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Abstract

Supply chain disturbances can lead to important increases in production costs. When look-

ing for new suppliers, firms therefore worry about the risks associated with potential trading

partners. We investigate the impact of beliefs and uncertainty on the structure of the production

network and, through that channel, on the level and volatility of macroeconomic aggregates. To

do so, we construct a model of endogenous network formation in which uncertainty about future

outcomes affects the structure of the production network. In the model, when uncertainty rises

producers prefer to purchase from more stable suppliers, even though they might sell at higher

prices. The resulting reorganization of the network leads to less macroeconomic volatility, but

at the cost of a decline in aggregate output. We calibrate the model on U.S. data and find

that the mechanism can account for a sizable decline in expected GDP during periods of high

uncertainty like the Great Recession.
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1 Introduction

Firms rely on complex supply chains to provide intermediate inputs needed for production.

These chains can be disrupted by natural disasters, trade barriers, changes in regulations, conges-

tion in transportation links, etc. Such shocks to individual firms or sectors can propagate to the

rest of the economy through input-output linkages, resulting in aggregate fluctuations. However,

individual firms may also take steps that mitigate such propagation by reducing their reliance on

risky suppliers. In this paper, we study how this kind of mitigating behavior affects an economy’s

production network and, through that channel, macroeconomic aggregates.

Business managers are well aware of supply chain risks as one of the key challenges that they face

in operating their business, and firms devote substantial resources in mitigating these risks. In a

survey byWagner and Bode (2008), business executives in Germany report that supply chains issues

were responsible for significant disruptions to production. Similarly, the Zurich Insurance Group

(2015) conducted a global survey of executives in small and medium enterprises and found that, of

all the respondent, 39% report that losing their main supplier would adversely affect their operation,

and 14% report that they would need to significantly downsize their business, require emergency

support or shut down. In addition, there is a large literature in operations research that documents

the important impact of supply chain risk on firms’ operations (see Ho et al. (2015) for a review).

The COVID-19 pandemic provides a good example of how uncertainty can affect supply rela-

tionships. In the aftermath of the pandemic, many firms realized that their supply chains were

exposed to substantially more risk than they thought. In a recent survey of business executives,

seventy percent agreed that the pandemic has pushed companies to favor higher supply chain re-

siliency instead of purchasing from the lowest-cost supplier. Many also reported that they plan to

diversify their supply chains across suppliers and geographies to mitigate risk.1

To investigate whether the concerns expressed by firm managers in these surveys translate into

actions, we combine data about firm-to-firm input-output relationships in the United States with

measures of stock price volatility, which serve as a proxy for uncertainty. We then regress a dummy

variable that equals one in the last year of a relationship on the change in the supplier’s stock

price volatility. The results are presented in column (1) of Table 1. In column (2), we follow

Alfaro, Bloom, and Lin (2019) and address potential endogeneity concerns by instrumenting with

industry-level exposure to ten aggregate sources of uncertainty shocks. Finally, in column (3), we

use volatility implied by option prices as measure of uncertainty shocks. In all cases, we find a

positive and statistically significant relationship between supplier volatility and the destruction of

the supply relationship, which is consistent with buyers moving away from riskier suppliers. The

effect is also economically large with a doubling in volatility associated with a 13 percentage point

1Survey by Foley & Lardner LLP, available online at https://www.foley.com/-/media/files/insights/

publications/2020/09/foley-2020-supply-chain-survey-report-1.pdf.
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Dummy for last year of supply relationship
(1): OLS (2): IV (3): IV

∆Volatilityt−1 of supplier 0.023∗∗ 0.113∗∗∗ 0.149∗∗

(0.011) (0.032) (0.067)

1st moment 10IVt−1 of supplier No Yes Yes
Type of volatility Realized Realized Implied
Fixed effects Yes Yes Yes
Observations 28,687 28,687 21,124
F -statistic — 67.0 30.6

Notes: Table presents OLS and 2SLS annual regression results of firm-level voltality. The dependent variable is a dummy variable that equals
one in the last year of a supply relatonship and zero otherwise. Supplier ∆Volatilityt−1

is the 1-year lagged change in supplier-level volatility.

Realized volatility is the 12-month standard deviation of daily stock returns from CRSP. Implied volatility is the 12-month average of daily (365-day
horizon) implied volatility of at-the-money-forward call options from OptionMetrics. As in Alfaro et al. (2019), “we address endogeneity concerns
on firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These
include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money
forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty from Baker et al. (2016). [...]
To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as controls the lagged directional
industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st
moment 10IVt−1.” See Alfaro et al. (2019) for more details about the data and the construction of the instruments. All specifications include
year×customer×supplier industry (3SIC) fixed effects. Standard errors (in parentheses) are two-way clustered at the customer and the supplier
levels. F -statistics are Kleibergen-Paap. ∗,∗∗ ,∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 1: Link destruction and supplier volatility

increase in the likelihood that a relationship is destroyed according to the IV estimates.2

Motivated by this evidence, we construct a macroeconomic model of endogenous network for-

mation to investigate how uncertainty affects firms’ sourcing decisions and how, in turn, these

decisions affect the macroeconomy. In the model, each firm produces a differentiated good that can

be consumed by a representative household or be used as an intermediate input by another pro-

ducer. Firms can produce their good in different ways, which we refer to as production techniques.

A technique specifies which intermediate inputs to use and in what proportions. Techniques also

differ in terms of productivity. The set of available techniques implies that firms can marginally

adjust the importance of a supplier or drop that supplier altogether. As a result, adjustments to

the production network happen at both the intensive and extensive margins.

Importantly, in our setting beliefs about firm-level productivities can influence the choice of

technique and, thus, the structure of the production network. For instance, while a firm would

generally prefer to purchase from a more productive firm, it might decide not to do so if this firm is

also more risky. Such a firm would sell at a lower price on average, but it might suffer from a large

negative productivity shock, in which case its price would rise substantially. Potential customers

take this possibility into account and balance concerns about average productivity and stability

when choosing a production technique.

As an example, consider a car manufacturer that must decide on what materials to use as

inputs. If carbon fiber prices are expected to increase or to be more volatile, it may instead use

2The specifications in Table 1 are chosen following Alfaro et al. (2019). See note below the table and Appendix
A.1 for more details about the data and this exercise.
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steel for some components. If the change is large enough, it may switch away from using carbon

fiber altogether, in which case the link between the car manufacturer and carbon fiber suppliers

would disappear.

We prove that there always exists an efficient equilibrium in this environment. The implied equi-

librium production network can thus be understood as resulting from a social planner maximizing

the utility of the representative household, and firms acting as if they shared the representative

household’s risk aversion. The efficient equilibrium production network thus optimally balances a

higher level of expected GDP against a lower variance. The relative importance of these two objec-

tives is determined by the household’s risk aversion. At the efficient equilibrium, the importance

of a sector (as measured by its sales share or Domar weight) increases (i) if the expected value of

its productivity increases, or (ii) if the variance of its productivity decreases.

One contribution of this paper is to highlight a novel mechanism through which uncertainty

can lower expected aggregate output. In the model, in the presence of uncertainty, firms seek

stability and, as a result, move away from the most productive (in expectation) suppliers in favor

of producers that are less susceptible to risk. This flight to safety implies that less productive

producers gain in importance, and aggregate productivity and GDP falls as a result. On the flip

side, this reshuffling of the supply chains leads to a more resilient network and makes the aggregate

economy more stable.

Our model also has some uncommon predictions about the impact of shocks on aggregate

quantities. While an increase in expected productivity or a decline in volatility always have positive

effect on welfare, their impact on GDP can be counterintuitive. For instance, an increase in expected

productivity can lead to a decline in expected GDP, so that Hulten’s (1978) theorem does not not

hold in expectations, even as a first-order approximation. To understand why, consider a firm with

low (on average) but stable productivity. Its high expected cost makes it unattractive as a supplier.

But if its expected productivity increases, its risk-reward profile changes and other producers might

begin to purchase from it. Doing so, they might move away from more productive—but also

riskier—producers and, as a result, expected GDP might fall. We show that a similar mechanism is

also at work for the variance of shocks, such that an increase in the volatility of a firm’s productivity

can lead to a decline in the variance of aggregate output.

To evaluate the quantitative importance of allowing firms to adjust their production techniques

in response to changes in their beliefs, we calibrate the model using sectoral data for the United

States. The model can match the broad features of the input-output structure of the US economy.

We also show that the calibrated economy is able to replicate key data features that speak to the

importance of beliefs for the structure of the production network; namely, the correlation between

Domar weights and the mean and variance of sectoral productivity shocks.

We then evaluate the importance of the changing structure of the production network for

macroeconomic aggregates. For this exercise, we first compare our baseline calibration with an
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alternative economy in which the production network is kept fixed, so that firms cannot move

away from suppliers that become unproductive or volatile. We find that aggregate output is about

2.5% lower in this case, so that the endogenous response of the network to productivity shocks has

an important impact on welfare. This finding also suggests that policies that impede the natural

reorganization of the network (for instance, trade barriers) might have a sizable adverse effect.

To isolate the impact of uncertainty alone, we compare our calibrated model to an alternative

economy in which firms no longer worry about risk when making sourcing decisions. While this

economy is similar to the calibrated one during normal times, significant discrepancies appear

during high-volatility periods, such as the Great Recession. During that episode, we find that firms

respond to uncertainty by moving to safer but less productive suppliers. Taken together, these

decisions leads to a 1% reduction in the volatility of GDP. The added stability comes however at

the cost of a 0.3% decline in expected GDP. Interestingly, this increase in resilience pays off in our

estimation as realized GDP in the economy in which firms disregard risk drops by an additional

1% compared to our baseline model.

Our work is related to a large literature that investigates the impact of uncertainty on macroe-

conomic aggregates (Bloom, 2009, 2014; Bloom et al., 2018). We contribute to that literature in

two ways. First, we provide reduced-form evidence for the impact of uncertainty on the structure

of the production network in the United States. Second, we propose a novel mechanism through

which uncertainty can lower expected GDP. That mechanism operates through a flight to safety

process in which firms facing higher uncertainty switch to safer but less productive suppliers.3

There is a large and growing literature that studies how shocks propagate through production

networks, in the spirit of early contributions by Long and Plosser (1983), Dupor (1999) and Horvath

(2000). For example, Acemoglu et al. (2012) derive conditions on input-output networks that

allow firm or industry specific shocks to result in aggregate fluctuations even when the number

of sectors is large.4 Acemoglu et al. (2017) and Baqaee and Farhi (2019a) describe conditions

under which production networks can generate fat-tailed aggregate output. Foerster et al. (2011)

and Atalay (2017) study the empirical contributions of sectoral shocks for aggregate fluctuations.

The mechanisms studied in these papers are also present in our model. Carvalho and Gabaix

(2013) argue that the reduction in aggregate volatility during the so-called Great Moderation

(and its potential recent undoing) can be explained by changes in the input-output network. In

Carvalho and Gabaix’s model, the production structure is taken as exogenous, and the volatility of

sector-specific shocks is held fixed. In our model, the input-output network endogenously responds

to changes in sector level volatility in a manner that, ceteris paribus, reduces aggregate volatility.

3Fernández-Villaverde et al. (2011) investigate the real impact of interest rate volatility for emerging economies.
Jurado et al. (2015) provide econometric estimates of time-varying macroeconomic uncertainty. Baker et al. (2016)
measure economic policy uncertainty based on newspaper coverage. Nieuwerburgh and Veldkamp (2006) and
Fajgelbaum et al. (2017) develop models in which uncertainty can have long-lasting impacts on economic aggregates.

4Production networks are also one mechanism through which granular fluctuations can emerge (Gabaix, 2011).
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In most of that literature, the propagation of shocks follows Hulten’s (1978) theorem, so that

sales shares are a sufficient statistics to predict the impact of microeconomic shocks on macroeco-

nomic aggregates. In contrast, in our model firms can adjust production techniques ex ante and

Hulten’s theorem is not a useful guide to how this affects expected GDP, even as a first-order

approximation. In fact, an increase in firm-level productivity can even have a negative impact on

expected GDP.5

Our paper is not the first to study the endogenous formation of production networks. Oberfield

(2018) considers an economy in which each firm must select one input and studies the emergence

of star suppliers. Acemoglu and Azar (2020) build a model of endogenous network formation in

which firms have multiple inputs and investigate its implications for growth. These papers focus

on the extensive margin of the network (whether a link exists or not). Taschereau-Dumouchel

(2020) and Acemoglu and Tahbaz-Salehi (2020) study economies in which the firms’ decisions to

operate or not shape the production network. Lim (2018) constructs a model to evaluate the

importance of endogenous changes in the network for business cycles fluctuations but does not

study how the network adjusts to changes in uncertainty. Dhyne et al. (2021) build a model of

endogenous network formation and international trade. Boehm and Oberfield (2020) estimate a

network formation model using Indian micro data to study misallocation in the inputs market. In

our model, both the intensive and extensive margins are active. To the best of our knowledge, it is

also the first model in which uncertainty directly affects the structure of the production network.

Several papers in the network literature endow firms with CES production functions, so that

the input-output matrix varies with factor prices. Our model generates endogenous changes in

the production network through a different mechanism, which is closer to Oberfield (2018) and

Acemoglu and Azar (2020). In some circumstances links between sectors may be created or de-

stroyed in our model, which cannot occur in the standard CES production network model. In

addition, standard CES production network models do not allow for uncertainty and beliefs to

play a role in shaping the production network, and introducing such mechanisms while keeping the

model tractable is not straightforward.

The remainder of the paper is organized as follows. The next section introduces our model of

network formation under uncertainty. In Section 3, we first characterize the equilibrium when the

network is kept fixed. We then consider the full equilibrium with a flexible network in Section 4

and prove that an efficient equilibrium always exists.In Section 5, we describe the mechanisms at

work in the environment and explain how shocks propagate through the network. In Section 6,

we calibrate the model to U.S. data and quantitatively evaluate the importance of uncertainty on

the macroeconomy through its impact on the production network. The last section concludes. All

proofs are in the appendix.

5Baqaee and Farhi (2019a) investigate departures from Hulten’s theorem. Recent work that has also studied
production networks under frictions include Bigio and La’O (2020), Baqaee (2018) and Baqaee and Farhi (2019b).
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2 A model of endogenous network formation under uncertainty

We study the formation of production networks under uncertainty in a multi-sector economy.

Each sector is populated by a continuum of firms producing a differentiated good that can be

used either as an intermediate input or for final consumption. To produce, each firm must choose

a production technique, which specifies a set of inputs to use, the factor shares associated with

these inputs, and an expected level of productivity. Firms are subject to sector-specific produc-

tivity shocks, and since firms choose production techniques before these shocks are realized, the

distribution of shocks affects the input-output structure of the economy.

