), together with the associated 68% and the 90% (solid and dotted blue) High Posterior Density credible intervals of

the volatility of the common factor. Our estimate implies a trend decline in volatility (Great Moderation), as well as heightened

volatility in economic contractions. Gray shaded areas represent NBER recessions.
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the measurement equation, i.e. the presence of the lag polynomial Λ(L) of order m in equation
(1).13 This allows the DFM to pick up richer dynamics in the panel of macro indicators.

Figure 4 plots these IRFs for different variables and groups them according to their estimated
shapes. To visualize the differences with a standard DFM, in each panel we superimpose the
average IRFs for the same variables from the standard DFM (black line with circular markers).
The IRFs reveal that broad aggregates capturing output and production respond with a decaying
pattern, where the peak response is on impact but persists for many months (left panel). A
number of other variables, particularly those related to investment, such as vehicle sales or
construction indicators, have a strong initial response which turns negative after a few months
before decaying to zero (middle panel). Recall that the variables are expressed in differences, so
this indicates an initial overshoot and subsequent decay in levels, consistent with the behavior
of pent-up demand for durables (Beraja and Wolf, 2021). Finally, a third group of variables,
primarily the business surveys, display hump-shaped dynamics (right panel).

Figure 4: IRFS OF SELECTED VARIABLES TO A COMMON SHOCK
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Notes. IRFs of different variables to an innovation in the process of the dynamic factor (an innovation to ε in equation (3)). In each

panel, the black line with circular markers shows the average across IRFs with homogeneous dynamics (m = 0), while the solid

red, orange dotted and dashed blue lines show the IRFs for selected variables with heterogeneous dynamics (m = 1). The three

panels group these IRFs into categories based on their shape (‘monotonic’, ‘reversing’ and ‘hump-shaped’).

Across the three panels, it is visible that the IRFs in the basic DFM without lead-lag dynamics
inherit the shape of the IRFs of the survey variables. Moreover, updates to the factor do not
lead to large responses in the forecast of the variables in the monotonic group and map into
essentially no revisions in the forecasts for the reversing variables. In other words, in the basic
DFM business surveys have a disproportionate weight in the computation of the factors, owing
to their high contemporaneous correlation with the business cycle and high degree of persistence,
and the resulting forecast for the factor will inherit their properties. This is unappealing when
data series that mean-revert more quickly may provide a meaningful signal of economic activity

13D’Agostino et al. (2016) refer to this case as “dynamic heterogeneity” and explore it in a six-variable model. The larger size
of our dataset allows to uncover three broad patterns of impulse responses, illustrated in Figure 4.
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Figure 5: UNPACKING HETEROGENEOUS DYNAMICS
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Notes. Panel (a) presents two separate in-sample cross-correlograms between the common activity factor and real GDP growth.

One is for a standard DFM which does not allow for lead/lag patterns (blue), the other for our full Bayesian DFM (red). For the

former, the peak correlation achieved in the second lag, whereas it peaks at lag zero for the latter. This implies that the common

component better captures contemporaneous movements in real GDP growth. Panel (b) is based on rewriting our DFM as a

two-factor model and estimating it on our data set. We check how close the estimated factor covariance matrix of this model is to

reduced rank. In particular, we compute the share of its largest eigenvalue for each posterior draw (solid red curve).

not captured by the surveys. Indeed, in the basic DFM the variables that tend to lead the cycle,
such as housing and durable spending, fall into the group of “reversing” variables and therefore
have very small loadings. This implies that the standard model perceives them as largely
uncorrelated with the common factor and discards useful information in these indicators.

To analyze the lead-lag dynamics further, Figure 5, Panel (a) shows that in a specification
that does not include heterogeneous dynamics (m = 0), the cross-correlogram of the common
activity factor with respect to the implied month-to-month variation of GDP growth is not
centered around 0. This means that the estimated factor lags GDP growth, which implies that
the nowcasts are inheriting a delay. The same cross-correlogram peaks at lag zero for a model
with m = 1. As we will show in Section 4, this difference is most visible around turning points
of the business cycle, which improves the nowcasting performance of the model.

An implication of our modelling choice of one factor (k = 1) and heterogeneous dynamics
(m > 0) is that we take the view that a single aggregate innovation is responsible for the bulk
of fluctuations in our panel, even though its propagation is different across variables. This
parsimonious specification contrasts with the alternative modeling choice, followed e.g. by
Stock and Watson (2012) or Bok et al. (2018), of using more factors. The two specifications are
related, as a model with heterogeneous dynamics can always be re-written as a model with more
than one factor, homogeneous dynamics, and a rank restriction on the variance of the transition
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equation.14 Which specification is preferred amounts to asking how close to reduced rank is
the covariance matrix of a multiple factor specification in the data. Therefore, we estimate a
homogeneous DFM with two static factors for our data set, and compute, for each posterior
draw, the share of the largest eigenvalue in the factor covariance matrix. The result, displayed in
panel (b) of Figure 5, is a modal share of about 75% of the largest eigenvalue. This is higher than
an estimate of the same quantity using simulated data where the restriction is satisfied. Our
results support the idea that a single aggregate innovation, transmitted heterogeneously across
variables, can capture common fluctuations in real activity variables.15

3.3 Interpreting the data flow in the presence of SV and fat tails

In a DFM, the update of the factor estimate in response to the release of new information about
the j-th observable, can be understood in terms of the “influence function”,

E(ftk |Ω2)− E(ftk |Ω1) = wj,t
(
yj,tj − E(yj,tj |Ω1)

)
, (10)

where Ω2 is an information set containing additional observations relative to information set
Ω1, and yj,tj − E(yj,tj |Ω1) is the “news”, the forecast error based on the old information set.16

The weight wj,t is the slope of the influence function. In a linear Gaussian state space model
this corresponds to the j-th column of the Kalman gain matrix and is invariant to the size of the
prediction error. As a consequence, the update of the factor is a linear function of the surprise in
the release of the data. On the contrary, in our model wj,t takes the form

wj,t(yj,tj ) =
E
(

(ftk − ftk|Ω)(ftj − ftj |Ω)
)

Λ′j

ΛjE
(

(ftj − ftj |Ω)(ftj − ftj |Ω)
)

Λ′j + σ2
ηj,tj

+ δj,tjσ
2
o,j

. (11)

The expectation terms E
(

(ftk − ftk|Ω)(ftj − ftj |Ω)
)

in (11) denote the filtering uncertainty about
the common factor. In a model with stochastic volatility, an increase in the presence of large
errors across many variables will lead to an upward revision in the estimated time-varying
volatility of the common factor. The derivative of wj,t with respect to this common volatility
is positive, which means that in periods of higher aggregate uncertainty, the signal-to-noise
content of all variables increases, and the factor estimates will be more sensitive to incoming

14A large part of the literature calls the first specification a “dynamic factor model” and the second a “static factor model”,
whereas another part calls the model a “dynamic factor model” whenever the transition equation of the factors contains lags, i.e.
p > 1. We adhere to the second terminology throughout and refer to the case wherem > 0 as “dynamic heterogeneity” following
D’Agostino et al. (2016).

15This innovation can span multiple structural macroeconomic shocks. Identifying these structural shocks separately would
require additional variables, such as prices, as well as additional assumptions.

16When more than one variable is released, equation (10) can be used to obtain a “news decomposition”, i.e. the contribution
of each variable to the factor update, see Banbura and Modugno (2014). The separate notation for tj and tk allows for the time
period for which the news about variable j arrive, and the period for which the factor estimate is updated, to differ. In general,
the influence function in the robust statistics literature can be thought of describing the effect of an additional observation (in this
case the realized prediction errors) on a statistic of interest (the factor’s estimate), see Hampel et al. (1986).
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Figure 6: INFLUENCE FUNCTIONS

(a) Industrial production
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(b) Light weight vehicle sales
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Notes. Influence functions for industrial production and light weight vehicle sales. An influence function indicates by how much

the estimate of the common factor is updated when the release in the variable is different from its forecast and thus contains

“news.” The dotted blue line plot these influence functions in the Gaussian case, while the red lines represent the Student-t case.

As shown in equations (11)-(12) the model with fat tails allows these functions to be nonlinear and nonmonotonic. As the influence

function is in general time-varying, we report the average influence function in a representative year. The influence functions for

other variables are provided in Online Appendix C.

news.17 On the contrary, when the stochastic volatility of the idiosyncratic components, σ2
ηj,tj

,
increases in the denominator, the signal-to-noise ratio declines and the model becomes less
sensitive to news. Equation 11 makes clear that in our model wj,t depends on the data itself. The
reason is the term δj,tj , which takes the form

δj,tj = (((yj,tj − E(yj,tj |Ω))2/σ2
o,j + vo,j)/(vo,j + 1), (12)

where vo,j is the estimate of the degrees of freedom of the t-distributed component of variable
j. δj,tj increases with the size of the error, and therefore lowers the weight. As a consequence,
large idiosyncratic errors are discounted as outlier observations containing less information.
As vo,j →∞, the outlier component becomes Gaussian and the influence function collapses to
the linear form. Thus, the SV makes the influence functions time-varying, and the Student-t
component makes them non-monotonic.

Figure 6 plots the influence functions for two example variables, industrial production and
car sales, both for the linear case (without outliers) and the nonlinear case (with outliers). The

17As a consequence, it is possible for the factor uncertainty to increase as a consequence of the release of new data. This
contrasts with the results obtained with models without stochastic volatility, in which uncertainty always declines in response to
new data, as discussed, e.g., by Banbura and Modugno (2014).
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Figure 7: UNCERTAINTY INDEX WITH AND WITHOUT OUTLIER TREATMENT
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Notes. Posterior mean (solid red) and 68% and 90% (solid and dotted blue) posterior credible intervals of the index of uncertainty

following Jurado et al. (2015). This index is computed as shown in equation (13) for the full Bayesian DFM. For comparison, the

broken black line in displays the estimate of the same index calculated from a version of the model which does not feature the

outlier component.

influence functions for all variables are presented in Online Appendix C. For a model with
Gaussian innovations, the update of the factor is a line with slope equal to wj,t. These are
displayed as the dotted blue lines. As can be seen, noisy variables such as car sales have very
low weights, meaning that surprises to this variable lead to small updates to the current factor.
With t-distributed outliers, the influence functions are now S-shaped, shown as the red solid
lines of Figure 6. Around the origin, i.e., for a small surprise, the function is close to linear, but
as the surprise increases in size the update of the factor tapers off, and eventually can decrease
in size. The intuition is that if one observes a three or four standard deviation surprise, it is
increasingly likely that that observation represents a one-off outlier in the data, and therefore
our estimate of underlying economic activity should respond less to those “news.” Nevertheless,
the update is not zero, which would be the case if the outlier was manually removed.

