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Abstract

We introduce a numerical methodology which applies to a broad class of partial differential equations and
discrete models, and is referred to here as the transport-based mesh-free method. It led us to several numerical
algorithms which are now implemented in a Python library, called CodPy. We develop a mesh-free discretization
technique based on the (so-called RKHS) theory of reproducing kernels and the theory of transport mappings,
in a way that is reminiscent of Lagrangian methods in computational fluid dynamics. The strategy is relevant
when a large number of dimensions or degrees of freedom are present, as is the case in mathematical finance and
machine learning, but is also applicable in fluid dynamics. We present our algorithms primarily for the Fokker-
Planck-Kolmogorov system of mathematical finance and for neural networks based on support vector machines.
The proposed algorithms are nonlinear in nature and enjoy quantitative error estimates based on the notion of
discrepancy error, which allow one to evaluate the relevance and accuracy of given data and numerical solutions.
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1 Introduction

We consider several typical problems arising in financial engineering and data science and propose a numerical method-
ology which is mesh-free and based on a combination of analytical and algorithmic techniques, including the theory of
reproducing kernels (also referred to as the RKSH theory) and the theory of transport mappings. By expanding our
earlier work [14]–[17], the proposed transport-based mesh-free method applies to a broad class of partial differential
equations (PDEs) and discrete problems and is particularly relevant when a large number of dimensions are involved.

The methodology advocated in the present paper is motivated by earlier work in fluid and material dynamics and
in statistics. We refer the reader to [3] for background material on kernels and their application in computational
statistics. For contributions in approximation theory, we refer to [2, 7, 8, 25, 31, 32, 36, 37], while for development
of mesh-free methods in fluid dynamics and material sciences we refer to [4, 9, 12, 22, 23, 24, 27, 30, 38]. Designing
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algorithms that merge together techniques of machine learning and numerical PDEs is a very active domain of research
[10, 11, 33].

Our approach provides a path to tacking the so-called curse of dimensionality which limits the performance of
numerical algorithms in large dimensions. After introducing elementary material about the theory of reproducing
kernels which serves as a backbone for the development of our numerical algorithms, we begin in Section 2 by
presenting kernel-based discretization formulas for differential operators and extrapolation/interpolation operators.
By using such operators, we can guarantee that our numerical algorithms are consistent with the problem under
consideration, robust, and stable, as demonstrated by our numerical tests illustration. (The theoretical analysis of
the algorithms is outside the scope of the present paper, which is focused on the presentation of the techniques and
applications.)

We consider three domains of application of independent interest, as follows.

• Machine learning (Section 3): we revisit the formulation of Support Vector Machine arising in data science, and
formulate an algorithm that combines together three levels and possibly several kernels.

• Mathematical finance (Section 4): we introduce a kernel-based discrete scheme for the approximation of the
(forward) Fokker-Planck equation and the (backward) Kolmogorov equation, respectively.

• Polar decompositions (Section 5): we revisit the classical problem of the (signed) polar decomposition of map-
pings, and propose continuous and discrete algorithms.

For each problem we rely on our notions of kernel-based discretization, interpolation, and extrapolation. The discrete
solutions depend upon the selection of a reproducing kernel and enjoy certain stability properties and are endowed
with (a posteriori in nature) error estimates based on the notion of discrepancy distance and discrepancy sequences.
We emphasize that our schemes are nonlinear in nature, even when the problems under consideration are linear.
Each algorithm is illustrated by numerical experiments which demonstrate the efficiency of the proposed approach.
While the present paper describes the algorithms and contains only basic numerical tests, while the companion papers
[18]–[21] present the implementation of our algorithms as a Python code, called CodPy (standing for the “Curse of
dimensionality in Python”). We refer the reader to this later paper for more specific problems and applications.

The use of the reproducing kernel techniques, which we advocate here and in [14]–[17], has several motivations.
An important feature implied by the use of reproducing kernels is the possibility of computing error estimates based
on the notion of discrepancy distance which allows for a quantitative error evaluation of the integration error or
the discretization error associated with a given algorithm and a given set of data or solutions. This is a significant
advantage in comparison to standard approaches used in in artificial neural networks and mathematical finance. Error
estimates are essential in applications in order to decide the relevance of numerical output, and may also provide an
important feedback on the relevance of the mathematical model itself. In addition, kernel engineering techniques
(based on sums, products, or compositions of kernels) fit well within such a framework.

We build upon the results established earlier in [17] in which we systematically investigated, from the computa-
tional standpoint, kernel-based mesh-free approximations of multi-dimensional integrals. A kernel typically captures
regularity and qualitative properties of functions “beyond” the standard Sobolev regularity class, which is an essential
flexibility for many problems under consideration in data science and finance. In [17], we made comparisons between
several numerical strategies, several choices of the kernel, and investigated the role played by the number of discretiza-
tion points and the dimension of the problem. Quantitative error estimates in terms of a discrepancy distance are
available for kernel-based algorithms, while such estimates are not available for purely random algorithms.

An outline of this paper is as follows. In Section 2 we present mesh-free discretization of integrals and differential
operators, while Section 3 is devoted to their applications to support vector machines in machine learning. In Section 4,
we present an algorithm for the Fokker-Plank-Kolmogorov system in mathematical finance, and finally Section 5 we
are discuss an algorithm for the signed-polar decomposition in transport theory.

2 Mesh-free discretization of integrals and differential operators

2.1 Discrepancy and transport

Error integration estimate. We begin with an informal discussion restricted to the whole space RD (with D ≥ 1),
before presenting our discretization formulas for differential operators and extrapolation/interpolation operators.
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Introducing mesh-free, kernel-based discretization formulas is our main objective in this section, since they will be at
the heart of the algorithms of the following three sections. Observe that sufficient regularity is assumed throughout
this paper, so we do not discuss any issue on mathematical analysis.

Given an unstructured mesh in RD represented by a set of N distinct points Y = (y1, . . . , yN ), we consider an
approximation of any given probability measure µ on RD by a sum of Dirac masses δyn with equal weights, that is,

µ ' δY =
1

N

∑
1≤n≤N

δyn . (2.1)

The accuracy of this approximation is determined by a distance among measures for averages of continuous and
globally integrable functions ϕ. To this end, a functional space denoted by HK(RD) is defined and, in this space, we
seek an estimate of the form ∣∣∣ ∫

RD

ϕdµ− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ dK(µ, δY )‖ϕ‖HK(RD), (2.2)

where, in the setup under consideration, the optimal coefficient dK(µ, δY ) can be expressed explicitly in terms of the
kernel and the set of points.

Discrepancy error. More precisely, HK(RD) is the so-called reproducing kernel Hilbert space associated with a
prescribed kernel K. By definition, the latter is a continuous and symmetric function K : (x, y) ∈ RD×RD 7→ R such
that the matrix K(Y, Y ) =

(
K(yn, ym)

)
1≤n,m≤N is (symmetric) positive-definite for any set of distinct points. The

Hilbert space of interest HK(RD) defined by completion of Span
{
K(·, x) / x ∈ RD

}
consists of all linear combinations

of the functions K(x, ·) (parametrized by x ∈ RD). This space is naturally endowed with a scalar product (see (2.10)
below), and the coefficient dK(µ, δY ) in (2.2) is referred to as the discrepancy error and reads

dK(µ, δY )2 =

∫∫
RD×RD

K(x, y)dµ(x)dµ(y) +
1

N2

N∑
n,m=1

K(yn, ym)− 2

N

∑
1≤n≤N

∫
RD

K(x, yn)dµ(x). (2.3)

A set of points Y is called a sharp discrepancy set if it achieves the global minimum of the functional, that is,
Y = arg infY dK(µ, δY ). Even if minimum is not achieved exactly, in numerical applications we can seek a numerical
approximation Y and use dK(µ, δY ) as our discrepancy error in (2.2). This is the setup in which we can evaluate the
error made in our algorithms below.

Methodology and transport maps. An additional feature of our approach is as follows. Given any discrete or
continuous problem we can choose an admissible kernel K adapted the problem and introduce the corresponding
functional space HK(RD). We will then have various discrete approximation formulas as described in the rest of this
section, including (2.1) whose accuracy is determined by computing the error function (2.3) in (2.2). Then, in order
to optimize the convergence rate we can compute numerically an approximation of a sequence of points achieving
(4.14). From a practical point of view, the discrepancy error can computed quite efficiently by, for instance, a direct
Monte-Carlo approach as we do later in the test presented in this paper. We thus have a concrete approach for
evaluating the accuracy of our approximation in quantitative way, which is essential in many applications.

In this juncture, we can also apply an optimal transport step [35], as follows. Let us consider a convex and open
set Ω ⊂ RD with piecewise smooth boundary and, typically, we may take (0, 1)D. Using a transportation argument,
we reduce the study (2.2) to the same problem for the Lebesgue measure λ = dx on Ω. Namely, consider the transport
map S : Ω 7→ RD associated with a given measure µ (with convex support), that is, the unique map satisfying∫

RD

ϕdµ =

∫
Ω

(ϕ ◦ S)dx, (2.4)

for all continuous and globally integrable functions ϕ : RD → R. that moreover takes the form S = ∇h for some
convex maps h (∇ denoting the gradient operator). The inequality (2.2) is then equivalent to∣∣∣ ∫

Ω

(ϕ ◦ S) dx− 1

N

∑
1≤n≤N

(ϕ ◦ S)(xn)
∣∣∣ ≤ dK(λ, δS−1Y )‖ϕ ◦ S‖HK(Ω), (2.5)
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with yn = S(xn), where ϕ ◦S denotes the composition of two maps and HK(Ω) is the space defined on Ω (see below).

2.2 Notation for the continuous framework

Admissible kernels. Since we are primarily interested in kernels defined on a bounded set, we focus our presentation
for now to this class —although we will allow ourselves to manipulate kernels defined on the whole Euclidian space.
(For instance, such kernels may be used in order to generate the kernels of actual interest). A reproducing kernel
[7, 36] provides a convenient way to generate a broad class of Hilbert spaces. A bounded and continuous function
K : Ω × Ω → R on a bounded open set Ω ⊂ RD is called an admissible kernel if it satisfies (1) the symmetry
property: K(x, y) = K(y, x) for all x, y ∈ Ω, and (2) the positivity property: for any collection of N distinct points
Y = (y1, . . . , yN ) in Ω, the symmetric matrix K(Y, Y ) =

(
K(ym, yn)

)
1≤n,m≤N is positive definite in the sense that

aTK(Y, Y )a > 0 for all a ∈ RN \ {0}. It is said to be uniformly positive if there exists a uniform constant c > 0 such
that for any collection of distinct points Y one has aTK(Y, Y )a ≥ c |a|2 for all a ∈ RN .

Clearly, any admissible kernel satisfies

K(x, x) ≥ 0, K(x, y)2 ≤ K(x, x)K(y, y), x, y ∈ Ω. (2.6)

This implies that 2K(x, y) ≤ K(x, x) +K(y, y) and, therefore, the non-negative function

D(x, y) = K(x, x) +K(y, y)− 2K(x, y) ≥ 0, x, y ∈ Ω, (2.7)

can be interpreted as a “pseudo-distance” in view of the properties D(x, x) = 0 and D(x, y) = D(y, x). The triangle
inequality need not hold; however the example K1(x, y) = 1 − |x − y| on [0, 1] gives D1(x, y) = 2 |x − y| which does
satisfy the triangle inequality.

Functional spaces. Given an admissible kernel K : Ω×Ω→ R, we now introduce the (infinite dimensional) space

H̃K(Ω) consisting of all finite linear combinations of the functions K(x, ·) parametrized by x ∈ Ω, that is,

H̃K(Ω) = Span
{
K(·, x) / x ∈ Ω

}
, (2.8)

which we endow with the scalar product and norm defined as follows. To any two functions ϕ =
∑

1≤m≤N amK(·, ym)

and ψ =
∑

1≤n≤N bnK(·, yn) for any N distinct points Y = (y1, . . . , yN ) in Ω, we associate the bilinear expression
(with a = (am), etc.)

〈ϕ,ψ〉H̃K(Ω) = aTK(Y, Y )b =
∑

1≤m≤N

∑
1≤n≤N

ambnK(ym, yn), (2.9)

which endows the space with a Hilbertian structure with norm ‖ϕ‖2
H̃K(Ω)

= aTK(Y, Y )a. (Here, both Y and N may

be arbitrary.) By construction, the reproducing kernel property holds in H̃K(Ω):

〈K(·, x),K(·, y)〉H̃K(Ω) = K(x, y), x, y ∈ Ω. (2.10a)

From the Cauchy-Schwarz inequality, it follows that for any ϕ ∈ H̃K(Ω) and x ∈ Ω

|ϕ(x)| = |〈K(·, x), ϕ〉H̃K(Ω)| ≤ ‖K(·, x)‖H̃K(Ω) ‖ϕ‖H̃K(Ω) =
√
K(x, x) ‖ϕ‖H̃K(Ω). (2.10b)

Since the kernel is continuous and bounded, the “point evaluation” ϕ 7→ ϕ(x) is thus a linear and bounded functional

on H̃K(Ω) (for any x ∈ Ω).
We have defined a pre-Hilbert space, that is, a vector space endowed with a scalar product and, in order to obtain a

complete metric space, the completion of the pre-Hilbert space H̃K(Ω) is considered by taking all linear combinations
based on countably many points Y = (y1, y2, . . .) in Ω. The corresponding space is denoted by HK(Ω) and is the
reproducing Hilbert space generated from the kernel K.

Clearly, both properties (2.10) remain true in HK(Ω), and we also observe that

|ϕ(x)− ϕ(y)| = |〈K(·, x)−K(·, y), ϕ〉HK(Ω)|
. ‖K(·, x)−K(·, y)‖HK(Ω)‖ϕ‖HK(Ω) = D(x, y)‖ϕ‖HK(Ω), x, y ∈ Ω.

