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Abstract

The Frank-Wolfe algorithm is a method for constrained optimization that relies on linear
minimizations, as opposed to projections. Therefore, a motivation put forward in a large
body of work on the Frank-Wolfe algorithm is the computational advantage of solving linear
minimizations instead of projections. However, the discussions supporting this advantage are
often too succinct or incomplete. In this paper, we review the complexity bounds for both
tasks on several sets commonly used in optimization. Projection methods onto the ¢,-ball,
p € ]1,2[U]2, +o0[, and the Birkhoff polytope are also proposed.

1 Introduction

We consider the constrained optimization problem

min f(z), )
where ¢ C R™ is a compact convex set and f: R” — R is a smooth function. Among all gen-
eral purpose methods addressing problem (1), the Frank-Wolfe algorithm [17], a.k.a. conditional
gradient algorithm [41], has the particularity of never requiring projections onto C. It uses linear
minimizations over C instead and is therefore often referred to as a projection-free algorithm in the
literature, in the sense that it does not call for solutions to quadratic optimization subproblems.

Thus, a motivation put forward in a large body of work on the Frank-Wolfe algorithm is the
computational advantage of solving linear minimizations instead of projections. However, only a
few works actually provide examples. On the other hand, the complexities of linear minimizations
over several sets are available in [27, 29, 19], but they do not always (accurately) discuss the
complexities of the respective projections. Therefore, while it is intuitive that a linear minimization
is simpler to solve than a projection in general, a complete quantitative assessment is necessary to
properly motivate the projection-free property of the Frank-Wolfe algorithm.

Contributions. We review the complexity bounds of linear minimizations and projections on
several sets commonly used in optimization: the standard simplex, the ¢,-balls for p € [1, 4+oc],
the nuclear norm-ball, the flow polytope, the Birkhoff polytope, and the permutahedron. These
sets are selected because linear minimizations or projections can be solved very efficiently, rather
than by resorting to a general purpose method, in which case the analysis is less interesting. We
also propose two methods for projecting onto the ¢,-ball and the Birkhoff polytope respectively,


mailto:cyrille@gatech.edu
mailto:pokutta@zib.de

and we analyze their complexity. Computational experiments for the ¢;-ball and the nuclear norm-
ball are presented.

Remark 1.1. We would like to stress that, while it is possible that a projection-based algorithm
requires less iterations than the Frank-Wolfe algorithm to find a solution to problem (1), our goal
here is to demonstrate its advantage in terms of per-iteration complexity. We discuss the Frank-Wolfe
algorithm and some successful applications in Section 2.2.

2 Preliminaries

2.1 Notation and definitions

We work in the Euclidean space R™ or R™*" equipped with the standard scalar product (z,y) =
Ty or (X,Y) = tr(XTY). We denote by || - || the norm induced by the scalar product, i.e., the
ly-norm || - |2 or the Frobenius norm || - || respectively. For any closed convex set C C R", the
projection operator onto C, the distance function to C, and the diameter of C, all with respect to
| - ||, are denoted by proj(-,C), dist(+,C), and diam(C) respectively.

For every i,j € N such that ¢ < j, the brackets [i, j] denote the set of integers between (and
including) ¢ and j. For all z € R™ and 4, j € [1,n] such that ¢ < j, [z]; denotes the i-th entry of
z and [x];.; = ([z];,...,[z];)T € RI=*L. The signum function is sign: A € R +— 1if A > 0, —1 if
A < 0, and 0 if A\ = 0. The characteristic function of an event E is 1 = 1 if E is true, else 0. The
indicator function of a set C C R™ is i¢c: x € R™ — 0 if z € C, else +00. Operations on vectors
in R™, such as sign(x), |z|, 2P, max{x, y}, zy, that are conventionally applied to scalars, are carried
out entrywise and return a vector in R™. The shape of 0 and 1 will be clear from context, i.e., a
scalar or a vector. The identity matrix in R”*" is denoted by I,,. The matrix with all ones in R"*"
is denoted by J,, ,,, and by J,, if m = n.