The modeling of outliers and heterogeneous lead-lag dynamics interact with each other.
Allowing for heterogeneous dynamics increases the relative weight of “hard” variables, such as
industrial production and car sales, relative to business surveys This implies an increase in the
slope of their influence functions. However, these series are precisely the ones in the panel that
are likely to feature outliers. A model with heterogeneous dynamics but no outlier component
would thus produce highly volatile revisions to the estimated factor in response to transitory
movements in hard data. The combination of both features allows a model which gives weight
to the hard data for small surprises but is not unduly influenced by transitory outliers.
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The modeling of outliers also interacts directly with the presence of SV. To illustrate this,
we compute an index of uncertainty following Jurado et al. (2015) using our model.18 Figure 7
reports the mean and HPD bands of the uncertainty index

Ut ≡
1

N

N∑
i=1

√
λ2
iσ

2
ε,t + σ2

u,i,t

ŝ2
i

(13)

where ŝi is a variable-specific scaling factor capturing differences in average standard deviation
across variables. The advantage of Ut is that, apart from reflecting the time variation in the
volatility of the common factor, σε,t, as in Figure 3 (b), it captures any unmodeled common
component in the volatilities of the idiosyncratic components, σu,i,t. Two features are worth
noting. First, our estimate displays a marked downward trend associated with the Great
Moderation, in contrast to the one of Jurado et al. (2015) which uses both macro and financial
variables, but appears closer to the estimates obtained by Ludvigson et al. (2015) using real
activity only. This suggests that the Great Moderation is a phenomenon specific to real economic
activity. Second, our estimate displays fewer transitory spikes than existing estimates, rarely
increasing outside of recessions. This contrasts with the fairly volatile estimates of Ludvigson
et al. (2015). The explanation is our treatment of fat tails: the broken black line in Figure 7
displays the same index calculated from a version of the model which does not feature the
outlier component. This index is above our estimate throughout the sample, since the presence
of outliers in the data, if not explicitly modeled, inflates the estimate of the volatility of the
idiosyncratic component. Importantly, the broken black line exhibits more frequent and larger
spikes. Some of them can be attributed to short-lived natural disasters such as hurricane Katrina
in 2005. Our results suggest caution when interpreting economic uncertainty indices in the
presence of fat-tailed innovations that may not wash out in the aggregate.19

4 Real-time out-of-sample model evaluation 2000-2019

This section constructs daily estimates of US GDP growth, and formally evaluates the
performance of our model relative to benchmark competitors, both in terms of point and density
forecasting. To mimic the exercise of a forecaster who updates her information set in real time,
we build a data base of unrevised vintages of data for each point in time, every day between
January 2000 to December 2019. This involves carefully addressing various intricacies of the
data vintages, such as methodological changes that occur over time. Furthermore, re-estimating
the model every day that the information set is updated over 20 years is computationally very
intensive. It is made feasible thanks to our efficient algorithm and by exploiting modern cloud
computing infrastructure. Details are provided in Online Appendix D.

18Online Appendix C presents the estimated SV of all idiosyncratic components of the model.
19This is particularly important when the number of variables n is small and may be a less important concern when it is very

large, as in Ludvigson et al. (2015).
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4.1 Model forecasts and GDP releases over time

Figure 2 presents our daily estimate of current-quarter real GDP growth, together with its
estimated volatility. This time series represents a daily snapshot of current economic conditions
produced by the model. In the Online Appendix we report additional outputs from the model,
including daily estimates of the probability of recession as well as a measure of growth-at-risk
in the spirit of Adrian et al. (2019).

Figure 8 turns to a formal comparison of the model predictions with the official GDP data
subsequently published by the BEA. It plots the predictions of two versions of the model: our
full Bayesian DFM (shown as the red solid line), as well as a basic DFM that is estimated on
the same data set but does not feature time-varying trends, SV, heterogeneous dynamics or fat
tails, such as the model of Banbura et al. (2013) (dotted blue line). The forecasts are produced
about 30 days after the end of the reference quarter, just before a first (“advance”) estimate of
GDP growth is published by the BEA. We compare the model forecasts with the “final” or third
release of GDP published by the BEA two months later, which is plotted with black circles. The
figure shows that both models track the broad contour of fluctuations in real GDP, including the
recessions and recoveries in 2001 and 2008-09. Importantly, however, the basic model displays
very visible drawbacks. A persistent upward bias is evident after around 2010, reflecting a
failure to capture the decline in long-run growth which materialized in this decade (see also
Antolin-Diaz et al., 2017). Furthermore, the comparison of the two models in real time highlights
the advantage of modeling heterogeneous dynamics. The full model better captures both the
magnitude of the contractions and the timing of the recoveries. This is because the model can
balance the information in indicators of durable consumption and investment, which serve as
leading indicators of the recovery, with that of the more sluggish business surveys.

The shaded areas in the figure represent a 68% HPD interval for each model. Thus, if the
density forecasts were well calibrated, out of the 80 quarterly observations we would expect
about 26 of them, or 32%, to fall outside of the bands. For the case of the basic model, 17 or 21%
fall outside, whereas for the full model it is 27, or 34%.20 This indicates that the basic model,
which does not feature time-varying volatility, is on average too conservative, producing bands
that are too wide. The restrictive assumption of constant volatility is behind this result: the
sample features long, stable expansions punctuated by relatively large recessions, so a single,
average, estimate of volatility is an overestimation most of the time.

20Applying a formal test for the correct calibration of the density forecast (Rossi and Sekhposyan, 2019) rejects (at 10% level)
the correct specification for the basic DFM model, but does not reject when applied to the forecasts of the full model. This is true
when the test is applied to the entire density, as well as when this is applied to the left and right side of the density separately.
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Figure 8: MODEL NOWCASTS AND PUBLISHED GDP GROWTH COMPARED
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Notes. The black line represents the third release of real GDP growth in the United States as published by the BEA. The blue line

plots the nowcasts for real GDP growth based on information up to this point our full model (red) and the basic DFM (blue). The

blue and red shaded areas indicate the corresponding density around the nowcasts. It is visible that the nowcasts for the basic

model exhibit an upward bias in the later part of the sample, which is not the case in the full model. The full model also appears

to be better at capturing turning points in recessions.

4.2 Real-time evaluation and comparison to alternative models

Table 1 provides a formal forecast evaluation of our model against a basic DFM and the DFM
maintained by the New York Fed staff, described in Bok et al. (2018).21 The table formally
evaluates the point and density forecast accuracy relative to the third release of GDP.22

Panel (a) focuses on point forecasts, by comparing the root mean squared error (RMSE)
across models. In each column, the different lines show the RMSE of a given model for different
forecast horizons. A more accurate forecast implies a lower RMSE. Recall that GDP is quarterly
(covers a period of 90 days) and is first released 30 days after the reference quarter. Predictions
produced 180 to 90 days before the end of a given quarter are forecast of the next quarter; forecasts
at a 90-0 day horizon are nowcasts of the current quarter, and the forecasts produced 0-30 days
after the end of the quarter are backcasts of the last quarter. In brackets we report the p-value
from the Diebold and Mariano (1995) test of the null hypothesis that a given model performs
as well as our full Bayesian DFM, against the alternative that the full model performs better.

21The New York Fed Staff Nowcast is updated weekly. Historical nowcasts are available online, which allows a direct
comparison. See https://www.newyorkfed.org/research/policy/nowcast.html.

22As there are three major releases and GDP gets revised over time, an important question is which vintage of GDP is taken
as the “ground truth” against which forecasts are evaluated. We focus on the third (“final”) release, as the majority of revisions
occur in the earlier releases. We have explored evaluating the forecasts against earlier releases, the latest available vintages, or
an average of the expenditure and income estimates of GDP. The relative performance of the models is broadly unchanged, but
we find that all models do generally better at forecasting less “mature” vintages. The results are available upon request. If the
objective was to improve the performance of the model relative to the first official release, then an explicit model of the revision
process would be desirable.
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Table 1: OUT-OF-SAMPLE PERFORMANCE OF DIFFERENT MODELS

(a) Point forecasting: RMSE Full Model Basic DFM NY Fed
–180 days 2.25 2.53 −

[0.02] −

–90 days (start reference quarter) 2.14 2.57 2.36
[0.02] [0.29]

–60 days 1.88 2.21 2.18
[0.01] [0.05]

–45 days (middle reference quarter) 1.65 2.09 1.98
[0.01] [0.02]

–30 days 1.66 2.09 1.83
[0.01] [0.07]

0 days (end reference quarter) 1.48 1.98 1.67
[0.00] [0.08]

+30 days (first release) 1.48 1.96 1.60
[0.00] [0.13]

(b) Density Forecasting: Log Score Full Model Basic DFM NY Fed
–180 days –2.16 –2.40 −

[0.36] −

–90 days (start reference quarter) –2.09 –2.37 –2.28
[0.33] [0.05]

–60 days –1.98 –2.24 –2.17
[0.09] [0.01]

–45 days (middle reference quarter) –1.89 –2.18 –2.08
[0.09] [0.00]

–30 days –1.88 –2.18 –1.99
[0.02] [0.00]

0 days (end reference quarter) –1.81 –2.14 –1.91
[0.00] [0.00]

+30 days (first release) –1.80 –2.13 –1.87
[0.00] [0.00]

Notes. Comparison of the forecasting performance of different models: the full Bayesian DFM; the basic DFM; the New York Fed

Staff Nowcast. We report the RMSE (top panel) and Log score (bottom panel) across various forecasting horizons. For the first

two column the sample is 2000-2019. For the last column, it is 2002-2019. For each of the alternative models we report the p-value

associated with the null hypothesis that a given model performs as well as the full Bayesian DFM model against the alternative

that the full model performs better. The test is computed using Diebold and Mariano (1995)’s statistic with small-sample correction

as suggested by Clark and McCracken (2013). Note that the New York Fed’s model is a frequentist model that does not produce

density forecasts. We construct the associated density forecasts by resampling from past forecast errors as in Bok et al. (2018).
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Reading the table from top to bottom, it is visible that all models become more accurate as the
forecasting horizon shrinks and more information comes in. Importantly, our full Bayesian DFM
produces significantly better point forecasts than the basic DFM at all horizons. Moreover, the
our model also outperforms the NY Fed Model with economically large improvements. At the
45-day horizon, the RMSE from our model is 17% lower and highly statistically significant. The
differences decline by the time of the first release of GDP, 30 days after the reference quarter.

Panel (b) turns to comparing the Log score, a common metric for density forecast evaluation,
across the same models and horizons as the previous panel. A larger average Log score indicates
a more accurate density forecast. Being estimated with frequentist methods, the New York
Fed’s model does not produce density forecasts. We construct the associated density forecasts
by resampling from past forecast errors as in Bok et al. (2018). In brackets we again report
the p-value from the Diebold and Mariano (1995) test. It is evident from panel (b) that the
relative density forecasting performance of our Bayesian DFM is even stronger than the point
forecasting performance. When considering conventional significance levels, the full model
beats all alternatives at all horizons, except for the basic DFM, which is not significantly worse
and very far horizons of 180 and 90 days ahead of the end of the reference quarter. Overall, the
table highlights the strong performance of the Bayesian DFM at producing point and density
forecasts for US real GDP growth.

