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Abstract

A Distributional (Single) Index Model (DIM) is a semi-parametric model for dis-

tributional regression, that is, estimation of conditional distributions given covariates.

The method is a combination of classical single index models for the estimation of the

conditional mean of a response given covariates, and isotonic distributional regression.

The model for the index is parametric, whereas the conditional distributions are esti-

mated non-parametrically under a stochastic ordering constraint. We show consistency

of our estimators and apply them to a highly challenging data set on the length of stay

(LoS) of patients in intensive care units. We use the model to provide skillful and

calibrated probabilistic predictions for the LoS of individual patients, that outperform

the available methods in the literature.

Keywords: Distributional regression, intensive care unit length of stay, probabilistic

forecast, single index model, stochastic ordering constraint

1 Introduction

Regression approaches for the full conditional distribution of an outcome given covariates

are gaining momentum in the literature (Hothorn et al., 2014). They have already become
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an indispensable tool in probabilistic weather forecasting (Gneiting and Katzfuss, 2014;

Vannitsem et al., 2018) but also find numerous applications in other fields such as economics,

social sciences and medicine; see e.g. Machado and Mata (2000), Chernozhukov et al. (2013),

Klein et al. (2015), Duarte et al. (2017) and Silbersdorff et al. (2018).

If the outcome is real-valued, then conditional distributions can be characterized in terms

of their cumulative distribution function (CDF) or quantile function, and various techniques

have been proposed for the estimation of these objects. Peracchi (2002) builds on the extant

methods for the estimation of single quantiles or probabilities, and suggests to approximate

the conditional distribution by a cascade of regressions for quantiles or for the CDF evaluated

at certain thresholds. A drawback of this approach is that the resulting estimates are not

necessarily isotonic (the so-called ’quantile crossing problem’) and thus require correction,

for which remedies have already been developed, see e.g. Chernozhukov et al. (2010).

A broad class of methods that directly yield well-defined probability distributions are

generalized additive models for location, shape and scale (Rigby and Stasinopoulos, 2005,

GAMLSS). They build on generalized linear models (McCullagh and Nelder, 1989, GLM)

and generalized additive models for the mean (Hastie and Tibshirani, 1990, GAM) but

also allow to model shape and scale parameters as functions of covariates. The GAMLSS

framework has has been extended to Bayesian statistics (Umlauf et al., 2018) and combined

with popular machine learning techniques such as boosting (Thomas et al., 2018), neural

networks (Rasp and Lerch, 2018) and regression forests (Schlosser et al., 2019).

Finally, there are also powerful semi-parametric and nonparametric techniques for the es-

timation of conditional distributions. Fully nonparametric methods estimate the conditional

distribution functions locally, for example by kernel functions (Hall et al., 1999; Dunson

et al., 2007; Li and Racine, 2008), or by partitioning of the covariate space, as in quantile

random forests (Meinshausen, 2006; Athey et al., 2019). A frequently used semi-parametric

distributional regression method is Cox regression (Cox, 1972), which models the hazard rate

of the outcome but also allows to derive its survival function. Conditional transformation

models (Hothorn et al., 2014) assume a parametric distribution for an unknown monotone

transformation of the response, which is estimated along with the model parameters. Hall

and Yao (2005); Zhang et al. (2017) propose semi-parametric methods that reduce the di-

mension of the covariate space by a suitable projection, and then estimate the conditional

distributions non-parametrically given the projections by kernel methods.

We introduce a new approach to distributional regression that can be seen as a combina-

tion of a single index model with isotonic distributional regression (IDR, Henzi et al., 2019).

The dimension reduction of the covariate space achieved by the single index assumption is

in the spirit of Hall and Yao (2005); Zhang et al. (2017) but the combination with IDR is

new, and has the advantage to be free of any implementation choices or tuning parameters.
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Let Y be a real-valued response and X a covariate in some covariate space X . We want

to estimate the conditional distribution of Y given X, that is, L(Y |X). To expose the main

idea, suppose that X = Rd. Then, a Distributional (Single) Index Model (DIM) could be

P(Y ≤ y|X) = Fα>
0 X

(y), for all y ∈ R, (1)

where α0 ∈ Rd, α>0 X denotes the scalar product between α0 and X, and (Fu)u∈R is a family

of CDFs such that

Fu �st Fv if u ≤ v, (2)

where �st denotes the usual stochastic order, that is Fu �st Fv if Fu(y) ≥ Fv(y) for all y ∈ R.

We call θ(x) = αT0 x in representation (1) the index (function).

If the parameter α0 in the previous example (1) is known, then a natural method to

estimate the unknown family (Fu)u of stochastically ordered CDFs is IDR as introduced

by Henzi et al. (2019), see also Mösching and Dümbgen (2020). IDR is a nonparametric

technique to estimate conditional distributions under stochastic ordering constraints. In

brief, IDR works as follows. Given training data (ϑ1, y1), . . . , (ϑn, yn), where ϑi ∈ Θ for some

partially ordered set Θ, IDR yields the unique optimal vector F̂ = (F̂1, . . . , F̂n) of CDFs that

minimizes
1

n

n∑
i=1

CRPS(Fi, yi),

over all vectors (F1, . . . , Fn) of CDFs that respect the stochastic ordering constraints Fi �st

Fj if ϑi � ϑj, i, j = 1, . . . , n. Here, for any CDF F and y ∈ R,

CRPS(F, y) =

∫
R

(F (z)− 1{y ≤ z})2 dz (3)

is the widely applied proper scoring rule called the continuous ranked probability score

(CRPS, Matheson and Winkler, 1976; Gneiting et al., 2007). If we have a sample (x1, y1),

. . . , (xn, yn) from (X, Y ) ∈ Rd × R, we can apply IDR to the training data (α>0 x1, y1), . . . ,

(α>0 xn, yn), that is, we set ϑi = α>0 xi, i = 1, . . . , n and Θ = R. This yields a distributional

regression model for (X, Y ) that may be used to provide probabilistic predictions for Y given

X, see Henzi et al. (2019, Section 2.3) and Section 4.

DIMs are closely related to generalized linear models, which assume that the condi-

tional distributions (Fu)u belong to a known exponential family of distributions with mean

E(Y |X = x) = g(αT0 x), where g is a fixed, strictly monotone link function. In fact, the Gaus-

sian, Poisson, Gamma and Binomial GLM can be subsumed under the DIM, since they also

satisfy the stochastic ordering constraint on the conditional distributions. Our approach, to

leave the conditional distributions (Fu)u unspecified, is already widely applied in classical

regression for the mean, where models of the type E(Y |X = x) = g(αT0 x) with unknown link
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function g are called single index models. Typically, g is assumed to be a smooth function

and estimated by kernel regression or local polynomial approximation (Härdle et al., 1993)

or local polynomial approximation (Carroll et al., 1997; Zou and Zhu, 2014). More recently,

shape constrained single index models have been considered with monotone (Balabdaoui

et al., 2019a) and convex (Kuchibhotla et al., 2017) link functions. DIMs directly extend

monotone single index models for the mean, since the stochastic ordering assumption on the

conditional distributions implies an isotonic conditional mean function.

There is a vast literature on the estimation of the index in single index models, and we

refer to Lanteri et al. (2020) for a comprehensive overview. In Section 3, we discuss estimators

for the index and the distribution functions in DIMs. Briefly, when IDR is used to estimate

the conditional distribution functions, then it is sufficient to know the index function up to

isotonic transformations, i.e. to find a pseudo index function that approximates the ordering

implied by the true index. This approach is supported by the asymptotic analysis in Section

5, which shows that when a monotone transformation of the estimated index function is

consistent at the parametric rate, then a DIM with that index estimator is consistent.