(2.11)

Since K and thus D are continuous in Ω, all functions in HK(Ω) are continuous, at least.
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Discrepancy functional. Consider the integration error in (2.2), which is split into two parts, namely

• a contribution estimating the regularity of the function ϕ under consideration, which is is independent of the
choice of the interpolation points, and

• a contribution depending solely upon the kernel K and the mesh points, which is independent of the choice of
the function.

Various equivalent formulations of the second term can be derived [17], in physical variables, in spectral variables
associated with the kernel, as well as in discrete Fourier variables associated with a lattice. Although these formulations
are in principle equivalent, they shed a very different light on the problem. For the factorization in physical variables,
we find (2.3) as stated earlier.

2.3 Definition of discrete projection and differential operators

A scale of finite dimensional spaces. Let us summarize our notation in the finite dimensional setup, in which
we now fix an integer N , a finite collection of points Y = (y1, . . . , yN ) in Ω, together with an admissible K on Ω.
Based on these data, we define the finite dimensional vector space HKY (Ω) consisting of all linear combinations of the
so-called basis functions x 7→ K(x, yn), that is,

HKY (Ω) =
{ ∑

1≤m≤N

amK(·, ym) / a = (a1, . . . , aN ) ∈ RN
}
. (2.12)

Since the kernel K is continuous, HKY (Ω) embeds into the space of all continuous functions on Ω. We consider the
bilinear expression (2.2) and the corresponding Hilbert space HKY (Ω) with norm ‖ϕ‖2HK

Y (Ω)
= aTK(Y, Y )a. The

reproducing kernel property (immediate from (2.9))

〈K(·, ym),K(·, yn)〉HK
Y (Ω) = K(ym, yn), (2.13)

allows one to relate the coefficients am of the decomposition of a function ϕ =
∑

1≤m≤N amK(·, ym) to its scalar
product with the basis functions, namely

ϕ(yn) = 〈ϕ,K(·, yn)〉HK
Y (Ω) =

∑
1≤m≤N

am〈K(·, ym),K(·, yn)〉HK
Y (Ω)

=
∑

1≤m≤N

amK(ym, yn) = aTK(Y, yn),
(2.14)

which is nothing but the standard scalar product of the vectors a and K(Y, yn) (for any given n).

K-projection. Given any continuous function f on Ω), the vector fY =
(
f(y1), . . . , f(yN )

)
consists of the values

of this function at the given points. We define PK
Y (f) in the space HKY (Ω) by reconstructing a suitable element of

HKY (Ω) from the given vector fY , specifically we set

PK
Y (f)(x) = aTK(x, Y ) =

∑
1≤n≤N

anK(x, yn), x ∈ Ω, a = K(Y, Y )−1fY . (2.15a)

Clearly, (PK
Y ◦PK

Y )(f) = PK
Y (f) and, moreover, PK

Y (ϕ) = ϕ for any function ϕ = aTK(·, Y ) ∈ HKY (Ω). The norm of
the K-projection operator PK

Y is
‖PK

Y (f)‖2HK
Y (Ω) = fTY K(Y, Y )−1fY . (2.15b)

A basis of functions is naturally associated with the discrete space HKY (Ω), and consists of the set of N functions
θnY : Ω → R taking the values 0 or 1 at the points of the set Y . Precisely, using the notation θY = (θ1

Y , . . . , θ
N
Y ), we

define the K-basis (as a whole) by

θY (x) = K(Y, Y )−1K(Y, x), x ∈ Ω. (2.16)

5

Electronic copy available at: https://ssrn.com/abstract=3790066



It follows that, as expected, (
θY (ym)

)
1≤n,m≤N = K(Y, Y )−1K(Y, Y ) = Id (2.17a)

(the identity matrix) or θnY (ym) = δnm (using Kronecker notation). On the other hand, the scalar product of any two
basis functions is 〈

θmY , θ
n
Y

〉
HK

Y (Ω)
= K−1(ym, yn), (2.17b)

where K−1(ym, yn) stands for the (n,m)-coefficient of the matrix K(Y, Y )−1. Importantly, this partition of unity is
useful in expressing the discrete projection of a function f : Ω→ R, namely

PK
Y (f) =

∑
1≤n≤N

f(yn)θnY . (2.17c)

K-gradient operator. Once more, we fix a set of points Y = (y1, . . . , yN ) in Ω and we are interested in functions
in the associated discrete space HKY (Ω). Given a continuous function h : Ω→ R, by using our notation hY = h(Y ) =
(h(y1), . . . , h(yN )) ∈ RN we introduce the K-gradient ∇KY h of the function h, defined by taking the gradient of the
basis function as the D-vector-valued function

(∇KY h)(x) =
∑

n=1,...,N

h(yn)∇θn(x) = (∇KY )(x)K(Y, Y )−1hY ∈ RD, x ∈ Ω, (2.18a)

where (∇KY )(x) =
(
∇K(y1, x), . . . ,∇K(yN , x)

)
∈ RN×D is a rectangular matrix. This definition can be cast in the

form of an operator, namely with

∇K(Y, Y ) =
(
∂dK(yn, ym)

)
d=1,...,D;n,m=1,...,N

∈ RD×N×N (2.18b)

the K-gradient operator ∇KY reads

∇KY =
(
∂dK(Y, Y )K(Y, Y )−1 ∈ RN×N

)
d=1,...,D

= ∇KYK
−1
Y ∈ RD×N×N (2.18c)

Other K-operators. We can also define many other integro-differential operators of interest in the applications.
For instance, we can introduce the K-divergence operator (∇KY )T , where the transposition is defined with respect
to the standard Euclidian product, i.e. for any vectors hY ∈ RN and fY ∈ RN×D we write

< hY , (∇Y )T fY >RN =< ∇KY hY , fY >RN×D . (2.19)

The connection with a weak formulation for functions defined on RD is as follows. For any measure µ and scalar-valued
function h : RD 7→ R, and a smooth vector field f on RD, we have

< ∇h, fµ >D,D′=
∫
RD

< ∇h, f >RD dµ = −
∫
RD

h
(
∇ · fdµ

)
. (2.20)

Thus, (∇KY )T f ' −
(
∇·fdµ

)
is meaningful in a weak sense with the choice µ = 1

N

∑N
n=1 δyn . Observe that this notion

is not fully consistent with the standard divergence operator but depends upon the kernel.
The K-Laplacian operator defined as ∆K

Y = ∇KY · ∇KY ∈ RN×N is the discrete counterpart of the standard
Laplacian operator ∆, and here we use contraction with respect to the indices d = 1, . . . , D and matrix multiplication
in the indices n = 1, . . . , N .

The K-Hessian operator defined as ∇K,2Y = ∇KY ⊗∇KY ∈ RD×D×N×N is the discrete counterpart of the standard
Hessian operator ∇2 and involves a standard matrix multiplication in the two indices ranging 1, . . . , N .

Finally, for any discrete vector field SY ∈ RN×D we introduce

ΠK
Y SY =

(
∇KY

(
(∇KY )T∇KY

)−1
(∇KY )TSY

)
, ζY = LY SY =

(
Id−ΠK

Y

)
SY , (2.21a)

and obtain the orthogonal K-Hodge decomposition

SY = ∇KY (hY + fY ) + ζY , (∇KY )T ζY = 0, (∇KY )T∇KY fY = 0, (2.21b)

where fY representss a discrete harmonic component. This decomposition is modeled upon the Hodge decomposition

S = ∇(h+ h0) + ζ, ∇ · ζµ = 0, ζ · η = 0, ∇ · (∇hµ) = 0, (2.21c)

where h0 has compact support and µ ' 1
N

∑N
n=1 δyn .
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2.4 Definition of discrete interpolation and extrapolation operators

Setup. An admissible kernel K is fixed throughout. Consider an arbitrary collection of M points Y in Ω ⊂ RD and
a vector-valued function f = f(y) ∈ RP , which provide us with the two sets of data Y ∈ RM×D and fY ∈ RM×P .
Consider also a collection X of N points in Ω ⊂ RD with N << M . Let us associate with these two sets (as in (2.12))
the corresponding functional spaces HKY and HKX , which provides us with the framework in which our definitions now
make sense. Finally we introduce the rectangular matrix consissting of all relevant values of the kernel

K(X,Y ) =
(
K(xn, ym)

)
1≤n≤N
1≤m≤M

∈ RN×M , (2.22a)

together with its discrete gradient

∇K(X,Y ) =
(
∇ymK(xn, ym)

)
1≤n≤N
1≤m≤M

∈ RN×D×M . (2.22b)

K-extrapolation. Suppose that we are only given some data fX ∈ RN×T on a small set of points X. Then we can
extrapolate these values on a larger set of points Y by introducing

ExtKX,Y fX = K(Y,X)K(X,X)−1fX ∈ RM×T . (2.23)

Similarly, the K-extrapolation of the gradient operator on Y is defined as

∇ExtKX,Y fX = (∇K)(Y,X)K(X,X)−1fX ∈ RM×D×T . (2.24)

K-interpolation. Conversely, suppose that we are given some data fX ∈ RN×P on a set X ∈ RN×D. Then for any
collection Y ∈ RM×D, we define IntKX,Y fX ∈ RM×P by the minimization problem

IntKX,Y fX = arg inf
gY ∈RM×P

‖K(Y,X)K(Y, Y )−1gY − fX‖, (2.25a)

which yields us
fY = IntKX,Y fX = K(Y, Y )K(X,Y )−1fX ∈ RM×P . (2.25b)

Here, by definition, K(X,Y )−1 is the standard (least-square) inverse matrix, characterized by the conditions

K(X,Y )−1 =
(
K(Y,X)K(X,Y )

)−1
K(Y,X) ∈ RM×N , M ≤ N,

K(X,Y )−1 = K(Y,X)
(
K(X,Y )K(Y,X)

)−1 ∈ RM×N , N ≤M.

In particular, we ensure the relation ExtKY,XfY = fX exactly.

K-projections. Interpolation and extrapolation are particular cases of the projection operators that we define now.
Let (X,Y, Z) ∈ (RM×D,RN×D,RP×D) be collections of D-vectors, and let us assume the restriction M ≤ N . Then
we define ΠX,Y,Z by

ΠK
X,Y,Z = ExtKY,ZIntKX,Y fY = K(Z, Y )K(X,Y )−1. (2.26)

For instance, ExtKX,Y = ΠK
X,X,Y and IntKX,Y = ΠK

X,Y,Y . A particularly interesting operator is ΠK
X,Y,X , whose kernel

“contains the information” lost from approximating a function from a larger set X to a smaller set Y .

2.5 A steepest descent algorithm

K-discrepancy error. Consider two sets of points X,Y as above. In agreement with (2.3), we compute the
discrepancy error between the discrete measures µY and µX as

dK(µY , µX)2 =
1

M2

M∑
l,m=1

K(yl, ym) +
1

N2

N∑
n,q=1

K(xn, xq)− 2

NM

N∑
n=1

M∑
m=1

K(xn, ym). (2.27)
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The notion of discrepancy error dK(µY , µX)2 also allows to define transportation maps, which move a set of points
t 7→ Xt, with X0 = X, by

X∞ = argX∈RN×D inf dK(µY , µX)2 (2.28)

We can explicitly compute the gradient of dK(µY , µX)2 with respect to X as

∇xndK(µY , µX)2 =
2

N2

N∑
o=1

∇xnK(xn, xo)− 2

NM

M∑
m=1

∇xnK(xn, ym). (2.29)

Consequently, the following semi-discrete scheme corresponds to a steepest descent algorithm:

d

dt
xnt =

2

NM

M∑
m=1

∇xn
t
K(xnt , y

m)− 2

N2

N∑
o=1

∇xn
t
K(xnt , x

o
t ), (2.30)

with the initial data X0 = X. Summarizing in our notation, the scheme can be written as

d

dt
Xt =

2

NM
∇XtK(Xt, Y )3 −

1

N2
∇XtK(Xt, Xt)3, (2.31)

where the notation 3 denotes the contraction in the third index. The trajectories t 7→ Xt ∈ RN×D follow characteristics
corresponding to optimal transportation maps.

Fitting functions. Given some data Y ∈ RM×D and fY ∈ RM×P , let us consider ΠK
Y,X,Y , denoted for short ΠK

X,Y ,

to be the projection operator (2.26). Starting from X0 = X ∈ RN×D, fitting a function corresponds to determine a
distribution of points X∞ satisfying

‖fY −ΠK
X∞,Y fY ‖

2 = inf
X∈RN×D

‖fY −ΠK
X,Y fY ‖2. (2.32a)

We rewrite this minimization problem as a constrained problem, namely

‖fY −ΠK
X∞,Y fY ‖

2 = inf
X∈RN×D

‖fY −ExtKY,X)fX‖2, fX = I(X,Y )fY , (2.32b)

where Ext denotes the K-extrapolation operator. During the minimization step, we consider that fX ∈ RN×P is
independent of X and we take the constraint into account. Observe that

∇X‖fY −ExtKY,X)fX‖2 = 〈ExtKY,X)fX − fY ,∇XExtKY,X)fX〉 ∈ RN×D, (2.33)

where the right-hand side is a contraction between a M × P object and the discrete operator

(∇XExtK)Y,XfX ∈ RM×N×D×P . (2.34)

Steepest descent algorithm. A set of moving points t 7→ Xt being given, consider the error term

e(X,Y ) = ExtKY,XfX − fY ∈ RM×P . (2.35a)

The following scheme corresponds to the steepest descent algorithm

d

dt
Xt = −〈e(Xt, Y ), (∇Xt

ExtK)Y,Xt)fXt
〉RM×P . (2.35b)

Using (2.24), we compute

∇XExtKY,X) = ∇X
(
K(Y,X)K(X,X)−1

)
= (∇XK)(Y,X)K(X,X)−1 +K(Y,X)∇X(K(X,X)−1)

= (∇XK)(Y,X)K(X,X)−1 −K(Y,X)K(X,X)−1(∇XK)(X,X)K(X,X)−1.
(2.35c)
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Using this computation, the scheme reads

d

dt
Xt = −〈e(Y,Xt), (∇Xt

K)(Y,Xt)K(Xt, Xt)
−1f(Xt)〉RM×P

+ 〈K(Xt, Xt)
−1K(Xt, Y )e(Xt, Y ), (∇Xt

K)(Xt, Xt)K(Xt, Xt)
−1f(Xt)〉RN×P .

