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Abstract

THANK is a tractable heterogeneous-agent New-Keynesian model that captures analytically key
micro-heterogeneity channels of quantitative-HANK: cyclical inequality; idiosyncratic risk and self-
insurance, precautionary saving; and realistic propensities-to-consume. I use it for a full-fledged
New-Keynesian macro analysis: determinacy with interest-rate rules, solving the forward-guidance
puzzle, amplification-multipliers, liquidity traps, and optimal policy. Amplification requires counter-
cyclical while solving the puzzle requires pro-cyclical inequality—a Catch-22, resolved by adding sep-
arate (pro)cyclical risk sources. Price-level-targeting ensures determinacy and is puzzle-free, regard-
less of inequality and risk cyclicality. Optimal policy with heterogeneity features a novel inequality-
stabilization motive generating higher inflation volatility and, in a liquidity trap, shorter forward-
guidance duration.
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1 Introduction

A spectre is haunting Macroeconomics—the spectre of Heterogeneity. Some of the world’s leading
policymakers have been asking for research on it, and its other name, “Inequality”, in connection
with stabilization, monetary and fiscal policies. For until recently, research on these two topics has
been, with few exceptions, largely disconnected. Yet a burgeoning field emerged as a true synthesis
of these two lodes: heterogeneous-agent (HA) and New Keynesian (NK), leading to HANK.1

The vast majority of contributions consists of quantitative models, involving heavy machinery
for their resolution, the price to pay to achieve the realism conferred by matching the micro data.2

Yet given that much of the post-crisis bad press of existing DSGE models refers to their being too
complex and somewhat black-box, it seems important to build simple tractable representations of
these models to gain analytical insights into their underlying mechanisms and make their policy
conclusions sharper and easier to communicate. The two, quantitative and analytical approaches
are thus strongly complementary and reinforce each other.

With this paper, I wish to propose a tractable HANK model, THANK, to achieve two purposes.3

First, argue that it is a good representation, along several key dimensions, for rich-heterogeneity
quantitative HANK models. And second, use it for a full-fledged positive and normative NK analy-
sis in closed form: determinacy of interest rate rules, curing the forward guidance puzzle, amplifi-
cation and fiscal multipliers; and optimal monetary policy (including in liquidity traps). The ethos
is thus to maximize micro heterogeneity into a macro model under the constraint of tractability.

THANK is a three-equation model isomorphic to the textbook representative-agent (RANK)
model, which it nests; yet it captures four key dimensions that the recent quantitative literature finds
important for the study of macro fluctuations with heterogeneity. First, it features a key aggregate-
demand (AD) amplification: the "New Keynesian cross" present in any HANK model where some
households are constrained hand-to-mouth while the unconstrained self-insure against the risk of
becoming constrained using some liquid asset. Heterogeneity shapes equilibrium outcomes through
cyclical inequality: how the distribution of income between constrained and unconstrained changes
over the cycle, e.g. who suffers more in recessions. This originates in the TANK model in Bilbiie
(2008) and is elaborated in the companion paper Bilbiie (2019). The channel generalizes to the subse-
quent important rich-heterogeneity quantitative literature, as shown by Auclert’s (2019) “earnings
heterogeneity channel” whereby amplification occurs when the covariance of MPCs and individual
income elasticities is positive. In subsequent work Patterson (2019) provides compelling evidence
for countercyclical income inequality across the MPC distribution.4

Second, my analytical model incorporates uninsurable idiosyncratic uncertainty (and precau-

1The abbreviation is due to Kaplan, Moll, and Violante (2018); the opening sentence is a paraphrase of Marx and Engels.
2Overwhelming evidence was long available for the failure of an aggregate Euler equation, for a high fraction of households

having zero net worth even in the U.S, and a high marginal propensity to consume MPC out of income, "hand-to-mouth".
Important work clarified the link between liquidity constraints and MPCs: some "wealthy" households behave as hand-to-
mouth because this wealth is illiquid (Kaplan and Violante (2014)), perhaps because it consists of a mortgaged house (Cloyne,
Ferreira, and Surico (2015)), and even if housing is partially liquid (Gorea and Midrigan (2017)).

