
Neural networks-based algorithms for stochastic control and

PDEs in finance ∗

Maximilien Germain † Huyên Pham ‡ Xavier Warin §

January 21, 2021

Abstract

This paper presents machine learning techniques and deep reinforcement learning-
based algorithms for the efficient resolution of nonlinear partial differential equations
and dynamic optimization problems arising in investment decisions and derivative pric-
ing in financial engineering. We survey recent results in the literature, present new
developments, notably in the fully nonlinear case, and compare the different schemes
illustrated by numerical tests on various financial applications. We conclude by high-
lighting some future research directions.

1 Breakthrough in the resolution of high dimensional non-
linear problems

The numerical resolution of control problems and nonlinear PDEs– arising in several finan-
cial applications such as portfolio selection, hedging, or derivatives pricing–is subject to
the so-called “curse of dimensionality”, making impractical the discretization of the state
space in dimension greater than 3 by using classical PDE resolution methods such as finite
differences schemes. Probabilistic regression Monte-Carlo methods based on a Backward
Stochastic Differential Equation (BSDE) representation of semilinear PDEs have been de-
veloped in [Zha04], [BT04], [GLW05] to overcome this obstacle. These mesh-free techniques
are successfully applied upon dimension 6 or 7, nevertheless, their use of regression methods
requires a number of basis functions growing fastly with the dimension. What can be done
to further increase the dimension of numerically solvable problems?

A breakthrough with deep learning based-algorithms has been made in the last five
years towards this computational challenge, and we mention the recent survey by [Bec+20].
The main interest in the use of machine learning techniques for control and PDEs is the
ability of deep neural networks to efficiently represent high dimensional functions without
using spatial grids, and with no curse of dimensionality [Gro+18], [Hut+20]. Although the
use of neural networks for solving PDEs is not new, see e.g. [DPT94], the approach has

∗This paper is a contribution for the Machine Learning for Financial Markets: a guide to contemporary
practices, Cambridge University Press, Editors: Agostino Capponi and Charles-Albert Lehalle. This study
was supported by FiME (Finance for Energy Market Research Centre) and the “Finance et Développement
Durable - Approches Quantitatives” EDF - CACIB Chair.

†EDF R&D, LPSM, Université de Paris mgermain at lpsm.paris
‡LPSM, Université de Paris, FiME, CREST ENSAE pham at lpsm.paris
§EDF R&D, FiME xavier.warin at edf.fr

1

ar
X

iv
:2

10
1.

08
06

8v
1

 [
m

at
h.

O
C

]
 2

0
Ja

n
20

21

mailto:Maximilien.Germain at edf.fr
mailto:pham at lpsm.paris
mailto:xavier.warin at edf.fr

been successfully revived with new ideas and directions. Neural networks have known a
increasing popularity since the works on Reinforcement Learning for solving the game of Go
by Google DeepMind teams. These empirical successes and the introduced methods allow
to solve control problems in moderate or large dimension. Moreover, recently developed
open source libraries like Tensorflow and Pytorch also offer an accessible framework to
implement these algorithms.

A first natural use of neural networks for stochastic control concerns the discrete time
setting, with the study of Markov Decision Processes, either in a brute force fashion or by
using dynamic programming approaches. In the continuous time setting, and in the context
of PDE resolution, we present various methods. A first kind of schemes is rather generic
and can be applied to a variety of PDEs coming from a large range of applications. Other
schemes rely on BSDE representations, strongly linked to stochastic control problems. In
both cases, numerical evidence seems to indicate that the methods can be used in large
dimension, greater than 10 and up to 1000 in certain studies. Some theoretical results also
illustrates the convergence of specific algorithms. These advances pave the way for new
methods dedicated to the study of large population games, studied in the context of mean
field games and mean field control problems.

The outline of this article is the following. We first focus on some schemes for discrete
time control in Section 2 before presenting generic machine learning schemes for PDEs
in Subsection 3.1. Then we review BSDE-based machine learning methods for semilinear
equations in Subsection 3.2.1. Existing algorithms for fully non-linear PDEs are detailed in
Subsection 3.2.2 before presenting new BSDE schemes designed to treat this more difficult
case. Numerical tests on CVA pricing and portfolio selection are conducted in Section 4
to compare the different approaches. Finally, we highlight in Section 5 further directions
and perspectives including recent advances for the resolution of mean field games and mean
field control problems with or without model.

2 Deep learning approach for stochastic control

We present in this section some recent breakthrough in the numerical resolution of stochas-
tic control in high dimension by means of machine learning techniques. We consider a
model-based setting in discrete-time, i.e., a Markov decision process, that could possibly
be obtained from the time discretization of a continuous-time stochastic control problem.

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t representing
the available information at any time t ∈ N (F0 is the trivial σ-algebra). The evolution of
the system is described by a model dynamics for the state process (Xt)t∈N valued in X ⊂
Rd:

Xt+1 = F (Xt, αt, εt+1), t ∈ N,

where (εt)t is a sequence of i.i.d. random variables valued in E, with εt+1 Ft+1-measurable
containing all the noisy information arriving between t and t + 1, and α = (αt)t is the
control process valued in A ⊂ Rq. The dynamics function F is a measurable function from
Rd × Rq ×E into Rd, and assumed to be known. Given a running cost function f , a finite
horizon T ∈ N∗, and a terminal cost function, the problem is to minimize over control

2

process α a functional cost

J(α) = E
[T−1∑
t=0

f(Xt, αt) + g(XT)
]
.

In some relevant applications, we may require constraints on the state and control in the
form: (Xt, αt) ∈ S, t ∈ N. for some subset S of Rd × Rq. This can be handled by relaxing
the state/constraint and introducing into the costs a penalty function L(x, a): f(x, a) ←
f(x, a) + L(x, a), and g(x) ← g(x) + L(x, a). For example, if the constraint set is in the
form: S = {(x, a) ∈ Rd × Rq : hk(x, a) = 0, k = 1, . . . , p, hk(x, a) ≥ 0, k = p + 1, . . . ,m},
then one can take as penalty functions:

L(x, a) =

p∑
k=1

µk|hk(x, a)|2 +
m∑

k=p+1

µk max(0,−hk(x, a)),

where µk are penalization parameters (large in practice).

2.1 Global approach

The method consists simply in approximating at any time t, the feedback control, i.e. a
function of the state process, by a neural network (NN):

αt ' πθt(Xt), t = 0, . . . , T − 1,

where πθ is a feedforward neural network on Rd with parameters θ, and then to minimize
over the global set of parameters θ = (θ0, . . . , θT−1) the quantity (playing the role of loss
function)

J̃(θ) = E
[T−1∑
t=0

f(Xθ
t , π

θt(Xθ
t)) + g(Xθ

T)
]
,

where Xθ is the state process associated with the NN feedback controls:

Xθ
t+1 = F (Xθ

t , π
θt(Xθ

t), εt+1), t = 0, . . . , T − 1.

This basic idea of approximating control by parametric function of the state was proposed
in [GM05], and updated with the use of (deep) neural networks by [HE16]. This method
met success due to its simplicity and the easy accessibility of common libraries like Ten-
sorFlow for optimizing the parameters of the neural networks. Some recent extensions of
this approach dealt with stochastic control problems with delay, see [HH21]. However, such
global optimization over a huge set of parameters θ = (θ0, . . . , θT−1) may suffer from being
stuck in suboptimal traps and thus does not converge, especially for large horizon T .

2.2 Backward dynamic programming approach

In [Bac+19], the authors propose methods that combine ideas from numerical probabil-
ity and deep reinforcement learning. Their algorithms are based on the classical dynamic
programming (DP), (deep) neural networks for the approximation/learning of the opti-
mal policy and value function, and Monte-Carlo regressions with performance and value
iterations.

