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Abstract

We study time-consistent bank resolution mechanisms. When interventions
are ex post efficient, a government cannot commit not to inject capital into the
banking system. Contrary to common wisdom, however, we show that the gov-
ernment may still be able to implement the first best allocation because it can
use the distribution of bailouts across multiple banks to provide ex ante incen-
tives. We show that the efficient mechanism has the feature of a tournament. If
each bank’s net transfer from the government can only depend on its own per-
formance, no credible mechanism can prevent maximal risk-taking by all banks.
In stark contrast, using relative performance evaluation during the crisis can
implement the first-best risk level while remaining credible. In particular, we
analyze properties of credible tournament mechanisms that provide support to
the best performing banks and resolve the worst performing ones. We extend our
framework to allow for contagion and imperfect competition among banks. Our
mechanism continues to perform well if banks are partially substitutable and if
banks are heterogeneous in their size, interconnections, and thus systemic risk,
as long as bailout funds can be targeted to particular banks.
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Governments often bail out large financial firms during financial crisis because they
perceive that the economic costs of letting these firms fail exceed the fiscal costs of the
bailouts themselves. This recurrent issue came to a head during the global financial
crisis (GFC) of 2008-2009 because of the magnitude and scope of the bailouts. In
the aftermath of the Great Recession, governments pledged to end the “too-big-to-fail”
problem, and G20 Leaders endorsed the global implementation of a set of reforms for
systemically important banks (SIBs). These financial stability reforms rely on three
pillars: capital requirements (and other forms of loss absorbing capacity), enhanced
supervision, and resolution regimes. The reforms have achieved significant progress
along the first two dimensions. Capital requirements have roughly doubled and the
supervision of large banks has become tighter (Financial Stability Board, 2021). These
evolutions are somewhat uneven across jurisdictions, but regulators and market par-
ticipants view banks as significantly safer than before the GFC.

The same cannot be said, however, of the third pillar: resolution regimes. Despite
10 years of efforts, there is still no consensus about the ability of governments to resolve
large banks during times of economic stress. The root of the skepticism is that one
cannot expect policy makers to let a majority of banks – or even a signficant number
of large ones – fail at the same time. As a result, the argument goes, the expectation
of bailouts will remain and will continue to distort funding costs and to feed moral
hazard.

We argue that this skepticism is misplaced. More precisely, while we agree with
the premise (letting several large banks fail is not a realistic option), we show that the
pessimistic conclusion does not follow. The logic of the standard argument is flawed
in two ways. Firstly, it assumes that if regulators cannot let a majority of banks fail
then no bank can fail at all. Secondly, it assumes that private incentives depend only
on the average level of the bailout. We show that both arguments are incorrect.

The main idea of our paper is to apply the logic of tournaments to the issue of too-
big-to-fail in the context of imperfect resolution regimes. We assume that it impossible
for governments to credibly commit not to intervene to support the financial sector
as a whole during a crisis. However, this does not mean that the government has to
support every bank in the same way. Time consistency might pin down the size of
the bailout but it does not generally pin down its distribution, and the distribution of
bailout funds (or taxes) matters for incentives.

We write a simple model where bailouts can be ex post efficient because of a neg-
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ative externality on the real economy when the financial system is undercapitalized.
Bailout anticipations affect the incentives of banks to engage in costly risk mitigation
strategies ex ante. When we assume, as in the existing literature, that bailout funds
are distributed in a symmetric way across banks, we obtain the standard moral hazard
results: bailouts inefficiently increase risk taking as in Chari and Kehoe (2016), create
strategic complementarities across banks’ risk management choices as in Farhi and Ti-
role (2012), and the situation is worse the deeper the pockets of the government. This
line of argument strongly calls for limiting the funds available for bailouts and tying
the hands of regulators ex post to the extent possible.

To establish our first main result we use the systemic risk model of Acharya et al.
(2016) where the negative externality on the real economy depends on the aggregate
capital shortfall in the banking system. In this case the optimal bailout takes the
form of a weakly increasing function M (K −R) where K is the aggregate capital
requirement and R the aggregate return. With N banks, time consistency requires
that the set of bailout payments satisfies

∑N
i=1 mi = M (K −R) for any value of

R =
∑N

i=1 ri. This places no restrictions of the distribution of {mi} around its mean.
In stark contrast to the conventional results, we then show that we can implement the
first best equilibrium by conditioning government support on a relative performance
mechanism such as a rank-order tournament, in banks performing above the median
gets a higher m than banks performing below the median. The scheme is fully time
consistent since it takes as given the overall size of the bailout. Punishing the banks
that perform poorly while rewarding those who perform well works because, despite
knowing that the median bank will be saved, each individual bank strives to make sure
it does not end up in the lower half. This race to the top generate first-best ex ante
incentives for all the banks.

The optimal contract requires punishment of bad banks. When we extend our model
by adding limited liability constraints, we find that the common wisdom regarding
deep pockets is overturned. We show that the set of implementable policies improves
monotonically with fiscal slack. The more slack, the more incentives the government
can provide, the less moral hazard, and with enough slack the first best is always
implementable despite limited liability. When the limited liability constraint binds, our
model offers a macro-prudential justification for increasing TLAC requirements and also
for mandating clawback provisions in executive compensation contracts. The reason is
that these contracts reduce the tightness of the constraint and therefore increase the
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range of time consistent outcomes. For the same reason, we show that although the fire
sales that occur during systemic crises must be met by larger bailouts, they also make
it easier to provide ex-ante incentives. Fire sales hurt the outside options of weak banks
relative to the transfers proposed by the regulator. Reducing bank leverage improves
risk-taking incentives when fire sales discount are deep enough.

Our baseline framework assumes that banks are highly substitutable, in the sense
that capital surpluses in one bank can compensate for capital shortfall in another. We
show that this pure systemic risk model can be viewed as the optimal outcome of a
process that allows the resolution authority to merge banks at a low cost. If healthy
banks can absorb the assets and customers of any failing bank, then only the aggregate
capital of the sector matters. If the social cost of mergers is too high, however, bailouts
become more attractive, which spurs moral hazard.

We next study a model where banks are imperfect substitutes, for instance because
of soft information, specialization across activities and locations, or market power. Lack
of substitution worsens the time consistency problem as each individual bank knows
it will be partly insured against its own poor returns to the extent that it would be
costly for other banks to pick up the slack. We introduce the concept of ε-commitment
to ensure continuity of the limit of mechanisms. A mechanism is ε-credible if welfare
deviates by less than ε from its ex post optimum. We can then recast our first result
in more general terms. We show that the ‘size’ of the set of implementable outcomes
is proportional to εη where η is the elasticity of susbtitution between capital surpluses
located in different banks. The Acharya et al. (2016) loss function assume η = ∞
which is why the first best is always implementable. On the other hand, when η is
small, the first best is not implementable in the usual (strong) time consistent fashion.

When banks are differentiated, however, the notion of renegotiation-proof contracts
in Fudenberg and Tirole (1990) becomes quite appealing. If the government promises
a set of transfers, banks can block a deviation that would leave them worse off. Under
this weaker form of time consistency the government can choose among Pareto optimal
allocations. The government cannot directly commit to punish weak banks but it can
commit not to renege on its promised support to well performing banks. The core time-
inconsistency problem is still present but our tournaments can once again implement
the first-best level of safety, albeit at a higher cost (that is, larger bailouts) than in
the case of perfect bank substitutability. Numerically, we find that the cost decreases
rapidly towards the first best cost as banks become more substitutable.
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Finally, we consider a different form of heterogeneity, arising from financial linkages
between banks that generate comovement in returns. These linkages capture a variety
of “contagion” forces, such as cross-exposures, fire sales, or domino effects, as studied
in the financial networks literature. We show how contagion leads to a natural notion
of systemic risk: banks are more systemic when their performance has a stronger effect
on the rest of the system. In turn, more systemic banks should act more prudently,
and so a resolution mechanism must strive to give them stronger incentives. ex post,
however, the government may consider these “super-spreader” banks too interconnected
to fail (Haldane, 2013). Our main finding is that the constraints that financial linkages
impose on bank resolution depend crucially on how bailout funds attributed to one
bank spill over to other banks.

If a form of “ring-fencing” applies to public funds and bailout money cannot flow
throughout the system to benefit other banks indirectly, our tournament mechanism
remains credible and efficient under minor amendments. A bank’s rank in the tour-
nament is determined by its ex post performance, as in the baseline model, but now
weighted by its systemic risk. A subtle constraint appears if ring-fencing is not pos-
sible, and bailout money can instead spillover to other banks. A first intuition would
be that these spillover effects can reduce costs ex post, as it is now possible to rescue
some banks indirectly, working through the linkages. The countervailing and domi-
nating force, however, is that spillovers actually worsen the credibility problem. It
becomes optimal to target the most systemic bank, as this is a cheap way to save the
whole system. But this makes the moral hazard problem unsolvable, because the most
systemic bank will now be completely insured and thus maximize risk-taking, thereby
endangering the whole system.

Related literature Bailouts are risky bets. Some succeed, some drag down the
sovereign, as shown in Acharya et al. (2014). Our main contribution is to show how
to use the classic rank-order tournament mechanisms Lazear and Rosen (1981) to
overcome the pervasive time inconsistency problem that generates or worsens moral
hazard in bank risk-taking (Farhi and Tirole 2012, Keister 2016, Chari and Kehoe
2016).

Our results differ from existing results in the literature in two important ways.
First, the literature has concluded that bailouts cause moral hazard in the same setting.
Farhi and Tirole 2012 restrict the set of contracts and tools available to the government.
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Chari and Kehoe 2016 study an economy that is ex post efficient but the planner uses a
welfare function that is utilitarian. So the planner distorts ex post a Pareto optimum.
They therefore assume a extreme form of lack of commitment as their problem would be
solved by a (Fudenberg and Tirole, 1990) mechanism. Second, the literature argues that
the moral hazard problem is worst in countries with ample fiscal space: the narrative is
that if banks expect the sovereign to be able to bail them out even in deep crises, they
have no reason to self-insure. We find that fiscal capacity has the opposite effect, once
richer mechanisms such as ours are used. Since a sovereign with larger fiscal capacity
is able to transfer a larger amount to the banking sector as a whole, it also has more
flexibility in the distribution of transfers across banks, which tends to relax incentive
constraints and reduce moral hazard.

Our paper also relates to the strategic substitutabilities among banks during ex
post fire sales, and the resulting ex ante incentives to build financial muscle, as in
Perotti and Suarez (2002) and Acharya and Yorulmazer (2007a; 2007b). Instead of
considering strategic substitutabilities driven by a competition for cheap assets, we
show how a well-designed competition for government support can implement efficient
ex ante safety. This approach relates to Kasa and Spiegel (2008), who show that using
relative instead of absolute performance evaluation in bank closures can reduce costs.
Unlike us, they do not consider how a tournament-like mechanism can implement the
first best risk-taking. They also assume that regulators can fully commit, while our
core insight is that tournaments mitigate the time-consistency problem.

1 A Model of Systemic Crises And Government In-

terventions

We present our baseline environment before defining the first-best allocation. The
key feature of our model is that banks decide how much risk to take, anticipating
government support policies in case of a systemic crisis that hits many banks at the
same time.

