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We introduce a mathematical framework that allows one to carry
out multiscalar and multigroup spatial exploratory analysis across
urban regions. By producing coefficients that integrate informa-
tion across all scales and that are normalized with respect to
theoretical maximally segregated configurations, this framework
provides a practical and powerful tool for the comparative empir-
ical analysis of urban segregation. We illustrate our method with
a study of ethnic mixing in the Los Angeles metropolitan area.
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Indices of spatial dissimilarities continue to be at the center
of studies of ethnic (and other forms of) segregation in large

cities (1–13). However, single-number indices as well as single-
scale indices cannot capture the complexity of spatial patterns
that arise in actual cities. Only recently, this has led to the
exploration of multiscalar approaches (14–23), including mul-
tidimensional, matrix indices (24). We present in this paper a
framework that allows one to carry out fully multiscalar analyses
of spatial dissimilarities and to define multiscalar null models.
This framework provides powerful visual representations of seg-
regation phenomena, and it has the capacity to characterize
segregation phenomena in a fashion very similar to what may be
perceived in actuality.

Our starting point is indeed the common experience that any
individual may make of segregation on multiple scales. Consider
a city, the population of which comprises k groups. Imagine that
an individual explores the city from her home, looking first at
her direct neighbors and then at the building next door, and so
on, in an ever-expanding visual scale. She will gradually meet the
whole city, but at every step, the proportions of the groups in the
population that she has encountered so far produce a sequence
that yields detailed information on the starting point, in mul-
tiscalar relationship with the whole city. We show in Methods
how this information may be extracted and analyzed mathe-
matically. In Ethnic Segregation in Los Angeles, we illustrate
our method by conducting a study on ethnic mixing in the Los
Angeles area.

Methods
We formalize the idea of exploring a city at every scale, from every possi-
ble starting point. This is a generalization of a method introduced in ref.
23: Given a starting point and an aggregation procedure (e.g., a nearest-
neighbor rule), one may sequentially aggregate all individuals in the city.
The aggregated sequence then encodes the order in which someone, start-
ing from that particular point, would encounter the city’s inhabitants.∗ If
to each individual in the city one associates a characteristic of interest (eth-
nicity, income, . . .), then one may also compute the statistical distribution
of that same characteristic at every “instant”—in terms of population—
of the aggregated sequence. At the first point of the sequence, one has
the distribution within the starting spatial unit, whereas at the final point,
one has the distribution of the entire city, since all individuals have been
aggregated. Instead of considering sequences of statistical distributions
computed on ever-larger aggregated populations, one may measure the dif-
ference between these and that of the reference population in the entire
city. Hence, for each starting point, we shall obtain a dissimilarity trajec-
tory that eventually converges to zero. Furthermore, the trajectories will
vary from one starting point to another, reflecting the fact that individu-
als have different experiences of the city according to where they live: The
way each trajectory converges to 0 encapsulates, for each starting point, all

information at every scale, from the most local one to the metropolitan one.
In this sense, the set of trajectories obtained starting from all points con-
stitutes a fingerprint of the city for the characteristic under consideration
(see Fig. 2).

We are interested here in a particular type of distributions, namely,
multinomial. That is, we suppose we have k groups in the population,
A1, A2, A3, . . . , Ak. To measure the difference between distributions, we use
the Kullback–Leibler (KL) divergence.

KL Trajectories. The KL divergence (25) between two multinomial distribu-
tions (q1, . . . , qk), (r1, . . . , rk) is defined as

dKL(q | r) =

k∑
i=1

qi ln
qi

ri
, [1]

with the convention 0 ln 0 = 0. The KL divergence quantifies the nonlinear
variation in entropy incurred when substituting distribution q for the ref-
erence one, r. Note that computing the KL divergence for each unit and
then averaging over all units (weighting each unit by its size) leads to
the H index (8)—which is the so-called KL information (26). One may plot
the value of the KL divergence for each spatial unit in a region. See, for
instance, Fig. 1, where we have done so for the Los Angeles area (at the
tract level).