(2.35d)

We observe that

K(X,Y )e(X,Y ) = (K(X,Y )K(Y,X))(K(X,Y )K(Y,X))−1K(Y,X)fY −K(X,Y )fY = 0,

and we can write our scheme componentwise as

d

dt
xnt = −

M,P∑
m,p=1

e(Xt, Y )m,p(∇xn
t
K)(ym, xnt )cf(X)n,p. (2.35e)

3 An algorithm for support vector machines in machine learning

3.1 Error estimates for support vector machine

Standpoint in this section. Our aim in this section is to formulate a support vector machine in the context
of the kernel theory in Section 2, and emphasize the role of error estimates based on sharp discrepancy sequences.
Interestingly, our formulation uses an intermediate space (of size denoted by Ny, below) which avoids the computation
of the inverse of the kernel and therefore leads us to an algorithm that is linear with respect to, both, the input and
the output variables. In the standard formulation, there is no such pivot space, while we observe here that this notion
simplifies the computational complexity.

We thus consider neural networks based on the concept of support-vector machine (SVM). Our presentation in
this section is based on the notion of discrete projections, interpolation, and extrapolation operators introduced in
the previous section. Consequently, our algorithms come with quantitative error estimates of the type we investigated
in [17].

Setup of interest. An admissible kernel K : RD × RD → R being fixed once for all, we work with several sets of
points, denoted by X ∈ RNx×D, Y ∈ RNy×D, and Z ∈ RNz×D. Using the kernel, we compute the (Nx ×Ny) Gram
matrix K(X,Y ) =

(
K(xn, ym)

)
1≤n≤Nx
1≤n≤Ny

associated with the sets X and Y . Assuming that Ny ≤ Nx, a feed-forward

SVM, by definition, is the K-projection operator associated with the set of points X,Y, Z defined by the matrix

P (X,Y, Z) = K(Z, Y )K(X,Y )−1 ∈ RNz×Nx , (3.1)

where the inverse of a (rectangular) matrix A is defined as usual by A−1 = (ATA)−1AT .
To any vector-valued function ϕ : RD → RP and any set of D points X, we associate the matrix ϕ(X) ∈ RNx×P ,

and we introduce its K-projection or prediction as

ϕZ = P (X,Y, Z)ϕ(X) ∈ RNz×P (3.2)

and we also have its discrete gradient

∇KϕZ = (∇zK)(Z, Y )K(X,Y )−1ϕ(X) ∈ RD×Nz×P . (3.3)

As also explained in the previous section, from ∇K , we can also compute other differential operators such as ∆K and
∇K,2

Error estimate. Given a SVM denoted by P(x, y, z), the worst error estimate for the expectation of a function ϕ
reads ∣∣∣ 1

Nz

Nz∑
n=1

ϕ(zn)− 1

Nz

Nz∑
n=1

ϕzn
∣∣∣ ≤ (dK

(
µX , µY

)
+ dK

(
µY , µZ

))
‖ϕ‖HK(Rd), (3.4)
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in which the discrepancy error is now given by the discrete distance

dK
(
µX , µY

)
=

1

N2
x

Nx,Nx∑
n=1,m=1

K
(
xn, xm

)
+

1

N2
y

Ny,Ny∑
n=1,m=1

K
(
yn, ym

)
− 2

NxNy

Nx,Ny∑
n=1,m=1

K
(
xn, ym

)
. (3.5)

The bound in (3.4) involves now two contributions, namely the relative distances between the three distributions

µX , µY , µZ , with the notation µX = 1
N

∑Nx

=1 µxn . On the other hand, the norm arising in (3.4) can be approximated
by ‖ϕ‖2HK ' ϕTYK(Y, Y )−1ϕY .

3.2 Kernel engineering

Adding kernels. Many operations are available on kernels, which allow one to generate many new kernels from
more basic ones. The operations listed now preserve the positivity property required for an admissible kernel. Consider
two kernels ki(x, y) : RD × RD 7→ R, i = 1, 2, and according to (3.1) consider the two projection operators:

Pi(x, y, z) = ki(z, y)ki(x, y)−1 ∈ RNz×Nx . (3.6)

Then a natural operation, leading to k1 +k2, from these two kernels consists in adding two kernels, as stated in terms
of Gram matrix:

P(x, y, z) = k(z, x)k(x, y)−1, k(x, y) = k1(y, x) + k2(y, x) (3.7)

The space of functions generated by k1 + k2 is thus
{∑

1≤m≤Nx
am(k1(·, xm) + k2(·, xm))

}
.

Tensorial kernels. A second operation, denoted by k1 ·k2 and defined from any two kernels, consists in multiplying
these two kernels, as stated in terms of Gram matrix:

P(x, y, z) = k(z, x)k(x, y)−1, k(x, y) = k1(x, y) · k2(x, y), (3.8)

the notation · standing for the Hadamard product of matrices. The space of functions generated by k1 · k2 is{∑
1≤m≤Nx

am(k1(·, xm)k2(·, xm))
}

.

Convolution kernels. This convolution k1 ∗ k2 is defined by multiplying the Gram matrix, as follows:

P(x, y, z) = k(z, x)k(x, y)−1, k(x, y) = k1(x, y)k2(y, y) (3.9)

k1(x, y)k2(y, y) holding for the standard matrix multiplication. When k1(x, y) = ϕ1(x− y) and k2(x, y) = ϕ2(x− y),
then the space of functions generated by k1∗k2 is

{∑
1≤m≤Nx

am(k(·, xm))
}

, in which where k(x, y) =
(
ϕ1∗ϕ2

)
(x−y)

is the standard convolution of the two kernels.

Pipe kernels. We define the “pipe kernel” k1|k2 by the projection operator (3.1) as follows :

P(x, y, z) = P1(x, y, z)π1(x, y) + P2(x, y, z)
(
Id− π1(x, y)

)
, (3.10)

where we introduce the projection operator π1(x, y) = k1(x, y)k1(x, y)−1 = P1(x, y, x). Hence, a pipe kernel is defined
by splitting the projection operator into two parts; the first part being treated by one kernel, while the second kernel
handling the remaining error. This decomposition is not a direct sum decomposition since the intersection of the two
spaces may be non-trivial. Exchanging the role of the k1 and k2 the discretization is generally different. Typically
we choose the integer Ny to be small in comparison with Nx and Nz. The corresponding space of functions is now
generated by

∑
1≤m≤Nx

amk1(·, xm) +
∑

1≤m≤Nx
bmk2(·, xm), hence the number of coefficients is now doubled. We

also introduce its inverse concatenating matrix

k−1(x, y) =
(
k1(x, y)−1, k2(x, y)−1

(
INx
− π1(x, y)

))
∈ R2Ny×Nx ,

and the Gram matrix associated with a pipe kernel is k(x, y) =
(
k1(x, y), k2(x, y)

)
∈ RNx×2Ny .
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Piping scalar product kernels: an example with polynomial regression. Let S : RD 7→ RN be a family of N basis
functions ϕn, that is, S(x) =

(
ϕ1(x), . . . , ϕN (x)

)
and let us introduce a new kernel, called the dot product kernel

(which is only conditionally positive definite) by

k1(x, y) =< S(x), S(y) > . (3.11)

Then, given any positive kernel k2(x, y) we can consider the corresponding pipe kernel k1|k2. In particular, such
a construction is useful when a polynomial basis S(x) = (1, x1, . . .) is chosen: this produces a classical polynomial
regression, allowing us to perfectly match the moments of distributions, with the remaining error being handled by
the second kernel.

Neural networks as kernel methods. Our setup also encompasses the strategy classical adopted in the theory
of deep learning, which are based on the notion of neural network. Namely, let us consider any feed-forward neural
network of depth M , defined by

zm = ymgm−1(zm−1) ∈ RNm , ym ∈ RNm×Nm−1 , z0 = y0 ∈ RN0 , (3.12)

in which y0, . . . , yM are our weights and gm represents prescribed activation functions. By concatenation, we arrive
at the function

zM (y) = yMzM−1(y0, . . . , yM−1) : RN0×...×NM 7→ RNM , (3.13)

and this neural network is thus entirely represented by the kernel composition

K(ym, . . . , y0) = Km

(
ym,Km−1

(
. . . ,K1(y1, y0)

))
∈ RNm×...×N0 , (3.14)

where km(x, y) = gm−1(xyT ), with indeed zM (y) = yMk(yM−1, . . . , y0), as is relevant in kernel engineering.

3.3 Numerical results

Dimension 1. We present a rather basic test, while referring to [18] for further numerical examples. We consider
the role of kernels and we illustrate graphically the extrapolation operator (2.23) as well as the discrepancy error and
functional norm computed from the kernels. We recall our notation: x ∈ RNx×D and f(x) : RNx×Df for the training
set and the function values, respectively. On the other hand, z ∈ RNz×D and f(z) : RNz×Df represent the test set
and the reference values respectively. Our test is based on the following data

a function f , a kernel k , five integers D,Nx, Ny, Nz, Df ,

and, for definiteness, we consider the function

f(x) =
∏

d=1,...,D

cos(4πxd) +
∑

d=1,...,D

xd. (3.15)

We use a random generator, configured to select points x ∈ [−1, 1]Nx×D randomly in the unit cube, and we pick up
z ∈ [−1.5, 1.5]Nx×D as uniformly distributed over another cube, to observe extrapolation effects. The values of x, z
as well as corresponding values function are plot in the following figure:

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

x,f(x)  z, f(z)
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We then test the extrapolation operator (2.26) using three different kernels. The first one is a Gaussian kernel,
named scipy, as we compared its results with the scipy implementation to check our results. The second one is a
kernel equivalent to a RELU network. Finally the third one is a gaussian, periodic kernel. This kernel obviously gives
more accurate results for this test.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2

3

fz

Test
exact
scipy
relu
periodic

Finally, the following table shows the discrepancy error, as well as the kernel-norm of the computed functions:

Scipy RELU periodic
disc. error 0.336247 0.2725986 0.1282466
function norm 0.7779849 0.7779849 0.7779849

Dimension 2. The previous test can be formulate in any dimensions, and we show here the two-dimensional case
(D = 2). The plot of x, z, f(x), f(z) is as follows:
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1.5
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x,f(x) and z, f(z)

The following picture allows us to illustrate the effect of extrapolating data outside of the training set, by using a
Gaussian kernel:
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The following figure shows that the extrapolation is better dealt with a periodic kernel :
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Finally, we provide the error analysis in the following table:

Gaussian periodic
disc. error 0.2105513 0.05348524
function norm 8181.435 2.000

3.4 Pattern recognition problem with MNIST

Algorithm applied to the MNIST database. We now use our algorithm for solving a very standard problem
in machine learning. The MNIST database [13] which provides one with a real-word test for comparing numerical
algorithms of pattern recognition. We build upon the discussion in Section 3.1 and consider a typical setup.

• We are given a training set of M = 60000 images, each representing T = 10 handwritten digits. To each image
we attach a label which is an integer between 0 and 9. Each image is a matrix of 28 × 28 scalars representing
gray scale, which we display as a D-vector in dimension D = 784.

• We also consider a prediction set consisting of P = 10000 images, which we will use to compute the error of our
prediction.

• Moreover, we introduce a regression set consisting of N randomly chosen images (with N ≤ M) among the M
images of our training set.

We use the notation N = NY , P = NZ , and M = NX . and we summarize our notation in the following table:

X ∈ RM×D Y ∈ RN×D Z ∈ RP×D LX ∈ RM LY ∈ RN LZ ∈ RP
training images regression prediction training labels regression prediction
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Table 3.3: keras - scores and times

M/N - score 200 400 600

10000 0.9494 0.9503 0.9525
20000 0.9666 0.9689 0.9667
30000 0.9724 0.9755 0.9778
40000 0.9754 0.9767 0.9793
50000 0.9786 0.9807 0.9794
60000 0.9786 0.9815 0.9783

M/N - time 200 400 600

10000 2.26 3.13 3.63
20000 3.08 4.90 5.74
30000 4.95 8.54 9.22
40000 5.66 9.46 10.89
50000 8.03 13.40 14.54
60000 8.24 14.15 16.84

Throughout, an admissible kernel denoted by K is fixed. To any discrete vector-valued function fX ∈ RM×T , as
explained earlier we associate the extrapolation function

fX(Z) = K(Z,X)K(X,X)−1fX ∈ RT , Z ∈ RD. (3.16)

Once the training of a given model L is performed, we predict its value, denoted L(z) for an image z. The accuracy
of the numerical output is evaluated by computing

E(N,M,L) =
1

P
#z∈Z

{
z /LZ(z) = L(z)

}
. (3.17)

An illustrative test. Table 3.3 show the results based on a neural network of N dense layers, trained with M
images, with Adam optimizer and sparse categorical cross-entropy loss function1. We will use this test as a comparison
for our results, since we can implement it on the same computer and is CPU-parallel, as are all of our tests. Our
numerical tests are based on a quite standard kernel, that is, the transported Gaussian kernel

K(x, y) = exp
(
− C |erf−1(2x− 1)− erf−1(2y − 1)|2

)
, (3.18)

where erf−1 denote the inverse of the standard error function and C is a scale factor. Using transported kernels is
natural in the present setting, since these kernels are compactly supported as are our data, after a rescaling to the
set [0, 1]784. In fact, we present our results with the kernel giving the best results among all other kernels we have
tested (matérn, tensorial matérn, multiquadrics, RELU, linear regression kernel). However, all numerical results are
quite comparable, except for linear regression kernels which exhibit much lower accuracy.