3

The first algorithm, called NNContPI, is a combination of dynamic programming and
the approach in [HE16]. It learns sequentially the control by NN πθ(.) and performance
iterations, and is designed as follows:

Algorithm 1: NNContPI

Input: the training distributions (µt)
T−1
t=0 ;

Output: estimates of the optimal strategy (π̂t)
T−1
t=0 ;

for t = T − 1, . . . , 0 do

Compute π̂t := πθ̂t with

θ̂t ∈ arg min
θ

E
[
f
(
Xt, π

θ(Xt)
)

+
T−1∑
s=t+1

f
(
Xθ
s , π̂s

(
Xθ
s

))
+ g
(
Xθ
T

)]

where Xt ∼ µt and where
(
Xθ
s

)T
s=t+1

is defined by induction as:{
Xθ
t+1 = F

(
Xt, π

θ(Xt), εt+1

)
,

Xθ
s+1 = F

(
Xθ
s , π̂s(X

θ
s), εs+1

)
, for s = t+ 1, . . . , T − 1.

The second algorithm, refereed to as Hybrid-Now, combines optimal policy estimation
by neural networks and dynamic programming principle, and relies on an hybrid procedure
between value and performance iteration to approximate the value function by neural net-
work Φη(.) on Rd with parameters η.

Algorithm 2: Hybrid-Now

Input: the training distributions (µt)
T−1
t=0 ;

Output:
– estimate of the optimal strategy (π̂t)

T−1
t=0 ;

– estimate of the value function (V̂t)
T−1
t=0 ;

Set V̂T = g;
for t = T − 1, . . . , 0 do

Compute:

θ̂t ∈ arg min
θ

E
[
f
(
Xt, π

θ(Xt)
)

+ V̂t+1(Xθ
t+1)

]
where Xt ∼ µt, and Xθ

t+1 = F (Xt, π
θ(Xt), εt+1);

Set π̂t := πθ̂t ; . π̂t is the estimate of the optimal policy at time t
Compute

η̂t ∈ arg min
η

E
∣∣∣f(Xt, π̂t(Xt)) + V̂t+1(X θ̂t

t+1)− Φη(Xt)
∣∣∣2.

Set V̂t = Φη̂t ; . V̂t is the estimate of the value function at time t

The convergence analysis of Algorithms NNContPI and Hybrid-Now are studied in
[Hur+18], and various applications in finance are implemented in [Bac+19]. These algo-
rithms are well-designed for control problems with continuous control space A = Rq or
a ball in Rq. In the case where the control space A is finite, it is relevant to randomize

4

controls, and then use classification methods by approximating the distribution of controls
with neural networks and Softmax activation function.

3 Machine learning algorithms for nonlinear PDEs

3.1 Deterministic approach by neural networks

In the schemes below, differential operators are evaluated by automatic differentiation of
the network function approximating the solution of the PDE. Machine learning libraries
such as Tensorflow or Pytorch allow to efficiently compute these derivatives.

• Deep Galerkin Method [SS17].

The Deep Galerkin Method is a meshfree machine learning algorithm to solve PDEs on a
domain, eventually with boundary conditions. The principle is to sample time and space
points according to a training measure, e.g. uniform on a bounded domain, and minimize
a performance measure quantifying how well a neural network satisfies the differential
operator and boundary conditions. For instance, when the studied PDE problem is

∂tu+ Fu = 0 on [0, T)× Λ

u(0, ·) = g on Λ

u(t, x) = h(t, x) on [0, T)× ∂Λ.

with F a space differential operator, Λ a subset of Rd, the method consists in minimizing
over neural network U : R× Rd → Rd, the L2 loss

E|∂tU(τ, κ) + FU(τ, κ)|2 + E|U(0, ξ)− g(ξ)|2 + E|U(τ, κ)− h(τ, κ)|2

with κ, τ, ξ independent random variables in Λ × [0, T] × ∂Λ. This method is tested on
financial problems by [AA+18]. A major advantage to this method is its adaptability to
a large range of PDEs with or without boundary conditions. Indeed the loss function is
straightforwardly modified according to changes in the constraints one wishes to enforce on
the PDE solution. A related approach is the deep parametric PDE method, see [KJY20],
and [GW20] applied to option pricing. Extension to path-dependent PDEs is developed in
[SZ20].

• Other approximation methods

(i) Physics informed neural networks [RPK19]. Physics informed neural networks use
both data (obtained for a limited amount of samples from a PDE solution), and
theoretical dynamics to reconstruct solutions from PDEs.

(ii) Deep Ritz method [EY18]. The Deep Ritz method focuses on the resolution of the
variational formulation from elliptic problems where the integral is evaluated by ran-
domly sampling time and space points, like in the Deep Galerkin method [SS17] and
the minimization is performed over the parameters of a neural network. This scheme
is tested on Poisson equation with different types of boundary conditions.

5

3.2 Probabilistic approach by neural networks

3.2.1 Semi-linear case

In this paragraph, we consider semilinear PDEs of the form{
∂tu+ µ ·Dxu+ 1

2 Tr(σσᵀD2
xu) = f(·, ·, u, σᵀDxu) on [0, T)× Rd

u(T, ·) = g on Rd.
(3.1)

for which we have the forward backward SDE representation{
Yt = g(XT)−

∫ T
t f(s,Xs, Ys, Zs)ds−

∫ T
t Zs · dWs, 0 ≤ t ≤ T,

Xt = X0 +
∫ t

0 µ(s,Xs)ds+
∫ t

0 σ(s,Xs)dWs,
(3.2)

via the (non-linear) Feynman-Kac formula: Yt = v(t,Xt), Zt = σᵀ(t,Xt)Dxv(t,Xt), 0 ≤
t ≤ T , see [PP90].

Let π be a subdivision {t0 = 0 < t1 < · · · < tN = T} with modulus |π| := supi ∆ti,
∆ti := ti+1 − ti, satisfying |π| = O

(
1
N

)
, and consider the Euler-Maruyama discretization

(Xi)i=0,...,N defined by

Xi = X0 +

i−1∑
j=0

µ(tj , Xj)∆tj +

i−1∑
j=0

σ(tj , Xj)∆Wj ,

where ∆Wj := Wtj+1−Wtj , j = 0, . . . , N . Sample paths of (Xi)i act as training data in the
machine learning setting. Thus our training set can be chosen as large as desired, which is
relevant for training purposes as sit does not lead to overfitting.

The time discretization of the BSDE (3.2) can be written in backward induction as

Y π
i = Y π

i+1 − f(ti, Xi, Y
π
i , Z

π
i)∆ti − Zπi .∆Wi, i = 0, . . . , N − 1, (3.3)

which can be described as conditional expectation formulae Y π
i = Ei

[
Y π
i+1 − f(ti, Xi, Y

π
i , Z

π
i)∆ti

]
Zπi = Ei

[
∆Wi
∆ti

Y π
i+1

]
, i = 0, . . . , N − 1,

(3.4)

where Ei is a notation for the conditional expectation w.r.t. Fti .

• Deep BSDE scheme [EHJ17], [HJE17].

The essence of this method is to write down the backward equation (3.3) as a forward
equation. One approximates the initial condition Y0 and the Z component at each time
by networks functions taking the forward process X as input. The objective function to
optimize is the error between the reconstructed dynamics and the true terminal condition.
More precisely, the problem is to minimize over network functions U0 : Rd → R, and
sequences of network functions Z = (Zi)i, Zi : Rd → Rd, i = 0, . . . , N − 1, the global
quadratic loss function

JG(U0,Z) = E
∣∣∣Y U0,ZN − g(XN)

∣∣∣2,
where (Y U0,Zi)i is defined by forward induction as

Y U0,Zi+1 = Y U0,Zi + f(ti, Xi, Y
U0,Z
i ,Zi(Xi))∆ti + Zi(Xi).∆Wi, i = 0, . . . , N − 1,

6

starting from Y U0,Z0 = U0(X0). The output of this scheme, for the solution (Û0, Ẑ) to this

global minimization problem, supplies an approximation Û0 of the solution u(0, .) to the

PDE at time 0, and approximations Y Û0,Ẑi of the solution to the PDE (3.1) at times ti evalu-
ated at Xti , i.e., of Yti = u(ti,Xti), i = 0, . . . , N . The convergence of this algorithm through
a posteriori error is studied by [HL20]. A variant is proposed by [CWNMW19] which intro-
duces a single neural network Z(t, x) : [0, T] × Rd 7→ Rd instead of N independent neural
networks. This simplifies the optimization problem and leads to more stable solutions. A
close method introduced by [Rai18] uses also a single neural network U(t, x) : [0, T]×Rd 7→ R
and estimates Z as the automatic derivative in space of U . We also refer to [JO19] for a
variation of this deep BSDE scheme to curve-dependent PDEs arising in the pricing under
rough volatility model, to [GPR20] for a development of deep BSDE method to XVA solver,
to [NR19] for approximations methods for Hamilton-Jacobi-Bellman PDEs, to [KSS20] for
extension of deep BSDE scheme to elliptic PDEs with applications in insurance, and to
[Ji+20] for the resolution of PDEs associated to fully coupled forward-backward SDEs.

