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Abstract

We introduce a discrete-time search game, in which two players compete to find an invisible
object first. The object moves according to a time-varying Markov chain on finitely many states.
The players are active in turns. At each period, the active player chooses a state. If the object
is there then he finds the object and wins. Otherwise the object moves and the game enters the
next period.

We show that this game admits a value, and for any error-term ε > 0, each player has a
pure (subgame-perfect) ε-optimal strategy. Interestingly, a 0-optimal strategy does not always
exist. We derive results on the analytic and structural properties of the value and the ε-optimal
strategies. We devote special attention to the important time-homogeneous case, where additional
results hold.

Keywords: Search game; two-player zero-sum game; optimal strategies; discrete time-varying Markov

process.

1 Introduction

The field of search problems is one of the original disciplines of Operations Research. In the basic

settings, the searcher’s goal is to find a hidden object, also called the target, either with maximal

probability or as soon as possible. By now, the field of search problems has developed into a wide

range of models. The models in the literature differ from each other by the characteristics of the

searchers and of the objects. Concerning objects, there might be one or several objects, mobile or not,

∗We would like to thank Steve Alpern, Miquel Oliu-Barton, Dietmar Berwanger, Michael Eichler, Rida Laraki,
Jérôme Renault, Bernhard von Stengel, Xavier Venel, Yannick Viossat, Bruno Ziliotto, and the audience of the Paris
game theory seminar for their precious comments and referring us to related literature. We also thank the Associate
Editor and three anonymous reviewers for reading the paper very carefully and providing many useful comments that
helped us greatly improve the paper.
†Declarations of interest: none
‡Corresponding author. Address: School of Business and Economics, Quantitative Department, Tongersestraat 53,

6211 LM, Maastricht, The Netherlands
§Department of Quantitative Economics, Maastricht University. Email: benoit.duvocelle@hotmail.fr
¶Department of Quantitative Economics, Maastricht University. Email: j.flesch@maastrichtuniversity.nl
‖Department of Data Science and Knowledge Engineering, Maastricht University. Email:

m.staudigl@maastrichtuniversity.nl
∗∗Department of Quantitative Economics, Maastricht University. Email: d.vermeulen@maastrichtuniversity.nl

1



A competitive search game 2

and they might have no aim or their aim is to not be found. Concerning the searchers, there might

be one or more. When there is only one searcher, the searcher faces an optimization problem. When

there is more than one searcher, searchers might be cooperative or not. If the searchers cooperate,

their aim is similar to the settings with one player: they might want to minimize the expected time

of search, the worst case time, or some search cost function. If the searchers do not cooperate, the

problem becomes a search game with at least two strategic non-cooperative players, and hence game

theoretic solution concepts and arguments will play an important role.

In almost all existing search games with more than one searcher, the searchers are assumed to cooperate

in order to achieve a common goal. In real life it is often the case that the different searchers involved

do not cooperate, for various reasons. For instance in nature, when several predators are looking for

the same prey. Another relevant situation is when several companies have to dig to find a resource on

a given surface (gold, coal, oil, lithium). The different companies do not have incentives to cooperate,

and base their search on the choices that the companies have done before. It is clear in those examples

that each searcher involved has to take into account the possible change of the object (a moving pray,

new technologies to locate resources).

We introduce a competitive search game, played at discrete periods in N. An object is moving

according to a time-varying Markov chain on finitely many states. Two players compete to find the

object first. They both know the Markov chain and the initial probability distribution of the object,

but do not observe the current state of the object. Player 1 is active at odd periods, and player 2

is active at even periods. The active player chooses a state, and this choice is observed by the other

player. If the object is in the chosen state, this player wins and the game ends. Otherwise, the object

moves according to the Markov chain and the game continues at the next period. If the object is

never found, the game lasts indefinitely. In that case, neither player wins.

When the active player chooses a state, he needs to take two opposing effects into account. First,

if the object is at the chosen state, then he wins immediately. This aspect makes choosing states

favorable where the object is located with a high probability. Second, if the object is not at the

chosen state, then knowing this, the opponent gains information: the opponent can calculate the

conditional probability distribution of the location of the object at the next period. This aspect

makes choosing states favorable where, on condition that the object not being there, the induced

conditional distribution at the next period disfavors the opponent. In particular, this conditional

distribution should not be too informative, and for example it should not place too high a probability

on a state. Clearly, in some cases there is no state that would be optimal for both scenarios at the

same time, and hence the active player somehow needs to aggregate the two scenarios in order to
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make a choice.

Each player’s goal is to maximize the probability to win the game, that is, to find the object first. In

our model, we do not assume that the players take into account the period when the object is found.

Of course, in most cases, maximizing the probability to win will entail at least partially that each

player would prefer to find the object at earlier periods, thereby preventing the other player from

finding the object. We refer to Duvocelle et al. [2020] for the finite horizon and on the discounted

versions of the search game, where the period when the object is found also matters.

The two players have opposite interests, up to the event when the object is never found. More precisely,

each player’s preferred outcome is that he finds the object, but he is indifferent between the outcome

that the other player finds the object and the outcome that the object is never found. As we will

see, the possibility that neither player finds the object will only have minor role, and hence the two

players have essentially opposite interests in the search game.

Main results. Our main results can be summarized as follows.

[1] We study the existence of ε-equilibria and subgame-perfect ε-equilibirum. A strategy profile is

called an ε-equilibrium if neither player can increase his winning probability by more than ε with a

unilateral deviation. A subgame-perfect ε-equilibrium is an ε-equilibrium in each subgame. We prove

that each competitive search game admits a subgame-perfect ε-equilibrium in pure strategies, for all

error-terms ε > 0 (cf. Theorem 3). The proof is based on topological properties of the game (cf.

Appendix A). Interestingly, a 0-equilibrium does not always exist, not even in mixed strategies. This

is demonstrated with an example (cf. Example 2). In the special case of time-homogeneous processes,

if the Markov chain is aperiodic and irreducible, then there exists a subgame-perfect 0-equilibrium in

pure strategies (cf. Theorem 4).

[2] We examine the properties of (subgame-perfect) ε-equilibria. We show that in each subgame-perfect

ε-equilibrium where ε > 0 is small enough, the object is found with probability 1 (cf. Proposition

15), and that the set of ε-equilibrium payoffs converge to a singleton (v1, 1 − v1), with v1 ∈ (0, 1] as

ε vanishes (cf. Proposition 9 and Proposition 11). This implies that the two players have essentially

opposite interests, and we may consider v1 to be the value of the game (cf. Definition 10) and the

strategies of ε-equilibria as ε-optimal strategies (cf. Definition 10 and Proposition 11).

[3] We investigate the properties of the value and the ε-optimal strategies. We show that the pay-

off functions have linear properties (cf. Proposition 6), which implies that the value is a Lipschitz

continuous function with respect to the initial probability distribution of the location of the object

(cf. Theorem 8). We also provide inequality properties of the value (cf. Propositions 6 and 12, and
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Corollary 13).

[4] We present some geometric structures of optimal actions and optimal regions of competitive search

games. An optimal action is a state among the ones necessary to choose in period 1 in order for

the active player to guarantee the value. Optimal regions are the subsets of the set of probability

distributions associated to each optimal action. We show that optimal regions are star-convex centered

at the vertices of the unit simplex, and that the intersection of all the optimal regions is non-empty

(cf. Theorem 16).

Related literature

In the literature, search games have been studied under many different assumptions. The models differ

in various characteristics. For example, the number of searchers, the number of objects, the aim of the

objects, and the search space. von Neumann [1953] studied a discrete version of the model where the

search space is a matrix. Several variations of this game were studied by Neuts [1963], Efron [1964],

Gittins and Roberts [1979], Roberts and Gittins [1978], Sakaguchi [1977], Subelman [1981], Berry and

Mensch [1986], and Baston et al. [1990], among others.

The search game with an immobile hider was introduced by Isaacs [1965]. Beck and Newman [1970]

considered a search game with a hider hiding on a line according to some distribution and a searcher,

starting from an origin and moving at fixed speed, who tries to find the hider as soon as possible.

The continuous model was then generalized by Gal [1972], Gal [1974] and Gal and Chazan [1976] who

extended the state space from a line to a surface.

There is a large literature on search games on graphs with an immobile hider. Among them, Cao

[1995] and Lidbetter [2020] have studied a search games on trees. Gal [1979], Reijnierse and Potters

[1993], Dagan and Gal [2008] and Alpern et al. [2008] examined search games on Eulerian networks.

Pavlović [1995], Gal [2010], Kikuta [2004], Alpern et al. [2008], and Alpern et al. [2009] extended

the analysis to more general networks. Jotshi and Batta [2008] proposed an algorithm to find a hider

hidden uniformly at random on a network. More recently Garrec and Scarsini [2020] proposed a search

game in a stochastic network. They proved that the value of such games always exists, and found

upper and lower bounds of the value, and optimal strategies for certain types of games. von Stengel

and Werchner [1997] proved that a particular search game played on a graph is NP-hard.

More relevantly to our paper, some authors dealt with discrete search problems with a moving object.