A major application of distributional regression techniques is forecasting. It has been

recognized in many problems, such as weather prediction or economic forecasting, that point

forecasts are unable to account for the full forecast uncertainty and should be replaced by

probabilistic forecasts (Gneiting and Katzfuss, 2014). Distributional regression methods are

statistical tools to provide such probabilistic forecasts. One fundamental contribution of

DIMs is that they allow to associate a natural distributional prediction to point forecasts:

If a point forecast from a statistical model is taken as the index in a DIM, for example

the estimated conditional expected value, then the DIM naturally extends this deterministic

forecast to a probabilistic one. Moreover, the only prerequisite is an isotonic relationship

between the point forecast and the outcome in a stochastic ordering sense, which is often a

natural and intuitive assumption for reasonable point forecasts.

In Section 6, we use a DIM for predictions in a highly challenging dataset on the length

of stay (LoS) of intensive care unit (ICU) patients. Accurate LoS predictions could serve as

a tool for ICU physicians, for example to plan the number of available beds, or to identify

potential long stay patients at an early stage. Moreover, the same models that are used for

prediction may also be used for risk-adjustment and benchmarking across different ICUs. In

the last twenty years, there have been many approaches to find appropriate regression models

for LoS, see Zimmerman et al. (2006); Moran and Solomon (2012); Verburg et al. (2014) for

some examples and Verburg et al. (2014); Kramer (2017) for literature reviews. The extant

methods typically model the conditional mean and are unsatisfactory when applied for single

patient predictions, since the distribution of LoS is strongly right-skewed with a large variance

even after conditioning on covariates. We therefore argue that LoS predictions should be
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probabilistic. In Section 6, we derive calibrated and informative probabilistic forecasts for

LoS, and show that the DIM outperforms existing distributional regression methods in terms

of predictive accuracy.

2 Distributional index models

In this section, we define the DIM in its most general form. Let Y be a real-valued response,

and let X be covariates in some general space X . The link between X and Y is the index

function θ : X → Rd, where Rd is equipped with some partial order �. Let further (Fu)u∈Rd

be a family of CDFs such that Fu �st Fv if u � v. The DIM then assumes that

P(Y ≤ y|X) = Fθ(X)(y). (4)

Due to the stochastic ordering assumption, it directly follows that the conditional distribu-

tions are ordered in the index, that is, θ(x) � θ(x′) implies Fθ(x) �st Fθ(x′).

We assume further that the function θ belongs to a finite dimensional vector space F ,

i.e. a parametric model for θ. If θ1, . . . , θp are a basis of F and if d = 1, then we recover the

form P(Y ≤ y|X̃ = x̃) = FαT
0 x̃

(y), where x̃ = (θ1(x) . . . , θp(x)), and hence, the analogy to

single index models. However, the estimation procedure suggested in the next section can

be applied with any dimension d and any partial order � on Rd.

3 Estimation

Having motivated and formalized the DIM, we propose a method for estimation. Assume

that a training dataset (xi, yi), i = 1, . . . , n, of independent realizations of (X, Y ) satisfying

the model assumption (4) is available.

In principle, it would be desirable to have a simultaneous estimator for both the index and

the distribution functions. In Section 5, we show that simultaneous estimation is possible

theoretically, but computationally infeasible. The method we propose here, and for which we

provide asymptotic results, is a two-stage estimation in which first the index θ is estimated,

say by θ̂, and then the conditional CDFs based on pairs (θ̂(xi), yi). This is inspired by the

’plug-in estimators’ for monotone single index models suggested in Balabdaoui et al. (2019a).

The estimation procedure is straightforward and reads as follows: Let ξ ∈ (0, 1).

1. Split the training data into two parts, (xi, yi)
n1
i=1 and (xi, yi)

n
i=n1+1, where n1 = dnξe,

2. compute an estimator θ̂ for the index θ, using only (xi, yi)
n
i=n1+1, and compute ϑj =

θ̂(xj), j = 1, . . . , n1,
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3. estimate the distribution functions F̂u, u ∈ Rd, using (ϑj, yj)
n1
j=1.

Splitting the training data in Step 1 ensures that the distribution of the pairs (xj, yj)
n1
j=1

does not change after conditioning on θ̂, when (xj, yj)
n
j=1 are viewed as random variables

instead of realizations thereof. We use this in the proof of the consistency result in Section

5. In the next two subsections, we reverse the order of the estimation procedure and first

suggest our method for Step 3, because this has important implications for the choice of the

index estimators in Step 2.

3.1 Isotonic distributional regression

Because of model assumption (4), we seek an estimator F̂u, u ∈ Rd, such that F̂u �st F̂v if

u � v, i.e. F̂u(y) ≥ F̂v(y) for all y ∈ R and given u, v. For fixed y, this suggests to define

F̂̂F̂F = (F̂ϑ1 , . . . , F̂ϑn1
) as

F̂̂F̂F (y) = argmin
ηk≥ηl if ϑk�ϑl

n1∑
j=1

(ηj − 1{yj ≤ y})2. (5)

It turns out that (5) indeed yields a collection of well-defined conditional CDFs, and this

estimator is called the IDR in Henzi et al. (2019). By Henzi et al. (2019, Theorem 2.2), IDR

can equivalently be defined in terms of conditional quantile functions, q̂̂q̂q = (q̂ϑ1 , . . . , q̂ϑn1
),

where

q̂̂q̂q(α) = argmin
βk≤βl if ϑk�ϑl

n1∑
j=1

(1{yj ≤ βj} − α)(βj − yj) (6)

for any α ∈ (0, 1), and the argmin is defined as the componentwise smallest minimizer if

it is not unique. IDR estimates the conditional distributions non-parametrically under the

stochastic order constraints. For IDR, the index u can take values in any partially ordered

set Θ. The particular choice of the loss functions, i.e. the squared error for the estimation of

probabilities in (5) and the classical quantile loss function in (6), is in fact irrelevant here:

Any other consistent loss function for the expectation or quantiles would yield the same

result (Henzi et al., 2019; Jordan et al., 2019).

The above estimators are defined when the index u (in F̂u or q̂u) is in {ϑ1, . . . , ϑn1} ⊆
Θ. The CDFs or quantile functions for an arbitrary u can be derived by interpolation of

F̂ϑ1 , . . . , F̂ϑn1
or q̂ϑ1 , . . . , q̂ϑn1

for Θ = R, and a suitable generalization thereof for general

partially ordered Θ (Henzi et al., 2019, Section 2.3).

The following proposition is a direct consequence of the above formulas. It shows in-

variance properties of IDR, which make it a suitable method for estimating the conditional

distributions in DIMs. We use the notation F̂u(y; ϑϑϑ,yyy) and q̂u(α; ϑϑϑ,yyy) for the IDR CDFs

and quantile functions estimated with training data ϑϑϑ = (ϑk)
m
k=1 and yyy = (yk)

m
k=1.
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Proposition 3.1 (Invariance of IDR). Let yyy = (yk)
m
k=1 ∈ Rm and ϑϑϑ = (ϑk)

m
k=1 ∈ Θm, and

let Θ′ be a partially ordered set with order �′. Let further g : Θ → Θ′ be such that ϑk � ϑl
if and only if g(ϑk) �′ g(ϑl) and h : R→ R be strictly increasing. Define g(ϑϑϑ) = (g(ϑk))

m
k=1.

Then, for j = 1, . . . ,m, y ∈ R, α ∈ (0, 1),

q̂ϑj(α; g(ϑϑϑ), h(yyy)) = h(q̂ϑj(α;ϑϑϑ,yyy)), F̂ϑj(h(y); g(ϑϑϑ), h(yyy)) = F̂ϑj(y;ϑϑϑ,yyy).