2.1 Firms and production functions

There are n industries, indexed by i ∈ N = {1, . . . , n}, each producing a differentiated good.

In each industry, there is a large number of identical firms that behave competitively so that

equilibrium profits are always zero. When this creates no confusion, we work with a representative

firm for each industry, and use industry i, product i and firm i interchangeably. Unless specified

otherwise, all vectors are column vectors.

Each firm in industry i has access to a set of production techniques Ai. A technique αi ∈ Ai

specifies the set of inputs that are used in production, the proportions in which these inputs

are combined, and a productivity shifter Ai (αi). We model these techniques as Cobb-Douglas

technologies that can vary in terms of factor shares and total factor productivity. It is therefore

convenient to identify a technique αi ∈ Ai with the intermediate input shares associated with that

technique, αi = (αi1, . . . , αin), and to write the corresponding production function as

F (αi, Li,Xi) = eεiζ (αi)Ai (αi)L
1−

∑n
j=1 αij

i

n∏

j=1

X
αij

ij , (1)

where Li is labor and Xi = (Xi1, . . . ,Xin) is a vector of intermediate inputs. The term εi is the

stochastic component of a firm’s total factor productivity. Finally, ζ (αi) is a normalization to

simplify future expressions.6

Since a technique αi corresponds to a vector of factor shares, we define the set of feasible

production techniques Ai for industry i as

Ai =






α ∈ [0, 1]n :

n∑

j=1

αj ≤ αi






, (2)

6This term is useful to simplify the expression of the unit cost of production, given by (9) below.
It could be included in Ai (αi) without any impact on the model. Its value is given by ζ (αi) =
[

(

1−
∑n

j=1 αij

)1−
∑n

j=1
αij ∏n

j=1 α
αij

ij

]

−1

.
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where the constant 0 ≤ αi < 1 provides a lower bound on the share of labor in the production of

good i.7 We denote by A = A1×· · ·×An the Cartesian product of the sets {A1, . . . ,An}, such that

an element α ∈ A corresponds to a set of input shares for each firm. As such, it fully characterizes

the production network and firms, through their choice of techniques, can influence the structure

of this network. Importantly, the set A allows firms to adjust the importance of a supplier at the

margin or to not use a particular input at all by setting the corresponding share to zero. The model

is therefore able to capture network adjustments along both the intensive and extensive margins.8

The choice of technique αi also influences the total factor productivity of firm i through the

term Ai (αi) in (1). We impose the following structure on Ai (αi).

Assumption 1. Ai (αi) is smooth and strictly log-concave.

This assumption is both technical and substantial in nature. The strict log-concavity ensures

that there exists a unique technique that solves the optimization problem of the firm. It also

implies that, for each industry i, there is a set of ideal input shares α◦
ij that maximize Ai and

that represent the most efficient way to combine intermediate inputs to produce good i. These

ideal shares are given by nature and might differ across industries. When deciding on its optimal

production technique the firm will take these ideal shares into account, but it will also evaluate

how expensive and uncertain each input is.

Example. One example of a function Ai (αi) that satisfies Assumption 1 and that we will use in

the quantitative part of the paper is the quadratic form

logAi (αi) = −
n∑

j=1

κij
(
αij − α◦

ij

)2
− κi0





n∑

j=1

αij −
n∑

j=1

α◦
ij





2

, (3)

where α◦
i = (α◦

i1, . . . , α
◦
in) represents the ideal TFP-maximizing input shares. The parameter κij

determines the cost, in terms of productivity, of moving the jth input share αij away from its ideal

share α◦
ij . The last term captures a penalty from deviating from an ideal labor share.

Beliefs about the random productivity shocks, the term εi in 1, play a crucial role in the model.

We collect the productivities of all industries in the vector ε = (ε1, . . . , εn), which we assume to

be normally distributed ε ∼ N (µ,Σ). The vector µ captures the overall optimism of agents about

sectoral productivities. Similarly, the matrix Σ captures how uncertain agents are about ε, as well

7We impose αi < 1 to rule out pathological cases in which the economy could produce an infinite quantity of
goods without using any labor.

8This is in stark contrast with standard network models with CES production functions. In those models, the
observed share of an input can fluctuate but it can never reach zero. As a result, these models cannot generate
the destruction or creation of links in the production network. The presence of both margins also highlights a
distinguishing feature of our setup compared to Oberfield (2018) and Acemoglu and Azar (2020). In both of these
setups, only the extensive margin is active.
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as the perceived correlations between its elements. The vector ε is the only source of uncertainty

in this economy.

In equilibrium, ε will have a direct impact on prices, and the beliefs (µ,Σ) will affect expectations

about the price system. For instance, a firm with a high µi will have a low unit cost and sell at a

low price, in expectation. Similarly, a high Σii firm is subject to large productivity shocks which

translate into a volatile price. Since production technique must be chosen before ε is realized, the

beliefs (µ,Σ) affect the sourcing decisions of the firms. For instance, if carbon fiber prices are

expected to increase or to be more volatile, a car manufacturer may switch to using steel instead

for a few components. If the change is large enough, the manufacturer may switch away from using

carbon fiber altogether, in which case the link with carbon fiber suppliers would disappear from

the production network.

2.2 Household preferences

A representative household supplies one unit of labor inelastically and chooses consumption

C = (C1, . . . , Cn) to maximize

u

((
C1

β1

)β1

× · · · ×

(
Cn

βn

)βn

)

, (4)

where βi > 0 for all i and
∑n

i=1 βi = 1.9 The utility function u is CRRA with a coefficient of risk

aversion ρ ≥ 1.10 The household makes consumption decisions after uncertainty is revealed and so

in each state of the world it faces the budget constraint

n∑

i=1

PiCi ≤ 1, (5)

where Pi is the price of good i and where we use the wage as numeraire so that W = 1.11

Firms are owned by the representative household and maximize expected profits discounted by

the household’s stochastic discount factor Λ. In Appendix C.1, we show that Λ is given by

Λ = u′ (Y )× 1/P , (6)

9The model can handle βi = 0 for some goods at the cost of extra complications in the proofs.
10The CRRA assumption is necessary for the stochastic discount factor to be log-normally distributed and, there-

fore, for the model to remain tractable. The case 0 < ρ < 1 is straightforward to characterize but is somewhat
unnatural since the household seeks to increase consumption uncertainty in this case. To see this, consider that

since log Y , where Y =
∏n

i=1

(

β−1
i Ci

)βi , is normally distributed, maximizing E
[

C1−ρ
]

amounts to maximizing
E [log Y ] − 1

2
(ρ− 1)V [log Y ] such that ρ ≶ 1 indicate whether the household likes uncertainty or not. This is a

consequence of the usual increase in the mean of log Y from an increase in the standard deviation of Y coming from
the lognormality.

11There is a different real wage associated with each state of the world (or, equivalently, per realization of ε).
However, since P and W are both conditional on the state of the world and only the ratio P/W matters for outcomes,
hence setting W = 1 is simply a normalization.
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where Y =
∏n

i=1

(
β−1
i Ci

)βi is aggregate consumption and P =
∏n

i=1 P
βi

i is the price index. The

stochastic discount factor thus captures how much an extra unit of the numeraire contributes to

the utility of the household in different states of the world. In our setting, aggregate consumption

equals aggregate (real) GDP, so we also refer to Y as GDP in what follows.

From the optimization problem of the household it is straightforward to show that

y = −β′p, (7)

where y = log Y , p = (log (P1) , . . . , log (Pn)) and β = (β1, . . . , βn).
12 This equation highlights

that GDP is the negative of the sum of prices weighted by the household’s consumption shares

β. Intuitively, when prices are low relative to wages, the household can purchase more goods and

aggregate consumption increases. Equation 7 also shows that it is sufficient to derive the vector of

prices to determine GDP.

2.3 Unit cost minimization

We solve the problem of the firms in two stages. In the first stage, firms decide on which

production technique to use. Importantly, this choice is made before the random productivity

vector ε is realized. In contrast, consumption, labor and intermediate inputs are chosen (and their

respective markets clear) in the second stage, after the realization of ε. This timing captures that

production techniques take time to adjust, as they might involve retooling a plant, teaching new

processes to workers, negotiating contracts with new suppliers, etc. We begin by deriving the

optimal input choice of a firm in the second stage, with a given production technique αi. The

resulting expressions are then used to solve the firm’s first-stage problem of choosing αi.

Under a given production technique αi, the cost minimization problem of the firm is

Ki (αi, P ) = min
Li,Xi



Li +
n∑

j=1

PjXij





subject to F (αi, Li,Xi) ≥ 1,

(8)

where P = (P1, . . . , Pn) is the price vector, Li is the labor input and Xi = (Xi1, . . . ,Xin) is the

vector of intermediate inputs.

This problem implicitly defines the unit cost of production Ki (αi, P ), which plays an important

role in our analysis. Since, for a given αi, the firm operates a constant returns to scale technology,

Ki does not depend on the scale of the firm and is only a function of the (relative) prices P . It is

straightforward to show (and we do so in Appendix C.2) that with the production function (1) the

12See Appendix C.1 for a derivation of that equation.
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unit cost function is

Ki (αi, P ) =
1

eεiAi (αi)

n∏

j=1

P
αij

j . (9)

Equation (9) is the standard unit cost for a Cobb-Douglas production function. It states that

the cost of producing one unit of good i is equal to the geometric mean of the individual input

prices (weighed by their respective shares) and adjusted for the firm’s total factor productivity. As

such, the unit cost Ki (αi, P ) rises when inputs become more expensive and declines when the firm

becomes more productive.

In equilibrium, competitive pressure between firms in the same industry will push prices to be

equal to unit cost so that

Pi = Ki (αi, P ) for all i ∈ {1, . . . , n} . (10)

For a given network α ∈ A, this equation, together with (9), will allow us to fully characterize the

price system as a function of the random productivity shocks ε.

2.4 Techniques choice

We can now turn to the first stage of the firm’s problem, which is to pick a technique αi ∈ Ai

to maximize expected profits,

α∗
i ∈ arg max

αi∈Ai

E [ΛQi (Pi −Ki (αi, P ))] , (11)

where Qi is the equilibrium demand for good i and where the firm uses the stochastic discount

factor Λ of the household to weigh profits in different states of the world.13 Firms take prices P ,

demand Qi and the stochastic discount factor Λ as given and so the only term in (11) over which

the firm has any control is the unit cost Ki (αi, P ). The technique choice problem can therefore be

written as

α∗
i ∈ arg min

αi∈Ai

E [ΛQiKi (αi, P )] .

The firm thus selects a technique αi ∈ Ai to minimize the expected discounted value of the total

cost of goods sold QiKi (αi, P ), while taking into consideration that final consumption goods are

valued differently across different states of the world, as captured by Λ.

2.5 Equilibrium conditions

An equilibrium is defined by the following conditions holding simultaneously.

13In equation 11 the representative firm in industry i faces the whole demand Qi for good i. Because of the
constant returns assumption, we could equivalently write that there are m firms, each supplying Qi/m units of the
good.
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Definition 1. An equilibrium is a choice of technique for every firm α∗ = (α∗
1, . . . , α

∗
n) and a

stochastic tuple (P ∗, C∗, L∗,X∗, Q∗,Λ∗) such that

1. (Optimal technique choice) For each i ∈ {1, . . . , n}, factor demand L∗
i and X∗

i are a solution

to (8), and the technology choice α∗
i ∈ Ai solves (11) given prices P ∗, demand Q∗

i and the

stochastic discount factor Λ∗ given by (6).

2. (Consumer maximization) The consumption vector C∗ maximizes (4) subject to (5) given

prices P ∗.

3. (Unit cost pricing) For each i ∈ {1, . . . , n},

P ∗
i = Ki (α

∗
i , P

∗) , (12)

where Ki (α
∗
i , P

∗) is given by (9).

4. (Market clearing) For each i ∈ {1, . . . , n},

Q∗
i = C∗

i +

n∑

j=1

X∗
ji,

Q∗
i = Fi (α

∗
i , L

∗
i ,X

∗
i ) ,

n∑

i=1

L∗
i = 1.

(13)

Condition 2, 3 and 4 correspond to the standard competitive equilibrium conditions for an

economy with a fixed production network. They imply that firms and the household optimize

in a competitive environment and that all markets clear given equilibrium prices. Condition 1

emphasizes that the production techniques, and hence the production network represented by the

matrix α∗, are equilibrium objects that are affected by the primitives of the economy.

3 Equilibrium prices and GDP in a fixed-network economy

Before analyzing how the equilibrium production network α∗ responds to changes in the envi-

ronment, it is useful to first establish how prices and GDP depend on productivity under a fixed

production network. This will allow us to characterize the uncertainty that a firm is facing when

choosing its production technique.

To this end, we establish a first result that links the vector of firm-level productivities with

prices and GDP.
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Lemma 1. For a given production network α,

p (α) = −L (α) (ε+ a (α)) , (14)

and

y = β′L (α) (ε+ a (α)) (15)

where a (α) = (logAi (αi) , . . . , logAn (αn)) and L (α) = (I − α)−1 is the Leontief inverse.

Proof. All proofs are in Appendix D.

Equation (14) is obtained by combining (9) and (10). Equation (15) then follows from (7).

Lemma 1 describes how prices and GDP depend on the vector of firm-level productivities and the

production network. We will describe both of these channels in turn.

First, consider the impact of the vector of productivities ε + a (α). Since all elements of β

and L (α) are non-negative, increases in firm-level productivities have a negative impact on prices

and a positive impact on GDP.14 Intuitively, as firms become more productive, their unit costs

decline and competition forces them to sell at lower prices. From the perspective of GDP, higher

productivity implies that the available labor can be transformed into more consumption goods.

Next, we turn to the impact of the production network. As the lemma makes clear, α matters

for prices and GDP through two channels. First, it has a direct impact on the productivity shifters

a simply because different techniques have different productivities. For instance, if a firm deviates

from its ideal input shares, its TFP declines which pushes for higher prices and lower GDP. Second,

α also affects prices and GDP through its impact on the Leontief inverse. The matrix L (α) =

(I − α)−1 = I +α+α2 + . . . implies that the price of good i depends not only on the productivity

of i itself, but also on the productivity of all of its suppliers, and on the productivity of all of their

suppliers, and so on. These higher-order connections also matter for GDP and so the impact of a

firm’s productivity depends on its importance as a direct and indirect supplier.

To better characterize which producers are important suppliers, we can rewrite (15) as

y = ω′ (ε+ a (α)) (16)

where ω = (ω1, . . . , ωn) is the vector of Domar weights ωi = β′L (α) 1i > 0, which are also equal to

the sales share of firm i in nominal GDP, so that ωi =
PiQi

P ′C .15 The Domar weights thus determine

the relative importance of sectoral productivity changes in an economy with a fixed production

network. As they depend only on β and α, Domar weights are constant in a fixed-network economy

14The non-negativity of L comes from the restrictions imposed on the sets of techniques (A1, . . . ,An). These
restrictions also imply that I − α∗ is always strictly diagonally dominant and therefore invertible.