In Online Appendix E we show that similar gains are found using alternative evaluation
metrics for the point a density forecast (mean absolute error and continuous rank probability
score). We also evaluate the full model against the basic DFM over a continuous forecast horizon
(rather than at a selected number of horizons) and show that while both models improve their
performance as the information arrives over the nowcasting horizon, the gains from the full
model are large throughout the forecast, nowcast and backcast horizons. Furthermore, we
evaluate recursively the performance of the full model against the basic DFM. This exercise
shows that the improvements from the full model are large (and significant) already after 2 years
in the evaluation sample. Finally, the Online Appendix also demonstrates how our model can
be used to asses tail risks in real time.23

4.3 Relative contribution of different components

In order to evaluate the contribution to each of the components to the performance of our full
model, Table 2 reports the evaluation exercise for models of increasing complexity: first, a simple
autoregressive (AR) model of order 1 on quarterly data; second, the basic DFM; third a version
which adds only time-varying long-run growth and stochastic volatility (as in Antolin-Diaz et al.,
2017), labeled “trend & SV”; fourth, a version which adds, on top, the heterogeneous dynamics
(“Lead/Lag”), and finally the full model which adds on top the t-distributed outliers (“fat tails”).
We report the RMSE (top panel) and Log score (bottom panel) for various forecasting horizons.

23See also Carriero et al. (2020) for an alternative approach to forecasting tail risks.
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In brackets we report the p-value of a formal test against the AR(1) model.
The upper panel of the table shows that the basic DFM struggles to improve on the simple

AR(1) in terms of RMSE, but the addition of the time-varying long-run trend and volatility leads
to a reduction in RMSE at all horizons.24 Another substantial improvement comes from the
addition of heterogeneous dynamics. Turning to the lower panel, which reports density forecast
accuracy, we see how the DFMs are substantially better than the AR(1), in particular once the
long-run growth and stochastic volatility are added, at which stage the improvement is large
and highly significant. The introduction of heterogeneous dynamics leads to an additional large
improvement. For both point and density forecasting, the fat tails appear to lead only to a small
improvement in the forecast accuracy relative to the model that has the heterogeneous dynamics.
However, it is worth nothing that on a daily basis the presence of the Student-t components
produces nowcasts that are less noisy and avoids large revisions that are often revised after large
outliers in the hard variables. Moreover, as we show in Section 5 of the main text, our modeling
of fat tails plays a critical role during the COVID-19 crisis.

4.4 Comparison to Federal Reserve and survey expectations

In addition to assessing the performance of our Bayesian DFM relative to other formal
econometric models, we compare its forecasts to those of the Survey of Professional Forecasters
(SPF) and its individual participants, as well as to the Federal Reserve Staff’s forecasts produced
for the Federal Open Market Committee (FOMC). A comparison against professional and
institutional forecasts is generally considered a very high bar for statistical models, as they have
access to a large information set including news, political developments, and information about
structural change (see, e.g., Sims, 2002). Consensus measures such as the SPF median are an
even higher benchmark as they aggregate the opinions of a multitude of forecasters.

Panel (a) of Figure 9 compares the RMSE for the GDP nowcast of our Bayesian DFM against
the RMSEs of the current-quarter GDP forecasts of individual participants in the SPF, and the
associated SPF survey median. We also include the NY Fed Staff Nowcast considered in the
previous section. These forecasts are evaluated in the middle of the quarter, so correspond
to horizon −45 in the evaluation above. The chart provides this information as a scatter plot,
given that the comparison of the individual nowcasts against ours are carried out over different
samples. This is due to the fact that SPF panelists drop in an out of the survey, so we compare
each for the overlapping set of observations.25 Observations above the 45-degree correspond
to forecasts that are less accurate than the ones obtained from our model. The chart delivers
several insights. First, most individual SPF forecasters produce larger error than our model. Our
model outperforms 80% of all individual forecasters. Second, our forecasting performance is

24The relatively good performance of the AR(1) masks the fact that while the AR(1) does well on average in quiet times, it
fails to track GDP in periods of recession. Therefore, it provides a misleading picture of the state of the economy when it arguably
matters most.

25Appendix E explains how we treat individual forecasts, given that the panel of participants is unbalanced.
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Table 2: OUT-OF-SAMPLE PERFORMANCE OF INTERMEDIATE MODEL VERSIONS

Point forecasting: RMSE AR(1) Basic DFM Trend & SV Lead/lag Fat tails
-180 days 2.4 2.5 2.4 2.3 2.3

[0.80] [0.63] [0.37] [0.36]

-90 days (start reference quarter) 2.3 2.6 2.4 2.2 2.1
[0.75] [0.59] [0.30] [0.28]

-60 days 2.1 2.2 2.0 1.9 1.9
[0.58] [0.39] [0.25] [0.23]

-30 days 2.1 2.1 1.9 1.7 1.7
[0.48] [0.29] [0.12] [0.10]

0 days (end reference quarter) 2.1 2.0 1.8 1.5 1.5
[0.33] [0.18] [0.05] [0.04]

+30 days (first release) 2.1 1.9 1.8 1.5 1.5
[0.28] [0.13] [0.04] [0.03]

Density Forecasting: Log Score AR(1) Basic DFM Trend & SV Lead/lag Fat tails
-180 days −2.42 −2.40 −2.16 −2.16 −2.16

[0.36] [0.00] [0.00] [0.00]

-90 days (start reference quarter) −2.40 −2.37 −2.21 −2.10 −2.09
[0.33] [0.03] [0.00] [0.00]

-60 days −2.34 −2.24 −2.05 −1.99 −1.98
[0.09] [0.00] [0.00] [0.00]

-30 days −2.34 −2.18 −2.00 −1.90 −1.88
[0.02] [0.00] [0.00] [0.00]

0 days (end reference quarter) −2.34 −2.14 −1.98 −1.83 −1.81
[0.00] [0.00] [0.00] [0.00]

+30 days (first release) −2.35 −2.13 −1.96 −1.81 −1.80
[0.00] [0.00] [0.00] [0.00]

Notes. Comparison of the forecasting performance across model versions with increasing complexity: an AR(1) model estimated

on quarterly GDP data; the basic DFM; a DFM which adds only time-varying long-run growth and stochastic volatility (as in

Antolin-Diaz et al., 2017), labeled “trend & SV”; a version which adds heterogeneous dynamics (“Lead/Lag”); and our full

Bayesian DFM which adds on top the t-distributed components (“fat tails”). We report the RMSE (top panel) and Log score

(bottom panel) across various forecasting horizons. The p-value of a formal test against the AR(1) model is reported in brackets.

It is computed using Diebold and Mariano (1995)’s statistic with small-sample correction as suggested by Clark and McCracken

(2013).
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very similar to, and statistically indistinguishable from, the SPF median. Third, in line with the
previous section, the Bayesian DFM outperforms the NY Fed nowcasts.

Figure 9: MODEL PERFORMANCE RELATIVE TO SPF AND FED FORECASTS
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(b) 2-year ahead GDP forecasts
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Notes. Panel (a) presents a scatter plot of the root mean squared error (RMSE) for real GDP nowcasts of our full Bayesian DFM

against the RMSE of alternative forecasting models: individual forecasts from the Survey of Professional Forecasters (SPF); the

median of the individual SPF forecasts; the New York Fed Staff Nowcast. Points above the 45-degree line indicate that our model

is more accurate. Panel (b) instead provides a comparison for the 2-year ahead GDP forecasts against the actual realization at

different points in time. This is shown for our model; the SPF; and forecasts produced by the FOMC.

We also compare the quarterly GDP nowcasts of our model against the Federal Reserve
Staff Projections for GDP included in the Greenbook (GB, nowadays known as “Tealbook”).
This comparison is not feasible at a fixed 45-day horizon, as the GB is prepared prior to FOMC
meetings, which occur eight times per year, so the exact horizon varies every meeting. Broadly
speaking, there is a meeting early in the quarter (the median happening 66 days before the end
of the quarter) and another one later in the quarter (18 days). By matching the exact information
set with the date of the GB, we find that our model’s forecasts corresponding to the early meeting
are not significantly different in terms of RMSE to the GB’s, whereas the GB dominates by the
time of the late meeting.26 Thus, relative to the results of Faust and Wright (2009), we find
that a carefully specified model using many indicators of real activity can come close to the
performance of the Greenbook.27 Yet, in line with earlier findings of Romer and Romer (2000)
and Nakamura and Steinsson (2018), Federal Reserve Staff forecasts continue to be a tough

26In the early meeting, our model has a RMSE of 1.99 vs. 1.88 of the GB, p-value of 0.23, whereas for the late meeting, the
RMSE of our model 1.37 vs. 1.67 of the GB p− value = 0

27Faust and Wright (2009) report that “large data methods” produce losses 30% higher than the GB for the 1984-2000 sample,
and even higher in the 1979-2000 sample, when there is a recession in the sample. Moreover, they report that these models are
clearly outperformed by simple AR models, which is not true in our case.
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benchmark for formal models, appearing to possess considerable additional information in
particular close to the end of the reference quarter.

Panel (b) considers longer-horizon forecasts, and plots 2-year ahead GDP growth forecasts
made at different points in time against the actual realization of GDP growth. We provide a
comparison of the 2-year ahead forecasts from our Bayesian DFM relative to the SPF survey
median and the “Summary of Economic Projections” published by the FOMC since 2008. The
out-turns for the 2-year ahead forecasts thus start in 2010. The chart shows that the SPF median
and FOMC forecasts overestimate GDP in the first half of the 2010’s, while our model moves
more symmetrically around the actual outcome. While our model was not built with the
purpose of predicting longer horizons, the slow-moving growth component avoids excessive
mean reversion in short-run predictions and eliminates the upward bias in longer-horizon
forecasts. Finally, towards the later part of the sample, the different forecasts converge to very
similar magnitudes. In fact, over the 2010-2018 period, the RMSE of our model is 0.62 percentage
points compared to 0.66 of the SPF and 1.14 of the FOMC. Moreover, the average forecast error,
a measure of bias, is 0.37 for our model compared to 0.58 of the SPF and 1.04 of the FOMC.

5 Understanding macro data during and after COVID-19

The COVID-19 pandemic and associated recession pose a challenge for macroeconometric
models.28 First, the scale of the drop in economic activity is unseen in postwar history; second, the
speed at which events unfolded poses challenges for nowcasting models that rely on traditional
monthly economic indicators; and third, the sectoral composition of the shock is rather unusual,
hitting particularly hard sectors such as services which usually display little business cycle
fluctuations, and breaking the typical comovement patterns across macroeconomic variables.29

The framework that we propose in this paper proves to be critical both to track in real time
and to interpret the developments in macroeconomic time series observed during 2020. In fact,
attempts to estimate a basic linear and Gaussian DFM lead to unstable estimates and, often,
failure of the MCMC algorithm to converge unless one discards (or winsorizes) the observations
surrounding the lockdown. Below we describe how the combination of new components enable
us to understand the data during this episode. Furthermore, as a separate contribution, we
provide a methodology to incorporate into our framework a number of recently developed
“alternative” high-frequency indicators which offer a potentially more timely but partial reading
of economic activity.

28The specification choices for the model and the analysis preceding this section was completed before the end 2019, when
initial drafts of this paper were circulated. None of the priors, settings, or modeling choices were altered ex-post to better fit the
2020 data, so the observations for 2020 constitute an actual out-of-sample set for our model.