1.1 Environment

We consider a two-period model with N ≥ 2 banks and a “government”, that should
be viewed as combining fiscal and monetary authorities. At t = 0, the government
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Table 1: Balance Sheet
Assets ai Liabilities

Gross Value riai Capital ei
Deposits di

announces a bailout rule mapping realized returns on banks’ assets to government
transfers, as described below. Each bank then chooses and safety investment xi ∈ [0, 1].
Uncertainty is resolved at time t = 1. Uncertainty consists of a shock s common to all
banks as well as bank specific shocks. We define state s = 0 as the normal state and the
states s 6= 0 as the crisis states. The probability of the normal state is P [s = 0] = p0.
The crisis states are distributed on some compact set S so that

∫
S psds = 1− p0.

Banks. At time 0 banks have assets a and deposits with face value d due at time 1.
We denote by ri,s the gross asset return of bank i in state s at time 1 and by mi,s the
cash injection from the government. Table 1 shows the balance sheet of bank i at time
1.

Capital denotes the sum of equity (tier 1) and other loss absorbing capacity such
as junior unsecured bailinable bonds. We say that a bank is well capitalized when
ei ≥ eai, and its capital surplus is ei − eai. The notion of well capitalized is defined in
the welfare function below. Banks maximize expected capital returns net of transfers
ui = E [max {0, ei,s}]. The gross returns are given by

rsi =

f (xi) + ξi with probability p0

ri,s ∼ G (. | xi, s) with probability ps
(1)

The shocks ξi are i.i.d. across banks and the returns ri,s are bounded. The expected
return in the normal state f is decreasing, bounded, and concave over [0, 1] and attains a
strict maximum at 0. The shock s is common to all banks. The cumulative distribution
G (xi, s) of the return ri,s is ranked by stochastic dominance.1

Assumption 1. G (r | xi, s) is decreasing and continuously differentiable in x for all
r.

1In section 6 we will allow the distribution of ri,s to depend on other banks’ safety investments xj

as well.
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The function f thus captures the risk/return tradeoff that banks face. Banks can
improve their crisis return by increasing x, at the cost of lower returns f(x) in normal
times. The maximal risk banks can take, x = 0, leads to a highest expected return
f(0) in the good state but the worst exposure in crisis states.

Government. The government observes the aggregate state at time 1 as well as the
banks’ returns ri,s. We will normalize the parameters of the model so that the normal
state is indeed normal, i.e, no crisis and no bailout. The government’s ex post value

V ({ei, ai}i=1..N)

is concave and weakly increasing in ei, decreasing in ai, and strictly increasing in ei

when ei < eai. To simplify the notations we often write V {ei} since {ei}i=1..N are the
only random parts of the function, but the function itself also depends on ai and the
parameter e. Finally, V is flat at its maximum when all banks are well capitalized:
V = V̄ when ei ≥ eai for all i = 1..N . This defines what we mean by a “well capitalized”
banking system.

The government has the option to mitigate the consequences of financial distress
by implementing transfers {mi,s}. The total cost M =

∑
imi,s is subject to a shadow

cost of public transfers Γ (M ; γ) which is positive, weakly convex and strictly increasing
for all M > 0. We index the cost of fund to γ which measures the inverse of fiscal
slack. The function Γ (M ; γ) is increasing in γ and super-modular in (M,γ). Ex ante
aggregate welfare is thus defined as

E [R + V {ei,s +mi,s} − Γ (Ms; γ)] . (2)

where R =
∑

i airi,s is the random aggregate asset return.

Discussion of Assumptions We wish to focus our analysis on the issue of systemic
risk. We therefore assume

Assumption 2. Well calibrated TLAC. di
ai
≤ min {ri,s} < di

ai
+ e.

Assumption A2 implies that deposits are safe but that banks can be undercapi-
talized. This choice captures the idea that regulations implemented after the GFC
have made it theoretically possible to resolve a failing bank without taxpayers money.
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TLAC requirements have been calibrated so that, using data from the worst financial
crises on record, there would be enough capital, in virtually all cases, to resolve a bank
in distress without involving small depositors and without using taxpayer money. We
therefore assume that the limited liability of TLAC investors and equity holders does
not bind directly. This does not mean that limited liability will not bind once we try
to induce the right incentives, but it allows us to focus on the real issue with resolu-
tion regimes, namely that of systemic risk. Even if it is theoretically possible to cover
the losses of one large banks with TLAC, it does not solve the issue of whether it is
credible or even possible to resolve several large banks at the same time, which is what
our paper is about.

The variable x captures the efforts of the bank to mitigate its systematic risk. It
includes investment in liquid or safe assets with a low return as well as investments
in monitoring and screening technologies and risk governance in general. We assume
that x is not contractible. More precisely, we think of x as the residual discretion
that bankers have once they have fulfilled their quantitative regulatory requirements,
such as Tier 1 ratios, TLAC and LCR. The post-crisis policy response has focused
on ensuring a minimum level x but these regulations are necessarily imperfect due to
informational delays, signal jamming, off-balance sheet transactions, etc. Some private
sector discretion always remains, so we normalize the regulatory level of safe investment
to zero and view x as the residual investment in safety, above and beyond what can be
enforced ex ante.

The variable mi is the net transfer to bank i across all discretionary policies: the
most obvious interpretation is that of direct equity injections, but we can also think of
other implicit and explicit subsidies such as credit guarantees and loans at a reduced
interest rate. Philippon and Skreta (2012) discuss these policies in the context of an
adverse selection model, and Philippon and Schnabl (2013) in the context of a debt-
overhang model. What matters in our model is the net subsidy component of these
policies, i.e., the excess payment that the government makes compared to current
market prices.

We assume in our baseline that returns are iid across banks, which means, among
other things, that we ignore contagion. We extend the model to allow for contagion in
Section 6.

Finally, our paper focuses on payoffs in the crisis state. In general, the planner
might want to use information from the normal state to provide ex ante incentives.
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In practice there are two reasons why this is not feasible. The empirical reason is
that returns in normal states contain little information about returns in crisis states.
For instance, Acharya et al. (2016) find that the cross-section of returns only begin
to predict returns during the GFC after the end of 2006. Relative returns during
the boom years contain no useable information for estimating performance during the
crisis. We thus assume that VAR (ξi) � VAR (εi). The theoretical reason is that
f (xi) is a decreasing function of x so an incentive scheme would have to punish a firm
for good performance and these schemes are not robust to hidden trading as shown in
Innes (1990) and Nachman and Noe (1994).

1.2 No Bailout

Consider first the allocations when bailouts are ruled out by assumption. Consider first
the privately optimal solution. Under A2, maximizing ei is equivalent to maximizing
ri,sai. Let x̃ be the privately optimal safe return of a bank anticipating m = 0 in all
states:

x̃i ≡ arg max
0≤xi≤1

p0aif (xi) + (1− p0) aiE [ri,s | xi] . (3)

By stochastic dominance the function E [ri,s | x] is increasing in x and the concavity
of f guarantees the existence of a unique solution. Since have assumed that the safety
investment set is the same for all banks, x̃i = x̃ is the same for all i.

Consider next the socially optimal allocation. Since f is concave it is optimal for
the planner to set the same level of safety for all the banks. The return in the normal
state is therefore

∑
i f (xi) and crisis returns is

∑
i ri,s. To simplify the exposition, we

assume the private sector is well capitalized in the good state: f (x∗) > r. We can
define the no-bailout optimal solution as

x∗0 = arg max
x

∑
i

ai (p0f (xi) + (1− p0)E [ri,s | xi]) + E
[
V
(
{ei,s}i

)
| x
]

(4)

where x∗0 =
(
x∗1,0, .., x

∗
N,0

)
is the vector of safety investment by banks. The concavity

of V guarantees the existence of a unique solution. We maintain throughout the paper
the assumption that banks are well capitalized in the normal state. We also assume
that the efficient safety investment without bailout is not stuck in the left corner.

Assumption 3. 0 < x∗i,0 and f
(
x∗i,0
)
> ki for all i.
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Note that, since V is an increasing function, we have x∗i,0 ≥ x̃ for all i. The planner
prefers higher safety investments than what banks would choose individually.

1.3 First-Best Allocation with Bailouts

Define M ≡ ∑imi as the state contingent aggregate bailout. Assumption A2 guar-
antees that M = 0 in the normal state since the option to bailout can only decrease
the optimal level of ex ante safety (i.e., the solution of the full program is always such
that x∗ ≤ x∗0, therefore f (x∗) > r since f is decreasing). The program of the planner
is therefore

(x∗,m∗) = arg max
x,m

p0

∑
i

aif (xi) + (1− p0)
∑
i

aiE [ri,s | xi]

+ E
[
V
(
{ri,sai +mi,s − di}i

)
− Γ (M ; γ)

]
We define the ex post optimal vector of bailouts as

m∗ (r) ≡ arg max
{mi}i

V
(
{ri,sai +mi,s − di}i

)
− Γ (M ; γ) .

We assume that m∗ (r) > 0. A positive bailout in the worst state is typically part of the
first best allocation. This is in line, for instance, with the theoretical results in Keister
(2016) in the context of a Diamond and Dybvig (1983) model. More generally, it is
not difficult to imagine that the government is more efficient than the private sector
at providing some form of catastrophe insurance. In this case, it would be inefficient
to force the private sector to fully self-insure completely against very unlikely but
very costly crises. The issue is therefore not the existence of strictly positive bailout
probability, but rather what the anticipation of a bailout does to private incentives for
safety.

2 A Pure Systemic Risk Model

In this section we follow Acharya et al. (2016) and assume that the value function
depends only on the aggregate capital surplus of the banking sector:

V ({ei, ai}) = V

(∑
i

(ei − eai)

)
(5)

11



where V is increasing and concave. For instance, the systemic expected shortfall in
Acharya et al. (2016) uses the piecewise linear case V = min (0, E − eA). The assump-
tion behind this loss function is that the banking sector has specific expertise that is
not easily replicated by non-bank actors, but that banks within the sector are good
substitute for one another. With this loss function, the government does not care about
the distribution of returns across banks, but only about the aggregate capital shortfall
of the banking sector. In other words, we assume that the expertise that makes banks
socially valuable, for instance their ability to lend to SMEs and households, is transfer-
able across banks but not outside the banking system. If a bank fails, its outstanding
assets and new lending can be picked up by other surviving banks. By definition, when
the system is solvent, it is possible to transfer assets and liabilities to solvent banks.
By contrast, when the banking system is insolvent, the planner cannot avoid a disrup-
tion that has real welfare costs because it is costly to transfer bank assets outside the
banking sector, either to deep-pocket private investors or to the government itself, and
it is difficult to raise bank equity quickly in a crisis. We relax these assumptions in
Section 5, but view them as a good starting point to capture the deadweight loss from
an undercapitalized banking system.

2.1 Ex Post Optimal Bailout

Define the aggregate return as R ≡ ∑i airi,s and the aggregate gross requirement as
K ≡ ∑

i (eai + di). The ex post optimal bailout is then simply a function of the
aggregate return. We define the maximized value function as

V (R−K; γ) ≡ max
M≥0

V (R +M −K)− Γ (M ; γ) ,

and the optimal bailout as

M (K −R; γ) ≡ arg max
M≥0

V (R +M −K)− Γ (M ; γ) . (6)

We will use the following simple Lemma.