Pollock [1970], Schweitzer [1971], Dobbie [1974] and Kan [1974] study the two-state problem. Assum-

ing perfect detection, Nakai [1973] investigates the three-state problem. Brown [1980] considers the

search for a target with Markov motion in discrete time and space using an exponential detection
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function. He provides a necessary and sufficient condition for an optimal search plan and an efficient

iterative algorithm for generating optimal plans. Washburn [1983] studies a discrete effort analogue

of Brown [1980], in which searchers decide the effort they want to invest in order to find the object at

each location they visit. General necessary and sufficient conditions which extend Brown’s results to

an arbitrary stochastic process for any mixture of discrete and continuous time and space are given

in Stone [1976]. Hohzaki and Iida [2001] investigates a search problem for a moving target in which

a searcher can anticipate the probabilities of routes selected by the targets but does not have any

time information about when the target transits the route. Zoroa et al. [2011] study a pray-predator

model in which the prey can move. They find optimal strategies for both the prey and the predator

and compute the value of the game. Abramovskaya et al. [2016], Angelopoulos and Lidbetter [2020]

and Delavernhe et al. [2020] are recent papers which study search games with a mobile object. We

should also mention the very recent PhD thesis of Clarkson [2020], which contributes to the study of

both search games with a mobile hider and to search games with an immobile object.

Most of the search games focus on the case of one searcher, or several cooperative searchers. Some

problems with several cooperative searchers and one or several moving targets are mentioned in the

book of Stone et al. [2016].

To the best of our knowledge, only two models consider several non-cooperative searchers. Nakai [1986]

investigates a non-zero-sum game in which two searchers compete with each other for quicker detection

of an object hidden in one of n boxes, with exponential detection functions. Each player wishes to

maximize the probability that he detects the object before the opponent detects it. The author shows

the existence of an equilibrium point of the form of a solution of simultaneous differential equations,

and gets explicit solution results showing that both players have the same equilibrium strategy even

though the detection rates are different. In Nakai [1990], two Searchers compete to find different

objects before the other. Flesch et al. [2009] investigate the problem in which an agent has to find an

object that moves between two locations according to a discrete Markov process, with the additional

costless option to wait instead of searching. They find a unique optimal strategy characterized by two

thresholds and show that, in a clear contrast with our model, it can never be optimal to search the

location with the lower probability of containing the object. They also analyze the case of multiple

agents, where the agents not only compete against time but also against each other in finding the

object. They find different kinds of subgame-perfect equilibria.

As in Nakai [1973], we investigate functional and structural properties of the objective function. Nakai

proved that the function that allocates to a probability distribution the average number of looks before

finding the object is continuous, concave and enjoy some linear properties. They also show that the
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optimal regions (see Section 6) are star-convex sets. These properties have also been studied in

MacPhee and Jordan [1995] and in the PhD thesis of Jordan [1997].

For an introduction to search games, we recommend the books of Alpern and Gal [2006], Gal [1979],

Gal [2010] and Garnaev [2012]. We also refer to Gal [2013], and to the recent surveys Benkoski et al.

[1991] and Hohzaki [2016].

Structure of the paper. In Section 2, we present the model. In Section 3, we examine the existence

of (subgame-perfect) ε-equilibrium, for ε ≥ 0. In Section 4, we argue that the two players have

essentially opposite interests, we define the value and the notion of ε-optimal strategies, we present

some properties of the value of the game and we show the existence of ε-optimal strategies for both

players, for all ε > 0. In Section 6, we define optimal actions and optimal regions of the game, and

we give geometric properties of these sets. The conclusion is in Section 7.

2 The Model

The Game. We study a competitive search game G played by two players. Let N = {1, 2, 3, . . .}.

An object is moving according to a discrete-time Markov chain (Xt)t∈N on a finite state space S. The

initial probability distribution of the object over the set S is given by p ∈ ∆(S), and the transition

probabilities in period t are given by an S × S transition matrix Pt = [Pt(i, j)](i,j)∈S2 , where Pt(i, j)

is the probability for the object to move from state i to state j in period t.

At each period t ∈ N, one of the players is active: At odd periods player 1 is the active player, and at

even periods player 2 is the active player. The active player chooses a state st ∈ S, which we call the

action in period t. If the object is at state Xt = st, then the active player finds the object and wins

the game. Otherwise, the object moves according to the transition matrix Pt and the game enters

period t+ 1. We assume that each player observes the actions chosen by his opponent. The transition

matrices (Pt)t∈N and the initial distribution p are known to the players.

The aim of each player is to maximize the probability that he finds the object first.

Histories. A history in period t ∈ N is a sequence ht = (s1, . . . , st−1) ∈ St−1 of past actions with the

property that it has a positive probability that the object is not found before period t if the players

choose their actions according to ht. By Ht ⊆ St−1 we denote the set of all histories in period t.

Note that H1 consists of the empty sequence. Let Nodd = {1, 3, 5, . . .} and Neven = {2, 4, 6, . . .}. We

denote by Hodd = ∪t∈NoddHt the set of histories at odd periods, and by Heven = ∪t∈NevenHt the set

of histories at even periods.
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For a distribution q ∈ ∆(S) for the location of the object and a state s ∈ S for which q(s) < 1,

let q¬s ∈ ∆(S) denote the distribution q conditioned on the object not being in state s. That is,

q¬s(s) = 0 and q¬s(s′) = q(s′)
1−q(s) for each state s′ 6= s. With the help of these conditional distributions,

the players can update the distribution for the current location of the object. Indeed, the initial

distribution for the location of the object is p. If player 1 chooses state s1 but he does not find the

object there, then the players can update the distribution of the object in period 1 to p¬s1 . This

implies that the distribution of the object in period 2 is p2 = p¬s1P1, as the object moves once

according to the transition matrix P1. The update procedure continues in a similar fashion.

Strategies. The action sets for both players are A1 = A2 = S. A strategy σ = (σt)t∈Nodd for player 1

is a sequence of functions σt : Ht → ∆(S). The interpretation is that, at each period t ∈ Nodd, given

the history ht, the strategy σt chooses to search state s ∈ S with probability σt(ht)(s). Similarly,

a strategy τ = (τt)t∈Neven for player 2 is a sequence of functions τt : Ht → ∆(S). 1 We denote by

Σ and T the set of strategies for players 1 and 2, respectively. Note that Σ =
∏
h∈Hodd ∆(S) and

T =
∏
h∈Heven ∆(S). We say that a strategy σ for player 1 is pure if it uses no randomization: for

each history h ∈ Ht with t odd, σ(h) places probability 1 on some action ah ∈ S. Pure strategies are

defined similarly for player 2.

We endow the strategy spaces Σ and T with the topology of pointwise convergence. This is identical

with the product topology on Σ and the product topology on T . Under this topology, the spaces Σ

and T are compact, and as Hodd and Heven are countable, Σ and T are also metrizable.

Winning probabilities. We define the stopping time2 of the game by Θ = min{t ∈ N| st = Xt}.

Consider a strategy profile (σ, τ). The probability under (σ, τ) that player 1 wins is denoted by

u1(σ, τ) = Pσ,τ
(
Θ ∈ Nodd

)
, and that player 2 wins is denoted by u2(σ, τ) = Pσ,τ (Θ ∈ Neven). Note

that u1(σ, τ) + u2(σ, τ) = 1− Pσ,τ (Θ =∞).

If the play is in period t and the current distribution of the object is q ∈ ∆(S), we will write ut1(σ, τ)(q)

and ut2(σ, τ)(q) for the continuation winning probabilities of the players from period t onwards.

Similarly, if the play is in period t and the history is h, we will use the notations u1(σ, τ)(h) =

ut1(σ, τ)(ph) and u2(σ, τ)(h) = ut2(σ, τ)(ph), where ph is the conditional probability distribution for

the location of the object at history h.

Subgame-perfect ε-equilibrium. Let ε ≥ 0 be an error-term. A strategy σ for player 1 is an

ε-best response against strategy τ for player 2 if u1(σ, τ) ≥ u1(σ′, τ) − ε for every strategy σ′ of

1A strategy (for either player) could also be defined as a function ρ : ∆(S)→ ∆(S), with the interpretation that for
each distribution p ∈ ∆(S) for the location of the object, the player should choose a state according to ρ(p).

2With the convention that min{∅} = +∞.
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player 1. Similarly, a strategy τ for player 2 is an ε-best response against strategy σ for player

1 if u2(σ, τ) ≥ u2(σ, τ ′) − ε for every strategy τ ′ of player 2. A strategy profile (σ, τ) is called

an ε-equilibrium if σ is an ε-best response against τ and τ is an ε-best response against σ. A

subgame-perfect ε-equilibrium is a strategy profile (σ, τ) which is an ε-equilibrium in each subgame.

That is, for each history h, for each σ′ ∈ Σ, for each τ ′ ∈ T , u1(σ, τ)(h) ≥ u1(σ′, τ)(h) − ε and

u2(σ, τ)(h) ≥ u2(σ, τ ′)(h)− ε.

An alternative interpretation of the game. We call the previous game Model [1], which is with

imperfect information as the players do not observe the location of the object, unless a player searches

the location where the object is staying. Now we present an alternative model of this game in perfect

information, which we call Model [2]. We use Model [2] only as an auxiliary model in our paper, so

that we can apply existence results in the literature that are formulated for this type of models (cf.

Theorem 3).

Model [2]: Another way to describe our game is as follows. One could imagine that the game consists

of two phases. In the first phase the players choose actions sequentially. More precisely, in the

first phase, player 1 chooses an action at odd periods and player 2 chooses an action at even periods

sequentially, just as before. This results in an infinite sequence of states (s1, s2, . . .). The set of infinite

histories is S∞. Every pure strategy profile (σ, τ) induces a unique infinite history h∞σ,τ ∈ S∞. In a

second phase, players receive a payoff. Now, for i = 1, 2, consider the payoff function fi : S∞ → [0, 1]

defined as follows. Consider an infinite history (s1, s2, . . .). Take any pure strategy profile (σ, τ) such

that h∞σ,τ = (s1, s2, . . .) and define fi(s1, s2, . . .) = ui(σ, τ); note that this definition only depends on

the realized history. The goal of each player is to maximize his payoff. Note that this is a game

without an object. This way we obtain a two-player perfect information game.