29The challenges faced by econometric models estimated on 2020 data are highlighted by a nascent literature, including
Primiceri and Tambalotti (2020); Lenza and Primiceri (2020), Schorfheide and Song (2020), Cimadomo et al. (2020), and Ng (2021).
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5.1 The Great Lockdown through the lens of the model

Figure 2 previewed the daily reading of the data through the lens of the model during the period
between March and August 2020. The main feature that stands out is not just the large drop in
underlying economic activity, but also the large increase in the volatility of the common factor.
Therefore, in real time the model conveys the idea that not only the outlook is worsening, but
uncertainty around it is increasing.

Against the backdrop of this large increase in aggregate volatility, the COVID-19 episode is
unique because of the important changes in the sectoral behaviour of macroeconomic time series.
Over the typical business cycle, output, income, investment, consumption and employment
move closely together, with investment typically more volatile than consumption, and hours
worked and other measures of labor utilization moving as much as output. Instead, the COVID-
19 recession has led to a large contraction in sectors that are usually not very cyclical and therefore
have a small loading on the factor, such as services consumption. In addition, heterogeneity
in the impact of the recession across households, as well as aggressive policy interventions to
support income and expand unemployment benefits, have decoupled series that comove, such
as filings for unemployment claims and aggregate consumption which are usually strongly
negatively correlated.

In a DFM the average comovement pattern is reflected in the estimated factor loadings Λ(L).
In our model, variables can deviate from this pattern in a persistent way, through the time
variation in the volatilities of the idiosyncratic components, or in a transitory way, through
the Student-t component.30 This allows the model to track business cycle fluctuations as a
combination of changes in aggregate activity and overall uncertainty, and a mix of transitory
and persistent changes in volatility of individual indicators that is unique in each downturn. A
variance decomposition of the variables for particular episodes summarizes this. Recall from
equation (1) that each series can be decomposed into the sum of the different components.
Their innovations are independent, so the variance of each variable at each point in time can be
expressed as the sum of the variances of each of its components.31

Figure 10 reports such a variance decomposition for selected variables during the period
January-August 2020. We group the indicators into conceptually related categories: production,
investment, consumption and labor. For comparison with the Great Recession, we do the same
exercise for the period January-December 2008. The reader should note that the increase in
the variance for some variables in 2020 is massive, so that the horizontal axis displays several
scale breaks. For instance, the increase in initial claims in April 2020 was 332 times the standard
deviation of the previous 35 years. As a consequence, the increase in variance is even bigger. The
blue bars capture the part of the variance that is attributed to the common factor. For most of the
variables, this segment is larger in 2020 than in 2008. The COVID-19 recession thus appears to be

30This means that which variables are important for the estimation of the factor varies over time even if the loadings are fixed.
31This is not true for standard deviations, because the square root of a sum is not the sum of the square roots. By using

variances instead of standard deviations, the scale of the figure does not have easily interpretable units.

28



Figure 10: VARIANCE DECOMPOSITIONS: 2008 VS. 2020
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a larger version of the standard business cycle. This is particularly true for investment-related
variables, such as new orders of capital goods, construction indicators, and car sales. In line with
the usual low cyclicality of consumption, the blue bars are comparatively small for consumption-
related indicators in both episodes. The red bars in turn capture the part of the variance which
is idiosyncratic to each series, and the yellow bars capture the outlier component, which is also
idiosyncratic but transitory. The striking fact about the COVID-19 episode is the presence of
massive outliers only on consumption and labor-market related indicators, precisely those series
that are most directly affected by the public health interventions intended to curb the spread
of the virus. Interestingly, we observe a larger than usual contribution of the idiosyncratic
and outlier components for housing variables during the 2008 recession, possibly reflecting the
nature of the downturn, which had exceptional swings in mortgage and housing markets at its
core. The fact that fluctuations in investment variables are largely explained by the common
factor in both episodes leads us to speculate that the common factor in this class of models mostly
captures the transmission of aggregate shocks via fluctuations in investment, independently of
the exact nature of the shock that triggered the recession.

These patterns of changing relative variances would be impossible to capture in models
without SV and fat tailed outliers. Figure 11 examines additional ways in which these
components affect the behavior of the model and the resulting interpretation of the data. Panel
(a) focuses on the heterogeneous dynamics. We report the estimation results using the data
as available on June 1, 2020 for two versions of the model. In the left panel, the full model is
used, whereas in the right panel, the heterogeneous dynamics are switched off (i.e., m = 0).
In both cases, we report the estimated posterior mean of (latent) monthly GDP growth, the
common component, and their forecasts through 2021. As discussed in Section 3.2, in standard
DFMs with homogeneous dynamics the responses of the variables to a common shock are all
proportional, and the business surveys typically dominate the estimation of the common factor.
As a consequence, both the factor itself and the forecasts of all variables inherit the dynamics of
survey variables. The heterogeneous dynamics (m > 0) break that restriction, allowing hard
variables such as GDP growth to display less persistent responses to the same shock. As of
June 1, survey data available for May already displayed a partial recovery, with hard data for
Q2 still mostly not available. For the model with heterogeneous dynamics (left panel) this
information translates into a forecast of a sudden large drop in activity followed by a quick,
albeit partial, rebound in GDP. For the model with homogeneous dynamics (right panel) the
forecast is instead for a shallower but more prolonged recession, similar to the one experienced
during the 2008-2009 financial crisis. Ultimately, the “partial V” predicted by the full model
proved to be a more accurate description of the second half of 2020. This highlights that the
model can capture different shapes of recoveries, in line with the differential behavior of durable
and non-durable spending recently highlighted by Beraja and Wolf (2021).

Panel (b) of Figure 11 illustrates the role of the t-distributed outliers. Retail sales in particular
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Figure 11: IMPACT OF HETEROGENEOUS DYNAMICS AND FAT TAILS
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(b) Retail sales forecasts with and without fat tails (June 15, 2020)
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Notes. As a case study of the mechanics of our model components in the forecasting process, this figure zooms in on different

objects at specific points in time. Panel (a) shows monthly GDP growth and the common factor up to June 1 2020, together with

their projection thereafter. It compares this for two model versions, with and without heterogeneous dynamics. Panel (b) focuses

on the June 15 vintage of retail sales, which refers to the period of May, and compares the retail sales predictions in model versions

with and without the idiosyncratic Student-t component.

experienced an unprecedented 20% drop in April 2020. The left panel reports the full model’s
forecast for the May 2020 retail sales release, using the data vintage available on June 15, the
day before its publication. It is worth noting that the retail sales series displays large, transitory
outliers throughout its history, most notably around tax changes in October 1986 and around the
9/11 terrorist attacks (see Figure 1). Therefore, the model interprets a large fraction of the April
2020 drop as one such outlier, and forecasts a strong rebound in May. Moreover, consistent with
the transitory nature of the drop and rebound, the idiosyncratic stochastic volatility remains at
normal levels for the subsequent forecast horizon. The right panel reports the same forecast for
a model in which the t-distributed outliers are switched off. As discussed above, the drop in
consumer-related variables such as retail sales was orders of magnitude greater than what one
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would have expected given the movements in investment-related variables. The only way that a
model without fat-tailed outliers can interpret this information is via a massive and persistent
increase in the idiosyncratic SV of retail sales. This can be seen in the widening fan chart of the
right panel. With no reason to expect a large idiosyncratic outlier of opposite sign, the median
path is consistent with the aggregate rebound of the common factor, as discussed in panel (a).
Ultimately this forecast turned out to be a worse description of developments in retail sales.

Figures 2, 10, and 11 highlight the main conclusion of examining the data observations
for 2020 through the lens of our model. The COVID-19 recession appears, first, as a large
drop in aggregate economic activity followed by a quick but partial rebound, accompanied
by a persistent increase in the volatility of the common factor; second, it manifests itself by
the presence of large, but transitory, swings in those macroeconomic time series capturing the
consumer sectors most directly exposed to the lockdown of March-April 2020.

5.2 Incorporating newly available high-frequency data

An additional challenge posed by the COVID-19 recession for tracking economic developments
in real time derives from the timing of the shock, which had its maximum effect after the
declaration of a National Emergency on March 13, 2020. The release calendar for macroeconomic
data is such that the most timely indicators are released around the turn of each month, referring
to conditions prevailing on average in the previous month. Therefore, the downturn was not
fully reflected by standard indicators until their release at the end of April or beginning of May,
making nowcasting models potentially less useful at a time where an assessment is urgently
needed. In response to this lack of data, a number of novel indicators have been proposed.
These include measures of consumption derived from credit card data, as in Chetty et al. (2020);
employment data from the online scheduling provider Homebase and the Real Time Population
Survey described in Bick and Blandin (2020); data on restaurant reservations from the mobile
application OpenTable; and mobility data provided by Apple.

These “alternative data” provide a potentially more timely reading of economic conditions
than traditional indicators, and have therefore received close attention in media and policy
circles during the pandemic. Each of these new series however provides only a partial and
noisy signal of economic conditions. We propose a method to incorporate them into the DFM
framework, in order to exploit their joint information in a systematic way, and quantify their
contribution to our assessment of the economy. The key difficulty of this task is that these series
have an extremely short history, all starting in 2020 and some appearing only as late as April.
Estimation of the parameters of the measurement equation (1) thus becomes challenging. Recall
that the factor loadings, Λ(L) capture the average responsiveness of each series to the business
cycle. For reliable estimation, one would need the series to be available for one or more business
cycles. Whether the series is available daily, weekly, or monthly is less relevant.32 Our key

32Attempting to estimate the model at daily frequency would therefore not help in this dimension.
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insight is that many of these series are quite closely related to some of the traditional indicators
already included in the DFM. For instance, the credit card data from Chetty et al. (2020) explicitly
tries to track aggregate consumption. In this case, one would expect the traditional series and
the high-frequency proxy to have both similar loadings and correlated idiosyncratic components.
This information would be lost if one just appended the new series to the panel.

Table 3: TRADITIONAL SERIES AND MATCHED HIGH-FREQUENCY PROXIES

Traditional Monthly Indicator Start Date High Frequency Proxy Freq. Start Date
Real Consumption (excl. durables) Jan 67 Credit Card Spending (OI) D Jan 20
Payroll Empl. (Establishment Survey) Jan 47 Homebase D Mar 20
Civilian Empl. (Household Survey) Feb 48 Dallas Fed RPS BW Apr 20
Unemployed Feb 48 Dallas Fed RPS BW Apr 20
Initial Claims for Unempl. Insurance Feb 48 Weekly Claims (BLS) W Jan 67
U. of Michigan: Consumer Sentiment May 60 Rasmussen Survey D Oct 04
Conf. Board: Consumer Confidence Feb 68 Rasmussen Survey D Oct 04
U.S. Vehicle Miles Traveled Jan 70 Apple Mobility Trends D Jan 20
Real Retail Sales: Food Services & Drinking Places Jan 67 OpenTable Restaurant Reservation D Feb 20

Notes. List of high-frequency series and related traditional macroeconomic indicators. The high-frequency series are data sources
which have received close attention during the COVID-19 induced recession. They have the drawback that they span only a short
history. We identify related traditional indicators, which capture similar economic concepts, but are available for a longer time
period and therefore get a more meaningful weight in the DFM. We then matched the series in the DFM, as described in the text.

