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Abstract. Compared to ordinary function minimization problems, min-max optimiza-
tion algorithms encounter far greater challenges because of the existence of periodic
cycles and similar phenomena. Even though some of these behaviors can be overcome
in the convex-concave regime, the general case is considerably more difficult. On that
account, we take an in-depth look at a comprehensive class of state-of-the art algorithms
and prevalent heuristics in non-convex / non-concave problems, and we establish the
following general results: a) generically, the algorithms’ limit points are contained in the
internally chain-transitive (ICT) sets of a common, mean-field system; b) the attractors
of this system also attract the algorithms in question with arbitrarily high probability;
and c) all algorithms avoid the system’s unstable sets with probability 1. On the surface,
this provides a highly optimistic outlook for min-max algorithms; however, we show that
there exist spurious attractors that do not contain any stationary points of the problem
under study. In this regard, our work suggests that existing min-max algorithms may
be subject to inescapable convergence failures. We complement our theoretical analysis
by illustrating such attractors in simple, two-dimensional, almost bilinear problems.

1. Introduction

Consider a min-max optimization – or saddle-point – problem of the form

min
x∈X

max
y∈Y

Φ(x, y). (SP)

Given an algorithm for solving (SP), it is then natural to ask:

Where does the algorithm converge to? (?)

The goal of our paper is to treat (?) in a general non-convex / non-concave setting and to
provide answers for a comprehensive array of state-of-the-art algorithms.
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Related work. This question has attracted significant interest in the machine learning lit-
erature because of its potential implications to generative adversarial networks [32], robust
reinforcement learning [74], and other models of adversarial training [56]. In this broad
setting, it has become empirically clear that the joint training of two neural networks (NNs)
is fundamentally more difficult than that of a single NN of similar size and architecture.
The latter task boils down to successfully finding a (good) local minimum of a non-convex
function, so it is instructive to revisit (?) in the context of non-convex minimization.

In this case, the existing convergence theory for stochastic gradient descent (SGD) – the
“gold standard” for deep NN training – can be informally summed up as follows:

(1) SGD always converges to critical points.

(2) SGD does not converge to strict saddle points or other spurious solutions.

These results could be seen as plausible expectations for algorithmic proposals to solve (SP).
Unfortunately however, there are well-known examples of simple bilinear min-max games
where stochastic gradient descent/ascent (SGDA), the min-max analogue of SGD, leads to
recurrent orbits that do not contain any critical point of Φ. Such spurious convergence phe-
nomena arise from the min-max structure of (SP) and have no counterpart in minimization
problems.

This well-documented failure of SGDA has led to an extensive literature that is impossible
to survey here. As a purely indicative – and highly incomplete – list, we mention the works
of Daskalakis et al [21], Gidel et al [30], Mertikopoulos et al [59] and Mokhtari et al [62], who
studied how these failures can be overcome in deterministic bilinear problems by means of
an extra-gradient step (or an optimistic proxy thereof). By contrast, in stochastic problems,
the convergence of optimistic / extra-gradient methods is compromised unless additional,
tailor-made mitigation mechanisms are put in place – such as variance reduction [16, 40]
or variable step-size schedules [38]. This shows that the convergence of min-max training
methods can be particularly fragile, even in simple, bilinear problems.

Beyond the class of convex-concave problems analyzed above, another vigorous thread of
research has focused on the local analysis of a min-max optimization algorithm close to the
game’s critical points – typically subject to a second-order sufficient condition; cf. Adolphs
et al [2], Daskalakis and Panageas [20], Fiez and Ratliff [25], Grimmer et al [33, 34], Heusel
et al [36], Mazumdar et al [58], Nagarajan and Kolter [64]. The global analysis is much
more challenging and requires strong structural assumptions such as variational coherence
[59] and/or the existence of a Minty-type solution [53]. In the absence of such conditions,
Flokas et al [27, 28] showed that periodic and/or Poincaré recurrent behavior may persist
in deterministic, continuous-time min-max dynamics.

From a practical viewpoint, these studies have led to a broad array of sophisticated
algorithmic proposals for solving min-max games; we review many of these algorithms in
Section 3. However, a central question that remains unanswered is whether it is theoretically
plausible to expect a qualitatively different behavior relative to SGDA in the full spectrum
of non-convex / non-concave games. Our work aims to provide concrete answers to this
question.

Our contributions. Our first contribution is to provide a unified framework for a com-
prehensive selection of first- and zeroth-order min-max optimization methods (including
SGDA, proximal point methods, optimistic / extra-gradient schemes, their alternating
variants, etc.). The principal ingredients of our approach are twofold: (i) a generalized
Robbins–Monro (RM) template that is wide enough to include all the above algorithms;
and (ii) an analytic framework leveraging the ordinary differential equation (ODE) method
of stochastic approximation [7, 50]. Based on these two elements, we prove a precise version
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of the following general principle: the long-run behavior of all generalized RM methods can
be mapped to the study of the same, mean-field dynamical system.

In more detail, we show that the limit points of all generalized RM schemes belong to
an internally chain-transitive (ICT) set of these mean dynamics. The notion of an ICT set
is central in the study of dynamical systems [9, 13, 19] and, in some cases, they are easy
to characterize: in minimization problems (and possibly up to a “hidden” transformation
in the spirit of 27), the dynamics’ ICT sets are the function’s critical points. As such, in
this case, we recover exactly the min-min landscape of SGD – but for an entire family of
algorithms, not just SGD.

Moving on to general min-max problems, the structure of the dynamics’ ICT sets could
be considerably more complicated, so we provide two further, complementing results:

(1) With high probability, all generalized RM methods converge locally to attractors of the
mean dynamics.

(2) With probability 1, all generalized RM methods avoid the mean dynamics’ unstable
invariant sets.

As far as we are aware, there are no results of comparable generality in the min-max
optimization literature. From a high level, these theoretical contributions would seem to be
analogous to existing results for SGD in minimization problems (i.e., that SGD converges to
critical points while avoiding strict saddles). However, this similarity is only skin-deep: as
we show by a range of concrete, almost bilinear examples, min-max optimization algorithms
may encounter a series of immovable roadblocks. Specifically:

• An ICT set may contain a globally attracting limit cycle, and the range of algorithms
under consideration cannot escape it – even though extra-gradient methods escape
recurrent orbits in exact bilinear problems. This suggests that bilinear games may not
be representative as a testbed for GAN training algorithms and heuristics.

• There exist unstable critical points whose neighborhood contains an (almost) globally
stable ICT set. Therefore, in sharp contrast to minimization, “avoiding unstable critical
points” does not imply “escaping unstable critical points” in min-max problems.

• There exist stable min-max points whose basin of attraction is “shielded” by an unstable
ICT set. As a result, if run with non-negligible noise in the gradients, then, with high
probability, existing algorithms are repelled away from the desirable solutions.

Our results indicate a steep, qualitative increase in difficulty when passing from min-min
to min-max problems, in line with concurrent works by Daskalakis et al [22] and Letcher
[52]. In plain terms, Daskalakis et al [22] proved the impossibility of attaining a critical
point in polynomial time in deterministic, constrained min-max games. In a similar spirit,
the concurrent work of Letcher [52] showed that there are min-max games where all “reason-
able” deterministic algorithms may fail to converge. By contrast, our paper focuses on the
occurrence of spurious convergence phenomena with probability 1 in stochastic algorithms.
In addition, our avoidance result (Theorem 3) can be seen as a stochastic counterpart of
the “reasonableness” requirement of Letcher [52], thereby enriching the applicability of the
results therein. Taken together, these works and our own provide a complementing look
into the fundamental limits of min-max optimization algorithms.

2. Setup and preliminaries

Throughout our paper, we focus on general unconstrained problems with X = RdX ,
Y = RdY , and Φ assumed C1 and Lipschitz. To avoid unnecessary notation, we will let
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z = (x, y), Z = X × Y and d = dX + dY . In addition, we will write

V (z) ≡ (Vx(x, y), Vy(x, y)) := (−∇xΦ(x, y),∇yΦ(x, y)) (1)

for the (min-max) gradient field of Φ, assumed here to be Lipschitz; in some cases we may
also require V to be C1 and write JV (z) for its Jacobian. Finally, we will assume that V
satisfies the weak asymptotic coercivity condition

〈V (z), z〉 ≤ 0 for all sufficiently large z. (2)

This condition is a weaker version of standard coercivity conditions in the literature [6], it is
satisfied by all convex-concave problems (including bilinear ones) and, importantly, it does
not impose any growth requirements on the elements of V (as standard coercivity conditions
do). We discuss it further in Appendix A.

A solution of (SP) is a tuple z∗ = (x∗, y∗) with Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗) for all
x ∈ X , y ∈ Y; likewise, a local solution of (SP) is a tuple (x∗, y∗) that satisfies this inequality
locally. Finally, a state z∗ with V (z∗) = 0 is said to be a critical (or stationary) point of Φ.

From an algorithmic standpoint, we will focus exclusively on the black-box optimization
paradigm [68] with stochastic first-order oracle (SFO) feedback. Algorithms with a more
complicated feedback structure, such as a best-response oracle [26, 41, 65] or based on
mixed-strategy sampling [23, 39, 43], are not considered in this work.

Specifically, when called at z = (x, y) with random seed ω ∈ Ω, an SFO returns a random
vector V(z;ω) ≡ (Vx(z;ω),Vy(z;ω)) of the form

V(z;ω) = V (z) + U(z;ω) (SFO)

where the error term U(z;ω) captures all sources of uncertainty in the model (e.g., the selec-
tion of a minibatch in GAN training, system state observations in reinforcement learning,
etc.). As is standard in the literature, we require U(z;ω) to be zero-mean and finite-variance:

∀z ∈ Z, E[U(z;ω)] = 0 and E[‖U(z;ω)‖2] ≤ σ2. (3)

These will be our blanket assumptions throughout.

3. Core algorithmic framework

3.1. The Robbins–Monro template. Much of our analysis will revolve around iterative al-
gorithms that can be cast as generalized Robbins–Monro algorithms [77] of the general
form

Zn+1 = Zn + γn[V (Zn) +Wn] (RM)
where:

(1) Zn = (Xn, Yn) ∈ Z denotes the state of the algorithm at each stage n = 1, 2, . . .

(2) Wn is an abstract error term described in detail below.
(3) γn is the method’s step-size hyperparameter, and is typically of the form γn ∝ 1/np

for some p ≥ 0. Throughout the paper, we will always assume
∑
n γn = ∞ and

limn γn = 0.

In the above, the error termWn is generated after Zn; thus, by default,Wn is not adapted
to the history Fn := H(Z1, . . . , Zn) of Zn. For concision, we will also write

Vn = V (Zn) +Wn (4)

so Vn can be seen as a noisy estimator of V (Zn). In more detail, to differentiate between
“random” (zero-mean) and “systematic” (non-zero-mean) errors in Vn it will be convenient
to further decompose the error process Wn as

Wn = Un + bn (5)
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where bn = E[Wn | Fn] represents the systematic component and Un = Wn − bn captures
the random, zero-mean part. In view of all this, we will consider the following descriptors
for Wn:

a) Bias: Bn = E[‖bn‖ |Fn] (6a)

b) Variance: σ2
n = E[‖Un‖2|Fn] (6b)

Note that both Bn and σn are random (conditioned on Fn); this will play an important
part in the sequel.

3.2. Specific algorithms. In the rest of this section, we discuss how a wide range of algo-
rithms used in the literature can be seen as special instances of our general Robbins–Monro
(RM) template.