Discussion. We briefly argue that the above descriptions are equivalent. For each pure strategy

profile (σ, τ), for each player i = 1, 2, we have ui(σ, τ) = fi(h
∞
σ,τ ). Then, a strategy profile in one of

the models leads to the same payoff in the other game. The difference is that Model [1] is in imperfect

information, as players only know the probability distribution of the object, while Model [2] is in

perfect information.

Model [1] gives a very clear, intuitive and concrete description of the game. This is the reason why

we usually work with this model in the paper. Model [2] is used as a tool to prove existence of

subgame-perfect ε-equilibrium for all ε > 0, as in Theorem 3.
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3 Existence of equilibrium

In this section, we examine equilibria in competitive search games. In the first subsection, we show

that there are search games for which there exist no 0-equilibrium, not even in mixed strategies.

From a technical point of view, this is caused by discontinuity in the payoff functions of the players.

In the second subsection, we focus on the notion of subgame-perfect ε-equilibrium, where ε > 0

is an error-term, and prove that each search game admits a subgame-perfect ε-equilibrium in pure

strategies, for all ε > 0. In the third subsection, we present sufficient conditions for the existence of a

subgame-perfect 0-equilibrium in pure strategies.

3.1 Search games with no 0-equilibrium

Theorem 1. There exist time-homogeneous competitive search games which admit no 0-equilibrium,

not even in mixed strategies.

We provide an example below of a time-homogeneous competitive search game which admits no 0-

equilibrium, not even in mixed strategies (for another example, we refer to Duvocelle et al. [2020]). The

main idea of this example is that during the game the active player is incentivised to choose a transient

state of the Markov chain, as these are the only states where moving first gives an advantage. However,

if the players always choose a transient state, then they do not find the object with probability 1, and

hence this cannot constitute a 0-equilibrium.

Example 2. Consider the game in Figure 1. In this game, η ∈ (0, 1
4 ) and the initial probability

distribution is p = (q, q, 1
2 − q,

1
2 − q), where q ∈ (0, 1

4 ). Notice that states 1 and 2 have the same

transition probabilities, and so do states 3 and 4. States 1 and 2 are transient, whereas states 3 and

4 are absorbing.

We show that this game admits no 0-equilibrium. The intuition for this claim is as follows. Consider

period 1. Player 1 has a choice between a transient state (i.e., states 1 and 2) and an absorbing state

(i.e., states 3 and 4).

Suppose first that player 1 chooses an absorbing state, say state 3. We will show (see Claim 1 below)

that this, with optimal follow-up play, induces a winning probability of exactly 1
2 . If player 1 does

not find the object in period 1, then it is very likely that the object is in state 4, and player 2 should

respond by choosing state 4 in period 2. If player 2 does not find the object, then due to the transition

probabilities, the object is very likely to be in state 3 in period 3. Indeed, we know that the object

was not in state 3 in period 1 and not in state 4 in period 2, so the object has one more period to

move to state 3 compared to state 4. Continuing this argument shows that the optimal continuation
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Figure 1: A game without 0-equilibrium.

play consists of player 1 always choosing state 3 and player 2 always choosing state 4. This gives a

winning chance of exactly 1
2 to each player.

Now suppose that player 1 chooses a transient state, say state 1. In addition, suppose that if period

3 is reached, then player 1 will choose state 3, unless player 2 chose state 3 in period 2, in which

case player 1 chooses state 4. We show that this strategy guarantees a winning probability of strictly

more than 1
2 for player 1 (see Claim 2 below). Indeed, player 1 wins immediately with probability

q > 0, and as we show, the probability of winning in period 3 is greater than 1
2 − q, so that the total

probability that player 1 wins is strictly more than 1/2.

Based on the above discussion, player 1 should choose a transient state in period 1. If player 1 does

not find the object, by an inductive argument, player 2 should also choose a transient state in period

2. Continuing this way, the players should choose transient states in all periods. Then, however, they

do not find the object with probability 1, and hence this cannot constitute a 0-equilibrium (see Claim

3 below).

Claim 1: If player 1 starts with choosing state 3 or state 4, then with optimal follow-up play, the

winning probability of player 1 is exactly 1
2 . More precisely, let Σ3,4 denote the set of strategies for

player 1 that looks at state 3 or state 4 in period 1. Then,

sup
σ∈Σ3,4

inf
τ∈T

u1(σ, τ) =
1

2
.

Proof of Claim 1: Let τ = (τt)t∈Neven be the strategy of player 2 defined as follows. For all
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t ∈ Neven, for all ht ∈ Ht,

τt(ht) =



state 1 if ht ∈ {1, 2}t−1,
state 3 if ht(t− 1) = 4,

or if ht(t− 1) ∈ {1, 2} and ht(t− 2) = 4,
state 4 if ht(t− 1) = 3,

or if ht(t− 1) ∈ {1, 2} and ht(t− 2) = 3,
arbitrary otherwise,

where ht(t − 2) and ht(t − 1) are the second-to-last and the last actions chosen under history ht,

respectively.

The idea is that τ looks at state 1 if player 1 has never played state 3 or state 4, and plays the most

likely state otherwise. Assume for simplicity that player 1 looks at state 3 in period 1. Assume that

player 1 does not find the object in period 1. The conditional probability of the object being in state

4 in period 2 is then equal to

1
2 − q
1
2 + q

+ 2 · 1− η
2
· q

1
2 + q

=
1
2 − q · η

1
2 + q

,

which is strictly higher than 1
2 by our assumption that q < 1

4 and η < 1
4 . Then, in the continuation

of the game, player 2 guarantees strictly more than 1
2 if he looks at state 4 in period 2. If he does

not, player 2 will get strictly less than 1
2 if player 1 looks at state 4 in period 3. For similar reasons,

if period 3 is reached, it is better for player 1 to look at state 3. By repeating this argument, it is

better for player 1 to always look at state 3 against τ .

With probability 1
2 − q, player 1 finds the object in period 1. With probability 1

2 − q + q · (1 − η),

player 2 finds the object in period 2. With probability q · (1 − η) + q · (1 − η) · η, player 1 finds the

object in period 3. With probability q · (1− η) · η + q · (1− η) · η2, player 2 finds the object in period

4. And so on. Then, player 1 finds the object with probability

1

2
− q+ q · (1− η) + q · (1− η) · η+ q · (1− η) · η2 + q · (1− η) · η3 + . . . =

1

2
− q+ q · (1− η) · 1

1− η
=

1

2
.

So, by playing state 3 or state 4 in period 1, player 1 gets exactly 1
2 against τ .

Let σ = (σt)t∈Nodd be the strategy of player 1 defined as follows. For all t ∈ Nodd, for all ht ∈ Ht,

σt(ht) =



state 1 if t = 1,
state 3 if t ≥ 3 and ht(t− 1) = 4,

or if t ≥ 3 and ht(t− 1) ∈ {1, 2} and ht(t− 2) = 4,
state 4 if t ≥ 3 and ht(t− 1) = 3,

or if t ≥ 3 and ht(t− 1) ∈ {1, 2} and ht(t− 2) = 3,
arbitrary otherwise.

The idea is that from period 3 onward, σ chooses the most likely location of the object.

Claim 2: When player 1 uses σ he guarantees himself strictly more than 1
2 : u1(σ, τ) > 1

2 for every τ .
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Proof of Claim 2: Under σ, player 1 looks at state 1 in period 1 and finds the object with

probability q in period 1. The object is not found in period 1 with probability 1 − q. In that case,

with probability q
1−q the object is in state 2 in period 1, and it moves with probability η/2 to state 1

and with probability 1− η to state 3 or state 4 and in period 2. So the distribution of the location of

the object at the beginning of period 2 is p2 = ( q·η
2(1−q) ,

q·η
2(1−q) ,

1
2 −

q·η
2(1−q) ,

1
2 −

q·η
2(1−q) ).

Suppose player 2 chooses state 1 or state 2 in period 2. With probability q·η
2 , player 2 finds the object

in period 2, and with probability 1
2 −q+ q·(1−η)

2 + q·η·(1−η)
4 , player 1 finds the object in period 3. So in

total, player 1 finds the object over periods 1 and 3 with probability q+ 1
2 −q+ q·(1−η)

2 + q·η·(1−η)
4 > 1

2 .

Suppose player 2 chooses state 3 (resp. state 4) in period 2. With probability 1
2 − q + q·(1−η)

2 ,

player 2 finds the object in period 2, and with probability 1
2 − q + q·(1−η)

2 + q·η·(1−η)
2 , player 1 finds

the object in period 3. So in total, player 1 finds the object over periods 1 and 3 with probability

q + 1
2 − q + q·(1−η)

2 + q·η·(1−η)
2 > 1

2 .

Thus, in every case, player 1 guarantees strictly more than 1
2 by using strategy σ.

Claim 3: There is no 0-equilibrium.

Proof of Claim 3: Assume by way of contradiction that there is a 0-equilibrium (σ′, τ ′). From

Claim 1 and Claim 2, player 1 chooses state 1 or state 2 with probability 1 in period 1. In both

cases, in period 2 the current probability distribution is p2 = ( q·η
2(1−q) ,

q·η
2(1−q) ,

1
2 −

q·η
2(1−q) ,

1
2 −

q·η
2(1−q) ).

Then, in period 2, the game is similar to the original one, with a parameter q′ = q·η
2(1−q) instead of q,

which still satisfies q′ ∈ (0, 1
4 ), and where the roles of the players are exchanged. Then, as τ is a 0-best

response, it follows from the previous reasoning that player 2 plays state 1 or state 2 with probability

1. By following this process recursively, players will choose states 1 and 2 with probability 1 forever.

This leads to the payoff 4·q
4−η2 for player 1. Then, player 1 has an incentive to deviate from σ′ and to

choose state 3 in period 1 to get a payoff of at least 1
2 − q >

4·q
4−η2 , a contradiction.