Our proposal is to qualitatively match, based on the underlying economic concept, each
high-frequency series with a traditional monthly indicator, and use the former as conditioning
information for the unpublished values of the latter. This distinguishes our approach from
that of Lewis et al. (2020) who create an index of economic activity based only on weekly
indicators that have been available at least since the 2008 recession. Table 3 lists the novel data
series together with the traditional series that we match to each of them. We incorporate the
credit card spending series from Chetty et al. (2020) to condition the value of real consumption
growth from the BLS; the Homebase employment data and the Dallas Fed Real Time Population
survey to match series from the establishment and household surveys, respectively; the Apple
Mobility Trends data, which measures requests for driving directions on Apple devices, which
we match to the historical series of U.S. vehicle miles traveled published by the Federal Highway
Administration; and the number of bookings for seated dinners at restaurants registered by the
mobile application OpenTable, which we match to the real retail sales series for food services
and drinking places. In addition, we incorporate two series which have been available for a
longer sample, the weekly initial claims data from the BLS; and the daily survey of consumers
from Rasmussen, which is available since 2004, and which we can link to the two monthly
consumer surveys in our panel.33 In all cases, we verify that the definition of the series (e.g.
growth with respect to a year ago) and seasonal adjustment is consistent.

We first aggregate the daily series to monthly frequency. When partial information is

33The bi-weekly Real-Time Population Survey are incorporated to our panel on the days in which they are originally published
in real time. The Homebase employment data, the Chetty et al. (2020) credit card data and the Apple mobility trends were made
public at various moments during the crisis. We introduce them into the model assuming a one day publication lag as soon as at
least two months of data are available.
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available for a given month, we average the observations available within the month.34 This
leaves us with monthly time series that are sometimes as short as one or two observations.
We then estimate a linear regression linking the traditional series with the novel proxy. Given
the extremely short sample, a Bayesian prior on the coefficients of this regression is employed,
tightly centering the intercept around zero and the slope around one. We then use the fitted
value for the last observation, when the novel series is available but the traditional series is not,
to “nowcast” the value of the latter. In the first few months, the prior information will dominate,
effectively imposing a close to one-to-one relation between the traditional series and its proxy.
Of course, the true relationship between the indicators may not be one-to-one, so the relevant
empirical question is whether the extra timeliness added by the high-frequency information,
and the fact that the DFM is averaging across a number of series, offsets the bias introduced
by this approach. Nevertheless, as data accumulates, the posterior will converge to the true
relationship between the two series.35

Figure 12 provides a joint assessment of the usefulness of the high-frequency data and of
our modeling innovations during the lockdown and subsequent recovery of 2020. We present
the daily estimate of US real GDP growth for different combinations of models and data: a
basic DFM (solid green) and our full Bayesian DFM (blue with crossed markets) estimated on
the traditional data, as well as our full Bayesian DFM in which the new data are incorporated
(red with circular markers). The former two models correspond to those formally evaluated on
2000-2019 data in Section 4.

Given the extreme nature of the 2020 observations, to be able to run the basic DFM, which
features both Gaussian disturbances and constant volatility, we need to adopt an ad-hoc
procedure to censor outliers, used e.g. by Stock and Watson (2002b), discarding observations
more than 10 times larger in absolute value from the interquartile range of the series. This
implies throwing away a large fraction of the data related to this period. Moreover, the absence
of heterogeneous lead-lag dynamics in the basic model hinders its ability to reflect the rebound
in activity after the partial reopening. For these two reasons, the basic framework tracks
economic developments with a full month of delay through the course of the pandemic. Instead,
the presence of SV and fat tails in the full model means the whole data can be utilized, and
the heterogeneous dynamics can pick up the rapid rebound in activity. Another important
observation is how, as data for this period is released, the uncertainty around the estimates of
the full model increases quickly as the model revises upwards the volatility of the factor.36

Adding the alternative data to the full model allows it to capture the decline in activity
faster than with the traditional monthly data only. The estimate of economic activity based on

34Knotek and Zaman (2019) have shown this to be preferable to taking the model to a higher frequency.
35An undesirable feature of our approach is that we are shutting down the uncertainty about the observation which we are

imputing. One option could be to randomly draw from the forecast of the bridge regression, rather than taking the point estimate.
This would be computationally expensive.

36This contrasts with the results obtained from models without SV, in which, fixing the forecast horizon, uncertainty always
declines in response to new data, as discussed by Banbura and Modugno (2014).
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Figure 12: REAL-TIME ESTIMATES OF ACTIVITY AROUND THE PANDEMIC
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traditional data would only be slightly negative until April 15, when industrial production and
retail sales data for the month of March was released, after which it registers a massive drop.
In contrast, the information contained in the high-frequency proxies during March and early
April, such as the sharp declines in credit card spending, mobility and restaurant reservations,
provides the model with more timely signals about the sharp downturn in the wake of the first
lockdown. While observers in media and policy circles paid close attention to these new data
sources, our method of incorporating them into the Bayesian DFM provides a systematic and
formal way to do so. By using a number of different series jointly, and extracting a signal about
aggregate activity, the DFM brings together the potentially noisy information in each of them.
After April 15, the estimates from the full model with and without the new data are relatively
similar. We conclude that the alternative data were useful in capturing the decline in activity
early, but the Bayesian DFM with traditional data tracked the rebound in a similar manner.
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5.3 Discussion: modeling time series beyond 2020

The next years of modeling macroeconomic time series will be characterized by the challenge
that the Great Lockdown remains part of the sample, in the same way that a binding Zero
Lower Bound on interest rates became an important feature of the data after 2008. As we have
discussed above, the recent crisis differs from usual recessions both in its time-series dynamics,
with a dramatic fall followed by a rapid rebound, and in the cross-sectional dimension, with
an alteration of the usual comovement between consumption, investment, and output. The
magnitude of the shock means that the 2020 observations will become dominant whenever
using estimation techniques featuring constant volatility and Gaussian shocks, so the usual
assumptions of factor models will lead to unreliable results. Excluding several quarters of data,
implying that there is nothing to be learnt about macroeconomic dynamics from this episode, is
unlikely to be an acceptable strategy, as emphasized by Primiceri and Tambalotti (2020) in the
context of VARs, especially if macroeconomic volatility remains elevated as the recovery lingers.
Even the traditional techniques for incorporating stochastic volatility will be problematic, as
these are not meant to capture the discrete but transitory increases in variance observed only in
some of the affected series. Therefore, understanding macroeconomic dynamics after 2020 will
require a more explicit recognition that non-linearities and non-Gaussianities are a pervasive
feature of modern business cycles. The framework developed in this paper is an approach that
will likely remain beneficial even as new observations get appended to macroeconomic time
series, and the COVID-19 pandemic moves into the rear-view mirror.

6 Conclusion

We propose a Bayesian DFM that incorporates low-frequency variation in the mean and variance
of the variables, heterogeneous lead-lag responses to common shocks, and fat tails. The
model is estimated via a fast and efficient algorithm that avoids non-linear computation. In a
comprehensive evaluation exercise based on fully real-time, unrevised data, the nowcasting
performance is substantially stronger than that of benchmark models and comparable or
better than that of professional human forecasters. Our modeling innovations are material
to understanding the evolution of activity during the COVID-19 recession and recovery, and
will likely provide an advantageous framework for the study of macroeconomic time series that
include the 2020 sample. Finally, we have laid out a method to incorporate newly available
high-frequency data into the DFM framework and shown that the new data provide important
signals during March and April 2020.
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A Details on model and algorithm

A.1 Details of the Gibbs sampler algorithm

Let θ ≡ {c,λ,Φ,ρ, ωa, ωε, ωη1 , . . . , ωηn , σo,1, . . . , σo,n, v1, . . . , vn} be a vector that collects the
underlying parameters, where Φ and ρ contain the autoregressive parameters for factor and
idiosyncratic components. The model is estimated using a Markov Chain Monte Carlo (MCMC)
Gibbs sampling algorithm in which conditional draws of the latent variables, {at, ft}Tt=1, the
parameters, θ, and the stochastic volatilities, {σε,t, σηi,t}Tt=1 are obtained sequentially. The algorithm
has a block structure composed of the following steps.

0. Initialization

The model parameters are initialized at arbitrary starting values θ0, and so are the sequences for
the stochastic volatilities, {σ0

ε,t, σ
0
ηi,t}

T
t=1. The latent components ct,ot, and ft, are initialized by

running the Kalman filter and smoother once conditional on the initialized parameters. Set j = 1.

1. Draw outlier and idiosyncratic components conditional on estimated common factors

Obtain a draw {oi,t}Tt=1 and {ui,t}Tt=1 from p({oi,t, ui,t}Tt=1|θj−1, aj−1
t , f j−1

t , {σj−1
ε,t , σ

j−1
ηi,t }Tt=1,y) for

each variable, i = 1, . . . , N .

Conditioning on aj−1
t , f j−1

t and the loadings, λj−1
i , one can compute ∆yi,t − ci,t − λi(L)ft.

Therefore, conditioning on ρj−1
i , {σj−1

ηi,t }Tt=1, and σj−1
o,i and vj−1

i , one can use the Kalman filter and
simulation smoother to independently draw the outlier and idiosyncratic components. This step is
independent for each of the variables in the system as such it can be run in a univariate state-space
and be parallelized. The univariate state spaces are all at monthly frequency, and in the case of
quarterly variables the estimation of the states spaces also produces interpolated monthly values
for the quarterly variables applying the approximation in Mariano and Murasawa (2003). The
interpolated quarterly variables are used in later steps of the Gibbs sampler.

2. Draw the parameters of the outlier component

For each variable, i = 1, . . . , N , obtain a draw from of σo,i from p(σo,i|{oji,t}Tt=1, v
j−1
i ) and vi from

p(vi|{oji,t}Tt=1, σ
j
o,i).

A fat-tailed distribution is easily obtained by a scale mixture, see Geweke (1993), Jacquier et al.
(2002). Therefore, we can treat the scale mixture variable as a latent variable. Specifically, assume
that ψi,t is distributed i.i.d. inverse gamma, or that vi/ψi,t ∼ χ2

vi , one has that
√
ψi,tzt ∼ tvi(0, 1).

Therefore, taking the sample {oji,t/
√
ψj−1
i,t }Tt=1 and posing an inverse-gamma prior p(σ2

o,i) ∼
IG(so,i, νo,i) the conditional posterior of σ2

o,i is also drawn inverse-gamma distribution. We choose
the scale so,i = 0.1 and degrees of freedom νo,i = 1 for our the monthly variables. For the quarterly
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variables where only one in three data points is available, we choose a more conservative prior
with νo,i = 30 degrees of freedom.