H Algorithm 1 (Stochastic gradient descent/ascent). The basic stochastic gradient de-
scent/ascent (SGDA) algorithm – also known as the Arrow–Hurwicz method [4] – queries
an SFO and proceeds as:

Zn+1 = Zn + γn V(Zn;ωn), (SGDA)
where ωn ∈ Ω (n = 1, 2, . . . ) is an independent and identically distributed (i.i.d.) sequence
of oracle seeds. As such, (SGDA) admits a straightforward RM representation by taking
Wn = Un = U(Zn;ωn) and bn = 0. N

H Algorithm 2 (Proximal point method). The (deterministic) proximal point method (PPM)
[79] is an implicit update rule of the form:

Zn+1 = Zn + γnV (Zn+1). (PPM)

The RM representation of (PPM) is obtained by taking Wn = bn = V (Zn+1)− V (Zn) and
Un = 0. N

H Algorithm 3 (Stochastic extra-gradient). Since (PPM) is only implicitly defined, one
can rarely run it in practice. Nonetheless, it is possible to approximate (PPM) by locally
querying two (stochastic) gradients at each iteration [67]. This can be achieved by the
stochastic extra-gradient (SEG):

Z+
n = Zn + γn V(Zn;ωn),

Zn+1 = Zn + γn V(Z+
n ;ω+

n ).
(SEG)

To recast (SEG) in the Robbins–Monro framework, simply take Wn = V(Z+
n ;ω+

n )− V (Zn),
i.e., Un = U(Z+

n ;ω+
n ) and bn = V (Z+

n )− V (Zn). N

H Algorithm 4 (Optimistic gradient / Popov’s extra-gradient). Compared to (SGDA), the
scheme (SEG) involves two oracle queries per iteration, which is considerably more costly.
An alternative iterative method with a single oracle query per iteration was proposed by
Popov [75]:

Z+
n = Zn + γn V(Z+

n−1;ωn−1),

Zn+1 = Zn + γn V(Z+
n ;ωn).

(OG/PEG)

Popov’s extra-gradient has been rediscovered several times and is more widely known as
the optimistic gradient (OG) method in the machine learning literature [17, 21, 37, 76].
In unconstrained problems, (OG/PEG) turns out to be equivalent to a number of other
existing methods, including “extrapolation from the past” [30] and reflected gradient [57].
Its Robbins–Monro representation is obtained by setting Wn = V(Z+

n ;ωn) − V (Zn), i.e.,
Un = U(Z+

n ;ωn) and bn = V (Z+
n )− V (Zn). N
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H Algorithm 5 (Kiefer–Wolfowitz). When first-order feedback is unavailable, a popular al-
ternative is to obtain gradient information of Φ via zeroth-order observations [54]. This idea
can be traced back to the seminal work of Kiefer and Wolfowitz [45] and the subsequent
development of the simultaneous perturbation stochastic approximation (SPSA) method by
Spall [83]. In our setting, this leads to the recursion:

Vn = ±(d/δn) Φ(Zn + δnωn)ωn

Zn+1 = Zn + γnVn
(SPSA)

where δn ↘ 0 is a vanishing “sampling radius” parameter, ωn is drawn uniformly at random
from the composite basis Ω = EX ∪ EY of Z = X × Y, and the “±” sign is equal to
−1 if ωn ∈ EX and +1 if ωn ∈ EY . Viewed this way, the interpretation of (SPSA) as a
Robbins–Monro method is immediate; furthermore, a straightforward calculation (that we
defer to Appendix B.3) shows that the sequence of gradient estimators Vn in (SPSA) has
Bn = O(δn) and σ2

n = O(1/δ2
n). N

Further examples that can be cast in the RM framework include the negative momentum
method [31], generalized OG schemes [63], the Chambolle-Pock algorithm [15], the “predic-
tion method” of Yadav et al [86], and centripetal acceleration [72]; the analysis is similar
and we omit the details. Certain scalable second-order methods can also be viewed as RM
schemes, but the driving vector field V is no longer the gradient field of Φ; we discuss this
in the supplement.

3.3. Alternating updates and moving averages. There are two extremely common heuris-
tics for practitioners in applying min-max algorithms to real applications: alternating and
averaging. An alternating algorithm for (SP) updates the x and y variables sequentially
(instead of simultaneously as in Section 3.2). An averaged algorithm takes the next state
as a convex combination of Zn and Zn+1 in (RM), cf. [44].

An important feature of our framework is that it captures alternating and averaged
algorithms in a seamless manner. Indeed, introducing alternating updates or a moving
average in RM schemes results in another RM scheme:

Lemma 1. Let Zn+1 = Zn + γn[V (Zn) +Wn] be an RM scheme where Wn = Un + bn as in
(5). Then its α-averaged version (where 0 < α < 1), defined as

Z ′n+1 = Zn + γn[V (Zn) +Wn],

Zn+1 = αZ ′n+1 + (1− α)Zn
(avg-RM)

is also an RM scheme: Zn+1 = Zn + αγn[V (Zn) +Wn].

Remark 3.1. Lemma 1 can be easily adapted to the scenario where one only averages either
the Xn or Yn variable.

Lemma 2. Let Zn+1 = Zn + γn[V (Zn) +Wn] be an RM scheme where Wn = Un + bn as in
(5). Then its alternating version, defined as

Xn+1 = Xn + γn[Vx(Xn, Yn) +Wx,n],

Yn+1 = Yn + γn [Vy(Xn+1, Yn) +Wy,n],
(alt-RM)

is also an RM scheme: Zn+1 = Zn + γn[V (Zn) + Un + b′n] where

b′n = bn +

[
0

Vy(Xn+1, Yn)− Vy(Xn, Yn)

]
.
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Figure 1: Comparison of different RM schemes for bilinear games Φ(x, y) = xy,
x, y ∈ R. From left to right: (a) gradient descent/ascent; (b) the mean dynamics
(MD); (c) extra-gradient.

Remark 3.2. One can easily generalize Lemma 2 to the “(k1, k2)-RM schemes” where one
performs k1 updates for x and then k2 updates for y (here k1, k2 ∈ N are arbitrary but fixed).
The resulting scheme will still be an RM scheme. In particular, our framework captures the
popular (k1, k2) = (1, 5) variant of (SGDA) used in the seminal works of Goodfellow et al
[32] and Arjovsky et al [3]. In view of Lemmas 1–2, Remark 3.2, and a simple calculation
(see (B.18)), all of our results on first-order methods (e.g., Algorithms 1–4) apply also to
their averaging/alternating and the more general (k1, k2) versions.

4. Convergence analysis

4.1. Overview: Continuous vs. discrete time. The key in providing a unified treatment of
all algorithms in Section 3 is the reduction of (RM) to the mean dynamics

ż(t) = V (z(t)). (MD)

To see why (MD) can capture the limiting behavior of a vast family of RM schemes beyond
GDA, let us illustrate the high-level intuition on the deterministic version of Algorithm 3
(Un = 0).

Since Φ and V are assumed to be Lipschitz (say with constants M and L), we see that
the bias term in Algorithm 3 satisfies

‖bn‖ = ‖V (Z+
n ) − V (Zn)‖ ≤ L‖Z+

n − Zn‖ = γnL‖V (Zn)‖ ≤ γnLM = O(γn).

As a result, we can rewrite Algorithm 3 as
Zn+1 − Zn

γn
= V (Zn) +O(γn). (7)

If γn ↘ 0, we should then expect (7) to converge to (MD). More generally, if the error
term Wn in (RM) is sufficiently well-behaved, we should expect the iterates of (RM) and
the solutions of (MD) to eventually come together.

Connecting (RM) to (MD) has proved very fruitful when the latter comprises a gradient
system, i.e., V = −∇f for some (possibly non-convex) f : Z → R: Modulo mild assumptions,
the systems (RM) and (MD) are known to both converge to the critical set of f [10, 11, 48,
50, 55].

On the other hand, bona fide min-max problems are considerably more involved. The
most widely known illustration is given by the bilinear objective Φ(x, y) = xy: in this case
(see Fig. 1), the trajectories (MD) comprise periodic orbits of perfect circles centered at the
origin (the unique critical point of Φ). However, the behavior of different RM schemes can
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vary wildly, even in the absence of noise (σ = 0): trajectories of (SGDA) spiral outwards,
each converging to an initialization-dependent periodic orbit; instead, (SEG) trajectories
spiral inwards, eventually converging to the solution z∗ = (0, 0).

This particular difference between gradient and extra-gradient schemes has been well-
documented in the literature [21, 30, 59]. More pertinent to our theory, it also raises several
key questions:

(1) What is the precise link between RM methods and the mean dynamics (MD)?
(2) When does (MD) yield accurate predictions for the long-run behavior of an RM

method?

Below, we devote Sections 4.2–4.3 to the first question, and Section 4.4 to the second.

4.2. Connecting (RM) to (MD). We begin by introducing a measure of “closeness” between
the iterates of (RM) and the solution orbits of (MD). To do so, let τn =

∑n
k=1 γk denote the

“effective time” that has elapsed at the n-th iteration of (RM), and define the continuous-
time interpolation Z(t) of Zn as

Z(t) = Zn +
t− τn

τn+1 − τn
(Zn+1 − Zn) (8)

for all t ∈ [τn, τn+1], n ≥ 1. To compare Z(t) to the solution orbits of (MD), we will
further consider the flow Θ: R+ × Z → Z of (MD), which is simply the orbit of (MD) at
time t ∈ R+ with an initial condition z(0) = z ∈ Z. We then have the following notion of
“asymptotic closeness”:

Definition 1. Z(t) is an asymptotic pseudotrajectory (APT) of (MD) if, for all T > 0, we
have:

limt→∞ sup0≤h≤T ‖Z(t+ h)−Θh(Z(t))‖ = 0. (9)

This comparison criterion is due to Benaïm and Hirsch [9] and it plays a central role in
our analysis. In words, it simply posits that Z(t) eventually tracks the flow of (MD) with
arbitrary accuracy over windows of arbitrary length; as a result, if Zn is an APT of (MD),
it is reasonable to expect its behavior to be closely correlated to that of (MD).

Our first result below makes this link precise. Consider an RM scheme which satisfies

Bn → 0 (a.s.) and
∑∞
n=1 E[γnBn] <∞ (A1)∑∞

n=1 E[γ2
n(1 +B2

n + σ2
n)] <∞ (A2)

We then have:

Theorem 1. Suppose that Assumptions (A1)–(A2) hold. Then Zn is an APT of (MD) w.p.1.

4.3. Applications and examples. Of course, applying Theorem 1 to a specific algorithm
(e.g., as in Section 3) would first require verifying Assumptions (A1)–(A2). However, even
though the noise U(z;ω) in (SFO) is assumed zero-mean and finite-variance, this does not
imply that the error term Wn = Un+ bn in Algorithms 2–5 enjoys the same guarantees. For
example, the RM representation of Algorithms 2–4 has non-zero bias, while Algorithm 5
has non-zero bias and unbounded variance (the latter behaving as O(1/δ2

n) with δn → 0).
In the following proposition we prove that Algorithms 1–5 generate asymptotic pseudo-

trajectories of (MD) for the typical range of hyperparameters used to ensure almost sure
convergence of stochastic first-order methods.

Proposition 1. Let Zn be a sequence generated by any of the Algorithms 1–5. Assume further
that:
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a) For first-order methods (Algorithms 1–4), the algorithm is run with SFO feedback
satisfying (3) and a step-size γn such that A/n ≤ γn ≤ B/

√
n(log n)1+ε for some

A,B, ε > 0.

b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters γn and
δn such that limn(γn + δn) = 0,

∑
n γn = ∞, and

∑
n γ

2
n/δ

2
n < ∞ (e.g., γn = 1/n,

δn = 1/n1/3).

Then Zn is almost surely an APT of (MD).