3.2 Existence of pure subgame-perfect ε-equilibrium

In this subsection we are interested in the existence of subgame-perfect ε-equilibrium, where ε > 0. In

the next theorem, we show that all competitive search games admit a subgame-perfect ε-equilibrium

in pure strategies, for each ε > 0. The proof relies on existence results for subgame-perfect ε-equilibria

in games with bounded and lower semi-continuous payoff functions (see Flesch et al. [2010] orFlesch

and Predtetchinski [2016]).

Theorem 3. Every competitive search game admits a pure subgame-perfect ε-equilibrium, for each

ε > 0.
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Proof. Consider Model [2] of a competitive search game, as described in Section 2. Note that: (i) this

is a multiplayer perfect information game, and (ii) the payoffs are bounded and lower semi-continuous,

in view of Proposition 18. Thus, by applying Theorem 2.3 of Flesch et al. [2010] (or by Theorem 4.1

of Flesch and Predtetchinski [2016]), the game admits a pure subgame-perfect ε-equilibrium for each

ε > 0.

Revisiting Example 2. In view of Theorem 3, the game in Example 2 has a subgame-perfect ε-

equilibrium in pure strategies, for each ε > 0. We now construct such a strategy profile, for each

ε > 0.

Let ε > 0. The idea of the subgame-perfect ε-equilibrium described here is as follows. Take a

sufficiently large period n. Let the players choose state 1 until period n, and then let them choose

the most likely between state 3 or state 4 in the remaining game. If a player deviates to an absorbing

state before period n, then also continue with states 3 and 4 as described before.

More formally, for each n ∈ N, let (σn, τn) be the pure strategy profile defined as follows. For all

t ∈ N, for all history ht in period t, for all n ∈ N, let fnt : Ht → S be defined by

fnt (ht) =



state 1 if ht ∈ {1, 2}t−1 and t < n,
state 3 if ht(t− 1) = 4,

or if ht(t− 1) ∈ {1, 2} and ht(t− 2) = 4,
or if ht ∈ {1, 2}t−1 and t ≥ n,

state 4 if ht(t− 1) = 3,
or if ht(t− 1) ∈ {1, 2} and ht(t− 2) = 3,

arbitrary otherwise.

Then, we define σnt (ht) = fnt (ht) for all t ∈ Nodd, and τnt (ht) = fnt (ht) for all t ∈ Neven and all history

ht at time t. The idea of σn and τn is to look at state 1 until period n (if the other player does the

same) and from period n onward (or before if the other player deviates) to look at the most likely

state. We argue that if n ≥
ln
( q
ηε

)
ln
(

2
η

) , the difference between those two expressions is smaller than ε so

(σn, τn) is a subgame-perfect ε-equilibrium. For simplicity, we assume that n is odd.

It follows from Claim 1 and Claim 2 of the proof of Theorem 1 that τn is a 0-best-response against

σn. It is then sufficient to show that σn is an ε-best response against τn when n is large enough.

From Claim 2 of the proof of Theorem 1 it follows that a 0-best response against τn is to follow the

strategy σn+1, which only differs from σn in period n. Under (σn, τn), with probability q player 1 finds

the object in period 1, with probability q.
(
η
2

)
player 2 finds the object in period 2, with probability

q.
(
η
2

)2
player 1 finds the object in period 3, and so on until period n − 1. Then in the continuation

game that starts in period n it follows from the proof of Claim 2 in Theorem 1 that both players find

the object with probability 1
2 . So, with probability q + q ·

(
η
2

)2
+ q ·

(
η
2

)4
+ . . . + q ·

(
η
2

)n−3
player 1

finds the object before period n, with probability q ·
(
η
2

)
+ . . . + q ·

(
η
2

)n−2
player 2 finds the object
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before period n, and with probability 1
2 ·
[
1−

(
q + q ·

(
η
2

)
+ q ·

(
η
2

)2
+ . . .+ q ·

(
η
2

)n−2
)]

each player

finds the object from period n onward. This implies that under (σn, τn) the expected payoff of player

1 is

q + q ·
(η

2

)2

+ q ·
(η

2

)4

+ . . .+ q ·
(η

2

)n−3

+

[
1−

(
q + q ·

(η
2

)
+ q ·

(η
2

)2

+ . . .+ q ·
(η

2

)n−2
)]
· 1

2

and under (σn+1, τn+1), the expected payoff of player 1 is

q + q ·
(η

2

)2

+ q ·
(η

2

)4

+ . . .+ q ·
(η

2

)n−1

+

[
1−

(
q + q ·

(η
2

)
+ q ·

(η
2

)2

+ . . .+ q ·
(η

2

)n−1
)]
· 1

2

Those two terms converge to the same limit q

1−( η2 )
2 +

[
1− q

1−( η2 )

]
· 1

2 which is the value of the game.

Moreover, the difference between these two expressions is∣∣∣∣q · (η2)n−1

− 1

2
· q ·

(η
2

)n−1
∣∣∣∣ =

q

2
·
(η

2

)n−1

.

Hence, when n ≥
ln
( q
ηε

)
ln
(

2
η

) , the difference between those two expressions is smaller than ε so (σn, τn)

is an ε-equilibrium.

3.3 Sufficient conditions for existence of pure subgame-perfect 0-equilibrium

In this subsection, we present sufficient conditions for the existence of a pure subgame-perfect 0-

equilibrium.

Consider a time-homogeneous competitive search game. In this case the transition matrix at each

period is the same matrix P . For all r ∈ N we denote by P r the matrix P to the power r. We call

P irreducible if for each entry (i, j), there exists r ∈ N such that the entry (i, j) of P r is positive.

We call P periodic of period r ≥ 2 if r = gcd{n ≥ 2 |Pn(x, x) > 0}. When r = 1, we say that P is

aperiodic. A subset S′ ⊆ S is ergodic if for (i, j) ∈ S′ × (S\S′), P (i, j) = 0 and the transition matrix

P restricted to the set S′ is irreducible.

A probability distribution π ∈ ∆(S) over the set S is called a stationary distribution for the transition

matrix P if πP = π.

It is known (see Levin and Peres [2017], Corollary 1.17 page 13 and Theorem 4.9 page 52) that if the

transition matrix P is irreducible, then there exists a unique stationary distribution π ∈ ∆(S) and

π(s) > 0 for all s ∈ S. If P is also aperiodic, then there exist constants β ∈ (0, 1) and c > 0 such that

for all distributions p for the initial location of the object and all periods t ∈ N,

||pP t − π||TV ≤ c · βt,
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where ||p − q||TV = max
A⊂S

∑
s∈A(p(s) − q(s)) is the total variation distance over ∆(S). Note that for

each p, q ∈ ∆(S), it holds that ||p− q||TV = 1
2 ·
∑
s∈S |p(s)− q(s)| (see Levin and Peres [2017], pages

47-48).

Theorem 4. Consider a time-homogeneous competitive search game. Assume that the transition

matrix P is irreducible and aperiodic. Then, no matter the initial probability distribution p, the object

is found with probability 1 under every strategy profile (σ, τ), i.e., Pσ,τ (Θ < ∞) = 1. Hence, the

payoff functions are continuous in this game, and there exists a subgame-perfect 0-equilibrium in pure

strategies.

Proof. As mentioned, the transition matrix P has a unique stationary distribution π ∈ ∆(S) and

π(s) > 0 for all s ∈ S. Moreover, there exist constants c > 0 and β ∈ (0, 1) such that |pP t(s)−π(s)| ≤

c · βt for all t ∈ N, for all s ∈ S and for all p ∈ ∆(S). Hence, there exists t∗ ∈ N with the following

property: for all p ∈ ∆(S), for all s ∈ S, for all t ≥ t∗, we have (pP t−1)(s) > δ
2 , where δ = mins∈S π(s).

Without loss of generality we can assume that t∗ ≥ 2.

Let α = δ
4(t∗−1) . The proof is divided into four steps.

Step 1: Let (σ, τ) be a pure strategy profile, and let (st)t∈N denote the induced sequence of actions.

We show that the object is found during the first t∗ periods with probability at least α.

Proof: For each t ∈ N, let pt = (pt(s))s∈S ∈ ∆(S) denote the probability distribution of the location

of the object in period t, conditional on not being found through the history (s1, . . . , st−1).

If there is a period t ≤ t∗ such that pt(st) ≥ α, then under (σ, τ), the object is found in period t with

probability at least α, if it has not been found before. Hence, the claim of step 1 is true.

Therefore, it suffices to show that if at each period t ≤ t∗ − 1 we have pt(st) < α, then pt∗(st∗) ≥ α.

So assume that at each period t ≤ t∗−1 we have pt(st) < α. The idea of the calculation below is that,

since the object is found with low probabilities at the first t∗− 1 periods, the probability distribution

for the object in period t∗ conditioned on not being found during the first t∗− 1 periods is almost the

same as the unconditioned probability distribution. That is, pt∗ is close to pP t
∗−1, which is in turn

close to the stationary distribution π.

Note that, if the players do not condition on the past, the probability distribution of the location of

the object in period t∗ is simply pP t
∗−1. Recall that, if p(s) < 1, then p¬s denotes the probability
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distribution p conditioned on the object not being in state s. We have

||pt∗ − pP t
∗−1||TV ≤ ||pt∗ − pt∗−1P ||TV + ||pt∗−1P − pP t

∗−1||TV

= ||p¬st∗−1

t∗−1 P − pt∗−1P ||TV + ||pt∗−1P − pP t
∗−1||TV

≤ ||p¬st∗−1

t∗−1 − pt∗−1||TV + ||pt∗−1 − pP t
∗−2||TV

= pt∗−1(st∗−1) + ||pt∗−1 − pP t
∗−2||TV

< α+ ||pt∗−1 − pP t
∗−2||TV

< α · (t∗ − 1) + ||p1 − pP 0||TV

= α · (t∗ − 1)

=
δ

4
.