Conditioning on σjo,i, given the conjugate inverse gamma prior, the conditional posterior of
ψi,t|v is also an inverse gamma. A draw ψji,t can therefore be obtained from p(ψji,t|o

j
i,t, σ

j
o,i, v

j−1
i ) ∼

IG

(
vj−1
i +1

2 , 2

(oji,t/σ
j
o,i)

2+2

)
The degree of freedom vi are discrete with probability mass

proportional to the product of t distribution ordinates p(vji |o
j
i,t, σ

j
o,i) = p(v)

∏T
t=1

v−1/2Γ(v+1/2)
Γ(1/2)Γ(v/2) (v +

(oji,t/σ
j
o,i)

2)−(v+1)/2, where p(v) denotes the prior distribution for the degree of freedom. We use a
weakly informative prior for v which we assume to follow a Gamma distribution Γ(2, 10) discretized
on the support [3; 40]. This prior was proposed and analyzed by Juárez and Steel (2010). The lower
bound at 3 enforces the existence of a conditional variance for the outlier component.

3. Draw the common factor and trend component conditional on model parameters and SVs

Obtain a draw {ajt , f
j
t }Tt=1 from p({at, ft}Tt=1|{o

j
i,t}Tt=1,θ

j−1, {σj−1
ε,t , σ

j−1
ηi,t }Tt=1,y).

Having computed the outlier adjusted series (i.e. ∆yOAi,t = ∆(yi,t − oi,t)) and interpolated the
quarterly series in Step 1 of the algorithm, this step produces a draw of the entire state vector xt

(which includes the long-run growth component, at, and the common factor, ft) of the state-space
representation described in Section A.2, and using the precision filter as described in Section A.3.
Like Bai and Wang (2015), we initialise the Kalman Filter step from a normal distribution whose
moments are independent of the model parameters, in particular x0 ∼ N(0, 104I).

4. Draw the variance of the time-varying GDP growth component

Obtain a draw ω2,j
a from p(ω2

a|{a
j
t}Tt=1).

Taking the sample {ajt}Tt=1 drawn in the previous step as given, and posing an inverse-gamma
prior p(ω2

a) ∼ IG(Sa, va) the conditional posterior of ω2
a is also drawn inverse-gamma distribution.

We choose the scale Sa = 10−3 and degrees of freedom va = 1 .

5. Draw the autoregressive parameters of the factor VAR

Obtain a draw Φj from p(Φ|{f jt , σ
j
ε,t}Tt=1).

Taking the sequences of the common factor {f jt }Tt=1 and its stochastic volatility {σj−1
ε,t }Tt=1

from previous steps as given, and posing a non-informative prior, the corresponding conditional
posterior is drawn from the Normal distribution, see, e.g. Kim and Nelson (1999). In the more
general case of more than one factor, this step would be equivalent to drawing from the coefficients
of a Bayesian VAR. Like Kim and Nelson (1999), or Cogley and Sargent (2005), we reject draws
which imply autoregressive coefficients in the explosive region.
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6. Draw the factor loadings and constant terms

Obtain a draw of λj and cj from p(λ, c|ρj−1, {f jt , σ
j−1
ηi,t }Tt=1,y).

Conditional on the draw of the common factor {f jt }Tt=1, the measurement equations reduce
to n independent linear regressions with heteroskedastic and serially correlated residuals. By
conditioning on ρj−1 and σj−1

ηi,t , the loadings and constant terms can be estimated using GLS. When
necessary, we apply linear restrictions on the loadings. In order to ensure the identification of the
model, we set the loading of the GDP equation associated to the (contemporaneous) common factor
to unity (Bai and Wang, 2015).

7. Draw the serial correlation coefficients of the idiosyncratic components

Obtain a draw of ρj from p(ρ|λj−1, {f jt , σ
j−1
ηi,t }Tt=1,y).

Taking as given the idiosyncratic components drawn in Step and the sequence for the stochastic
volatility of the ith component, {σj−1

ηi,t }Tt=1, the standardized idiosyncratic component is obtaiend,
which follows an autoregression with homoskedastic residuals whose conditional posterior can be
drawn from the Normal distribution.

8. Draw the stochastic volatilities

Obtain a draw of {σjε,t}Tt=1 and {σjηi,t}Tt=1 from p({σε,t}Tt=1|Φj , {f jt }Tt=1), and from
p({σηi,t}Tt=1|λj ,ρj , {f

j
t }Tt=1,y) respectively.

Finally, we draw the stochastic volatilities of the innovations to the factor and the idiosyncratic
components independently, using the algorithm of Kim et al. (1998), which uses a mixture of
normal random variables to approximate the elements of the log-variance. This is a more efficient
alternative to the exact Metropolis-Hastings algorithm previously proposed by Jacquier et al.
(2002). For the general case in which there is more than one factor, the volatilities of the factor VAR
can be drawn jointly, see Primiceri (2005).

Increase j by 1 and iterate until convergence is achieved.

A.2 Construction of the state space system for Step 3 of the Gibbs Sampler

For expositional clarity, in this section we abstract from the heterogeneous dynamics. Recall
that in our main specification we choose the order of the autoregressive dynamics in factor and
idiosyncratic components to be p = 2 and q = 2, respectively. Let the n × 1 vector yt, which
contains the (outlier adjusted and de-meaned) nq interpolated quarterly and nm monthly variables
(i.e. n = nq + nm).1 Therefore the time index t is always monthly, both for the quarterly and the

1The interpolation of the quarterly variables is performed in step 1 of the Gibbs sampler.
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monthly variables. The state space system is defined so that the system is written out in terms of
the quasi-differences of the indicators, ỹt, defined as

ỹt =



yq1,t − ρ1,1y
q
1,t−1 − ρ1,2y

q
1,t−2

...
yqnq ,t − ρnq ,1y

q
nq ,t−1 − ρnq ,2y

q
nq ,t−2

ym1,t − ρnq+1,1y
m
1,t−1 − ρnq+1,2y

m
1,t−2

...
ymnm,t − ρn,1y

m
nm,t−1 − ρn,2ymnm,t−2


,

Given this re-defined vector of observables, we cast our model into the following state space form:

ỹt = Hxt + η̃t, η̃t∼N(0, R̃t)

xt = Fxt−1 + et, et∼N(0,Qt)

where the state vector is defined as x′t = [at, at−1, at−2, ft, ft−1, ft−2]. We order GDP, GDI and
consumption growth as the first three variables in ỹt and assume they share a common low
frequency component. Therefore in Equation (2) we set b = (1 1 bc 0 . . . 0)′. Setting λ1 = 1 for
identification, the matrices of parameters H and F, are then constructed as shown below:

H =
[

Ha Hλ

]
,

where the respective blocks of H are defined as

Ha =


1 −ρ1,1 −ρ1,2

1 −ρ2,1 −ρ2,2

bc −bcρ3,1 −bcρ3,2

0(n−3)×3

 , Hλ =


1 −ρ1,1 −ρ1,2

λ2 −λ2ρ2,1 −λ2ρ2,2

...
...

...
λn −λnρn,1 −λnρn,2

 ,

and

F =

[
F1 0

0 F2

]
,

where the respective blocks of F are defined as

F1 =

[
1 01×2

I2 02×1

]
F2 =

[
φ1 φ2 0

I2 02×1

]
.

The innovations to the transition equation are denoted as
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et =
[
vat 02×1 εt 02×1

]′
,

with covariance matrix Qt = diag(ω2
a,01×2, σ

2
ε,t,01×2). Whereas the covariance matrix of the

measurement equation is defined as R̃t = diag(σ2
η1,t , . . . , σ

2
ηn,t).

A.3 Treatment of missing observations in vectorized Kalman Smoother

In this appendix we extend the results of Chan and Jeliazkov (2009) on the vectorized Kalman
smoother for the case where there are missing observations. For simplicity we describe the
algorithm for the case with fixed coefficients. Let use write the model as

yt = Hxt + ηt, ηt∼N(0,R)

xt = Fxt−1 + et, et∼N(0,Q)

Following Durbin and Koopman (2012), we can express the model in its vectorized form:

y = Hx + η, η ∼ N(0,R)

Fx = x∗ + e, e ∼ N(0,Q)
(14)

where y′ = [y′1, ...,y
′
T ], x′ = [x′1, ...,x

′
T ] and x∗ = [x′0,01×k(T−1)]. x0 is the initialization for the state

vector and its variance is initialized at P0. The system matrices of the measurement equations are
H = (IT ⊗H) and R = (IT ⊗R) while those in the transition equation are:

F =


Ik

−F Ik
. . . . . .

−F Ik

 , Q =

[
P0 0

0 (IT−1 ⊗Q)

]
. (15)

In order to deal with the presence of a rank deficient system for the state variables, arising from the
presence of multiple lags in the dynamics of the factors, we define J as a k-dimensional diagonal
matrix with zeros corresponding to singular columns of the matrix Q and one for the nonsingular
columns and let J=(IT ⊗ J). Therefore we define F̃ = J

′
FJ, Q̃ = J

′
QJ and H̃ = HJ. In order

to deal with the presence of missing observations, we define Ξ as a diagonal matrix with ones
corresponding to the existing elements in y and zero for the missing elements. Therefore we define
as R̃−1 = Ξ′R

−1
Ξ. Therefore one can sample from the state vector noting that x ∼ N (κ,P) with

P = K+H̃′R̃−1H̃

κ = P\
(
KF̃\x

∗
+ H̃′R̃−1y

)
where K =F̃′/Q̃F̃.
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B Data series included in the analysis

Table B.1: DATA SERIES USED FOR US EMPIRICAL ANALYSIS

Type Start Date Transform. Lag
QUARTERLY TIME SERIES

Real GDP Expenditure & Inc. Q2:1947 % QoQ Ann 26
Real GDI Expenditure & Inc. Q2:1947 % QoQ Ann 26
Real Consumption (excl. durables) Expenditure & Inc. Q2:1947 % QoQ Ann 26
Real Investment (incl. durable cons.) Expenditure & Inc. Q2:1947 % QoQ Ann 26
Total Hours Worked Labor Market Q2:1948 % QoQ Ann 28

MONTHLY INDICATORS

Real Personal Income less Transfers Expenditure & Inc. Feb 59 % MoM 27
Industrial Production Production & Sales Jan 47 % MoM 15
New Orders of Capital Goods Production & Sales Mar 68 % MoM 25
Real Retail Sales & Food Services Production & Sales Feb 47 % MoM 15
Light Weight Vehicle Sales Production & Sales Feb 67 % MoM 1
Real Exports of Goods Foreign Trade Feb 68 % MoM 35
Real Imports of Goods Foreign Trade Feb 69 % MoM 35
Building Permits Housing Feb 60 % MoM 19
Housing Starts Housing Feb 59 % MoM 26
New Home Sales Housing Feb 63 % MoM 26
Payroll Empl. (Establishment Survey) Labor Market Jan 47 % MoM 5
Civilian Empl. (Household Survey) Labor Market Feb 48 % MoM 5
Unemployed Labor Market Feb 48 % MoM 5
Initial Claims for Unempl. Insurance Labor Market Feb 48 % MoM 4