3The letter T in THANK stands for "tractable" and for "two" (states-types, and assets); the acronym thus symbolizes this
model’s being a bridge between HANK and the two-agent NK model TANK, the version in Bilbiie (2008) centered on the
asset market participation (and profits) distinction. Galí, Lopez-Salido and Valles (2007) embedded a different distinction in a
quantitative NK model, between holding or not physical capital, and studied numerically the effects of government spending
and determinacy properties, that Bilbiie (2008) derived analytically .

4Heathcote et al (2010) provide important early evidence on individual cyclicalities across the income distribution.
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tionary, self-insurance saving) and the distinction between liquid and illiquid assets, staples of quan-
titative HANK models, e.g. Kaplan et al (2018). Third, it delivers in equilibrium the key (stylized)
statistical properties of idiosyncratic income emphasized by a large empirical literature: autocor-
relation, a flexible notion of cyclicality of "risk" (variance) that may or not be related to cyclical
inequality and skewness, thus disentangling several conceptually distinct channels; and negative
skewness and leptokurtosis (e.g. Guvenen et al (2014)). Finally, the version with liquidity allows
an analytical solution for the key "intertemporal MPC" statistics that Auclert, Rognlie, and Straub
(2018) introduced in a quantitative HANK for their distinct, "intertemporal" Keynesian cross.

To the best of my knowledge and to this date, THANK is the only tractable framework, of the
several reviewed below, that simultaneously captures all of these important features of the rich
micro-heterogeneity models. This, in my view, makes it particularly suitable for the full (short-term)
macro analysis pursued in this paper.

Other than this rich AD side, my model includes a standard Phillips curve and studies monetary
policy both as interest rate rules and as aggregate welfare-maximizing optimal policy. Under a fur-
ther inconsequential simplification, the model reduces to one first-order difference equation whose
root governs aggregate dynamics and captures the equilibrium AD effect of future news: This root
depends chiefly on the cyclicality of inequality, that is on the constrained agents’ income elasticity to
aggregate income χ. As shown formally and discussed at length in text, AD-amplification occurs
when inequality is countercyclical (χ > 1): an increase in demand leads to a more-than-proportional
increase in constrained agents’ income and a further demand expansion, the intertemporal version
of which delivers compounding in the aggregate Euler equation. Conversely, when inequality is pro-
cyclical (χ < 1), there is AD-dampening and Euler-equation discounting.

The determinacy properties of Taylor rules reflect this intuition. When inequality is countercyclical,
the central bank needs to be (possibly much) more aggressive than the "Taylor principle" (increasing
nominal interest more than one-to-one with inflation) to rule out indeterminacy. Whereas in the dis-
counting, procyclical-inequality case, the Taylor principle is sufficient but not necessary: for a large
region there is determinacy even under a peg, undoing the Sargent-Wallace result. While indeter-
minacy is pervasive with heterogeneity under countercyclical inequality, I show that the Wicksellian
price-level targeting rule, introduced in RANK by Woodford (2003) and Giannoni (2014), works
wonders: some, no matter how small response to the price level ensures determinacy in THANK, no
matter how countercyclical inequality and how strong the Euler-equation compounding.

The Catch-22 for HANK pertains to monetary and fiscal policies’ effects and multipliers. The
condition needed for heterogeneity to deliver amplification relative to RANK, which is what much
of the literature uses HANK models for, is countercyclical inequality χ > 1. Yet ruling out the
forward guidance puzzle, that the later an interest rate cut takes place the larger its effect today (Del
Negro, Giannoni, and Patterson, 2012), requires the opposite: procyclical inequality χ < 1. The
latter generates enough discounting on the AD side to compensate for the compounding through
the supply side causing the puzzle in RANK (evidently, χ > 1 implies an aggravation of the puzzle).

A way out of the Catch-22 consists of considering distinct, non-inequality-related sources of cyclical
("pure") risk. My model includes a novel formalization of such channels emphasized previously by
others as reviewed in detail below. Procyclical risk can also give rise to aggregate-Euler discounting
and solve the puzzle, through a different mechanism: if an AD expansion leads to an increase in
uninsurable risk, precautionary saving leads agents to cut back demand. This is orthogonal to the
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cyclical-inequality channel that my work emphasizes: it operates even when inequality is acyclical.
A nagging policy implication is that empirically, both channels seem to be countercyclical, implying
that the puzzle is (double-)aggravated and determinacy requirements with a Taylor rule become
very stringent. In such instances, the Wicksellian price-level targeting interest rate rule which deliv-
ers determinacy also cures the puzzle, even when the model delivers amplification.