We adopt the real-number infinite-precision model of computation. The complexity of a com-
putational task is the number of arithmetic operations necessary to execute it. We ran the experi-
ments on a laptop under Linux Ubuntu 20.04 with Intel Core i7-10750H. The code is available at
https://github.com/cyrillewcombettes/complexity.

2.2 The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (FW) [17], a.k.a. conditional gradient algorithm [41], is a first-order
projection-free algorithm for solving constrained optimization problems (1). It is presented in
Algorithm 1.

Algorithm 1 Frank-Wolfe (FW)

Input: Start point z € C, step-size strategy (7¢):en C [0, 1].
1: fort=0toT — 1 do
2: v < argmin (v, V f(xs))
veC
3: Ti41 — Tt + ’yt(vt — .’Et)
4: end for

At each iteration, FW minimizes the linear approximation of f at x; over C (Line 2), i.e.,

rvnelélf(.%'t) + (v — x4, Vf(4)),
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and then moves in the direction of a solution v; € C with a step-size 7, € [0,1] (Line 3). This
ensures that the new iterate ;11 = (1 — v )z + 1:v; € C is feasible by convexity, and there is no
need for a projection back onto C. For this projection-free property, FW has encountered numerous
applications, including solving traffic assignment problems [39], performing video co-localization
[30], or, e.g., developing adversarial attacks [6].

When f is convex, FW converges at a rate f(x;) — mine f = O(1/t) for different step-size
strategies [17, 15, 29], which is optimal in general [5, 29]. Faster rates can be established under
additional assumptions on the properties of f or the geometry of C [41, 23, 20, 31]. Recently,
several variants have also been developed to improve its performance [36, 38, 21, 18, 4, 9]. When
f is nonconvex, [35] showed that FW converges to a stationary point at a rate O(1/+/¢) in the
gap max,ec{x;s — v,V f(x;)) [28], which has inspired a line of work in stochastic optimization
[48, 52, 51, 10, 53].

Lastly, note that FW is also popular for the natural sparsity of its iterates with respect to the
vertices of C, as x; € conv{zg,vo,...,v:—1} [7, 26, 37, 43, 8].

3 Projections versus linear minimizations

The Frank-Wolfe algorithm avoids projections by computing linear minimizations instead. In Ta-
ble 1, we summarize the complexities of a linear minimization and a (Euclidean) projection on
several sets commonly used in optimization. That is, we compare the complexities of solving

i d min|z—y|. 2
min (z,y) and min |z —y| 2

When an exact solution cannot be computed directly, we compare to the complexity of finding an
e-approximate solution; note that the two objectives in (2) are homogeneous. For the projection
problem, it means to solve min,c¢ ||z — y||? using any method but the Frank-Wolfe algorithm, since
it would go against the purpose of this paper. Note however that the Frank-Wolfe algorithm can
generate a solution with complexity O(iter(C) diam(C)?/e?), where iter(C) denotes the complexity
of an iteration, which amounts to that of a linear minimization over C. When addressing prob-
lem (1), solving projection subproblems via the Frank-Wolfe algorithm is known as conditional
gradient sliding [38].

Table 1: Complexities of linear minimizations and (Euclidean) projections on some sets commonly used
in optimization. We denote by = a solution, p = psup,cy |\:rt|\’2’<;171>\|mt||2 < 400 where (z¢):en is the
sequence generated by Algorithm 2, by v and o; the number of nonzero entries and the top singular value
of —Y respectively, and by £ > 0 the additive error in the objective of (2) when an approximate solution is
computed. The constant d. is defined in (12) and O hides polylogarithmic factors in m and n.