15See the proof of Corollary 1 for a proof of that result. We use 1i to denote an n× 1 vector full of zeros except
for a 1 at the ith position.
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but will vary when firms are free to adjust their sourcing decisions in response to changes in beliefs.

In particular, a change in the production network that would make a given sector a more important

supplier would also increase the importance of that sector’s productivity for aggregate GDP.

Finally, Lemma 1 also show that the price vector p and GDP y are linear functions of the

productivity vector ε and, as a result inherit the normality ε. This result is essential for the

tractability of the model and allows us to compute the first and second moments of GDP as

E [y (α)] = β′L (α) (µ+ a (α)) , (17)

V [y (α)] = β′L (α) ΣL (α)′ β. (18)

It is clear from these equations that the production network αmatters for the mean and the variance

of GDP. In addition, one important implication of 17 is that the variance Σ of ε has no impact

on expected GDP, except through its influence on the structure of the network. It follows that

whenever we discuss the response of expected GDP to a change in uncertainty, the mechanism of

action is through the endogenous reorganization of the network.

We conclude this section with a corollary that describes the impact of firm-level shocks on the

mean and the variance of GDP. In what follows, we use partial derivatives to emphasize that the

network α is kept fixed.

Corollary 1. For a fixed network α:

1. The impact of a change in firm-level expected TFP µi on expected GDP E [y] is given by

∂ E [y]

∂µi
= ωi.

2. The impact of a change in firm-level volatility Σij on the variance of GDP V [y] is given by16

∂ V [y]

∂Σij
=







ω2
i i = j,

2ωiωj i 6= j.

The first part of the lemma demonstrates that for a fixed production network, Hulten’s (1978)

celebrated theorem also holds in expectational terms. That is, the change in expected GDP follow-

ing a change in the expected productivity of an industry i is equal to that industry’s sales share

ωi. The second part of the lemma establishes a similar result for changes in volatility. In this case,

we see that the impact on the variance of GDP of an increase in the uncertainty of the TFP of a

sector is equal to the square of that sector’s sales share. As a result of the quadratic nature of this

relationship, sectors with large ωi’s are disproportionately important for the variance of GDP. The

16For i 6= j, the following derivative simultaneously changes Σij and Σji to preserve the symmetry of Σ.
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corollary also describes how aggregate volatility responds to a change in the correlation between

two sectors. In this case, the increase in V [y] is proportional to the product of the two industries’

sales shares. Since Domar weights are always positive, an increase in correlation always leads to

higher aggregate volatility. Intuitively, positively correlated shocks do not offset each other, and

their aggregate impact is therefore larger.

Finally, Corollary 1 emphasizes that for a fixed network, knowing the sales shares of every

industry is sufficient to compute the impact of changes to µ and Σ on GDP. In the next section,

we show that this is no longer true when firms can adjust their input shares in response to changes

in the distribution of sectoral productivity. In fact, when the network is free to adjust, an increase

in µ can even lead to a decline in expected GDP.

4 Equilibrium production networks

In the full equilibrium the production network endogenously responds to changes in beliefs.

We begin by characterizing how firms select a production technique in this environment. We then

establish that an equilibrium exists under general conditions. We also show that there exists a

Pareto efficient equilibrium and that its associated production network is characterized by a trade-

off between the expected level and the volatility of GDP.

4.1 Technique choice

In the previous section, we described prices under a given equilibrium network α∗. Here,

we use that information to characterize the problem of an individual firm i that must choose a

technique αi ∈ Ai. To solve the firms’ technique choice problem, it is convenient to work with

the log of the stochastic discount factor λ (α∗) = log Λ (α∗), the log of the unit cost ki (αi, α
∗) =

logKi (αi, P
∗ (α∗)) and the log of aggregate demand qi (α

∗) = logQi (α
∗). The following lemma

shows that all these objects are normally distributed and describes how they influence the firm’s

problem.

Lemma 2. λ (α∗), ki (αi, α
∗) and qi (α

∗) are normally distributed and the technique choice problem

of the firm can be written as

α∗
i ∈ arg min

αi∈Ai

E [ki (αi, α
∗)] +

1

2
V [ki (αi, α

∗)] + Cov [ki (αi, α
∗) , λ (α∗) + qi (α

∗)] . (19)

This equation is central to the mechanisms of the model because it captures how beliefs and

uncertainty affect the production network. The first term implies that the firm prefers to adopt

techniques that provide, in expectation, a lower unit cost of production. Taking the expected value
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of the log of (9), we can write this term as

E [ki (αi, α
∗)] = const− ai (αi) +

n∑

j=1

αij E [pj] ,

so that, unsurprisingly, the firm prefers techniques that have high productivity ai and that relies

on inputs that are expected to be cheap.

The second term in (19) shows that the firm also prefers production techniques that lower the

variance of that unit cost. Once again it is enlightening to use (9) to write

V [ki (αi, α
∗)] = const +

n∑

j=1

α2
ij V [pj ] +

∑

j 6=k

αijαik Cov [pj, pk] + 2Cov



−εi,

n∑

j=1

αijpj



 . (20)

This equation highlights three channels that affect the variance of the unit cost. First, the firm

prefers to rely on inputs that are stable (first term in (20)). Second, the firm wants to avoid tech-

niques that relies heavily on inputs with correlated prices (second term in (20)). These techniques

might lead to large fluctuations in unit cost. Instead, the firm seeks to diversify its set of suppliers

and adopt inputs whose variation in prices offset each other. Third, the firm prefer inputs whose

prices are positively correlated with its own productivity shocks (third term in (20)). In this case,

when the firm faces a low productivity the price of its inputs is low, which cushions the blow to its

unit cost.

Finally, the third term in (19) captures the importance of aggregate risk for the firm’s decision.

It implies that the firm prefers suppliers whose products are cheap in states of the world in which

the marginal utility of aggregate consumption is high or in which demand for the firm’s goods is

large. As a result, the coefficient of risk aversion ρ of the household indirectly determines how risk

averse firms are.

We will explore in more details how beliefs affect the structure of the network in general equi-

librium in the next section, but for now it is useful to highlight some of the key forces that affect

the choice of technique of a firm by considering the following partial equilibrium example.

Example (Sourcing decisions in partial equilibrium). Consider again the car manufacturer (firm

i) that can use steel (good 1) and carbon fiber (good 2) as intermediate inputs in production. The

firm must decide on the optimal shares αi1 and αi2 to pick. Assume that the input prices are

p = (p1, p2) ∼ N (E [p] ,V [p]) where the covariance matrix V [p] is diagonal. If we let the penalty

function Ai (αi) take the form (3), it is straightforward to solve the minimization problem (19), and

we show in Figure 1 how the solution α∗
i is affected by changes in the mean and the variance of p2.

We see from panels (a) and (b) that, unsurprisingly, when good 2 is expected to be cheaper, firm

i increases αi2 and lowers the share of good 1. A similar mechanism is at work when uncertainty

about p2 increases, as seen in Panels (c) and (d). When V [p2] is large, the firm prefers to use
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a larger share of the relatively safer good 1. Notice that the share αi2 reaches zero when p2 is

expected to be sufficiently large or uncertain. In that case, firm i simply severs the link with the

carbon fiber supplier and an input/output relationship disappears from the production network.

In this example, both the intensive and extensive margins of network adjustment are thus active.
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Figure 1: Beliefs and input shares

4.2 Equilibrium existence and efficiency

In this section, we finally consider the full equilibrium with endogenous network. We first

establish that there exists an equilibrium that satisfies the conditions in Definition 1 and that this

equilibrium is efficient. Building on that insight, we further show that the production network in

this equilibrium strikes an optimal balance between maximizing the mean level of aggregate output

and minimizing its variance.

Existence of an equilibrium

Lemma 2 describes a self-map K : A → A that can be used to define an equilibrium network

α∗. At a fixed point of this mapping, we have that α∗
i = Ki (α

∗) for all i ∈ N , where Ki (α
∗) is

the right-hand side of (19). Hence, such a fixed point describes an equilibrium network. Lemma 3

establishes that such a fixed point exists under general conditions.
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Lemma 3. There exists a production network α∗ such that α∗ = K (α∗).

The proof first shows that K is a continuous mapping on the compact set A. From Brouwer’s

fixed point theorem, we then know that there exists at least one element α∗ ∈ A such that α∗ =

K (α∗).17

With an equilibrium network α∗ in hand, it is straightforward to compute prices from (15) and,

from there, all other equilibrium quantities can be uniquely determined. The following proposition

follows directly as a result.

Proposition 1. An equilibrium exists.

While Proposition 1 guarantees the existence of an equilibrium, it is silent about the number

of such equilibria. However, the next subsection demonstrates that there always exists a Pareto

efficient equilibrium, which provides a natural benchmark to study.

Pareto efficiency

There is a unique consumer in this economy, and hence finding the set of Pareto efficient

allocations amounts to solving the problem of a social planner that maximizes the utility function

(4) of the consumer subject to the resource constraints (13). We begin with a first result that

describes the relationship between the Pareto efficient allocation and the set of equilibria. 18

Proposition 2. There exists an efficient equilibrium.

This result is important for a few reasons. First, it provides a natural equilibrium selection de-

vice if multiple equilibria were to exist, and from here on, we will focus on the efficient equilibrium.19

Second, it shows that the economy is undistorted by externalities or other market imperfections.

The forces at work in the decentralized equilibrium are thus fundamental features of the environ-

ment that should not be distorted by policy makers. Third, Proposition 2 allows us to investigate

the properties of the equilibrium by solving the problem of the social planner directly. Building on

that insight, it is convenient to characterize the equilibrium network as the outcome of a welfare

maximization problem, as the following lemma shows.

Corollary 2. The equilibrium production network α∗ solves

W ≡ max
α∈A

E [y (α)]−
1

2
(ρ− 1)V [y (α)] , (21)

17While the mapping K is in general not a contraction, iterating on that mapping turns out to be a convenient
method for finding a fixed point. When this fails, an equilibrium can be found by solving the planner’s problem, as
we explain below. In the appendix, we group the proof of Lemma 3 with that of Proposition 1 below.

18We discuss conditions under which the solution to the planner’s problem is generically unique at the end of
Appendix (2). In particular, we establish a generic uniqueness result when Ai (αi) takes the form (3), which we will
adopt for our quantitative exercises.

19The Pareto efficient equilibrium is a natural benchmark to study, since any inefficient equilibrium would be the
result of coordination failure among agents. While such coordination failures may exist in reality, they are not the
focus of this paper.
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where y is GDP as defined in (15).

Notice that (21) provides an expression for the welfare W of the representative household.

Corollary 2 follows directly from the fact that, by Proposition 2, the equilibrium network α∗

must maximize the expected utility of the representative consumer. It is clear from the objective

function (21) that the consumer prefers networks that strike a balance between maximizing expected

GDP E [y (α)] and minimizing aggregate uncertainty V [y (α)], with the relative risk aversion ρ

determining the importance of each term. Another consequence of Corollary 2 is that it casts a

complicated network formation problem as a simple optimization problem. We will rely on this

result in the next section to characterize how beliefs affect the structure of the production network.

The model studied above is relatively simple, but it is straightforward to extend it along several

dimensions without losing tractability. For instance, we can generalize the set of techniques Ai to

include lower and upper bounds on specific input shares. These bounds could be used to impose that

certain sectors need a given input to produce or, inversely, can never use an input into production.

It is also straightforward to extend the model to include multiple types of labor. In this case, we

could separate firms between domestic and foreign ones, each using only one type of labor, and

use the model to investigate the impact of beliefs and uncertainty on trade networks. In this case,

trade costs could also be introduced by imposing that goods that are traded internationally transit

through a fictitious “transportation” sector with a productivity less than one.20

5 Understanding the determinants of the production network

We now explore the economic forces at work in the model. In particular, we investigative how

variations in the mean µ and the variance Σ of the productivity vector ε = (ε1, . . . , εn) affect the

structure of the production network and how these changes, in turn, affect aggregate GDP and

welfare.

5.1 Beliefs and Domar weights

In Section 3, we saw that Domar weights are key objects to understand how changes in µ

and Σ affect GDP. In a fixed-network environment, these weights are fixed and do not respond

themselves to changes in beliefs. In our model, the Domar weights are equilibrium objects and the

next proposition shows how they respond to changes in beliefs about sectoral productivity.

Proposition 3. The Domar weight ωi of firm i is increasing in µi and decreasing in Σii.

20On the other hand, certain ingredients are essential to keep the model tractable. Here the key challenge comes
from the fixed point between the choice of technique and the beliefs about equilibrium quantities. The Cobb-Douglas
aggregators in (1) and (4), as well as the CRRA preferences and the normality of ε, are needed to keep the equilibrium
beliefs normally distributed.
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Proposition 3 shows that when the network is flexible, the Domar weights are increasing in

the expected productivity of a firm and decreasing in its variance. This result can be understood

intuitively both from an individual firm’s perspective as well as from the perspective of the social

planner. An individual firm relies more on suppliers whose prices are low and stable. As a result,

these firms become more important suppliers and the Domar weights of the associated sectors

increase. From the planner’s perspective, recall from (16) that the Domar weight of a firm captures

the contribution of its productivity to GDP. Since the planner wants to increase and stabilize GDP,

it naturally increases the importance of more productive (larger µi) or less volatile (smaller Σii)

sectors in the production network. In Section 5.3 below we show that such an adjustment in the

network is welfare-improving. But before doing so, we first discuss how changes in beliefs affect the

precise structure of the equilibrium production network α.

5.2 Beliefs and the structure of the production network

Proposition 3 establishes that the Domar weights respond in an intuitive and unambiguous

manner to changes in beliefs. The same is not true about individual elements of the matrix α that

describes the complete structure of the production network. In fact, in some cases an increase in

the expected productivity of a producer i can even lead some of its customer to lower their usage

of input i. To shed light on the forces that affect the input shares, we first consider economies that

satisfy a weak complementarity property, which we define below. Under this condition, we provide

a sharp characterization of how the production network responds to changes in beliefs. We then

discuss what happens when the structure of economy does not satisfy this property.

Response of the network when shares are complements

In this section, we consider economies in which the functions (a1, . . . , an) satisfy the following

property.

Assumption 2 (Weak Complementarity). For all i, ai satisfies
∂2ai(αi)
∂αij∂αik

≥ 0 for all j 6= k.