4.4. The limit sets of RM schemes. The APT results in Sections 4.2–4.3 can be heuristically
interpreted as: “RM schemes eventually behave as some orbits of (MD).” We now further
ask: What are the candidate limit orbits of (MD) for RM schemes?

To shed some light on the question, let us recall that, in non-convex minimization prob-
lems, stochastic gradient descent (SGD) enjoys the following properties:

(I) SGD converges to the function’s set of critical points [11, 55].

(II) SGD avoids unstable critical points [29, 60, 70].

This leads to the following “law of the excluded middle”: generically, the only solution
candidates left for SGD are stable critical points, i.e., the local minimizers of the problem’s
minimization objective.

In the remaining of this section, we will assimilate (I) and (II) in the context of RM
schemes applied to (SP).

4.4.1. The long-run limit of RM schemes. We first focus on generalizing (I) for min-max
optimization. To proceed, recall first that critical points alone cannot capture the broad
spectrum of algorithmic behaviors when (MD) is not a gradient system: already in Fig. 1
we see a critical point surrounded by spurious periodic orbits. In addition, in dynamical
systems many other spurious convergence phenomena are known, such as homoclinic loops,
limit cycles, or chaos. To account for this considerably richer landscape, we will need some
definitions from the theory of dynamical systems.

Definition 2 (7). Let S be a nonempty compact subset of Z. Then:
a) S is invariant if Θt(S) = S for all t ∈ R.
b) S is attracting if it is invariant and there exists a compact neighborhood K of S such

that limt→∞ dist(Θt(z),S) = 0 uniformly in z ∈ K.
c) S is internally chain-transitive (ICT) if it is invariant and Θ|S admits no proper at-

tractors in S.

Remark. Equivalently, ICT sets can be viewed as “minimal connected periodic orbits up to
arbitrarily small numerical errors”, cf. Benaïm [7, Prop. 5.3]. The definition above is more
convenient to work with because it provides the key insights in Section 4.4.3 below.

Our next result shows that, with probability 1, all limit points of (RM) lie in these
“approximate periodic orbits”:

Theorem 2. If Assumptions (A1)–(A2) hold, then Zn converges almost surely to an ICT set
of Φ.

Corollary 1. Let Zn be a sequence generated by any of the Algorithms 1–5 with parameters
as in Proposition 1. Then Zn converges almost surely to an ICT set of Φ.
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4.4.2. Avoidance of unstable points and sets. Our next result provides an avoidance result
for RM schemes in min-max optimization. In analogy with function minimization prob-
lems, we will focus on unstable invariant sets of (MD), i.e., invariant sets that admit a
nontrivial unstable manifold (for an in-depth discussion and precise definition, see 81 and
Appendix C.1).

In generic minimization problems, these are precisely the sets of strict saddle points of
the function being minimized. However, since general min-max problems do not comprise
a gradient system, (MD) could exhibit a plethora of unstable sets, not containing any
stationary points of Φ (e.g., periodic orbits, heteroclinic networks, etc.). On account of
the above, our result below is stated in terms of invariant sets – and not only points. For
convenience, we will assume that V is C2 and γn is as in Proposition 1.

Theorem 3. Let K be an unstable invariant set of (MD) (which trivially includes unstable
periodic orbits and unstable critical points). Assume further that the noise in (RM) satisfies:
(i) supn‖Un‖ < ∞ w.p.1; and (ii) infz:‖z‖=1 E[〈Un, z〉+ | Fn] > 0. Then Zn generated by
any of the Algorithms 1–4 satisfies

P (limn→∞ dist(Zn,K) = 0) = 0.

Remark 4.1. We note that Assumptions (i) and (ii) above are standard in the literature
for avoidance results of SGD [7, 60, 70], and are significantly lighter than other “isotropic
noise” assumptions that are common in the literature [29]. Specifically, even though As-
sumption (ii) looks somewhat obscure, it only posits that the noise is not degeneratively
equal to zero along certain directions in space; for a more detailed discussion, see Appen-
dix C.1. We also stress that neither of these assumptions is required for the rest of our
paper.

4.4.3. When do RM schemes behave the same? So far, we have successfully generalized (I)
and (II) to the context of (SP) as follows:1

(I-SP) RM schemes always converge to ICT sets, and
(II-SP) RM schemes always avoid invariant sets.

Nonetheless, (I-SP) and (II-SP) still fail to explain the distinct behaviors of RM schemes
in bilinear objectives: Why does SGDA converge only to periodic orbits, while deterministic
SEG only to critical points? Or, more generally,

Are different RM schemes more likely to exhibit different convergence
topologies – e.g., cycles vs. critical points – in generic min-max problems?

Our next result takes a closer look at attracting ICT sets and provides a generically
negative answer to this question. To set the stage, suppose we want to apply (I-SP) to the
bilinear objective Φ(x, y) = xy. Stricto sensu, (I-SP) does not apply in this case since Φ
is not Lipschitz. However, Fig. 1(b) shows (and we rigorously prove in Appendix C.2) that
any tuple (x, y) ∈ R2 belongs to an ICT set of Φ, so Theorem 2 holds trivially. This in turn
implies that the only attractor for Φ is trivially the whole space R2, since Definition 2-b) is
never satisfied for any S ( R2.

Importantly, the celebrated Kupka-Smale theorem [47, 82] asserts that systems with de-
generate periodic orbits (such as bilinear games) occur “almost never” in the Baire category
sense. More precisely, an arbitrarily small perturbation can fundamentally destroy the
topological properties of their ICT sets and give rise to proper, non-trivial attractors; cf.
Example 5.1. In contrast, systems with nontrivial attractors are known to be robust under

1To see why this is really a generalization, simply note that the only ICT sets of V = −∇ f are connected
critical points of f ; cf. Proposition C.1.
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perturbations [81], and our final result in the section shows that it is precisely the exis-
tence of nontrivial attractors that makes the discrepancy of RM schemes disappear, at least
locally.

Theorem 4. Let S be an attractor of (MD) and fix some confidence level α > 0. If γn is small
enough and Assumptions (A1)–(A2) hold, there exists a neighborhood U of S, independent
of α, such that P(Zn converges to S) ≥ 1− α if Z1 ∈ U .

Corollary 2. Let Zn be a sequence generated by any of the Algorithms 1–5 with sufficiently
small γn satisfying the conditions of Proposition 1. If Z1 ∈ U , then P(Zn converges to S) ≥
1− α.

In short, Theorem 4 asserts that any non-degenerate ICT set dictates the local conver-
gence of all RM schemes under the general Assumptions (A1)–(A2).

On a positive note, since the Hartman-Grobman Theorem [78] implies that all critical
points of Φ with <{λ(JV (z∗))} < 0 for all engenvalues λ are attractors of (MD), Theorem 4
immediately yields:

Corollary 3. Let z∗ be a critical point of Φ such that <{λ(JV (z∗))} < 0 for all engenvalues
of JV (z∗). Then all RM schemes satisfying Assumptions (A1)–(A2) locally converge to z∗
with high probability.

Corollary 3 generalizes the local convergence of deterministic SGDA and SEG studied
by Daskalakis and Panageas [20]. It also extends [37, Theorem 5] from (OG/PEG) to all
generalized RM schemes.

On the flip side, however, Theorem 4 also bears an undesirable consequence: it implies
that many RM schemes designed to improve SGDA (e.g., Algorithms 2–4) may in fact be
trapped by spurious ICT sets in exactly the same way as SGDA. Thus, even though many
of these algorithms have been motivated by their appealing properties in bilinear games, it
is not clear whether they offer any significant advantages beyond the convex-concave case.
We examine this issue in detail in the next section.

5. Spurious attractors: Illustrations and examples

In this last section, we provide a range of simple examples that exhibit spurious attractors
– i.e., attractors that consist entirely of non-critical points. For illustration purposes, we
focus on the simple case X = Y = R with polynomial objectives. In doing this, our goal is
to highlight a number of issues that can arise in min-max optimization problems; whether
limit cycles of this type occur in actual large-scale experiments – e.g., in GANs – is an open
research question [52].

H Example 5.1 (Almost bilinear 6≈ bilinear, instability 6≈ escape). Consider an arbitrarily
small perturbation of a bilinear game:

Φ(x, y) = xy + εφ(y), (10)

where ε > 0 and φ(y) = 1
2y

2− 1
4y

4. There is an unstable critical point at the origin; further,
Lemma D.1 asserts, for small ε, the existence of an attracting ICT set S in a neighborhood
of the circle {z : ‖z‖2 = 4/3}. By Corollary 2, any RM scheme of Section 3 thus gets
trapped by S; see Fig. 2(a) for an illustration for (SEG).

This example brings two issues of existing studies to light. First, it shows that “almost
bilinear games” can still trap many methods for solving exact bilinear games. Second, in
contrast to minimization problems, the region around an unstable critical point can in fact
be fully stable. Thus, one has to be careful when interpreting algorithms that “locally avoid
unstable critical points”, since they might be incapable of escaping their neighborhoods. N
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Figure 2: Spurious limits of min-max optimization algorithms. From left to right:
(a) (SEG) for (10) with ε = 0.01; (b) “forsaken solutions” of (SEG); The red curves
present trajectories with different initialization; non-critical ICT sets are depicted
in white; the blue curves represent an time-averaged sample orbit.

H Example 5.2 (“Forsaken” min max solutions). Suppose we apply Algorithms 1–5 to the
objective

Φ(x, y) = x(y − 0.45) + φ(x)− φ(y) (11)

where φ(z) = 1
4z

2− 1
2z

4 + 1
6z

6. This problem has a desirable (x∗, y∗) ' (0.08, 0.4). However,
as we show in Appendix D.2, there exist two spurious limit cycles that do not contain any
critical point of Φ. Worse, the limit cycle closer to the solution is unstable and repels any
trajectory that comes close to the solution; see Fig. 2(b) for an illustration for (SEG). As
a result, the “shielded” solution is highly unlikely to be discovered by existing algorithms,
even though it is perfectly stable. N

We conclude the paper by further examining several important settings that are not
covered by our theory:

(1) Instead of the “moving average” in Lemma 1, one can take the ergodic average (Z ′n =
1
n

∑n
k=1 Zk) as is customary in convex-concave problems [42, 66]. We plot one such

trajectory in Fig. 2 (the blue curves). Evidently, we see that ergodic average can force
the algorithms to halt at non-critical points, and this convergence is by no means
min-max optimal.

(2) Many recent works attempt to address the cycling issues of min-max algorithms via
incorporating second-order oracles. For completeness, we also study a range of popu-
lar second-order methods in Appendix D.3. Our analysis shows that these algorithms
suffer similar symptoms as first-order schemes in our examples, cf. Figs. 4–5.

(3) In addition to the diminishing step-size policies studied here, another common strat-
egy in practice is to simply set γn to a constant step-size. While our analysis does not
cover this setting, there exist several techniques in stochastic approximation to boost
from our “almost surely” statements for γn ↘ 0 to concentration or high-probability
results when γn ≡ γ is small [12, 49, 50].
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For completeness, in Section 4.4 we examine various constant step-size RM schemes
applied to (10) and (11). The outcome coincides with our intuition that these schemes
should concentrate around the spurious attracting ICT sets, and hence exhibit similar
behaviors as RM schemes with γn ↘ 0; see Fig. 6.

(4) Adaptive methods such as Adam [46] are ubiquitous in GAN training. We study such
methods in Section 4.5: our results show tha they fail solve the simple objectives (10)
and (11). Moreover, some methods even show a potentially detrimental tendency of
converging to max-min points, the exact opposite of desirable solutions; see Fig. 7.

In closing, we should clarify that these illustrations are not meant to suggest that the
algorithms and practical tweaks discussed above are always doomed, or that they comprise
the principal cause of failure in GAN training. However, we do believe that they constitute
an important cautionary tale to the effect that, in min-max problems, convergence does not
imply optimality – or even stationarity.