MONTHLY INDICATORS (SOFT)
Markit Manufacturing PMI Business Confidence May 07 - -7
ISM Manufacturing PMI Business Confidence Jan 48 - 1
ISM Non-manufacturing PMI Business Confidence Jul 97 - 3
NFIB Small Business Optimism Index Business Confidence Oct 75 Diff 12 M. 15
U. of Michigan: Consumer Sentiment Consumer Confid. May 60 Diff 12 M. -15
Conf. Board: Consumer Confidence Consumer Confid. Feb 68 Diff 12 M. -5
Empire State Manufacturing Survey Business (Regional) Jul 01 - -15
Richmond Fed Mfg Survey Business (Regional) Nov 93 - -5
Chicago PMI Business (Regional) Feb 67 - 0
Philadelphia Fed Business Outlook Business (Regional) May 68 - 0

Notes. % QoQ Ann refers to the quarter on quarter annualized growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers

to yt − yt−12. The last column shows the average publication lag, i.e. the number of days elapsed from the end of the period that the

data point refers to until its publication by the statistical agency. All series were obtained from the Haver Analytics database.
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C Additional in-sample results

C.1 SV of idiosyncratic components

Figure C.1: POSTERIOR ESTIMATE OF SV OF MONTHLY HARD VARIABLES

1960 1970 1980 1990 2000 2010
0.5

1

1.5

2

2.5

3
INDPRO

1960 1970 1980 1990 2000 2010
0

10

20

30
NEWORDERS

1960 1970 1980 1990 2000 2010
0

20

40

60
CARSALES

1960 1970 1980 1990 2000 2010
0

2

4

6

8

10
INCOME

1960 1970 1980 1990 2000 2010
0

2

4

6

8
RETAILSALES

1960 1970 1980 1990 2000 2010
0

10

20

30

40

50
EXPORTS

1960 1970 1980 1990 2000 2010
0

10

20

30

IMPORTS

1960 1970 1980 1990 2000 2010
0

10

20

30
PERMIT

1960 1970 1980 1990 2000 2010
10

15

20

25

30

35
HOUSINGSTARTS

1960 1970 1980 1990 2000 2010
5

10

15

20

25

30
NEWHOMESALES

1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1
PAYROLL

1960 1970 1980 1990 2000 2010

0.5

1

1.5
EMPLOYMENT

1960 1970 1980 1990 2000 2010
2

4

6

8

10
UNEMPLOYMENT

1960 1970 1980 1990 2000 2010
0

5

10

15

20
CLAIMS

Notes. Each panel presents the median (solid red), the 68% and the 90% (solid and dashed blue) posterior credible intervals of the

volatility of the idiosyncratic component of different variables in our baseline DFM. For comparison, the black dashed-dotted line

shows the median estimate for a version of the model that does not incorporate a Student-t component. Shaded areas represent

NBER recessions. This figure contains the SV for the monthly hard variables in the data panel, while Figure C.2 presents the quarterly

variables as well as the monthly soft variables. Table B.1 provides a full list of the individual data series with more details.

8



Figure C.2: POSTERIOR ESTIMATE OF SV OF QUARTERLY AND MONTHLY SOFT VARIABLES
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Notes. Each panel presents the median (solid red), the 68% and the 90% (solid and dashed blue) posterior credible intervals of the

volatility of the idiosyncratic component of different variables in our baseline DFM. For comparison, the black dashed-dotted line

shows the median estimate for a version of the model that does not incorporate a Student-t component. Shaded areas represent NBER

recessions. This figure contains the SV for the quarterly variables as well as the monthly soft variables in the data panel, while Figure

C.1 presents the monthly hard variables. Table B.1 provides a full list of the individual data series with more details.
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C.2 Influence function for all variables

Figure C.3: INFLUENCE FUNCTIONS FOR ALL VARIABLES
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Notes. The panels of the figure plot the influence functions for all variables, that is, by how much the estimate of the dynamic factor

is updated when the release in the variable is different from its forecast and thus contains “news.” The red lines plot these influence

functions in the Gaussian case with homogeneous dynamics. The dashed light blue lines represent the Gaussian case when we allow

for heterogeneous dynamics, that is, lags of the factor in the measurement equation. The dark blue lines correspond to our full model,

where we also allow for the Student-t components. As shown in equations (10) - (12) and explained in the main text, the model with

fat tails allows these functions to be nonlinear and nonmonotonic.
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D Details on setup for the real-time out-of-sample evaluation

D.1 Construction of the real-time database

Macroeconomic data are revised over time by statistical agencies, incorporating additional
information that might not be available during the initial releases. In order to mimic the exercise of
a real-time forecaster, we collect unrevised real-time vintages spanning the period January 2000 to
December 2019 from the Archival Federal Reserve Economic Database (ALFRED). For each vintage,
the start of the sample is January 1960, appending missing observations to any series which starts
later. Several intricacies of the data need to be addressed to build a fully real-time data base:

1. For several series, vintages are available only in nominal terms, so we separately obtain the
appropriate deflators, which are not subject to revisions, and deflate the series in real time.

2. Some series are subject to methodological changes and part of their history is deleted by the
statistical agency. In this case, we use older vintages to splice the growth rates back to the
earliest possible date.

3. For soft variables, it is often assumed that these series are unrevised. However while the
underlying survey responses are indeed not revised, the seasonal adjustment procedures
applied to them do lead to important differences between the series available at the time
and the latest vintage. We apply the Census-X12 procedure in real time to obtain a real-
time seasonally adjusted version of the surveys. We follow the same procedure for initial
unemployment claims.

D.2 Real-time forecasting using cloud computing

In the real-time dataset, a vintage is constructed for each day in which a new observation or a
revision to any of the series is released. On average, this occurs almost 15 times every month. Given
that we have 20 years of real-time vintages, this leaves us with approximately 3,600 vintages. We
find that our algorithm converges within the first few thousand iterations: it is sufficient take 7,000
iterations of the Gibbs sampler presented in Section 2.4 and Appendix A.1, discarding the first
2,000 as burn-in draws.

One such run takes approximately 30 minutes using a high-performance desktop computer,
so the entire exercise across all vintages and different versions of the model would take several
months.2 We leverage the possibilities of massively parallelized cloud computation. We have
integrated our codes with the Amazon Elastic Compute Cloud (Amazon EC2), which allows us to
compute up to 2,500 runs of the algorithm simultaneously. This drastically reduces the amount
of time required to asses the real-time performance of our Bayesian DFM and several benchmark
models over the the period of twenty years.

2This calculation is carried out using an Intel(R) Core(TM) i7-8700 CPU 3.20GHz with 32.0 GB of RAM.
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E Additional forecast evaluation results

E.1 Forecast evaluation as the data flow arrives

Figure E.1 shows the accuracy of our Bayesian DFM relative to a basic DFM in predicting the third
release of GDP. As in the main text, the basic DFM that is estimated on the same data set but does
not feature time-varying trends and SV, heterogeneous dynamics or fat tails, such as the model
of Banbura et al. (2013). For these two models, the figure essentially opens up the results in Table
1 in the main text by providing a more continuous evolution of the point and density forecast
evaluation metrics across the horizon. Specifically, we evaluate this accuracy starting 180 days
before the end of the reference quarter (a forecast), as the reference quarter unfolds (90 to 0 days, a
nowcast) and up to 30 days after the end of the quarter (a backcast), at which point the advance
release is usually published. Panel (a) presents the root mean squared error (RMSE) as a measure
of point forecasting accuracy, whereas Panel (b) evaluates the density forecasting accuracy using
the Log Score. An evaluation based on alternative measures – mean absolute error (MAE) and
continuous rank probability score (CRPS) – can be found in Section E.3. An analogous figure that
breaks down the performance into the individual model components and compares it to the NY
Fed model can be found in Sections 4.3 and E.4.

Figure E.1: GDP FORECAST EVALUATION AS THE DATA ARRIVES

(a) Point forecast accuracy: RMSE
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(b) Density forecast accuracy: Log score
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Notes. In both panels, the horizontal axis indicates the forecast horizon, expressed as the number of days to the end of the reference

quarter of a given GDP release. Thus, from the point of view of the GDP forecaster, forecasts produced 180 to 90 days before the end of

a given quarter are a forecast of the next quarter; forecasts at a 90-0 day horizon are nowcasts of the current quarter, and the forecasts

produced 0-25 days after the end of the quarter are backcasts of the last quarter. Panel (a) plots the RMSE of the full model (solid red

line) as well as the basic DFM (dotted blue) over this horizon. A more accurate forecast implies a lower RMSE. Panel (b) displays the

analogous evolution of the log score of the two models, a measure of density forecast accuracy, which takes a higher value for a more

accurate forecast. The differences between the models are statistically significant throughout the horizon in both panels.

Panel (a) shows that RMSE of both models declines as forecast horizon gets shorter and
information contained in monthly indicators becomes available. The RMSE of the full model is
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much lower than that of the basic model throughout the horizon, and in particular the model
delivers much more accurate forecasts over the nowcasting period. The Diebold and Mariano
(1995) test indicates that the difference is statistically significant at all horizons at the 5% level and
becomes significant even at the 1% level from around 120 days before the end of the reference
quarter. As highlighted by Banbura et al. (2013), an important property of an efficient nowcast is
that the forecast error declines monotonically as new information arrives. For the basic and the
full model, the majority of the valuable information comes within the nowcast quarter, with the
accuracy improvements stabilizing around the end of the reference quarter (horizon zero), but the
decline in RMSE is steeper for the full model, implying a more efficient use of incoming information.
In summary, the added features result in reducing the RMSE by around half a percent.

Panel (b) turns to density forecasts, so evaluates the accuracy of the entire predictive distribution,
instead of focusing exclusively on its center. They are used to predict unusual developments or
tail risks, such as the probability of a recession or a strong recovery given current information.
Our Bayesian framework allows us to produce such density forecasts, consistently incorporating
filtering and estimation uncertainty. There are several measures available for the formal evaluation
of density forecasts. We focus on the (average) log score, which is the the logarithm of the predictive
density evaluated at the realization. This rewards the model that assigns the highest probability to
the realized events and is a popular evaluation metric (we use an alternative metric further below).
Panel (b) shows that our model outperforms its counterpart also in terms of density forecasting at
all horizons. The Diebold and Mariano (1995) test indicates that the difference in performance is
significant at the 1% level at all horizons.

E.2 Forecast evaluation through time

The results in Figure E.1 document the average performance over the period 2000-2019. It is useful
to examine whether the out-performance of the full model is stable over time or due to a few
special periods. In Figure E.2 we present, for a fixed forecast horizon, the relevant loss function
computed recursively over time. We chose the middle of the nowcasting quarter (45 days before
the end of the reference period), but choosing a different horizon would tell the same story: for
both point and density forecast, the improvement in performance is stable across time and would
have been clear just a few years after the start of the evaluation period. It is also the case that
some of the out-performance of the full model appears to happen in the period just after recessions,
suggesting the full model is more accurate at capturing the dynamics of recoveries, a point to which
we examine in the main text.