Proposition 3.1 shows that when IDR is used to estimate the conditional distributions in

Step 3, then it is sufficient to know the index θ up to increasing transformations. Moreover,

any isotonic transformation can be applied to the response Y to simplify the estimation of θ

in Step 2, and then reverted by its inverse, without affecting the estimation of the conditional

distributions. Hence, the task of estimating the index function θ is simplified to finding an

estimator for a pseudo index that induces the same ordering on θ(xi), i = 1, . . . , n.

3.2 Index estimators

A simple but effective way to estimate the index in DIMs are classical generalized linear

models. This might be surprising, because it seems that a parametric assumption has to be

imposed on the distribution functions (Fu)u for this approach. However, due to the invariance

of DIMs under monotone transformations (Proposition 3.1), it is sufficient that such a para-

metric assumption holds only approximately, in the sense that a monotone transformation of

the index estimator converges to the index function; see Assumption (A5) in Section 5. The

only requirement is that the linear predictor of the GLM exhibits an isotonic relationship

with the outcome. This can be verified by the rank correlation between the index and the

outcome, or by plots of the empirical distribution of the outcome stratified according to the

index. A further advantage of this approach is that GLMs are well-understood, implemented

efficiently in nearly every statistical software, and one can directly build on extant literature

from non-distributional regression to find a suitable index estimator. The effectiveness of

GLMs in the context of DIMs is demonstrated in the data application in Section 6.

Another powerful tool for index estimation in DIMs is quantile regression (Koenker,

2005). The stochastic ordering of the conditional distributions in DIMs is equivalent to the

assumption that the conditional quantile functions qθ(x)(α) are increasing in the index θ(x)

for every α ∈ (0, 1). One can thus estimate one or several quantiles by quantile regression,

e.g. the median and/or the 90% quantile, and obtain estimates of the complete distribution

by taking this (these) quantile(s) as the index (vector) in a DIM. Compared to the direct

application of quantile regression for the estimation of conditional distributions, one does not

need to specify a grid of quantiles over the whole unit interval and correct quantile crossings,

but can focus on the estimation of a small number of quantiles that reveal the ordering of

the conditional distributions.
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In the case of a distributional single index model Fθ(X)(y) = FαT
0 X

(y), that is a DIM with

d = 1, one might estimate the index α0 via methods for single index models. For the mono-

tone single index model, efficient estimators have been developed recently (Balabdaoui et al.,

2019b; Balabdaoui and Groeneboom, 2020), but we are not aware of any data applications

or readily available implementations. Index estimators for the single index model, such the

one proposed in Lanteri et al. (2020), also allow for non-monotone relationships between the

index function αT0 x and the response, and hence monotonicity should be checked carefully.

Compared to GLMs as a pseudo index, these methods gain flexibility by not assuming any

fixed functional form of the relationship between αT0X and the outcome Y . The drawbacks

are that it is more difficult to accommodate high dimensional categorical variables and to

let numeric covariates enter the index-function in a non-linear fashion, e.g. via polynomial

or spline expansions, which is essential in our data application on ICU LoS. Since the DIM

is already invariant under monotone transformations of the index function, it is question-

able whether the benefits of using single index methods surpass these drawbacks. The same

concerns are also valid for estimation methods for distributional single index models in the

spirit of Hall and Yao (2005), which requires a notion of distance on the covariate space and

is hence not directly applicable when categorical covariates are present.

4 Prediction

This section reviews basic tools for the evaluation of probabilistic forecasts, and related prop-

erties of DIMs when used for forecasting. We denote by F a generic, random probabilistic

forecast for a random variable Y , and all probability statements are understood with respect

to the joint distribution of F and Y , which we denote by P. For the distributional index

model, the randomness of F = Fθ(X) is fully captured in the index θ(X).

As argued in Gneiting et al. (2007), calibration is a minimal requirement for probabilistic

forecasts, meaning that the forecast should be statistically compatible with the distribution

of the response. Of particular interest for DIMs is threshold calibration, requiring

P(Y ≤ y|F (y)) = F (y), y ∈ R. (7)

It is shown in Henzi et al. (2019) that IDR, and hence also the DIM, is always in-sample

threshold calibrated, that is, (7) holds when P is the empirical distribution of the training

data used to estimate the distribution functions. Threshold calibration can be assessed by

reliability diagrams (Wilks, 2011), in which estimated forecast probabilities F̂ (y) are binned

and compared to the observed event frequencies in each bin. Another prominent tool for

calibration checks is the probability integral transform (PIT)

Z = F (Y−) + V (F (Y )− F (Y−)) , (8)
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where V is uniformly distributed on [0, 1] and independent of F and Y , and F (y−) =

limz↑y F (z). If Z is uniformly distributed, then the forecast F is said to be probabilistically

calibrated. The PIT can be used to identify forecast biases as well as underdispersion and

overdispersion (Diebold et al., 1998; Gneiting et al., 2007).

Among different calibrated probabilistic forecasts, the most informative forecast is ar-

guably the one with the narrowest prediction intervals. This property, which only concerns

the forecast distribution F , is referred to as sharpness (Gneiting et al., 2007). Sharpness

and calibration are often assessed jointly by means of proper scoring rules (Gneiting and

Raftery, 2007), which map probabilistic forecasts and observations to a numerical score. An

important example is the CRPS defined at (3). IDR enjoys in-sample optimality among

all stochastically ordered forecasts with respect to a broad class of proper scoring rules,

including the CRPS and weighted versions of it, that is,

CRPSµ(F, y) =

∫
R

(F (z)− 1{y ≤ z})2 dµ(z),

where µ is a locally-finite measure. This emphasizes that IDR is a natural way to estimate

the probability distributions in DIMs, since it is not tailored to a specific loss function.

To finish this section, we discuss a further aspect of DIMs related to prediction. The first

step in the estimation procedure in Section 3 is a random split of the training data into one

part for the estimation of the index and a second part for the estimation of the distribution

functions. From a theoretical perspective, this step is necessary to ensure consistency of

the estimators. It also has the effect of robustifying the forecasts by preventing overfitting.

However, in small or heterogeneous datasets, it might be possible that the random split of

the training data has an influence on the predictive distributions, which is undesirable. A

simple but effective remedy for this is to repeat the estimation procedure from Section 3

several times, each time with a different split of the training data, and average the predictive

distribution functions. This application of (sub-)sample aggregation ((sub-)bagging) has

already been suggested in Henzi et al. (2019) in conjunction with IDR, and it also has the

positive effect of giving smoother predictive CDFs, and (in case of subagging) may reduce

the computation time for large datasets when the index is multidimensional (d ≥ 2).

5 Consistency

5.1 Two stage estimation

We work with a triangular array of random elements (Xni, Yni) ∈ X × R, i = 1, . . . , n. We

assume that for all n, the following hold:

9



(A1) The random elements Xni, i = 1, . . . , n, are independent and identically distributed,

and Yni, i = 1, . . . , n, are independent conditional on (Xni)
n
i=1 with

P(Yni ≤ y|Xni) = Fθ(Xni)(y),

where θ : X → R is a function in a finite dimensional space F = span{θ1, . . . , θp}, and

(Fu)u∈R is a family of distributions such that Fu �st Fv if u ≤ v.

(A2) There exists a constant L > 0 such that for all u, v, y ∈ R,

|Fu(y)− Fv(y)| ≤ L|u− v|.