Appendix A. Stabilization of RM schemes

Our aim in this appendix will be to prove the stability of generalized RM schemes, namely
that asymptotic pseudotrajectories generated by (RM) are bounded with probability 1. The
key ingredient in our analysis is the weak asymptotic coercivity (WAC) condition (2), which,
as we discussed in the main body of our paper, is a relaxation of the standard coercivity
requirement

lim
‖z‖→∞

〈V (z), z〉
‖z‖

= −∞. (A.1)

The hypothesis (A.1) is a mainstay in the analysis of monotone operators and variational
inequalities [6, 24, 73]. Roughly speaking, it states that the “radial component”

Vr(z) =
〈V (z), z〉
‖z‖

(A.2)

of V (z) grows to −∞ as ‖z‖ → ∞. In other words, any vector field that satisfies (A.1) has
an inward-pointing component that grows infinitely large for large ‖z‖.

In view of the above, the coercivity assumption (A.1) suggests that any process that takes
successive steps along V (z) will be subject to an “inwards drift” towards regions with smaller
norm, and this drift will be more and more pronounced the farther one moves away from
the origin. On that account, (A.1) is a natural candidate for showing that RM processes
based on V never escape to infinity. On the other hand, vector fields that do not have
a strong radial component – such as the bilinear game field V (x, y) = (−y, x) which has
Vr(x, y) = 0 – are not covered by (A.1). In this regard, the WAC condition (2) provides
an important relaxation of (A.1), because it only posits that the radial component of V (z)
is asymptotically non-positive – or, more simply, that V (z) does not have a persistent
outward-pointing component.

Before proving the stability of generalized RM schemes under (2), we provide below a
series of important examples that satisfy the WAC condition (2):

(1) V satisfies (A.1). Indeed, in this case, for all M > 0, there exists some R ≡ R(M)
such that

〈V (z), z〉
R

≤ 〈V (z), z〉
‖z‖

≤ −M < 0 (A.3)

whenever ‖z‖ ≥ R, i.e., (2) holds
(2) Φ is convex-concave and it admits a critical point. By shifting the problem’s frame

of reference if necessary, we can assume without loss of generality that z∗ = 0 is a
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Figure 3: Schematic illustration of the weak asymptotic coercivity condition (2).

critical point of Φ. Then, with Φ assumed convex-concave, we readily get 〈V (z), z〉 ≤
〈V (z∗), z − z∗〉 = 0, i.e., (2) holds

The first item above justifies the terminology “weak asymptotic coercivity”; for a geometric
illustration, see Fig. 3 below.

We now proceed to establish our main stability result for generalized RM schemes under
the WAC condition (2):

Proposition A.1. Suppose that V satisfies (2). Then, under Assumptions (A1)–(A2), the
sequence Zn generated by (RM) is bounded (a.s.).

Proof of Proposition A.1. Our proof hinges on the introduction of a suitable “energy func-
tion” for (MD). To define it, recall that that 〈V (z),−z〉 ≥ 0 whenever ‖z‖ ≥ R. Then, with
a fair amount of hindsight, fix some λ > 0 and let

E(z) =


0 if ‖z‖ ≤ R,
(‖z‖ −R)2/2 if R ≤ ‖z‖ ≤ (1 + λ)R,

λR‖z‖ − λ(1 + λ/2)R2 if (1 + λ)R ≤ ‖z‖.
(A.4)

By a direct calculation, we can verify the following:

(1) E is continuously differentiable and its gradient is given by ∇E(z) = φ(‖z‖/R) z
where φ(u) = 0 if u ≤ 1, φ(u) = 1 − 1/u if 1 ≤ u ≤ 1 + λ, and φ(u) = λ/u if
1 + λ ≤ u.

(2) E is negatively correlated to V , i.e., 〈V (z),−∇E(z)〉 ≥ 0 for all z ∈ Z.
(3) E is 1-smooth, i.e., E(z′) ≤ E(z) + 〈∇E(z), z′ − z〉+ (1/2)‖z′ − z‖2 for all z, z′ ∈ Z.

Then, letting En = E(Zn) and φn = φ(‖Zn‖/R), we get

En+1 = E(Zn − γnVn) ≤ E(Zn)− γn〈∇E(Zn), Vn〉+
γ2
n

2
‖Vn‖2

≤ En − γnφn〈Un + bn, Zn〉+
3γ2
n

2

[
‖V (Zn)‖2 + ‖Un‖2 + ‖bn‖2

]
,

(A.5)

where the second line follows from the properties of E, the definition (4) of Vn, and the
Cauchy-Schwarz inequality. Hence, conditioning on Fn and taking expectations, we obtain:

E[En+1 | Fn] ≤ En + γnφn‖Zn‖Bn + 3
2γ

2
n

[
M2 +B2

n + σ2
n

]
, (A.6)
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where we made a second use of the Cauchy-Schwarz inequality in the term involving Bn
and M is the Lipschitz constant of Φ.

To proceed, let εn = γnφn‖Zn‖Bn + (3/2)γ2
n[M2 + B2

n + σ2
n] denote the “residual” term

in (A.6), and consider the auxiliary process Ẽn = En+1 +
∑∞
k=n+1 εk. By (A.6), we have

E[Ẽn | Fn] ≤ En +
∑∞
k=n εn = Ẽn−1, i.e., Ẽn is a supermartingale relative to Fn. By the

definition of φ, we further have φ(u) ≤ λ/u, so φn‖Zn‖ ≤ λR for all n. We thus get
∞∑
n=1

εn ≤ λR
∞∑
n=1

γnBn +
3

2

∞∑
n=1

γ2
n(M2 +B2

n + σ2
n) (A.7)

and hence, by Assumptions (A1) and (A2), we conclude that E[
∑
n εn] <∞. This shows that

E[Ẽn] ≤ E[Ẽ1] <∞, i.e., Ẽn is uniformly bounded in L1. Hence, by Doob’s submartingale
convergence theorem [35, Theorem 2.5], it follows that Ẽn converges with probability 1

to some finite random limit Ẽ∞. In turn, since
∑
n εn < ∞, this implies that En =

Ẽn−1 −
∑∞
k=n εn also converges to some (random) finite limit (a.s.). From this we deduce

that lim supn‖Zn‖ <∞, as claimed. �

Appendix B. Proof of Theorem 1 and Proposition 1

In this appendix, we discuss how the algorithms in Section 3 fit within the general stochas-
tic approximation framework of Section 4.2. Specifically, we prove the general conditions
of Theorem 1 and Proposition 1 which guarantee that Algorithms 1–5 generate asymptotic
pseudotrajectories of the mean dynamics (MD).

B.1. Generalities and preliminaries. Before doing so, we will require some background ma-
terial on asymptotic pseudotrajectories. Following Benaïm and Hirsch [9] and Benaïm [7],
we first recall the definition of the “effective time” τn =

∑n
k=1 γk as the time that has

elapsed at the n-th iteration of the discrete-time process Zn; recall also the definition (8) of
the continuous-time interpolation Z(t) of Zn as

Z(t) = Zn +
t− τn

τn+1 − τn
(Zn+1 − Zn) (8)

We will further require the “continuous-to-discrete” correspondence

M(t) = sup{n ≥ 1 : t ≥ τn} (B.1)

which measures the number of iterations required for the effective time τn of the process to
reach the timestamp t; for future use, we also define the quantity

Mn ≡Mn(T ) = M(τn + T ). (B.2)

Finally, given an arbitrary sequence An, we will denote its piecewise constant interpolation
as

A(t) = An for all t ∈ [τn, τn+1], n ≥ 1. (B.3)

Using this notation, the (affinely) interpolated process Z(t) can be expressed in integral
form as

Z(t) = Z(0) +

∫ t

0

[V (Z(s)) +W (s)] ds (B.4)

where Wn denotes the generalized error term of (RM).
With all this in hand, Benaïm [7, Prop. 4.1] provides the following general condition for

Z(t) to be an APT of the mean dynamics (9):
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Proposition B.1. Suppose that Z(t) is bounded and satisfies the general condition

lim
t→∞

∆(t;T ) = 0 for all T > 0, (B.5)

where
∆(t;T ) = sup0≤h≤T

∥∥∥∫ t+ht
W (s) ds

∥∥∥. (B.6)

Then, Z(t) is an APT of (MD).

B.2. Proof of Theorem 1. Our proof of Theorem 1 revolves around the direct verification of
the requirement (B.5) of Proposition B.1 via the use of maximal inequalities and martingale
limit theory.2 For convenience, we restate the theorem below in full:

Theorem 1. Suppose that Assumptions (A1)–(A2) hold. Then Zn is an APT of (MD) w.p.1.

Proof. Since we have shown that Zn remains bounded in Proposition A.1, it suffices to verify
(B.5).

Our proof relies on the Burkholder–Davis–Gundy (BDG) inequality [14, 35] which bounds
the maximal value of a martingale Sn via its quadratic variation as

c2 E

[
n∑
k=1

(Sk − Sk−1)2

]
≤ E

[
max

k=1,...,n
|Sk|2

]
≤ C2 E

[
n∑
k=1

(Sk − Sk−1)2

]
, (BDG)

where c2, C2 > 0 are universal constants. As such, applying (BDG) to the martingale
Sm =

∑m
k=n γkUk (after an appropriate shift of the starting time), we get

E

 sup
n≤m≤Mn

∥∥∥∥∥
m∑
k=n

γkUk

∥∥∥∥∥
2
 ≤ C2 E

[
Mn∑
k=n

γ2
k‖Uk‖2

]

= C2

Mn∑
k=n

γ2
kσ

2
k = C2

∫ τn+T

τn

γ2(s)σ2(s) ds, (B.7)

where Mn = Mn(T ) = M(τn + T ) is defined as in (B.2). Now, mimicking (B.6), let

∆0(t;T ) = sup
0≤h≤T

∥∥∥∥∥
∫ t+h

t

U(s) ds

∥∥∥∥∥. (B.8)

so our previous bound shows that

E[∆0(t;T )2] ≤ C2

∫ t+T

t

γ2(s)σ2(s) ds. (B.9)

We will proceed to show that limt→∞∆0(t;T ) = 0 for all T > 0 by considering the
sequence of intervals [kT, (k + 1)T ] and using the Borel-Cantelli lemma in order to show
that ∆0(kT ;T )→ 0 as k →∞. Indeed, we have

∞∑
k=1

E[∆0(kT ;T )2] ≤ C2

∫ ∞
0

γ2(s)σ2(s) ds = C2

∞∑
n=1

γ2
nσ

2
n <∞ (B.10)

with the last step following from Assumption (A2). Then, if we consider the event Ek(ε) =
{∆0(kT ;T ) > ε}, Chebysev’s inequality gives

∞∑
k=1

P(Ek(ε)) ≤
∑∞
k=1 E[∆0(kT ;T )2]

ε2
<∞, (B.11)

2Benaïm [7] provides a set of sufficient conditions for (B.5) to hold when Z(t) is generated by a RM
scheme with Bn = 0 and supn σn <∞; however, our setting requires a more general treatment.
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and hence, by the Borel-Cantelli lemma, we get

P
(

lim sup
k→∞

Ek(ε)

)
= 0. (B.12)

This shows that, with probability 1, we have ∆0(kT ;T ) ≤ ε for all but a finite number of
k; put differently, the event E(ε) = {∆0(kT ;T ) occurs infinitely often} =

⋂∞
n=1

⋃∞
k=n Ek(ε)

has P(E(ε)) = 0. Therefore, as a union of probability zero events, we have

P
(

lim inf
k→∞

∆0(kT ;T ) > 0

)
= P

( ∞⋃
n=1

E(1/n)

)
≤
∞∑
n=1

P(E(1/n)) = 0, (B.13)

i.e., ∆0(kT ;T )→ 0 with probability 1.
Thus, going back to the requirements of Proposition B.1, we get

∆(kT ;T ) = sup
0≤h≤T

∥∥∥∥∥
∫ kT+h

kT

W (t) dt

∥∥∥∥∥ = sup
0≤h≤T

∥∥∥∥∥
∫ kT+h

kT

[U(t) + b(t)] dt

∥∥∥∥∥
≤ ∆0(kT ;T ) + sup

0≤h≤T

∫ kT+h

kT

B(t) dt.