Lemma 1. The solution x∗ (θ, κ) to the problem maxx f (x− θ) + g (k − x) where f
and g are concave is increasing in θ and κ with slopes less than one, i.e., such that
x∗ − θ is decreasing in θ and k − x∗ is increasing in k.

Proof. Appendix.
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Applying the Lemma to our problem we can characterize the optimal bailout.

Proposition 1. The maximized value function V is increasing and concave in R−K,
and decreasing in γ. The bailoutM (K −R; γ) is increasing in K −R and decreasing
in γ. There exists a threshold K (γ) ∈ [0, K], decreasing in γ such, that M = 0 for
R ≥ K (γ).

Proof. First note that if R > K the solution is obviously M = 0. We can therefore
restrict our attention to R < K and M ≥ 0. Because V is concave the Lemma implies
that M (R,K) is increasing in K − R with slope less than one. The comparative
statics with respect to γ come directly from the fact that Γ (M ; γ) is increasing and
super-modular. The fact that V is concave comes from the fact that V is concave and
the fact thatM has a slope less than 1. The definition of K (γ) is the same as in the
next example.

The value function V is concave and differentiable irrespective of the shape of V
and Γ. The bailout function, on the other hand, may or may not be convex, and is
usually not differentiable. For instance, when the sytemic externality is piecewise linear
V = min (0, E − eA) and the fiscal cost of fund is quadratic Γ = γM2, then the bailout
is flat at (2γ)−1 when the crisis is severe and then linearly decreasing (in R) to zero
when the return is between K − (2γ)−1 and K.

Example: Linear Cost of Fund Suppose that the cost of fund is linear

Γ (M) = γ |M |

The quasi-linear preferences of the planner imply that the ex post optimal bailout takes
the simple form of a put option on the aggregate return R:

Lemma 2. With linear cost of funds, the optimal aggregate bailout isM = max {0,K (γ)−R}
where K (γ) ∈ [0, K] is decreasing.

Proof. First note that if R > K the solution is obviously M = 0. We can therefore
restrict our attention to R < K and M ≥ 0. To exploit the quasi-linear preferences we
change variable from M to M̂ ≡ M + R −K. We can rewrite the loss minimization
problem (6) as

max
M̂≥R−K

V
(
M̂
)
− γ

(
M̂ +K −R

)
13



If M̂ = R−K the solution is M = 0. If M̂ > R−K, then it solves

M̂ (γ) = arg max
M̂

{
V
(
M̂
)
− γM̂

}
which is negative and decreasing in γ. Since M = M̂ + K − R, we then get M =

K (γ) − R with K (γ) = M̂ (γ) + K. Putting the two cases together, we therefore get
M = max {0,K (γ)−R}.

The planner has an aggregate target K (γ) which depends on the aggregate capital
requirement K and the cost of public fund γ. If the private sector delivers the target
by itself (R > K), then the planner does not intervene. If the private sector falls short
of the target (R < K) then the planner replenishes aggregate capital up to the target
to M (R) + R = K. The replenishment may not be complete (K < K) when public
funds are costly and when V approaches its maximum smoothly from the left.

2.2 First Best

With the welfare function (5), the first best solution solves

x∗ = arg max
x≥0

p0

∑
i

aif (xi) + (1− p0)
∑
i

aiE [ri,s | xi] + E

[
V
(∑

i

airi,s −K
)
| x
]

The loss function is decreasing in R and increasing in γ which implies that

x̃ ≤ x∗i ≤ x∗i,0.

The planner always wants more safety than the privately optimal choice under no
bailout x̃, but requires less than in the optimal case without bailouts x∗0 because the
option to bail out limits downside risks. Notice that optimal safety may depend on
bank size because of the non-linear loss function. Let us define

εi,s ≡ ri,s − E [ri,s | xi, s] .

Let Gε (. | xi, s) be the distribution εi and let ε ≡ ∑i aiεi be the aggregate of bank
level shocks.
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Lemma 3. Optimal safety does not depend on size when Gε does not depend on x.
Optimal safety is increasing in size if Gε satisfies second order stochastic dominance
in x.

Proof. Suppose Gε does not depend on x. Define r̄ (x, s) = E [ri,s | x, s]. We have

x∗ = arg max
x≥0

p0

∑
i

f (xi) + (1− p0)

∫
s

∑
i

r̄ (xi, s) dP (s)

+
1

ai

∫
s

dP (s)

∫
ε

V
(∑

i

air̄ (xi, s) + ε−K
)
dḠε (ε)

where Ḡε (ε) is the convolution of the distributions Gε. It does not depend on x.
Therefore

1

ai

∂

∂xi
E [V (R) | x, s] = r̄x (xi, s)E [V ′ (R) | x, s]

and the optimal choice of xi does not depend on the size of bank i. See Appendix for
the second part of the proof.

We get scale independence if return volatility does not depend on x. An example is
ri,s = α (xi)+s+ εi where α is increasing. This implies R =

∑
i aiα (xi)+As+ε where

ε is independent of x. On the other hand there are realistic cases where x would affect
the volatility of r. For instance ri,s = α (xi) + s + (1− xi) εi. In that case efficiency
requires large banks to invest more in safety. We say that a crisis is systemic if it
necessitates a bailout and moderate otherwise, i.e., when R < K. We summarize our
results in the following proposition.

Proposition 2. The social optimum is characterized by (x∗,M (K −R; γ)). Safety
investments x∗ are increasing in γ, in A, and in the mean and variance of s, and
decreasing in e, and satisfy (x̃, ..x̃) < x∗ < x∗0.

Propositions 1 and 2 put some discipline on the range of outcomes that are con-
sistent with optimal regulations and interventions. There are no bailouts in moderate
states. Once the capital shortfall is large enough, the planner finds it optimal to trans-
fer bailout funds to banks. The shape of the bailout is then pinned down by fiscal
capacity. When the fiscal cost is linear (e.g., the US), it is optimal to fully insure the
banking system against further downside risk. When the fiscal cost is convex (e.g.,
Ireland, Greece, Cyprus), the bailout increases less than one for one with the losses.
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In the first best, the government mandates the optimal safety vector x∗, thus avoid-
ing moral hazard. In the rest of the paper we study what happens when x is unobserved
by the government. The model then includes the potential for a strong form of moral
hazard. When M∗ > 0 the aggregate return net of government transfer does not de-
pend on x. Anticipating this, banks might discount the systemic states and increase
their risk taking.

2.3 Moral Hazard under No Commitment and Symmetric Bailouts

We now assume that x cannot be observed and we impose a time-consistency, or
“credibility”, constraint. The government is restricted to rules {mi} that are ex post
optimal, even off the equilibrium path. Therefore

∑
i

mi,s =M (K −R) (7)

for all possible values of R whereM (K −R) is defined in (6). We define a symmetric
bailout as follows.

Definition 1. A bailout is symmetric if, for all (i, j) ∈ [1 : N ]2 and all s ∈ S, we have
mi,s
ai

=
mj,s
aj

.

When all banks of ex ante identical a symmetric bailout is one where they all
get the same amount of money. When banks’ sizes vary, the definition simply allows
proportionality with size. In a symmetric bailout we have mi,s = ai

M(R)
A

and airi,s +

mi,s = ai

(
ri,s + M(K−R)

A

)
. The best response of bank i is therefore

β (x−i) = arg max
xi≥0

p0aif (xi) + (1− p0) ai (E [ri,s | xi] + Ω (xi; x−i)) (8)

where x−i is the vector of safety investments by all banks except bank i, and Ω is
defined as Ω (x) ≡ 1

A
E [M (K −R) | x], which we can write as

Ω (x) =
1

A

∫
M (K −R) dΦN (R | x) . (9)

The distribution ΦN is the convolution of the underlying ones: R | x ∼∑N
i=1 airi,s | x.
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Lemma 4. Ω (x) is continuous, decreasing, and satisfies the increasing difference con-
dition in (xi,x−i) for all i.

Proof. We use the standard notations R−i =
∑

j 6=i ajrj,s and

ΦN (R | x) = P
(
R̃ < R | x

)
=

∫
s

P

(
N∑
i=1

airi,s < R | x, s
)
psds

=

∫
s

P (a1r1,s < R−R−1 | x, s) psds

=

∫
s

∫
R−1

G

(
R−R−1

a1

| x1, s

)
dΦN−1 (R−1 | x−1, s) psds

Since G (. | xi, s), is decreasing in xi, so is ΦN (R | x). Since M is decreasing in R,
Ω (xi; x−i) in decreasing in xi for any i. Since G (. | x, s) is C1 in x we have

∂ΦN (R | x)

∂xi
=

∫
s

∫
R−1

∂G
(
R−R−1

a1
| xi, s

)
∂xi

dΦN−1 (R−i | x−i, s) psds

is negative and increasing in x−i since ΦN−1 (. | x−i, s) is decreasing in x−i. Therefore
∂Ω
∂xi

is increasing in x−i.

Lemma 4 immediately implies that, for all possible value of x−i, the best response
is bounded above by the private equilibrium: β (x−i) ≤ x̃. Our game takes place on
compact sets with a finite number of players, continuous choices and continuous reward
functions, therefore we know that at least one Nash equilibrium exists and any solution
satisfies x̂ ≤ x̃. We summarize our discussion in the following proposition.2

Proposition 3. All equilibria with no commitment and symmetric bailouts have the
following properties:
(i) Lack of commitment creates strategic complementarities in risk taking: β (x−i) is
increasing.
(ii) Safety is too low (x̂i < x∗i ) and the probability of a systemic crisis is too high

2Given risk-neutrality, it is without loss of generality to focus on pure strategies. Fudenberg and
Tirole (1990) show that with risk-averse agents, it is possible to maintain some incentives once we
allow for mixed strategies.
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ΦN (M0 | x̂) > ΦN (M0 | x∗).
(iii) Moral hazard worsens when γ decreases.
(iv) If β (0) = 0 a full unraveling equilibrium exists with minimum safety, maximum
systemic risk, and maximum bailout xi = 0 for all i.

Proof. (i) Because ∂Ω
∂xi

is increasing in x−i. (ii) Because Ω is decreasing. (iii) Because
M is decreasing in γ. (iv) follows from the fact that f is maximized at x = 0.

Lack of government commitment creates strategic complementarities between banks:
if all banks reduce their safety the probability of a bailout increases, which reduces the
marginal incentives to hedge against systemic crises. Lack of government commitment
can generate an extreme form of moral hazard where banks make no investment in
safety. A marginal increase ∆xi reduces the bank’s expected bailout.

Strategic Complementarities and Uniqueness While strategic complementar-
ities are a realistic feature, they can open the door to multiple equilibria if those
complementarities are too strong. We can in principle deal with multiple equilibria:
there is a set of equilibria, and each time we say that safety is increasing we mean
it in the Strong Set Order sense of Topkis (1978) and Milgrom and Shannon (1994).
Alternatively, we could allow the government to act as a coordination device and select
the equilibrium with highest safety. These solutions are feasible but they create a large
burden of notations without changing the economic insights. It is more convenient to
have a unique equilibrium to state our main results in the next section. We therefore
assume that Ω is not too convex or that f is concave enough.

Assumption 4. The slope of the best response β (x−i) is less than one.