Optimal monetary policy in quantitative HANK is subject to phenomenal technical challenges,
many of which are resolved in an important recent contribution by Bhandari, Evans, Golosov, and
Sargent (2019); I calculate optimal policy analytically in THANK by approximating aggregate wel-
fare to second-order, deriving a quadratic objective function for the central bank. This encompasses
a novel inequality motive relative to RANK, implying optimally tolerating more inflation volatility
when more households are constrained, because inflation volatility is costly like a tax on financial
assets. The additional inequality motive is not affected by inequality’s cyclicality: what matters
for optimal policy is how different agents are, not how their being different changes over the cy-
cle. While inequality is of the essence for optimal policy, risk is not—insofar as the policymaker
shares society’s first-best (perfect-insurance) objective. Risk does matter for implementation: with
countercyclical inequality and idiosyncratic risk, the interest-rate rule that implements optimal dis-
cretionary policy may entail cutting real rates, when in RANK it would imply increasing them.
Furthermore, optimal policy under commitment ensures determinacy regardless of heterogeneity
and inequality-cyclicality and, while affected by similar inequality considerations, amounts to a
form of price-level targeting. In a liquidity trap, optimal policy amounts to forward guidance, the
duration of which is eventually decreasing with the degree of heterogeneity, even in the "amplifica-
tion", countercyclical-inequality case; the reason is that amplification also applies to the welfare cost
of forward guidance and not only to its benefit, generating inefficient inequality volatility.

Related Literature—Quantitative HANK models that model explicitly rich income risk hetero-
geneity and the feedback effects from equilibrium distributions to aggregates are being increasingly
used to address a wide spectrum of issues in macroeconomic policy.5

This paper belongs to a literature developing analytical representations of the richer-heterogeneity
models in order to gain insights into their mechanisms. Appendix A contains a detailed discussion
of this paper’s connection to that literature, including my previous work. Most contributions fo-
cus on the role of cyclical income risk without disentangling the role played by cyclical inequality.
The clearest example is Acharya and Dogra (2018), which isolates the cyclical-risk channel by using
CARA preferences to simplify heterogeneity and shows that intertemporal amplification may occur
purely as a result of income volatility going up in recessions. With this different mechanism, that
paper also studies determinacy and puzzles making explicit reference to the analysis in this paper’s
previous version.6 Ravn and Sterk (2018) study a complementary analytical HANK with endoge-
nous (through search and matching) unemployment risk, against which workers self-insure. They
analyze determinacy and the forward guidance puzzle, while Challe (2019) analyzes optimal mon-
etary policy in that model. Werning (2015) studies the possibility of AD amplification/dampening

5The effects of transfers (Oh and Reis, 2012); liquidity traps (Guerrieri and Lorenzoni, 2017); job-uncertainty-driven re-
cessions (Ravn and Sterk, 2017; den Haan, Rendahl, and Riegler, 2018); monetary transmission (Gornemann, Kuester, and
Nakajima, 2016; Auclert, 2018; Debortoli and Gali, 2018; Auclert and Rognlie, 2017); portfolio composition (Bayer et al, 2016
and Luetticke, 2018); fiscal policy (Ferrière and Navarro, 2018, Hagedorn, Manovskii, and Mitman, 2018; Auclert, Rognlie, and
Straub, 2018; McKay and Reis, 2016; Cantore and Freund, 2019); the FG puzzle (McKay et al, 2016; Kaplan et al, 2017).

6Also subsequently to this paper, Auclert et al (2018) provided numerical determinacy results emphasizing the cyclicality of
risk in quantitative HANK; Acharya and Dogra (2018) stemmed from a discussion of it meant to provide analytical insights.
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of monetary policy relative to RANK in a different, general model of cyclical risk and market in-
completeness, while Holm (2018) also shows that the effectiveness of monetary policy is reduced
with (yet another model of) procyclical risk. Broer, Hansen, Krusell, and Oberg (2018), in another
analytical HANK, show that wage rigidity can cure some of the uncomfortable implications brought
about by the dynamics and distribution of profits, some of which occur in TANK in Bilbiie (2008).