(A3) The random variables θk(Xni), k = 1, . . . , p, admit a continuous, strictly positive

density with respect to the Lebesgue measure, and the design matrix with columns

(θk(Xni))
n
i=1, k = 1, . . . , p, has full rank p almost surely.

The following assumptions concern the index estimator θ̂n:

(A4) There is ξ ∈ (0, 1), fixed for all n ∈ N, such that θ̂n = α̂n1θ1 + . . .+ α̂npθp is a function

of (Xni, Yni), i = dnξe+ 1, . . . , n, with α̂n1, . . . , α̂np not all equal to zero almost surely.

(A5) There exist a strictly increasing, differentiable function g : R → R and a constant

C0 > 0 such that

lim
n→∞

P
(

sup
x∈X
|g(θ̂n(x))− θ(x)| ≥ C0n

−1/2) = 0.

We denote by F̂n;u the IDR estimator computed with training data (θ̂n(Xnj), Ynj)
dnξe
j=1 , i. e.

F̂n;u(y) = F̂u(y; (θ̂n(Xnj))
dnξe
j=1 , (Ynj)

dnξe
j=1 ),

with the notation of Section 3.1.

Theorem 5.1 (Consistency of DIM). Under assumptions (A1)-(A5), for any compact in-

terval I, there exists a constant C > 0 such that

lim
n→∞

P
(

sup
y∈R,x∈Xn

|F̂n;θ̂n(x)(y)− Fθ(x)(y)| ≥ C
( log n

n

)1/3)
= 0,

where Xn = {x ∈ X : [θ̂n(x)± (log n/n)1/3] ⊆ I}.
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The proof of Theorem 5.1 relies on the consistency results about the monotonic least

squares estimator in Mösching and Dümbgen (2020), and it is given in Appendix A.

Assumption (A1) is the basic model assumption of DIMs. The Lipschitz-continuity in

(A2) also appears in the monotone single index model for the mean (Balabdaoui et al.,

2019a). Since the distributional single index model and the monotone single index model

are equivalent when Y is binary, the Lipschitz assumption (A2) is natural in this context;

also (A3) can be derived from the assumptions in Balabdaoui et al. (2019a). Assumptions

(A2) and (A3) are required for the consistency of the monotone least squares estimator,

with (A3) ensuring that the ’design points’ θk(Xnj) are dense enough in a region of interest,

c.f. Mösching and Dümbgen (2020). Note that (A3) implicitly excludes constant basis func-

tions, but the addition of any constant function would not influence the ordering of the index

and is thus irrelevant for the estimation of the conditional distributions. In the assumptions

on the index estimator, (A4) is the equivalent of Step 1 in the estimation procedure. It

could be replaced by the slightly weaker assumption that the coefficients α̂n1, . . . , α̂np in

θ̂n = α̂n1θ1 + · · · + α̂npθp are independent of (Xni, Yni), i = 1, . . . , dnξe. In (A5), we re-

quire uniform consistency of a monotone transformation of the index estimator at the rate

n−1/2, i.e. not necessarily consistency of the index estimator itself. In a parametric model

θ = α1θ1 + · · ·+αpθp, uniform consistency is satisfied for any
√
n-consistent estimator of the

coefficients α1, . . . , αp, when the functions θ1, . . . , θp are bounded. All estimators suggested

in Section 3.2 are
√
n-consistent under suitable conditions. The differentiability of the in-

creasing transformation g of the index function is merely required to ensure that g(θ̂n(Xnj))

still admits a positive density with respect to Lebesgue measure, but it is irrelevant for the

actual estimation, since the index function is only evaluated at finitely many points.

5.2 Simultaneous estimation

In this subsection, we treat the question to what extent simultaneous estimation of the index

and the distribution functions is possible and sensible in the DIM. Currently, the results are

of theoretical interest only.

It has been shown in Balabdaoui et al. (2019a) that for the monotone single index model,

there exists a simultaneous minimizer (ψ0, α0) of the squared error

n∑
i=1

(ψ0(α
T
0 xi)− yi)2

where ψ0 : R → R is an increasing function, α0 ∈ {x ∈ Rp : ‖x‖ = 1} is the index, and

(xi, yi) ∈ Rp × R, i = 1, . . . , n. The minimizer is in general not unique.

A similar result also holds in the distributional index model, when the loss function is
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defined as

l(θ̂, F̂̂F̂F ) =
n∑
i=1

CRPS(F̂θ̂(xi), yi). (9)

For basis functions θ1, . . . , θp of the vector space F containing the true index function θ,

every index estimator θ̂ : X → Rd can be written as θ̂ = α̂1θ1 + · · · + α̂pθp. The loss (9)

has a unique minimizer F̂̂F̂F = (F̂θ̂(xi), . . . , F̂θ̂(xn)) for fixed θ̂, namely the IDR. This minimizer

only depends on θ̂ via the partial order on the points θ̂(xi), i = 1, . . . , n. But the number of

partial orders on n points is finite, and so there exists a minimizer of (9).

In general, the number of partial orders induced by index functions θ̂ is too large for a

direct minimization of (9) to be possible: When X = Rp and θ1, . . . , θp are the coordinate

projections, then the number of total orders grows at a rate of n2(p−1) (Balabdaoui et al.,

2019a). Moreover, when the index space is partially but not totally ordered, trivial solutions

(a perfect fit to the training data) may appear, namely if the points θ̂(xi), i = 1, . . . , n, are

all incomparable in the partial order. Hence, the simultaneous estimation of the index and

the distribution functions in DIMs is generally not feasible. A related interesting question

for further research is to find a way to directly parametrize and estimate partial orders for

isotonic or isotonic distributional regression, instead of indirectly via an index function.

6 Data application

We apply a DIM to derive probabilistic forecasts for intensive care unit (ICU) length of stay

(LoS) based on patient information available 24 hours after admission. The main difficulty

of such predictions is that, even conditional on many demographic and physiologic patient

specific covariates, there is often great uncertainty in the LoS. In addition to unknown factors

(e.g. frailty status, patient or family wishes), the LoS also depends on non-patient-related

information such as ICU organization and resources. We therefore model the LoS using data

of single ICUs rather than a merged dataset, thus keeping the ICU-related variables fixed.

This allows forecasts within each single ICU as well as the comparison of the forecasted LoS

of patients across ICUs. The same methodology can also be used on a joint dataset of several

ICUs, giving a reference LoS forecast on the combined case-mix. Using these predictions for

risk-adjustment and benchmarking is promising but goes beyond the scope of this paper.

All computations in this application were performed in R 4.0 (R Core Team, 2020) using

the packages mgcv (Wood, 2017) for the estimation of index models and Cox proportional

hazards regression, quantreg (Koenker, 2020) for quantile regression, and isodistrreg

(Henzi et al., 2019, https://github.com/AlexanderHenzi/isodistrreg) for IDR.
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6.1 Data and variables

Since 2005, the Swiss Society of Intensive Care Medicine collects ICU key figures and in-

formation on patient admissions in the Minimal Dataset of the Swiss Society of Intensive

Care Medicine (MSDi). Our analysis is based on a part of this dataset suitable for LoS

predictions, namely, we include 18 out of 86 ICUs which, after the application of selection

criteria described below, include more than 10’000 patient admissions. The codes used as

identifiers for the ICUs were generated randomly. The sample sizes range from 10’041 to

36’865 with an average of 17’181 observations per ICU. The cutoff of 10’000 is based on our

experience with IDR and probabilistic forecasts in general, which require sufficiently large

datasets for a meaningful and stable evaluation. However, the prediction methods can also

be applied to smaller datasets.

Based on literature review, we identified the variables described in Table 1 as relevant

for LoS forecasts (Zimmerman et al. (2006); Verburg et al. (2014, Table S1); Niskanen et al.