Extrapolation. A first idea is to extrapolate a category function fX ∈ {0, . . . , T} on the training set Z according
to (2.23). However, we observed a rather poor accuracy with this strategy, which is not consistent with re-labelling
category invariance. Instead, let us consider the following partition of unity, where T = 10 is the number of categories
referred to in the literature as one-hot encoding :

f(x) =
(
f1(x), . . . , fT (x)

)
∈ RT , ft(x) =

{
1 when L(x) = t, x ∈ X,
0 otherwise.

(3.19)

Here we denote by z 7→ L(z) ∈ {0, . . . , 9} the function returning the classification for any image z ∈ [0, 1]D, and the
property f(z) ∈ {0, 1}T holds for the function corresponding to this partition.

Consider extrapolating this function on the set Z using (2.23), that is, in this context

fX(Z) = ExtKX,ZfX(X) = K(Z,X)K(X,X)−1fX(X) ∈ RP×T . (3.20)

The prediction being then computed as LX(z) = arg maxt(fX,1(z), . . . , fX,t(z), . . . , fX,T (z)). For this test, only the
parameter M is needed. The results are summarized in Table 3.4. Observe that this extrapolation algorithm is very

1as define at https://www.tensorflow.org/tutorials/quickstart/beginner

14

Electronic copy available at: https://ssrn.com/abstract=3790066



Table 3.4: extrapolation - scores and times

M 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

scores 0.93 0.9492 0.9551 0.9619 0.9649 0.9666 0.9692 0.9707 0.9708 0.9726

times 1.26 2.83 5.12 8.53 11.10 16.28 22.41 30.37 40.06 48.68

1− dK(X,Z) 0.9194 0.9384 0.9534 0.9537 0.9610 0.9561 0.9580 0.9586 0.9598 0.9654

Table 3.5: Projection - scores and times

M/N - score 1000 2000 3000

5000 0.9619 0.9634 0.9632
10000 0.9654 0.9701 0.9695
15000 0.9686 0.9711 0.9739
20000 0.97 0.9735 0.9753
25000 0.9713 0.9742 0.9766
30000 0.9725 0.9753 0.978

M/N - time 1000 2000 3000

5000 2.65 5.38 8.62
10000 4 7.97 12.74
15000 5.34 10.89 17.49
20000 6.83 13.79 22.12
25000 8.28 16.77 27.06
30000 9.70 19.71 31.83

simple, and has cubic complexity of order O(M3) + O(MP 2). The table also displays the discrepancy error (2.32),
and clearly in this case the discrepancy error is similar to the score error.

The interpretation is the following : as observed earlier, we have the rough estimate of the error in (3.17) (where
C1, C2 are constants):

E(M,M,L) = ‖1L=LX
‖`1(Z) ≤ C1 ‖f − fX‖`1(Z,`∞(T )) ≤ C2 ‖f − fX‖`1(Z)

≤ C2 dK(µX , µZ)‖f‖HK
X
,

(3.21)

where we use the notation `p to denote the standard (integral or pointwise) discrete norm. We can consider here
of several optimization choices based on this expression. For instance, we can try to reduce ‖f‖HK

X
by picking up a

more adapted kernel K, which an idea closely related to variance reduction for Monte-Carlo sampling. This kernel
engineering approach includes data filtering, and does lead to accuracy improvements, however at a cost of tuning our
learning machine to input data which may not be always recommended. We will not explore this direction here, since
we want to perform comparisons with standard methods. A second possibility is to choose the sampling and training
set by reducing the distance dK(µX , µZ). In our example however, we prefer to consider that these are fixed data.

Projection. We now study the effect of picking up a smaller set Y ⊂ X in order to reduce the complexity of the
vector machine algorithm. Our projection algorithm is based on interpolating the test-function over a smaller set
Y ∈ RN×D ⊂ X ∈ RM×D which is randomly selected among X, then using Y for extrapolation on the set Z using
(2.25b). To summarize, in this context the predictor is

fX(Z) = ΠK
X,Y,ZfX(X) = K(Z, Y )K(Y,X)−1fX(X) ∈ RP×T , (3.22)

where the kernel K(Z, Y ) ∈ RP×N . Table 3.5 contains the scores and times for values of N,M chosen in order to
keep computational times comparable to our benchmark test. The resulting algorithm is quite simple to implement
and enjoys two main features:

• For a given computational time, we observe that this projection method achieves better performance in com-
parison to a crude extrapolation algorithm, however at the cost of tuning the parameters N and M .

• This algorithm reduces the algorithmic complexity of the output machine L(z).
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Table 3.6: Matching algorithm - scores and times

M/N - score 200 400 600

10000 0.9396 0.9478 0.9509
20000 0.9433 0.9529 0.9556
30000 0.9416 0.9527 0.9581

M/N - time 1000 2000 3000

10000 36 47 58
20000 117 143 160
30000 251 286 312

Table 3.7: Projection algorithm - scores and times

M/N - score 200 400 600

10000 0.911 0.928 0.9357
20000 0.9153 0.9356 0.9437
30000 0.9182 0.9379 0.9457

M/N - time 1000 2000 3000

10000 0.86 1.29 1.75
20000 1.38 1.98 2.62
30000 1.79 2.60 3.47

Matching algorithm. We now consider the following numerical strategy: we use the projection operator (3.22) as
a predictor, but we use Y as

Y = arg inf
Y ∈RN×D

dK(µY,fY , µX,fX )2,

where the discrepancy error dK(µY,fY , µX,fX )2 corresponds to the discrepancy error of the tensor kernel constructed
as the product of the linear regression kernel Kf and the Gaussian kernel. From the algorithmic point of view, this
approach corresponds to matching each category by using (2.30), that is,

Y p = arg inf
Y p∈RN×D

dK(µY p,fp
Y
, µXp,fp

X
)2, p = 1 . . . 10,

which significantly reduces the overall algorithmic complexity. Table 3.6 displays our results with input data com-
parable to our benchmark test. In Table 3.7, we show a comparison with the projection algorithm for comparable
inputs.

4 An algorithm for the Fokker-Plank-Kolmogorov system in mathemat-
ical finance

4.1 The fundamental equations

Stochastic differential equation. Let us begin with a description of the fundamental equations of mathematical
finance, that is, the Fokker-Planck and Kolmogorov equations. We are interested in Markov-type stochastic processes,
denoted by t 7→ Xt ∈ RD and governed by a stochastic differential equation (SDE). Specifically, we want to solve the
forward initial value problem

dXt = r(t,Xt)dt+ σ(t,Xt)dBt,

Xt|t=0 = X0.
(4.1)

Here, the initial data X0 ∈ RD is a prescribed random variable and Bt ∈ RD denotes a (D-dimensional, with
independent components) Brownian motion. We are also given a vector field r ∈ RD representing the drift (or risk-
free rate), together with a matrix-valued field σ = σ(t, x) representing the random diffusion (or volatility). In our
presentation we consider σ and r as given, while in specific applications it might be required to perform a calibration
first and solve an inverse problem based on market data. A description of such a calibration algorithm can be found
in [15].

Fokker-Planck equation. We are going to work with the description based on the partial differential equation
associated with the SDE (4.1). We introduce the linear operator

Lµ = ∇ · (rµ) +∇2 · (Aµ), A =
1

2
σσT . (4.2)
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and consider the corresponding convection-diffusion equation. We recall that ∇ denotes the gradient operator, ∇· the
divergence operator, and ∇2 = (∂i∂i)1≤i,j≤D the Hessian operator. Given any parameter (s, y) ∈ [0,+∞) × RD, we
denote by (t, x) 7→ µ(t, x; s, y) (defined for t ≥ s and x ∈ RD) the probability density measure of the random variable
Xt, knowing the value Xs = y at the time s. By definition, this measure is the fundamental solution, defined from
the base point (s, y), of the Fokker-Planck problem

∂tµ− Lµ = 0, t ∈ [s,+∞), µ|t=s = δx=y. (4.3)

The initial data in (4.3) is thus posed at the time t = s and coincides with the Dirac measure δx=y at the point x = y.
By construction of the Fokker-Planck equation, the expectation of the random variable with respect to an arbitrary

test-function ϕ is given as the corresponding moment of the measure µ. That is, the relation∫
RD

ϕ(t, x) dµ(t, x; 0, X0) = EXt(ϕ(t, ·)|X0) (4.4)

holds between the measure µ and the initial data X0. We also observe that the solution to (4.3) is more naturally
understood in the sense of distributions when the initial data is a measure. The solution µ is then a probability
measure since the total mass is conserved in time, i.e.∫

RD

µ(t, x; s, y)dx = 1. (4.5)

Finally, we recall that the equation (4.3) also models the Brownian motion of particles in plasma physics.
It will be convenient to distinguish between two cases of interest in operational problems :

• The martingale Fokker-Planck equation, corresponding to the purely diffusive Fokker-Planck equation
without transport part, that is, with r ≡ 0 in (4.1).

• The general Fokker-Planck equation, which includes both hyperbolic and parabolic parts, in which σ and
r are prescribed functions.

Kolmogorov equation. The backward dual problem defined now provides us with the natural standpoint in
mathematical finance. Taking the dual of the Fokker-Planck equation leads us to the Kolmogorov equation which is
the central equation of interest, governing for instance for the price of option values, and is referred to as the Black
and Scholes equation. It concerns an M -vector-valued unknown denoted by P 7→ P (t, x) = P (t, x;T, PT ), defined for
all times t ≤ T and x ∈ RD, and is formulated as the following backward problem. Given a final time T and any
(continuous and µ-integrable) final data PT , we seek the solution to

∂tP − L∗P = 0, t ∈ [0, T ], P |t=T = PT , (4.6)

where L∗ denotes the dual of the Fokker-Planck operator, given by

L∗P = −r · ∇P +A · ∇2P. (4.7)

In mathematical finance, the vector-valued function P ∈ RM represents a portfolio of M instruments and M is
typically a large integer. We recall the following terminology.

• The final data PT is called the payoff of the instruments, whose underlyings are described by the random variable
Xt satisfying the stochastic differential equation (4.1).

• The Kolmogorov equation (4.6) determines the so-called forward values (or price) P (t, x) of the porfolio at any
later time t ∈ [0, T ].

• In addition, the value at the time t = 0 is called the fair value P0 = P |t=0 of the portfolio.

Solving the Kolmogorov equation for a given portfolio of instruments allows us to determine not only its price, but
also the whole of the fair value surface (t, x) 7→ P (t, x) (for all t ∈ [0, T ] and x ∈ RD). This function is important in
many applications since standard risk measures are often determined from this surface; for instance, this is the case
of risk measures of internal or regulatory nature, as well as of optimal investment strategies.
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Martingale case. Let us consider here the martingale case and, for clarity in the presentation, let us repeat here
the main equations. This case consists in solving the Fokker-Planck equation (4.2) and the Kolmogorov equation (4.6)
without the advection part, that is,

dXt = σ(t,Xt)dBt, t ≥ s ≥ 0, (4.8)

with initial conditions X0 ∈ RD. The Fokker-Planck equation (4.2) for the probability measure µ(t, ·) reads (for t ≥ 0)

∂tµ = ∇2 · (Aµ), A =
1

2
σσT , (4.9)

with initial conditions µ(0, ·) = δX(0). In this martingale context, we then solve the Kolmogorov equation (4.6), that
is, for some continuous and µ-integrable function P

∂tP −A · ∇2P = 0, t ∈ [0, T ], P |t=T = PT . (4.10)

We will use the following definition associated with any martingale process t 7→ Xt ∈ RD (for t ≥ 0). In the
range 0 ≤ s ≤ t and x, y ∈ RD, we define the transition probability operator Π = Π(s, t, x, y) as the solution to the
Kolmogorov equation in the variables (t, y)

∂tΠ = A · ∇2
yΠ, Π(s, t, x, ·) = δx, t ≥ s ≥ 0, x ∈ RD. (4.11)

It is not difficult to check the following property. If t 7→ Xt ∈ RD (for t ≥ 0) is a martingale process and µ(t, ·)
denotes its density measure, using transition operator Π we have

P (s, x) = Π(s, t, x, ·) ∗ P (t, ·) = EXt

(
P (t, ·)|Xs = x

)
, (4.12)

where ∗ denotes the convolution of two functions. The first identity holds since, by definition, the operator Π(t, s, x, y)
is the fundamental generator of the Kolmogorov equation, while the second identity is a consequence of Feynman-Kac’s
theorem.

4.2 The transport mesh-free method for mathematical finance

We now present our algorithm and solve numerically the equations (4.3) and (4.6), as follows. The method was first
outlined in [15] and depends upon the a priori choice of an admissible kernel K of the type described in Section 2. We
are going to compute a transport map, denoted below by t 7→ S(t, ·), which is naturally associated with the probability
density µ of the stochastic process Xt satisfying (4.1) and associated with a random initial data X0.

Step 1: Forward computation. Our first task is to determine the (almost) sharp discrepancy sequence that is
most relevant for the simulation of the SDE problem (4.1). We introduce a semi-discrete scheme for the the Fokker-
Planck equation (4.3), in which the time variable is kept continuous. This scheme provides us with an approximation
of the solution µ as a sum of Dirac measures, namely

µS(t) =
1

N

N∑
n=1

δSn(t), S(t) = (S1, . . . , SN )(t), (4.13)

in which t 7→
(
Sn(t)

)
n=1,...,N

in RD is a suitable family of N “moving particles”.