• Deep Backward Dynamic Programming (DBDP) [HPW20].

The method builds upon the backward dynamic programming relation (3.3) stemming from
the time discretization of the BSDE, and approximates simultaneously at each time step ti
the processes (Yti , Zti) with neural networks trained with the forward diffusion process Xi

as input. The scheme can be implemented in two similar versions:

1. DBDP1. Starting from Û (1)
N = g, proceed by backward induction for i = N −1, . . . , 0,

by minimizing over network functions Ui : Rd → R, and Zi : Rd → Rd the quadratic
loss function

J
(B1)
i (Ui,Zi)

= E
∣∣∣Û (1)
i+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2,
and update (Û (1)

i , Ẑ(1)
i) as the solution to this local minimization problem.

2. DBDP2. Starting from Û (2)
N = g, proceed by backward induction for i = N −1, . . . , 0,

by minimizing over C1 network functions Ui : Rd → R the quadratic loss function

J
(B2)
i (Ui)

= E
∣∣∣Û (2)
i+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), σ(ti, Xi)

ᵀDxUi(Xi))∆ti

− DxUi(Xi)
ᵀσ(ti, Xi)∆Wi

∣∣∣2,
where DxUi is the automatic differentiation of the network function Ui. Update Û (2)

i

as the solution to this local minimization problem, and set Ẑ(2)
i = σᵀ(ti, .)DxU (2)

i .

The output of DBDP supplies an approximation (Ûi, Ẑi) of the solution u(ti, .) and its
gradient σᵀ(ti, .)Dxu(ti, .) to the PDE (3.1) on the time grid ti, i = 0, . . . , N−1. The study
of the approximation error due to the time discretization and the choice of the loss function
is accomplished in [HPW20].

Variants and extensions of DBDP schemes

7

(i) A regression-based machine learning scheme inspired by regression Monte-Carlo meth-
ods for numerically computing condition expectations in the time discretization (3.4)
of the BSDE, is given by: starting from ÛN = g, proceed by backward induction for
i = N − 1, . . . , 0, in two regression problems:

(a) Minimize over network functions Zi : Rd → Rd

Jr,Zi (Zi) = E
∣∣∣∆Wi

∆ti
Ûi+1(Xi+1)−Zi(Xi)

∣∣∣2
and update Ẑi as the solution to this minimization problem

(b) Minimize over network functions Ui : Rd → R

Jr,Yi (Ui) = E
∣∣∣Ûi+1(Xi+1)− Ui(Xi)− f(ti, Xi,Ui(Xi), Ẑi(Xi))∆ti

∣∣∣2
and update Ûi as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme simultaneously es-
timates the pair component (Y,Z) through the minimization of the loss functions

J
(B1)
i (Ui,Zi) (or J

(B2)
i (Ui) for the second version), i = N −1, . . . , 0. Interestingly, the

convergence of the DBDP scheme can be confirmed by computing at each time step
the infimum of loss function, which should vanish for the exact solution (up to the
time discretization). In contrast, the infimum of the loss functions in usual regression-
based schemes is unknown for the true solution as it is supposed to match the residual
of L2-projection. Therefore the scheme accuracy cannot be directly verified.

(ii) The DBDP scheme is based on local resolution, and was first used to solve linear
PDEs, see [SVSS18]. It is also suitable to solve variational inequalities and can be
used to valuate American options as shown in [HPW20]. Alternative methods consists
in using the Deep Optimal Stopping scheme [BCJ19] or the method from [Bec+19b].
Some tests on Bermudan options are also performed by [LXL19] and [FTT19] with
some refinements of the Deep BSDE scheme.

(iii) The Deep Splitting (DS) scheme in [Bec+19a] combines ideas from the DBDP2
and regression-based schemes. Indeed the current regression-approximation on Z is
estimated by the automatic differentiation of the neural network computed at the
previous optimization step. The current approximation of Y is then computed by a
regression-type optimization problem. It can be seen as a local version of the global
algorithm from [Rai18] or as a step by step Feynman-Kac approach. As the scheme
is a local one, it can be used to valuate American options. The convergence of this
method is studied by [GPW20].

(iv) Local resolution permits to add other constraints such as constraints on a replication
portfolio using facelifting techniques as in [KLW20].

(v) The Deep Backward Multistep (MDBDP) scheme [GPW20] is described as
follows: for i = N − 1, . . . , 0, minimize over network functions Ui : Rd → R, and Zi :

8

Rd → Rd the loss function

JMB
i (Ui,Zi)

= E
∣∣∣g(XN)−

N−1∑
j=i+1

f(tj , Xj , Ûj(Xj), Ẑj(Xj))∆tj −
N−1∑
j=i+1

Ẑj(Xj).∆Wj

− Ui(Xi)− f(ti, Xi,Ui(Xi),Zi(Xi))∆ti −Zi(Xi).∆Wi

∣∣∣2
and update (Ûi, Ẑi) as the solution to this minimization problem. This output pro-

vides an approximation (Ûi, Ẑi) of the solution u(ti, .) to the PDE (3.1) at times ti, i
= 0, . . . , N − 1.

MDBDP is a machine learning version of the Multi-step Forward Dynamic Program-
ming method studied by [BD07] and [GT14]. Instead of solving at each time step two
regression problems, our approach allows to consider only a single minimization as in
the DBDP scheme. Compared to the latter, the multi-step consideration is expected
to provide better accuracy by reducing the propagation of errors in the backward in-
duction as it can be shown comparing the error estimated in [GPW20] and [HPW20]
both at theoretical and numerical level.

3.2.2 Case of fully non-linear PDEs

In this paragraph, we consider fully non-linear PDEs in the form{
∂tu+ µ ·Dxu+ 1

2 Tr(σσᵀD2
xu) = F (·, ·, u,Dxu,D

2
xu) on [0, T)× Rd

u(T, ·) = g on Rd,
(3.5)

For this purpose, we introduce a forward diffusion process X in Rd as in (3.2), and associated
to the linear part L of the differential operator in the l.h.s. of the PDE (3.5). Since the
function F contains the dependence both on the gradient Dxu and the Hessian D2

xu, we
can shift the linear differential operator (left hand side) of the PDE (3.5) into the function
F . However, in practice, this linear differential operator associated to a diffusion process X
is used for training simulations in SGD of machine learning schemes. We refer to Section
3.1 in [PWG19] for a discussion on the choice of the parameters µ, σ. In the sequel, we
assume for simplicity that µ = 0, and σ is a constant invertible matrix.

Let us derive formally a BSDE representation for the nonlinear PDE (3.5) on which we
shall rely for designing our machine learning algorithm. Assuming that the solution u to
this PDE is smooth C2, and denoting by (Y,Z,Γ) the triple of F-adapted processes valued
in R× Rd × Sd, defined by

Yt = u(t,Xt), Zt = Dxu(t,Xt), Γt = D2
xu(t,Xt), 0 ≤ t ≤ T,

a direct application of Itô’s formula to u(t,Xt), yields that (Y, Z,Γ) satisfies the backward
equation

Yt = g(XT)−
∫ T

t
F (s,Xs, Ys, Zs,Γs)ds−

∫ T

t
Zᵀ
sσdWs, 0 ≤ t ≤ T. (3.6)

Compared to the case of semi-linear PDE of the form (3.1), the key point is the ap-
proximation/learning of the Hessian matrix D2

xu, hence of the Γ-component of the BSDE
(3.6). We present below different approaches for the approximation of the Γ-component.

9

• Deep 2BSDE scheme [BEJ19].