Building upon the idea of trajectories previously introduced, we define,
for every starting point in the city, its KL trajectory. This is obtained by
computing the KL divergence between the distribution on the aggregated
population and the reference population. As the aggregation process relies
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Fig. 1. A map of the Los Angeles area with tracts colored according to
the KL divergence between their ethnic composition and that of the whole
region. Darker colors represent greater divergence. Values have been nor-
malized by their maximum, so that they scale from 0 to 1. (Four ethnic
groups are considered: Whites, Hispanics, Asians, and Blacks. Data are from
the 2010 US Census.)

on a spatial nearest-neighbor rule, a KL trajectory is moving from the most
local scale through to the whole region. It represents at each step the
divergence between the distribution in the population met so far and the
distribution in the full region. Mathematically, if qi,1:u is the statistical dis-
tribution of the population in the u closest units to i, the KL trajectory
associated to unit i is simply the sequence

dKL

(
qi,1:u

∣∣∣ r
)

, 1≤ u≤U, [2]

where r is the distribution in the full population and U is the number of
spatial units in the city.

By construction, every KL trajectory eventually converges to 0 (Fig. 2).
However, trajectories differ widely from one starting point to another. Some
converge quickly to 0, corresponding to areas where even relatively small
aggregates present a reasonably good picture of the whole city. Other
trajectories, on the contrary, converge very slowly to 0, corresponding to

Fig. 2. Trajectories for KL divergence, starting from some (10%) of the
tracts in the Los Angeles area. Abscissae are expressed in terms of the
aggregated population around the starting point. All trajectories con-
verge to 0, but some do so quickly, while others reach 0 only at much
larger scales.

Fig. 3. Focal distance curves, starting from some of the tracts in the Los
Angeles area. Ordinates are focal distances expressed in terms of the aggre-
gated population around the starting point. They represent aggregation
sizes fi(δ) at which the corresponding KL trajectories (Fig. 2) converge, for
each value of the convergence threshold δ. We give exemplars of two
types of behavior. (Upper) Sharply decreasing curves correspond to points
with short focal distances, even for small values of δ. (Lower) Slower-
decreasing curves correspond to points with long focal distances, even
for larger values of δ. The distortion coefficient at a given point in the
city is then defined (Eq. 4) to be proportional to the area under the
corresponding focal distance curve: The higher the curve, the larger the
coefficient.

areas where segregation effects build up across scale and accumulate far
beyond the local, tract level.

Focal Distances. We are interested in quantifying the convergence of each
trajectory, and the speed at which this occurs, as a mark of segregation of
the corresponding starting point. If one fixes a convergence threshold δ, it
is then possible to compute, for each trajectory, the instant when it enters
(and remains thereafter) in the interval [0, δ]. This instant is the size of the
population that one needs to aggregate, for a given starting point, to have
a distribution of groups that remains within KL divergence δ of the refer-
ence distribution. In other terms, this is, for a given starting point, how far
one needs to go in the aggregation process to see (with precision δ) the
city’s population as it is in its globality—the distance one needs to cover to
get a relatively clear picture of the city. We call this convergence size the
focal distance. Formally, the focal distance at point i, with precision δ, is
defined as

fi(δ) = inf
u

{
ni,1:u

∣∣∣ ∀ũ≥ u, dKL

(
qi,1:ũ

∣∣∣ r
)
≤ δ
}

, [3]

where ni,1:u is the size of the population in the u closest units to unit i.
There is, of course, some arbitrariness in the choice of the convergence

threshold δ, but this may be circumvented by considering all its possible val-
ues. For any starting point i and for δ= 0, convergence occurs only at the
very end of the KL trajectory, so that fi(δ) = N (N is the total population).
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Fig. 4. Histogram and estimated density (pink solid line) of normalized
distortion coefficients in Los Angeles area. The solid blue vertical line cor-
responds to the average value of distortion coefficients in a null model
obtained by random (spatial) permutations. The dashed line indicates a 95%
confidence interval around the average in the null model.