≤ ∆0(kT ;T ) + T max
0≤h≤T

B(kT + h). (B.14)

Given that limk→∞Bk = 0, the above shows that ∆(kT ;T ) → 0 as k → ∞. Moreover, for
all t ∈ [kT, (k + 1)T ], we have ∆(t;T ) ≤ 2∆(kT ;T ) + ∆((k + 1)T ;T ) so ∆(t;T ) → 0 with
probability 1. With T > 0 arbitrary, we conclude that (B.5) holds with probability 1, so
our claim follows from Proposition B.1. �

B.3. Proof of Proposition 1. We are now in a position to prove that the generalized RM
schemes presented in Section 3 comprise asymptotic pseudotrajectories of the mean dynam-
ics (MD). For convenience, we state the relevant result below:

Proposition 1. Let Zn be a sequence generated by any of the Algorithms 1–5. Assume further
that:

a) For first-order methods (Algorithms 1–4), the algorithm is run with SFO feedback
satisfying (3) and a step-size γn such that A/n ≤ γn ≤ B/

√
n(log n)1+ε for some

A,B, ε > 0.

b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters γn and
δn such that limn(γn + δn) = 0,

∑
n γn = ∞, and

∑
n γ

2
n/δ

2
n < ∞ (e.g., γn = 1/n,

δn = 1/n1/3).

Then Zn is almost surely an APT of (MD).

Proof. We first note that
∑
n γ

2
n < ∞ by our choice of step-sizes. Thus, in order to prove

that E[
∑
n γnBn] <∞, E[

∑
n γ

2
nB

2
n] <∞, and E[

∑
n γ

2
nσ

2
n] <∞, it suffices to show E[Bn] =

E[‖bn‖] = O(γn) and E[σ2
n] ≤ σ2 for some constant σ.

We next proceed method-by-method:

Algorithm 1: Stochastic gradient descent/ascent. For (SGDA), we have Wn = Un =
U(Zn;ωn) and bn = 0, so Assumption (A1) is satisfied automatically (since Bn = 0). Our
claim then follows from the stated assumptions for (SFO).
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Algorithm 2: Proximal point method. For (PPM), we have Un = 0 and

‖bn‖ = ‖V (Zn)− V (Zn+1)‖
≤ L‖Zn − Zn+1‖
= γnL‖V (Zn)‖
≤ γnLM = O(γn).

where L and M are the Lipschitz constant of V and Φ, respectively.
Algorithm 3: Stochastic extra-gradient. For (SEG), we have Un = U(Z+

n ;ω+
n ) and bn =

V (Z+
n )−V (Zn) so that E[σ2

n] ≤ σ2 by (SFO). To verify Assumption (A1), by the definition
of (SEG), we have

‖bn‖ = ‖V (Z+
n )− V (Zn)‖ ≤ L‖Z+

n − Zn‖
= γn‖V(Zn;ωn)‖ = γnL‖V (Zn) + U(Zn;ωn)‖
≤ γnL‖V (Zn)‖+ γnL‖U(Zn;ωn)‖. (B.15)

Since Φ is assumed to be Lipschitz and U(Zn;ωn) finite variance, taking the expectation on
both sides of the above shows E[Bn] = O(γn). It remains to verify that limn→∞Bn = 0
with probability 1. Now, by Chebyshev’s inequality and (SFO), we have

P
(
‖U(Zn;ωn)‖ ≥

√
n log1+ ε

2 n

)
≤ σ2

n log1+ ε
2 n

(B.16)

where ε is the same as in our choice of step-size in Proposition 1. In turn, this implies that
∞∑
n=2

P
(
‖U(Zn;ωn)‖ ≥

√
n log1+ ε

2 n

)
<∞

so, by the Borel-Cantelli lemma, we have ‖U(Zn;ωn)‖ = O
(√

n log1+ ε
2 n

)
with probability

1. Hence, by our assumptions for the method’s step-size, we get

γn‖U(Zn;ωn)‖ = O


√
n log1+ ε

2 n√
n log1+ε n

 = O
(

1

log
ε
4 n

)
(B.17)

so that, in view of (B.15), Bn → 0 with probability 1.
Algorithm 4: Optimistic gradient. For (OG/PEG), we have Un = U(Zn;ω+

n ) and bn =
V (Z+

n )− V (Zn), so E[σ2
n] = σ2 again holds by (SFO). The bias term can then be bounded

exactly as in the case of Algorithm 3.
Algorithms 1–4: Alternating RM schemes (alt-RM). We now show that the alternating
version of Algorithms 1–4 still constitute an APT of (MD).

By Lemma 2, we know that the alternating version of an RM scheme is another RM
scheme with the same noise and new bias satisfying:

‖b′n‖ ≤ ‖bn‖+ ‖Vy(Xn+1, Yn)− Vy(Xn, Yn)‖
≤ ‖bn‖+ L‖Xn+1 −Xn‖
≤ ‖bn‖+ γnL (‖V (Zn)‖+ ‖bn‖+ ‖Un‖) (B.18)

by the definition of an RM scheme. Since γnL‖bn‖ = o (‖bn‖), the rest is the same as
Algorithm 3.
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We also note that (B.18) can be applied recursively to show that the bias term b
(k1,k2)
n of

any (k1, k2) version of RM schemes satisfy

‖b(k1,k2)
n ‖ ≤ (k1 + k2 − 1)

(
‖bn‖+ γnL (‖V (Zn)‖+ ‖bn‖+ ‖Un‖)

)
, (B.19)

thus enjoying the same properties as the vanilla alternating (1, 1)-RM schemes in view of
(B.18).
Algorithm 5: Simultaneous perturbation stochastic approximation. Because of the algo-
rithm’s different oracle structure (zeroth- vs. first-order feedback), the analysis of (SPSA)
is different. We begin with the algorithm’s bias term, given here by

bn = E[Vn | Fn]− V (Zn) (B.20)

with
Vn = ±(d/δn) Φ(Zn + δnωn)ωn (B.21)

denoting the method’s one-shot SPSA estimator. To bound it, let

vi,n = E[Vi,n | Fn] (B.22)

denote the i-th component of Vn ∈ Rd after having averaged out the choice of the random
seed ωn (which, by default, is not Fn-measurable). We then have

vi,n = ± d

δn
· 1

2d

[
Φ(Zn + δnei)− Φ(Zn − δnei)

]
(B.23)

where, as per our discussion in Section 3, the “±” sign is equal to −1 if ei ∈ EX and +1
if ei ∈ EY . Then, by the mean value theorem, there exists some Ẽn in the line segment[
Zn − δnei, Zn + δnei

]
such that

vi,n = ±∂iΦ(Ẽn) = Vi,n(Ẽn). (B.24)

Since V is Lipschitz continuous, it follows that

|vi,n − Vi,n(Zn)| =
∣∣Vi,n(Ẽn)− Vi,n(Zn)

∣∣ ≤ L‖Ẽn − Zn‖ = O(δn) (B.25)

since Ẽn ∈
[
Zn−δnei, Zn+δnei

]
. Finally, for the oracle’s variance, we have ‖Vn‖2 = O(1/δ2

n)
by construction so, under the stated assumptions for γn and δn, Assumption (A2) is satisfied
and our claim follows from Theorem 1. �

Appendix C. Convergence analysis: Proof of Theorems 3–4

With all this preliminary work in hand, we are finally in a position to prove Theorems 3–4.
The heavy lifting for Theorem 2 is already provided by the fact that, under the require-

ments of Theorem 1 and/or Proposition 1, Zn is an APT of the mean dynamics (MD), so
it inherits its limit structure. Theorems 3 and 4 on the other hand require a completely
different set of techniques and involve a much finer analysis of the process in hand.

C.1. Avoidance of unstable periodic orbits. While the proof of Theorem 3 is highly techni-
cal, the high-level intuition for its conclusion is crystal clear: Assume that we are given an
unstable critical point z∗. Then, by the stable manifold theorem [81], the set of all initializa-
tions such that the flow of (MD) converges to z∗ is of measure 0 in Z. Consequently, if the
noise process {Un} is such that it has “non-negligible” magnitude in the unstable directions
near z∗, then it is plausible that the RM scheme should escape z∗ along these directions.
Assumption (ii) in Theorem 3 quantifies exactly the magnitude of noise for which we can
formalize this heuristic argument.

Throughout this section we assume that we are given:
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• A (d−m)-dimensional embedded submanifold S ⊂ Rd where 1 ≤ m ≤ d and d−m
is to be understood as the dimension of the unstable manifold.

• A nonempty compact set K ⊂ S invariant under Θ := {Θt : t ∈ R+}.
• We also assume that S is C2 is locally invariant: there exists a neighborhood U of
K in Rd and a positive time t0 such that

Θt(U ∩ S) ⊂ S (C.1)

for all |t| ≤ t0.
We further assume that for every point z ∈ K, we have

Rd = TzS ⊕ Euz (C.2)

where

(i) z → Euz is a continuous map from K into the Grassmanian manifold G(m, d) of m
planes in Rd.

(ii) D Θt(z)Euz = EuΘt(z) for all t ∈ R, z ∈ Euz .
(iii) There exist λ,C > 0 such that for all z ∈ K, w ∈ Euz and t ≥ 0

‖D Θt(z)w‖ ≥ Ceλt‖w‖. (C.3)

We call any K satisfying the above an unstable invariant set. As a simple illustration we
show:

Lemma C.1. If z∗ is a critical point of Φ with any eigenvalue λ of JV (z∗) such that
<{λ(JV (z∗))} > 0. Then z∗ verifies all the assumptions of an unstable invariant set.

As a corollary, Zn generated by any of the Algorithms 1–4 in Theorem 3 avoids z∗ almost
surely.

Proof. All the requirements for an unstable invariant set are readily verified by the Stable
Manifold Theorem [78]. The lemma follows by noting the the dimension for the unstable
manifold is greater than or equal to 1; see [78, Chap 5]. �

A further justification of these technical assumptions is the following: Suppose K is a
periodic orbit. We then say that K is (linearly) unstable if 1 is a Floquet multiplier of
K and some multipliers have modulus strictly greater than 1 [84]. If the vector field V is
assumed to be C2, then a classical result in dynamical systems (see e.g., [81]) states that K
verifies all the above assumptions.

We now proceed to the proof of Theorem 3. For ease of reading we reformulate its
statements in the following more convenient form:

Theorem 2. Let K be an unstable invariant set of V . Assume that

(i) There exists K > 0 such that ‖Un‖ ≤ K for all n.
(ii) γn is as in Proposition 1.
(iii) There exists a neighborhood U(K) of K and b > 0 such that for all unit vector

v ∈ Rd

E[〈Un+1, v〉+|Fn] ≥ b1{Zn∈U(K)} .

(iv) The vector field V is C2.

Then Zn generated by any of the Algorithms 1–4 satisfies

P
(

lim
n→∞

dist(Zn,K) = 0
)

= 0.
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proof of Theorem 3. We first note that, for our choice of γn,

lim
n→∞

γn√∑∞
k=n γ

2
k

= 0 (C.4)

so γn = o
(√∑∞

k=n γ
2
k

)
. This fact will be used in the proof when we invoke Lemma C.3

below with εn = O(γn) and αn =
∑∞
k=n γ

2
k therein.