3 Credible Tournaments

The previous section has shown that when the government lacks commitment, standard
contracts lead to moral hazard. In stark contrast, we now show that the government can
use relative performance evaluation among multiple banks to solve the moral hazard
problem and implement the first-best allocation in a time-consistent fashion. The
reason is that the credibility constraint only affects the aggregate bailoutM =

∑
imi,s,

and leaves enough leeway to the government to structure the distribution of bailouts
across banks. In particular, the government can use a relatively simple tournament
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scheme that rewards banks according to their ranking while maintaining credibility.
The time consistency constraint is

N∑
i=1

mi,s =M (K −R)

for all possible realization of the aggregate return R. For simplicity we illustrate our
main result in the case where banks are ex ante identical and consider size differences
in the Appendix. Thus we assume ai = 1 for all banks. Bank i chooses its safety
investment as

x̂i = arg max
xi≥0

p0f (xi) + (1− p0) (E [ri,s | xi] + E [mi,s (r) | x]) . (10)

3.1 Bonus-Malus Implementation

Two Banks. We build intuition by considering the case of two banks. We define the
tournament rule T with two banks as

mi =


M(K−R)

2
+ ∆ ri,s > rj,s

M(K−R)
2

−∆ ri,s < rj,s

Note that P [r1,s > r2,s] = Hs (x1, x2) where is increasing in x1 and decreasing in x2.
The best response function for bank 1 is therefore

x̂1 = β1 (∆, x2) = arg max
x1

p0f (x1)+(1− p0) (E [r1,s | x1] + Ω (x1, x2))+2∆

∫
s

Hs (x1, x2) psds.

When ∆ = 0 this best response corresponds to the one discussed in Proposition 3. The
crucial departure from perfect insurance and the ensuing moral hazard comes from ∆,
which rewards the best bank and punishes the other one. We can then state our first
main proposition.

Proposition 4. With N = 2, there exists a unique ∆∗ that implements the social
optimum (x∗, x∗,M (K −R)).

Proof. The objective function is super-modular in (x1,∆) since H is increasing in x1

therefore x1 is increasing in ∆. Suppose that x2 = x∗. Clearly x̂1 (0, x∗) < x∗. On the
other lim∆→∞ x1 (∆, x∗) = 1. Since x1 is continuous there is a unique ∆∗ such that
x1 (∆∗, x∗) = x∗. The same holds for x2 by symmetry.
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Note that ∆∗ is unique in the class of mechanisms that we consider but there
are other classes of mechanisms that can implement the first best. We know from
Proposition 3, however, that all of them must use relative performance evaluations.

N Banks. It is straightforward to extend our results to N banks. In fact, it is easier
since there are more degrees of freedom. A possible rule is

mi =
M (K −R)

N
+ ∆× I (ri −med (r))

where function I is such that I (y < 0) = −1 , I (0) = 1, and I (y > 0) = 1 and
med (r) is the median return. By definition of the median

N∑
i

I (ri −med (r)) = 0

so
∑N

i mi = M (R) and the rule is credible. Denote Hmed
N (θ) the probability that

ri > med (r) when all other banks play the same xj = x−i and bank i plays xi. Then
bank i solves

x̂i = βi (∆,x−i) = arg max
θ

(1− p0)xi+(1− p0) (E [ri,s | xi] + Ω (xi,x−i))+2∆

∫
s

Hmed
s,N (xi,x−i) psds.

Hmed
s,N is increasing in xi, and we give the expression in the Appendix. Following the

same steps as for N = 2 we have:

Proposition 5. For any number N ≥ 2 of banks, there exists a unique ∆∗ that imple-
ments the social optimum (x∗,M (K −R)).

The simplicity of our “median” rule makes it attractive, but there are many other
more complex rules that can achieve the same objective, even within the class of tour-
naments. For instance, different prizes could be attributed to banks according to their
exact ranking in terms of returns, and not just whether they are above or below the
median.

The implementation above might require large punishment in equilibrium. A bank
with a bad draw needs to be punished to provide ex ante incentives. There are, however,
practical limits on punishments. The first limit is that the planner might not be able
to punish because of limited liability. The second limit is that the planner might not
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be willing to punish because of imperfect substitutability between banks. We consider
each one in turn.

3.2 Limited Liability

Let us now consider the case where government transfers and taxes are constrained by
limited liability (LL). There are two ways to write limited liability. The strict form
is mi ≥ 0 for all banks in all states, which simply rules out negative transfers. This
constraint typically leaves equity holders with a surplus. A weaker form of limited
liability is airi +mi ≥ di, which allows negative transfers of residual equity value, but
not more. In section 3.3 we show how these two cases can be interpreted as polar cases
of a richer model with fire sales and mark-to-market accounting in resolution. Our first
result holds under strict (and therefore also weak) limited liability.

Proposition 6. Even under strict limited liability (mi ≥ 0), tournament incentives
rule out moral hazard (x̂ > x̃) and implement the first best when the cost of fund is
low, i.e., there exists γ̂ > 0 such that x̂ = x∗ for any γ < γ̂.

Proof. The proof has two steps. Let xmax be the maximum implementable level of
safety. The first step is that the planner can always improve upon purely private
incentives. From (10) it is clear that any bailout function with mi (ri < med (r)) = 0

and mi (ri > med (r)) = 2M/N satisfies x̂i > x̃. Therefore xmax > x̃. The second step
is that when γ → 0 the government can fully insure downside risk: limγ→0 V = V̄ and
limγ→0 x

∗ = x̃. Therefore limγ→0 x
∗ < xmax.

The limit result is easy to prove in the general case of the model with additive
capital surpluses. Characterizing the second best allocation is a lot more complicated,
however, so we use the following special case with binary outcomes. We assume that
all banks are ex ante identical with size a. At time 1 banks are randomly allocated into
two groups, L and H, with sizes NL and NH such that NL +NH = N . The probability
that any particular bank ends up in group H is simply h = NH/N . The returns of
bank i are determined jointly by its risk management, its group, and the aggregate
state:

rsi =

f (xi) + ξi in the normal state

s+ xiIi∈H in crisis state s
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The model thus works as follows. Banks make ex ante safety choices xi. If a bank
ends up in group L its return is s irrespective to x. If a bank is in group H, its safety
choice matters ex post as its return is s + xi. The key point is that there is no way
for the planner to distinguish a bank in group L from a bank in group H who chose
x = 0. The first best requires all banks to choose some x∗ > 0 and we assume that the
private equilibrium gives x̃ < x∗. Let us consider the implementation of a symmetric
equilibrium x. When all banks make the same choice the aggregate return does not
depend on the random selection of the groups H and L:

R = A (s+ hx)

In particular, the first best solves x∗ = arg maxx≥0 p0Af (x) + (1− p0)A (s̄+ hx) +

E [V (As+ Ahx−K)]. Let us now consider incentive constraints. If one bank deviates,
the aggregate return depends both on s and on the group selection. Define X̃H =∑

i∈H xi, the return is then
R̃ = As+ ahX̃H .

If a bank deviates it will choose x = 0 so that it can hide among the legitimate banks
of group L. Because banks’ outcomes are binary, the bailout takes the simple form
mL = aµL for group L̃ (banks with low returns) and mH = aµH to group H̃ (banks
with high returns). The time consistency constraint is(

N − ÑH

)
aµL + ÑHaµH =M

(
K − R̃

)
Consider the incentive constraint of bank 1 given that all the other banks play x∗. If
bank 1 chooses x1 = x∗ its expected payoffs are

p0af (x) + (1− p0) a (s̄+ hx+ E [(1− h)µL (s) + hµH (s)])

If bank 1 instead chooses x1 = 0 its expected payoffs are

p0af (0) + (1− p0) a (s̄+ E [(1− h)µL (s) + hµL (s,NH − 1)])

because ex post with probability 1 − h it belongs to group L and thus the fact that
x = 0 does not matter. In this state nobody (except bank 1) is aware of the deviation,
neither ex ante nor ex post and the payoff must be the same µL (s) as in equilibrium.
With probability h it belongs to group H. In that case the planner learns that at
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least one bank has deviated as the number of high types, ÑH = NH − 1, is not NH as
expected. The incentive constraint of bank 1 is therefore

(1− p0)h (x+ E [µH (s)− µL (s,NH − 1)]) > p0 (f (0)− f (x)) (11)

Minimizing µL (s,NH − 1) is good for incentives. If the planner can lower the return µL
sufficiently, it can implement the first best, i.e., satisfy (11) with x = x∗. With limited
liability, the first best may not be implementable. The limited liability constraint
depends only on the return of bank i, not on NH . Therefore without loss of generality
we can write µL (s) which is either 0 under strict limited liability, or µL = d/a−s under
weak limited liability. Once we have minimized µL we find the maximum value µ∗H using
the time consistency constraint hµ∗H =M/A− (1− h)µL (s) or h (µ∗H (s)− µL (s)) =

M/A− µL (s) and the IC constraint (11) becomes

(1− p0) (hx+ E [M (s) /A− µL (s)]) > p0 (f (0)− f (x)) .

Proposition 7. The highest implementable safety under limited liability is decreas-
ing in the cost of public funds γ and decreasing in the size of the banking sector A.
Incentives and ex ante leverage constraints d/a are substitutes under strict LL, but
complement under weak LL.

Proof. We know thatM (s) /A is decreasing in γ so it is immediate that the IC improves
when γ decreases. We also know thatM/A is decreasing in A. Under strict LL we have
µL = 0 and know thatM increases with the capital shortfall K − R = eA + d

a
A− R.

M is therefore increasing in d/a and the IC tightens when ex ante leverage is lower.
Under weak liability, on the other hand, we have µL = d/a − s and since the slope
of M is less than one we have that M (s) /A − µL (s) is decreasing in d/a. A lower
leverage then loosens the IC constraint.

Proposition gives a striking result with respect to fiscal slack: a lower γ increases
safety. This is exactly the opposite of the conventional wisdom based on symmetric
contracts. Proposition gives a rationale for leverage limits and higher capital require-
ments. It also gives a macro-prudential reason for clawback provisions to reduce the
binding limited liability constraint.
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3.3 Fire Sales

We show that fire sales are useful for incentives. Suppose that the return ri that we
have described so far denotes the fundamental value that assets would recover to after
the crisis. In the midst of the crisis, however, asset values can be temporarily lower,
equal to χ (1− ri), where χ ∈ [0, 1) is a fire sale discount on assets. We treat χ as fixed
to simplify, but our results would extend to a stochastic χ that is potentially correlated
with returns, as would be the case, for instance, when endogenizing asset prices using
“cash-in-the-market pricing”.

Suppose that during the crisis, the regulator is constrained to net transfers mi that
cannot expropriate bank shareholders at current market prices. Thus shareholders have
the choice between accepting resolution and obtaining a payoff ri +mi− d, with assets
left at book value within the bank until the crisis is over, or liquidating assets at fire
sale prices immediately.