(2009)). We exclude patients that were transferred from or to another ICU, because their

LoS is incomplete. As in Zimmerman et al. (2006), we also remove patients younger than 16

years and patients admitted after transplant operations or because of burns. Patients with

missing values in the variables in Table 1 are excluded, too.

Table 1 documents at what time after admission the relevant covariates for LoS predic-

tions are available. While all variables are available 24 hours after patient admission, the

information is completed also for patients staying at the ICU less than one day. For exam-

ple, ICU interventions within the first 24 hours are then only interventions performed until

patient discharge, and the SAPS II is computed based on the worst physiological values until

discharge instead of the worst values in the first 24 hours at the ICU.

In preliminary tests, we found that for probabilistic LoS forecasts, the usual definition

of LoS as the time between patient admission and discharge is problematic, because most

ICUs discharge patients during specific time windows, but the admission times are spread

throughout the day. As a consequence, it may happen that the predicted LoS for certain

patients does not conform with the discharge practice of a ICU, e.g. there might be a high

predicted probability for a patient being discharged around midnight but the ICU actually

discharges patients in the early afternoon. To circumvent this problem, we decided to mea-

sure the LoS as the time between the next midnight after patient admission until discharge,

thereby standardizing all admission to the same (day)time and revealing the true pattern

in the patient discharge times; see Figure 1. All results in this section use this definition of

the LoS. Patients who do not stay over at least two calendar days are excluded, which is

unproblematic since in practice, the data required for predictions is only available 24 hours

after admission and the forecast should be conditioned on the event that the patient already

stayed at the ICU for 24 hours. Forecasts for the non-standardized LoS, i.e. the time between
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Figure 1: Empirical distribution functions of the standardized and non-standardized LoS for

selected ICUs. The standardized LoS is defined as Y − 1 + h/24, where h is the admission

hour of a patient and Y is the non-standardized LoS, i.e. the time between patient admission

and discharge. Only patients with positive standardized LoS are included.
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admission and discharge, can be derived via the relation

P(Y > 1 + t|Y > 1) =
P(Ỹ > t+ h/24|Ỹ > 0)

P(Ỹ > h/24|Ỹ > 0)
,

where Y and Ỹ = Y − 1 +h/24 denote the LoS and the standardized LoS measured in days,

respectively, and h the admission hour of a given patient. Since only patients staying at

least until midnight of the admission day are used as training data, our LoS forecasts are

conditioned on the event {Ỹ > 0} in the above equation.

We select the most recent 20% of the observations in each ICU for model validation,

thereby mimicking a realistic situation in which past data are used to predict the LoS of

present and future patients. This implies that forecasts might be inaccurate if the relation-

ship between the covariates and LoS changes over time, and it is part of our analysis to check

to what extent past data can be reasonably used to predict the LoS of future patients. Of

the remaining data, randomly selected 75% are used for model fitting and 25% for model se-

lection via out-of-sample predictions. All comparisons of different variants of a distributional

regression model were performed by such out-of-sample predictions.

6.2 Derivation of DIM

To derive an index estimator for the DIM, we can benefit from the comparisons of regression

models for point forecasts for LoS in the extant literature. Moran and Solomon (2012) and

Verburg et al. (2014) found that a Gaussian linear regression for the expected log-LoS is

suitable for point forecasts, and we use this as our candidate for the index estimator and
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will refer to it as the ’lognormal index model’. We use the transformation y 7→ log(y + 1),

which results in more symmetric distributions than the logarithm. All variables from Table

1 were included in the model, and the effects of the continuous variables age, SAPS and

NEMS were modeled by cubic regression splines. Interactions of variables were explored

but not included in the final model. We also tested whether merging factor levels with few

observations improved the model, but the untransformed covariates yielded the best forecasts

in out-of-sample predictions on the part of the data used for model selection.

We tested two other index estimators for the expected LoS to investigate the robustness

of the DIM with respect to the index. The first one estimates the expected log-LoS under the

assumption of a scaled t-distribution. The mean is modeled as a function of the covariates,

with the same specification as for the lognormal index model, and the degrees of freedom

are estimated, with a minimal threshold of 5 to ensure stability. This model is structurally

similar to the lognormal index model, but more robust with respect to outliers, which occur

even after the log-transformation. The second alternative is a gamma regression for the

untransformed LoS with logarithm as the link function. While the three index models yield

different predictions on the scale of the LoS, they largely agree when only the ordering of

the predictions is considered: Over the 18 ICUs, the rank correlation between predictions

by two of the models is 0.98 on average with a minimum of 0.86. As a consequence, there is

no significant difference between the corresponding DIM forecasts: Evaluated on the dataset

for model selections, the average CRPS over all ICUs of DIM forecasts based on different

models only differs by up to 0.01, while the averages are around 1.40. The predictions based

on the lognormal index model achieved the best results in most ICUs and were therefore

selected for the predictions on the validation data.

Due to the large training datasets, the splitting of the training data for index estimation

only has a marginal effect on the predictions. Estimating the index function on the full

training data and the conditional distributions on in-sample predictions, in violation of the

requirements for consistency, only decreased the average CRPS by 0.01 of 1.40 as compared

to a bagging approach with 100 random splits for the estimation of the index and the CDFs

(with ξ = 1/2 in the notation of Section 3). However, the bagging variant was better in

most (17 out of 18) ICUs and therefore adopted for the final evaluation.

Figure 2 illustrates how to perform a simple check of the stochastic ordering assumption

of the DIM: We bin the observed LoS according to the index value, and plot the empirical

cumulative distribution functions (ECDFs) of the LoS in each bin. By varying the positions

and sizes of the bins, it can be seen that the empirical distributions are indeed sufficiently

well ordered. The Spearman correlation between the index and the observed LoS is 0.53 on

average over all ICUs (range 0.40−0.65), which confirms that there is an isotonic relationship

between the index and the actual LoS for most ICUs.
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Figure 2: (a) Index function and log(LoS + 1) for selected ICUs. (b) ECDFs of the LoS

stratified into the bins given by the vertical shaded stripes in panel (a).
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6.3 Alternative regression methods

We compare the DIM to two other distributional regression methods: A Cox proportional

hazards model (Cox, 1972) and quantile regression with monotone rearrangement (Koenker,

2005; Chernozhukov et al., 2010). For both, we use the same variables and specifications as

in the index estimator for the DIM, which was superior compared to other variants tested.

A Cox proportional hazards model is a classical choice for modeling survival times, and

it shares some similarities with a DIM. Both models are semi-parametric and based on

stochastic order restrictions on the conditional distributions, namely the usual stochastic

ordering in the DIM and the hazard rate order in Cox regression, which is stronger than

the usual stochastic order (Shaked and Shanthikumar, 2007, Theorem 1.B.1). While the

distribution functions are estimated non-parametrically in Cox regression, the relationship

between different conditional distributions is modeled parametrically via the hazard ratio,

as opposed to the DIM, where only the ordering on the conditional distributions is modeled

parametrically by the index function.

Quantile regression, on the other hand, imposes less assumptions on the conditional dis-

tributions. The conditional quantiles are modeled separately and satisfy no stochastic order

constraints. In particular, if there are strong violations of the stochastic order assumptions

of the DIM or Cox regression, we would expect that the more flexible quantile regression

achieves better forecasts by fitting crossing quantile curves for different patients. This allows
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Figure 3: Predictive CDFs for four selected patients based on the training data of the ICU

the patients were admitted to.
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an informal check of the underlying assumptions of Cox regression and the DIM (see Figure

S1 in the supplementary material). We use a grid of quantiles from 0.005 to 0.995 with steps

of 0.001, which gave better results than a coarser grid with steps of 0.01.