Assumption 2 defines a weak complementarity property between the shares that a producer

allocates to its suppliers. It states that as a firm increases the share of one input, the marginal

benefit of increasing the share of the other inputs weakly increases as well. In the context of the

function (3) described in our earlier example, weak complementarity is satisfied if κi0 ≤ 0.

The following lemma shows that the impact of µ and Σ on the equilibrium network is straight-

forward when Assumption 2 holds.

Lemma 4. Let α∗ ∈ int (A) be the equilibrium network and suppose that Assumption 2 holds.

There exists a Σ > 0 such that if |Σij| < Σ for all i, j, there is a neighborhood around α∗ in which

(i) an increase in µj leads to an increase in the shares α∗
kl for all k, l;
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(ii) an increase in Σjj leads to a decline in the shares α∗
kl for all k, l;

(iii) an increase in Σij leads to a decline in the shares α∗
kl for all k, l.

Part (i) if this lemma shows that when µj increases there is a widespread increase in input shares

throughout the economy. To understand this result, it is useful to decompose the impact of the

change into three channels: 1) the direct impact, 2) the indirect impact, and 3) the complementarity

effect. First, the increase in µj makes good j cheaper in expectation which pushes all of j’s direct

customers to increase their share of j in production. Second, all of j’s customers now benefit from

cheaper input prices, which makes their own goods cheaper through competition, and so other

firms are also increasing their share of these goods into production (indirect effect). Finally, these

increases in shares from the direct and indirect effects push firms to adopt techniques with higher

input shares, because of the complementarities implied by Assumption 2. Taking these effects

together, all shares α in the economy increase, and so the entire production sector moves away

from labor.

Parts (ii) and (iii) of Lemma 4 provide similar results for increases in uncertainty and in cor-

relations. As discussed in Section 4.1, firms prefer suppliers with stable and uncorrelated prices.

As a result, the additional risk introduced by a higher Σjj pushes j’s direct an indirect customers

to reduce their exposure to j. An increase in correlation Σij also pushes firms to avoid inputs i

and j. The complementarity effect is also at work, and so firms overall move toward production

techniques that are more labor intensive.21

Substitution between inputs

Lemma 4 makes sharp predictions about the structure of the network at the cost of some restric-

tions about the functions (a1, . . . , an). These restrictions impose some form of complementarity

between input shares, but the model can handle much richer substitution patterns. To give an

example of what these patterns might involve, we can go back to our car manufacturer example.

Suppose that the price of carbon fiber is expected to decrease (higher µ). The firm might respond

by increasing the share of carbon fiber and decrease the share of steel it uses in production. At the

same time, it might purchase additional equipment that is needed to handle carbon fiber. These

changes highlight different substitution patterns (substitution between steel and carbon fiber, com-

plementarity between steel and equipment) that can exist between inputs.

The theory, through the constraints embedded in the set A and the shape of the functions

(a1, . . . , an), is rich enough to accommodate some inputs that are complements while at the same

21The assumption α∗ ∈ int (A) in Lemma 4 is needed to avoid potential substitution patterns between firms.
For instance, if

∑n

k=1 αik = αi for a given firm i, an increase in µj might lead to a decline in some αik, k 6= j,
to accommodate an increase in αij . The restriction on Σ is needed to prevent a strong uncertainty feedback. For
example, if all firms increase their reliance on sector j (e.g., due to an increase in µj or a reduction in Σjj), the
economy’s exposure to j’s risk may become so large that it will be optimal to reduce αkj for some k instead. This
does not happen when Σ is sufficiently small.
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time others are substitutes. For instance, if the constraint
∑n

k=1 αik ≤ αi binds, firm i might need

to lower the share of another input k to be able to increase αij after a decline in the expected

price of j, in the shares of i and j would be substitutes. Similarly, the functional form of a

can generate complementarities between inputs. As an example, consider the function a (αi) =

− (αi1 − α◦
i1)

2 − (αi1 − αi2)
2. In this case, any increase in αi1 will be accompanied by additional

incentives to increase αi2. The function a can also be specified to generate substitutabilities, for

instance through the last term in (3) when κi0 > 0.

Figure 2 provides an example of how substitution patterns might arise in equilibrium when we

relax Assumption 2. Panel (a) shows the equilibrium network in an economy in which all firms are

identical except that firm 4 is slightly less productive and, as a result, does not sell to other firms.

Panel (b) shows the same economy except that ε2 is now slightly more volatile. In response, other

producers seek to diversify their set of suppliers and create new supply relationships with firm 4.

In panel (c) ε2 becomes much more volatile. As a result, all producers drop firm 2 as a supplier

and reinforce their connection to firm 4. In this example, the substitution comes from the fact that

firms do not want to deviate too much from an ideal labor share (last term in (3)).
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(c) Large increase in Σ22

Figure 2: Uncertainty and the equilibrium network
Notes: Arrows represent the movement of goods: there is a blue solid arrow from j to i if αij > 0. Dashed grey arrow indicate
αij = 0. a is as in (3) with the elements of κ equal to 1, except κii = ∞ for all i. The elements of α◦ are 1/10 except α◦

ii = 0
for all i. βi = 1/n for all i. µ = 0.1 except for µ4 = 0.0571. Σ = 0.3× In×n in Panel (a). Panel (b): same as Panel (a) except
Σ22 = 0.35. Panel (c): same as Panel (a) except Σ22 = 1. The risk aversion of the household is ρ = 5.

Cascading flight to safety

One consequence of the impact of uncertainty on the network when input shares are substitutes

is that small changes in the volatility of a firm can push multiple producers to sequentially switch

to safer suppliers. To give an example of that process, consider the simple economy depicted in

Figure 3. Firms 4 to 7 can only use labor as an input, but firms 1 to 3 can each source inputs

from two potential suppliers, indicated by the arrows. The model is parametrized such that shares

of these suppliers are substitutes. When the productivity of firm 4 is uncertain (left figure), other
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producers avoid using it as a supplier. But as that uncertainty decreases, firm 3, seeking a stable

supply of goods, switches to using good 4 as an input. As a result, firm 3’s price becomes less

volatile which pushes firm 2 to use good 3 in production. The same logic applies to firm 1, which

also switches to the less volatile price provided by firm 2. As we can see, a change in the uncertainty

associated with the productivity of a single firm can lead to a cascading movement to safety that

reduces aggregate uncertainty.
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Figure 3: Cascading impact of Σ44

Notes: Arrows represent the movement of goods: there is a blue solid arrow from j to i if αij > 0. Dashed grey arrow indicate

αij = 0. a is as in (3) with the elements of κ equal to 0 if there is a potential link between two firms and infinity otherwise.

Similarly, the elements of α◦ are one half when there is a potential link, 0 otherwise. µ = 0 except for µ4 = 0.1. In the left

figure, Σ is diagonal with each element equal to 0.1 except Σ44 = 1. In the right figure Σ44 = 0. The risk aversion of the

household is ρ = 2. βi = 1/n for all i.

5.3 Implications for GDP and welfare

We now turn to the implications of the endogenous network mechanism for macroeconomic

aggregates. We have already established in Corollary 1 how shocks to the mean µ and the variance

Σ of productivity affect aggregate output when the production network is fixed. Here we generalize

these results to our environment with an endogenous network, and further show that some shocks

can have counterintuitive effects when the network itself responds to changes in the distribution of

shocks.

Uncertainty lowers expected GDP

We begin with a general result that shows how GDP reacts to uncertainty.

Proposition 4. Uncertainty lowers the expected value of GDP in equilibrium, such that E [y] is

largest when Σ = 0.

Proposition 4 follows directly from Corollary (2). When there is no uncertainty (Σ = 0), the

variance V [y (α)] of GDP is zero for all networks α ∈ A, so that the equilibrium network maxi-

mizes only the expected value of GDP. When, instead, the TFP vector is uncertain (Σ 6= 0), the

equilibrium network also seeks to lower V [y (α)], which necessarily leads to a lower expected GDP.
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Proposition 4 highlights a novel mechanism through which uncertainty reduces expected GDP.

To understand the intuition behind it, consider the perspective of the firms in equilibrium. When

there is no uncertainty, firms do no worry about risk and simply buy inputs from the most productive

suppliers. As a result, the aggregate economy is particularly productive, and GDP is large. When

some suppliers become risky, firms worry that their inputs might become expensive and, to prevent

large fluctuations in their own unit cost, start purchasing from more stable but less productive

suppliers. As a result, the aggregate economy becomes less productive and expected GDP falls.

The endogenous response of the network is essential for the result of Proposition 4. Indeed, in

our model uncertainty affects expected GDP only through the endogenous response of the firms’

sourcing decisions. As a result, the mechanism through which uncertainty lowers expected GDP is

only active when the production network is flexible. If instead the shares α were fixed, uncertainty

would have no impact on E [y].

Welfare and the distribution of shocks

Proposition 4 establishes that any form of uncertainty has an adverse effect on expected GDP

when the network adjusts in response to shocks. Here, we investigate how firm-level shocks affect

GDP and welfare. As we will see, the endogenous response of the network matters here as well.

Throughout this section, we again use partial differentiation to indicate that a derivative is taken

keeping the network α fixed.

We begin by establishing a result that shows the impact of firm-level shocks on the expected

welfare W of the representative consumer, as defined in (21).

Proposition 5. When the network α is free to adjust to changes in µ and Σ, the following holds.

1. The impact of an increase in µi on expected welfare is given by

dW

dµi
=

∂ E [y]

∂µi
= ωi. (22)

2. The impact of an increase in Σij on expected welfare is given by

dW

dΣij
=







−1
2 (ρ− 1)

(
∂ E[y]
∂µi

)2
= −1

2 (ρ− 1)ω2
i i = j,

− (ρ− 1) ∂ E[y]
∂µi

∂ E[y]
∂µj

= − (ρ− 1)ωiωj i 6= j.
(23)

This proposition follows directly from applying the envelope theorem to (21). Its first part

states that the impact of an increase in µi on welfare is equal to its marginal impact on expected

GDP, taking the network α as fixed. By Corollary 1, this quantity is also equal to the Domar weight

ωi of firm i. Since Domar weights are positive, it follows that an increase in µi always has a positive

impact on welfare. The second part of the proposition provides a similar result for an increase in
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Σij. In this case, the impact of the shock is proportional to the product of the Domar weights ωi

and ωj. Again, (23) implies that an uncertainty shock must necessarily lower welfare when ρ > 1.

Amplification and dampening

One important consequence of the endogenous reorganization of the network is that shocks that

are beneficial to welfare are amplified while shocks that are harmful are dampened. The following

proposition establishes this result formally.

Proposition 6. Let α∗ (µ,Σ) be the equilibrium production network under (µ,Σ) and let W (α, µ,Σ)

be the welfare of the household under the network α. Then the change in welfare after a shock from

(µ,Σ) to (µ′,Σ′) is larger under a flexible network than under a fixed network, in the sense that

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) ≥ W

(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) . (24)

This proposition shows that the impact of a shock on welfare is always better when firms can

reorganize their supply chains. Intuitively, this extra margin of adjustment allows firms to produce

more efficiently and to better mitigate risk, which translates into higher welfare for the household.

Shocks and GDP

Proposition 5 shows that changes in the mean and the variance of ε have intuitive impact on

welfare. The same cannot be said about their impact on expected GDP when the production

network is endogenous. To see this, it is helpful to decompose the impact of a shock in its direct

and indirect impacts on expected GDP. For instance, for a shock µi we can write

dE [y]

dµi
=

∂ E [y]

∂µi
︸ ︷︷ ︸

direct impact with
fixed network

+
∂ E [y]

∂α

dα

dµi
︸ ︷︷ ︸

network adjustment

. (25)

The first term on the right-hand side of (25) denotes the direct impact of the shock keeping the

network α fixed. The second term captures the impact of the shock on the structure of the network

α and the impact of that change in structure on expected GDP. When the network is fixed, this

network adjustment term is zero and the full impact of the shock is simply equal to the direct

impact. This is the situation that we explored in Corollary 1 which states that an increase in µi

always has a positive impact on E [y]. But under a flexible network the indirect effect can amplify,

mitigate or even overwhelm the direct impact completely, in which case a positive shock to µi can

lower expected GDP. When this happens, the Hulten-like theorem established in the last section

(Corollary 1) ceases to work, even as a local approximation. A similar mechanism can also flip the

impact of uncertainty shocks such that a positive shock to Σij can lower the variance of aggregate

25



GDP.22

Example of counterintuitive response to shocks We now provide an example to show how

the endogenous adjustment of the network can lead to counterintuitive responses to shocks. In

the economy depicted in Figure 4, firms 4 and 5 use only labor to produce, while firms 1 to 3 can

also use goods 4 and 5 as intermediate inputs. Firm 4 is more productive and volatile than firm

5 (µ4 > µ5 and Σ44 > Σ55). Now consider the impact of a positive shock to µ5. The solid blue

lines in panels (a), (b) and (c) of Figure 5 illustrate the impact of that shock on E [y], V [y], and

on welfare. Point O on the graphs represents the economy before the shock. As we can see, the

initial increase in µ5 has a negative impact on expected GDP. To understand why, notice that for

a small increase in µ5, firm 5 is still less productive (on average) than firm 4, but it now offers a

better risk-reward trade-off given its lower variance. As a result, firms 1 to 3 increase their shares

of good 5 and reduce their share of good 4. But since µ4 > µ5, this readjustment leads to a fall

in expected GDP for a small increase in µ5. At the same time, the variance of GDP also declines

because firm 5 is less volatile than firm 4. The movements in E [y] and V [y] oppose each other in

their impacts on welfare but the overall effect is positive, as predicted by Proposition 5, and as can

be seen in panel (c). Of course, as µ5 keeps increasing expected GDP eventually starts to increase.

�

� �

�

�

Figure 4: Network structure for the example
Notes: Arrows represent the movement of goods: there is a blue solid arrow from j to i if αij > 0. a is as in (3) with the
elements of κ equal to 0 if there is a potential link between two firms and very large otherwise. The elements of α◦ are one
half when there is a potential link and zero otherwise. The labor share for firms 1, 2 and 3 is fixed at 0.5 and for firms 4 and
5 it is one (deviations are punished severely). The risk aversion of the household is ρ = 2.5. Household’s utility weights are
β1 = β2 = β3 = 1

3
− ǫ, β4 = β5 = 3

2
ǫ, where ǫ is a very small positive number. µ = (0.1, 0.1, 0.1, 0.1,−0.04), Σ is diagonal, with

diag (Σ) = (0.2, 0.2, 0.2, 0.3, 0.05).

To emphasize the importance of the flexible network for this mechanism, we also show the effect

of the same increase in µ5 when the network is kept fixed (dashed red lines in the same panels).