Set C Linear minimization Projection Reference
¢y-ball, p € {1,2, 400} O(n) O(n) Sections 3.1-3.2
(y-ball, p € ]11,2[U]2,400] O(n) O(np?||ly — x*||3/¢%) Section 3.3
Nuclear norm-ball O(vIn(m +n)y/o1/ve)  O(mnmin{m,n}) Section 3.4
Flow polytope O(m+n) O(m?n + n?) Section 3.5
Birkhoff polytope O(n?) O(n%d?/&?) Section 3.6
Permutahedron O(nln(n)) O(nln(n) + n) Section 3.7

We now provide details for the complexities reported in Table 1. Slightly abusing notation
though we may have card(argmin,.(z,y)) > 1, we write argmin_c.(z,y) = «* instead of

arg mingcq(x,y) 2 «



3.1 The /;-ball and the standard simplex
Let {ey,...,e,} denote the standard basis in R™. The ¢;-ball is

n

Z [[z]:] < 1} = conv{=tey,...,+e,},

{z eR" | |Jz|1 £ 1} = {x eR"
i=1

and the standard simplex is
A, ={zeR"|(x,1) =1, >0} = conv{ey,...,en}.

A projection onto the ¢;-ball amounts to computing a projection onto the standard simplex, for
which the most efficient algorithms have a complexity O(n); see [12] for a review. On the other
hand, linear minimizations are available in closed form: for all y € R",

argmin (z,y) =e; . and argmin(z,y) = —sign([y];_ .. )e€i. ..
T€A, [lz]l1 <1

where inin € argmin;epy [yl and imax € argmax;ep ,,p [yli]. Thus, while their complexities can
both be written O(n), in practice linear minimizations are much simpler to solve than projections.
Figure 1 presents a computational comparison. The results are averaged over 5 runs and the
shaded areas represent +1 standard deviation.
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Figure 1: Solving a linear minimization and a projection on the ¢;-ball. The input vector y € R" is generated
by sampling entries from the standard normal distribution and the projection method is [12, Fig. 2], which
is state-of-the-art in practice [12, Tab. 3]. In this situation, the plots suggest that linear minimizations are
about 100x faster to solve than projections when n is large enough.

3.2 The /5-ball and the /. -ball

For all z € R", ||z|2 = /> ;_;[2]7 and ||z[|oc = max;e[y ,j [[2];|. Here, linear minimizations have
no significant advantage over projections as they are all available in closed form. For all y € R,

argmin (z,y) = ~ Y and argmin ||z — yl|2 = 4a
lzll2<1 lyll2 lzll2<1 max{||y[|2, 1}

and

argmin (z,y) = —sign(y) and argmin|z — y|2 = sign(y) min{|y|,1}.
llzlloo <1 llzlloo <1



3.3 The (,-balls for p € |1, +o0[
Let p € ]1,+o0[. The ¢,-ball is

n 1/p
{eeR" |fall, <1} ={zeR" (Z lhhl”) <1
i=1
Linear minimizations are available in closed form: by duality, for all y € R",

b

. sign(y)|y|??
argmin (z,y) = —V|| - [l4(y) = *#qul

where ¢ = p/(p — 1) € ]1,+0o0[. To the best of our knowledge, there is no projection method
specific to the ¢,-ball when p € ]1,2[U]2, +co[. We use [11, Alg. 6.5], a Haugazeau-like algorithm
[25] for projecting onto the intersection of sublevel sets of convex functions. For a single sublevel
set, the problem reads

. _ 2
min lz —yll3 3)
s.t. g(z) <0,

and we assume that g: R™ — R is convex and differentiable for ease of exposition. In our case, g =
| - [|b — 1. Alternatively, one could use a Lagrange multiplier to formulate (3) as a strongly convex
unconstrained problem, but finding the corresponding multiplier may require a considerable effort
of tuning; also note that information is usually given in the form g(x) < 0 rather than in the form
of a Lagrange multiplier. The method is presented in Algorithm 2, where for all a, b € R",

H(a,b) ={x € R" | (x — b,a — b) < 0},

and z is the projection of x, onto {x € R" | g(x;) + (x — ¢, Vg(z,)) < 0} = H(my, 2). If () <O,
then x4, = 2* for all s € N [11, Prop. 3.1], where z* is the solution to problem (3).