When δ is large (typically, larger than the maximum of the KL trajectory),
convergence occurs immediately so that fi(δ) = 0. One may then plot the
variation of fi(δ) as δ increases (Fig. 3). The higher the curve representing
fi(δ), the longer the focal distances for i, even at large values of δ (i.e., when
convergence is easier). This helps identifying points in a city where spatial
dissimilarities accumulate on multiple scales to create veritable “hotspots”
of segregation. From these points, what one perceives of the city is very
much altered, even on large scales, compared with what the city looks
like in actuality. We formalize this concept into what we term distortion
coefficients.

Distortion Coefficients. We have defined for each point i in the city a trajec-
tory of focal distances fi(δ) with 0≤ δ≤ δi,max, where δi,max is the maximum
value of the KL trajectory associated to unit i. Summing up focal distances

Fig. 5. A map of the Los Angeles area with tracts colored according to their
distortion coefficients for the ethnic composition of the population.

Fig. 6. Same as Fig. 5 but with a logarithmic color scale, allowing one to
see finer details in the variation of distortion coefficients across space.

fi(δ) for all δ gives a measure of how distorted the perception of the city
is, from point i. Formally, we are simply integrating the focal distance
curves—that is, we define the distortion coefficient of unit i as

∆i =

∫ δi,max

0
fi(δ) dδ. [4]

To enable comparisons from one variable to another, or from one city to
another, distortion coefficients should be independent of the size of the
city and also of the average distribution in the city. With this in mind, we
compute the normalized distortion coefficients ∆̃i = ∆i/N , where N is a
normalizing constant. In practice, N is chosen as the maximum distortion
coefficient in a theoretical extreme case of segregation. Theoretically, the
maximal-segregation distortion coefficient is achieved when sorting the k
groups into k ghettos, ordered by sizes, and then computing the coefficient
for the most isolated person in the smallest group. This person would first
meet all of the individuals of his own group, then all those of the second-
most infrequent group, and so on, until having seen the entire population
of the city. The normalized distortion coefficients ∆̃i take values between 0
and 1 and express the levels of distortion as a fraction of the perspective one
has from the theoretical maximally segregated unit (for a given population
size and for given group proportions).

To apprehend the meaning of the distortion coefficients, we generate
several simple, synthetic configurations. A complete description of these
experimental results is provided in SI Appendix. It shows how distortion
coefficients integrate information across all scales and how this method
captures hotspots of multiscalar segregation, as well as fine details of how
multiscalar segregation varies across space, from points with low distortion
to points with high distortion.

Ethnic Segregation in Los Angeles
As an example, we studied the ethnic distribution in Los Ange-
les. We worked with 2010 US Census data and analyzed the four
largest groups: Whites, Hispanics, Asians, and Blacks. For each
tract in the city, the KL divergence between the multigroup dis-
tribution inside the tract and the multigroup distribution in the
whole city is shown in Fig. 1. We then built the full set of KL
trajectories† (Fig. 2) and derived the corresponding focal dis-
tance curves (Fig. 3). Integrating these curves as in Eq. 4 and
normalizing according to the equivalent completely segregated

†The data were available at tract level, so all trajectories—KL divergence and focal
distances—were computed on the aggregated units, by using a nearest-neighbor rule
on the centroids as aggregation procedure. Ties were dealt with by using random
draws.
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four-group population, we obtained the distortion coefficients
for each tract, as shown in Fig. 4.

First, let us note the order of magnitude of the distor-
tion coefficients. These reach 0.15–0.20—that is, 15–20% of
the maximal value one would obtain by completely separating
the four groups into four “ghettos.” For comparison, a sim-
ilar study carried out on different groups in large European
cities led to values of only half a percent or a few percent (27).
We may thus conclude that ethnic segregation in Los Angeles
reaches moderately high levels across mesoscopic and macro-
scopic scales, not just at the tract level. This conclusion should,
however, be considered with caution, since we still need to
apply our method to other real data, to get a full perspective
of what a highly segregated city should provide as distortion
coefficients.