This scheme relies on the 2BSDE representation of [Che+07]{
Yt = g(XT)−

∫ T
t F (s,Xs, Ys, Zs,Γs)ds−

∫ T
t Zᵀ

sσdWs,

Zt = Dxg(XT)−
∫ T
t Asds−

∫ T
t ΓsσdWs, 0 ≤ t ≤ T,

(3.7)

with At = LDxu(t,Xt). The idea is to adapt the Deep BSDE algorithm to the fully non-
linear case. Again, we treat the backward system (3.7) as a forward equation by appro-
ximating the initial conditions Y0, Z0 and the A,Γ components of the 2BSDE at each time
by networks functions taking the forward process X as input, and aiming to match the
terminal condition.

• Second order DBDP (2DBDP) [PWG19].

The basic idea is to adapt the DBDP scheme by approximating the solution u and its
gradient Dxu by network functions U and Z, and then Hessian D2

xu by the automatic
differentiation DxZ of the network function Z (or double automatic differentiation D2

xU
of the network function U), via a learning approach relying on the time discretization of
the BSDE (3.6). It turns out that such method approximates poorly Γ inducing instabil-
ity of the scheme: indeed, while the unique pair solution (Y,Z) to classical BSDEs (3.2)
completely characterizes the solution to the related semilinear PDE and its gradient, the
relation (3.6) does not allow to characterize directly the triple (Y,Z,Γ). This approach was
proposed and tested in [PWG19] where the automatic differentiation is performed on the
previous value of Z with a truncation T which allows to reduce instabilities.

• Second Order Multistep schemes.

To overcome the instability in the approximation of the Γ-component in the Second order
DBDP scheme, we propose a finer approach based on a suitable probabilistic representation
of the Γ-component for learning accurately the Hessian function D2

xu by using also Malliavin
weights. We start from the training simulations of the forward process (Xi)i on the uniform
grid π = {ti = i|π|, i = 0, . . . , N}, |π| = T/N , and notice that Xi = Xti , i = 0, . . . , N as
µ and σ are constants. The approximation of the value function u and its gradient Dxu is
learnt simultaneously on the grid π but requires in addition a preliminary approximation
of the Hessian D2

xu in the fully non-linear case. This will be performed by regression-based
machine learning scheme on a subgrid π̂ ⊂ π, which allows to reduce the computational
time of the algorithm.

We propose three versions of second order MDBDP based on different representations
of the Hessian function. For the second and the third one, we need to introduce a subgrid
π̂ = {tκ̂`, ` = 0, . . . , N̂} ⊂ π, of modulus |π̂| = κ̂|π|, for some κ̂ ∈ N∗, with N = κ̂N̂ .

- Version 1: Extending the methodology introduced in [PWG19], the current Γ-component
at step i can be estimated by automatic differentiation of the Z-component at the pre-
vious step while the other Γ-components are estimated by automatic differentiation
of their associated Z-components:

Γi ' DxZi+1, Γj ' DxZj , j > i.

- Version 2: The time discretization of (3.6) on the time grid π̂, where (Y π̂
` , Z

π̂
` ,Γ

π̂
`)

denotes an approximation of the triple(
u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), D

2
xu(tκ̂`, Xκ̂`)

)
, ` = 0, . . . , N̂ ,

10

leads to the standard representation formula for the Z component:

Z π̂` = Eκ̂`
[
Y π̂
`+1Ĥ

1
`

]
, ` = 0, . . . , N̂ − 1,

(recall that Eκ̂` denotes the conditional expectation w.r.t. Ftκ̂`), with the Malliavin
weight of order one:

Ĥ1
` = (σᵀ)−1 ∆̂W`

|π̂|
, ∆̂W` := Wtκ̂(`+1)

−Wtκ̂` .

By direct differentiation, we then obtain an approximation of the Γ component as

Γπ̂` ' Eκ̂`
[
Dxu(tκ̂(`+1), Xκ̂(`+1))Ĥ

1
`

]
.

Moreover, by introducing the antithetic variable

X̂κ̂(`+1) = Xκ̂` − σ∆̂W`,

we then propose the following regression estimator of D2
xu on the grid π̂ for ` =

0, . . . , N̂ − 1 with{
Γ̂(1)(tκ̂N̂ , Xκ̂N̂) = D2g(Xκ̂N̂)

Γ̂(1)(tκ̂`, Xκ̂`) = Eκ̂`
[
Dxu(tκ̂(`+1),Xκ̂(`+1))−Dxu(tκ̂(`+1),X̂κ̂(`+1))

2 Ĥ1
`

]
.

- Version 3: Alternatively, the time discretization of (3.6) on π̂ yields the iterated
conditional expectation relation:

Y π̂
` = Eκ̂`

[
g(Xκ̂N̂)− |π̂|

N̂−1∑
m=`

F (tκ̂m, Xκ̂m, Y
π̂
m, Z

π̂
m,Γ

π̂
m)
]
, ` = 0, . . . , N̂ ,

By (double) integration by parts, and using Malliavin weights on the Gaussian vector
X, we obtain a multistep approximation of the Γ-component:

Γπ̂` ' Eκ̂`
[
g(Xκ̂N̂)Ĥ2

`,N̂
− |π̂|

N̂−1∑
m=`+1

F (tκ̂m, Xκ̂m, Y
π̂
m, Z

π̂
m,Γ

π̂
m)Ĥ2

`,m

]
,

for ` = 0, . . . , N̂ , where

Ĥ2
`,m = (σᵀ)−1 ∆̂Wm

` (∆̂Wm
`)ᵀ − (m− `)|π̂|Id

(m− `)2|π̂|2
σ−1, ∆̂Wm

` := Wtκ̂m −Wtκ̂` .

By introducing again the antithetic variables

X̂κ̂m = Xκ̂` − σ∆̂Wm
` , m = `+ 1, . . . , N̂ ,

we then propose another regression estimator of D2
xu on the grid π̂ with

Γ̂(2)(tκ̂`, Xκ̂`)

= Eκ̂`
[g(Xκ̂N̂) + g(X̂κ̂N̂)

2
Ĥ2
`,N̂

− |π̂|
2

N̂−1∑
m=`+1

(
F
(
tκ̂m, Xκ̂m, u(tκ̂m, Xκ̂m), Dxu(tκ̂m, Xκ̂m), Γ̂(2)(tκ̂m, Xκ̂m)

)
+ F

(
tκ̂m, X̂κ̂m, u(tκ̂m, X̂κ̂m), Dxu(tκ̂m, X̂κ̂m), Γ̂(2)(tκ̂m, X̂κ̂m)

)
− 2F

(
tκ̂`, Xκ̂`, u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), Γ̂

(2)(tκ̂`, Xκ̂`)
))
Ĥ2
`,m

]
,

11

for ` = 0, . . . , N − 1, and Γ̂(2)(tκ̂N̂ , Xκ̂N̂) = D2g(Xκ̂N̂). The correction term −2F

evaluated at time tκ̂` in Γ̂(2)(tκ̂`, Xκ̂`) does not add bias since

Eκ̂`
[
F
(
tκ̂`, Xκ̂`, u(tκ̂`, Xκ̂`), Dxu(tκ̂`, Xκ̂`), Γ̂

(2)(tκ̂`, Xκ̂`)
)
Ĥ2
`,m

]
= 0,

for all m = ` + 1, . . . , N̂ − 1, and by Taylor expansion of F at second order, we see
that it allows together with the antithetic variable to control the variance when the
time step goes to zero.

Remark 3.1. In the case where the function g has some regularity property, one can avoid
the integration by parts at the terminal data component in the above expression of Γ̂(2).

For example, when g is C1,
g(Xκ̂N̂)+g(X̂κ̂N̂)

2 Ĥ2
`,N̂

is alternatively replaced in Γ̂(2) expression

by (Dg(Xκ̂N̂)−Dg(X̂κ̂N̂))Ĥ1
`,N̂

, while when it is C2 it is replaced by D2g(Xκ̂N̂). �

Remark 3.2. We point out that in our machine learning setting for the versions 2 and 3
of the scheme, we only solve two optimization problems by time step instead of three as in
[FTW11]. One optimization is dedicated to the computation of the Γ component but the
U and Z components are simultaneously learned by the algorithm. �

We can now describe the three versions of second order MDBDP schemes for the nu-
merical resolution of the fully non-linear PDE (3.5). We emphasize that these schemes do
not require a priori that the solution to the PDE is smooth.