Specifically, a (small) approximation parameter ε ∈ (0, 1) being fixed, we solve the coupled system of ordinary
differential equations (for t ≥ t0 > 0)

d

dt
S = rS +

(
∇S
)T
AS ∈ RN×D,

S
∣∣
t=t0

= (X0, X0, . . . , X0) +
√
t0A(0, X0)N (0, 1),

(4.14)

in which the function r and A in (4.3) are evaluated pointwise along the trajectories of the moving particles, as follows:

rS(t) =
(
r(t, Sn(t))

)
, AS(t) =

(
A(t, Sn(t))

)
n=1,...,N

. (4.15)

Recall that the discrete differentiation
(
∇S
)T

and, therefore,
(
∇S
)T
AS were defined in Section 2.3. In (4.14), X0

stands for a specific realization of the random initial data, and in order to prevent the possibility of colliding particles,
we have added a (vector-valued, centered, and of unit variance) i.i.d. random variable N (0, 1).
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Step 1. Stability. The dynamics of particles is determined by the coupled system (4.14), and we have defined an
approximation of the solution µ(t) ' µS(t) to the forward Fokker-Planck problem (4.3). In the next section, we will
check that this scheme is consistent and stable and, in fact, in the long time limit the sequence S(t) approaches a
sharp discrepancy sequence for the kernel K.

The above property has an important consequence, that is, we can rely on the framework developed in Section 2.
In order to evaluate the accuracy of our strategy, at each discrete time we can compute the discrepancy error (2.3)
and obtain the explicit error estimate∣∣∣ ∫

RD

ϕ(x)dµ(t)− 1

N

∑
1≤n≤N

ϕ(Sn(t))
∣∣∣ ≤ dK(µ(t), µS(t)) ‖ϕ‖HK(RD), (4.16)

valid for any moment of the measure µ and any time t (ϕ being an arbitrary test-function). Based on our analysis of
the sharp discrepancy error, we can compare dK(µ(t), µS(t)) with the minimum value denoted (earlier on by dK(µ, δY )
in Section 2) and, in turn, explicitly check the accuracy of the numerical solution.

Step 2. Backward computation. At this stage, we have computed an approximation of the sharp discrepancy
sequence which is relevant (for a given realization of the initial data), and we are in a position to solve the backward
Kolmogorov problem (4.6), using t 7→ Sn(t) (with n = 1, . . . , N) as a moving grid. We determine an function
t 7→ PS(t) ∈ RN×M which is expected to be an approximation of the pointwise values

(
P (t, Sn(t))

)
1≤n≤N of the

Kolmogorov solution. As we further explain below, it can be computed as follows, between any two arbitrary times
s < t (for instance 0 = s < t = T ),

PS(s) = Π
(t,s)
S PS(t), Π

(t,s)
S =

(
π(t,s)
n,m

)
1≤n,m≤N . (4.17)

Here, the matrix Π
(t,s)
S ∈ RN×N is provided explicitly (see below) and is nothing but the discrete fundamental

operator associated with the Kolmogorov equation. Hence, this step of our numerical algorithm reduces to computing
the inverse of a matrix. Further details are given in a following section where we study the consistency and convergence
of the method.

Step 2. Stability. Interestingly, in the present context we can regard the matrix Π
(t,s)
S as a Markov-chain process:

π
(t,s)
n,m is the probability that the stochastic process will jump from the sharp discrepancy state Sn(t) (at the time t)

to the sharp discrepancy state Sm(s) (at the time s). Our numerical algorithm provides this structure in a natural

way, and π
(t,s)
n,m turns out to be a bi-stochastic matrix (having each rows and each column summing to 1). This step

of the algorithm is a martingale process which takes into account the diffusive part A of the SDE problem (4.1) but
with the drift part r suppressed (since it was already handled in the first step). Importantly, the numerical solution
enjoys the error estimate associated with the kernel K, that is,∣∣∣ ∫

RD

P (t, ·)dµ(t, ·)− 1

N

∑
1≤n≤N

P (t, Sn(t))
∣∣∣ ≤ dK(µ(t), µS(t)) ‖P (t, ·)‖HK(Rd), (4.18)

which allows us to quantitatively determine, once more, the accuracy of the numerical solution.
We point out that we can also deal with partial derivative operators and, for instance, our framework allows us to

compute forward sensitivities, that is,

∇P (s) is approximated by ∇yP (t, yn(t))1≤n≤N . (4.19)

This allows us to determine, for instance, hedging strategies [26]. Motivated by fluid dynamics, we could also treat
more complex operators such as the Hessian operator or the Helmholtz-Hodge decomposition.

Numerical illustration: the SABR model. We can illustrate a feature of our algorithm by considering the
example of the (shifted) SABR model (see [1] and the references therein), described by the following two stochastic
differential equations with unknown variables X = (F, α):(

dFt
dαt

)
= ρ

(
αt(Ft + s)β 0

0 ναt

) (
dW 1

t

dW 2
t

)
, (4.20)
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supplemented with prescribed random initial conditions X0 = (F0, α0) at the time t = 0. Here, β ∈ [0, 1] is a parameter
representing the so-called constant elasticity of variance (CEV) and the constant ν ≥ 0 is the volatility parameter,
while W 1

t ,W
2
t are independent Brownian motions, while the so-called correlation matrix ρ is also prescribed.

Let us consider the transported Matérn kernel, described for instance in [17]. In Figure 4.1, we plot our ap-
proximation of the sharp discrepancy sequence associated with the SABR model. We use N = 200 points and the
parameters F0 = 0.03, α0 = 0.1, ν = 0.1, β = 1, and ρ12 = ρ21 = 0.5 (with ρ11 = ρ22 = 1 for the correlation matrix).
We plot the set of points

(
y1(t), . . . , yN (t)

)
, where the y-axis represents the volatility process αt, and x-axis denotes

the interest rates Ft. We observe that the initial support (an approximation of a Dirac measure) spread throughout
the computational domain and expands as the time increases, according to the transport-diffusion process described
by (4.20).

Figure 4.1: SABR model at the times t = 0.02, 2, 12 with N = 200 points.

4.3 Analysis of the semi-discrete scheme for the Fokker-Plank equation

Main statement for this section. The semi-discrete scheme (4.14) enjoys many properties (global existence,
stability, convergence) which we now state and establish. We work with the following modified Fokker-Planck problem

∂tµ
ex − Lµex = 0, t ∈ [t0,+∞), x ∈ RD,

µex|t=t0 = µS?
0
, S?0 = (X0, X0, . . . , X0) +

√
t0A(0, X0)N (0, 1),

(4.21)

whose (exact) unknown is denoted by µex = µex(t, x) and for which the initial data is posed at some time t = t0 and
randomly perturbed by a Brownian motion (as explained earlier). We impose a uniform ellipticity condition in (4.22)
below. Thanks to the uniform parabolic property we can restrict attention to sufficiently regular solutions.

An important insight for our theory is provided by the transported version of the equation, stated in (4.30) in the
proof below. Our main result concerning the first step of the algorithm is as follows.

Proposition 4.1 (Semi-discrete algorithm for the Fokker-Planck equation). Consider the Fokker-Plank problem (4.21)
under the following ellipticity and linear growth conditions (with λ, α−, α+ > 0):

|r(t, x) · x| ≤ λ|x|2, α−|x|2 ≤ xT ·A(t, x) · x ≤ α+|x|2, t ≥ 0, x ∈ RD. (4.22)

Then the semi-discrete scheme (4.14) defines a sequence of moving particles S(t) = (Sn(t)) together with an associated
measure µS(t) = 1

N

∑
n δSn(t) which determines a convergent approximation of the solution µex(t) to (4.21), as follows.

• Sup-norm estimate. The map t 7→ S(t) is defined for all times and remains globally bounded in the sup-norm,
i.e.

sup
t≥0

e−λt
N∑
n=1

|Sn(t)|2 ≤
N∑
n=1

|Sn(0)|2, (4.23)

(which is an analogue of the second moment
∫
|x|2dµex for solutions to the Fokker-Plank equation).
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• Balance law of momentum. The sum of all components satisfies the evolution equation

d

dt

N∑
n=1

Sn(t) =

N∑
n=1

r(t, Sn(t)), t ≥ 0, (4.24)

and, in particular, the total momentum is constant in time when the drift vanishes identically.

• Self-adjointness property. The scheme (4.14) can be cast in the symmetric form

d

dt
S = rS +BSS, (4.25)

in which BS = BS(t) is a positive-definite symmetric matrix.

• Error estimate. For any relevant test-function ϕ and any time t ≥ 0 one has∣∣∣∣ ∫
RD

ϕ(x)dµex(t, x)− 1

N

N∑
n=1

ϕ(Sn(t))

∣∣∣∣ ≤ dK(µex(t), µS(t)) ‖ϕ‖HK(RD), (4.26)

where the discrepancy error was defined in Section 2.

Proof of the properties for the Fokker-Planck problem. We rely on a formulation of the Fokker-Plank
equation with test-functions φ. The exact measure solution t 7→ µex(t) satisfies

d

dt

∫
RD

φdµex(t, ·) =

∫
RD

(
− r∇φ+A∇2φ

)
dµex(t, ·). (4.27)

We introduce the transport map S? associated with the exact solution and defined by transporting the given initial
data ν = µex|t=t0 by

S?#(t)ν = µex(t, ·) (4.28)

and we rewrite the left-hand side of (4.27) in the form

d

dt

∫
RD

φdµex(t, ·) =
d

dt

∫
RD

φ ◦ S?dν =

∫
RD

(
∇φ) ◦ S?

)
· ∂tS? dν.

On the other hand, the right-hand side of (4.27) reads∫
RD

(
− r∇φ+A∇2φ

)
dµex(t, ·)

= −
∫
RD

((∇φ) ◦ S?) · (r ◦ S?) dν −
∫
RD

(
(∇φ) ◦ S?

)
·
(
∇ ·
(
(∇S?)−1(A ◦ S?)

)
dν.

(4.29)

Here, we used integration by parts together with the identity (∇φ) ◦ S? = (∇S?)−T∇(φ ◦ S?).
This calculation allows us to propose a new formulation of the Fokker-Planck equation in terms of the transported

map S?, namely:

∂tS
?(t, ·) = −r(t, S?)−∇ ·

(
(∇S?)−1(A ◦ S?)ν

)
. (4.30a)

By construction, µex is a solution to (4.21) if and only if the the transport map S? is a solution to (4.30a) and assumes
the initial condition

S?(t0, x) = x. (4.30b)

Consequently, the discrete differential operator
(
∇S
)T
AS was defined to be consistent with ∇ ·

(
(A ◦ S)µ(t, ·)

)
(as

is clear in view of (2.20)). Consequently, our scheme (4.14) is a discrete version of (4.30a) and therefore is formally
consistent with the equation (4.30b).
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Basic estimates. It is straightforward to multiply (4.14) by S and, by denoting `2 the standard Euclidian discrete
norm, we obtain

d

dt
‖S‖2`2 =< S,∇TSAS > + < S, rS >=< ∇SS,AS > + < S, rS >≤ λ ‖S‖2`2 ,

in which ∇SS = Id is the discrete gradient operator applied to S and by construction is exact on polynomials of degree
one. This also proves that the discrete scheme generates global-in-time solutions. The balance law of momentum is
obtained by summation of all components of S. The self-adjointness property is established by observing that the
scheme takes the form (4.25) in which

BS = (∇S)TAS(∇S), (4.31)

4.4 A semi-discrete scheme for the Kolmogorov equation

We present here some basic estimates enjoyed by our scheme and, in addition, numerical experiments demonstrate
that it also enjoys better convergence rates in comparison to classical finite difference schemes. For simplicity in the
presentation and without genuine loss of generality we assume that M = 1, that is, the main unknown P of the
Kolmogorov equation is now scalar-valued. At this stage, we have determined a map t ∈ [0, T ] 7→ S(t) ∈ RN×D by
the algorithm analyzed in Proposition 4.1 and we can thus turn our attention to solving the (transported version of
the) Kolmogorov equation (4.6). In fact, since the transport part has been treated in the first step, we can focus our
attention on the diffusion part, so without loss of generality we assume that the drift r vanishes identically and we
study the martingale case (4.10). Hence, the Kolmogorov equation reads

∂tP − L∗P = 0, L∗P = A · ∇2P. (4.32)

Our backward semi-discrete scheme for computing the solution P = P (t, x) for x ∈ RN and t ∈ [0, T ] reads

d

dt
P = −BSP, BS = (∇KS )TAS(∇KS ), (4.33)

supplemented with the initial condition P |t=T = PT (S(T )) prescribed at the time T . Recall that the map t 7→ S(t)
is computed by the semi-discrete scheme (4.14), which can be expressed, as d

dtS = (∇TS )AS . On the other hand, the
scheme for P can be written in the compact form

d

dt
P = −

(
(∇KS )T

(
(∇KS )−T

d

dt
S
)
(∇KS )

)
P, (4.34)

where ( ddtS)(∇KS ) ∈ RN×N denotes the contraction of the discrete operator (∇KS ) ∈ RD×N×N and the matrix ( ddtS) ∈
RN×D in the first component and second component.

Proposition 4.2 (Semi-discrete algorithm for the Kolmogorov equation). Under the assumption (4.22), consider
t ∈ [t0, T ] 7→ S(t) ∈ RN×D a solution to transported scheme (4.14), with no drift, that is r ≡ 0, modeling a martingale
process. Consider the scheme (4.33).

• Consistency. The scheme (4.33) is consistent with a transported version of the Kolmogorov equation (4.32).
(Cf. (4.41) below.)

• Sup-norm estimate. The scheme (4.33) is global defined and enjoys the bound

sup
s∈[0,t]

N∑
n=1

(Pn(s))2 ≤
N∑
n=1

(Pn(t))2, t ∈ [0, T ], (4.35)

(which is an analogue of the decay property of the moment
∫
P 2dµex for exact solutions).