Algorithm 2 Haugazeau-like for problem (3)

Input: Point to project y € R™.
1: xp <y
2: fort=0to7T —1do
T
||V£;((xtt))|§ VQ(xt)]l{g(xt)>O}
X441  proj(zo, H(xo, ) N H(xt, 2¢))
: end for

3: 2t < Ty —

a R

The projection in Line 4 is available in closed form [25, Thm. 3-1]; see also [2, Cor. 29.25]. The
complexity of an iteration of Algorithm 2 is O(n). We propose in Theorem 3.1 the convergence rate
of Algorithm 2, based on a key result from [1, Thm. 7.12]. A convergence rate is also proposed in
[46], however it uses a stronger assumption and has a minor error in the exponent of the constant.

Theorem 3.1. Let g: R™ — R be a differentiable convex function and C = {x € R™ | g(x) < 0}, and
suppose that there exists & € C such that g(&) < 0. Consider Algorithm 2 and let =* = proj(zo,C).
Then, for all t € N,

max{8p?%, 2}||zo — z*||3
t+2

) 4

lz* = zoll3 — |zt — 2oll3 <



and

max{2v/2p, v2}||lzo — >

[z —2%|]2 < T2 ) (5)
where p = (=1/g(Z)) supien Vg (i) |[2llxe — &[]z < +-o0.
Proof. First, note that by [11, Prop. 3.1], for all ¢ € N,

[ze — @oll2 < @41 — woll2 < (|7 — zol|2- (6)

We prove by induction that (4) holds for all ¢ € N. The base case ¢t = 0 is trivial. Suppose that (4)
holds at iteration ¢ € N. Since ;11 € H(xo, ;) and ;41 € H (x4, z;), we have

211 — zoll3 — lloe — @oll3 = llwesr — 2ell3 + 2(wr1 — T4, 2 — T0)
> ||weg1 — zell3
> diSt(CCt7H(l't,Zt))2. (7)
By [1, Thm. 7.12],
dist(x¢, C) < pdist(zy, H(xe, 2t)), (8)

where p = (—1/g(2)) supsen | Vg(2t)||2]|z¢ — 2|2, and p < 400 because (x;);en converges [2,
Cor. 30.9]. Now, z* = proj(zo,C) so C C H(x,z*). We can assume that z; # z*, so z; ¢ H(zg, z*)
by (6). By [2, Ex. 29.20],

(xy — x*, ;0 — %)

diSt(th(xva*)) = ||£C0 _ .’E*”Q

Thus,
dist(x¢, C) > dist(zy, H (x0,z%))

(xy — x*, 20 — T*)

lzo — 2*||2

(we — w0, 0 — 2%) + [|wo — 13

2o — *|2
2 |lzo — 2"l2 — |zt — 2ol2
= llzo — 2|2 — \/llx* — xoll3 — (Jlz* — zolI3 — [l — z0l13) )

2 0,

where we used the Cauchy-Schwarz inequality in the second inequality and (6) in the last inequal-
ity. Let g5 = ||#* — 203 — ||zs — 20||3 for s € {t,t + 1}. Combining (7)—(9),

1 ) 5 ?
e Se g o — 2 [l2 = /llz* —xollz —&¢ ) -
Since Vo — 8 < Va— 8/(2y/a) for all « > 8 > 0, we obtain
1 €t :
g o _ * _ * _ I S
i+l S €t 2 (HIO |2 (|f’3 o2 2||x*—x0||2>>
€t
( 17 —xo@) B