E.3 Alternative metrics for forecast evaluation

This Appendix examines the robustness of our formal forecast evaluation for alternative evaluation
metrics. Figures E.3 and E.4 present the results shown in Figures E.1 and E.2, using alternative
evaluation metrics. Figure E.3 focuses on the evaluation across horizons (as the data flow arrives)
and Figure E.4 on the evaluation through time. In both cases, panel (a) presents point forecast
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Figure E.2: GDP FORECAST EVALUATION THROUGH TIME

(a) Point forecast accuracy: RMSE
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(b) Density forecast accuracy: Log score
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Notes. In both panels, the horizontal axis indicates the time of the evaluation sample 2000-2019. Panel (a) plots the rolling RMSE of

the full model (solid red line) as well as the basic DFM (dotted blue) through time. A more accurate forecast implies a lower RMSE.

Panel (b) displays the analogous rolling evolution of the log score of the two models, a measure of density forecast accuracy, which

takes a higher value for a more accurate forecast. In both panels, the gray shaded areas indicate NBER recessions. The rolling metrics

indicate that the full DFM is preferred based on both point and density forecasting performance as early as 2002.

evaluation results for the mean absolute error (MAE) rather the the RMSE. Panel (b) turns to density
forecast evaluation and applies the continuous rank probability score (CRPS) instead of the Log
score. It is evident that the the conclusions drawn from our evaluation exercise are broadly robust
to using different evaluation metrics.

E.4 More detailed comparison with NY FED Staff Nowcast

This appendix provides a more detailed comparison of the forecasting performance of our Bayesian
DFM, as well as its individual novel components, relative to the New York Fed Staff Nowcast.
Figure E.5 provides the evolution of RMSE and Log score over the forecasts horizon (as the data
arrives). Panels (a) and (b) essentially correspond to the information in the two panels of Table
1 in the main text, but provide a graphical representation over a continuous evolution of the
forecast horizon. Furthermore, relative to Table 1 the figure breaks down the performance of
our model into the contribution of the individual components: trends and SV, heterogeneous
dynamics and fat tails (similar to what we do in Table 2 above). The figure provides a rich picture
of forecasting performance of the different models across horizons. Overall, it tells the same story
as our evaluation in the main text.

The results shown in Figure E.5 document the average performance over the period 2000-2019.
Figure E.6 instead presents, for a fixed forecast horizon, the relevant loss function computed
recursively over time. In other words, this figures extends the analysis in Appendix E.2 to a finer
breakdown of model versions and includes the NY Fed’s nowcasting model.
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Figure E.3: FORECAST EVALUATION AS THE DATA FLOW ARRIVES (ALTERNATIVE METRICS)

(a) Point forecast accuracy: MAE
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(b) Density forecast accuracy: CRPS
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Notes. In both panels, the horizontal axis indicates the forecast horizon, expressed as the number of days to the end of the reference

quarter of a given GDP release. Thus, from the point of view of the GDP forecaster, forecasts produced 180 to 90 days before the end of

a given quarter are a forecast of the next quarter; forecasts at a 90-0 day horizon are nowcasts of the current quarter, and the forecasts

produced 0-25 days after the end of the quarter are backcasts of the last quarter. Panel (a) plots the MAE of the full model (solid red

line) as well as the basic DFM (dotted blue) over this horizon. A more accurate forecast implies a lower MAE. Panel (b) displays the

analogous evolution of the CRPS of the two models, a measure of density forecast accuracy, which takes a lower value for a more

accurate forecast. The differences between the models are statistically significant throughout the horizon in both panels.

Figure E.4: FORECAST EVALUATION THROUGH TIME (ALTERNATIVE METRICS)

(a) Point forecast accuracy: MAE
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(b) Density forecast accuracy: CRPS

2001200220032004200520062007200820092010201120122013201420152016201720182019
0.7

0.8

0.9

1

1.1

1.2

1.3

Basic DFM Full Model

Notes. In both panels, the horizontal axis indicates the time of the evaluation sample 2000-2019. Panel (a) plots the rolling MAE of the

full model (solid red line) as well as the basic DFM (dotted blue) through time. A more accurate forecast implies a lower MAE. Panel

(b) displays the analogous rolling evolution of the CRPS of the two models, a measure of density forecast accuracy, which also takes a

lower value for a more accurate forecast. In both panels, the gray shaded areas indicate NBER recessions. The rolling metrics indicate

that the full DFM is preferred based on both point and density forecasting performance as early as 2002.
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Figure E.5: MODEL COMPARISON AS THE DATA ARRIVES

(a) Point forecast accuracy: RMSE
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(b) Density forecast accuracy: Log score
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Notes. In both panels, the horizontal axis indicates the forecast horizon, expressed as the number of days to the end of the reference

quarter of a given GDP release. Thus, from the point of view of the GDP forecaster, forecasts produced 180 to 90 days before the end of

a given quarter are a forecast of the next quarter; forecasts at a 90-0 day horizon are nowcasts of the current quarter, and the forecasts

produced 0-30 days after the end of the quarter are backcasts of the last quarter. Panel (a) plots the RMSE of over this horizon for the

following models: the basic DFM; a version with time-varying long-run growth and SV (as in Antolin-Diaz et al., 2017) (labeled “trend

& SV”); a version which adds, on top, the heterogeneous dynamics (“Lead/Lag”); the full model with the t-distributed component

(“fat tails”); the NY Fed’s nowcasting model. A more accurate forecast implies a lower RMSE. Panel (b) displays the analogous

evolution of the log score of the different models, a measure of density forecast accuracy, which takes a higher value when a forecast

is more accurate. Note that the New York Fed’s model is a frequentist model that does not produce density forecasts. We construct

the associated density forecasts by resampling from past forecast errors as in Bok et al. (2018).

E.5 Details on using the Survey of Professional Forecasters

In Section 4.4 we have presented a comparison of our model to individual forecasts from the Survey
of Professional Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia (see
Croushore and Stark, 2019, for additional details). In this appendix we provide some additional
background on the construction of the data required for that comparison, as well some additional
analysis of the relative performance of our model for multiple period forecasts.

Since the Survey of Professional Forecasters is released at or before the 15th of the middle
month in each quarter, we evaluate our model at horizon −45. In order to compare our model with
individual participants in the SPF, we have to deal with the fact that individual responses are not
continuously present in the SPF. This arises because the membership participation in the SPF is
continuously updated by the Federal Reserve Bank of Philadelphia, and over time new forecasters
are included in the sample while old one are excluded. Figure E.7 highlights the availability
of individual respondent to SPF. Therefore to provide a reliable comparison in the main text we
compare each individual forecasts on matched sample (i.e. comparing our model and the individual
forecasters evaluating the RMSE only for the quarters when the individual forecasts are available).
With macroeconomic volatility changing over the sample this guarantees that the comparison of the
forecasts is on a like-for-like basis. The other challenge we face is which of the forecasts to include,
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Figure E.6: MODEL COMPARISON THROUGH TIME

(a) Point forecast accuracy: RMSE
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(b) Density forecast accuracy: Log score
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Notes. In both panels, the horizontal axis indicates the time of the evaluation sample 2000-2019. Panel (a) plots the rolling RMSE

through time for the following models: the basic DFM; a version with time-varying long-run growth and SV (as in Antolin-Diaz

et al., 2017) (labeled “trend & SV”); a version which adds, on top, the heterogeneous dynamics (“Lead/Lag”); the full model with

the t-distributed component (“fat tails”); the NY Fed’s nowcasting model. A more accurate forecast implies a lower RMSE. Panel

(b) displays the analogous rolling evolution of the log score of the different models, a measure of density forecast accuracy, which

takes a higher value for a more accurate forecast. In both panels, the gray shaded areas indicate NBER recessions. Note that the New

York Fed’s model is a frequentist model that does not produce density forecasts. We construct the associated density forecasts by

resampling from past forecast errors as in Bok et al. (2018).

in particular a balance needs to be stuck between the keeping the sample as large as possible yet
making sure that the individual respondents have been present in the survey for a period long
enough so that one can reliably evaluate their average forecast performance avoiding that this is
unreasonably affected by single instances of good or bad luck. Taking both considerations into
account led us to include only forecasters in the evaluation that are included in at least half of the
sample (therefore the RMSE is computed on at least 40 forecasts). With this rule of thumb we end
up with 40 individual forecasters, where their participation is reasonably equally spread over the
out of sample evaluation window.
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Figure E.7: AVAILABILITY OF INDIVIDUAL SPF FORECASTS
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Notes. One line in the plot represents one individual forecaster ID. A blue dot indicates that the given forecaster has participated in

the survey at a given point in time, while a white blank indicates the forecaster has not participated.

E.6 Real-time assessment of activity, uncertainty, tail risks

Our model can be used to derive a daily measure of real economic activity, as well as corresponding
uncertainty and tail risk measures. We construct a daily measure of activity by taking a weighted
average of the model’s estimate of quarterly GDP growth, where the weights vary depending on
the day of the month. In this way, we create a rolling measure of current-quarter economic activity
that can be updated every day.3

The probabilistic nature of our model allows us to compute additional statistics related to
uncertainty and risk around our daily estimate of economic activity. In particular, Figure E.8 plots
three real-time measures of risk. Panel (a) displays a real-time measure of uncertainty, defined as
the difference between the 16th and the 84th percentiles of our daily estimate of activity. This is

3More specifically, recall that for each day τ in the evaluation sample (from January 11 2000 to December 31st 2019) the model is
re-estimated using the vintage of information available up to that day, denoted Ωτ . From equation (1), define the underlying monthly
growth rate of GDP as GDP ?t ≡ c1,t + λ1(L)ft, i.e. GDP excluding the idiosyncratic and outlier components. Applying to this the
Mariano-Murasawa polynomial in (9) we obtain a version of this series expressed as a quarterly growth rate, GDP ?,qt . Then, our
daily indicator of real economic activity is a weighted average of the current and next two month’s estimated values for underlying
quarterly GDP, where the weights are the proportional to the number of days separating τ from the end of the quarter.
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Figure E.8: REAL-TIME RISK ASSESSMENT MEASURES

(a) Volatility
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(b) Recession Probability
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(c) Growth-at-Risk
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Notes. Panel (a) displays a real-time measure of uncertainty, defined as the difference between the 16th and the 84th percentiles of

the daily activity estimate. Panel (b) plots the probability of recession, defined as the model-implied probability that the current and

next quarter GDP growth will be negative. Panel (c) displays at a measure of GDP growth at risk in the spirit of Adrian et al. (2019),

measuring the mean below the 5% distribution of the GDP distribution for the current quarter.

related to the volatility estimate displayed in 3, but computed in real time. Therefore, it can be
interpreted as a measure of business cycle uncertainty as perceived at each point in time by an
observer with access to our model. Panel (b) shows at the probability of recession, defined as the
model-implied probability that the current and next quarter GDP growth will be negative. Finally,
panel (c) presents a measure of GDP growth at risk in the spirit of Adrian et al. (2019), measuring
the mean below the 5% distribution of the GDP distribution for the current quarter. All these
measures are useful characterizations of the risks around economic activity that go beyond the
information contained in central estimates. The good performance in density forecast exhibited by
the full model gives us confidence that they can be relied upon in practice.
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