Algorithm 3: Second order Explicit Multistep DBDP (2EMDBDP)

for i = N − 1, . . . , 0 do

If i = N − 1, update Γ̂i = D2g, otherwise Γ̂i = DxẐi+1, Γ̂j = DxẐj , j ∈ Ji+ 1, N − 1K,
/* Update Hessian */

Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss function at
time ti:

JMB
i (U ,Z)

= E
∣∣∣g(XN)− |π|

N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂j(Xj))

−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj − U(Xi)

− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂i(Xi+1))−Z(Xi) · σ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update the

function and its derivative */

end

The proposed algorithms 3, 4, 5 are in backward iteration, and involve one optimization
at each step. Moreover, as the computation of Γ requires a further derivation for Algorithms
4 and 5, we may expect that the additional propagation error varies according to |π||π̂| = 1

κ̂ ,
and thus the convergence of the scheme when κ̂ is large. In the numerical implementation,
the expectation in the loss functions are replaced by empirical average and the minimization
over network functions is performed by stochastic gradient descent.

12

Algorithm 4: Second order Multistep DBDP (2MDBDP)

for ` = N̂ , . . . , 0 do

If ` = N̂ , update Γ̂` = D2g, otherwise minimize over network functions Γ : Rd
→ Sd the loss function

J 1,M
` (Γ) = E

∣∣∣Γ(Xκ̂`)−
Ẑκ̂(`+1)(Xκ̂(`+1))− Ẑκ̂(`+1)(X̂κ̂(`+1))

2
Ĥ1
`

∣∣∣2.
Update Γ̂` the solution to this minimization problem /* Update Hessian */

for k = κ̂− 1, . . . , 0 do
Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss
function at time ti, i = (`− 1)κ̂+ k:

JMB
i (U ,Z)

= E
∣∣∣g(XN)− |π|

N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂`(Xj))

−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj − U(Xi)

− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂`(Xi))−Z(Xi) · σ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update

the function and its derivative */

end

end

13

Algorithm 5: Second order Multistep Malliavin DBDP (2M2DBDP)

for ` = N̂ , . . . , 0 do

If ` = N̂ , update Γ̂` = D2g, otherwise minimize over network functions Γ : Rd
→ Sd the loss function

J 2,M
` (Γ)

= E
∣∣∣Γ(Xκ̂`)−

D2g(Xκ̂N̂) +D2g(X̂κ̂N̂)

2

+
|π̂|
2

N̂−1∑
m=`+1

(
F
(
tκ̂m, Xκ̂m, Ûκ̂m(Xκ̂m), Ẑκ̂m(Xκ̂m), Γ̂m(Xκ̂m)

)
+ F

(
tκ̂m, X̂κ̂m, Ûκ̂m(X̂κ̂m), Ẑκ̂m(X̂κ̂m), Γ̂m(X̂κ̂m)

)
− 2F

(
tκ̂`, X̂κ̂`, Ûκ̂`(X̂κ̂`), Ẑκ̂`(X̂κ̂`), Γ̂`(X̂κ̂`)

))
Ĥ2
`,m

∣∣∣2.
Update Γ̂` the solution to this minimization problem /* Update Hessian */

for k = κ̂− 1, . . . , 0 do
Minimize over network functions U : Rd → R, and Z : Rd → Rd the loss
function at time ti, i = (`− 1)κ̂+ k:

JMB
i (U ,Z)

= E
∣∣∣g(XN)− |π|

N−1∑
j=i+1

F (tj , Xj , Ûj(Xj), Ẑj(Xj), Γ̂`(Xj))

−
N−1∑
j=i+1

Ẑj(Xj)
ᵀσ∆Wj − U(Xi)

− |π|F (ti, Xi,U(Xi),Z(Xi), Γ̂`(Xi))−Z(Xi) · σ∆Wi

∣∣∣2.
Update (Ûi, Ẑi) as the solution to this minimization problem /* Update

the function and its derivative */

end

end

14

4 Numerical applications

We test our different algorithms on various examples and by varying the state space di-
mension. If not stated otherwise, we choose the maturity T = 1. In each example we use
an architecture composed of 2 hidden layers with d + 10 neurons. We apply Adam gradi-
ent descent [KB14] with a decreasing learning rate, using the Tensorflow library [Aba+16].
Each numerical experiment is conducted using a node composed of 2 Intel® Xeon® Gold
5122 Processors, 192 Go of RAM, and 2 GPU nVidia® Tesla® V100 16Go. We use a
batch size of 1000.

4.1 Numerical tests on credit valuation adjustment pricing

We consider an example of model from [HL17] for the pricing of CVA in a d-dimensional
Black-Scholes model

dXt = σXt dWt, X0 = 1d

with σ > 0, given by the nonlinear PDE{
∂tu+ σ2

2 Tr(x>D2
xu x) + β(u+ − u) = 0 on [0, T]× Rd

u(T, x) = |
∑d

i=1 xi − d| − 0.1 on Rd

with a straddle type payoff. We compare our results with the DBDP scheme [HPW20]
with the ones from the Deep BSDE solver [HJE17]. The results in Table 1 are averaged
over 10 runs and the standard deviation is written in parentheses. We use ReLu activation
functions.

Dimension d DBDP [HPW20] DBSDE [HJE17]

1 0.05950 (0.000257) 0.05949 (0.000264)

3 0.17797 (0.000421) 0.17807 (0.000288)

5 0.25956 (0.000467) 0.25984 (0.000331)

10 0.40930 (0.000623) 0.40886 (0.000196)

15 0.52353 (0.000591) 0.52389 (0.000551)

30 0.78239 (0.000832) 0.78231 (0.001266)

Table 1: CVA value with X0 = 1, T = 1, β = 0.03, σ = 0.2 and 50 time steps.

We observe in Table 1 that both algorithms give very close results and are able to solve
the nonlinear pricing problem in high dimension d. The variance of the results is quite small
and similar from one to another but increases with the dimension. The same conclusions
arise when solving the PDE for the larger maturity T = 2.

4.2 Portfolio allocation in stochastic volatility models

We consider several examples from [PWG19] that we solve with Algorithms 3 (2EMDBDP),
4 (2MDBDP), and 5 (2M2DBDP) designed in this paper. Notice that some comparison tests
with the 2DBSDE scheme [BEJ19] have been already done in [PWG19]. For a resolution
with N = 120, N̂ = 30, the execution of our multitep algorithms takes between 10000 s.
and 30000 s. (depending on the dimension) with a number of gradient descent iterations
fixed at 4000 at each time step except 80000 at the first one. We use tanh as activation
function.

15

We consider a portfolio selection problem formulated as follows. There are n risky assets
of uncorrelated price process P = (P 1, . . . , Pn) with dynamics governed by

dP it = P itσ(V i
t)
[
λi(V

i
t)dt+ dW i

t

]
, i = 1, . . . , n,

where W = (W 1, . . . ,Wn) is a n-dimensional Brownian motion, λ = (λ1, . . . , λn) is the
market price of risk of the assets, σ is a positive function (e.g. σ(v) = ev corresponding to
the Scott model), and V = (V 1, . . . , V n) is the volatility factor modeled by an Ornstein-
Uhlenbeck (O.U.) process

dV i
t = κi[θi − V i

t]dt+ νidB
i
t, i = 1, . . . , n,

with κi, θi, νi > 0, and B = (B1, . . . , Bn) a n-dimensional Brownian motion, s.t. d <
W i, Bj > = δijρijdt, with ρi := ρii ∈ (−1, 1). An agent can invest at any time an amount
αt = (α1

t , . . . , α
n
t) in the stocks, which generates a wealth process X = Xα governed by

dXt =
n∑
i=1

αitσ(V i
t)
[
λi(V

i
t)dt+ dW i

t

]
.