What distinguishes this paper is, first, the focus on cyclical inequality and its relationship to
(cyclical) risk, decomposed here into a part that is related to inequality and one that is not—but is
instead related in my model to the cyclicality of skewness, an essential feature of the data. Second,
I use THANK as a representation of several channels of quantitative models. And third, the range
of topics touched upon: The modified Taylor principle and determinacy under price-level targeting;
The Catch-22, the tension between solving the puzzle and delivering amplification, i.e. monetary
and fiscal multipliers larger than in RANK; The analysis of liquidity traps; And the analysis of
optimal monetary policy, emphasizing novel distributional channels.

These elements also differentiate the paper from its companion paper, Bilbiie (2019), which ab-
stracts from cyclical risk (and liquidity) focusing on how the TANK cyclical-inequality channel plays
an important role in HANK transmission in and of itself. Both that paper and Debortoli and Galí
(2018) use the TANK version in Bilbiie (2008) to approximate some aggregate implications of some
HANK models (from the literature, for the former; and the authors’ own, for the latter).

Fiscal multipliers under heterogeneity have been analyzed in several quantitative HANK models
cited above and in TANK for spending (Galí et al (2007)), transfers (e.g. Bilbiie, Monacelli and Perotti
(2013)) or both, in liquidity traps (Eggertsson and Krugman (2012)).

Other modifications of the NK model have been proposed recently to solve NK puzzles: chang-
ing the information/expectations structure (Garcia-Schmidt and Woodford (2019), Gabaix (2019)),
pegging interest on reserves (Diba and Loisel (2017)), wealth in the utility function (Michaillat and
Saez (2017), Hagedorn (2018)), or fiscalist equilibria with long-term debt (Cochrane (2017)).7

Finally, this paper is related to studies of optimal policy: in RANK (Woodford (2003); Benigno
(2009); Benigno and Benigno (2003); Eggertsson and Woodford (2003), and many others) and with
heterogeneity in TANKs (Bilbiie (2008); Ascari, Colciago, and Rossi (2017); Nistico (2016); Curdia
and Woodford (2016)). Recent contributions developed complementary insights from different an-
alytical HANKs: Challe (2019); and Bilbiie and Ragot (2016). Finally, important studies tackled
the complex problem of optimal monetary policy under rich heterogeneity in quantitative HANK:
Bhandari, Evans, Golosov, and Sargent (2017) emphasize the importance of inequality motives for
optimal policy leading to deviations from price stability (while Nuño and Thomas (2017) focus on
inflation as redistribution with nominal assets).

2 THANK: An Analytical HANK Model

This section outlines THANK, an analytical HANK model that captures several key channels of
complex HANK models: cyclical inequality, self-insurance in face of idiosyncratic uncertainty, and
a distinction between liquid and illiquid assets. While related to several studies reviewed in the

7The price level can also be determined by the demand for nominal bonds coupled with a supply rule responding to prices,
see Hagedorn (2017) in a different HANK. This is related to but different from (it requires passive fiscal policy) the FTPL (i.a.
Leeper (1991), Woodford (1996)) and to the Wicksellian rule proposed here as discussed in text. Euler-discounting can occur
with several other information imperfections (Angeletos and Lian (2017), Farhi and Werning (2019), Woodford (2018)).
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Introduction, the exact model is to the best of my knowledge novel to this paper and its companion
Bilbiie (2019), which uses a special cases of it (with this paper as its reference for the full model),
focusing on AD amplification of monetary and fiscal policies through a "New Keynesian Cross" and
on using it as a one-channel approximation to richer HANK models.

The model is outlined in detail in Appendix A.1. Four key assumptions pertaining to the asset
market structure simplify the equilibrium and afford an analytical solution. First, there are two
states of the world, constrained hand-to-mouth H and unconstrained "savers" S, between which
agents switch exogenously (idiosyncratic uncertainty). Second, in face of this risk there is full insurance
within type, after idiosyncratic uncertainty is revealed, but limited insurance across types. Third,
different assets have different liquidity: only one of the two assets can be used to self-insure, i.e. is
liquid. Specifically, bonds are liquid: they can be used to self-insure, before idiosyncratic uncertainty
is revealed; while stocks are illiquid, they cannot be used to self-insure. Fourth, I consider two
cases: either zero-liquidity, assuming that there is no equilibrium bond trading, following Krusell,
Mukoyama and Smith (2011)8; or an equilibrium with government-provided liquidity.