The shareholder participation constraint is therefore ari+mi−d ≥ max {0, (1− χ) ari − d}
or mi + ari ≥ d if ri ≤ d

(1−χ)a

mi + χari ≥ 0 if ri ≥ d
(1−χ)a

For deep fire sale discounts χ → 1, the constraint converges to weak limited liability.
For moderate discounts, the constraint writes mi+χari ≥ 0, and strict limited liability
corresponds to the case without fire sales χ = 0. Just like weak LL is easier to satisfy
than strict LL, a deeper fire sale discount χ allows the regulator to impose tougher pun-
ishments on weak banks during the crisis, and therefore relaxes the incentive constraint
for all banks ex-ante.

We can now generalize our result on the effect of leverage on the incentive constraint

(1− p0) (hx+ E [M (s) /A− µL (s)]) > p0 (f (0)− f (x)) .

We always have

∂E
[
max

{
d
a
− r,−χr

}]
∂ (d/a)

= P

(
d

(1− χ) a
− hx

)
where P (x) =

∫
s≤x psds. With a linear cost of funds, E

[
M′ (eA+ d

a
A−R

)]
=
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P
[
s < K(γ)

A
− hx

]
= P

(
K(γ)
A
− hx

)
where P (x) =

∫
s≤x psds. Thus, starting from

leverage d/a, locally tightening the leverage constraint relaxes the incentive constraint
if and only if the fire sale discount in case of crisis is deep enough:

χ > χ̂ = 1− A

K (γ)

d

a

Proposition 8. Suppose the cost of funds is linear and let χ̂ = 1− A
K(γ)

d
a
. Incentives

and ex ante leverage constraints d/a are complement if the fire sale discount χ is higher
than χ̂, and substitutes otherwise.

4 Mergers and Resolution Authority

We have used the benchmark loss function V (
∑

i ei − eai) to establish our first main
result with and without limited liability. In all these cases policy makers intervene using
taxes and transfers.3 These instruments are used extensively in practice but there is
another tool that is used extensively and requires a modification of the baseline model:
merger of weak banks with strong ones. In this section we are going to endogenize the
distribution of assets and liabilities by giving the government a resolution authority.

Definition 2. Resolution authority is a technology with which, for any undercapi-
talized bank ei < eai the government can write equity claims to 0 and transfer (some
of) the assets and deposits to another bank or another set of banks.

We have already discussed the issue of strict versus weak LL so we focus here on
the case of weak LL where regulators have the authority to wipe out shareholders of
failing banks. It is straightforward to extend the results to the case of strict LL. To
discuss mergers we need to specify a value function over different sets of existing banks.
We consider the following value function

V {ei, ai} = V

(
N∑
i=1

aiv (yi)

)
, (12)

3One should keep in mind that taxes can also be levied ex ante. Banks could all pay the same tax
at time 0 and recoup their payments at time 1 based on the tournament rule described above. This
is one example of a policy that alleviates the limited liability constraint, as discussed in Section 4.
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where yi is defined as the percentage surplus of bank i

yi ≡
ei
ai
− e.

The functions V and v are increasing and (weakly) concave with v (0) ≥ 0 and
V (0+) = V̄ . For instance, in our application below we use v (y) = min (0, y), while the
benchmark model of Acharya et al. (2016) corresponds to v (y) = y. This value function
has two key properties that make it appealing to study mergers and capital shortfalls.
The first property is that it is neutral with respect to the combination of similarly
capitalized banks. If yi = yj = y then we get aiv (yi) + ajv (yj) = (ai + aj) v (y) so
nothing is gained or lost by combining the banks. This is clearly a desirable feature
of any welfare function. The second key property is that the concavity of v around
y = 0 captures the degree of substitution between capital shortfalls and surpluses:
v (y) = min (0, y) implies zero substitution while v (y) = y implies perfect substitution,
with most realistic cases somewhere in between. For instance, in a fire sales model,
distressed banks are forced to sell, while banks with surpluses take advantage of low
prices, but they do not pick up the slack one for one. On the other hand, this value
function does not capture two economic forces that may be important in some context:
taste for variety and market power. We study these issues in Section 5.

4.1 An Aggregation Result

Let us now consider the case of mergers. We first define a merger allocation and its
cost.

Definition 3. A merger allocation is a matrix α where αi,j ∈ [0, ai] are the assets from
bank i transferred to bank j and

∑N
j=1 αi,j = ai. The cost of the merger allocation is

τ
∑N

i=1 (ai − αi,i).

The idea here is simple. Mergers reallocate assets and the cost of transfer is τ per
unit of assets. Consider for instance the sale αi,j from bank i to bank j. The net
welfare gain is then

V

(
..+ (ai − αi,j) v (yi) + (αi,j + aj) v

(
αi,jyi + ajyj
αi,j + aj

))
−V (..+ aiv (yi) + ajv (yj))−ταi,j

(13)
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Since v is concave and V increasing we know that the first difference is positive and the
question is whether it is high enough to cover the cost ταi,j. Would the shareholders
of bank j approve the merger? Under Assumption A2 of well callibrated TLAC the
value of assets exceeds that of liabilities, so the merger increases shareholder value, but
the merged bank might still be undercapitalized (if αi,jyi + ajyj < 0), in which case
the regulator might want to provide bailout funds to bank j. We return to these issues
later. Let N− and N+ the sets of undercapitalized and well capitalized banks. When
we study mergers the two key state variables are the mass of failed assets

A− =
∑
i∈N−

ai

and the aggregate surplus equity E − eA. We have the following results.

Proposition 9. Let V post be the post-merger welfare value: V post = maxα V (α, {ei, ai})−
τ
∑N

i=1 (1− αi,i) ai. We have V post ≥ V
(
Av
(
E−eA
A

))
−τA−. As τ → 0 any value func-

tion of the type (12) converges to the value function V
(
Av
(
E−eA
A

))
.

The proposition is useful because it shows that the value function in our benchmark
case is without loss of generality when mergers are frictionless. In particular, all our
previous results apply.

Corollary 1. Tournament bailouts implement the first best as in Propositions 5 and
6 when mergers are frictionless. In particular, when E > eA, frictionless mergers
achieve the first best without bailouts.

Tournament bailouts implement the first best as the government is not forced to
bailout out the bad performing banks. It can instead merge them with good banks and
reward the shareholders of relatively well performing banks with additional funds if
necessary. To understand the proof of the results, let us start from a marginal change.
Taking the derivative of (13) we get

dV

dαij
= (v (yj)− v (yi)− (yj − yi) v′ (yj))V ′ (.)− τ

This formula contains all the economics of mergers in our model.

Lemma 5. If τ = 0 a marginal asset transfer increases welfare if and only if yj > yi and
the most attractive first merger is the one between the two furthest banks i = arg min yt

and j = arg max yt.
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This then suggests the following algorithm starting at k = 0 with the initial allo-
cation {ai, ei}. Define

i(k) ≡ arg min
at>0,yt<0

y
(k)
t

J (k) ≡ arg max
t
y

(k)
t

j
(k)
2 ≡ arg max

t/∈J(k)
y

(k)
t

In words, i(k) is the worst bank among the ones with positive assets and negative
surplus (pick any one in case there is a tie), J (k) is the set of best banks, and j(k)

2 the
next best one. Let yc (i, j, α) be the capital combination function

yc (i, j, α) =
αi,jyi + ajyj
αi,j + aj

The algorithm is then

1. Compute i(k), J (k), j
(k)
2 . If i(k) ∈ J (k), stop. Otherwise proceed.

2. If yc
(
i(k), J (k), a

(k)

i(k)

)
> y

(
j

(k)
2

)
then transfer uniformly all the assets from i(k) to

the banks in J (k). Set a(k+1)

i(k)
= 0 and y

(
J (k)

)
= yc. Repeat step 1.

3. Otherwise define α such that yc
(
i(k), J (k), α

)
= y

(
j

(k)
2

)
, transfer α, set a(k+1)

i(k)
=

a
(k)

i(k)
− α and y

(
J (k)

)
= y

(
j

(k)
2

)
. Repeat step 1.

It is easy to check that this algorithm provides the welfare V
(
Av
(
E−eA
A

))
− τA−. The

set of failed bank N− decreases until either N− = ∅ or all the banks have the same
negative capital surplus. When E > eA the algorithm stops when A

(k)
− = 0, having

relocated all failed assets to healthy banks. Capital is not typically equalized across
all banks, but since all remaining banks are well capitalized we get V̄ . When E < eA
the algorithm does not stop until all the banks have the same capital ratio E−eA

A
. In

both cases the algorithm never transfers more than A−.

4.2 Second Best Allocations

When mergers are costly (τ > 0) it is not in general optimal to complete the merging
algorithm and the value function does not fully converge to the benchmark model of the
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previous sections. Characterizing the second best allocation is challenging, especially
when we also consider endogenous bailouts. So we consider the simple case

V = V̄ + v

N∑
i

ai min (0, yi) (14)

This is a conservative value function since it assumes no benefit from banks with capital
surpluses ei > eai. In particular, this specification maximizes the time consistency
problem since, without mergers, it is ex post optimal to bail out only the banks with
negative surplus.

Ex-post Interventions: Mergers and Bailouts Define the surplus of good banks
and the shortfall of undercapitalized banks, respectively, as

Y+ =
∑
j∈N+

ajyj

Y− =
∑
j∈N−

−ajyj

hence Y = Y+ − Y−.

With the value function (14) mergers are useful only if they tap into unused capital
surplus. An immediate implications is that, if τ > 0 and the value function is only
weakly concave as in (14), then when Y < 0 the merger process will not lead to
equalization of capital surpluses across banks. When Y+ > 0 there is untapped capital
surplus and the attractive merger target is the bank with the worst shortfall. Under
Assumption A2 we know that di/ai − ri ≥ 0 hence yi ≥ −e, so we make the following
assumption to ensure that mergers are potentially useful:

Assumption: The merger cost satisfies τ < ev.

We can now describe the second best allocation. Define for y ≤ 0 the cumulative
shortfall function

Y (y) = −
∑
yi≤y

aiyi ∈ [0, Y−]

and the following two cutoffs yγ and yτ

yγ = inf
i
yi s.t. Γ′ (Y− − Y (yi)) ≤ v
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yτ = sup
i
yi s.t.

yi ≤ −τ/vY (yi) ≤ Y+

Both yγ and yτ are negative. To interpret yγ, note first that is never ex-post optimal
to give more than mj = −ajyj to bank j. Thus if bailouts are the only option, the
ex post efficient allocation that maximizes incentives gives a full bailout mj = −ajyj
to banks starting from yj = 0, until the marginal cost of further bailouts Γ′ exceeds
the marginal benefit v, which happens at yγ. To interpret yτ , note that if mergers are
the only option, the ex post efficient allocation merges all the banks with yi below yτ

to banks with a capital surplus, starting with the worst bank yi = min y. The two
inequalities defining yτ capture the fact that the merging process stops when either the
marginal return to merging the next bank falls below the cost τ , or the entire capital
surplus Y+ has been exhausted.

When bailouts and mergers are both available, the ex post efficient allocation that
maximizes incentives only bails out the least undercapitalized banks. When yτ < yγ

the two policies are combined as follows:

• banks with yi ∈ [yγ, 0] are fully bailed out mi = −ayi thus the aggregate bailout
is −∑yγ≤yi≤y aiyi = Y− − Y (yγ).

• banks with yi ≤ yτ are merged with good banks;

• banks with yi ∈ (yτ , yγ) are left untouched.