The objective of the agent is to maximize her expected utility from terminal wealth:

E
[
U(XαT)] ← maximize over α

It is well-known that the solution to this problem can be characterized by the dynamic
programming method (see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for
the value function on [0, T)× R× Rn:

∂tu+
n∑
i=1

[
κi(θi − vi)∂viu+

1

2
ν2
i ∂

2
viu
]

= 1
2R(v) (∂xu)2

∂2xxu
+
∑n

i=1

[
ρiλi(vi)νi

∂xu∂2xviu

∂2xxu
+ 1

2ρ
2
i ν

2
i

(∂2xviu)2

∂2xxu

]
u(T, x, v) = U(x), x ∈ R, v ∈ Rn,

with a Sharpe ratio R(v) := |λ(v)|2, for v = (v1, . . . , vn) ∈ (0,∞)n. The optimal portfolio
strategy is then given in feedback form by α∗t = â(t,X ∗t , Vt), where â = (â1, . . . , ân) is given
by

âi(t, x, v)

= − 1

σ(vi)

(
λi(vi)

∂xu

∂2
xxu

+ ρiνi
∂2

xviu

∂2
xxu

)
, (t, x, v = (v1, . . . , vn)) ∈ [0, T)× R× Rn,

for i = 1, . . . , n.

We shall test this example when the utility function U is of exponential form: U(x) =
− exp(−ηx), with η > 0, and under different cases for which explicit solutions are available.
We refer to [PWG19] where these solutions are described.

(1) Merton problem. This corresponds to a degenerate case where the factor V , hence
the volatility σ and the risk premium λ are constant (vi = θi, νi = 0). We train our
algorithms with the forward process

Xk+1 = Xk + |λ|∆tk + ∆Wk, k = 0, . . . , N, X0 = x0.

16

(2) One risky asset: n = 1. We train our algorithms with the forward process

Xk+1 = Xk + λ(θ)∆tk + ∆Wk, k = 0, . . . , N − 1, X0 = x0

Vk+1 = Vk + ν∆Bk, k = 0, . . . , N − 1, V0 = θ.

We test our algorithm with λ(v) = λv, λ > 0, for which we have an explicit solution.

(3) No leverage effect, i.e., ρi = 0, i = 1, . . . , n. We train with the forward process

Xk+1 = Xk +
n∑
i=1

λi(θi)∆tk + ∆Wk, k = 0, . . . , N − 1, X0 = x0

V i
k+1 = V i

k + νi∆B
i
k, k = 0, . . . , N − 1, V i

0 = θi.

We test our algorithm with λi(v) = λivi, λi > 0, i = 1, . . . , n, v = (v1, . . . , vn), for
which we have an explicit solution.

Merton Problem. We take η = 0.5, λ = 0.6, N = 120, N̂ = 30, T = 1, x0 = 1. We
plot in Figure 1 the neural networks approximation of u,Dxu,D

2
xu, and the feedback control

â (for one asset) computed from our different algorithms, together with their analytic values
(in orange). As also reported in the estimates of Table 2, the multistep algorithms improve
significantly the results obtained in [PWG19], where the estimation of the Hessian is not
really accurate (see blue curve in Figure 1).

Average Standard deviation Relative error (%)

[PWG19] -0.50561 0.00029 0.20

2EMDBDP -0.50673 0.00019 0.022

2MDBDP -0.50647 0.00033 0.030

2M2DBDP -0.50644 0.00022 0.035

Table 2: Estimate of u(0, 1.) in the Merton problem with N = 120, N̂ = 30. Average
and standard deviation observed over 10 independent runs are reported. The theoretical
solution is -0.50662.

17

1 0 1 2 3
x

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

u(
x)

U [PWG19]
U 2EMDBDP
U 2MDBDP
U 2M2DBDP
U Analytic

0.7 0.8 0.9 1.0 1.1 1.2 1.3
x

0.600

0.575

0.550

0.525

0.500

0.475

0.450

0.425

u(
x)

U [PWG19]
U 2EMDBDP
U 2MDBDP
U 2M2DBDP
U Analytic

1 0 1 2 3
x

0.2

0.4

0.6

0.8

1.0

D
xu

(x
)

Z [PWG19]
Z 2EMDBDP
Z 2MDBDP
Z 2M2DBDP
Z Analytic

0.7 0.8 0.9 1.0 1.1 1.2 1.3
x

0.22

0.24

0.26

0.28

0.30

D
xu

(x
)

Z [PWG19]
Z 2EMDBDP
Z 2MDBDP
Z 2M2DBDP
Z Analytic

1 0 1 2 3
x

0.35

0.30

0.25

0.20

0.15

0.10

0.05

D
2 x
u(

x)

Gamma [PWG19]
Gamma 2EMDBDP
Gamma 2MDBDP
Gamma 2M2DBDP
Gamma Analytic

0.7 0.8 0.9 1.0 1.1 1.2 1.3
x

0.15

0.14

0.13

0.12

0.11

D
2 x
u(

x)

Gamma [PWG19]
Gamma 2EMDBDP
Gamma 2MDBDP
Gamma 2M2DBDP
Gamma Analytic

1 0 1 2 3
x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

(x
)

Control [PWG19]
Control 2EMDBDP
Control 2MDBDP
Control 2M2DBDP
Control Analytic

0.7 0.8 0.9 1.0 1.1 1.2 1.3
x

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(x
)

Control [PWG19]
Control 2EMDBDP
Control 2MDBDP
Control 2M2DBDP
Control Analytic

Figure 1: Estimates of u, Dxu, D2
xu and of the optimal control α on the Merton problem

with N = 120, N̂ = 30. We take x0 = 1., at the left t = 0.5042, and at the right t = 0.0084.

One asset n = 1 in Scott volatility model. We take η = 0.5, λ = 1.5, θ = 0.4,
ν = 0.4, κ = 1, ρ = −0.7, T = 1, x0 = 1. For all tests we choose N = 120, N̂ = 30

18

and σ(v) = ev. We report in Table 3 the relative error between the neural networks
approximation of u,Dxu,D

2
xu computed from our different algorithms and their analytic

values. It turns out that the multistep extension of [PWG19], namely 2EMDBDP scheme,
yields a very accurate approximation result, much better than the other algorithms, with
also a reduction of the standard deviation.

Average Standard deviation Relative error (%)

[PWG19] -0.53431 0.00070 0.34

2EMDBDP -0.53613 0.00045 0.007

2MDBDP -0.53772 0.00046 0.304

2M2DBDP -0.53205 0.00050 0.755

Table 3: Estimate of u(0, 1, θ) on the One Asset problem with stochastic volatility (d = 2)
and N = 120, N̂ = 30. Average and standard deviation observed over 10 independent runs
are reported. The exact solution is −0.53609477.

No Leverage in Scott model. In the case with one asset we take η = 0.5, λ = 1.5,
θ = 0.4, ν = 0.2, κ = 1, T = 1, x0 = 1. For all tests we choose N = 120, N̂ = 30
and σ(v) = ev. We report in Table 4 the relative error between the neural networks
approximation of u,Dxu,D

2
xu computed from our different algorithms and their analytic

values. All the algorithms yield quite accurate results, but compared to the case with
correlation in Table 3, it appears here that the best performance in terms of precision is
achieved by Algorithm 2M2DBDP.

Average Standard deviation Relative error (%)

[PWG19] -0.49980 0.00073 0.35

2EMDBDP -0.50400 0.00229 0.485

2MDBDP -0.50149 0.00024 0.015

2M2DBDP -0.50157 0.00036 0.001

Table 4: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 1
asset (d = 2) and N = 120, N̂ = 30. Average and standard deviation observed over 10
independent runs are reported. The exact solution is −0.501566.

In the case with four assets (n = 4, d = 5), we take η = 0.5,
λ =

(
1.5 1.1 2. 0.8

)
, θ =

(
0.1 0.2 0.3 0.4

)
, ν =

(
0.2 0.15 0.25 0.31

)
, κ =(

1. 0.8 1.1 1.3
)
. The results are reported in Table 5. We observe that the algorithm

in [PWG19] provides a not so accurate outcome, while its multistep version (2EMDBDP
scheme) divides by 10 the relative error and the standard deviation.

19

Average Standard deviation Relative error (%)

[PWG19] -0.43768 0.00137 0.92

2EMDBDP -0.4401 0.00051 0.239

2MDBDP -0.43796 0.00098 0.861

2M2DBDP -0.44831 0.00566 1.481

Table 5: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 4
assets (d = 5) and N = 120, N̂ = 30. Average and standard deviation observed over 10
independent runs are reported. The theoretical solution is -0.44176462.