Here, Corollary 1 holds so that the marginal impact of µ5 on expected GDP is equal to its Domar

weight and increasing µ5 has a positive impact on E [y]. At the same time, the variance of GDP

is simply not affected by changes in µ. While an increase in µ5 is welfare-improving in this case,

the effect is less pronounced than in the flexible network economy. Indeed, in the latter case the

22Baqaee and Farhi (2019a) derive conditions under which Hulten’s theorem does not hold globally in a standard
efficient production network economy.
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equilibrium network changes precisely to maximize the beneficial impact of the shock on welfare

(Proposition (6)).

Finally, we can use the same economy to illustrate how a positive shock to an element of Σ can

lower the variance of aggregate GDP, and simultaneously lower welfare. Start from the economy

of Figure 4 (point O) and suppose that the volatility of firm 4 goes up. In response, firms 1 to 3

start to purchase from firm 5 more actively. Because firm 5 is less volatile (recall that Σ55 < Σ44

initially), the variance of GDP declines (panel e). At the same time, expected GDP goes down

because firm 5 is also less productive on average than firm 4 (panel d). The combined effect on

welfare is negative, as predicted by Proposition 5 (panel f). In this case, the reorganization of

the network mitigates the adverse effect of the increase in volatility on welfare. Instead, when the

network is fixed an increase in Σ44 does not affect expected GDP but leads to a sharp increase in

the variance of GDP. As a result, welfare drops more substantially than when the network flexible,

as predicted by Proposition (6).
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(a) E [y] as a function of µ5
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(b) V [y] as a function of µ5
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(c) Welfare as a function of µ5
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(d) E [y] as a function of Σ44
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(e) V [y] as a function of Σ44
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(f) Welfare as a function of Σ44

Figure 5: The nonmonotone impact of firm-level shocks on GDP
The network structure and parameterization are detailed in Figure 4. In panels (a)-(c), µ5 increases from −0.04 to 0.13. In
panels (d)-(f), Σ44 increases from 0.3 to 0.4.
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6 Endogenous network responses in a calibrated model

To better understand the quantitative importance of the mechanism, we now calibrate the model

to the United States economy. We first describe our data sources and our calibration strategy. We

then show that the calibrated model is able to replicate several important aspects of data. Finally,

we use the calibrated model to evaluate the role of beliefs in shaping the production network and

how the changing structure of the network influences welfare and the level and the volatility of

aggregate output.

6.1 Data

We use several datasets to calibrate the model. First, we rely on sectoral input-output tables

provided by the Bureau of Economic Analysis (BEA). Over time, the BEA has changed the number

and the definition of the sectors included in the tables. We therefore rely on harmonized tables

constructed by vom Lehn and Winberry (2021) that provide consistent annual data on intermediate

input usage for n = 37 sectors over the period 1947—2018, as well as the final consumption

associated with each sector. Table 2 provides the list of the sectors included in that dataset.

Table 2: The 37 sectors used in our analysis

Mining Utilities
Construction Wood products
Nonmetallic minerals Primary metals
Fabricated metals Machinery
Computer and electronic manufacturing Electrical equipment manufacturing
Motor vehicles manufacturing Other transportation equipment
Furniture and related manufacturing Misc. manufacturing
Food and beverage manufacturing Textile manufacturing
Apparel manufacturing Paper manufacturing
Printing products manufacturing Petroleum and coal manufacturing
Chemical manufacturing Plastics manufacturing
Wholesale trade Retail trade
Transportation and warehousing Information
Finance and insurance Real estate and rental services
Professional and technical services Management of companies and enterprises
Administrative and waste management services Educational services
Health care and social assistance Arts and entertainment services
Accommodation Food services
Other services

Notes: Sectors are classified according to the NAICS-based BEA codes. See vom Lehn and Winberry (2021) for details of
the data construction.

From these data, we can compute the input shares αij,t of each sector in each year t, which, as

described below, we use as targets in our calibration. Overall, the average input share is 1.4% with
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an average cross-period standard deviation of 0.5%, indicating a substantial amount of variation

over time.

To pin down the time series for the belief processes µt and Σt, which we assume

to be time-varying, we use sectoral total factor productivity data, which also comes from

vom Lehn and Winberry (2021). These sectoral TFP processes are computed as Solow residu-

als after removing the contributions of input factors from a sector’s gross output.23 Since we do

not focus on long-run growth issues, we remove a common trend from these TFP processes.24

6.2 Calibration strategy

The three groups of parameters that we need to calibrate are 1) the households preferences,

i.e. the consumption shares β and the risk-aversion ρ, 2) the parameters of the Ai functions, and

3) the parameters governing the process for the exogenous sectoral productivity shocks, i.e. µ and

Σ. Some parameters have direct counterparts that can be computed directly from observable data.

For the remaining parameters, we use a method of simulated moments and standard time-series

methods to find values broadly consistent with how input shares and TFP evolved over our sample

period. We describe how in detail below.

Preferences

In the household’s utility function the different goods are combined through a Cobb-Douglas

aggregator. This implies that an element i of the preference vector β corresponds to the share

of good i in total consumption. We therefore use final consumption shares from the input-output

tables to pin down β directly.

The CRRA parameter ρ plays an important role in our model as it determines to what extent

firms are willing to trade off higher input prices for access to more stable suppliers. The literature

uses a broad range of values for ρ and it is unclear a priori which one is best for our application.

We therefore let the data pick ρ through the estimation procedure described below.

Total factor productivity

Sectoral TFP can be measured from the BEA’s input-output tables and we use the same method

as in vom Lehn and Winberry (2021) to do so. However, total TFP in our model is the product

of the exogenous component eεt and the endogenous component A(αt). Here we describe how we

take this into account when we parameterize the productivity processes.

23We make two departures from vom Lehn and Winberry (2021) in constructing TFP. First, to be consistent with
our model, we let the input shares αij,t vary over time. Second, we do not smooth the resulting Solow residuals. We
refer to vom Lehn and Winberry (2021) for the details of how the harmonized input-output table and TFP processes
are computed.

24Specifically, we compute a quadratic trend for aggregate TFP and remove it from all sectoral TFP series. The
results are similar if we use a linear trend instead but the fit to the data is a bit worse.
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There are three objects related to TFP that we need to calibrate: the time series for the mean

(µt) and the variance (Σt) of the process εt, and the parameters of the endogenous TFP function

Ai. We assume that Ai takes the form (3), introduced earlier. We set the ideal share coefficients

α◦
ij to be equal to the time-average of the actual input shares in the data. We include the matrix

κ, which describes how costly it is to deviate from the ideal shares, in the set of parameters that

we estimate.

Here is a summary of our estimation procedure. For a given pair {ρ, κ} we can use the structure

of the model to back out the realized path followed by the stochastic process εt in the data. From this

path, we then estimate the time series for µt and Σt. At this stage, the model is fully parametrized

so that we can solve it and verify if the model outcomes are in line with their data counterparts.

We then search for the parameters {ρ, κ} that bring the model as close as possible to the data.

We now provide more details about each of the steps involve in that calibration process. First,

note that from (1), the sectoral Solow residual of a given sector i, which is available in the data,

corresponds to the term eεitζ (αit)Ai (αit) in the model. It follows that for a given matrix κ, the

function Ai is fully specified and we can use the observed input shares to extract the path followed

by εit. We then use the realized vector εt to compute µt and Σt. To do so, we assume that εt

follows a random walk with drift, such that

εt = γ + εt−1 + uεt , (26)

where γ is an n × 1 vector of deterministic sectoral drifts and uεt ∼ iid N (0,Σt) is a vector of

shocks.25When making decisions in period t, we assume that firms know the past realizations of εt,

so that the mean of their beliefs is given by µt = γ + εt−1, and the variance of their beliefs Σt is

given by the covariance matrix of uεt . Given (26), we can estimate γ by computing the average of

the innovations εt − εt−1 over time. Similarly, we compute Σt as the covariance of εt − εt−1. To

capture the presence of uncertainty shocks, we assume that this covariance can change over time

and we estimate it by using a rolling window that puts more weight on more recent observations.26

With these quantities in hand, we can compute for any {ρ, κ} the model-implied input shares

αij,t and the average standard deviation of GDP.27 We then pick ρ and the matrix κ to minimize

25We adopt this random-walk specification since our sector-level productivity data shows clear signs of non-
stationarity. Nelson and Plosser (1982) provide evidence suggesting that standard macroeconomic time series are not
stationary even after removing a deterministic trend.

26To be precise, we compute the covariance between sectors i and j at time t as Σ̂ij,t =
∑t−1

s=1 λ
t−s−1∆εi,s∆εj,s

where ∆εi,s = εi,s − εi,s−1 and where 0 < λ < 1. The parameter λ captures how quickly volatility shocks vanish. We
therefore pick its value by estimating a GARCH(1,1) on each sector’s ∆εi,s and averaging the GARCH coefficients
across sectors. The estimated value of λ is 0.41.

27We target an average annual standard deviation in annual gross domestic product of 4.75%, which corresponds
to the data available from the Bureau of Economic Statistics since 1929. We use this longer time series because
our goal is to capture the subjective riskiness of aggregate GDP. The rest of our data begins in 1948 and therefore
excludes dramatic events such as the Second World War and the Great Depression. We adopt the view that agents
believe that such “disaster” event can happen and we therefore include them, in this way, in our calibration. In that
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the distance, in terms of these quantities, between the model and the data. Given that we have

n = 37 sectors in our dataset, the matrix κ has n × (n+ 1) = 1406 elements—an extremely large

space to search in. We therefore impose some restrictions on the structure of κ to limit the number

of free parameters. Namely, we assume that κ = κiκj where κi is an n× 1 column vector and κj is

an 1× (n+ 1) row vector. The matrix κ can therefore be recovered from the more computationally

reasonable 2n + 1 parameters. Intuitively, an element k in vector κi is related to the cost for

producer k of changing the share of any of its input. In contrast, an element l in κj is informative

about the cost of changing the share of input l for all producers.

6.3 Overview of the calibrated economy

We now describe a few key features of the calibrated economy and evaluate its fit to the data.

Estimated parameters

The estimated risk aversion is ρ = 5.8. This number might seem high given that most dynamic

macroeconomic models with CRRA preferences use values for ρ that are close to one. But it

is important to note that in these models ρ plays the dual role of pinning down the household’s

intertemporal elasticity of substitution (IES) in addition to its relative risk aversion.28 Importantly,

in our case the model is static and ρ’s only role is to determine how risk averse the household is. It

is therefore better to compare its value to previous work that estimate the household relative risk

aversion as a separate object from the IES. Much of that work belongs to the asset pricing literature,

and their estimates for ρ are quite a bit larger than unity. For instance, Bansal and Yaron (2004)

find that a relative risk aversion of 10 is needed to explain several asset pricing puzzles. Using

micro-level data, Vissing-Jørgensen and Attanasio (2003) find that values of ρ as low as 5-10 can

explain the covariance of asset returns and consumption growth. Similar numbers are found in lab

experiments (Barsky et al., 1997). We therefore view our estimate of ρ as reasonable in view of

that literature.

Besides the risk-aversion parameter ρ, we also estimate the cost matrix κ. The overall mean

of the elements of κ is 203 with a standard deviation of the individual point estimates is 48. In

Appendix B.1, we provide more details about the κ’s associated with each sector.

Estimated total factor productivity

Having calibrated ρ and κ, we proceed to exploring what the model implies about total factor

productivity. We find that the estimated drift vector γ features a lot of variation across sectors,

sense, our estimation procedure is in the spirit of the disaster risk literature as in Barro (2006) and Gourio (2012).
28Tallarini Jr (2000) shows that conventional business-cycle moments depend almost entirely on the IES and do

not change much with the relative risk aversion.
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indicating sizable dispersion in the trajectory of sectoral TFP. “Computer and electronic manu-

facturing” has the largest drift in our data (4.2% relative to trend) while “Food services” has the

smallest one (−3.6%).

Figure 6 shows cross-sector averages of the estimated time series for µt and the diagonal of

Σt. To provide a meaningful measure of how these shocks affect GDP, we use the sales shares ωi

as averaging weights. The red dashed line shows changes in average TFP over our sample. As

expected, that measure tends to go below zero during NBER recessions and is positive during

expansions. The solid blue line represents the average level of sector-level uncertainty. It is high

in the post-war years at the beginning of our sample and stabilizes at a lower level after 1965. We

also see large spikes in measured uncertainty around the late 1990s (dot-com bubble and the Asian

financial crisis) and the Great Recession of 2007-2009.

Notes: Red dashed line: sum of Domar-weighted changes in exogenous TFPs,
∑n

j=1 ωj,t−1 (ǫj,t − ǫj,t−1). Blue solid line: sum

of Domar-weighted diagonal elements of the estimated matrix
√
Σ,

∑n
j=1 ωj,t

√

Σjj,t. Shaded areas represent NBER recessions.

Figure 6: Domar-weighted uncertainty and TFP changes

Domar weights

We want our model to fit key features of the data that relates to the structure of the pro-

duction network, how that network changes in response to shocks, and how these changes affect

macroeconomic aggregates. As we have seen earlier, the Domar weights play a central role for these

mechanisms and we now describe how the model fits these weights and their relationship with the

beliefs (µt,Σt).

Figure 7 shows the average Domar weights of each sector in the data (blue bars) and in the model

(black line). Reassuringly, we find that the calibrated model fits the data well along that dimension,

so that the production network in the model and the data are similar along this dimension. The

figure also shows that the sectors with the highest Domar weights are “Real estate”, “Food and

beverage”, “Retail trade”, “Finance and insurance” and “Health care”. According to our theory,

i.e. Proposition (5), changes in the expected level and uncertainty of productivity in those sectors

will have most pronounced effects on welfare.
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Notes: The Domar weights are computed for each sector in each year and then averaged over all time periods. 45-degree line
in red.

Figure 7: Sectoral Domar weights in the data and the model

The model also makes predictions about the relation between the Domar weights and changes

in beliefs. In particular, after a decline in the expected productivity of a sector, or an increase in

its variance, other firms reduce the importance of that sector as an input which leads to a decline

in its Domar weight. Proposition 3 makes this point formally for a single shock to µj,t and Σjj,t.

Of course, in the data multiple changes in µt and Σt occur at the same time so it is not possible to

isolate the impact of a single shock on the Domar weights. Instead, we look at simple cross-sector

correlations between the Domar weights ωj,t and the first (µj,t) and the second moments (Σjj,t) of

sectoral TFPs, both in the data and in the model. These correlations provide a straightforward,

albeit noisy, measure of the interrelations between ω, µ and Σ.