If the two regions overlap (yγ < yτ ), then we can define y∗ ∈ (yγ, yτ ) such that

y∗ = sup
i
yi s.t. − yiΓ′ (Y− − Y (yi)) ≤ τ.

Banks with yi ≥ y∗ are fully bailed out and banks with yi ≤ y∗ are merged. This result
is captured formally by the following Lemma:

Lemma 6. Suppose the government has spent M ≥ 0 in bailout funds with resulting
sets of banks N− and N+. If Y+ = 0, then no merger takes place and further bailouts
of distressed banks happen if v > Γ′ (M). If Y+ > 0, a merger takes place if there is an
i such that τ < −yi min (v,Γ′).

Proof. Consider a bank with yi < 0. If the government does nothing the value is
V0 = V−i + vayi − Γ (M). If the government bails out the bank by some small amount
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Y(y)

y0−e − τ
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Y−

Y+

yτ yγ

(Γ′)−1(v)

Y(y)

y0−e − τ
v

Y−

Y+

yτ yγ

Figure 1: Cumulative shortfall function Y (in red) in the case yτ < −τ/v < yγ before
(top panel) and after (bottom panel) mergers and bailouts.

m the value becomes V = V−i + v (ayi +m)−Γ (M)−Γ′ (M)m = V0 + (v − Γ′ (M))m

so a (partial) bailout improves welfare if and only if v > Γ′ (M). Consider a merger
instead.
Consider next the sale of α of ai. If Y+ = 0 the acquiring bank has yj ≤ 0 so the value
becomes V = V−i + v (ai − α) yi + vαyi − τα − Γ (M) = V0 − τα. A simple merger
reduces welfare. A merger cum recap would lead to V0 + (v − Γ′ (M))m − τα which
may be positive but is always worse than a simple bailout.
If Y+ > 0 then a merger leads to V = V−i+v (ai − α) yi− τα−Γ (M) = V0−vαyi− τα
which is higher than V0 if −vyi > τ . Finally, a full merger of bank i α = ai is better
than a full bailout mi = −aiyi if −yiΓ′ (M) > τ .

Ex-ante Incentives We now show how mergers can act as a commitment device to
reward good banks and punish weak ones and thus provide incentives, even when the
loss function such as in (14) would call for fully bailing out weak banks absent the
merger technology.
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Suppose the cost of funds is quadratic Γ (M) = γM
2

2
. Then we can compute the

thresholds as
yτ = −τ

v
, yγ = −v

γ
, y∗ = −

√
τ

γ
.

Consider the case of 2 banks with the same shock structure as in section 3.2, with a
single crisis state s to simplify. There are four possible events, depending on which
banks end up in groups H and L. If both banks end up with a capital surplus, no
policy intervention is needed. If both banks end up with capital shortfalls (y1 = y2 =

s− d
a
− e < 0) then there is no merger as Y+ = 0. We assume the cost of funds is low

enough that the only time-consistent policy is to bailout both banks fully:

v ≥ 2γ

(
d

a
+ e− s

)
(15)

Thus both banks obtain a payoff e. Finally, the most interesting case occurs if only
bank 1, say, ends up in group H. Then in an equilibrium with safety choices x,
Y+ = y1 = s+ x− d

a
− e and Y− = −y2 = −

(
s− d

a
− e
)
. Suppose that even under the

laissez-faire safety x̃, the strong bank has enough capital to absorb the distressed one:

x̃ > 2

(
d

a
+ e− s

)
Thus whenever bank 1 succeeds, a full merger is feasible. (15) implies that if mergers
are too costly, it is always optimal to fully bailout bank 2. If the cost of mergers τ is
low enough, however,

y2 ≤ y∗ ⇔ τ ≤ τ ∗ (γ) = γ

(
d

a
+ e− s

)2

then y2 ≤ y∗ and a merger is optimal. The merged bank’s shareholders end up with 0,
while the resulting equity of bank 1’s shareholders is

r1 + r2 − 2
d

a
= 2s+ x∗ − 2

d

a

Figure 2 illustrates how the thresholds yτ , yγ and y∗ vary with the cost of mergers τ .
A higher fiscal capacity (lower γ) makes bailouts more attractive and undermines the
credibility of mergers, thus reducing τ ∗.

We can now turn to ex-ante incentives. If τ > τ ∗ and mergers are not used, then
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s− d/a− e
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Figure 2: Optimal ex-post policy as a function of the cost of mergers τ .

the equilibrium payoff of bank 1 under safety x is

p0f (x) + (1− p0)

[
h

(
x+ s− d

a

)
+ (1− h) e

]
and the only equilibrium features x1 = x2 = x̂ as in our general Proposition 3. Mergers
are too costly and only full bailouts are credible, so we are back into the full moral
hazard case with maximal risk-taking. Denote

∆0 = p0 [f (0)− f (x∗)]− (1− p0)

[
h

(
x∗ + s− d

a

)
− e
]
> 0

the difference between the payoff under x = 0 and the payoff under first-best safety x∗.
Contrast this with the case with mergers. If τ ≤ τ ∗ then the equilibrium payoff

under the first-best safety is

p0f (x∗)+(1− p0)

[
h2

(
x∗ + s− d

a

)
+ h (1− h)

(
x∗ + 2

(
s− d

a

))
+ h (1− h) · 0 + (1− h)2 e

]
The first term in the bracket denotes the expected payoff if both banks succeed, and
thus there is no government intervention. The second term denotes the expected payoff
if bank 1 succeeds but bank 2 does not, hence bank 1 receives a surplus s− d

a
from the

merger. The third term denotes the converse case in which the unsuccessful bank 1 is
merged to the better bank 2. The last term captures the case in which both banks get
fully bailed out.
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If bank 1 instead chooses x1 = 0 its expected payoffs are

p0f (0) + (1− p0) (1− h) e

Bank 1 only obtains a positive payoff e when bank 2 also fails hence both are bailed
out, which happens with probability 1− h.

The incentive compatibility constraint holds if

∆0 ≤ (1− p0)

[
e (1− h (1− h)) + h (1− h)

(
s− d

a

)]
(16)

As usual, there exists γ̂ > 0 such that (15) and (16) hold for γ < γ̂. Thus we find a
striking discontinuity in the cost of mergers τ , that generalizes our limit aggregation
result above:

Proposition 10. Suppose that γ < γ̂. Then for τ > τ ∗ only the moral hazard safety
level x̂ (as defined in Proposition 3) is credibly implementable, while for τ ≤ τ ∗ the first-
best safety x∗ is credibly implementable. Welfare decreases discontinuously at τ = τ ∗.

5 Horizontally Differentiated Banks

In Section 4 we show how mergers can be used to optimally combine capital shortfalls
and surpluses under the assumption that the same banking activities can be performed
under different ownership structures. This may not be a good assumption when banks
are geographically specialized and rely on soft information, or when the regulators
worry about excessive local concentration in deposit taking as emphasized by Drechsler
et al. (2014). Suppose then that banks are imperfectly substitutable and the value
function is

V {ei} = V (φ {ei} − φ {e})

where

φ {ei} =
N∑
i=1

e
η−1
η

i

and η > 1 is the elasticity of substitution. This value function converges to the one in
the pure systemic model (5) as η →∞. It also captures the fact that it becomes more
costly to take away the positive equity ei = airi − di from bank i as it gets smaller.
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Figure 3: Function e
η−1
η −e

η−1
η for different values of η. Lower η makes the function more

concave, wich increases incentives to use bailouts to offset large gaps y = e− e < 0.

In this section we assume differentiability of f and V and a linear cost of funds
Γ (M) = γM to simplify the exposition. Without commitment, perfect ex post effi-
ciency requires equalizing the marginal returns to transfers mi across banks i, that is
for each i

η − 1

η
e
−1
η

i V ′ {ei} = γ.

Thus the government will fully insure all banks by setting ei = e for some e, irrespec-
tively of bank performance and e > e solves

η − 1

η
e
−1
η V ′ {e} = γ. (17)

At first glance, it seems that imperfect substitutability brings back the extreme form
of moral hazard that arose under individual contracts. Each bank knows that it will be
perfectly insured by the government since other banks will not be able to step in and
replace it in case of resolution. In particular, our previous tournament contracts are
not credible in this context. This extreme result comes from the extreme assumption
that the government does not want to deviate at all from the ex post optimum. Indeed,
if banks are almost perfectly substitutable (η →∞), imperfect insurance should have
negligible costs and the model’s conclusions should approach those of the pure systemic
risk model.

We now relax the assumption of complete lack of commitment in two ways; both
allow to re-establish our main result. In the first relaxation, we introduce a small
amount of commitment, by giving the planner the ability to deviate slightly from the

35



ex post optimum, by an amount at most ε > 0. We call this notion ε-commitment.
In the second, and independent, relaxation, we consider a less stringent notion of
time-consistency: the government can only deviate from promises to achieve a Pareto-
improvement relative to the ex ante contract. In other words, we consider renegotiation-
proof contracts in the language of Fudenberg and Tirole (1990). This solution concept
provides a weak form of commitment consistent with the political economy of bailouts.

5.1 ε-Commitment

Consider a mechanism that gives mi = e + d − ri + δ (ri − r̄) to each bank, where e
solves (17), so that

∑
i (mi + ri) = M + R = Ne + D. We will find a δ that is high

enough to give incentives ex ante, while remaining low enough that the loss in ex post
efficiency remains below some threshold ε. To second order,

∑
e
η−1
η

i = Ne
η−1
η

(
1− η − 1

η
× 1

2η

(
δ

e

)2

σ2
r

)

where σr is the standard deviation of returns. Setting δ > 0 generates an additional
loss relative to the ex post efficient allocation V {ei} − V {e}, which to second-order
writes

∆V = V ′ {e}
[
Ne

η−1
η −

∑
e
η−1
η

i

]
=

N

2eη
σ2
rγδ

2.

Therefore ex post ε-efficiency allows to set any slope δ such that ∆V ≤ ε or

δ ≤ δ̄ =

√
2e

Nγσ2
r

ηε

We know that δ = N
N−1

(1 + γ) can achieve the first-best hence a sufficient condition
to implement the first-best is

ηε > N

(
N

N − 1

)2
(1 + γ)2 γσ2

r

2e

For any non-zero ε, the first-best is ε-credibly implementable if there is enough sub-
stitutability η between banks. This shows how knife-edge the case of complete lack of
commitment ε = 0 is.
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The right-hand side is increasing in γ and the variance of realized returns. More
fiscal space (lower γ) leads to larger bailouts and thus lower welfare losses from ex-post
equity dispersion, as banks are dispersed around a level closer to the unconstrained
optimum that achieves V ′ {e} = 0. A contract with non-zero slope δ amplifies return
differences arising from luck (in equilibrium), hence a lower variance of idiosyncratic
risk makes stronger incentives δ less costly. Finally, the number of banks N only plays
a role because we impose the ε bound on the total welfare loss V , and a larger numbers
of banks N increases any welfare loss mechanically: if ε-efficiency applied to welfare
per bank (i.e., ∆V ≤ Nε) then δ̄ would be given by the same formula with N = 1.