Here, in the first inequality we used the triangle inequality. In the first equality we used pt∗ = p
¬st∗−1

t∗−1 P ,

as pt∗ is the location of the object in period t∗ conditioned on not being found up to period t∗ − 1

and p
¬st∗−1

t∗−1 P expresses the distribution that arises when object moves once according to P after not

being found up to period t∗ − 1. The second inequality is true as ||qP − q′P ||TV ≤ ||q − q′||TV for all

q, q′ ∈ ∆(S). The second equality follows from the above interpretation of p
¬st∗−1

t∗−1 and the definition of

the total variation norm. The third inequality is due to the assumption that at each period t ≤ t∗− 1

we have pt(st) < α. The fourth inequality then follows by induction. The last two equalities are due

to p1 = p and the choice of α.

Therefore,

pt∗(st∗) ≥ (pP t
∗−1)(st∗)− ||pt∗ − pP t

∗−1||TV ≥
δ

2
− δ

4
=

δ

4
≥ α.

This completes the proof of Step 1.

Step 2: Consider any strategy profile (σ, τ). We show that the object is found during the first t∗

periods with probability at least α.

Proof: On the finite horizon t∗, each strategy can be equivalently represented as a mixed strategy, i.e.

a probability distribution on the finite set of pure strategies on horizon t∗ (see for example Maschler

et al. [2013]). Hence, Step 2 follows from Step 1.

Step 3: Consider any strategy profile (σ, τ). We show that the object is found with probability 1

under (σ, τ). By Proposition 18, this will imply that the payoff functions are continuous in this game.

Proof: By Step 2, the object is found during the first t∗ periods with probability at least α. Since

t∗ and therefore α do not depend on the initial distribution of the object, if the object is not found in

the first t∗ periods, then it will be found between periods t∗ + 1 and 2t∗ with probability at least α.

By repeating this argument, the object is found with probability 1 under (σ, τ).
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Step 4: We show that there exists a subgame-perfect 0-equilibrium in pure strategies.

Proof:3 In view of Theorem 3, for each n ∈ N, there exists a subgame-perfect 1
n -equilibrium (σn, τn)

in pure strategies. Since the spaces of strategies Σ and T are compact and metrizable, by taking a

subsequence if necessary, we can assume that the sequence (σn, τn)n∈N converges to a strategy profile

(σ, τ) in pure strategies as n→∞ .

For each n ∈ N, and for every history h we have u1(σn, τn)(h) ≥ u1(σ′, τn)(h)− 1
n and u2(σn, τn)(h) ≥

u2(σn, τ ′)(h) − 1
n for all σ′ ∈ Σ and τ ′ ∈ T . Since by Step 3 the payoff functions u1 and u2 are

continuous, by taking the limits as n → ∞, we obtain u1(σ, τ)(h) ≥ u1(σ′, τ)(h) and u2(σ, τ)(h) ≥

u2(σ, τ ′)(h) for every history h, for all σ′ ∈ Σ and τ ′ ∈ T . Hence, (σ, τ) is a subgame-perfect

0-equilibrium in pure strategies.

4 Existence and properties of the value

In competitive search games, the winning probabilities do not always add up to 1, as under certain

strategy profiles it may have a positive probability that the object is never found. For instance, this

is the case in the game in Example 2, if the players always choose state 1. However, neither player is

interested in the outcome when the object is never found. Therefore, as we argue in this section, in

essence the players have opposite interest and the value is a natural solution concept for competitive

search games.

We denote v1 = sup
σ∈Σ

inf
τ∈T

u1(σ, τ) and v2 = sup
τ∈T

inf
σ∈Σ

u2(σ, τ). Intuitively, a strategy σ guarantees for

player 1 a winning probability of infτ∈T u1(σ, τ), and therefore v1 can be interpreted as the largest

winning probability that player 1 can guarantee in the game. The interpretation of v2 is similar.

More generally, when we wish to emphasize the initial distribution p of the object as a parameter, we

will write v1(p) = sup
σ∈Σ

inf
τ∈T

u1(σ, τ)(p) and v2(p) = sup
τ∈T

inf
σ∈Σ

u2(σ, τ)(p).

Let Σs denote the set of those strategies for player 1 that choose state s in period 1. We define

v1(p, s) = sup
σ∈Σs

inf
τ∈T

u1(σ, τ)(p). Note that v1(p) = maxs∈S v1(p, s).

As discussed in Section 2, each history h induces a conditional probability distribution for the location

of the object, say ph. We will use the notation v1(h) = v1(ph) and v2(h) = v2(ph).

Proposition 5. We have

v1 = inf
τ∈T

sup
σ∈Σ

u1(σ, τ) and v2 = inf
σ∈Σ

sup
τ∈T

u2(σ, τ).

3The claim of Step 4 follows from Fudenberg and Levine [1983], but for completeness, we give a proof based on
Theorem 3.
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Similar equalities hold for v1(p) and v2(p) for all p ∈ ∆(S).

Proof. We refer to the Appendix B.

The next theorem discusses properties of the payoff functions and the functions v1(p) and v2(p) along

line segments in ∆(S). For each state s ∈ S, let es ∈ ∆(S) denote the probability distribution that

allocates probability 1 to state s and probability 0 to all other states.

Proposition 6.

[1] Let (σ, τ) be a strategy profile. Then, the payoff functions are linear in the initial probability

distribution of the object: for every p, q ∈ ∆(S), for every λ ∈ [0, 1], and for every player i = 1, 2:

ui(σ, τ)(λ · p+ (1− λ) · q) = λ · ui(σ, τ)(p) + (1− λ) · ui(σ, τ)(q). (1)

[2] For every s ∈ S, the map p 7→ v1(p, s) is linear over every line passing through es: for every

p ∈ ∆(S) and for every λ ∈ [0, 1]:

v1(λ · es + (1− λ) · p, s) = λ+ (1− λ) · v1(p, s).

[3] For every p, q ∈ ∆(S), for every λ ∈ [0, 1], and for every player i = 1, 2:

vi(λ · p+ (1− λ) · q) ≥ λ · vi(p).

Proof. We refer to the Appendix B.

Remark 7. In part [2] of Proposition 6, the linearity of p 7→ v1(p, s) relies on the following fact: Let

p ∈ ∆(S) \ {es}, and let ` denote the line going through p and es. If by choosing state s player 1

does not find the object, then the conditional distribution of the location of the object, p¬s, stays on

the line `. Note, however, that the function p 7→ v1(p, s) is generally non-linear. Indeed, consider a

game that has 4 states, each of which is absorbing. For p = ( 1
3 ,

1
3 ,

1
3 , 0) and q = ( 1

3 ,
1
3 , 0,

1
3 ), we have

v1(p, 1) = 2
3 and v1(q, 1) = 2

3 , but v1( 1
2 · p+ 1

2 · q, 1) = 1
2 . ♦

We recall the definition of the total variation distance: for p, q ∈ ∆(S), the total variation distance

between p and q is the non-negative number ||p− q||TV = maxA⊂S
∑
s∈A(p(s)− q(s)).

Theorem 8. For each player i = 1, 2, each strategy profile (σ, τ), each state s ∈ S, the functions

p 7→ ui(σ, τ)(p), p 7→ vi(p), and p 7→ v1(p, s) are 1-Lipschitz continuous with respect to the total

variation distance.
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Proof. We only prove it for player 1. By part [1] of Proposition 6, we have

u1(σ, τ)(p) =
∑
s∈S

p(s) · u1(σ, τ)(es),

u1(σ, τ)(q) =
∑
s∈S

q(s) · u1(σ, τ)(es).

Hence,

u1(σ, τ)(p)− u1(σ, τ)(q) =
∑
s∈S

[p(s)− q(s)] · u1(σ, τ)(es) ≤
∑
s∈S,

p(s)>q(s)

[p(s)− q(s)] = ||p− q||TV ,

and similarly

u1(σ, τ)(q)− u1(σ, τ)(p) ≤ ||p− q||TV .

Hence, p 7→ u1(σ, τ)(p) is 1-Lipschitz-continuous.

Taking the infimum over τ and the supremum over σ on both sides of the inequality u1(σ, τ)(p) ≤

u1(σ, τ)(q)+||p−q||TV gives v1(p) ≤ v1(q)+||p−q||TV , which can be written v1(p)−v1(q) ≤ ||p−q||TV .

Similarly, v1(q)− v1(p) ≤ ||p− q||TV . Hence, p 7→ v1(p) is 1-Lipschitz-continuous too.

The proof for p 7→ v1(p, s) is similar, but the supremum has to be taken over σ ∈ Σs.

Proposition 9. We have v1 + v2 = 1, and in general, v1(p) + v2(p) = 1 for all p ∈ ∆(S).

Proof. We refer to the Appendix B.

Based on the Proposition 9, in essence the players have opposite interests in competitive search games.

This leads us to defining the value of competitive search games.

Definition 10. Consider a competitive search game. We call v1 the value of the game. For each

ε ≥ 0, a strategy σ for player 1 is called ε-optimal, if u1(σ, τ) ≥ v1 − ε for all strategies τ ∈ T .

Similarly, a strategy τ for player 2 is called ε-optimal, if u2(σ, τ) ≥ v2 − ε for all strategies σ ∈ Σ.