These correlations are plotted in Figure 8. In panel 8a, we see that the within-period correlation

between ωj and µj in the data (solid blue line) is mostly positive with an average of 0.09, suggesting

that indeed firms tend to increase their input shares of sectors that are expected to be more

productive. Reassuringly, the model (dashed red line) also features a positive correlation, but it

is somewhat stronger than in the data (0.16 on average). The figure also shows in panel 8b the

average correlation between ωj and Σjj (solid blue line). This correlation is on average negative

in the data (−0.21 on average), suggesting that one of the key forces explored in this paper—that

firms tend to limit their usage of uncertain inputs—is indeed at work in reality. This correlation

is also fairly volatile, with episodes in which uncertainty is strongly correlated with the Domar

weights, while at other times the association is fairly weak. As we can see from the figure, the

model (dashed red line) is able to replicate that correlation well, capturing both its overall negative

level as well as its variation over time.
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(a) Cross-sector correlation between a sector’s Domar weight ωj and the mean µj of its TFP

(b) Cross-sector correlation between a sector’s Domar weight ωj and the variance Σjj of its TFP

Figure 8: Correlation between Domar weights and TFP

6.4 Uncertainty, the structure of the network and GDP

In this section, we first evaluate the importance of the changing structure of the production

network for GDP and overall welfare. To do so, we compare the equilibrium allocation with an

alternative economy in which the production network is held fixed and so cannot respond to changes

in µt and Σt. Specifically, we fix the input shares α to their averages in the calibrated model and

recompute all other equilibrium quantities. We find that the economy with a fixed network is on

average 2.55% less productive than the economy with a flexible network. The intuition for this

large difference is straightforward. As some sectors of the economy become more productive, firms

would like to take advantage of their cheaper inputs by relying on them more in production. In

the flexible network economy this is allowed, and the aggregate economy becomes more productive

as a result. In contrast, when the network is fixed, firms are stuck with less productive suppliers

and the economy is overall less efficient. Perhaps surprisingly, the fixed network economy is also

slightly more stable than its flexible counterpart with a standard deviation of GDP that is 0.07%

smaller. In the flexible network economy, the planner tries to strike a balance between increasing

expected value of GDP and lowering its variance. In the calibrated model, we see that the planner

is willing to suffer a slight increase in variance for large gains in expected value. Overall, this

comparison with a fixed network suggests that policy intervention that might impede or slow down

the reorganization of supply chains might have a sizable impact on welfare.

These differences between the flexible and fixed network economies come from variations in
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both µt and Σt. Here, we provide an exercise to isolate the role of uncertainty alone in shaping the

production network and affecting GDP. Namely, we consider a risk-neutral economy in which the

household has a relative risk aversion of ρ = 1. In this case, firms do not respond to changes in Σt

when making sourcing decisions. Since these decisions are the only ones taken under uncertainty,

the only direct impact of this change in risk aversion is on the shape of the network. We then

compare the allocation in this economy with the calibrated one. Table 3 reports long-run moments

related to GDP and welfare, which is evaluated from the perspective of the risk-averse representative

household of our benchmark model. We see that, in line with the theory, the baseline economy is

slightly less productive and slightly less volatile than the alternative. When ρ > 1, it is worthwhile

from the firms’ perspective to use suppliers that are less productive but safer, which translates into

the observed differences in E[y] and V [y]. The differences are however fairly small. The reason for

this is that there are long periods without much uncertainty in the economy, in which case firms

simply select their inputs for the most productive suppliers without regards for any risk involved.29

Baseline model compared to...
Fixed network Risk neutral

Expected GDP E [y (α)] +2.55% −0.02%

Std. dev. of GDP
√

V [y (α)] +0.07% −0.08%
Welfare W +2.52% +0.02%

Table 3: Uncertainty and GDP over the long run

Great Recession

The situation is however quite different when uncertainty spikes, for instance during the Great

Recession. In this case firms move toward safer but less productive suppliers to avoid potentially

disastrous increases in costs. Figure 9 shows how the baseline economy compares to the risk-neutral

alternative (denoted with tildes in the figure) over the years 2006 to 2012.30

The top panel shows the difference in expected GDP over that period. We see that expected

GDP in the baseline economy is about 0.25% lower in 2009 than in the risk-neutral economy.

Uncertainty is large during the Great Recession (as can be seen from Figure 6). As a result, firms

are worried about crippling increases in costs and move toward safer but more expensive suppliers.

The result, in term of aggregate volatility, is visible in the second panel where we see that GDP

is expected to be about 1% less volatile in 2009 in the baseline economy. While the amount of

expected GDP sacrificed in the baseline economy is somewhat small, the reduction in variance that

its leads to is important enough to generate an increase in welfare of about 0.3%, when compared

29As in Lucas (1987), the utility cost of business cycles fluctuations is, on average, small in our model and the
planner does not want to sacrifice much in terms of the level of GDP for a reduction in volatility.

30In Appendix B.2, we also compare our baseline economy to the fixed-network alternative over the Great Reces-
sion.
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to the risk-neutral economy (third panel).31 Interestingly, realized GDP, visible in the last panel,

is quite a bit higher in the baseline economy. Essentially, firms were worried about bad draws from

the TFP processes and opted for safer suppliers, and then their fears were realized. The year 2009

saw particularly bad TFP draws (as evident from Figure 6), and so the baseline economy fared

about 1% better in terms of realized GDP.

Overall, our findings in this section are that allowing the production network to reorganize itself

after shocks can lead to large gains in efficiency but that changes in uncertainty are, most of the

time, not a major factor in shaping the production network. The situation is quite different however

when uncertainty spikes. In this case, its impact on the structure of the network and, through that

channel, on GDP and welfare can be sizable. Our results therefore highlight the importance for

firms of reorganizing supply lines during turbulent periods. It also suggests that policies, such as

trade barriers, that would slow down this reorganization might have significant side effects.

31We compute welfare in the risk-neutral economy from the perspective of the representative agent in the baseline
economy.
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(a) Difference in expected GDP [%]

(b) Difference in expected standard deviation of GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized GDP [%]

Notes: The differences between the series implied by the baseline model and the risk-neutral alternative (ρ = 1). Both
economies are hit by the same shocks that are filtered out from the TFP data under our baseline model. All differences are
expressed in percentage terms.

Figure 9: The role of uncertainty during the Great Recession
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7 Conclusion

We construct a model in which agents’ beliefs about fundamentals affect the structure of the

production network and, through that channel, other macroeconomic aggregates such as output

and welfare. We prove that there exists an equilibrium that is efficient and characterize how the

equilibrium network changes with beliefs about the mean and the variance of productivity. We

also describe how uncertainty, through its action on the network, lowers expected GDP. In our

calibrated economy, the impact of uncertainty on the network can have a sizable effect on GDP

and welfare during periods of high uncertainty like the Great Recession.

Several applications of the model might be worthwhile to investigate. First, the model could shed

light on the impact of uncertainty on international trade networks. Recent events (introduction

of trade barriers, lockdowns due to the COVID-19 pandemic, etc.) have highlighted the high

uncertainty related to international supply chains and it would be interesting to use our model to

quantify its effect. Another potentially fruitful application of the model would be to use firm-level

data about the production network for quantitative exercises. Doubtlessly, uncertainty at that level

is higher than at the sectoral level and so the mechanism could be more powerful. For such an

exercise, it might also be more realistic to relax the assumption of perfect competition. Finally,

introducing an extensive margin of production, so that firms can exit the economy after a large rise

in uncertainty would be a natural extension that we leave for future research.
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Appendices

A Data appendix

A.1 Motivational evidence presented in the introduction

In this section, we provide more details about the regressions presented in Table 1. The data

about the production network comes from the Factset Revere database and covers the period

from 2003 to 2016. We limit the sample to relationships that have lasted at least five years and

with at least one partner in the United States. The IV estimates remain significant when rela-

tionships of other lengths are considered. The data about firm-level uncertainty measures comes

from Alfaro et al. (2019) and was downloaded from Nicholas Bloom’s website at https://nbloom.

people.stanford.edu. We thank the authors for sharing their data. Alfaro et al. (2019) describes

how the data is constructed in details, and we only include here a summary of how the instruments

are computed. The instruments are created by first computing the industry-level sensitivity to

each aggregate shock c, where c is either the price of oil, one of seven exchange rates, the yield on

10-year US Treasury Notes and the economic policy uncertainty index of Baker et al. (2016). As

Alfaro et al. (2019) explain, “for firm i in industry j, sensitivitycj = βc
j is estimated as follows

rriskadji,t = αj +
∑

c

βc
j · r

c
t + ǫi,t,

where riskadj is the daily risk-adjusted return of firm i, rct is the change in the price of commodity

c, and αj is industry j’s intercept. [...] We allow these industry-level sensitivities to be time-varying

by estimating them using 10-year rolling windows of daily data.” The instruments zci,t−1 are then

computed as follows:

zci,t−1 =
∣
∣βc

j,t−1

∣
∣ ·∆σc

t−1,

where ∆σc
t−1 denotes the volatility of the aggregate variable c. As in Alfaro et al. (2019), we also

include in the IV regressions the first moments associated with each aggregate series c (“1st moment

10IVi,t−1” in Table 1) to isolate the impact of changes in their 2nd moment alone.

A.2 Data for the calibration

To calibrate the model we used data from vom Lehn and Winberry (2021). They have con-

structed harmonized labor, capital, investment, depreciation rate, intermediate inputs, consump-

tion, and gross output tables for 37 sectors over a time period of 1947-2018. The TFP process is

measured as the Solow residuals of real gross output net of labor, capital, and intermediate inputs.

The TFP calculation in our paper differ from vom Lehn and Winberry (2021) in the following

ways. We let the labor, capital, and intermediate inputs shares to vary over time. Also, there is no
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smoothing of the calculated Solow residuals.

B Additional results related to the calibrated economy

B.1 The matrix κ

The overall mean of the elements of the calibrated costs matrix κ is 203 with a standard

deviation of 48. To better understand the structure of that matrix, Figure 10 shows for each sector

the elements of the vectors κi and κj (recall that κ = κiκj). As we can see, the amount of variation

across sectors is somewhat limited with the exception of a few sectors with particularly low κi’s

and κj ’s. The sectors with the smallest κi’s are “Food services” and “Computer and electronics”,

indicating that it is particularly cheap for these sectors to deviate from their ideal input shares.

Similarly, the sector with the smallest κj ’s are “Food and beverages”, “Mining” and “Textile”, so

that all firms tend to find adjusting the shares of these sectors as an input to have a small impact

on their productivity.

(a) Vector of costs κi

(b) Vector of costs κj

Figure 10: The calibrated costs of deviating from the ideal input shares
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B.2 Great Recession: Flexible vs fixed network

In this section, we explore the role of network flexibility during the Great Recession—the period

in which the economy was hit by large adverse shocks (Figure 6). Specifically, we fix the network

α at its 2006 level and then hit the economy with the same shocks as in the baseline economy with

endogenous network. Figure 11 shows how the baseline economy compares to the fixed-network

alternative (denoted with tildes in the figure) over the years 2006 to 2012. We find that expected

GDP (top panel) is higher under the flexible network. This is because firms are able to respond

to changes in TFPs and move away from sectors that are expected to perform badly. When doing

so, firms become exposed to more productive but also more volatile suppliers, which results in

an increase in GDP volatility (second panel). However, the first effect dominates and welfare is

quite substantially higher when the network is allowed to adjust (third panel). Interestingly, the

differences in realized GDP (bottom panel) are quite small during the Great Recession years. As

evident from the two top panels, firms optimally choose to be exposed to more productive but

riskier suppliers. During the Great Recession, some of those risks were realized, pushing realized

GDP down for the baseline case.

Finally, the differences between the baseline and the fixed-network models do not go to zero

after the Great Recession. This is because in the latter scenario the network is fixed at its 2006

level, so that the differences are accumulated as sectoral TFPs keep evolving over time.
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(a) Difference in expected GDP [%]

(b) Difference in expected standard deviation of GDP [%]

(c) Difference in expected welfare [%]

(d) Difference in realized GDP [%]

Notes: The differences between the series implied by the full model and the model in which the network is fixed at its 2006
level. All differences are expressed in percentage terms.

Figure 11: The role of network flexibility during the Great Recession
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C Additional derivations

This appendix contains additional derivations that are used in the main text.

C.1 Derivation of the stochastic discount factor

The Lagrange multiplier on the budget constraint of the household captures the value of an

extra unit of the numeraire and serves as stochastic discount factor for firms to compare profits

across states of the world. The following lemma shows how to derive the expression in the main

text.

Lemma 5. The Lagrange multiplier on the budget constraint of the household (5) is

Λ =
u′ (Y )

P
,

where Y =
∏n

i=1

(
β−1
i Ci

)βi and P =
∏n

i=1 P
βi

i .

Proof. The household makes decisions after the realization of the state of the world ε. The state-

specific maximization problem has a concave objective function and a convex constraint set so that

first-order conditions are sufficient to characterize optimal decisions. The Lagrangian is

u

((
C1

β1

)β1

× · · · ×

(
Cn

βn

)βn
)

− Λ

(
n∑

i=1

PiCi − 1

)

and the first-order condition with respect to Ci is

βiu
′ (Y )Y = ΛPiCi. (27)

Summing over i on both sides and using the binding budget constraint yields

u′ (Y )Y = Λ, (28)

which, together with (27), implies that

PiCi = βi. (29)

We can also plug back the first-order condition in Y =
∏n

i=1

(
β−1
i Ci

)βi to find

Y =

n∏

i=1

(
β−1
i Ci

)βi =

n∏

i=1

(

β−1
i

βiu
′ (Y )Y

ΛPi

)βi

Λ = u′ (Y )
n∏

i=1

P−βi

i (30)
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which, combined with (28), yields :

Y =

n∏

i=1

P−βi

i . (31)

This last equation implicitly defines a price index P =
∏n

i=1 P
βi

i such that PY = 1. Combining

that last equation with (28) yields the result.

C.2 Derivation of the unit cost function

The cost minimization problem of the firm is

Ki (αi, P ) = min
Li,Xi



Li +
n∑

j=1

PjXij





subject to F (αi, Li,Xi) ≥ 1,

where F is given by (1). The first-order conditions are

Li = θ



1−
n∑

j=1

αij



F (αi, Li,Xi) ,

PjXij = θαijF (αi, Li,Xi) ,

where θ is the Lagrange multiplier. Plugging these expressions back into the objective function,

we see that Ki (αi, P ) = θ since F (αi, Li,Xi) = 1 at the optimum. Now, plugging the first-order

conditions in the production function we find

1 = eεiAi (αi) θ

n∏

j=1

(Pj)
−αij ,

which is the result.

C.3 Generic uniqueness of the efficient equilibrium

Consider the planner’s objective function from (21): W (α; z) = β′L (α) (µ+ a (α, z)) +
1
2 (1− ρ) β′L (α) ΣL (α)′ β, where z is a vector of parameters, which includes µ,Σ, β, ρ and any

additional parameters of the a (α, z) function. Define a space Z on the set of parameters z. We

endow this space with an absolutely continuous probability measure P. We will call the solution

to that problem generically unique if the set Z∗ for which W has multiple maximizers is almost

surely empty, i.e. P (z ∈ Z∗) = 0.