5.2 Renegotiation-proof contracts

To simplify, consider the case of two banks. ex post, we assume the government can
choose its preferred allocation subject to the constraint that each bank must be weakly
better off than under the contractual allocation (C1, C2). Suppose without loss that ex
post r1 > r2, then the government solves:

max
m1,m2

r1 + r2 + V

(
φ {ei} − φ {e}

)
− γM

s.t. e1 = r1 +m1 − d1 ≥ ē1 (ζ1)

e2 = r2 +m2 − d2 ≥ ē2 (ζ2)

Proposition 11. There exists γ̂ such that for γ < γ̂ the tournament contract (ē1, ē2)

where ē1 is the unique solution to

∂φ

∂e2

(
ē1, ē1 −

1 + γ

α1

)
× V ′

(
φ

(
ē1, ē1 −

1 + γ

α1

)
− φ (e)

)
= γ (18)

and ē2 = ē1 − 1+γ
α1

is renegotiation-proof and implements the first-best effort x∗.

In the limit perfect substitution η → ∞, the renegotiation-proof tournament con-
verges to our previous credible tournament. The renegotiation-proof “winner” payoff
ē1 (and therefore the payoff for the “loser” ē2 = ē1 − 1+γ

α1
) increases as η decreases.

The reason is that when banks become less substitutable, it becomes less credible to
punish the loser bank harshly. Ex post, the marginal benefit of bailing out the loser
bank is higher when customers cannot easily switch to the winner bank. Thus in-
centives must be provided through a better “carrot” for the winner bank. Since the
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Figure 4: Renegotiation-proof prize ē1 for the winner bank as a function of the elasticity
of substitution η. Dashed line: ē1 with perfectly substitutable banks. Parameters:
V (x) = −x2

2
, γ = 0.5.

incentive condition pins down the difference in payoff between the two banks, the loser
bank also ends up with a larger bailout. The expected cost of ex post interventions
E [m1 +m2] = 2ē1− 1+γ

α1
−E [r1 + r2] is thus higher when banks are less substitutable.

The first-best expected cost of bailouts (assuming banks all chose x∗) would be instead
M0 − E [r1 + r2].

6 Financial Contagion

In this section we consider a different form of heterogeneity, arising from financial
linkages between banks that generate comovement in returns. These linkages capture
a variety of “contagion” forces, such as cross-exposures, fire sales, or domino effects, as
studied in the financial networks literature (e.g., Caballero and Simsek 2013, Elliott
et al. 2014, Acemoglu et al. 2015). The resulting return structure is significantly more
complex than the one we have worked with so far: banks now have heterogeneous
loadings on the aggregate risk factor η, and each bank is exposed to many other banks’
idiosyncratic structural shocks εj.

We show how contagion leads to a natural notion of systemic risk: banks are more
systemic when their performance has a stronger effect on the rest of the system. In
turn, more systemic banks must act more prudently, and so a resolution mechanism
must strive to give them stronger incentives. ex post, however, the government may
consider these “super-spreader” banks too interconnected to fail (Haldane, 2013). Our
main finding is that the constraints that financial linkages impose on bank resolution
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depend crucially on how bailout funds attributed to one bank spill over to other banks.
If a form of “ring-fencing” applies to public funds and bailout money cannot flow

throughout the system to benefit other banks indirectly, our tournament mechanism
remains credible and efficient under minor amendments. A bank’s rank in the tour-
nament is determined by its ex post performance, as in the baseline model, but now
weighted by its systemic risk.

A subtle constraint appears if ring-fencing is not possible, and bailout money can
instead spillover to other banks. A first intuition would be that these spillover ef-
fects can reduce costs ex post, as it is now possible to rescue some banks indirectly,
working through the linkages. The countervailing and dominating force, however, is
that spillovers actually worsen the credibility problem. It becomes optimal to target
the most systemic bank, as this is a cheap way to save the whole system. But this
makes the moral hazard problem unsolvable, because the most systemic bank will now
be completely insured and thus maximize risk-taking, thereby endangering the whole
system.4

6.1 Restricted Bailouts

In this section, we focus on interconnectedness and simplify the other dimensions of the
model, by assuming that all states s are systemic, and that f is differentiable. Suppose
that conditional on a crisis, each bank i’s return becomes a function of other banks j’s
returns through a linear relation

ri = xi + s+ εi +
∑
j 6=i

ωijrj

We assume here that the interconnection between banks is based on pre-bailout returns
r: at the ex post stage, bailouts do not spillover to other banks. The next subsection
will consider the case in which bailout funds mi cannot be “targeted” to bank i’s
shareholders, but also spill over to other banks j. In vector form, r = x+ s+ ε+ Ωr

with Ω = {ωij} where by convention ωii = 0, which leads to

r = Λ (x+ s+ ε) (19)
4In the knife-edge case in which multiple banks are equally systemic, we can still use a tournament

within them and thus restore incentives.

39



where Λ = (I −Ω)−1. Call Λij the elements of Λ. The crisis value function in a
contagion state becomes

V

(∑
i

λi (xi + s+ εi) +
∑
i

mi

)

where λi =
∑

j Λji captures the systemic risk of bank i, that is how much other
banks load on bank i’s return, and thus how much bank i’s return can affect the
aggregate banking sector’s shortfall through this form of financial contagion. Banks
with higher weights λi are banks who have a high “network centrality”: their returns
have a relatively large impact on aggregate bank capital. The ex post optimality
constraint remains unchanged: the total bailout has to satisfy∑

i

mi = M0 −
∑
i

ri.

The only difference in the first-best allocation is that ex ante, more systemic banks
should invest more in safety. In the differentiable f case, the first-best vector x∗ now
solves

f ′ (x∗i ) = −
(

1− p0

p0

)
λi (1 + γ)

Our baseline symmetric model is nested by setting Ω = 0 hence λi = 1 for all i. With
heterogeneity, the first-best requires that higher λi banks must invest in higher safety
x∗i .

We show next that only slight modifications to our tournament mechanism are
enough to accommodate in the presence of this fairly general form our financial con-
tagion. Intuitively, under heterogeneous systemic risk, the ex post bailout distribution
must incentivize more systemic banks to hedge more. This is achieved by promising
such banks higher prizes upon winning the tournament, or raising the effect of safety on
their probability of “wining the tournament”. An asymmetric tournament contract can
implement the first-best, by simply ranking banks ex post according to their systemic-
weighted performance λ̃iri instead of their raw return ri. For simplicity, consider the
case of two banks:

Proposition 12. Suppose N = 2. Then the following contract implements the first-best
(x∗1, x

∗
2) credibly:

• If λ̃1r1 > λ̃2r2 then bank 1 obtains m1 = m0 + 1+γ
2h
− r1 and bank 2 obtains
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m2 = m0 − 1+γ
2h
− r2;

• If λ̃2r2 > λ̃1r1 then bank 1 obtains m1 = m0 − 1+γ
2h
− r1 and bank 2 obtains

m2 = m0 + 1+γ
2h
− r2.

where h = H ′ (λ1x
∗
1 − λ2x

∗
2), H is the c.d.f. of (λ2 − λ1) η + λ2ε2 − λ1ε1, and

λ̃1 = λ1 + Λ21 + det Λ− 1

λ̃2 = λ2 + Λ12 + det Λ− 1

Proof. In the Appendix.

Suppose, for instance, that bank 1 is systemic so ω21 = ω 6= 0 but bank 2 is not,
ω12 = 0. Then

Λ =

(
1 0

w 1

)

and

λ1 = 1 + w, λ2 = 1

λ̃1 = 1 + 2w, λ̃2 = 1

6.2 Contagious Bailouts

Finally, we consider the form of financial contagion that is hardest to overcome credi-
bly. The regulator observes returns r̃i such that r̃ = Λ (x+ s+ ε) as in the previous
section, before deciding on a bailout policy. Suppose that bailout money m itself is
also “contagious”: it is now each bank j’s post-bailout equity rj + mj, and not just rj
as in the previous section, that affects the value of other banks’ assets ri:

ri = xi +
∑
j 6=i

ωij (rj +mj) + s+ εi (20)
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Adding mi on each side, we obtain in vector form r+m = x+m+ Ω (r +m) + s+ ε

which leads to

r +m = Λ (x+m+ s+ ε)

= r̃ + Λm

The seemingly small difference relative to (19) turns out to be crucial in terms of policy
implications. There is now an additional ex post asymmetry between banks: in the
first-best allocation, not only should more systemic banks (those with a higher λi)
invest more in liquidity x ex ante; but as we will show, it is also efficient to focus the
ex post government intervention m on the most systemic bank. In the crisis state, the
value function now writes

V

(∑
j

r̃j +
∑
i

λimi

)

The first-best vector of safety x∗ is the same as in the previous section. ex post,
however, since the shadow cost of public funds γ is the same for all banks i, a larger
“bang for the buck” is obtained in terms of stabilizing the financial sector when the
marginal dollar of public funds is allocated to the most systemic bank. Suppose that
banks are strictly ranked according to their systemic risk, with bank 1 being the unique
most systemic bank:

λ1 > λ2 ≥ · · · ≥ λn

and banks cannot be taxed to fund other banks, so that mi ≥ 0 (otherwise the result
would be strengthened further, as the planner would then redistribute from banks i ≥ 2

to bank 1).

Lemma 7. For any given realization of pre-bailout returns r̃, the ex post optimal bailout
policy is to give all the bailoutM to bank 1:

m1 =M
mi = 0 ∀i ≥ 2

The total bailout is

M =
M0

λ1

−
N∑
i=1

r̃i
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and decreases with λ1.

For a given realization of returns, the loss is decreasing in λ1: ex post, it is cheaper
to inject funds through the most systemic bank, and the more systemic it is (the higher
λ1), the cheaper the total cost of intervening. However, this will backfire ex ante, as it
becomes impossible to credibly punish bank 1 and reward other banks.

Proposition 13. For any credible mechanism, the equilibrium features maximal risk-
taking by bank 1, and the autarky risk-taking by other banks:

x1 = 0

xi = x̃i ∀i ≥ 2

and the equilibrium bailout is

M =
M0

λ1

−
N∑
i=2

λix̃i −
N∑
i=1

λi (s+ εi)

The additional cost relative to the first-best is λ1x
∗
1+
∑N

i=2 λi (x
∗
i − x̃) which is increasing

in λ1.

The optimal bailout goes entirely to bank 1 and offsets one for one the idiosyncratic
shock ε1; but it also depends on the realization of all the idiosyncratic shocks {εj}j>1.
When other banks do poorly, even if bank 1 has not suffered a negative idiosyncratic
shock, the government still wants to inject equity into the system. It doesn’t target
directly the unlucky banks because it is cheaper to inject the money through the
systemic bank 1.

The takeaway from this section is that financial contagion undermines credibility
if and only if bailout funds can flow through the system and affect the performance of
many banks besides the bank they are supposed to target. It is thus desirable to enforce
a form of ring-fencing, where bailout money can be used to rescue specific institutions
(in an asymmetric way, to provide incentives), but with some conditionality regarding
its use. For instance, bailout funds should not be used primarily to repay debt to other
banks (and it is always possible to bail out these downstream banks directly instead).
Note that the economic force behind this finding is not the extent of moral hazard for
the downstream banks, whose health is affected by systemic banks; it is instead that
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heterogeneity in systemic risk undermines commitment power, as it is not credible not
to bail out the most systemic institutions even when they perform poorly.
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Appendix

Heterogeneous Bank Size. In the general case with different bank sizes ai, bank i
chooses its safety investment to solve:

x̂i = arg max
xi≥0

p0f (xi) + (1− p0)

(
E [ri,s | xi] + E

[
mi,s (r)

ai
| x
])

. (21)

Suppose as in the first case of Lemma 3 that the first-best safety x∗ does not depend
on size. Importantly, due to the credibility constraint the reward ∆ in the bonus-malus
tournament cannot depend on size either: the gain of one bank is the loss of another.
But if the tournament rule only compares raw returns to determine who wins and who
loses, larger banks will in general choose a lower level of safety than smaller banks,
because the potential prize ∆ is smaller as a fraction of their assets.