Helper lemmas. We will need some technical lemmas. The first one is a deep result by
Benaïm and Hirsch [8], which asserts the existence of a local Lyapunov function near the
unstable periodic orbits.

For a right-differentiable function η : Rd → R we define its right derivative D η applied
to a vector h ∈ Rd by

D η(z)h = lim
t→0+

η(z + th)− η(z)

t
. (C.5)

If η is differentiable, then (C.5) is simply 〈∇ η(z), h〉.

Lemma C.2. There exists a compact neighborhood U(K) of K, positive numbers l, β > 0, and
a map η : U(K)→ R such that:

(i) η is C2 on U(K) \ S.
(ii) For all z ∈ U(K) ∩ S, η admits a right derivative D η(z) : Rd → Rd which is

Lipschitz, convex and positively homogeneous.
(iii) There exists k > 0 and a neighborhood W ⊂ Rd of 0 such that for all z ∈ U(K) and

v ∈ W
η(z + v) ≥ η(z) + D η(z)v − k‖v‖2. (C.6)

(iv) There exists c1 > 0 such that for all z ∈ U(K) \ S

‖∇ η(z)‖ ≥ c1 (C.7)

and for all z ∈ U(K) ∩ S and v ∈ Rd

〈D η(z), v〉 ≥ c1‖v −D Π(z)v‖. (C.8)

(v) For all z ∈ U(γ) ∩ S, u ∈ TzS and v ∈ Rd

D η(z)(u+ v) = D η(z)v. (C.9)

(vi) For all z ∈ U(K) we have

D η(z)V (z) ≥ βη(z). (C.10)

The second lemma we need is a probabilistic estimate from [71].

Lemma C.3. Let Sn be a nonnegative stochastic process, Sn = S0 +
∑n
k=1Xk where Xn is

Fn-measurable. Let αn :=
∑∞
k=n γ

2
k.

Assume there exist a sequence 0 ≤ εn = o(
√
αn), constants a1, a2 > 0 and an integer N0

such that for all n ≥ N0,

(i) |Xn| = o(
√
αn).

(ii) 1{Sn>εn} E[Xn+1|Fn] ≥ 0.

(iii) E[S2
n+1 − S2

n|Fn] ≥ a1γ
2
n.

(iv) E[X2
n+1|Fn] ≤ a2γ

2
n.

Then P(limn→∞ Sn = 0) = 0.
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Armed with Lemmas C.2 and C.3 we are now ready to prove Theorem 3.
Let N ∈ N. Assume zN ∈ U(K) where U(K) is the neighborhood given by Lemma C.2.

Define T as
T := inf{k ≥ N : Zn /∈ U(K)}. (C.11)

Evidently, T is a stopping time adaptive to Fn. Thus, proving Theorem 3 amounts to
showing P(T <∞) = 1. Without loss of generality we may assume N = 0.

Define two sequences of random variables {Xn}n≥2 and {Sn} as

Xn+1 =(η(Zn+1)− η(Zn))1{n≤T}+γn 1{n>T}, (C.12a)

S0 = η(Z0), Sn = S0 +

n∑
k=2

Xi. (C.12b)

Note that Sn ≥ 0 (a.s.) for every n. Our proof will revolve around verifying Lemma C.3(i)–(iv).
Verifying Lemma C.3(i) and (iv) . By Lipschitz continuity of η we know that

‖η(Zn)− η(Zn+1)‖ ≤ L′‖Zn − Zn+1‖
= γn‖V (Zn) + Un + bn‖ (C.13)

where L′ is the Lipschitz constant of η. We have seen in the proof of Proposition 1 that
‖bn‖ = O (γn(‖V (Zn)‖+ ‖Un‖)). By Proposition A.1 and Assumption (i) in Theorem 3,
we then have |Xn+1| = O(γn) = o(

√
αn) which implies both Lemma C.3(i) and (iv).

Verifying Lemma C.3(ii) . Let k′ = k‖V ‖ + K where k is given by Lemma C.2(iii) and
‖V ‖ := sup{V (z) : z ∈ U(K)} and K is the uniform bound of Un. If n ≤ T , using
Lemma C.2(ii), (iii), (v) and (vi) we have

η(Zn+1)− η(Zn) ≥ γn D η(Zn)(Un + bn + V (Zn))− kγ2
n(‖V ‖+ ‖Un‖+ ‖bn‖)2

≥ γnβη(Zn) + γn D η(Zn)Un + γn D η(Zn)bn − 2k′γ2
n − 2kγ2

n‖bn‖2.
(C.14)

By the same calculation leading up to (B.15), Assumption (i) in Theorem 3, and the Lip-
schitz continuity of Φ, there exists a constant c′ > 0 such that the bias sequence for Algo-
rithms 1–4 can be bounded as −‖bn‖ ≥ −c′γn (a.s.). Combining this with the Lipschitz
continuity of η, we can merge the last three terms in (C.14) as

η(Zn+1)− η(Zn) ≥ γnβη(Zn) + γn D η(Zn)Un − 2k′′γ2
n (C.15)

for some constant k′′ > 0. Thus

1{n≤T} E[Xn+1|Fn] ≥ 1{n≤T}
[
γnβη(Zn)− 2k′′γ2

n + γn E[D η(Zn)Un|Fn]
]
. (C.16)

By Lemma C.2(ii) again, we have

E[D η(Zn)Un|Fn] ≥ D η(Zn)E[Un|Fn] = 0 (C.17)

since we have assumed noise to be zero mean. Combining (C.16) and (C.17), we then get

1{n≤T} E[Xn+1|Fn] ≥ 1{n≤T}
[
γnβη(Zn)− 2k′′γ2

n

]
. (C.18)

If n > T , Xn+1 = γn so trivially

1{n≤T} E[Xn+1|Fn] ≥ 0. (C.19)

Combining (C.18) with (C.19), we see that Lemma C.3(ii) is satisfied with εn = k′′

β γn.
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Verifying Lemma C.3(iii) . We begin by observing that

E[S2
n+1 − S2

n|Fn] = E[X2
n+1|Fn] + 2Sn E[Xn+1|Fn]. (C.20)

If Sn ≥ εn, then the right-hand side of (C.20) is non-negative by Lemma C.3(ii) that we
just verified above. If Sn < εn, (C.18) with (C.19) imply that Sn E[Xn+1|Fn] ≥ −εnk′′γ2

n =
−O(γ3

n). In other words, (C.20) can be rewritten as

E[S2
n+1 − S2

n|Fn] ≥ E[X2
n+1|Fn]−O(γ3

n). (C.21)

Below, we shall prove that E[X2
n+1|Fn] ≥ b1γ

2
n for some b1 > 0 and n large enough. Com-

bining this with (C.21) proves Lemma C.3(iii).
From (C.15), we deduce

1{n≤T}
[
E[X+

n+1|Fn]−
(
γn E[(D η(Zn)Un)+|Fn]− k′′γ2

n

)]
≥ 0. (C.22)

Invoking Lemma C.2(iv) and Assumption (ii) in Theorem 3, we see that

1{n≤T}∩{Zn /∈S}

(
E[(D η(Zn)Un)+|Fn]− c1b

)
≥ 0 (C.23)

If Zn ∈ S, we can choose a unit vector vn ∈ ker(I − D Π(Zn))⊥ where Π denotes the pro-
jection operator onto S. By the definition of vn, we have 〈Un, vn〉 = 〈Un −D Π(Zn)Un, vn〉.
Let H = {n ≤ T} ∩ {Zn /∈ S}. By Lemma C.2(iv), Cauchy-Schwartz, and Assumption (ii)
of Theorem 3 we get

1H E[(D η(Zn)Un)+|Fn] ≥ c1 1H E[‖Un −D Π(Zn)Un‖|Fn]

≥ c1 1H E[〈Un −D Π(Zn)Un, vn〉+|Fn]

= c1 1H E[〈Un, vn〉+|Fn]

≥ c1b1H . (C.24)

Combining Eqs. (C.19) and (C.22)–(C.24) then gives

E[X+
n+1|Fn] ≥ γnc1b− k′′γ2

n. (C.25)

On the other hand, we always have E[X2
n+1|Fn] ≥ E[X+

n+1|Fn] by Jensen. It then follows
that E[X2

n+1|Fn] ≥ b1γ2
n for some b1 > 0 and large enough n as desired.

Closing the gap. We have now verified Lemma C.3(i)–(iv). Thus, Lemma C.3 concludes
that

P(limn→∞ Sn = 0) = 0. (C.26)

We will use (C.26) to show that T <∞ (a.s.).
Suppose T = ∞. Then Xn+1 = η(Zn+1) − η(Zn) and Sn = η(Zn) by (C.12a)-(C.12b),

and {Zn} remains in U(K) by definition of the stopping time T . Theorem 2 then asserts
the the limit set L({Zn}) of {Zn} is a nonempty compact invariant subset of U(K), so
that for all z′ ∈ L({Zn}) and t ∈ R, Θt(z

′) ∈ U(K). But then Lemma C.2(iv) implies
that η(Θt(z

′)) ≥ eβtη(z′) for all t > 0, forcing η(z′) to be zero. In other words, we have
L({Zn}) ⊂ S, which implies Sn = η(Zn)→ 0 . By (C.26), this event occurs with probability
0, thus showing that T is finite almost surely. �

C.2. Convergence to ICTs. We now prove Theorem 2, which we restate below for conve-
nience:

Theorem 2. If Assumptions (A1)–(A2) hold, then Zn converges almost surely to an ICT set
of Φ.
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Proof. By Theorem 1, Zn generates APT of the mean dynamics (MD). Now, let L =⋂
t≥0 cl(Z(t,∞)) be the limit set of Z(t), i.e., the set of limit points of convergent sequences

Z(tn) with limn tn = ∞. Our claim then follows by the limit set theorem of Benaïm and
Hirsch [9, Theorem 8.2]. �

As we discussed in the main part of our paper, the ICT sets of Φ may exhibit a wide
variety of structural properties (limit cycles, heteroclinic networks, etc.). As a complement
to this, we show below that, in gradient systems (V = −∇f for some f : Z → R), ICT sets
can only be compoments of equilibria. Specifically, building on a general result by Benaïm
[7], we have:

Proposition C.1. Suppose that V (z) = −∇f(z) for some Cd-smooth potential function
f : Z → R with a compact critical set crit(f) = {z∗ : ∇f(z∗) = 0}. Then, every ICT
set S of (MD) is contained in crit(f); moreover, f is constant on S. In particular, any
ICT set of (MD) consists solely of critical points of f .

Proof. Under the stated conditions, the critical set Z∗ := crit(f) of f coincides with the set
of rest points of (MD). Moreover, by Sard’s theorem [51], f(Z∗) has zero Lebesgue measure
and hence empty interior. Our claim then follows from Proposition 6.4 of Benaïm [7]. �

As another elementary illustration in addition to the gradient systems, one can show that
for bilinear games Φ(x, y) = xy, the ICT sets the whole space R2. This can be easily seen
by considering the widely known Hamiltonian function H(x, y) = x2 + y2, which satisfies
Ḣ = 0 provided (x, y) follows (MD). An immediate consequence of this fact is that any
point on R2 lies in some ICT set of (MD), which further implies that there is no bounded
attracting region, i.e., attractors.

C.3. Convergence to attractors. We now proceed with the analysis of RM schemes in the
presence of an attractor; the relevant result is Theorem 4:

Theorem 4. Let S be an attractor of (MD) and fix some confidence level α > 0. If γn is small
enough and Assumptions (A1)–(A2) hold, there exists a neighborhood U of S, independent
of α, such that P(Zn converges to S) ≥ 1− α if Z1 ∈ U .