• Moment conservation property. The scheme (4.33) is conservative in the following sense:

N∑
n=1

Pn(t) =

N∑
n=1

Pn(T ), t ∈ [t0, T ], (4.36)

(which is an analogue of the moment
∫
Pdµex for exact solutions).
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• Stochastic property. If Π = Π(s, t) ∈ RN×N denotes the forward generator of (4.33), that is, the solution to

d

dt
Π(s, t) = BS(t)Π(s, t), Π(s) = IN×N , t ∈ [s, T ], (4.37)

then one has
P (s) = Π(s, t)P (t), s ∈ [t0, t]. (4.38)

The matrix Π(s, t) is a stochastic matrix provided1 ∇TSAS∇S is essentially non-negative.

We can view Π(s, t) as a transition probability matrix between times s and t. We recall that an essentially non-
negative matrix M = (mij) is a matrix with positive off-diagonal elements mij ≥ 0, i 6= j. We recall also the following
result (see [34]) : a matrix M is an essentially non-negative matrix if and only if exp(tM) is positive.

The stochastic property is an important property to check for in mathematical finance applications, and the
associated scheme (4.33) satisfies a discrete maximum principle provided this condition is fulfilled. The condition(
(∇S)TA(∇S)

)
1≤n,m≤N ≥ 0, for n 6= m, is a technical condition that restricts the possible shape of the basis

functions.

Proof. Consistency of the approximation scheme. We consider the following weak formulation, for any solution P to
the Kolmogorov equation (4.32) and any measure solution µ(t, ·) to the Fokker-Planck equation (4.21) without drift
term (that is, r ≡ 0):

d

dt
< µ, P ><D′,D>= − < A · ∇2P, µ ><D′,D> + < P,∇2 · (Aµ) ><D′,D>= 0, (4.39)

that is,

0 =
d

dt

∫
P (t, ·)µ(t, ·) =

d

dt

∫
(P ◦ S)(t, ·)dx. (4.40)

Here, S(t, ·) is a transport map of µ(t, ·), solving (4.30a) without drift (r ≡ 0). Thus we obtain

d

dt
(P ◦ S) = (∂tP ) ◦ S + ∂tS(∇P ) ◦ S = (∂tP ) ◦ S +∇ ·

(
(A ◦ S)µ

)
(∇P ) ◦ S = 0. (4.41)

Thus, as in (4.30a) ∇ ·
(

(A ◦ S)µ
)

is consistent with the operator ∇TSAS , and we conclude that the semi-discrete

scheme
(∂tP ) ◦ S = −∇TSAS∇SP, P ∈ RN

is consistent with the transported Kolmogorov equation. This semi-discrete scheme is mass-conservative, that is,

d

dt
< P, 1N >`2= −〈AS∇SP,∇S1N 〉`2 = 0,

as soon as ∇S1N = 0, that is fulfilled as soon as a polynomial basis is added.

Global existence. The energy bound

d

dt
‖P‖2`2 = −〈AS∇SP,∇SP 〉`2 ≤ 0

as soon as the matrix field AS is positive definite, hence leading to the estimate ‖P (s)‖`2 ≤ ‖P (t)‖`2 , s ≤ t, and
the scheme is a stable contracting scheme for the discrete `2 norm.

Stochastic property. A stochastic matrix M ∈ RN×N is a positive matrix mi,j ≥ 0, for which
∑
jmi,j = 1, that

is, the vector 1N is an eigenvector associated with the eigenvalue 1. The same argument as the one for the mass
conservation above applies:

d

dt
Π1N = −〈AS∇SΠ,∇S1N 〉`2 = 0.

1This condition can be ensured by restricting attention to a class of kernels, which should be in agreement with the dissipative aspects
of the Kolmogorov operator.
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The positivity mi,j ≥ 0 follows from (4.37), from which we deduce

Π ' exp(∇SAS∇S).

Provided the matrix ∇SAS∇S) is essentially non-negative, it is positive. Obviously d
dtπn,n ≤ 0, πn,n(0) = 1, but

remains positive.

4.5 Fully discrete, monotone, and entropy dissipative schemes

Reduction to a martingale process. We now present a full discretization of the Fokker-Planck equation (4.2)
and the Kolmogorov equations (4.6), which are based on the semi-discrete schemes (4.14) and (4.17). We introduce
a time discretization 0 = t0 < tε < t1 . . . < tNt = T with forward increments δn = tn+1 − tn. The discrete solutions
are represented in a matrix form as Sn ' S(tn) ∈ RNS×D, Pn ' P (tn) ∈ RNS×DP , An ' A(tn, Sn) ∈ RNS×D×D, etc.

Consider the scheme (4.14), and observe that it consists of a hyperbolic part and a (martingale) diffusive part, so
at each time step tn we split (4.14) as follows. The hyperbolic part is straightforwardly integrated with a classical
ODE discretization and we denote by V n+1 the corresponding discrete solution produced at the time tn+1 which is
an approximation to

d

dt
V = rV , V n = Sn, tn ≤ t ≤ tn+1. (4.42)

Once V n+1 is computed, the numerical scheme for the martingale part is written in the form (4.25), and is considered
with the initial condition V n+1 at the time tn while rS can be replaced by zero, that is, we solve

d

dt
S = BSS, BS = −

(
∇S
)T
AS
(
∇S
)

(4.43)

From now on, in order to present our fully discrete scheme we can thus focus on the martingale case without discussing
further on the hyperbolic part.

Fully discrete algorithm. To compute the solution to (4.43), we first rely on a simple Euler scheme at an inter-
mediate time tn+1/2:

Sn+1/2 = Sn +
√

(1/2)Anδn εN , (4.44)

where we have the following properties.

• We recall that An ∈ RNS×D×D represents a field of symmetric positive definite matrix. The square root of
(1/2)Anδn is defined by taking the principal positive square root of each matrix, therefore

√
(1/2)Anδn =(√

(1/2)An(tn, Sn, Sn)δn
)
n=1,...,Ns

∈ RNS×D×D.

• εN ∈ RNS×D is selected once for all as a given sampling of the D-dimensional normal law ND(0, 1), and we pick
up εN as an approximation of a sharp discrepancy sequence of ND(0, 1); see (4.14).

•
√

(1/2)Anδn εN stands for the multiplication
(√

(1/2)An(tn, Sn, Sn)δn εnN
)
n=1,...,Ns

, which belongs to RNS×D

and thus is a vector field.

We now solve (4.43). Observe that a Crank Nicolson scheme for the approximation of this equation would produce,
at time tn+1,

Sn+1 =
(
Id− δnBSn+1/2

)−1 (
Id + δnBSn+1/2

)
V n. (4.45)

However, this approach will not be followed here since, although the Crank-Nicolson scheme enjoys nice properties in
terms of entropy dissipation, it does not lead to a monotone scheme.

The matrix BS is symmetric and we can work with few points NS . We summarize our numerical scheme for the
Fokker Planck equation as follows :

Sn+1/2 = Sn+1 +

√
Anδn

2
εN , Sn+1 = Πn,n+1Sn

Πn,n+1 = exp
(
δnBn+1/2

)
, Bn+1/2 = −

(
∇Sn+1/2

)T
ASn+1/2

(
∇Sn+1/2

)
.

(4.46)
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Once these quantities are computed for all 0 < t0 < . . . < tNt = T , the backward Kolmogorov equation reduces to

Pn+1 = Πn,n+1Pn+1. (4.47)

Concerning the fully discrete scheme (4.46), our main result is (unsurprisingly) similar to Propositions 4.1 and
4.2.

Proposition 4.3 (Fully discrete algorithm of the coupled Fokker-Planck-Kolmogorov system). Consider a time
discretization t0 < tε < t1 . . . < tNt = T and the full time-discrete numerical scheme above, for the approximation
of the transported Fokker-Planck equation (4.2), under the ellipticity and linear growth conditions (4.22). Then the
scheme above defines a fully time-discrete family of moving particles Sn = (Snm,d)m,d ∈ RNS×D together with an

associated discrete measure µSn = 1
NS

∑
m δSnt

m
, which determine a convergent approximation of the solution µex(tn)

to (4.21), as follows.

• Sup-norm estimate. The map t 7→ S(t) is defined for all times and remains globally bounded in the sup-norm,
i.e.

sup
n
e−λt

n
N∑
n=1

|Sn|2 ≤
N∑
n=1

|S0|2. (4.48)

• Balance law of momentum. The sum of all components satisfies the evolution equation

〈Snd , 1NS
〉`2 = 〈S0

d , 1NS
〉`2 , d = 1, . . . , D (4.49)

and, in particular, the total momentum is constant in time when the drift vanishes identically.

• Error estimate. For any relevant test-function ϕ and any time t ≥ 0 one has∣∣∣∣ ∫
RD

ϕ(x)dµex(tn, x)− 1

N

N∑
n=1

ϕ(Sn))

∣∣∣∣ ≤ dK(µex(tn), µSn) ‖ϕ‖HK(RD), (4.50)

where the discrepancy error was defined in Section 2.

• Stochastic property. The matrix Πn,n+1 ∈ RNS×NS , describing the transition probability πl,m = P(Sn+1
m |Snl ),

is a stochastic matrix at each time tn, which is also positive provided (∇S)TA(∇S) is positive (for all n 6= m).

Proof. Consider Sn+1 given by the scheme (4.46), with 0 ≤ s ≤ δn, together the expression Sn(s) = exp(sBn+1/2)Sn,
implying that Sn(δn) = Sn+1. We find

d

ds
‖Sn(s)‖2`2 = 〈Sn(s),∇TSAS∇SSn(s)〉`2

and so
d

ds
‖Sn(s)‖2`2 = 〈∇SSn exp

(
sBn+1/2

)
, AS∇SSn exp(sBn+1/2)〉`2 (4.51)

Observe that ∇Sn exp
(
sBn+1/2

)
Sn and

d

ds
‖Sn(s)‖2`2 = 〈∇SSn exp

(
sBn+1/2

)
, AS∇SSn exp

(
sBn+1/2

)
〉`2 .

Algorithm for the transition probability matrix. It remains to approximate the transition probability matrix
(4.11). Our algorithms is based on the following observation. If t 7→ Xt ∈ RD, t ≥ 0 is a martingale process, let us
consider any number N > 0, any 0 ≤ s ≤ t, and denote by x ∈ RN×D (resp. y ∈ RN×D) any iid sample of Xt (resp.
Xs). Then, the operator Π(s, t, x, y) can approximated as the following stochastic matrix

arg inf
Π∈SN

‖y −Πx‖`2 = p(x|y) ∈ RN×N , (4.52)

where SN denotes the set of N ×N stochastic matrix. Our algorithm is described as follow.

25

Electronic copy available at: https://ssrn.com/abstract=3790066



Step 1. First average processes and denote : y = y − ȳ, x = x− x̄, where x̄ = 1
N

∑N
n=1 x

i.

Step 2. We solve first
ε = arg inf

ε∈εN
‖y − εx‖HK ,

where εN is the set of all permutations matrix. This amounts to consider the Linear Sum Assignment Problem
(LSAP) problem :

ε̄ = arg inf
ε∈εN

dk(εx, y),

where dk is the pseudo-distance associated with the kernel. For the next step, we consider thus ε̄x instead of x.

Step 3. We then solve
arg inf

Π∈SN
‖y −Πx‖`2 ,

where SN is the set of all stochastic matrices. To this end, we consider a gradient descent method and compute

d

dt
‖Πx− y‖2`2 =

〈
Πx− y, d

dt
Πx
〉
`2
. (4.53)

Observe that the previous equation does not provide a descent algorithm consistent with the stochastic matrix.
However, (4.33)-(4.34) gives some indications to compute a stochastic matrix projection : we use the following
algorithm to approximate the transition probability matrix

d

dt
Π = −

(
(∇y)TA(∇y)

)
Π, Π(0) = Id,

a polar decomposition of the matrix field (∇Ty )−1
(
Πx− y

)
,

where (∇Ty )−1 is a discrete operator defined from the kernel.

4.6 Application to business cases

Static hedging strategy. We now describe two particular applications of our method for finance problems, and
we present first a static hedging strategy. Our setup will be slightly simplified and we refer to [26] for more general
business cases. We thus consider a stochastic process Xt governed by the stochastic equation (4.1) corresponding,
for definiteness, to a D-dimensional martingale log-normal process modeling forward rate swaps. Such a model can
be taken to be the financial model of interest rates of Brace-Gatarek-Musiela [5], also referred to as the LIBOR
market model. From the stochastic process Xt satisfying(4.1), we define a second stochastic process, referred to as
the underlying process and, for definiteness, we choose the stochastic curves of the following forms:

• Stochastic discount curves B(t, s,Xt) (defined for s ≥ t), where B > 0 is a prescribed nonlinear function.

• Stochastic swap rates curves r(t, s,Xt), defined by

r(t, s,Xt) =
1−B(t, s,Xt)

B(t, s,Xt)(s− t)
. (4.54)

The portfolio and hedging instruments are then described as follows. Given any instrument with payoff P (t, s,X)
(where t represents the initial time of the contract), we can consider its fair values P (t, s,Xt) given by the Kolmogorov
equation (4.6), or else consider its sensitivities ∇P (t, s,Xt) given by (4.19). These values are computed by the
discretization scheme (4.17).

For instance, in [26] the Economic Value of Equity (EVE) and Net Income Interest (NII) indicators were chosen as
instruments. They are written on top of each loans and assets of the bank account sheet, and they have both swaps
rate curves and discount curves as underlyings. NII and EVE describe, with the simplest model, perpetual swaps.
However, they can turn into barrier options (statistical models), or Bermudan swaptions (rational models), depending
on how renegotiation and refund effects are taken into account.

Fair values and their sensitivities are themselves two stochastic processes and we can represent the numerical
simulation as follows. In Figure (4.2), the left-hand figure represents the expectation of the EVE process as a function
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of time, while the right-hand figure shows the sensitivities at time 1 with respect to one particular underlying, called
LIB1Y in our model. We considered here the EVE indicator together with a statistical re-negociation model.