Our proof strategy relies on Lemma 1 from Cox (2020).

Proposition 2. Suppose that Ai (αi) takes the form (3) and all elements of the κ matrix are
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positive.32 Then the Pareto efficient equilibrium is generically unique.

Proof. Lemma 1 of Cox (2020) requires that three properties be satisfied.

1. The set A = A1×· · ·×An, where Ai is the set of feasible production technique for firm i given

by (2), must be a disjoint union of finitely or countably many second-countable Hausdorff

manifolds, possibly with boundary or corner. This assumption is satisfied in our case since

A is a manifold in R
n2

of dimension n2 − n.

2. We need W (α, z) to be differentiable with respect to z and the derivative to be continuous

with respect to α and z. This is satisfied in our case given the form (3).

3. It must be that for all α1, α2 ∈ A such that α1 6= α2 we have dW(α1,z)
dz 6= dW(α2,z)

dz , where the

derivative here indicates the gradient. We prove this by contraposition. For that purpose,

take α1, α2 ∈ A such that dW(α1,z)
dz = dW(α2,z)

dz . We are going to show that it implies that

α1 = α2. From Proposition 5, it must be that dW(α1,z)
dµi

= ωi (α1, z) = ωi (α2, z) =
dW(α2,z)

dµi
.

Since this is true for all i, it follows that the vector of Domar weights must be the same, that

it ω (α1, z) = ω (α2, z) > 0. Next, differentiate W (α, z) with respect to α◦
il to write

dW (α, z)

dα◦
il

= 2ωi



κil (αil − α◦
il) + κi0





n∑

j=1

αij −
n∑

j=1

α◦
ij







 .

Suppose by contradiction that α1 6= α2. Then there exists a pair i, l such that (αil)1 6= (αil)2.

Without loss of generality, suppose that (αil)1 > (αil)2. Then it must be that
∑n

j=1 (αij)1 <
∑n

j=1 (αij)2 for dW(α1,z)
dα◦

il
= dW(α2,z)

dα◦

il
to hold. Therefore, there exists l′ such that (αil′)1 <

(αil′)2. But then it must be dW(α1,z)
dα◦

il′
< dW(α2,z)

dα◦

il′
. Therefore, we have a contradiction and

α1 = α2.

We have shown that the three properties required by Lemma 1 of Cox (2020) are satisfied. It

follows that P (z ∈ Z∗) = 0 and the planner’s solution is generically unique. As a result, there is a

generically unique efficient equilibrium.

D Proofs

This section contains the proofs of the formal results from the main text.

32This is the functional form we use for the quantitative analyses. In our calibrated model, all elements of the κ
matrix are positive.
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D.1 Proofs of Section 2

Lemma 1. For a given production network α,

p (α) = −L (α) (ε+ a (α)) , (14)

and

y = β′L (α) (ε+ a (α)) , (15)

where a (α) = (logAi (αi) , . . . , logAn (αn)) and L (α) = (I − α)−1 is the Leontief inverse.

Proof. Combining the unit cost equation (9) with the equilibrium condition (12) and taking the

log we find that, for all i,

pi = −εi − ai (αi) +
n∑

j=1

αijpj ,

where ai (αi) = log (Ai (αi)) . This is a system of linear equations whose solution is (14). The

log price vector is also normally distributed since it is a linear transformation of normal random

variable. Combining with (7) yields (15).

Corollary 1. For a fixed network α:

1. The impact of a change in firm-level expected TFP µi on expected GDP E [y] is given by

∂ E [y]

∂µi
= ωi.

2. The impact of a change in firm-level volatility Σij on the variance of GDP V [y] is given by33

∂ V [y]

∂Σij
=







ω2
i i = j,

2ωiωj i 6= j.

Proof. (17) implies that ∂ E[y(α)]
∂µi

= β′L (α) 1i. Since P ′C = WL = 1 by the household’s budget

constraint, we need to show that β′L (α) 1i = PiQi to complete the proof of the first result. From

(29), we know that PiCi = βi. Using Shepard’s Lemma together with the marginal pricing equation

(12), we can find the firm’s factor demands equations

PjXij = αijPiQi

Li =



1−
n∑

j=1

αij



PiQi. (32)

33For i 6= j, the following derivative simultaneously changes Σij and Σji to preserve the symmetry of Σ.
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Using these results, we can write the market clearing condition (13) as

PiQi = βi +
n∑

j=1

αjiPjQj .

Solving the linear system implies

β′L (α) 1i = PiQi, (33)

which proves the first part of the proposition.

For the second part of the result, differentiating (18) with respect to Σij and holding Σ sym-

metric yields

∂V [y (α)]

∂Σij
=







β′L (α) 1i1
′
iL (α)′ β i = j,

β′L (α)
[

1i1
′
j + 1j1

′
i

]

L (α)′ β i 6= j
=







ω2
i i = j,

2ωiωj i 6= j,

which is the result.

Lemma 2. λ (α∗), ki (αi, α
∗) and qi (α

∗) are normally distributed and the technique choice problem

of the firm can be written as

α∗
i ∈ arg min

αi∈Ai

E [ki (αi, α
∗)] +

1

2
V [ki (αi, α

∗)] + Cov [ki (αi, α
∗) , λ (α∗) + qi (α

∗)] . (19)

Proof. We first consider the stochastic discount factor. (31) shows that aggregate consumption can

be written as a function of prices. Combining that equation with (6) we can write λ = log (Λ) as

λ (α∗) = − (1− ρ)

n∑

i=1

βipi (α
∗) (34)

Taking the log of (9) yields

ki (αi, α
∗) = − (εi + a (αi)) +

n∑

j=1

αijpj (α
∗) . (35)

Both λ (α∗) and ki (αi, α
∗) are normally distributed since they are linear combinations of ε and the

log price vector, which is normally distributed by Lemma 1.

Turning to the problem of the firm, we can write (11) as

α∗
i ∈ arg min

αi∈Ai

E [ΛQiKi (αi, P )] , (36)
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or, taking the logs

α∗
i ∈ arg min

αi∈A
E [exp [λ (α∗) + qi (α

∗) + ki (αi, α
∗)]] ,

where qi (α
∗) = logQi (α

∗) and where we emphasize that λ and qi depend only on the equilibrium

technique choice α∗. From (33), qi is normally distributed and so are all the terms in the exponential.

We can therefore use the expression for the expected value of a lognormal distribution and write

α∗
i ∈ arg min

αi∈A
exp

{

E [λ (α∗) + qi (α
∗) + ki (αi, α

∗)] +
1

2
V [λ (α∗) + qi (α

∗) + ki (αi, α
∗)]

}

.

Taking away the exponentiation, as it is a monotone transformation, and E [λ (α∗) + qi (α
∗)] since

it does not affect the minimization yields

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗) + qi (α

∗) + ki (αi, α
∗)] .

We can expend that expression as

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗) + qi (α

∗)] +
1

2
V [ki (αi, α

∗)]

+ Cov (ki (αi, α
∗) , λ (α∗) + qi (α

∗))

The term V [λ (α∗) + qi (α
∗)] can be dropped as it does not affect the optimization and we find

(19).

For later derivations, it is also convenient to write (36) in terms of Pi as

α∗
i ∈ arg min

αi∈Ai

E

[

Λ
β′L (α∗) 1i

Pi
Ki (αi, P )

]

where we have used (33). We can drop β′L (α∗) 1i ≥ 0 since it is deterministic and does not depend

on αi. Going through the same steps as above, the firm’s problem becomes

α∗
i ∈ arg min

αi∈A
E [ki (αi, α

∗)] +
1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] . (37)

Proposition 1. An equilibrium exists.

Proof. We group here the proofs of Lemma 3 and Proposition 1. We proceed in three steps. First

we show that there is a unique technique αi that solves the problem of the firm, i.e. Ki is a function.

Second, we show that that function is continuous. Finally, we use a fixed-point theorem to show

the existence of an equilibrium.

Step 1. We show that the right-hand side of (37) is a strictly concave function. First, note
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that from (35) we can write

E [ki (αi, α
∗)] = E



− (εi + a (αi)) +
n∑

j=1

αijpj (α
∗)





= −a (αi) + E
[
−εi − α′

iL (α∗) (ε+ a (α∗))
]

which is strictly convex in αi since a (αi) = logAi (αi) is strictly concave by Assumption 1.

Similarly, combining (34) and (35) we can write

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] =

1

2
V



− (εi + a (αi))− pi (α
∗) +

n∑

j=1

(αij − (1− ρ) βj) pj (α
∗)



 .

We can remove the term a (αi) from the variance as it is not stochastic. Combining with the

equilibrium price equation (14), we get

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)] =

1

2
V
[
−εi + 1′iL (α∗) (ε+ a (α∗))− (αi − (1− ρ) β)′ L (α∗) (ε+ a (α∗))

]

=
1

2
V
[
−εi − (αi − 1i − (1− ρ) β)′ L (α∗) (ε+ a (α∗))

]

where 1i is a column vector full of zeros, except for a 1 at location i. Once again we can drop the

term in a (α∗) as it is non stochastic. Define the row vector B as

B (αi, α
∗) = − (αi − 1i − (1− ρ) β)′ L (α∗)− 1′i,

where β = (β1, . . . , βn) is a column vector. Then

V [λ (α∗)− pi (α
∗) + ki (αi, α

∗)] = B (αi, α
∗)ΣB (αi, α

∗)′ ,

where Σ is the covariance matrix of ε. The right-hand side will have a term that is linear in αi,

and that therefore does not affect the concavity of the expression, and the quadratic term

α′
iL (α∗) ΣL (α∗)′ αi.

The matrix L (α∗)ΣL (α∗)′ is positive semi-definite since Σ, as it is covariance matrix, is positive

semi-definite. To see this, note that for any column vector x ∈ R
n we have

x′L (α∗) ΣL (α∗)′ x = y′Σy ≥ 0

where y = L (α∗)′ x and the last inequality follows from the fact that Σ is positive semi-definite.

The expression V [λ (α∗)− pi (α
∗) + ki (αi, α

∗)] is therefore convex in αi. Since the sum of a strictly
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convex function and a convex function is strictly convex, the expression

E [ki (αi, α
∗)] +

1

2
V [λ (α∗)− pi (α

∗) + ki (αi, α
∗)]

is strictly convex in the vector αi.

To complete this first step, note that the set of techniques A is convex. Since the problem

of the firm involves the minimization of strictly convex function on a convex set it has a unique

minimizer. The mapping Ki (α
∗) is therefore a function for every i and every α∗ ∈ A.

Step 2. We now show that κi is continuous. To simplify the notation, define

gi (α,α
∗) = E [ki (α,α

∗)] +
1

2
V [λ (α∗)− pi (α

∗) + ki (α,α
∗)] .

where we have temporarily removed the subscript i on the column vector αi to avoid cluttering the

notation.

We will first show that gi (α,α
∗) is continuous. From (34) and (35), λ and k are continuous

functions of α and linear functions of p (α∗). It therefore suffices to show that p (α∗) is continuous.

From (14), we see that p (α∗) is continuous since L (α∗), as a matrix inverse, in continuous and

a (α∗) is continuous by Assumption 1. So gi (α,α
∗) is continuous.

We now turn to the proof of the continuity of Ki. We have already shown that g is strictly convex

in α so there is a unique minimizer Ki (α
∗) = argminα gi (α,α

∗). Take a sequence α∗
k → α∗

⋆ and

let αk = Ki (α
∗
k) and α⋆ = Ki (α

∗
⋆). Choose any subsequence I ⊂ N, then αk has an accumulation

point α′
k since A is compact. Since g (αk, α

∗
k) ≤ g (α,α∗

k) for all α ∈ A and k ∈ I we have, by

continuity of g, that gi (α
′
k, α

∗) ≤ gi (α,α
∗) for all α ∈ A and since the minimizer is unique it must

be that α′
k = α⋆. As a result, αk → α⋆ and κi is continuous.

Step 3. We have shown that the mapping Ki (α
∗) is continuous for all i = 1, . . . , n. Define

the mapping K (α∗) = (K1 (α
∗) , . . . ,Kn (α

∗)). Then K (α∗) is a continuous mapping from A (a

compact and convex set) to itself. Therefore, by Brouwer’s fixed-point theorem K has a fixed point

and an equilibrium exists.

Proposition 2. There exists a Pareto efficient equilibrium.

Proof. Since we only have one agent in the economy, any Pareto efficient allocation must maximize

the utility of the representative household. Under a given network and a given productivity shock

ε the first welfare theorem applies and the equilibrium is efficient. The consumption of the planner
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is therefore given by (15). Taking a step back, the efficient production network must therefore solve

max
α∈A

E [u (Y )] = max
α∈A

1

1− ρ
E [exp ((1− ρ) log Y )]

= max
α∈A

1

1− ρ
exp

(

(1− ρ) E [log Y ] +
1

2
(1− ρ)2 V [log Y ]

)

(38)

= max
α∈A

E [log Y ]−
1

2
(ρ− 1)V [log Y ]

where we have used the fact that log Y is normally distributed. The rest of the proof compares the

first-order conditions of the planner and of the equilibrium.

First-order conditions of the planner. Using (17) and (18), we can write (38) as

max
α∈A

β′L (α) (µ+ a (α)) +
1

2
(1− ρ) β′L (α) ΣL (α)′ β.

The first-order conditions are

0 = β′
(

∂

∂αij
L (α)

)(

µ+ a (α) +
1

2
(1− ρ)ΣL (α)′ β

)

+ β′L (α)

(
∂

∂αij
a (α) +

1

2
(1− ρ)Σ

(
∂

∂αij
L (α)

)′
β

)

+ µ
ij
− γi

where µ
ij

are the Lagrange multipliers on the constraints on αij ≥ 0 and γi is the Lagrange

multiplier on the constraint
∑

j αij ≤ αi.
34 Now,

∂

∂αij
L (α) =

∂

∂αij
(I − α)−1 = − (I − α)−1

[
∂

∂αij
(I − α)

]

(I − α)−1 (39)

= (I − α)−1 [Oij ] (I − α)−1 = L (α)OijL (α) (40)

where Oij = 1i1
′
j is a matrix full of zero except for a one at element (i, j). Plugging back in and

grouping terms yields

0 = β′L (α) 1i1
′
jL (α) [µ+ a (α)] + β′L (α) 1i

∂

∂αij
ai (α)

+ (1− ρ)β′L (α) 1i1
′
jL (α) ΣL (α)′ β + µ

ij
− γi

Since β′L (α) 1i is a strictly positive scalar we can divide the whole equation by it to find

34Note that
∑

j αij ≤ αi < 1 implies that αij < 1, so we do not need to explicitly consider a constraint αij ≤ 1.
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0 = 1′jL (α) [µ+ a (α)] +
∂

∂αij
ai (α) + (1− ρ) 1′jL (α) ΣL (α)′ β (41)

+
(
β′L (α) 1i

)−1
(

µ
ij
− γi

)

(42)

First-order conditions in the equilibrium. We can repeat similar steps for the equilibrium.