The following proposition relates the notions of profiles of ε-optimal strategies and ε-equilibrium, and

shows that all ε-equilibria give almost the same payoffs for small ε.

Proposition 11. Consider a competitive search game. Let ε ≥ 0.

[1] If (σ, τ) is an ε-equilibrium, then σ and τ are ε-optimal strategies. Consequently, when ε > 0,

each player has a pure ε-optimal strategy.

[2] If σ and τ are ε-optimal strategies, then (σ, τ) is a 2ε-equilibrium.

[3] A strategy profile (σ, τ) is a 0-equilibrium if and only if σ and τ are 0-optimal strategies.
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[4] If (σ, τ) is an ε-equilibrium then, under (σ, τ), the object is found with probability at least 1−ε·|S|,

and |u1(σ, τ)− v1| ≤ ε and |u2(σ, τ)− v2| ≤ ε.

Proof. We refere to the Appendix B.

Proposition 12. Looking at a state in which the object is with zero probability is never better than

looking anywhere else. That is, for all states s, s′ ∈ S, for all p ∈ ∆(S), if p(s′) = 0 then v1(p, s′) ≤

v1(p, s).

Proof. If player 1 chooses a state s ∈ S then with probability p(s) he finds the object immediately,

and with probability 1−p(s) he does not find it and then the distribution of the location of the object

becomes p¬sP1 in period 2, where player 2 is the active player. Hence

v1(p, s) = p(s) + (1− p(s)) · v2
1(p¬sP1) = 1− (1− p(s)) · v2

1(p¬sP1).

In particular, if player 1 chooses state s′ then by p(s′) = 0 we find

v1(p, s′) = v2
1(pP1).

Note that pP1 = p(s) · esP1 + (1− p(s)) · p¬sP1. By part [3] of Proposition 6,

v2
1(pP1) ≥ (1− p(s)) · v2

1(p¬sP1).

This implies that v1(p, s) ≥ v1(p, s′), as claimed.

Corollary 13. Consider a time-homogenenous competitive search game. If p is an invariant distri-

bution of P , then v1(p) ≥ 1
2 .

Proof. We refer to the Appendix B.

Remark. We conjecture that if P is irreducible and aperiodic, then v1(p) > 1
2 . The value v1(p) can

be smaller than 1
2 if p is not the invariant distribution. Indeed, for example with three states, initial

probability distribution p = ( 1
3 ,

1
3 ,

1
3 ) and a transition matrix P such that at the second period the

object is in state 1 with probability 1.

5 Subgame optimal strategies

An ε-optimal strategy is a relevant solution concept, but it has the drawback that if the opponent

makes a mistake, the continuation strategy does not have to be ε-optimal. Hence, in this section we

examine subgame ε-optimal strategies.
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A strategy σ for player 1 is called subgame ε-optimal if, in each subgame, the continuation strategy

of σ is ε-optimal. More precisely, for each history h ∈ Hodd and strategy τ ∈ T for player 2

u1(σ, τ)(h) ≥ v1(h)− ε.

The definition of a subgame ε-optimal strategy for payer 2 is similar. Note that each subgame ε-

optimal strategy is ε-optimal.

Example 14. In this example, we show that there are ε-optimal strategies that are not subgame

ε-optimal. The set of states is S = {1, 2}, with each state being absorbing, and the initial probability

distribution is p = (1, 0). The value is v1 = 1 and any optimal strategy of player 1 looks at state 1 in

period 1. Hence, v2 = 0 and all the strategies of player 2 are 0-optimal. In particular, it is optimal

for player 2 to always choose state 2. Let τ denote this strategy.

Now suppose that player 1 makes a mistake and chooses state 2 in period 1. Then, the continuation

strategy of τ from period 2 is not optimal. In fact, it would be the best for player 2 to choose state 1

in period 2 and win the game.

Proposition 15. Consider a competitive search game.

1. For every ε > 0, each player has a pure strategy which is subgame ε-optimal.

2. Let ε ∈ (0, 1
|S| ). If σ is a subgame ε-optimal strategy for player 1, then for every strategy τ

of player 2, the object is found with probability 1 under the strategy profile (σ, τ). A similar

statement holds for player 2.

Proof. [1] Let ε > 0. By Theorem 3, there exists a subgame perfect ε-equilibrium (σ, τ) in pure

strategies. Now consider a subgame at a history h. Since the continuation strategies of σ and τ at h

form an ε-equilibrium, it follows similarly to part [1] of Proposition 11 that the continuation strategy

of σ at h is ε-optimal in the subgame, and similarly the continuation strategy of τ at h is ε-optimal

in the subgame. Hence, σ and τ are subgame ε-optimal.

[2] Let ε ∈ (0, 1
|S| ) and let σ be a subgame ε-optimal strategy. Consider a history h at an odd period.

The strategy for player 1 which looks at a state with the highest probability guarantees 1/|S| in the

subgame at h. So, v1(h) ≥ 1/|S|.

Now consider a strategy τ for player 2. Then, we have u1(σ, τ)(h) ≥ 1/|S| − ε > 0. In particular, in

the subgame at h, the object is found with probability at least 1/|S| − ε > 0 under (σ, τ). Since this

holds for every history h at an odd period, by Lévy’s zero-one law, the object is found with probability

1 under (σ, τ).
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6 Optimal actions

For the initial distribution p ∈ ∆(S), we call an action s ∈ S optimal if it is optimal for player 1 to

look at state s in period 1: v1(p, s) = v1(p). For a given action s ∈ S, we denote by As the set of

the initial distributions for which s is optimal: As = {p ∈ ∆(S) | v1(p, s) = v1(p)}. We call As the

optimality region of action s. Note that ∪s∈SAs = ∆(S).

Theorem 16. The optimality regions As have the following properties.

[1] If the initial probability distribution p is sufficiently close to es, for some state s, then choosing

state s is the only optimal action. That is, the set As\ ∪j 6=s Aj is a neighborhood of es in ∆(S).

[2] For each subset N ⊆ S, the convex hull of the vertices es with s ∈ N is included in the set ∪s∈NAs.

[3] There is an initial distribution at which choosing any state is optimal. That is, ∩s∈SAs 6= ∅.

[4] For all s ∈ S, the region As is star convex sets centered in es. That is, if p ∈ As then the whole

line segment between p and es is included in As.

Proof.

[1] The statement follows from the facts that each v1(p, s) is continuous (cf. Theorem 8) in p and that

v1(es, s) = 1 and v1(es, j) < 1 for all j 6= s.

[2] Let p ∈ conv({es|s ∈ N}). Then p(s) = 0 for all s /∈ N . By Proposition 12, there is an optimal

action j ∈ N , and hence p ∈ ∪s∈NAs.

[3] We will use the Knaster-Kuratowski-Mazurkiewicz (KKM) theorem4, see Knaster et al. [1929].

Note that by Theorem 8, the function p 7→ v1(p, s) is continuous for all s ∈ S. Thus, each region As

is closed. From this fact and from [2], we can apply the KKM Theorem. We conclude from the KKM

Theorem that ∩s∈SAs 6= ∅.

[4] Let s ∈ S, let p ∈ As and let λ ∈ [0, 1]. We want to show that λ · es + (1− λ) · p ∈ As. Let (σ, τ)

be a strategy profile. By equation (1)

sup
σ∈Σ

u1(σ, τ)(λes + (1− λ)p) = sup
σ∈Σ

[λ · u1(σ, τ)(es) + (1− λ) · u1(σ, τ)(p)]

≤ λ ·
[

sup
σ∈Σ

u1(σ, τ)(es)

]
+ (1− λ) ·

[
sup
σ∈Σ

u1(σ, τ)(p)

]
= λ+ (1− λ) ·

[
sup
σ∈Σ

u1(σ, τ)(p)

]
,

4The KKM theorem states: Let n ∈ N be the cardinality of the set of states S, in other words |S| = n. Let ∆n

be the unit simplex in Rn. A KKM covering is defined as a collection C1, . . . , Cn of closed sets such that for any
N ⊆ {1, . . . , n}, the convex hull of the vertices corresponding to N is covered by ∪s∈NCs. Then any KKM covering
has a non-empty intersection, i.e.: ∩s∈SCs 6= ∅.
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Figure 2: Optimal regions when P = I3.

where we used that u1(σ, τ)(es) = 1 for any strategy σ that looks at state s in period 1. Hence

v1(λ · es + (1− λ) · p) = inf
τ∈T

sup
σ∈Σ

u1(σ, τ)(λ · es + (1− λ) · p)

≤ λ+ (1− λ) ·
[

inf
τ∈T

sup
σ∈Σ

u1(σ, τ)(p)

]
= λ+ (1− λ) · v1(σ, τ).

On the other hand, by Proposition 6, v1(λ · es + (1− λ) · p, s) = λ+ (1− λ) · v1(p, s). So, choosing s

when the initial probability distribution is λ · es + (1− λ) · p is optimal.

Example 17. Consider the case in which the set of states is S = {1, 2, 3}. Let Q =

1 0 0
0 1 0
1
2

1
2 0

. The

sets A1, A2 and A3 are represented in the time-homogeneous case where the transition matrix is the

identity matrix in Figure 2, and the matrix Q in Figure 3.
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Figure 3: Optimal regions when P = Q.

Example 17 illustrates the statements of Theorem 16. In particular here are some remarks.

• It makes intuitive sense that if the object is in a certain state with probability close to 1, then

it is optimal to look at this state. Geometrically, this means that for all states s ∈ S, the set As

contains a neighborhood of es in ∆(S).