In this setting, a hedge instrument is also a derivative, having payoff Hm(t, s,X), inside an hedging portfolio of
M instruments H = (H1, . . . ,HM ). For instance we considered swaps, caps and floors as hedging instruments in [26],
but swaptions, even Bermudan ones could be included.
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Figure 4.2: Expectation (left-hand side) and sensitivity (right-hand side) at t = 1

Hedging strategies. A static hedging strategy, set at the time value t, is any function α(t) = (α1, . . . , αM )(t) ∈ RM ,
defining a portfolio with payoff Hα =< α,H >. We can compute any strategy associated with an objective criteria
such as

α = arg inf
<α,H>≤C

∫
s≥t

I
(
[P− < α,H >](t, s, ·)

)
ds, (4.55)

in which (referring to [26] for further details):

• I is a convex functional and, for instance, considered the variance
∫
RD (P − Pmean)2dµ, or the sensitivities∫

RD

∣∣∇P ∣∣2dµ.

• < α,H >≤ C might be added or not. The purpose of this constraint is to limit the hedging portfolio investment
value.

Observe that the hedging strategy (4.55) is based on fair values, which are computed in the course of solving the
Kolmogorov equation. On the other hand, with a standard Monte-Carlo approach it would be very costly to compute
such hedges.

In Figure 4.3 we plot the numerical results for such a hedging strategy. The left-hand figure shows the variance of
the EVE over time, represented in Figure 4.2 in blue color, while the red color shows the variance of the EVE after
hedging its sensitivities using (4.55). This hedge reduces to almost zero the variance or the sensitivity of the EVE
process. However, it also increases dramatically the ones of the NII process; see the right-hand figure.
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Figure 4.3: left-expect. EVE right-sensi. EVE t=1

β-Hedging strategies. There are several cases of interest where one would like to mix two different hedging
strategies. For instance, in the NII / EVE example treated so far, we are using two different hedges computed with
(4.55). In the first one, we compute the hedging strategy minimizing the EVE sensitivities, as illustrated in Figure 4.3,
while in the second one we compute an hedge aiming to reduce the NII sensitivities. This second strategy is very
efficient to allows one to lower the NII sensitivities or variance but, as shown in Figure 4.3, it increases dramatically
the ones of the EVE.

Now, given any two strategies α1, α2 computed with (4.55), let us consider the strategy

α = βα1 + (1− β)α2, 0 ≤ β ≤ 1,

where β is chosen to match another criteria. For instance, we picked up in Figure (4.4) β = 0.07. The figure plots in
blue the variance of the NII and EVE in blue. The variance resulting form the β-hedge is plot with red color, showing
a reduction for both EVE and NII.

The value β = 0.07 in this example is chosen in order to keep the variance of the EVE inside a given limit, that
can be of internal bank or regulatory nature. Within this limit, we lowered the sensitivities of the NII as much as
possible.
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Figure 4.4: β-hedge, β = 0.07

Application to metrics for autocalls. We finally describe business case which illustrate the performance achieved
by our transport mesh-free method for finance applications. The business case consists in computing metrics for big
portfolio of Autocalls. The motivation is a pre-sale equity-derivative front-office case. It allows us to perform a
pre-selection for customers of such instruments. The financial setting is the following:

• Consider a D dimensional stochastic process (4.1) adapted to share modeling, for instance a log-normal one.

• Build the underlying process, modeling a basket of shares with a stochastic process. To model each share, we
use the Buehler dividend model [6] together with the local volatility calibration algorithm, as first proposed in
[15].

• Consider a template Autocall with some given characteristic and consider as its underlyings any combination
of our D shares. There are exactly 2D combinations possible of shares as underlyings to our Autocall. On each,
we compute various metrics as prices, deltas, gammas, coupon values, etc. These metrics are then compiled and
mixed to match clients needs.

To evaluate the accuracy and performance of our method, we performed the following tests.

• We considered a one-dimensional stochastic process, that is a log-normal martingale process, with 10 % volatility.

• We considered a D-dimensional process copying D times the previous one, without correlation.

Next, consider the portfolio consisting of 2D Autocalls defined as any combination of underlyings. Since each under-
lyings are copies, with this construction we only have D different Autocalls, each one depending only upon its number
of underlyings. Thus we can quite easily provide a benchmark of our metrics. For instance, in Figure 4.5 we present a
benchmark for our computed prices for D = 10. The figure shows the numerical results using the 10 theoretical prices
on the horizontal axis, while the vertical axis is used for the 1024 prices calculated by our method. Importantly, the
computation times are below a minute in dimensions D = 10, 11, 12, 13, using a single core of an Intel I7 processor.
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Figure 4.5: dispersion error, D = 10, N = 512

5 An algorithm for the signed-polar decomposition in transport theory

5.1 Polar and signed-polar decompositions in finite dimensions

Two decompositions of complex numbers. The polar decomposition is an important tool in many applications,
and we will now present a discrete algorithm for its computation. We begin by a discussion at the continuous level
and present several (old and new) notions which allow one to decompose matrices and mappings, and will play a
central role throughout. The polar decomposition of a complex number z = ρeiθ 6= 0 can be revisited as follow: While
it is standard to impose the normalization ρ > 0 and θ ∈ [0, 2π), we propose here an alternative decomposition.

Definition 5.1. The signed-polar decomposition of a complex number z = ρeiθ 6= 0, by definition, is z = ρ′eiθ
′

in
which one relaxes the signed condition on the modulus while the angle is restricted to remain in the “half-space”, i.e.
ρ′ = ±ρ and θ′ ∈ (−π/2, π/2].

In other word, from the standard polar decomposition z = ρeiθ, we set

(ρ′, θ′) =


(ρ, θ), θ ∈ [0, π/2),

(−ρ, θ − π), θ ∈ [π/2, 3π/2),

(ρ, θ − 2π), θ ∈ [3π/2, 2π).

(5.1)

Observe that (ρ, θ) can be characterized by the property that θ is a solution to the following minimization problem

inf
θ∈[0,2π)

|z − eiθ|2 = inf
θ∈[0,2π)

|1− e−iθz|2, (5.2)

while (ρ′, θ′) can be characterized by the minimization problem

inf
θ∈(−π/2,π/2]

|z − eiθ|2 = inf
ε=±1

inf
θ∈(−π/2,π/2]

|ε− e−iθz|2. (5.3)

In the polar decomposition, one performs a projection of z on the unit circle in the complex plane, while in the
signed-polar decomposition, we perform a projection on the unit half-circle of numbers with positive real part. We
also observe that the mapping z 6= 0 7→ (ρ, θ) is continuous (and even analytic) except across the positive real line,
while the mapping z 6= 0 7→ (ρ′, θ′) is continuous (and even analytic) except across the imaginary line. Interestingly,
such a discontinuity property does not arise with real-valued matrices, nor mappings, as we show below. Furthermore,
it will convenient to slightly modify the above notation. In the following, in dealing with matrices and maps, we will
extend the following notation stated here for complex numbers:

z = ρ+eiθ, ρ+ > 0, θ ∈ [0, 2π),

z = ρeiθ
+

, ρ ∈ R, θ+ ∈ (−π/2, π/2].
(5.4)

30

Electronic copy available at: https://ssrn.com/abstract=3790066



Two decompositions of real-valued matrices. We next consider matrices and throughout we deal with real-
valued N ×N matrices. Recall that the standard polar decomposition of an invertible matrix M reads

M = US+, U is orthogonal, S+ is symmetric and positive definite. (5.5)

Observe that the map M 7→ (U, S+) is well-defined on the set of invertible matrices, while the decomposition may fail
to be unique for non-invertible matrices. In fact, when M is not invertible, its symmetric part S+ = (MTM)1/2 is
defined uniquely as a semi-positive definite matrix, so that uniqueness fails only for the othogonal part U .

In contrast with the decomposition above, in the definition we now propose, the positivity condition is imposed
on the orthogonal part of the decomposition rather than on the symmetric part. Clearly, the space of symmetric
orthogonal matrices clearly plays a particular role here.

Proposition 5.2 (The signed-polar decomposition of matrices). 1. Any (invertible) matrix M admits a decomposition
of the form

M = U+S, U+ is orthogonal and positive definite, S is symmetric. (5.6)

referred to as its signed-polar decomposition. Moreover, the mapping M 7→ (U+, S) is continuous when restricted to
the space of invertible matrices.

2. The connection between the polar and signed-polar decompositions M = U+S = US+ of an invertible matrix is
as follows: there exists a symmetric and orthogonal matrix denoted by U0 such that

U+ = UU0, S = U0S
+. (5.7)

Furthermore, if S = V DV T denotes the spectral decomposition of S in which V consists of an orthogonal basis of
eigenvectors and D is a diagonal matrix made of its real eigenvalues, then one has

S+ = V D+V T , U0 = V ΣV T , (5.8)

where D+ is defined by taking the absolute value of the elements of D and Σ is a diagonal matrix made of the sign of
these eigenvalues.

Proof. Any invertible matrix M admits a complex-valued, singular value decomposition M = WD+V ∗, where W,V
are unitary matrices and the diagonal matrix D+ is real and positive. Here, V ∗ stands for the adjoint of the matrix
V . The standard polar decomposition is obtained immediately by writing

M = (WV ∗)(V D+V ∗) = US+.

For any diagonal matrices Σ having ±1 on its diagonal, we have

M = (WΣV ∗)(V ΣD+V ∗) =
(
UU0

)(
U∗0S

+
)
, U0 = V ΣV ∗

Observe that for any x ∈ RN we have < (WΣV ∗)x, x >=< Σy,W ∗V y >, y = V ∗x Moreover, any unitary matrix
is diagonalizable with orthogonal eigenspaces. In particular if one pick-up Σ carrying the signs of W ∗V , then the
previous expression is positive, leading to the signed-polar decomposition: M = (WΣV ∗)(V ΣDV ∗) = U+S.

5.2 Polar and signed-polar decompositions of mappings

Notation. Let us repeat some of our notation. We write ∇f =
(
∂df

)
d=1,...,D

for the gradient of a scalar-valued

function f : RD 7→ R, and we denote by ∇ · S the divergence operator of a map S : RD 7→ RD. The Laplace operator
is expressed as ∆ =

∑
i=1,...,D ∂

2
i = ∇ · ∇, and the Jacobian is writen as ∇S = (∂jSi)i,j (row-oriented). We also use

the composition rule ∇(ϕ ◦ S) = (∇S)(∇ϕ) ◦ S.
We can work on any open and convex subset Λ ⊂ RD endowed with the normalized Lebesgue measure m, with

m(Λ) = 1, but in practice we can simply pick up the unit cube Λ = (0, 1)D, and this is what we do in all our
numerical tests. Consider maps S : y ∈ Λ 7→ x = S(y) ∈ Ω taking values in a convex and open subset Ω ⊂ RD. Given
a probability measure µ defined on Ω and a probability measure ν defined Λ, a map S : (Λ, ν) 7→ (Ω, µ) is said to be
measure-preserving, or to transport ν into µ, provided S]ν = µ. In other words, one requires the following change of
variable formula

∫
Ω
ϕµ =

∫
Λ

(ϕ ◦S) ν. for all test-functions ϕ. Under suitable regularity on the map S, this change of
variable implies the Jacobian equation (µ ◦ S) |det∇S| = ν.
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The standard polar factorization for mappings. By the theory of optimal transport [35], given a positive
probability measure µ defined on Ω, (satisfying supp µ = Ω and absolutely continuous with respect to the Lebesgue
measure) there exists a unique optimal transport map S : (Λ,m) 7→ (Ω, µ) transporting the Lebesgue measure m on
Λ into µ. It is uniquely characterized by minimizing a suitable “cost” functional. Precisely, to any map S : Λ → Ω
and probability measure µ = S#m, we can associate the decomposition

S = (∇h+) ◦ T, h+ : Λ→ R convex, T#m = m, (5.9)

which is called the polar factorization of S. Hence, any map can be regarded as a gradient of a convex function
∇h+, modulo a Lebesgue measure-preserving map T . As for the polar decomposition of matrices, let us consider the
application S 7→ (h+, T ) which is defined whenever S is invertible in the sense that supp S#m = Ω and S#m ≤ Cm.
The so-called Wasserstein distance between two probability measures µ0 on Ω and µ1 on Λ

d
(
µ0, µ1

)
= W2(µ0, µ1

)
= inf
S#µ1=µ0

∫
Ω

|X − S(X)|22 dµ0 (5.10)

allows one to characterize the polar factorization S = ∇h : Λ 7→ Ω by solving a minimization problem.

The signed-polar factorization for mappings. As for matrices, in the following proposition, we propose here a
novel polar factorization for mappings S = ∇h ◦ T , in which the positivity condition is imposed here on the part T
rather than on the convex function h.

Proposition 5.3 (Signed polar factorization for maps). Let Λ be a convex set and S : Λ → RD be a map satisfying
supp S#m = RD and S#m . m. Then there exists a unique Lebesgue-measure-preserving map T+ and a real-valued
h : Λ→ R (which need not be convex) such that

S = ∇h ◦ T+, T+
#m = m, ∇T+ ≥ 0. (5.11)

A connection between signed and polar decomposition is as follows: let S = (∇h+) ◦ T , h+ convex, T#m = m the
standard polar factorization. Then there exists a Lebesgue measure-preserving T0 = ∇g such that

T = T0 ◦ T+, ∇h = ∇h+ ◦ T0. (5.12)

Of course, the signed-polar decomposition is trivial in dimension D = 1, while the standard polar factorization
is non-trivial, corresponding to a reordering by increasing values, and generates Lebesgue-measure preserving field T
that are non-smooth re-arrangement of the function. The regularity property of our factorization may be viewed as an
important advantage in some applications. For instance, consider a map S : Λ 7→ RN with bounded total variation in
the sense that its Jacobian is a measure-valued field of matrices. Then the signed-polar decomposition allows to give
a meaning to ∇S = (∇T+)(∇2h) ◦T+. while the formula ∇S = ∇T (∇2h+) ◦T for the standard polar decomposition
is not well-defined.