We also tested fully parametric models of GAMLSS type, and kernel methods as imple-

mented in the np package in R (Hayfield and Racine, 2008). Unfortunately, we could not

find a sufficiently flexible parametric family for a GAMLSS, and the application of kernel

methods was not feasible due to computational problems with the large datasets and high

numbers of covariates.

6.4 Results

Figure 3 illustrates the probabilistic forecasts for different patients based on the training data

of the ICU the patients were admitted to. Patient 1, male, 32 years old, was admitted because

of a severe sepsis or septic shock. Patient 2 is a 67 years old female with aortic aneurysm

or aortic dissection, Patient 3 is 58 years old, male with a metabolic decompensation, and

Patient 4 is a 78 old female admitted from a high dependency unit with subarachnoidal

hemorrhage. Patient 2 has the shortest predicted LoS: The DIM and Cox regression predict

that she leaves the ICU at the first day after admission with a probability of almost 75%.

For the remaining patients, the predictive CDFs are more skewed, and a LoS of more than

three days is not unlikely. It is immediately visible that the DIM and Cox regression are

able to recover the pattern in the ICU discharge times, with flat pieces of the CDFs around

midnight. Quantile regression, on the other hand, merely interpolates this pattern.

Here, detailed results are only shown for the best and worst two ICUs with respect to

the CRPS of the DIM forecasts; see the supplementary material for tables and figures for all

ICUs. Summary statistics of the LoS and other numeric variables for the patients of these
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Figure 4: Reliability diagrams of probabilistic forecasts for the predicted probability

that the LoS exceeds 1, 5, 9, 13 days. The forecast probability is grouped into the bins

[0, 0.1], (0.1, 0.2], . . . , (0.9, 1] and the observed frequencies are drawn at the midpoints of the

bins. Only bins with more than two observations are included.
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Table 2: Summary statistics (mean, median and standard deviation) of numeric variables in

the dataset.

ICU LoS Age NEMS SAPS

mean med. sd mean med. sd mean med. sd mean med. sd

ICU44 3.9 1.5 7.8 59.0 61 17.6 27.1 27 8.5 34.0 31 18.9

ICU65 1.8 0.6 4.3 67.2 69 13.9 25.5 25 7.9 28.7 28 12.5

ICU76 4.3 1.7 7.2 63.2 66 15.6 30.3 30 8.3 41.2 40 17.2

ICU77 1.8 0.6 3.2 65.0 68 15.9 21.9 18 8.0 31.1 28 16.1
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Figure 5: PIT histograms of the probabilistic forecasts with bins of width 1/20.
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ICUs are given in Table 2. All probabilistic regression methods can reliably predict the

probability that the LoS exceeds k = 1, 5, 9, 13 days; see Figure 4. Figure 5 shows that the

forecasts achieve a better probabilistic calibration than the ECDF of the LoS in the training

data, which is uninformative as a forecast and does not take into account changes in the ICU-

case mix that are reflected in the covariates. Further improvements of calibration may be

possible by selecting a tailored training dataset, taking into account organizational changes,

and developments in treatments that have an influence on the LoS or on the relationship

between covariates and the LoS. Such information is not available in our dataset.

While all three distributional regression methods yield similar results in terms of cali-

bration, there is a clear ranking with respect to forecast accuracy: In all ICUs, the DIM

achieves the lowest CRPS, followed by quantile regression in second and Cox regression in

third place. For comparison, Table 3 also shows the CRPS of the ECDF forecast, and of the
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deterministic point forecast of the lognormal index model, which is its mean absolute error.

Interestingly, the ECDF forecast achieves a lower mean CRPS in all ICUs (average improve-

ment of 13%) than the point forecast, although it does not take any covariate information

into account. This highlights the superiority of even simple probabilistic forecast over point

forecasts in the context of ICU LoS. A further average improvement of 13% in the mean

CRPS is achieved when going from the uninformative ECDF forecast to the worst of the

probabilistic regression methods in terms of CRPS, which is Cox regression. The differences

in the CRPS of the forecasts using distributional regression methods are smaller, but con-

sistent over all ICUs: Quantile regression outperforms Cox regression in 15 out of 18 ICUs,

and the DIMs outperforms quantile regression in all ICUs. The difference in CRPS between

the DIM and quantile regression is highly significant when tested with Wilcoxon’s signed

rank test except for the ICUs with identifiers 19 and 33, where the p-values are 0.019 and

0.023, respectively. Wilcoxon’s signed rank test was applied because the CRPS differences

are heavy-tailed, so a t-test is not appropriate (see Figure S6 in the supplementary material).

In conclusion, with distributional regression methods and especially the DIM, it is possible

to obtain reliable, reasonably well calibrated, and informative probabilistic forecasts for ICU

LoS in a realistic setting. These forecasts are not only more informative than point forecasts,

but also reduce the forecast error by more than 25%.

7 Discussion

In this paper, we have introduced DIMs as intuitive and flexible models for distributional

regression. Distributional regression approaches provide full conditional distributions of the

outcome given covariate information, and are thus more informative than classical regres-

sion approaches for the conditional mean, median or specific quantiles. However, specifying

a good distributional regression model is usually less intuitive than specifying a regression

model for, say, the conditional mean. An appealing feature of DIMs is that for the modeling

of the index function classical approaches and intuition for modeling a conditional mean or

median can be used. Given the index function, the shape of the full conditional distribu-

tion is then learned from training data using IDR, that is, distributional regression under

stochastic ordering constraints. The second step does not involve any parameter tuning or

implementation choices.

The idea of reducing the complexity of a potentially high-dimensional covariate space by

using an index function in distributional regression has also been used in the work of Hall

and Yao (2005); Zhang et al. (2017). In these works, the index function has to be univariate

and parametrizes a distance on the covariate space that is then used for kernel methods to

estimate the conditional distributions. In contrast, the index function in a DIM parametrizes
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Table 3: CRPS of probabilistic forecasts. The column ’Point’ shows the mean absolute error

of the point forecast obtained from the lognormal index model, and p-values of Wilcoxon’s

signed rank test for the difference in CRPS between DIM and quantile regression are given

in the column labelled p. P-values smaller than 10−16 are written as 0.

ICU p DIM Quantile reg. Cox reg. ECDF Point

ICU4 1.4 · 10−11 1.06 1.08 1.09 1.19 1.4

ICU6 2.0 · 10−13 1.35 1.39 1.39 1.6 1.83

ICU10 0 1.19 1.22 1.21 1.31 1.55

ICU19 0.019 1.03 1.03 1.05 1.19 1.35

ICU20 1.1 · 10−7 2.19 2.22 2.24 2.5 2.86

ICU24 0 1.09 1.11 1.14 1.26 1.42

ICU33 0.023 0.97 0.97 0.98 1.09 1.36

ICU39 0 1.33 1.35 1.38 1.7 1.87

ICU44 2.1 · 10−6 2.24 2.26 2.33 2.48 2.95

ICU47 4.4 · 10−4 0.97 0.98 1.04 1.23 1.36

ICU52 2.6 · 10−6 1.84 1.87 1.87 2.12 2.58

ICU55 0 1.05 1.09 1.06 1.25 1.44

ICU58 0 1.39 1.41 1.44 1.76 1.97

ICU65 0 0.9 0.91 0.98 1.06 1.19

ICU76 7.5 · 10−15 2.42 2.45 2.46 2.78 3.47

ICU77 0 0.92 0.94 0.94 1.12 1.26

ICU79 1.2 · 10−10 1.43 1.46 1.51 2.17 2.23

ICU80 0 0.94 0.97 0.95 1.09 1.25
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partial orders on the covariate space allowing for stochastic order constrained distributional

regression in the second step.