Let x = max{8p?, 2}||zo — z*||3. We have ¢, < r/(t + 2) by the induction hypothesis, so

c 1— 5t e
t+1 S /2

2 . 2
tﬁ/ let\tR/Q
K . K/2
ife, >
t+2 +2 t+2
t+3

We conclude that (4) holds for all ¢ € N. Then, forall t € N,

lwe = 2[5 = l|l2* = @oll3 — llwe — woll3 + 2(z”™ — we, w0 — )

<l = woll3 = [l — woll3,

because xz* € H(xg,x¢), since C C H(xo,x;) [11, Prop. 5.2]. This proves (5). O
In our case, g = || - ||) — 1 and g(0) = —1 < 0, so Theorem 3.1 holds with

p=sup [Vg(zi)llz]lzel2 = psup lell5 oy llzell2 < +oc.

Therefore, the complexity of an e-approximate projection onto the ¢,-ball is O(np?||y — z*||3/?).

Remark 3.2. If p € [1, +00[NQ, another option, although probably less practical, is to formulate the
projection problem as a conic quadratic program and to obtain an e-approximate solution using an
interior-point algorithm, with complexity O(poly(n)In(1/<)) [3].

3.4 The nuclear norm-ball

This is probably the most popular example of the computational advantage of linear minimizations
over projections in the literature. The nuclear norm, a.k.a. trace norm, of a matrix is the sum of
its singular values and serves as a convex surrogate for the rank constraint [16]. The nuclear
norm-ball is the convex hull of rank-1 matrices:

{X €R™" | | X||nue < 1} = conv{uv | u € R™, v € R", |Jus = ||v]|2 = 1}.
Forall Y € R™*",

argmin || X — Y|p = U diag(6)V ',
X lnue<1

where Y = U diag(c)V T is the singular value decomposition (SVD) of Y, (U, o, V) € R™*F x R¥ x
R™¥ %k = min{m, n}, and ¢ is the projection of o onto the standard simplex A;. The SVD can be
computed with complexity O(mnmin{m,n} + min{m?3,n3}) using the Golub-Reinsch algorithm
or the R-SVD algorithm [22, Fig. 8.6.1]. On the other hand, a linear minimization requires only a
truncated SVD:

argmin (X,Y) = argmax tr((wv')"(=Y))= argmax u'(-Y)v=wv',

1 X lInue<1 lullz=[lv]l2=1 llull2=(lv[l2=1

where u and v are the top left and right singular vectors of —Y. A pair of unit vectors (u,v) €
R™ x R™ satisfying o1 — u' (—Y)v < ¢ with high probability can be obtained using the Lanczos



algorithm with complexity O(v In(m + n)\/01/+/€), where oy and v denote the top singular value
and the number of nonzero entries in —Y respectively [29, 33]. Note that v < mn and that in
many applications of interest, e.g., in recommender systems, v < mn.

In practice, the package ARPACK [40] is often used to compute the top pair of singular vec-
tors. Furthermore, if the input matrix Y is symmetric, then the package LOBPCG [32] can be
particularly efficient. Figure 2 illustrates both cases, where linear minimizations are solved to ma-
chine precision. The results are averaged over 5 runs and the shaded areas represent +1 standard
deviation.
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Figure 2: Solving a linear minimization and a projection on the nuclear norm-ball. A matrix Y € R™*" is gen-
erated by sampling entries from the standard normal distribution. The full and truncated SVDs are computed
using the functions svd and svds from the Python packages numpy.linalg [24] and scipy.sparse.linalg
[50] respectively. The function svds is used with to1=0. Left: The input is Y and the function svds is used
with solver=‘arpack’. Right: The input is the symmetric matrix (Y 4+ Y ")/2 and the function svds is used
with solver=‘lobpcg’. We see that the ratio of CPU times increases as n increases.