The exogenous change of state follows a Markov chain: the probability to stay type S is s, and to
stay type H is h, with transition probabilities 1− s and 1− h respectively; later on, I assume that the
probability s is a function of aggregate activity. I focus on stationary equilibria whereby the mass of
H is the unconditional probability:

λ =
1− s

2− s− h
,

by standard results. At the extreme stands TANK: permanent idiosyncratic shocks (s = h = 1) and
λ fixed at its initial free-parameter value. Other special cases used below include s = h = 0 with
agents oscillating between the two states every other period and λ = 1

2 ; and iid idiosyncratic shocks
s = 1− h = 1− λ, being S or H tomorrow is independent on today’s state.

To characterize the zero-liquidity asset-markets equilibrium (detailed in Appendix A.1), notice
that every period, those who happen to be H would like to borrow, but we assume that they cannot,
e.g. they face a zero borrowing limit. Shares being illiquid, they cannot access that portfolio owned
entirely by S, whoever they happen to be in that period (save for some fiscal redistributive transfer
of its payoff which can also be interpreted as partial "liquidity", detailed below). We thus focus on an
equilibrium where they are constrained hand-to-mouth, consuming all their income: like in TANK,
CH

t = YH
t . Because transition probabilities are independent of history and there is full insurance

within type, all agents who are H in a given period have the same income and consumption.
S are also perfectly insured among themselves in every period by assumption, and would like

to save in order to self-insure against the risk of becoming H. Because shares are illiquid, they can
only use liquid bonds to do that. But since H cannot borrow, if there is no government-provided
liquidity bonds are in zero supply (the no-trade equilibrium of Krusell, Mukoyama, and Smith;
we also consider equilibria with government-provided liquidity below in section 2.3). An Euler
equation prices these possibly non-traded bonds, just like in RANK and TANK, the aggregate Euler
equation prices the possibly non-traded bond. But unlike in RANK and TANK, where there is
no transition and no self-insurance, now the bond-pricing Euler equation takes into account the
possible transition to the constrained H state.

In line with key HANK contributions emphasizing the role of asset liquidity, e.g. Kaplan et al, my

8Other zero-liquidity HANK include Ravn and Sterk (2017), Werning (2015), McKay and Reis (2017), Broer et al (2018), etc.
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model distinguishes, albeit in an extreme way, between liquid (bonds) and illiquid (shares) assets.
Given our four assumptions, the Euler equation governing the bond-holding decision of S self-

insuring against the risk of becoming H is:

(
CS

t

)− 1
σ
= βEt

{
1+ it

1+ πt+1

[
s
(

CS
t+1

)− 1
σ
+ (1− s)

(
CH

t+1

)− 1
σ

]}
, (1)

recalling that we focus on equilibria where the corresponding Euler condition for H holds with
strict inequality (the constraint binds), while the Euler condition for illiquid stock holdings by S is

standard:
(
CS

t
)− 1

σ = βEt

[(
1+ rS

t+1
) (

CS
t+1
)− 1

σ

]
, merely defining the return on shares rS

t .

The rest of the model is exactly like the TANK version in Bilbiie (2008, 2019), nested with s = 1.
Every period, λ households are "hand-to-mouth" H, excluded from asset markets and have no Euler
equation, but do participate in labor markets and make an optimal labor supply decision determin-
ing their income. The remaining 1 − λ agents also work, and trade a full set of state-contingent
securities, including shares in monopolistically competitive firms, thus receiving their profits from
the assets that they also price. The budget constraint of H is CH

t = WtNH
t + T H

t , where C is con-
sumption, w the real wage, NH hours and T H

t fiscal transfers to be spelled out.
All agents maximize present discounted utility defined as previously, subject to the budget con-

straints. The choice of hours worked delivers the standard intratemporal optimality condition for
each j: U j

C

(
Cj

t

)
= WtU

j
N

(
N j

t

)
. With σ−1 defined as before, ϕ ≡ U j

NN N j/U j
N denoting the inverse

labor supply elasticity, and small letters log-deviations from steady-state (to be discussed below),
we have the labor supply for each j: ϕnj

t = wt − σ−1cj
t. Assuming for tractability that elasticities are

identical across agents, the same holds on aggregate ϕnt = wt − σ−1ct.
Firms The supply side is standard. All households consume an aggregate basket of individual

goods k ∈ [0, 1], with constant elasticity of substitution ε > 1: Ct =
(∫ 1

0 Ct (k)(
ε−1)/ε dk

)ε/(ε−1)
.