Because of the generality of our assumptions, the proof of Theorem 4 requires a range of
completely different arguments and techniques. We illustrate the main steps of our technical
trajectory below:

(1) The first crucial component of our proof is to establish an energy function for (RM)
in a neighborhood of S. To do this, we rely on Conley’s decomposition theorem (the
so-called “fundamental theorem of dynamical systems”) which states that the mean
dynamics (MD) are “gradient-like” in a neighborhood of an attractor, i.e., they admit
a (local) Lyapunov function.

(2) Because of the noise in (RM), the evolution of E along the trajectories of (RM)
could present signifcant jumps: in particular, a single “bad” realization of the noise
could carry Zn out of the basin of attraction of S, possibly never to return. A major
difficulty here is that the driving vector field V is not assumed bounded, so it is not
straightforward to establish proper control over the error terms of (RM). However,
we show that, with high probability (and, in particular, with probability at least
1 − α), the aggregation of these errors remains controllably small; this is the most
technically challenging part of our argument and it unfolds in a series of lemmas
below.
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(3) Conditioning on the above, we will show that, with probability at least 1 − α, the
value of the trajectory’s energy cannot grow more than a token threshold ε; as a
result, if (RM) is initialized close to S, it will remain in a neighborhood thereof for
all n (again, with probability at least 1− α).

(4) Thanks to this “stochastic Lyapunov stability” result, we can regain control of the
variance of the process and use martingale limit and maximal inequality arguments
to show that Zn converges to S.

In the rest of this section, we make this roadmap precise via a series of technical lemmas
and intermediate results.
A local energy function for (RM). We begin by providing a suitable energy function for
(MD). Indeed, since S is an attractor of (MD), there exists a compact neighborhood K of
S, called the fundamental neighborhood of S, with the property that dist(Θt(z)tz,S) → 0
as t → ∞ uniformly in z ∈ K. Since all trajectories of (MD) that start in K converge to
S, there are no other non-trivial invariant sets in K except S. Hence, with K compact,
Conley’s decomposition theorem [19] shows that there exists a strongly smooth Lyapunov –
or “energy” – function E : K → R such that (i) E(z) ≥ 0 with equality if and only if z ∈ S;
and (ii) Ė(z) := 〈∇E(z), V (z)〉 < 0 for all z ∈ K\S (implying in particular that E(Θt(z)tz)
is strictly decreasing in t whenever z ∈ K \ S).

In the discrete-time context of (RM), the energy En := E(Zn) of Zn may fail to be
decreasing (strictly or otherwise). However, a simple Taylor expansion with Lagrange re-
mainder yields the basic energy bound

En+1 ≤ En + γn〈∇E(Zn), V (Zn)〉+ γnξn + γnψn + γ2
nθ

2
n, (C.27)

where the error terms ξn, ψn and θn are defined as

ξn = 〈∇E(Zn), Un〉 (C.28a)

ψn = Bn‖∇E(Zn)‖+ γnβB
2
n (C.28b)

θ2
n = β‖V (Zn) + Un‖2 (C.28c)

with β denoting the strong smoothness modulus of E over the compact set K. Clearly, each
of these error terms can be positive, so En may fail to be decreasing; we discuss how these
errors can be controlled below.
Error control. We begin by encoding the aggregation of the error terms in (C.27) as

Mn =

n∑
k=1

γkξk (C.29a)

and

Sn =

n∑
k=1

[γkψk + γ2
kθ

2
k] (C.29b)

Since E[ξn | Fn] = 0, we have E[Mn | Fn] = Mn−1, soMn is a martingale; likewise, E[Sn | Fn] ≥
Sn−1, so Sn is a submartingale. Interestingly, even though Mn appears more “balanced” as
an error (because ξn is zero-mean), it is more difficult to control because the variance of its
increments is

E[|γnξn|2 | Fn] = γ2
n E[|〈∇E(Zn), Un〉|2 | Fn], (C.30)

so the jumps of Mn can become arbitrarily big if Zn escapes K (which is the event we are
trying to discount in the first place). On that account, we will instead bound the total error
increments by conditioning everything on the event that Zn remains within K.
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To make this precise, consider the “mean square” error process

Rn = M2
n + Sn (C.31)

and the indicator events

En ≡ En(K) = {Zk ∈ K for all k = 1, 2, . . . , n} (C.32)

Hn ≡ Hn(ε) = {Rk ≤ ε for all k = 1, 2, . . . , n}, (C.33)

with the convention E0 = H0 = Ω. Moving forward, with significant hindsight, we will
choose ε small enough so that

{z ∈ Z : E(z) ≤ 2ε+
√
ε} ⊆ K (C.34)

and we will assume that Z1 is initialized in a neighborhood U ⊆ K such that

U ⊆ {z ∈ Z : E(z) ≤ ε}. (C.35)

We then have the following estimates:

Lemma C.4. Suppose that Z1 ∈ U and Assumptions (A1) and (A2) hold. Then

(1) En+1 ⊆ En and Hn+1 ⊆ Hn.
(2) Hn−1 ⊆ En.
(3) Consider the “bad realization” event

H̃n := Hn−1 \ Hn = Hn−1 ∩ {Rn > ε}
= {Rk ≤ ε for k = 1, 2, . . . , n− 1 and Rn > ε}, (C.36)

and let R̃n = Rn 1Hn−1
denote the cumulative error subject to the noise being “small”

until time n. Then:

E[R̃n] ≤ E[R̃n−1 + γnGBn + γ2
n[2βG2 + (2β +G2)σ2

n + βB2
n]]− εP(H̃n−1), (C.37)

where G2 = supz∈K{‖∇E(z)‖2 + ‖V (z)‖2} and, by convention, H̃0 = ∅, R̃0 = 0.

Proof. The first claim is obvious. For the second, we proceed inductively:

(1) For the base case n = 1, we have E1 = {Z1 ∈ K} ⊇ {Z1 ∈ U} = Ω (recall that Z1 is
initialized in U ⊆ K). Since H0 = Ω, our claim follows.

(2) Inductively, suppose that Hn−1 ⊆ En for some n ≥ 1. To show that Hn ⊆ En+1,
suppose that Rk ≤ ε for all k = 1, 2, . . . , n. Since Hn ⊆ Hn−1, this implies that
En also occurs, i.e., Zk ∈ K for all k = 1, 2, . . . , n; as such, it suffices to show that
Zn+1 ∈ K.

To do so, given that Zk ∈ U ⊆ K for all k = 1, 2, . . . n, the bound (C.27) gives

Ek+1 ≤ Ek + γnξn + γnψn + γ2
nθ

2
n, for all k = 1, 2, . . . n, (C.38)

and hence, after telescoping over k = 1, 2, . . . , n, we get

En+1 ≤ E1 +Mn + Sn ≤ E1 +
√
Rn +Rn ≤ ε+

√
ε+ ε = 2ε+

√
ε. (C.39)

We conclude that E(Zn+1) ≤ 2ε+
√
ε, i.e., Zn+1 ∈ K, as required for the induction.

For our third claim, note first that

Rn = (Mn−1 + γnξn)2 + Sn−1 + γnψn + γ2
nθ

2
n

= Rn−1 + 2γnξnMn−1 + γ2
nξ

2
n + γnψn + γ2

nθ
2
n, (C.40)

so, after taking expectations:

E[Rn | Fn] = Rn−1 + 2Mn−1γn E[ξn | Fn] + E[γ2
nξ

2
n + γnψn + γ2

nθ
2
n | Fn] ≥ Rn−1 (C.41)
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i.e., Rn is a submartingale. To proceed, let R̃n = Rn 1Hn−1 so

R̃n = Rn−1 1Hn−1 +(Rn −Rn−1)1Hn−1

= Rn−1 1Hn−2
−Rn−1 1H̃n−1

+(Rn −Rn−1)1Hn−1
,

= R̃n−1 + (Rn −Rn−1)1Hn−1
−Rn−1 1H̃n−1

, (C.42)

where we used the fact that Hn−1 = Hn−2\H̃n−1 so 1Hn−1
= 1Hn−2

−1H̃n−1
. Then, (C.40)

yields

Rn −Rn−1 = 2Mn−1γnξn + γ2
nξ

2
n + γnψn + γ2

nθ
2
n (C.43)

so

E[(Rn −Rn−1)1Hn−1 ] = 2E[γnMn−1ξn 1Hn−1 ] (C.44a)

+ E[γ2
nξ

2
n 1Hn−1

] (C.44b)

+ E[(γnψn + γ2
nθ

2
n)1Hn−1 ]. (C.44c)

However, since Hn−1 and Mn−1 are both Fn-measurable, we have the following estimates:

(1) For the noise term in (C.44a), we have:

E[Mn−1ξn 1Hn−1
] = E[Mn−1 1Hn−1

E[ξn | Fn]] = 0. (C.45)

(2) The term (C.44b) is where the reduction to Hn−1 kicks in; indeed:

E[ξ2
n 1Hn−1 ] = E[1Hn−1 E[|〈∇E(Zn), Un〉|2 | Fn]]

≤ E[1Hn−1
‖∇E(Zn)‖2 E[‖Un‖2 | Fn]] {by Cauchy–Schwarz}

≤ E[1En‖∇E(Zn)‖2 E[‖Un‖2 | Fn]] {because Hn−1 ⊆ En}

≤ G2σ2
n, {by Eq. (6b)}

where G2 = supz∈K{‖∇E(z)‖2 + ‖V (z)‖2}.
(3) Finally, for the term (C.44c), we have:

E[θ2
n 1Hn−1

] ≤ 2β E[‖V (Zn)‖2 1En +‖Un‖2] ≤ 2β(G2 + σ2
n), (C.46)

where we used the fact that 1Hn−1
≤ 1En ≤ 1. Likewise,

E[ψn 1Hn−1 ] ≤ E[GBn + γnβB
2
n]. (C.47)

Thus, putting together all of the above, we obtain:

E[(Rn −Rn−1)1Hn−1
] ≤ E[γnGBn + γ2

n[2βG2 + (2β +G2)σ2
n + βB2

n]]. (C.48)

Going back to (C.42), we have Rn−1 > ε if H̃n−1 occurs, so the last term becomes

E[Rn−1 1H̃n−1
] ≥ εE[1H̃n−1

] = εP(H̃n−1). (C.49)

Our claim then follows by combining Eqs. (C.42), (C.46), (C.47) and (C.49). �

Containment probability. Lemma C.4 is the key to showing that Zn remains close to S with
high probability: we formalize this in a final intermediate result below.