In the case with nine assets (n = 9, d = 10), we take η = 0.5,
λ =

(
1.5 1.1 2. 0.8 0.5 1.7 0.9 1. 0.9

)
,

θ =
(
0.1 0.2 0.3 0.4 0.25 0.15 0.18 0.08 0.91

)
,

ν =
(
0.2 0.15 0.25 0.31 0.4 0.35 0.22 0.4 0.15

)
,

κ =
(
1. 0.8 1.1 1.3 0.95 0.99 1.02 1.06 1.6

)
. The results are reported in Table

6. The approximation is less accurate than in lower dimension, but we observe again that
compared to one-step scheme in [PWG19] , the multistep versions improve significantly the
standard deviation of the result. However the best performance in precision is obtained
here by the [PWG19] scheme.

N̂ Average S.d. Relative error (%)

[PWG19] -0.27920 0.05734 1.49

2EMDBDP -0.26631 0.00283 3.19

2MDBDP 30 -0.28979 0.00559 5.34

2MDBDP 60 -0.28549 0.00948 3.78

2MDBDP 120 -0.28300 0.01129 2.87

2M2DBDP 30 NC NC NC

Table 6: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 9
assets (d = 10) and N = 120. Average and standard deviation (S.d.) observed over 10
independent runs are reported. The theoretical solution is -0.27509173.

5 Extensions and perspectives

• Solving mean-field control and mean-field games through McKean-Vlasov
FBSDEs.

These methods solve the optimality conditions for mean-field problems through the stochas-
tic Pontryagin principle from [CD18]. The law of the solution influences the coupled FB-
SDEs dynamics so they are of McKean-Vlasov type. Variations around the Deep BSDE
method [HJE17] are used to solve such a system by [CL19], [FZ20]. [GMW19] uses the
Merged method from [CWNMW19] and solves several numerical examples in dimension 10
by introducing an efficient law estimation technique. [CL19] also proposes another method
dedicated to mean field control to directly tackle the optimization problem with a neural
network as the control in the stochastic dynamics.

• Solving mean-field control through master Bellman equation and symmetric
neural networks.

20

[Ger+20] solves the master Bellman equation arising from dynamic programming principle
applied to mean-field control problems (see [PW17]). The paper approximates the value
function evaluated on the empirical measure stemming from particles simulation of a train-
ing forward process. It provides a rate for the particle method convergence. The symmetry
between iid particles is enforced by optimizing over exchangeable high-dimensional neural
networks, invariant by permutation of their inputs.

• Reinforcement Learning for mean-field control and mean-field games [CLT19;
AKS19; AFL20; Gu+20; Guo+20].

Some works focus on similar problems but with unknown dynamics. Thus they rely on
trajectories sampled from a simulator and reinforcement learnings– especially Q-learning–
to estimate the state action value function and optimal control without a model. The idea
is to optimize a neural network by relying on a memory of past state action transitions
used to train the network in order for it to verify the Bellman equation on samples from
memory replay.

• Machine learning framework for solving high-dimensional mean field game
and mean field control problems [Rut+20]

This paper focuses on potential mean field games, in which the cost functions depending
on the law can be written as the linear functional derivative of a function with respect to a
measure. A Lagrangian method with Deep Galerkin type penalization is used. In this case
the potential is approached by a neural network and solving mean-field games amounts to
solve an unconstrained optimization problem.

• Deep quantum neural networks [Sak20]

We briefly mention this work studying the use of deep quantum neural networks which
exploit the quantum superposition properties by replacing bits by “qubits”. Promising
results are obtained when using these networks for regression in financial contexts such
as implied volatility estimation. Future works may study the application of such neural
networks to control problems and PDEs.

• Path signature for path-dependent PDE [SVSS20]

This work extends previously developed methods for solving state-dependent PDEs to the
linear path-dependent setting coming for instance from the pricing and hedging of path-
dependent options. A path-dependent Feynman-Kac representation is numerically com-
puted through a global minimization over neural networks. The authors show that using
LSTM networks taking the forward process’ path signatures (coming from the rough paths
literature) as input yields better results than taking the discretized path as input of a
feedforward network.

References

[AA+18] A. Al-Aradi et al. “Solving Nonlinear and High-Dimensional Partial Differ-
ential Equations via Deep Learning”. In: arXiv:1811.08782 (2018).

[Aba+16] M. Abadi et al. “TensorFlow: A system for large-scale machine learning”.
In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). 2016, pp. 265–283.

21

[AFL20] A. Angiuli, J.-P. Fouque, and M. Laurière. “Unified Reinforcement Q-
Learning for Mean Field Game and Control Problems”. In: arXiv:2006.13912
(2020).

[AKS19] B. Anahtarcı, C. Deha Karıksız, and N. Saldi. “Fitted Q-Learning in Mean-
field Games”. In: arXiv:1912.13309 (2019).

[Bac+19] A. Bachouch et al. “Deep neural networks algorithms for stochastic con-
trol problems on finite horizon: numerical computations”. In: Methodol.
Comput. Appl. Probab, to appear (2019).

[BCJ19] S. Becker, P. Cheridito, and A. Jentzen. “Deep optimal stopping”. In: J.
Mach. Learn. Res. 20 (2019), pp. 1–25.

[BD07] C. Bender and R. Denk. “A forward scheme for backward SDEs”. In:
Stochastic Process. Appl. 117.12 (2007), pp. 1793 –1812.

[Bec+19a] C. Beck et al. “Deep splitting method for parabolic PDEs”. In: arXiv:1907.03452
(July 2019).

[Bec+19b] S. Becker et al. “Solving high-dimensional optimal stopping problems using
deep learning”. In: arXiv:1908.01602 (2019).

[Bec+20] C. Beck et al. “An overview on deep learning-based approximation methods
for partial differential equations”. In: arXiv:2012.12348 (2020).

[BEJ19] C. Beck, W. E, and A. Jentzen. “Machine Learning Approximation Algo-
rithms for High-Dimensional Fully Nonlinear Partial Differential Equations
and Second-order Backward Stochastic Differential Equations”. In: J. Non-
linear Sci. 29.4 (2019), pp. 1563–1619.

[BT04] B. Bouchard and N. Touzi. “Discrete-time approximation and Monte-Carlo
simulation of backward stochastic differential equations”. In: Stochastic
Process. Appl. 111.2 (2004), pp. 175 –206.

[CD18] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games
with Applications vol I. and II. Vol. 83. Probability Theory and Stochastic
Modelling. Springer, 2018.

[Che+07] P. Cheridito et al. “Second-order backward stochastic differential equations
and fully nonlinear parabolic PDEs”. In: Comm. Pure Appl. Math. 60.7
(2007), pp. 1081–1110.

[CL19] R. Carmona and M. Laurière. “Convergence analysis of machine learning
algorithms for the numerical solution of mean-field control and games: II
The finite horizon case”. In: arXiv:1908.01613 (2019).

[CLT19] R. Carmona, M. Laurière, and Z. Tan. “Model-Free Mean-Field Rein-
forcement Learning: Mean-Field MDP and Mean-Field Q-Learning”. In:
arXiv:1910.12802 (2019).

[CWNMW19] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine Learning for Semi
Linear PDEs”. In: J. Sci. Comput. 79 (2019), pp. 1667–1712.

[DPT94] M.W.M. Dissanayake and N. Phan-Thien. “Neural network-based approx-
imations for solving partial differential equations”. In: Commun. Numer.
Methods Eng. 10.3 (1994), pp. 195–201.

22

[EHJ17] W. E, J. Han, and A. Jentzen. “Deep Learning-Based numerical methods
for high dimensional parabolic partial differential equations and backward
stochastic differential equations”. In: Commun. Math. Stat. 5.4 (2017),
pp. 349–380.

[EY18] W. E and B. Yu. “The Deep Ritz Method: A Deep Learning-Based Nu-
merical Algorithm for Solving Variational Problems”. In: Commun. Math.
Stat. 6 (2018), pp. 1–12.

[FTT19] M. Fujii, A. Takahashi, and M. Takahashi. “Asymptotic expansion as prior
knowledge in deep learning method for high dimensional BSDEs”. In: Asia
Pacific Financial Markets 26.3 (2019), pp. 391–408.

[FTW11] A. Fahim, N. Touzi, and X. Warin. “A probabilistic numerical method for
fully nonlinear parabolic PDEs”. In: Ann. Appl. Probab. 21.4 (Aug. 2011),
pp. 1322–1364.