We can solve this issue by considering the following handicapped tournament

mi =

ai
A
M (K −R) + ∆ λiri,s > λjrj,s

ai
A
M (K −R)−∆ λiri,s < λjrj,s

(22)

that compares weighted returns λiri instead of raw returns to determine the bailout
allocation. Given λ = λ1

λ2
the best response function for bank 1 is

x̂1 = β1 (∆, λ, x2) = arg max
x1

p0f (x1)+(1− p0) (E [r1,s | x1] + Ω (x1, x2))+2
∆

a1

∫
s

P [λr1,s > r2,s|x] psds,

while the best response function for bank 2 is

x̂2 = β2 (∆, λ, x1) = arg max
x2

p0f (x2)+(1− p0) (E [r2,s | x2] + Ω (x1, x2))−2
∆

a2

∫
s

P [λr1,s > r2,s|x] psds.

We thus look for a pair ∆, λ that implements the first-best:

x∗ = β1 (∆, λ, x∗)

x∗ = β2 (∆, λ, x∗)

To characterize when this is possible, we use a more specific example of returns:

ri = xi + s+ εi. (23)
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Then

P [λx1 − x2 > (1− λ) s+ ε2 − λε1] = Hs (λx1 − x2;λ)

where Hs (·;λ) is the c.d.f. of (1− λ) s + ε2 − λε1. The marginal incentives from the
tournament for banks 1 and 2 are respectively

∂

∂x1

(
2

∆

a1

∫
s

Hs (x1, x2;λ) psds

)
= 2∆

λ

a1

∫
s

H ′s (λx1 − x2;λ) psds

∂

∂x2

(
−2

∆

a2

∫
s

Hs (x1, x2;λ) psds

)
= 2

∆

a2

∫
s

H ′s (λx1 − x2;λ) psds.

so as long as
∫
s
H ′s (λx1 − x2;λ) psds > 0 the two banks to choose the same x∗ if λ = a1

a2
.

Note that the condition
∫
s
H ′s (λx1 − x2;λ) psds > 0 imposes an upper bound on

the relative size of the two banks. If a1/a2 is too large, then no λ can generate first-best
incentives for the larger bank and we are back to the moral hazard unavoidable in a
one-bank world, as shown by the following example:

Proposition 14. Suppose that N = 2, a1 ≥ a2, and returns follow (23) with εi dis-
tributed over [0, ε̄]. Then as long as

a1

a2

< 1 +
ε̄

x∗ + inf s

the handicapped tournament (22) with λ = a1
a2

can implement the first best safety.

Proof. In the uniform case we can compute

Hs (λx1 − x2;λ) =

∫ ε̄

0

Gε (λε1 + λx1 − x2 − (1− λ) s) dε1

H ′s (λx1 − x2;λ) =

∫ ε̄

0

gε (λε1 + λx1 − x2 − (1− λ) s) dε1

where Gε and gε are the c.d.f. and p.d.f. of ε1, respectively. Then for x1 = x2 = x∗

λε1 + λx1 − x2 − (1− λ) s ≤ ε̄⇔ ε1 ≤
ε̄− (λ− 1) (x∗ + s)

λ

Therefore∫
s

H ′s (λx1 − x2;λ) psds =

∫
s

(∫ ε̄

0

gε (λε1 + λx1 − x2 − (1− λ) s) dε1

)
psds
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is positive if λ < 1 + ε̄
x∗+inf s

.

Proof of Proposition 11. We guess and verify that the ex post symmetric allocation
r1 +m1 = r2 +m2 = a

2
is not renegotiation-proof, that is a

2
< C1.

Then it must be that the constraint r1 +m1 ≥ C1 binds, hence bank 1 gets C1 and
bank 2 gets y2 such that

∂ Y
∂y2

(C1, y2)× V ′ (Y (C1, y2)) = γ

From the renegotiation-proofness principle, we can restrict attention to contracts with
C2 = y2. As before, the first-best is implementable if C1, C2 satisfy (??):

α1C1 + α2C2 = 1 + γ

with α2 = −α1 hence C2 = C1 − 1+γ
α1

. We then look for a solution C1 to

V ′
(
Y
(
C1, C1 −

1 + γ

α1

))
=

γ

∂ Y
∂y2

(
C1, C1 − 1+γ

α1

)
As C1 increases from 0 to∞, the left-hand side decreases from limy2→0 V

′
(
Y
(

1+γ
α1
, y2

))
to 0 and the right-hand side increases from limy2→0

γ
∂ Y
∂y2

(
1+γ
α1

,y2
) to γ.

Proof of Proposition 12. Suppose that bank i gets mi = M0

2
+ ∆ − ri and bank j 6= i

gets mj = M0

2
−∆− rj if and only if λ̃iri > λ̃jrj where

λ̃i = λi + Λji + det Λ− 1

Then λ̃1, λ̃2 solve the system

λ̃1Λ11 − λ̃2Λ21 = λ1

λ̃2Λ22 − λ̃1Λ12 = λ2
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Therefore

P
[
λ̃1r1 > λ̃2r2

]
=P

[
λ̃1 [Λ11 (x1 + s+ ε1) + Λ12 (x2 + s+ ε2)] > λ̃2 [Λ22 (x2 + s+ ε2) + Λ21 (x1 + s+ ε1)]

]
=P

[(
λ̃1Λ11 − λ̃2Λ21

)
(x1 + s+ ε1) >

(
λ̃2Λ22 − λ̃1Λ12

)
(x2 + s+ ε2)

]
=P [λ1 (x1 + s+ ε1) > λ2 (x2 + s+ ε2)]

=P [λ1x1 − λ2x2 > z]

where z = (λ2 − λ1) s + λ2ε2 − λ1ε1 has a conditional c.d.f. H. Therefore bank 1’s
optimal effort x1 solves

max
x1

p0f (x1) + (1− p0) {H (λ1x1 − λ2x2) 2∆}

leading to the first-order condition

f ′ (x1) =
− (1− p0)

p0

λ1H
′ (λ1x1 − λ2x2) 2∆.

Similarly, bank 2’s optimal effort x2 solves

max
x2

p0f (x2) + (1− p0) [1−H (λ1x1 − λ2x2)] 2∆

hence
f ′ (x2) =

− (1− p0)

p0

λ2H
′ (λ1x1 − λ2x2) 2∆.

Therefore, to implement effort levels (x∗1, x
∗
2) that solve f ′ (x∗i ) = −(1−p0)

p0
λi (1 + γ) we

need

∆ =
1 + γ

2H ′ (λ1x∗1 − λ2x∗2)
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A Illustrative example

In this section we consider a simple quadratic example that can be solved in closed
form. There are two banks, with sizes a1 ≥ a2. The value function is

V (R +M) = min

{
0,− v

β
(K −R−M)β

}
, β ≥ 1

and the cost of funds is linear Γ (M) = γM . There is only one systemic state, so we
omit the s notation. Returns in the systemic state are linear in safety

ri = xi + εi

with εi uniform between 0 and ε̄. The normal state return is

f (xi) = −f x
2
i

2

Ex-post efficiency. The optimal bailout in the systemic state is

M (K −R) = max

{
0, K −R−

(γ
v

)β−1
}

Hence the optimized value is

V (R) = V (R +M)− γM

=

−
v
β

(
γ
v

)β(β−1) − γ
[
K −R−

(
γ
v

)β−1
]

if R ≤ K −
(
γ
v

)β−1

min
{
− v
β

(K −R)β , 0
}

otherwise

We assume that these returns are low enough that a bailout is always needed in the
systemic state: A (supx+ 1) ≤ K −

(
γ
v

)β−1 hence

V (R) = − v
β

(γ
v

) β
β−1 − γ

[
K −R−

(γ
v

)β−1
]
.
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First Best. The first best safety x∗ is the same for both banks and solves

x∗ = arg max
x

p0Af (x) + (1− p0) (Ax+ E [V (R) |x])

= arg max
x

p0Af (x) + A (1− p0) (1 + γ)x

hence

p0f
′ (x∗) = − (1− p0) (1 + γ)

x∗ =
q (1 + γ)

f

where q = 1−p0
p0

is the odds ratio of a crisis. x∗ is increasing in q and increasing in γ.

Moral hazard with symmetric bailouts. Suppose bailouts follow

mi =
ai
A
M (K −R) .

Then bank i solves

x̂i = arg max
x

p0aif (xi) + (1− p0)

aixi +
ai
A

[
K − aixi − ajxj −

(γ
v

)β−1
]

︸ ︷︷ ︸
=E[M(K−R)|x]


Thus

x̂i =
q

f

(
1− ai

A

)
< x∗i .

With symmetric bailouts, both banks take excessive risk, and the moral hazard problem
is worse for the larger bank (high ai/A). This is consistent with Dávila and Walther
(2020)’s results on symmetric bailouts with small and large banks.

Tournament with bonus-malus. With symmetric banks ai = a, the credible tour-
nament described in section 3 with

∆ =
1

2

a

ε̄

(
γ +

1

2

)
implements the first best safety.
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With asymmetric banks, under the condition

a1

a2

≤ 1 +
ε̄

x∗
= 1 +

ε̄f

q (1 + γ)

then the handicapped tournament with

∆ =
1

2

a1

ε̄−
(
a1
a2
− 1
)
x∗

(
γ +

a1

A

)

implements the first best safety. Denoting λ = a1
a2

we can reexpress ∆ as

∆ =
1

2

λ

1 + λ

(
γ + λ

1+λ

)
ε̄− (λ− 1)x∗

which is increasing in λ. Thus we see that holding the aggregate size of the banking
sector A fixed, more asymmetry requires a larger ∆.

Limited liability. As in the main text we consider a tournament rule that satisfies
strong limited liability by transferring the total bailoutM to bank 1 if λr1 ≥ r2 and
to bank 2 otherwise. Bank 1 solves

max
x1

p0a1f (x1)+(1− p0)

(
a1x1 +

[
K − a1x1 − a2x2 −

(γ
v

)β−1
] ∫ ε̄

0

Gε (λε1 + λx1 − x2) dε1

)
where Gε is the c.d.f. of ε1. With a1 = a2 = a and λ = 1 the maximal implementable
safety xmax satisfies

p0f
′ (xmax) + (1− p0)

[
1

2
+
K − Axmax −

(
γ
v

)β−1

a
min

{
1,

1

ε̄

}]
= 0

or

xmax =
q

f + 2qmin
{

1, 1
ε̄

} [1

2
+
K −

(
γ
v

)β−1

a
min

{
1,

1

ε̄

}]
which is indeed decreasing in γ (and above x∗ for γ low enough) and in bank size a.
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