3.5 The flow polytope

Let GG be a single-source single-sink directed acyclic graph (DAG) with m vertices and n edges.
Index by [1,m] the set of vertices such that the edges are directed from a smaller to a larger vertex
index; this can be achieved with complexity O(m + n) via topological sort [13, Sec. 22.4]. Let
Ag € R™*" be the incidence matrix of G. The flow polytope induced by G is

Fo={xeR"|Agz = (-1,0,...,0,1) ",z > 0},

i.e., F¢ is the set of unit flows x € R"™ on G, where [z]; > 0 denotes the flow going through
edge i. Thus, for all y € R", argmin, .z (7,y) is a flow x € {0,1}" identifying a shortest path
on G weighted by y. Its computation has complexity O(m + n) [13, Sec. 24.2]. This is signifi-
cantly cheaper than the complexity O(m3n + n?) of a projection [49, Thm. 20], where O hides
polylogarithmic factors.

3.6 The Birkhoff polytope
The Birkhoff polytope, a.k.a. assignment polytope, is the set of doubly stochastic matrices
B,={XeR™|X1=1,X"1=1,X >0}

It is the convex hull of the permutation matrices and arises in matching, ranking, and seriation
problems. Linear minimizations can be solved with complexity O(n?) using the Hungarian algo-
rithm [34]. To the best of our knowledge, there is no projection method specific to the Birkhoff



polytope so we propose one here. Let Y € R™*". By reshaping it into a vector y € R”Q, projecting
Y onto the Birkhoff polytope is equivalent to solving

1T o7 ... ofT
. 2
min xr —
min, o= 3 o 2
st Ar—1 where A= Lo T € R (10)
x>0, or ... o7 1T
I, - - I,
This can again be reformulated as
. 1 1
win, (c(o) + 3llo ~ 1) + (eae) + o = vl2). an
TER™

where K = {z € R” |z > 0} and A = {# € R" | Az = 1}. That is, we split the constraints
into two sets enjoying efficient projections. We can now apply the Douglas-Rachford algorithm
[42] to problem (11). The method is presented in Algorithm 3; see Appendix A for details. Line 3
computes the projection of u; onto the affine subspace .4 and in Line 4 is computed a projection
onto the nonnegative orthant .. We can set u = 1/n € A and we denote by AT € R"**2" the
Moore-Penrose inverse of A.

Algorithm 3 Douglas-Rachford for problem (11)

Input: Point to project y € R"’, start point 2y € R™, offset point u € A.

1: fort=0to7T —1do
Zt+y

2: U <
3t @y e up — ATA(uy — )
20y — 21 +y

B 70}+tht

4: Zt1l & IH&X{

5: end for

The complexity of an iteration of Algorithm 3 is dominated by the matrix-vector multiplication
. . 2 2,
in Line 3. We can assume that ATA ¢ R™ %™ is precomputed. In fact,

B, By, --- By
1 B =nl, - 1)J, € R®x"
Ata— L | B2 e R”*"* where 1 =nln 4 (n=1)Jn €
n? | - B By =nl, — J, € R"*",
: . 2
By, --- By, B

so At A is block circulant with circulant blocks (BCCB) and has only three distinct entries: 2n — 1,
n—1, and —1. The expression of ATA4 can be shown by checking that AT = AT /n— J,,2 5, /(2n?) €
R %20 using the necessary and sufficient Moore-Penrose conditions [47, Thm. 1]. Thus, the
multiplication of ATA and any vector z € R" can be performed with complexity O(n?). Indeed, it
amounts to computing (nl, + (n — 1)J,,)[z];; and (nl, — J,,)[z]:.; for every (4,5) € {(kn+1, (k+
1)n) | k € [0,n — 1]}, each of which has complexity O(n).