[FZ20] J-.P. Fouque and Z. Zhang. “Deep Learning Methods for Mean Field Con-
trol Problems with Delay”. In: Frontiers in Applied Mathematics and Statis-
tics 6 (2020).

[Ger+20] M. Germain et al. “Solving mean-field PDEs with symmetric neural net-
works”. In: in preparation (2020).

[GLW05] E. Gobet, J-P. Lemor, and X. Warin. “A regression-based Monte Carlo
method to solve backward stochastic differential equations”. In: Ann. Appl.
Probab. 15.3 (2005), pp. 2172–2202.

[GM05] E. Gobet and R. Munos. “Sensitivity analysis using Itô-Malliavin calculus
and martingales, and application to stochastic optimal control”. In: SIAM
J. Control Optim. 43.5 (2005), pp. 1676–1713.

[GMW19] M. Germain, J. Mikael, and X. Warin. “Numerical resolution of McKean-
Vlasov FBSDEs using neural networks”. In: arXiv:1909.12678 (2019).

[GPR20] A. Gnoatto, A. Picarelli, and C. Reisinger. “Deep XVA solver-a neural
network based counterparty credit risk management framework”. In: arXiv:
2005.02633 (2020).

[GPW20] M. Germain, H. Pham, and X. Warin. “Deep backward multistep schemes
for nonlinear PDEs and approximation error analysis”. In: arXiv:2006.01496v1
(2020).

[Gro+18] P. Grohs et al. “A proof that rectified deep neural networks overcome the
curse of dimensionality in the numerical approximation of Black-Scholes
partial differential equation”. In: to appear in Memoirs of the American
mathematical society (2018).

[GT14] E. Gobet and P. Turkedjiev. “Linear regression MDP scheme for discrete
backward stochastic differential equations under general conditions”. In:
Math. Comp. 85 (Mar. 2014).

[Gu+20] H. Gu et al. “Q-Learning Algorithm for Mean-Field Controls, with Con-
vergence and Complexity Analysis”. In: arXiv:2002.04131 (2020).

[Guo+20] X. Guo et al. “A General Framework for Learning Mean-Field Games”. In:
arXiv:2003.06069 (2020).

23

[GW20] K. Glau and L. Wunderlich. “The deep parametric PDE method: applica-
tion to option pricing”. In: arXiv:2012.06211 (2020).

[HE16] J. Han and W. E. “Deep learning approximation for stochastic control
problems”. In: Deep Reinforcement Learning Workshop (2016).

[HH21] J. Han and R. Hu. “Recurrent Neural Networks for Stochastic Control
Problems with Delay”. In: arXiv:2101.01385 (2021).

[HJE17] J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential
equations using deep learning”. In: Proc. Natl. Acad. Sci. USA 115 (2017).

[HL17] P. Henry-Labordere. “Deep Primal-Dual Algorithm for BSDEs: Applica-
tions of Machine Learning to CVA and IM”. In: SSRN: 3071506 (2017).

[HL20] J. Han and J. Long. “Convergence of the Deep BSDE Method for Coupled
FBSDEs”. In: Probab. Uncertain. Quant. Risk 5.1 (2020), pp. 1–33.

[HPW20] C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-
dimensional nonlinear PDEs”. In: Math. Comp. 89.324 (2020), pp. 1547–
1580.

[Hur+18] C. Huré et al. “Deep neural networks algorithms for stochastic control
problems on finite horizon: convergence analysis”. In: arXiv:1812.04300, to
appear in SIAM J. Numer. Anal. (2018).

[Hut+20] M. Hutzenthaler et al. “A proof that rectified deep neural networks over-
come the curse of dimensionality in the numerical approximation of semi-
linear heat equation”. In: SN partial differential equations and applications
1.10 (2020), pp. 1–34.

[Ji+20] S. Ji et al. “Three algorithms for solving high-dimensional fully coupled FB-
SDEs through deep learning”. In: Intelligent systemsn, IEEE 35.3 (2020),
pp. 71–84.

[JO19] A. Jacquier and M. Oumgari. “Deep curve-dependent PDEs for affine rough
volatility”. In: arXiv:1906.02551 (2019).

[KB14] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”.
In: Published as a conference paper at the 3rd International Conference for
Learning Representations, San Diego, 2015. 2014.

[KJY20] Y. Khoo, J.Lu, and L. Ying. “Solving parametric PDE problems with artifi-
cial neural networks”. In: European Journal of Applied Mathematics (2020),
pp. 1–15.

[KLW20] I. Kharroubi, T. Lim, and X. Warin. “Discretization and Machine Learning
Approximation of BSDEs with a Constraint on the Gains-Process”. In:
arXiv preprint arXiv:2002.02675 (2020).

[KSS20] S. Kremsner, A. Steinicke, and M. Szölgyenyi. “A deep neural network al-
gorithm for semilinear elliptic PDEs with applications in insurance math-
ematics”. In: arXiv:2010.15757 (2020).

[LXL19] J. Liang, Z. Xu, and P. Li. “Deep Learning-Based Least Square Forward-
Backward Stochastic Differential Equation Solver for High-Dimensional
Derivative Pricing”. In: arXiv:1907.10578 (2019).

24

[NR19] N. Nüskens and L. Richter. “Solving high-dimensional Hamilton-Jacobi-
Bellman PDEs using neural networks: perspective from the theory of con-
trolled diffusions and measures on path space”. In: arXiv:2005.05409 (2019).

[Pha09] H. Pham. Continuous-time Stochastic Control and Optimization with Fi-
nancial Applications. Vol. 61. SMAP. Springer, 2009.

[PP90] E. Pardoux and S. Peng. “Adapted solution of a backward stochastic dif-
ferential equation”. In: Systems & Control Letters 14.1 (1990), pp. 55 –61.
issn: 0167-6911.

[PW17] H. Pham and X. Wei. “Dynamic programming for optimal control of stochas-
tic McKean-Vlasov dynamics”. In: SIAM J. Control Optim. 55.2 (2017),
pp. 1069–1101.

[PWG19] H. Pham, X. Warin, and M. Germain. “Neural networks-based backward
scheme for fully nonlinear PDEs”. In: arXiv:1908.00412, SN Partial Dif-
ferential Equations and Applications, to appear (2019).

[Rai18] M. Raissi. “Forward-Backward Stochastic Neural Networks: Deep Learning
of High-dimensional Partial Differential Equations”. In: arXiv:1804.07010
(2018).

[RPK19] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations”. In: J. Comput.
Phys. 378 (2019), pp. 686 –707.

[Rut+20] L. Ruthotto et al. “A machine learning framework for solving high-dimensional
mean field game and mean field control problems”. In: Proc. Natl. Acad.
Sci. USA 117.17 (2020), pp. 9183–9193.

[Sak20] T. Sakuma. “Application of deep quantum neural networks to finance”. In:
arXiv:2011.07319v1 (2020).

[SS17] J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for
solving partial differential equations”. In: J. Comput. Phys. 375 (Aug.
2017).

[SVSS18] M. Sabate Vidales, D. Siska, and L. Szpruch. “Unbiased deep solvers for
parametric PDEs”. In: arXiv:1810.05094v2 (2018).

[SVSS20] M. Sabate Vidales, D. Siska, and L. Szpruch. “Solving path dependent
PDEs with LSTM networks and path signatures”. In: arXiv:2011.10630v1
(2020).

[SZ20] Y. Saporito and Z. Zhang. “PDGM: a neural network approach to solve
path-dependent partial differential equations”. In: arXiv:2003.02035 (2020).

[Zha04] J. Zhang. “A numerical scheme for BSDEs”. In: Ann. Appl. Probab. 14.1
(2004), pp. 459–488.

25

	1 Breakthrough in the resolution of high dimensional non-linear problems
	2 Deep learning approach for stochastic control
	2.1 Global approach
	2.2 Backward dynamic programming approach

	3 Machine learning algorithms for nonlinear PDEs
	3.1 Deterministic approach by neural networks
	3.2 Probabilistic approach by neural networks
	3.2.1 Semi-linear case
	3.2.2 Case of fully non-linear PDEs

	4 Numerical applications
	4.1 Numerical tests on credit valuation adjustment pricing
	4.2 Portfolio allocation in stochastic volatility models

	5 Extensions and perspectives