Demand for each good is Ct (k) = (Pt (k) /Pt)
−ε Ct, where Pt (k) /Pt is good k′s price relative to the

aggregate price index P1−ε
t =

∫ 1
0 Pt (k)

1−ε dk. Each good is produced by a monopolistic firm with
linear technology: Yt(k) = Nt(k), with real marginal cost Wt.

The profit function is: Dt (k) =
(
1+ τS) [Pt(k)/Pt]Yt(k)−WtNt(k)− TF

t ; I assume as a bench-
mark that the government implements the standard NK optimal subsidy inducing marginal cost
pricing: with desired markup defined by P∗t (k)/P∗t = 1 = εW∗t /

[(
1+ τS) (ε− 1)

]
, the optimal

subsidy is τS = (ε− 1)−1. Financing its total cost by taxing firms TF
t = τSYt gives total profits

Dt = Yt −WtNt. This policy is redistributive: since steady-state profits are zero D = 0, it taxes
the holders of firm shares and results in the "full-insurance" steady-state used here as a benchmark
CH = CS = C. Loglinearizing around it, with dt ≡ ln (Dt/Y), profits vary inversely with the real
wage: dt = −wt, an extreme form of the general property of NK models. This series of assumptions
(optimal subsidy, steady-state consumption insurance, zero steady-state profits) is not necessary for
the results and can be easily relaxed, but adopting it makes the algebra more transparent.

Under nominal rigidities, firms’ optimal pricing implies the loglinearized Phillips curve:

πt = β f Etπt+1 + κct, (2)

derived in the Appendix based on Rotemberg pricing. To obtain maximum tractability and closed
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forms, I first focus on the simplest special case:

πt = κct, (3)

nested in (2) above with β f = 0, used previously in a different context in Bilbiie (2016). Appendix
A.3 microfounds this assuming that firms pay a Rotemberg cost relative to yesterday’s market average
price index, rather than to their own individual price (the latter leads to (2)). That is, firms ignore
the impact of today’s price choice on tomorrow’s profits. While over-simplified, this nevertheless
captures a key supply-side NK mechanism—the trade-off between inflation and real activity—and
allows us to isolate and focus on the essence of this paper: AD. The results reassuringly generalize
to including the standard Phillips curve (2), as I show in Appendix D.

The government conducts fiscal and monetary policy. Other than the optimal subsidy discussed
above, the former consists of a simple endogenous redistribution scheme: taxing profits at rate τD

and rebating the proceedings lump-sum to H: T H
t = τD

λ Dt; this is key here for the transmission of
monetary policy, understood as changes in the nominal interest rate it.

Market clearing implies for equilibrium in the goods and labor market respectively Ct ≡ λCH
t +

(1− λ)CS
t =

(
1− ψ

2 π2
t

)
Yt and λNH

t + (1− λ)NS
t = Nt. With uniform steady-state hours N j = N

by normalization and the fiscal policy assumed above inducing Cj = C, loglinearization around a
zero-inflation steady state delivers yt = ct = λcH

t + (1− λ) cS
t and nt = λnH

t + (1− λ) nS
t .

2.1 Cyclical Income Risk and Inequality in THANK

A keystone to this paper and a necessary step in analyzing the model is to define and distinguish
income inequality and risk and assess their cyclicality. I define income inequality as the ratio of
income in the two states Γt ≡ YS

t /YH
t ; in Appendix E.3, I show that this is proportional to standard

inequality measures like the Gini coefficient and generalized entropy. Importantly, as we will see in
the model’s equilibrium inequality is cyclical: it depends on aggregate output Γ (Yt).