Second, the frequency distribution is particularly informative
about spatial heterogeneity. Indeed, if the distribution is narrow
and highly peaked at its average, then there is a high level of spa-
tial homogeneity in the city. On the contrary, a broad distribution
signals spatial heterogeneity, with multiscalar perceptions of the
city varying greatly from one area to another. Frequency distribu-
tions may also exhibit more complex features, such as bimodality,
suggesting the existence of subsets of segregated areas. In our
case, the distribution is markedly skewed, with its peak at 6%
of the theoretical maximally segregated value and a secondary
mode close to the 20% mark.

Note that finer details and fluctuations of distortion coeffi-
cients may be examined by switching to a logarithmic scale,
as shown in Fig. 6. The logged representation is particularly
interesting when distortion coefficients have a heavy-tailed dis-
tribution and span several orders of magnitude. While a lin-
ear scale highlights the tail of the distribution and the atyp-
ical, highly distorted units, it flattens the rest of the values,
for which a logged map provides a better insight. Here, this
allows us to access the secondary structure of multiscalar seg-
regation in Los Angeles, with areas like Malibu in the west
exhibiting notable levels. We also note that the tracts with
the highest distortion and the ones with the lowest distortion
appear to both be tightly grouped in different areas: There is
a distinct group of contiguous darker blue tracts and a dis-
tinct group of contiguous darker red tracts. This is another
sign of the level of spatial effects in ethnic segregation in Los
Angeles.

Furthermore, one may perform empirical statistical tests and
check how much the given city configuration differs from a
completely random one. The distribution under the null hypoth-
esis may be easily generated by performing a large number of

random permutations and then computing the associated dis-
tortion coefficients, their mean value, and a 95% confidence
interval around it. According to Fig. 4, all distortion coeffi-
cients are greater than the right limit of the confidence interval
for the null model, which means that the hypothesis of a com-
pletely random distribution of the four communities in Los
Angeles is rejected. There is a clustered structure in the data,
which means there is segregation, and the maps in Figs. 5 and
6 allow one to identify the most segregated and the most inte-
grated areas.

Conclusion and Perspectives
The method that we have introduced in this paper offers power-
ful analytical and visual tools to study multigroup segregation in
large urban areas.

We have shown here only a few of its capacities. Defining
focal distances and distortion coefficients from the convergence
of KL trajectories, we have focused on only one type of informa-
tion that may be extracted from these trajectories. Indeed, other
scales of interest may be obtained. Think, for instance, of the
scale at which a given KL trajectory attains its maximum—this
is the scale of the bespoke neighborhood that is maximally dif-
ferent from the city. On a more theoretical side, we note that
a null model may be defined as was done in Ethnic Segrega-
tion in Los Angeles: by simply considering random permutations.
Establishing the theoretical properties of this null model is not
straightforward, as the trajectories obtained when moving from
distributions to KL divergence are not readily modeled. In a
simpler framework (23), when working with single-group pro-
portions, one may approximate the corresponding trajectories
by generalized Brownian bridges (28, 29) and transform the
problem into a first-passage one for Brownian motion (30).
The general version presented here does not seem amenable
to the same techniques and poses an interesting mathematical
challenge for future research.

Finally, we believe that this method may open new perspec-
tives on the mechanisms driving segregation, in a well-formalized
mathematical framework. Indeed, this technique can be further
combined either with theoretical model-based simulations or
with a broader empirical context (multiple cities, variables, or
time instants), and thus further contribute into a fine understand-
ing of segregation, of how it changes in time or across space, how
microscopic and/or macroscopic interventions on the dynamics
or on the spatial distribution may lead to significant changes in
the trajectories and in the distortion coefficients, where these
changes are the most prominent, and how they propagate over
space.
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