• Looking at a state s′ such that p(s′) = 0 can still be (weakly) optimal. For example, in Figure 2

and Figure 3 with initial probability distribution p = ( 1
2 ,

1
2 , 0), looking at state 3 is just as good

as looking at either state 1 or state 2. Figure 3 shows that in general, if N ⊂ S, then ∪s∈NAs
does not necessarily include an open neighborhood of conv{es|s ∈ N} in ∆(S).

• Figure 2 illustrates that the intersection of the regions Ai can be more than a single point.

• Figure 2 illustrates the fact that the sets As are not always convex. We conjecture that their

relative interior is convex. It would imply that the closure of the relative interior of the sets As

are polytopes.

7 Concluding remarks and future work

We introduced an infinite horizon search game, in which two players compete to find an object

that moves according to a time-varying Markov chain. We proved that these games always admit

a subgame-perfect ε-equilibrium in pure strategies, for all error-terms ε > 0, but not necessarily a

0-equilibrium. We showed that the ε-equilibrium payoffs converge to a singleton (v1, 1 − v1) as ε

vanishes, and therefore the game is essentially a one-sum game with value v1. We examined the
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analytical and structural properties of the solutions, and devoted attention to the important special

case when the Markov chain is time-homogeneous, where stronger results hold.

We remark that, in these search games, the ε-optimal strategies are robust in the following sense: they

are 2ε-optimal if the horizon of the game is finite but sufficiently long, and they are also 2ε-optimal

in the discounted version of the game, provided that the discount factor is close to 1. For the precise

statements and their proofs we refer to Duvocelle et al. [2020].

It would be interesting to generalize the results when the active player is chosen according to an

arbitrary stochastic process. In the companion paper Duvocelle et al. [2021], we examine the variation

in which the active player is chosen according to a fixed probability distribution at each period.

Also, one could introduce overlook probabilities to the model. In that case, even if the active player

chooses the state that currently contains the object, there is a positive probability that the player

fails to find it.

Appendices

A Topological properties of search games

Let X be a topological space. A function f : X → R is called lower semi-continuous at x ∈ X

if, for every sequence xn → x, we have lim infn→∞ f(xn) ≥ f(x). A function f : X → R is called

upper semi-continuous at x ∈ X if, for every sequence xn → x, we have lim supn→∞ f(xn) ≤ f(x).

A function f : X → R is called continuous at x ∈ X if it is lower semi-continuous at x and upper

semi-continuous at x.

A function f : X → R is called lower semi-continuous (resp. upper semi-continuous, resp. continuous)

if f is lower semi-continuous at all x ∈ X (resp. upper semi-continuous at all x ∈ X, resp. continuous

at all x ∈ X).

Proposition 18. Take a player i ∈ {1, 2}.

[1] The payoff function ui : Σ× T → R is lower semi-continuous.

[2] Assume that (σ, τ) is a strategy profile under which the object is found with probability 1. Then,

ui is continuous at (σ, τ).

Proof.

[1] For each strategy profile (σ, τ) ∈ Σ×T , for each period n ∈ N, we denote by uni (σ, τ) the probability
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that player i finds the object during the first n periods under the strategy profile (σ, τ). Note that

uni (σ, τ) is non-decreasing in n and converges to ui(σ, τ) as n→∞.

Let (σk, τk)k∈N be a sequence in Σ×T converging to a strategy profile (σ, τ). We have for each n ∈ N

uni (σ, τ) = lim
k→∞

uni (σk, τk) = lim inf
k→∞

uni (σk, τk) ≤ lim inf
k→∞

ui(σ
k, τk).

Since uni (σ, τ) converges to ui(σ, τ) as n→∞, we obtain

ui(σ, τ) ≤ lim inf
k→∞

ui(σ
k, τk),

which proves that ui is lower semi-continuous.

[2] Assume that under the strategy profile (σ, τ) the object is found with probability 1. Thus, u1(σ, τ)+

u2(σ, τ) = 1. Due to part 1, we only need to show that u1 and u2 are upper semi-continuous at (σ, τ).

We will prove it for u1; the proof for u2 is similar.

Let (σk, τk)k∈N be a sequence in Σ× T converging to (σ, τ). Then

lim sup
k→∞

u1(σk, τk) = 1− lim inf
k→∞

(1− u1(σk, τk)) ≤ 1− lim inf
k→∞

u2(σk, τk) ≤ 1− u2(σ, τ) = u1(σ, τ),

where the first equality is a classic supinf equality applied to a limit, the first inequality comes from

u1 + u2 ≤ 1, the second inequality follows from part 1, and the second equality comes from the

assumption we made on (σ, τ). Hence, u1 is upper semi-continuous at (σ, τ), as desired.

B Technical proofs

Proof of Proposition 5. In the expression inf
τ∈T

sup
σ∈Σ

u1(σ, τ), player 1 is maximizing u1(σ, τ) and player

2 is minimizing the same expression. Note that (σ, τ) 7→ u1(σ, τ) is bounded, and by Proposition 18,

it is lower semi-continuous, and hence Borel measurable. Thus, the equality v1 = inf
τ∈T

sup
σ∈Σ

u1(σ, τ)

follows from Martin [1975]. The equality v2 = inf
σ∈Σ

sup
τ∈T

u2(σ, τ) follows similarly.

Proof of Proposition 6. First we prove part [1]. The probability distribution λ · p + (1 − λ) · q can

be interpreted as follows: with probability λ the initial probability distribution is p and induces the

expected payoff ui(σ, τ)(p) for player i, and with probability 1 − λ the probability distribution is q

and induces the expected payoff ui(σ, τ)(q) for player i. Hence, the equality (1) holds.

Now we prove part [2]. Let p ∈ ∆(S), p 6= es, and let λ ∈ (0, 1). Then p¬s is the linear projection of

p from es to the face {q ∈ ∆(S)|q(s) = 0}. Thus

(λ · es + (1− λ) · p)¬s = p¬s.
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Indeed, (λ · es + (1− λ) · p)¬s(s) = 0 = [p¬s](s) and for all j 6= s:

(λ · es + (1− λ) · p)¬s(j) =
(λ · es + (1− λ) · p)(j)

1− (λ · es + (1− λ) · p)(s)
=

(1− λ) · p(j)
1− (λ+ (1− λ) · p(s))

=
(1− λ) · p(j)

(1− λ) · (1− p(s))
=

p(j)

(1− p(s))
=

p(j)

1− p(s)
= [p¬s](j).

Hence, by using (λ · es + (1− λ) · p)(s) = λ+ (1− λ) · p(s) we have

v1(λ · es + (1− λ) · p, s)

= (λ · es + (1− λ) · p)(s) + (1− (λ · es + (1− λ) · p)(s)) · (1− v1((λ · es + (1− λ) · p)¬sP ))

= (λ · es + (1− λ) · p)(s) + (1− (λ · es + (1− λ) · p)(s)) · (1− v1(p¬sP ))

= λ+ (1− λ) · (p(s) + (1− p(s)) · (1− v1(p¬sP )))

= λ+ (1− λ) · v1(p, s),

which completes the second part of the proof

Finally, we prove part [3]. Let ε > 0, and let σ denote an ε-optimal strategy for player 1 for the initial

distribution p. Take any strategy τ for player 2. Then

u1(σ, τ)(λ · p+ (1− λ) · q) = λ · u1(σ, τ)(p) + (1− λ) · u1(σ, τ)(q)

≥ λ · u1(σ, τ)(p)

≥ λ · (v1(p)− ε).

Since ε > 0 and τ were arbitrary, the proof is complete.

Proof of Proposition 9. We prove v1 + v2 = 1.

Step 1. Let Σ̃ denote the set of strategies σ for player 1 such that for every strategy τ for player 2,

the object is found with probability 1 under the strategy profile (σ, τ), i.e. Pσ,τ (Θ < ∞) = 1. Note

that Σ̃ is nonempty; for example, Σ̃ contains the strategy for player 1 that always chooses a state

according to the uniform distribution on S. We claim that

v1 = sup
σ∈Σ̃

inf
τ∈T

u1(σ, τ).

Proof of Step 1. Since Σ̃ ⊆ Σ, we have v1 = sup
σ∈Σ

inf
τ∈T

u1(σ, τ) ≥ sup
σ∈Σ̃

inf
τ∈T

u1(σ, τ).

Now we prove the opposite inequality:

sup
σ∈Σ̃

inf
τ∈T

u1(σ, τ) ≥ v1. (2)

Let ε ∈ (0, 1
|S| ). By Mashiah-Yaakovi [2015] (or alternatively, from Mertens [1990], or from Flesch

et al. [2021]), there is a strategy σ for player 1 such that for every history h

inf
τ∈T

u1(σ, τ)(h) ≥ v1(h)− ε. (3)



A competitive search game 28

We argue that σ ∈ Σ̃. So, take a strategy τ for player 2. Assume that h is a history at an odd

period. In the subgame starting at h, player 1 can immediately win with probability at least 1
|S| if he

chooses a state with the highest probability. So, v1(h) ≥ 1
|S| , and hence u1(σ, τ)(h) ≥ 1

|S| − ε > 0. In

particular, in the subgame at h, the object is found with probability at least 1
|S| − ε > 0 under (σ, τ).

Since this holds for every history h at an odd period, by Lévy’s zero-one law, the object is found with

probability 1 under (σ, τ). This proves that σ ∈ Σ̃, as desired.

Since σ ∈ Σ̃, by applying (3) to the empty history in period 1, we find infτ∈T u1(σ, τ) ≥ v1− ε. Since

ε > 0 is arbitrary, (2) follows.

Step 2. Recall that Σs denotes the set of those strategies for player 1 that choose state s in period 1.

Define

v2(p, s) = inf
σ∈Σs

sup
τ∈T

u2(σ, τ)(p).