It remains to bound the number of iterations required to achieve e-convergence. Let z* =
proj(y, AN K) be the solution to problem (11), i.e., the projection of Y onto the Birkhoff polytope
after reshaping, and let 7, = (Y.'_, #,)/(t + 1) € A for all t € N. By [14, Thm. 1],

20 — 2"

Ty — x|l < 212
o —all <



where 2 is a fixed point of rprox,, | (1/9)|j.—y|2 © TPTOX, , 4 (1/2)[|.—y| » = 2prox, —id, and
prox,, is the proximity operator of ¢ [44]. Therefore, the complexity of an e-approximate projec-

tion onto the Birkhoff polytope is O(n%d?/e?), where

2> TPTOX,

dz = HZO — Z*”Q (12)

3.7 The permutahedron

Let &,, be the set of permutations on [[1,n] and w € R™. The permutahedron induced by w is the
convex hull of all permutations of the entries in w, i.e.,

Pw = conv{w, € R" | we = ([W]oy, .-+ [w]gn)—r,a €6,}.

It is related to the Birkhoff polytope via P,, = {Xw | X € B, }. With no loss of generality, we can
assume that the weights are already sorted in ascending order: [w]; < --- < [w],. Thus, for all
y e RY,

argmin (z,y) = wy-1,
rEPy
where o satisfies [y],, = -+ > [y],,. Sorting the entries of y has complexity O(nln(n)) [13]. A
projection can be obtained with a slightly higher complexity O(nIn(n) + n), by sorting the entries
of y and solving an isotonic regression problem [45].
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A An application of the Douglas-Rachford algorithm

Let H be a Euclidean space with norm || - || and denote by I'g(#) the set of proper lower semicon-
tinuous convex functions # — R U {+o0}. The Douglas-Rachford algorithm [42] can be used to
solve
min f(z) + g(z),

when f,g € T'o(H) satisfy argmin,, (f + ¢g) # @ and (ridom f) N (ridomg) # @ [2], where ri
and dom denote the relative interior of a set and the domain of a function respectively. It is
presented in Algorithm 4. For every function ¢ € I'o(#), the proximity operator is prox, =
arg miny p(7) + (1/2)] - —2 |2 [44].

Algorithm 4 Douglas-Rachford

Input: Start point zy € H.
1: fort=0to7 —1do
2: @y < proxy(z)
3 oz proxf(2xt —zt) 2 —ay
4: end for

We are interested in an application to problem (11), where H = R™", f = 1 + (1/2)] - -3,
g=1a+1/2)|-—ylZ yeH, K={z eR” |2 >0}, A={z € R" | Az = 1}, and A € R2"*"’ ig

10



defined in (10). Problem (11) admits a (unique) solution since it is a projection problem onto the
intersection of the closed convex sets K and A, and 1/n € (ridom f) N (ridomg) = (riK) N A so
the Douglas-Rachford algorithm is well defined here. We now show that it reduces to Algorithm 3.
Forallt € N,

xy = prox,(z;)

. 1
= argming(z) + = ||z — xH%
zEH 2

1 2 1 2
= argmin 5 |lo = yl3 + 5 o — =3

zeA
. e+ y 2
=argmin ||z — ——
zeA 2 2
= pI'Oj (Zt + y,A)
2
Z2t+y i (% TY
L A LI I (e A
2 ( 2 “) ’
since proj(-, A) = - — ATA(- — u), given any u € A [2, Ex. 29.17]. Thus, Lines 2-3 in Algorithm 3
g y 8

are equivalent to Line 2 in Algorithm 4. Similarly, Line 4 in Algorithm 3 is equivalent to Line 3 in
Algorithm 4:

2411 = proxf(th —2zt) + 2 — ay

1
= arg min (f(z) + |22 — 2z — z||§> + 2z — x4
zE€EH 2

. 1 1
arg min (2”2 —yll3 + §||Z — (27 — Zt)||§> +2—ay
zeK

2

o . 2$t*2t+y
=argmi ||z — ———|| + 2t — Tt
zeK 2 2
Qs —
:pI'Oj (W’K) +Zt_xt
Qr, —
:max{xt;t—i_y,O}-i-Zt—CEta

since proj(-, ) = max{-, 0}.
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