Combining (37) with (14), (34) and (35), we find that firm i’s problem can be written as

α∗
i = arg min

αi∈Ai

−a (αi)− α′
iL (α∗) (µ+ a (α∗))

+
1

2

(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
Σ
(
(αi − 1i − (1− ρ) β)′ L (α∗) + 1′i

)′
.

Differentiating with respect to αij we can write the first-order conditions as

0 = −
∂a (αi)

∂αij
− 1′jL (α∗) (µ+ a (α∗)) +

1

2

(
1′jL (α∗)

)
Σ
(
(αi − 1i − (1− ρ) β)′ L (α∗) + 1′i

)′

+
1

2

(
(αi − 1i − (1− ρ) β)′ L (α∗) + 1′i

)
ΣL (α∗)′ 1j + µe

ij
− γei

or

0 = −
∂a (αi)

∂αij
− 1′jL (α∗) (µ+ a (α∗))

+
(
(αi − 1i − (1− ρ)β)′ L (α∗) + 1′i

)
ΣL (α∗)′ 1j + µe

ij
− γei ,

where the Lagrange multipliers have a superscript e to indicate the equilibrium. In equilibrium

α = α∗ and so

−
∂a (α∗

i )

∂αij
− 1′jL (α∗) (µ+ a (α∗)) +

(
(α∗

i − 1i − (1− ρ) β)′ L (α∗) + 1′i
)
ΣL (α∗)′ 1j + µe

ij
− γei = 0.

Finally, we can show that (1i − α∗
i )

′ L (α∗)− 1′i = 0 by right-multiplying both sides by (L (α∗))−1.

As a result, the first-order conditions become

−
∂a (α∗

i )

∂αij
− 1′jL (α∗) (µ+ a (α∗))− (1− ρ) β′L (α∗) ΣL (α∗)′ 1j + µe

ij
− γei = 0.

Notice that these are the same first-order conditions (up to a normalization of the Lagrange multi-

pliers) as the planner’s (equation 41). The complementary slackness conditions are also the same

in both problems. As a result, any equilibrium allocation also satisfied the planner’s first-order

conditions and vice versa.
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Corollary 2. The equilibrium production network α∗ solves

max
α∈A

E [y (α)]−
1

2
(ρ− 1)V [y (α)] , (21)

where GDP y is given by (15).

Proof. This is an intermediate result that was proven at (38) in the proof of Proposition 2.

D.2 Proofs of Section 5

Proposition 3. The Domar weight ωi of firm i is increasing in µi and decreasing in Σii.

Proof. Fix the initial mean and variance-covariance matrix at µ0 and Σ0, and denote the op-

timal network by α∗ (µ0,Σ0
)
. Now, consider an increase in µi from µ0

i to µ1
i (holding other

elements of µ and Σ fixed). The welfare changes from W
(
α∗ (µ0

i , µ
0
−i,Σ

0
)
;µ0

i , µ
0
−i,Σ

0
)

to

W
(
α∗ (µ1

i , µ
0
−i,Σ

0
)
;µ1

i , µ
0
−i,Σ

0
)
, which, by Proposition 5, can be written as

W
(
α∗ (µ1

i , µ
0
−i,Σ

0
)
;µ1

i , µ
0
−i,Σ

0
)
= W

(
α∗ (µ0

i , µ
0
−i,Σ

0
)
;µ0

i , µ
0
−i,Σ

0
)
+

∫ µ1
i

µ0
i

ωi

(
µi, µ

0
−i,Σ

0
)
dµi.

Now suppose instead that the network is fixed at its original value α∗ (µ0
i , µ

0
−i,Σ

0
)
. From Equations

(17) and (18), a change in µi affects welfare only through its impact on expected GDP. By Lemma

1, the change in welfare can be written as

W
(
α∗ (µ0

i , µ
0
−i,Σ

0
)
;µ1

i , µ
0
−i,Σ

0
)
= W

(
α∗ (µ0

i , µ
0
−i,Σ

0
)
;µ0

i , µ
0
−i,Σ

0
)
+ ωi

(
µ0
i , µ

0
−i,Σ

0
) (

µ1
i − µ0

i

)
.

Since the initial network α∗ (µ0
i , µ

0
−i,Σ

0
)

is attainable at
(
µ1
i , µ

0
−i,Σ

0
)
, it must be that

W
(
α∗ (µ1

i , µ
0
−i,Σ

0
)
;µ1

i , µ
0
−i,Σ

0
)
≥ W

(
α∗ (µ0

i , µ
0
−i,Σ

0
)
;µ1

i , µ
0
−i,Σ

0
)
. Because µ1

i can be picked

arbitrary close to µ0
i , it must therefore be that ωi

(
µ1
i , µ

0
−i,Σ

0
)
≥ ωi

(
µ0
i , µ

0
−i,Σ

0
)
, or dωi

dµi
≥ 0.

For the second part of the proposition, recall that dW
dΣii

= (1− ρ)ω2
i by Proposition 5. Using

analogous steps, we then can establish the second part of this proposition.

Lemma 4. Let α∗ ∈ int (A) be the equilibrium network and suppose that Assumption 2 holds.

There exists a Σ > 0 such that if |Σij| < Σ for all i, j, there is a neighborhood around α∗ in which

(i) an increase in µj leads to an increase in the shares α∗
kl for all k, l;

(ii) an increase in Σjj leads to a decline in the shares α∗
kl for all k, l;

(iii) an increase in Σij leads to a decline in the shares α∗
kl for all k, l.

Proof. Point (i). Away from the constraints, the first-order conditions of the planner are
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Fjk :=
∂aj
∂αjk

+ 1′kL (µ+ α) + (1− ρ) β′LΣL′1k = 0.

To investigate how α changes with µi, we use the implicit function theorem. First, differentiate Fjk

with respect to µi to find

∂Fjk

∂µi
= 1′kL1i = Lki.

Then

∂F

∂µi
=











(
∂F1·
∂µi

)′

(
∂F2·
∂µi

)′

...
(
∂Fn·

∂µi

)′











= 1n×1 ⊗ (L1i) ,

where 1n×1 is an n× 1 column vector of ones, ∂F
∂µi

is an n2 × 1 column vector which consists of the

n column vectors
(
∂Fj·

∂µi

)′
with elements

(
∂Fjk

∂µi

)

k=1,...,n
.

Next, differentiate Fjk with respect to αlm to get

∂Fjk

∂αlm
=

∂2aj
∂αjk∂αlm

+ 1′kL1l
∂al
∂αlm

+ 1′kL
(
1l1

′
m

)
L (µ+ a)

+ (1− ρ) 1′kLΣ
(
β′L1l1

′
mL
)′
+ (1− ρ)β′LΣ

(
1′kL1l1

′
mL
)′

=
∂2aj

∂αjk∂αlm
+ (1− ρ) 1′kLΣ

(
β′L1l1

′
mL
)′
+ Lkl








∂al
∂αlm

+ 1′mL (µ+ a) + (1− ρ)β′LΣL′1m
︸ ︷︷ ︸

=Flm=0







,

where we use the first-order condition to set the last term to 0.

Now, denote by A the n2 × n2 block-diagonal matrix with the n blocks A1, A2, . . . , An along

the main diagonal such that (Aj)kl =
(

∂aj
∂αjk∂αjl

)

k,l=1,...,n
. Denote by D the n × n2 matrix

(1− ρ)
[(
βTL

)
⊗ (LΣL′)

]
. Then denote by B the n2 × n2 matrix that consists of n copies of

D, i.e. B = 1n×1 ⊗D. Then, by the implicit function theorem, we have











(
∂α1·
∂µi

)′

(
∂α2·
∂µi

)′

...
(
∂αn·

∂µi

)′











= − (A+B)−1 ∂F

∂µi
. (43)

We will now show that when Σ = 0 (and so B = 0), all the elements on the left-hand side of (43)
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are positive. Since the right-hand side of (43) is continuous in the elements of Σ, the left-hand side

will remain positive for small Σ.

We first establish that the elements of −A−1 are positive. Since ai is strictly concave by

Assumption 1, Ai is strictly negative definite for all i. As, in addition, Weak Complementarity

(Assumption 2) holds, −Ai is a (non-singular) M-matrix and so its inverse −A−1
i is nonnegative.

The diagonal elements of −A−1
i are also strictly positive. To see this, note that since Ai is Hermitian,

so is A−1
i , and we know from the Rayleigh quotient that

λmin

(
A−1

i

)
≤

x′A−1
i x

x′x
≤ λmax

(
A−1

i

)
,

where λmin

(
A−1

i

)
and λmax

(
A−1

i

)
are the smallest and largest eigenvalues of A−1

i , respectively,

and where x is any nonzero vector. By setting x = 1t, the tth basis vector we get λmin

(
A−1

i

)
≤

(
A−1

i

)

tt
≤ λmax

(
A−1

i

)
. Since the eigenvalues of Ai are strictly negative by Assumption 1, we

know that λmin

(
A−1

i

)
= 1/λmax (Ai) and λmax

(
A−1

i

)
= 1/λmin (Ai). We therefore have that

(λmax (Ai))
−1 ≤

(
A−1

i

)

tt
≤ (λmin (Ai))

−1 , and so all diagonal elements of A−1
i are strictly negative

and bounded away from zero by some number 0 > A ≥
[
A−1

i

]

tt
, and so the diagonal elements of

−A−1
i are positive.

Now, due to the block-diagonal structure of A, it is true that −A−1 is a matrix with all positive

diagonal elements and nonnegative off-diagonal elements. Notice also that all elements of ∂F
∂µi

are

elements of the Leontief inverse matrix L = I + α + α2 + . . . and are positive since αi ∈ int (Ai)

for all i.

Now, in the case of no uncertainty, Σ = 0, B = 0 and the right-hand side of 43 must be

strictly positive and so is the vector of ∂αkl

∂µi
. In this case, both parts of the Lemma hold. If there

is uncertainty (Σ = 0), the result still holds if all the elements of Σ are sufficiently close to zero.

Indeed, − (A+B)−1 is continuous in Σ and, thus there exists Σ > 0 such that if |Σij | < Σ for all

i, j ∈ N 2 then elements of − (A+B)−1 ∂F
∂µi

have the same signs as the corresponding elements of

−A−1 ∂F
∂µi

.35

Point (ii). The proof is analogous to that of point (i). We differentiate the first order conditions

with respect to a diagonal element of Σ

∂F

∂Σii
= (1− ρ)

[
1n×1 ⊗

((
β′L1i

)
(Lιi)

)]
= (1− ρ)

(
β′L1i

) ∂F

∂µi
.

Since ρ > 1 and ωi = β′L1i > 0 for all i ∈ N , the result follows from the same steps as in point (i)

Point (iii). The proof is analogous to that of point (i). We differentiate the first order

35Note that (A+B)−1 exists for small Σ because A the eigenvalues of A are strictly negative (and so det (A) 6= 0
and A is invertible) and that the determinant of A + B is a continuous function of Σ. Note also that as we move
Σ away from 0 the optimal matrix α changes and so do A and L. But these changes are continuous so the strict
inequality − (A+B)−1 ∂F

∂µi
> 0 is preserved for small enough Σ.

57



conditions with respect to an off-diagonal element of Σ. To preserve the symmetry of Σ, we

simultaneously change Σij and Σji to find

∂F

∂Σij
= (1− ρ)

[
1n×1 ⊗

((
β′L1i

)
(Lιj) +

(
β′L1j

)
(Lιi)

)]
= (1− ρ)

[
(
β′L1i

) ∂F

∂µj
+
(
β′L1j

) ∂F

∂µi

]

.

Since ρ > 1 and ωi = β′L1i > 0 for all i ∈ N , the result follows from the same steps as in point

(i).

Proposition 4. Uncertainty lowers the expected value of GDP, such that E [y] is largest when

Σ = 0.

Proof. The proof follows from Lemma 2. Without uncertainty (Σ = 0), the term V [c (α)] is 0 for

all α, and so α is set to maximize E [c (α)]. When uncertainty is introduced, the objective function

also depends on V [c (α)] and so E [c] is no longer maximized.

Proposition 5. When the network α is free to adjust to changes in µ and Σ, the following holds.

1. The impact of an increase in µi on expected welfare is given by

dW

dµi
=

∂ E [y]

∂µi
= ωi. (22)

2. The impact of an increase in Σij on expected welfare is given by

dW

dΣij
=







−1
2 (ρ− 1)

(
∂ E[y]
∂µi

)2
= −1

2 (ρ− 1)ω2
i i = j,

− (ρ− 1) ∂ E[y]
∂µi

∂ E[y]
∂µj

= − (ρ− 1)ωiωj i 6= j.
(23)

Proof. Recall from Lemma 2 that the equilibrium α∗ solves the welfare-maximization problem

W (µ,Σ) = max
α∈A

{

E [y (α)]−
1

2
(ρ− 1)V [y (α)]

}

.

Since that the objective function and the constraints are continuously differentiable functions of α,

we can apply the envelope theorem, such that

dW

dµi
=

∂ E [y]

∂µi
= β′L (α) 1i = ωi,

and

dW

dΣij
= −

1

2
(ρ− 1)

∂V [y (α)]

∂Σij
= (1− ρ)β′L (α)

(
1i1

′
j

)
L (α)′ β = (1− ρ)ωiωj,
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where we used the expressions for the expectation and the variance of output given by (17) and

(18).

Proposition 6. Let α∗ (µ,Σ) be the equilibrium production network under µ and Σ and let

W (α, µ,Σ) be the welfare of the household under the network α. Then, the change in welfare

after a shock to (µ,Σ) is larger under the flexible network than under the fixed network, in the

sense that

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) ≥ W

(
α∗ (µ,Σ) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) ,

where (µ′,Σ′) denotes the after-shock values.

Proof. By definition, the change in welfare under the flexible network is

W
(
α∗ (µ′,Σ′) , µ′,Σ′)−W (α∗ (µ,Σ) , µ,Σ) .

By Proposition 2, α∗ (µ′,Σ′) maximizes welfare under (µ,Σ) so that

W
(
α∗ (µ′,Σ′) , µ′,Σ′) ≥ W

(
α∗ (µ,Σ) , µ′,Σ′) .

Combining the two expression gives the result.
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