Proof. Given an arbitrary mapping S : Λ 7→ RD, let us consider its Jacobian ∇S. Consider the polar and signed-polar
decomposition of matrices, say ∇S = U+W = UW+, where W defined on Λ is a square-integrable diagonal field of
matrix, and U+ is an orthogonal positive field of matrix, hence is bounded. Let us introduce the following equations

∇T+ = U+, ∇P = W ◦ (T+)−1 (5.13)

Since the polar decomposition is unique for any field S = (∇h)◦T , the equation ∇T+ = U+ has a solution for any field
S with positive Jacobian, which can be expressed as (cf. the Hodge decomposition in Section 5.3): T+ = ∆−1∇ ·U+.
Furthermore, T+ is Lipschitz continuous since ∇T+ is orthogonal and positive. Observe that |det∇T+| = 1, hence
we deduce T : Λ 7→ Λ is Lebesgue-measure-preserving, T#m = m, and the composition S ◦ (T+)−1 is meaningful. In
particular, we can solve the second equation as previously, computing explicitely

P = ∆−1∇ ·
(
W ◦ (T+)−1

)
.
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In particular, since ∇P is a symmetric field of matrix, we must have P = ∇h, for some h : Λ→ R. Finally, we check

∇((∇h) ◦ T+) = ∇T+(∇2h) ◦ T+ = U+W = ∇S,

hence, up to a constant, P ◦ T+ = S.
Consider now the connection between polar and signed-polar factorizations, that is, S = ∇h ◦ T+ = ∇h+ ◦ T .

We deduce T0 = T ◦ (T+)−1 = (∇h+)−1 ◦ ∇h is Lebesgue measure-preserving, and has a symmetric Jacobian field of
matrices. Using the same argument as above, we conclude that T0 = ∇g.

5.3 A continuous algorithm for computing polar decompositions

The Hodge decomposition. Here, Λ = [0, 1]D is chosen to be the unit cube (but our analysis would hold for any
convex subset of RD) and we denote its boundary by Γ. The Hodge decomposition consists in decomposing a map
S : Λ → RD as an (for the L2 norm) orthogonal sum of a gradient map plus a divergence-free map. More precisely,
there exists a unique harmonic function h on Λ, a divergence-free map ζ on Λ and a function h0 vanishing on the
boundary Γ such that

S = ∇(h+ h0) + ζ, ∇ · ζ = 0. ζ · η = 0, ∆h = 0, (5.14)

where η is the (outward) normal to Γ and ∆−1 is the inverse Laplacian operator with vanishing boundary conditions.
Then the components are determined (up to a constant for h0) as

∇h0 = ΠS = ∇∆−1∇ · S, ζ = LS =
(
Id−∇∆−1∇ ·

)
S, (5.15)

where L is referred to as as the Leray operator.

Inverse and composition of maps. A mapping S = S(t, ·), viewed as an input data, is a priori given (or computed
in the applications). In particular, it might not define a proper mapping in the sense that det∇S > 0 might not hold.
Consider the following equation with unknown u : Rd 7→ R and prescribed data v

u ◦ S = v. (5.16)

Consider any map S and its polar factorization (see (5.9)), say S = (∇h)◦T , with a convex function h and a surjective
map T ∈ A(Λ), with S(Λ) = Ω. Then the following identity

S−1 = T−1 ◦ (∇h)
−1

: RD 7→ Λ (5.17)

makes sense provided µ = S#m is dominated by the Lebesgue measure, and this leads us to the following solution of
(5.16):

u = v ◦ T−1 ◦ (∇h)−1. (5.18)

To cope with the possibility that µ has a singular part with respect to the Lebesgue measure m, we should use a
suitably generalized inverse.

Lebesgue measure-preserving maps. The following lemma shows that any path of divergence free vector gen-
erates a time-dependent Lebesgue measure-preserving maps.

Lemma 5.4 (Time-dependent Lebesgue measure-preserving maps). Consider a time-dependent path of Lebesgue-
preserving map T = T (t, ·) defined on Λ with T (t, ·)#m = m. Then there exists a time-dependent divergence-free map
χ = χ(t, ·) on Λ such that

∂tT = χ ◦ T. (5.19)

Proof. If T (t, ·)#m = m is Lebesgue-preserving, it is a one-to-one map from Λ into itself and we can define T−1(t, ·)
pointwise. For any smooth function ϕ, using the map y = T (t, z), we have

∫
Λ
ϕ ◦ T =

∫
Λ
ϕ, and we find

0 =
d

dt

∫
Λ

ϕ =
d

dt

∫
Λ

ϕ ◦ T =

∫
Λ

(∇ϕ) ◦ T · ∂tT =

∫
Λ

(∇ϕ) · (∂tT ) ◦ T−1,

showing that (∂tT )◦T−1 is divergence-free. Conversely, assuming T satisfying (5.19), then it is now clear by the same
computation that T is Lebesgue measure-preserving.
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A direct algorithm for polar factorizations. We arrive at the formulation of our continuous method for com-
puting the polar factorization, using a connection between factorization of matrix and maps.

Proposition 5.5 (Factorization of smooth positive maps). Let S : Λ → RD be smooth map with convex support
supp S#m and positive Jacobian ∇S > 0. Consider its polar factorization S = (∇h) ◦T . Then, up to a constant, one
has

T = ∆−1∇ · U, ∇h = ∆−1∇ · (P ◦ T−1), (5.20)

where (P,U+) : Λ 7→ M(RD×D)2 is the field of symmetric and orthogonal matrices generated by the polar decomposi-
tion of matrices ∇S = UP .

Proof. We start from the polar factorization S = (∇h)◦T , thus ∇S = ∇T (∇2h)◦T . Cconsider the Jacobian ∇S and
its polar decomposition in (5.5), thus ∇S = UP , where P is a square-integrable field of symmetric positive matrix
and U is an orthogonal positive field of matrix. Since the polar factorization S = (∇h) ◦ T is unique, we can identify
both parts as follows:

∇T = U, ∇2h = D ◦ T−1. (5.21)

Consider the equation ∇T = U and recall that the Hodge decomposition yields the unique candidate to be a solution:
T = ∆−1∇·U, which is Lipschitz continuous. Since T is unitary, we can consider its inverse T−1 and the composition
D ◦ T−1 is meaningful. In particular, we can solve the second equation as previously, computing explicitely

∇h = ∆−1∇ ·
(
D ◦ T−1

)
,

leading to a solution h : Λ → R Finally, we check that ∇((∇h) ◦ T ) = ∇T (∇2h) ◦ T = UD = ∇S, hence, up to a
constant, P ◦ T = S.

A steepest descent algorithm for polar factorizations. Proposition 5.5 now suggests a direct method in
order to compute the polar factorization. As for polar factorization of matrices, we state a steepest descent iterative
algorithm, as follows.

Proposition 5.6 (Polar factorization of smooth convex maps via steepest descent). Given any smooth map S with
positive Jacobian matrix ∇S ≥ 0, consider the minimization problem:

T = arg min
T#m=m

∫
Λ

|L(S ◦ T )|2m, (5.22)

which amounts to find the polar and the signed-polar factorizations S ◦ T = ∇h, as defined in (5.9). The steepest
descent algorithm for this minimization problem amounts to compute a family of Lebesgue-preserving maps t 7→ T (t, ·)
with positive Jacobian ∇T ≥ 0 satisfying

S ◦ T = ∇h+ ζ, ∇ · ζ = 0

∂tT
−1 = L

(
∇2hζ

)
◦ T−1, ∂tT = −(∇T )L

(
∇2hζ

)
,

(5.23)

where
(
h, ζ
)
(t, ·) is obtained via the Hodge decomposition (5.14) in Λ, and T−1(t, ·) denotes the inverse of T and L

the Leray operator. When supp S = Ω, consider a path T = T (t, ·) of Lebesgue measure-preserving maps satisfying
(5.23). Then, as t → +∞, the map t → S ◦ T (t, ·) converges strongly at an exponential rate toward the signed-polar
factorization of S:

S ◦ T (t, ·)→ S = ∇φ, φ : Λ→ R is convex, as t→ +∞. (5.24)

For convex maps, the choice ∂tT
−1 = ζ ◦ T−1 is an alternate and simpler computational choice.

Proof. Let us write ∂tT
−1 ◦ T = χ, where by Lemma 5.4 χ(t, ·) is a divergence-free map. Let us consider the Hodge

decomposition S ◦ T = ∇h+ ζ, where ζ(t, ·) is divergence free. Then we have

d

dt

∫
Λ

|ζ|22 =
d

dt

∫
Λ

|S ◦ T −∇h|22 =
d

dt

∫
Λ

|S −∇h ◦ T−1|22

=

∫
Λ

< ∇h ◦ T−1 − S · (∇2h) ◦ T−1∂tT
−1 > .
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Composing back with T , we obtain∫
Λ

< ∇h− S ◦ T · (∇2h)(∂tT
−1) ◦ T >= −

∫
Λ

< (∇2h)ζ · χ >, (5.25)

thus the steepest descent algorithm reduces to χ(t, ·) = L
(
(∇2h)ζ(t, ·)

)
.

5.4 A discrete algorithm for computing polar decompositions

Computing the polar factorization. We now describe our discrete algorithm which generates a polar factoriza-
tion, along the guidelines provided by our theoretical study. From the numerical standpoint, our polar factorization
algorithm takes as an input any two distributions of equal size x ∈ RN×D, y ∈ RN×D and generates, as an output,
z ∈ RN×D, obtained by solving the discrete counterpart to (5.24)

y = ∇zh (h, z) = arg min
z∈RN×D,h∈RN

‖y −∇zh‖2`2 (5.26)

This minimization problem relies on the Helmholtz-Hodge decomposition, which is computed using a kernel (cf. [18]
for further details). We emphasize that this algorithm assumes that the initial map is positive in the sense that its
Jacobian is positive, that is, ∇xh ≥ 0. To this purpose, a reordering algorithm is required (as described in detail in
[20]). In particular, the operator (∇x)−1 is described in [18].

Algorithm 1 Compute y = ∇xh with a convex h.

Require: An admissible kernel k, a threshold parameter ε > 0, two distributions of points x ∈ RN×D, y ∈ RN×D.
– update x ← xσ, where σ = lsap(dk(x, y)) is the permutation computed by the linear sum assignment problem
[20] and dk is the discrepancy error matrix.
while ‖y −∇xh‖`2 < ε do

– compute the Helmholtz-Hodge decomposition h = (∇x)−1(y) ∈ RN and ζ = y −∇xh ∈ RN×D.
– compute λ = arg minλ>0 ‖y − (∇xh)(w)‖2`2 and w = x− λζ.
– update x← x− λζ.

end while
– output x, h.

The sampling algorithm. We illustrate the use of the polar factorization by presenting a function allowing to
recover, from any input distribution x ∈ RNx×D and any integer M > 0, a new distribution z ∈ RM×D which has very
similar statistical properties to the initial distribution x. We can use this sampling algorithm in a number of practical
situations, as it allows us to produce test data in order to check other algorithms. This algorithm is described as
follows.

Algorithm 2 Compute M iid sample from any input distribution.

Require: k a positive definite kernel, ε > 0 a threshold, a distributions y ∈ RNx×D, one integer M .
- compute x ∈ [0, 1]Nx×D, an iid sample of the uniform law on the unit cube.
- compute z ∈ [0, 1]Nx×D, h ∈ [0, 1]Nx the polar factorization y = ∇zh, h convex, using the algorithm (1).
- compute wM ∈ [0, 1]M×D, an iid sample of the uniform law on the unit cube.
- output (∇zh)(wM ).

To illustrate the relevance of our algorithm, we choose Nx = 1000 and a bi-modal distribution, computed as follows
(with the acronym iid standing for independent and identically distributed random variables):

x2n iid N (µ+, Id), x2n+1 iid N (µ−, Id),

where N (µ±, Id) denotes the normal law centered at µ± = (±5, . . . ,±5) ∈ RD with unit variance.
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In the figure, we plot the two distributions: the blue plot shows the original distribution, while red color is used
for numerical output distribution. Since these are three-dimensional distributions, we plot their marginal on the
combinations of axis (e1, e2) and (e1, e3).
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original bi-modal 3D distribution (blue) versus generated (red)

To check the quality of our algorithm, we perform several tests. First we consider marginal distributions of x
and z on each axis. To provide also information concerning the joint distributions, we compute the discrepancy error
between the two distributions. Observe that no other general, statistical indicator is available that would allow one to
compare two probability distributions. Skewness is a measure of the degree of symmetry, while kurtosis is a measure
of the concentration of the distribution.

• Skewness and kurtosis comparison tests on each axis:

Table 5.1: skewness and kurtosis on each axis

distribution skew0 kurtosis0 skew1 kurtosis1 skew2 kurtosis2

original 0.0028489 -1.847989 0.0024598 -1.844245 -0.0022913 -1.839244
generated 0.0096915 -1.882242 0.0191324 -1.865481 0.0172387 -1.879981

• Kolmogorov-Smirnov tests on each axis shows that we can not disprove the hypothesis that two independent
samples are drawn from the same continuous distribution.

• We provide also the discrepancy error between x and z which is very small, showing that the two distributions
agree very well.

Table 5.2: Kolmogorov-Smirnoff test

statistic pvalue

0.048 0.1995737
0.034 0.6101665
0.037 0.5005674

36

Electronic copy available at: https://ssrn.com/abstract=3790066



• Finally, we plot the discrepancy error dk(µX , µZ) as defined in (2.32):

Table 5.3: discrepancy error

dk(µX , µZ)

0.0812096
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