Proposition C.2. Fix some confidence threshold α > 0. If (RM) is run with sufficiently
small γn satisfying the conditions of Proposition 1, then

P(Hn | Z1 ∈ U) ≥ 1− α for all n = 1, 2, . . . (C.50)

i.e., Z remains within the basin of attraction K of S with probability at least 1− α.
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Proof. We begin by bounding the probability of the “bad realization” event H̃n = Hn−1\Hn.
Indeed, if Z1 ∈ U , we have:

P(H̃n) = P(Hn−1 \ Hn) = P(Hn−1 ∩ {Rn > ε})
= E[1Hn−1

×1{Rn>ε}]
≤ E[1Hn−1 ×(Rn/ε)]

= E[R̃n]/ε (C.51)

where, in the second-to-last line, we used the fact that Rn ≥ 0 (so 1{Rn>ε} ≤ Rn/ε).
Telescoping (C.37) yields

E[R̃n] ≤ E

[
R̃0 +G

n∑
k=1

γkBk +

n∑
k=1

γ2
k%

2
k

]
− ε

n∑
k=1

P(H̃k−1) (C.52)

where we set %2
n = 2βG2 + (2β + G2)σ2

n + βB2
n. Hence, combining (C.51) and (C.52) and

invoking Assumptions (A1) and (A2), we get
∑n
k=1 P(H̃k) ≤ 1

ε E
[∑n

k=1[γkGBk + γ2
k%

2
k]
]
≤

Γ/ε for some Γ > 0. Now, by choosing γn sufficiently small, we can ensure that Γ/ε < α;
therefore, given that the events H̃k are disjoint for all k = 1, 2, . . . , we get

P

(
n⋃
k=1

H̃k

)
=

n∑
k=1

P(H̃k) ≤ α (C.53)

and hence:

P(Hn) = P

(
n⋂
k=1

H̃c
k

)
≥ 1− α, (C.54)

as claimed. �

Convergence with high probability. We are finally in a position to prove the convergence of
generalized RM algorithms:

Proof of Theorem 4. By Proposition C.2, if Zn is initialized within the neighborhood U
defined in (C.35), we have P(Zn ∈ K | Z1 ∈ U) ≥ 1− α (note also that the neighborhood U
is independent of the required confidence level α). Since K is compact, if Zn ∈ K for all n,
we conclude by Theorem 1 that the continuous-time interpoloation Z(t) of Zn is an APT of
(MD).

Now, if we write L =
⋂
t≥0 cl(Z(t,∞)) for the limit set of Z(t), we will have K ∩ L 6= ∅

by the compactness of K and the fact that Zn ∈ K for all n ≥ 1; moreover, L is itself
compact as a closed subset of the compact set {Θt(z)tz : 0 ≤ t ≤ T, z ∈ K}. Since points
in L ∩ K are attracted to S under (MD) and L is invariant under (MD), we conclude that
L ∩ S 6= ∅. However, since L is internally chain-transitive (by Theorem 2) and internally
chain-transitive sets do not contain any proper attractors, we conclude that L ⊆ S. This
shows that Z(t) – and hence Zn – converges to S, and our proof is complete. �

Appendix D. Omitted details for Section 5

D.1. A general criterion for spurious ICT sets in almost bilinear games. We first provide
a generic criterion for the existence of spurious ICT sets in almost bilinear games (10);
cf. Lemma D.1. We then verify that the perturbation φ(y) = 1

2y
2 − 1

4y
4 employed in

Example 5.1 indeed satisfies the required conditions.
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Lemma D.1. Let φ(y) =
∑
k aky

k be an analytic function such that

∑
k

a2kkh
2k

k∏
i=1

2i− 1

2i
= 0 (D.1)

has a solution with h > 0. Then, for small enough ε, there is an ICT set of mean dynamics
(MD) with objective Φ(x, y) = xy + εφ(y) such that it does not contain any critical point.

Proof. Recall the mean dynamics (MD):

ż(t) = V (z(t)).

In the case of Φ(x, y) = xy + εφ(y), (MD) reads:{
ẋ = −y
ẏ = x+ εφ′(y)

. (D.2)

The most important tool of the proof is the Abelian integral [18]:

I(h) := −
∮
γh

φ′dx (AI)

where h > 0 is a parameter and γh is a family of ovals defined as in (2.3) of [18].
Suppose φ(y) = aky

k, so that φ′(y) = kaky
k−1. We choose γh = {z : ‖z‖ = h}. Then,

using the polar coordinate representation, we get

I(h) = −
∮
γh

φ′dx

= kak

∫ 2π

0

hk sink(θ)dθ

= kak ·

{
0, k odd
2πhk

∏ k
2
i=1

2i−1
2i , k even

. (D.3)

Since contour integrals are linear in the integrands, when φ(y) =
∑
k aky

k in (AI), we have

I(h) = 4π
∑
k

a2kkh
2k

k∏
i=1

2i− 1

2i
.

Therefore, I(h) = 0 if and only if (D.1) holds. By Theorem 2.4 in [18], the solution h∗

of I(h∗) = 0 then implies the existence of a limit cycle in a neighborhood of the oval
γh∗ := {z : ‖z‖ = h∗}. �

Finally, it is easy to verify that for φ(y) = 1
2y

2 − 1
4y

4, the condition (D.1) is satisfied

with h∗ =
√

4
3 , thus implying the existence of a spurious ICT set near the neighborhood of

{z : ‖z‖ =
√

4
3}.

D.2. Proof of spurious ICT sets in Example 5.2. We show the existence of two spurious
ICT sets in Example 5.2.

The mean dynamics (MD) for (11) reads:{
ẋ = −(y − 0.5)− 1

2x+ 2x3 − x5

ẏ = x− 1
2y + 2y3 − y5 . (D.4)
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Define r2 := x2 + y2. Then straightforward calculations show that:
1

2

d

dt
r2 = xẋ+ yẏ

= −x(y − 0.5)− 1

2
x2 + 2x4 − x6 + xy − 1

2
y2 + 2y4 − y6

= 0.5x− 1

2
r2 + 2r4 − r6 + 3x4y2 + 3x2y4 − 4x2y2

= 0.5x− 1

2
r2 + 2r4 − r6 + x2y2

(
3r2 − 4

)
. (D.5)

Substituting the value r2 = 4
3 into (D.5), we get

1

2

d

dt
r2 = 0.5x+

1

2
· 4

3
+ 2 · 16

9
− 64

27

= 0.5x+
14

27
> 0

since |x| ≤
√

4
3 on {r ≥ 0 : r2 = 4

3}, whence ṙ > 0 on {r ≥ 0 : r2 = 4
3}. Likewise, one can

check that ṙ < 0 on {r ≥ 0 : r2 = 2}, and that there is no stationary point in the region
S := {r ≥ 0 : 4

3 ≤ r2 ≤ 2}. By the Poincaré-Bendixson theorem [85], there exists at least a
limit cycle in S.

Finally, it is easy to see that (x∗, y∗) ' (0, 0.49) is a stable critical point of (11). Since
the region S is trapping, Poincaré’s index theorem then dictates that there exists at least
another unstable limit cycle inside S, establishing the claim.

D.3. Second-order methods. In this section, we discuss how to cast existing second-order
methods as an RM scheme with different driving vector fields, and show that their ICT sets
are similar to the first-order methods under practical settings.

H Example D.1 (Second-order methods). Thanks to the efficient implementation of Hessian-
gradient multiplications [69], a popular second-order method for min-max optimization in
machine learning is the Hamiltonian descent method [1]. The idea is simply to run SGD on
f = ‖∇Φ‖2/2, giving

Zn+1 = Zn − γnJV (Zn)∇Φ(Zn). (HD)
As a (discretized) gradient system, our theory in Section 4 shows that (HD) does not possess
ICT sets other than critical points of f . However, a serious issue of (HD) is that it ignores the
sign of gradients, i.e., it does not distinguish between minimization and maximization. As
such, it has mostly been used as a gradient penalty scheme by mixing (HD) (or its variants)
with (SGDA), giving rise to a number of other second-order methods such as symplectic
gradient adjustment (SGA) [5] and consensus optimization (ConO) [61]. As in Section 3,
one can cast these algorithms as RM schemes with V (Zn) replaced by (I−λJV (Zn))V (Zn),
where λ is the regularization parameter. The analysis can then proceed as in Section 4 by
replacing (MD) with the appropriate continuous-time systems.

Fig. 4(a) shows the spurious convergence of SGA with λ = 0.2 applied to (11). The ICT
sets of SGA are only slightly different from Algorithms 1–5 and, in a certain precise sense,
are perturbations thereof (so they suffer the same symptoms). N

We now discuss how to model second-order methods as RM schemes. We will showcase
on the consensus optimization (ConO):

Zn+1 = Zn + γn(I − λJV (Zn))V (Zn) (ConO)
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where λ > 0 is the regularization parameter. Recalling the efficient implementation scheme
of Hessian-gradient multiplication [69], we make the following assumption on the stochastic
second-order oracles (SSO): when called at z = (x, y) with random seed ω′ ∈ Ω, an SSO
returns a random vector JV(z;ω′) of the form

JV(z;ω′) = JV (z)V (z) + U′(z;ω′) (SSO)

where U′(z;ω′) is assumed to be unbiased and sub-Gaussian as in (3). With these assump-
tions, one can then proceed exactly as in Appendix B.3 for the Algorithms 1–4 cases to
show that ConO, and its alternating version, give rise to asymptotic pseudotrajectories of
the continuous-time dynamics:

ż(t) =

(
I − λJV (z(t))

)
V (z(t)).

Fig. 4(b) demonstrates that the spurious ICT sets of ConO for (11) is similar to that of
SGA.

Similarly, one can show (under appropriate assumptions of the oracles) the continuous-
time dynamics of symplectic gradient adjustment (SGA) is

ż(t) =

(
I − λ

(
JV (z(t))− JV (z(t))>

2

))
V (z(t)).

As explained in Example D.1, it is undesirable to set a large number of λ, since then we
are essentially treating min max and max min as the same problem. However, if λ is small,
then the structure stability of hyperbolic orbits (which holds for any stable/unstable ICT
sets) implies that any stable (unstable) ICT set of (MD) remains stable (unstable) under
perturbations [85]. We therefore expect the ICT sets of various second-order algorithms in
Example D.1 be to similar to that of first-order RM schemes.

In addition, we have included yet another second-order method, the Competitive Gradient
Descent (CGD) [80], in Fig. 5(a). For ease of comparison, we run (OG/PEG) with the same
initialization in Fig. 5(b). As is evident from the figure, both algorithms perform similarly
and converge straight to the spurious ICT set.

Finally, we report the behavior of various algorithms applied to the “almost bilinear game”
(10) in Fig. 5(c). In this case, all algorithms fail to escape the spurious ICT set, with the sole
exception of ConO. Intriguingly, ConO converges to the unstable critical point. A plausible
explanation of this phenomenon is provided by [1], where it is shown that the Hamiltonian
descent (HD) converges to critical points for any almost bilinear game. Therefore, it is not
surprising that ConO, being a mixture of SGDA and HD, also enjoys similar guarantees.
Such a convergence is nonetheless highly undesirable in our example, echoing the concern
that gradient penalty schemes cannot distinguish (local) min max from max min.

4.4. Constant step-sizes. We report in Fig. 6 the behaviors of constant step-size RM schemes.
In accord with our intuition, these schemes exhibit concentration behaviors around the at-
tractors.

4.5. Adaptive methods. We report in Fig. 7 the behaviors of popular adaptive algorithms
for min-max optimization, including Adam [46] and its extra-gradient variant [30], both set
to default hyperparameter values in PyTorch. The result reveals a potentially dangerous
trend: while both Adam and ExtraAdam are able to somewhat mitigate cycling phenomena,
this comes at the cost of converging to the max-min point (0, 0) of (10). In other words,
the algorithm has converged, but to a very bad solution point – an observation which, in
the terminology of Letcher [52], would mean that Adam is not a “reasonable” algorithm.
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Figure 4: Spurious limits of second-order algorithms. From left to right: (a) SGA
with λ = 0.2 applied to (11); (b) ConO with λ = 0.2 applied to (11).

Figure 5: Spurious limits of min-max optimization algorithms from the same
initialization. From left to right: (a) CGD for (11); (b) (OG/PEG) for (11); (c)
Algorithms for (10).
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Figure 6: RM schemes with constant step-size γn = 0.01 under the same initial-
izations. From left to right: (a) (SGDA) for (10) with ε = .1; (b) (SGDA) for
(11); (c) (SEG) for (10) with ε = .1; (d) (SEG) for (11).

Moreover, as all RM schemes, both adaptive methods fail to reach the “forsaken” solutions
in Example 5.2.
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Figure 7: Adaptive algorithm. From left to right: (a) Adaptive algorithms for
(10); (b) Adaptive algorithms for (11).
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