Finding an informative index function is critical and usually requires expertise of the

problem at hand. However, in many cases, existing models for the conditional mean or

median can be used directly, as demonstrated in the application on ICU LoS. Indeed, it may

even happen that a poorly fitting conditional mean model works well for a DIM since it is

sufficient that the model is correct up to monotone transformations, or, in other words, that

it is a good model for a pseudo index.

Since IDR can be combined well with (sub-)bagging, the same also holds for DIMs.

(Sub-)bagging is useful to avoid overfitting, may increase computational efficiency, and lead

to smoother estimated conditional CDFs. We have used bagging in our data application in

Section 6 with relatively at hoc choices for the number of random splits of the training data.

A systematic study of optimal choices for subsample sizes and/or iterations is desirable.

A promising future extension of DIMs is to replace the IDR step by distributional re-

gression under a stronger stochastic ordering constraint such as a likelihood ratio ordering

constraint, or by a weaker one such as second order stochastic dominance. However, this

requires fundamental advances concerning the estimation of distributions under these con-

straints.

A Proof of Theorem 5.1

To simplify notation, we assume without loss of generality that g in (A5) is the identity

function (for a formal argument, see the proof of 5.1). The following lemma is Theorem 4.6

in Mösching and Dümbgen (2020), which we state for completeness.

Lemma A.1. Let Z1, Z2, Z3, . . . be independent random variables with respective distribution

functions G1, G2, G3, . . .. For k ∈ N, let

Ĝk(·) =
1

k

k∑
i=1

1{Zi ≤ ·} and Ḡk(·) =
1

k

k∑
i=1

Gi(·).

Then there exists a universal constant M ≤ 25/2e such that for all η ≥ 0,

P
(√

k‖Ĝk − Ḡk‖∞ ≥ η
)
≤M exp(−2η2),

where ‖ · ‖∞ denotes the usual supremum norm of functions.

23



Lemma A.2, which is an analogous result to Corollary 4.7 in Mösching and Dümbgen

(2020), uses the following definitions for 1 ≤ r ≤ s ≤ dnξe:

wrs = s− r + 1, F̂rs(·) =
1

wrs

s∑
i=r

1{Yni ≤ ·},

F̄θ̂n;rs(·) =
1

wrs

s∑
i=r

Fθ̂n(Xni)
(·), F̄θ;rs(·) =

1

wrs

s∑
i=r

Fθ(Xni)(·).

Lemma A.2. Let

Mn = max
1≤r≤s≤dnξe

w1/2
rs ‖F̂rs − F̄θ̂n;rs‖∞.

Then, for any constant R > 1,

lim
n→∞

P(Mn ≤ (R logdnξe)1/2) = 1.

Proof. The definition of Mn, the triangle inequality and Lipschitz continuity of u 7→ Fu(y)

imply that almost surely,

Mn = max
1≤r≤s≤dnξe

w1/2
rs ‖F̂rs − F̄θ̂n;rs‖∞

≤ max
1≤r≤s≤dnξe

w1/2
rs ‖F̂rs − F̄θ;rs‖∞ + Lw1/2

rs sup
x∈X
|θ(x)− θ̂n(x)|

≤ max
1≤r≤s≤dnξe

w1/2
rs ‖F̂rs − F̄θ;rs‖∞ + Ldnξe1/2 sup

x∈X
|θ(x)− θ̂n(x)|

Let R > 1 be fixed and q ∈ (1/
√
R, 1). By (A5),

lim
n→∞

P
(
Ldnξe1/2 sup

x∈X
|θ(x)− θ̂n(x)| > (1− q)(R logdnξe)1/2

)
= 0.

For the other part, we apply Lemma A.1 to each of the terms w
1/2
rs ‖F̂rs − F̄θ̂n;rs‖∞, 1 ≤ r ≤

s ≤ dnξe, and obtain

P
(

max
1≤r≤s≤dnξe

w1/2
rs ‖F̂rs − F̄θ;rs‖∞ ≥ q(R log n)1/2

)
≤

∑
1≤r≤s≤dnξe

P(w1/2
rs ‖F̂rs − F̄θ;rs‖∞ ≥ q(R log n)1/2)

≤ (dnξe+ 1)2

2
M exp(−2Rq2 log(dnξe))

≤ (M/2) exp(2 log(dnξe+ 1)− 2Rq2 log(dnξe)).

Because Rq2 > 1, this converges to zero as n→∞.
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Proof of Theorem 5.1. We first show that g can be assumed to be the identity function.

Let x ∈ X and y ∈ R. By Proposition 3.1,F̂n;θ̂n(x)(y) = F̂n;g(θ̂n(x))(y), so the distribution

function estimator is invariant under the transformation g. By (A3) and conditional on

Xnj, j = dnξe + 1, . . . , n, the random variables θ̂(Xnj) = α̂1θ1(Xnj) + · · · + α̂pθp(Xnj),

j = 1, . . . , dnξe, admit a continuous positive density on the compact interval g−1(I), and so

the transformation theorem for densities implies that the random variables g(θ̂(Xnj)) also

admit a strictly positive density on I. Thus for the rest of the proof, we can simplify notation

by assuming that g is the identity function, and set D > 0 as the minimum of the density

of g(θ̂(Xnj)) on I.

The triangle inequality and (A2) imply that

|F̂n;θ̂(x)(y)− Fθ(x)(y)| ≤ |F̂n;θ̂n(x)(y)− Fθ̂n(x)(y)|+ |Fθ̂n(x)(y)− Fθ(x)(y)|

≤ |F̂n;θ̂n(x)(y)− Fθ̂n(x)(y)|+ L|θ̂n(x)− θ(x)|,

and therefore, for any C > 0,

P
(

sup
y∈R,x∈Xn

|F̂n;θ̂(x)(y)− Fθ(x)(y)| ≥ C
( log n

n

)1/3)
≤ P

(
sup

y∈R,x∈Xn

|F̂n;θ̂n(x)(y)− Fθ̂n(x)(y)| ≥ C

2

( log n

n

)1/3)
+ P

(
sup
x∈Xn

|θ̂n(x)− θ(x)| ≥ C

2L

( log n

n

)1/3)
.

By (A5), the second term converges to zero as n→∞ for any C > 0. For the first term, we

go through the proof of Theorem 3.3 from Mösching and Dümbgen (2020) to find C.

From now on, we condition on (Xni, Yni), i = dnξe+1, . . . , n, so that θ̂n is non-random. By

(A3) and by Remark 3.2 of Mösching and Dümbgen (2020), we have that for any 0 < C2 < D,

inf

{
wn(In)

dnξeλ(In)
: intervals In ⊂ I with λ(In) ≥ δn

}
≥ C2 (10)

with asymptotic probability one as n → ∞, where λ is the Lebesgue measure, δn =

(log(dnξe)/dnξe)1/3 and, for any set B ⊆ R,

wn(B) = #{j ∈ {1, . . . , dnξe} : θ̂(Xnj) ∈ B}.