We claim that for every δ > 0 there is w(δ) > 0 such that if p ∈ ∆(S) satisfies p(s′) ≤ w(δ) for some

state s′ ∈ S, then for all states s ∈ S we have

v2(p, s′) + δ ≥ v2(p, s). (4)

Intuitively, if player 1 wishes to minimize player 2’s winning chances, then choosing a state s′ with a

very low probability of containing the object cannot be much better than choosing any state s.

Proof of Step 2. For each state s we have pP1 = p(s) · esP1 + (1− p(s)) · p¬sP1. Hence, By part [3] of

Proposition 6

v1(pP1) ≥ (1− p(s)) · v1(p¬sP1). (5)

Note that if player 1 chooses a state s ∈ S then with probability p(s) he finds the object immediately,

and with probability 1−p(s) he does not find it and then the distribution of the location of the object

becomes p¬sP1 in period 2, where player 2 is the active player. Hence, v2(p, s) = (1−p(s))·v1(p¬sP1).
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Thus, for all states s, s′ ∈ S we find

v2(p, s)− v2(p, s′) = (1− p(s)) · v1(p¬sP1)− (1− p(s′)) · v1(p¬s
′
P1))

= (1− p(s)) · v1(p¬sP1)− v1(p¬s
′
P1) + p(s′) · v1(p¬s

′
P1)

≤ v1(pP1)− v1(p¬s
′
P1) + p(s′)

≤ ||(p− p¬s
′
) · P1||TV + p(s′)

=
1

2
·
∑
s∈S
|[(p− p¬s

′
) · P1](s)|+ p(s′)

=
1

2
·
∑
s∈S

∣∣∣∑
r∈S

(p(r)− p¬s
′
(r)) · P1(r, s)

∣∣∣+ p(s′)

≤ 1

2
·
∑
s∈S

∑
r∈S

∣∣(p(r)− p¬s′(r))∣∣ · P1(r, s) + p(s′)

=
1

2
·
∑
r∈S

∣∣(p(r)− p¬s′(r))∣∣ ·∑
s∈S

P1(r, s) + p(s′)

=
1

2
·
∑
r∈S

∣∣(p(r)− p¬s′(r))∣∣+ p(s′)

= ||p− p¬s
′
||TV + p(s′)

= 2 · p(s′),

where in the first inequality we used (5) and v1(p¬s
′
P1) ≤ 1, and in the second inequality we used

Theorem 8. Now the claim of Step 2 follows immediately.

Step 3. We claim that

v2 = inf
σ∈Σ̃

sup
τ∈T

u2(σ, τ).

Proof of Step 3. Since Σ̃ ⊆ Σ, we have v2 = inf
σ∈Σ

sup
τ∈T

u2(σ, τ) ≤ inf
σ∈Σ̃

sup
τ∈T

u2(σ, τ).

Now we prove the opposite inequality: v2 ≥ inf
σ∈Σ̃

sup
τ∈T

u2(σ, τ). Let ε > 0. By Mashiah-Yaakovi [2015]

(or alternatively, from Mertens [1990], or from Flesch et al. [2021]), there is a pure strategy σ for

player 1 such that for every history h

sup
τ∈T

u2(σ, τ)(h) ≤ v2(h) + ε.

Since σ is pure, σ(h) places probability 1 on a state sh ∈ S for each history h.

For each n ∈ N, let wn = w
(
ε

2n

)
where w

(
ε

2n

)
is as in Step 3. Note that wn > 0 for each n.

For each n ∈ N, we define a strategy σ∗n for player 1 as follows: start using σ, until a history h1 occurs

(if it occurs at all) such that sh1 contains the object with probability at most w1. Then, at h1, choose

a state which contains the object with the highest probability (which is at least 1/|S|). Then, follow σ

again, until a history h2 occurs (if it occurs at all) such that sh2
contains the object with probability
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at most w2. Then, at h2, choose a state which contains the object with the highest probability (which

is at least 1/|S|). Then, follow σ again, and so on, until a history hn occurs (if it occurs at all) such

that shn contains the object with probability at most wn. Then, at hn, choose a state which contains

the object with the highest probability (which is at least 1/|S|), and then follow σ in the remaining

game. Note that, along the play of the game, σ∗n deviates from σ at most n times.

We define σ∗ as the limit of the strategies σ∗n when n → ∞. This means that, along the play of the

game, σ∗ may deviate from σ at infinitely many histories. We argue that σ∗ ∈ Σ̃ and

sup
τ∈T

u2(σ∗, τ) ≤ v2 + 2ε,

which will then complete the proof of Step 3.

We show first that σ∗ ∈ Σ̃. Take any strategy τ for player 2, and consider the play according to

(σ∗, τ). By construction of σ∗: (i) whenever σ∗ deviates from σ, the object is found immediately with

probability at least 1/|S|, (ii) if after a period t, σ∗ never deviates from σ, then at every period t′ ≥ t,

σ finds the object immediately with probability at least wn for some fixed value of n. This implies

that, under (σ∗, τ), the object is found with probability 1. That is, σ∗ ∈ Σ̃.

Now we show that

sup
τ∈T

u2(σ∗, τ) ≤ v2 + 2ε.

Take any strategy τ for player 2. By the previous argument, there is a period n such that the object

is found with probability close to 1 within n periods. This implies that σ∗ deviates from σ at most n

times, and hence, u2(σ∗, τ) is close to u2(σ∗n, τ). By iteratively applying Step 3, we find that

u2(σ∗n, τ) ≤ u2(σ, τ) + ε+
ε

2
+ · · ·+ ε

2n
< u2(σ, τ) + 2ε.

Hence, the proof is complete.

Step 4. We prove that v1 + v2 = 1. We have

v1 = sup
σ∈Σ̃

inf
τ∈T

u1(σ, τ) = sup
σ∈Σ̃

inf
τ∈T

[
1− u2(σ, τ)

]
= 1− inf

σ∈Σ̃
sup
τ∈T

u2(σ, τ) = 1− v2.

Here, the first equality follows from Step 2, the second equality follows from the fact that if σ belongs

to Σ̃ then the object is found with probability 1, and the last equality follows from Step 3. Hence,

v1 + v2 = 1 as desired.

Proof of Proposition 11. Let ε ≥ 0.

[1] Let (σ, τ) be an ε-equilibrium. Since u1(σ, τ) ≥ u1(σ′, τ)−ε for all σ′ ∈ Σ, we have u1(σ, τ) ≥ v1−ε,

which means that σ is ε-optimal. It follows similarly that τ is ε-optimal as well.
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When ε > 0, by Theorem 3, there is an ε-equilibrium (σ, τ) in pure strategies. Hence, σ and τ are

ε-optimal strategies for the players.

[2] Assume now that σ and τ are ε-optimal strategies for player 1 and player 2. Let σ′ ∈ Σ. Then,

u2(σ′, τ) ≥ v2 − ε. By Proposition 9, we get that

u1(σ′, τ) ≤ 1− u2(σ′, τ) ≤ 1− (v2 − ε) = v1 + ε.

This implies that u1(σ, τ) ≥ v1 − ε ≥ u1(σ′, τ) − 2ε. Similarly, we obtain u2(σ, τ) ≥ u2(σ, τ ′) − 2ε

for every τ ′ ∈ T . So, (σ, τ) is a 2ε-equilibrium.

[3] This is a direct consequence of [1] and [2].

[4] Let (σ, τ) be an ε-equilibrium.

First we prove that under (σ, τ), the object is found with probability at least 1− ε · |S|. Suppose the

opposite: it is found with probability z := Pσ,τ (θ < ∞) < 1 − ε · |S|. Let H̃ denote those histories

after which the object is found with probability at most γ := 1
2 ( 1
|S| −

ε
1−z ):

H̃ = {h ∈ H : Pσ,τ (θ <∞|h) ≤ γ.}

By Lévy’s zero-one law, under (σ, τ), it has probability at least 1− z that a history in H̃ arises during

the play. Now consider the strategy σ′ for player 1 that follows σ as long as no history arises in H̃, but

as soon as this happens, σ′ chooses each state with equal probability and plays arbitrarily afterwards.

Then,

u1(σ′, τ)− u1(σ, τ) ≥ (1− z) · ( 1

|S|
− γ) > ε.

This contradicts the fact that (σ, τ) be an ε-equilibrium.

Now prove the inequalities in [4]. As we argued in the proof of part [1], u1(σ, τ) ≥ v1−ε and similarly,

u2(σ, τ) ≥ v2 − ε. Thus, by Proposition 9

u1(σ, τ) ≤ 1− u2(σ, τ) ≤ 1− (v2 − ε) = v1 + ε.

Similarly, u2(σ, τ) ≤ v2 + ε. These inequalities give |u1(σ, τ)− v1| ≤ ε and |u2(σ, τ)− v2| ≤ ε.

Proof of Corollary 13. Assume first that there is a state s ∈ S for which p(s) = 0. Then p¬sP =

πP = π. Since π(s) = 0 we have v1(p, s) = 1− v1(p). As v1(p) ≥ v1(p, s), we obtain v1(p) ≥ 1− v1(p).

Hence, v1(p) ≥ 1
2 .

Assume there is no state s ∈ S for which p(s) = 0. Consider the game G′ that arises by adding a state

w to G. More precisely, G′ is the game with set of states S′ = S ∪{w}, initial probability distribution

p′ such that p′(s) = p(s) for each state s ∈ S and p′(w) = 0, and transition matrix P ′ that has the
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same transition probabilities between states in S and makes w absorbing. Then, with probability 1,

the object will never be in w. By Proposition 12, the players may ignore state w during the game.

Then, p′ is an invariant distribution of P ′, and hence by the first part we find v1(p) = v′(p′) ≥ 1
2 .
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