Assume from now on that θ̂n(Xn1) < θ̂n(Xn2) < . . . < θ̂n(Xndnξe). The strict inequality

is a consequence of (A3). The previous consideration implies that for all x ∈ Xn, the indices

r(x) = min{j ∈ {1, . . . , dnξe} : θ̂n(Xnj) ≥ θ̂n(x)− δn}
j(x) = max{j ∈ {1, . . . , dnξe} : θ̂n(Xnj) ≤ θ̂n(x)}
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are well defined with asymptotic probability one, because [θ̂n(x)− δn, θ̂n(x)] is a subinterval

of I of length δn. They satisfy r(x) ≤ j(x) and θ̂n(x)−δn ≤ θ̂n(Xnr(x)) ≤ θ̂n(Xnj(x)) ≤ θ̂n(x),

wr(x)j(x) = wn([θ̂n(x)− δn, θ̂n(x)]) ≥ C2dnξe δn. Therefore, with Mn as in Lemma A.2,

F̂n;θ̂n(x)(y)− Fθ̂n(x)(y) ≤ F̂n;θ̂n(Xnj(x))
(y)− Fθ̂n(x)(y)

= min
r≤j(x)

max
s≥j(x)

F̂rs(y)− Fθ̂n(x)(y)

≤ max
s≥j(x)

F̂r(x)s(y)− Fθ̂n(x)(y)

≤ w
−1/2
r(x)j(x)Mn + max

s≥j(x)
F̄θ̂n;r(x)s(y)− Fθ̂n(x)(y)

≤ (C2dnξeδn)−1/2Mn + Fθ̂n(Xnr(x))
(y)− Fθ̂n(x)(y)

≤ (C2dnξeδn)−1/2Mn + Lδn.

The equality in the second line is the classical min-max formula for monotone regression,

see e.g. Equation (2.2) in Mösching and Dümbgen (2020). For any fixed R > 1 and on the

event {Mn ≤ (R log(dnξe))1/2}, the previous considerations imply that

sup
x∈Xn,y∈R

(F̂n;θ̂n(x) − Fθ̂n(x)) ≤ (C2dnξeδn)−1/2(R log(dnξe))1/2 + Lδn ≤ C̃

(
log(n)

n

)1/3

,

with C̃ = [(C2R)1/2 + L]/p1/3. So we can choose C = 2LC̃. To finish the proof, we show

that Fθ̂n(x)(y)− F̂n;θ̂n(x)(y) can be bounded in the same way.

Similar to before, define the indices r′(x) = min{j ∈ {1, . . . , dnξe} : θ̂n(Xnj) ≥ θ̂n(x)},
j′(x) = max{j ∈ {1, . . . , dnξe} : θ̂n(Xnj) ≤ θ̂n(x) + δn}. Then with asymptotic probability

one, also r′(x) ≤ j′(x) and θ̂n(x) ≤ θ̂n(Xnr′(x)) ≤ θ̂nn(Xnj′(x)) ≤ θ̂(x) + δn, wr′(x)j′(x) =

wn([θ̂n(x) + δn, θ̂n(x)]) ≥ C2dnξeδn. Thus,

F̂n;θ̂n(x) − Fθ̂n(x)(y) ≥ F̂n;θ̂n(Xnr′(x))
(y)− Fθ̂n(x)

= min
r≤r′(x)

max
s≥r′(x)

F̂rs(y)− Fθ̂n(x)(y)

≥ min
r≤r′(x)

F̂rj′(x)(y)− Fθ̂n(x)(y)

≥ −w−1/2r′(x)j′(x)Mn + min
r≤r′(x)

F̄θ̂n;rj′(x)(y)− Fθ̂n(x)(y)

≥ −(C2dnξeδn)−1/2Mn + Fθ̂n(Xnj′(x))
(y)− Fθ̂n(x)(y)

≥ −(C2dnξeδn)−1/2Mn − Lδn.
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B Supplementary Material

Table S1 shows summary statistics of the ICU LoS, patient age, SAPS II and NEMS for all

ICUs.

Figure S1 shows probabilistic LoS forecasts obtained by quantile regression, for eight

randomly selected patients per ICU. While there are some crossings in the CDFs (e.g. in ICUs

47 and 52), the CDFs for most patients do not cross and are hence comparable with respect

to stochastic dominance, suggesting that the model assumption of the DIM is reasonable for

ICU LoS.

Figures S2 and S3 show reliability diagrams for the predicted probability that the LoS

exceeds k = 1, 2, . . . , 14 days for all forecasting methods and ICUs. PIT histograms are

shown in Figures S4 and S5.

Figure S6 shows the difference in CRPS between the quantile regression forecasts and

the DIM forecasts. For all ICUs, there is a considerable number of outliers (defined as points

outside the 25% (75%) quantile minus (plus) 1.5 times the interquartile range), so Wilcoxon’s

signed rank test was applied to compare the CRPS, instead of a t-test.
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Table S1: Summary statistics (mean, median and standard deviation) of numeric variables

in the dataset.

ICU identifier LoS Age NEMS SAPS

mean median sd mean median sd mean median sd mean median sd

ICU4 2.1 0.7 4.4 65.7 68 14.5 25.4 25 9.6 29.0 26 14.5

ICU6 2.8 0.8 5.5 65.2 69 16.7 23.3 21 7.9 35.8 33 18.1

ICU10 2.0 0.7 3.9 62.9 66 15.7 27.8 27 8.8 41.6 39 18.2

ICU19 2.1 0.9 4.7 64.7 67 15.3 20.1 18 7.4 29.9 25 16.6

ICU20 3.7 0.7 8.0 64.2 67 15.3 25.5 24 8.3 31.6 27 17.5

ICU24 2.0 0.6 4.5 63.4 66 15.4 24.1 18 7.7 29.5 26 16.8

ICU33 2.0 1.0 3.3 66.1 69 15.8 19.9 18 7.5 36.5 33 17.4

ICU39 2.9 1.0 6.2 62.6 65 16.5 23.2 18 7.1 28.8 26 15.9

ICU44 3.9 1.5 7.8 59.0 61 17.6 27.1 27 8.5 34.0 31 18.9

ICU47 2.5 1.5 5.1 67.6 69 12.8 25.9 25 7.4 27.7 26 12.7

ICU52 3.7 1.6 6.3 60.5 63 17.3 26.2 27 10.3 40.8 39 18.5

ICU55 2.4 0.8 4.4 64.6 67 16.1 20.6 18 7.8 30.8 27 16.4

ICU58 2.6 0.7 4.8 61.7 64 16.4 22.5 18 7.3 28.5 26 15.0

ICU65 1.8 0.6 4.3 67.2 69 13.9 25.5 25 7.9 28.7 28 12.5

ICU76 4.3 1.7 7.2 63.2 66 15.6 30.3 30 8.3 41.2 40 17.2

ICU77 1.8 0.6 3.2 65.0 68 15.9 21.9 18 8.0 31.1 28 16.1

ICU79 2.7 0.5 5.9 55.8 57 17.0 22.4 18 7.1 19.1 15 15.3

ICU80 1.8 0.6 3.7 65.3 68 16.1 19.4 18 7.3 29.0 27 13.1
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Figure S1: Predictive CDFs obtained by quantile regression, for randomly selected patients.
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Figure S2: Reliability diagrams of probabilistic forecasts for the predicted probability

that the LoS exceeds 1, 2, . . . , 7 days. The forecast probability is grouped into the bins

[0, 0.1], (0.1, 0.2], . . . , (0.9, 1]. Only bins with more than two observations are included.
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Figure S3: Reliability diagrams of probabilistic forecasts for the predicted probability that

the LoS exceeds 8, 9, . . . , 14 days. The curves are as specified in Figure S2.
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Figure S4: PIT histograms of the probabilistic forecasts with bins of width 1/20 (first nine

ICUs).
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Figure S5: PIT histograms of the probabilistic forecasts with bins of width 1/20 (second half

of the ICUs).
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Figure S6: Boxplot of the difference in the CRPS of the quantile regression forecasts and of

the DIM forecasts. Outliers are displayed as crosses (with horizontal jitter).
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