In the data and in quantitative HANK models alike, income risk is generally cyclical. Other
analytical HANK frameworks model cyclical idiosyncratic risk as either unrelated (Acharya and
Dogra (2018)) or differently related (Challe et al (2017); Holm (2018); Ravn and Sterk (2017); Werning
(2015)) to liquidity constraints and hand-to-mouth behavior. To capture a component of cyclical
risk that is distinct from cyclical inequality and thus further differentiate from the cited papers, I
assume that the probability of becoming constrained depends on tomorrow’s aggregate demand
1− s (Yt+1).9 If the first derivative of 1− s (.) is positive −s′ (Yt+1) > 0, the probability is higher in
expansions so, insofar as being constrained leads on average to lower income, this makes income
risk procyclical (go up in expansions). Conversely, −s′ (Yt+1) < 0 makes risk countercyclical.

A precise definition of "income risk" is, however, notoriously controversial. The cited literature
customarily employs the variance of idiosyncratic income, found to be countercyclical in the data
by e.g. Storesletten, Telmer, and Yaron (2004); more recently, however, Guvenen, Ozkan, and Song
(2014) argued forcefully in favor of using the negative skewness of the income distribution, and in
particular its cyclicality as a measure of cyclical income risk, see also Mankiw (1986).

9In a model with endogenous unemployment risk like Ravn and Sterk or Challe et al, this happens in equilibrium through
search and matching. This is also related to Werning’s Section 3.4, where nevertheless it is unconditional probabilities (and
population shares) that are cyclical. Here, to capture purely idiosyncratic variation (as opposed to "aggregate") λ is invariant.
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Both of these notions are readily calculated in my model, since individual income follows a two-
state Markov chain with values YS

t and YH
t in the respective states. The analytical characterization

of this process’ key moments is useful both to illustrate a key dimension along which this model is
a representation of complex HANK models, and for calibration and quantitative analysis.

Consider first the conditional variance of log income, using that an S agent’s expected income
tomorrow is Et

(
ln YS

t+1| ln YS
t
)
= s (Yt+1) ln YS

t+1 + (1− s (Yt+1)) ln YH
t+1, we immediately find:

var
(

ln YS
t+1| ln YS

t

)
= s (Yt+1) (1− s (Yt+1))

(
ln

YS
t+1

YH
t+1

)2

= s (Yt+1) (1− s (Yt+1)) (ln Γt+1)
2 . (4)

Conditional skewness is also easily calculated as:

skew
(

ln YS
t+1| ln YS

t

)
=

1− 2s (Yt+1)√
s (Yt+1) (1− s (Yt+1))

; (5)

while kurtosis is kurt
(
ln YS

t+1| ln YS
t
)
= [s (Yt+1) (1− s (Yt+1))]

−1 − 3 and first-order autocorrela-
tion of the income process for any of the two states j = S, H:10

corr
(

ln Y j
t+1, ln Y j

t

)
= s+ h− 1 = 1− 1− s

λ
. (6)

Of special importance to fit key micro facts on income distribution in the cross-section are the rel-
ative skewness and kurtosis of the two types: evidence in e.g. Guvenen et al (2014) suggests that the
income of an empirical proxy of S is relatively more negatively skewed and more leptokurtic. It can
be easily shown, comparing (5) with the equivalent formulae for H that both properties are satisfied
in the model if and only if: s > h. This simple two-state model features, albeit in a stylized way,
some key elements of the literature pertaining to income heterogeneity and uncertainty: conditional
idiosyncratic variance that can be cyclical, autocorrelated income processes with left-skewness and
leptokurtosis. The combined conditions for matching the key micro facts are s > 1− h, s > h and
both s and h larger than .79. We use this when calibrating the model below.

To assess the cyclicality of risk and how it is or not related to the cyclicality of inequality de-
pending on the risk measure employed, consider the derivatives with respect to the cycle, denoted
by subscript Y, of the two risk measures respectively, dropping time indices for ease of notation. In
particular, the cyclicality of skewness:

d (skew)
dY

= − sY

2 [s (1− s)]
3
2

(7)

is entirely determined by the cyclicality of the probability to become constrained. When the proba-
bility to become constrained 1− s is increasing in recessions, −sY < 0, risk (in the Mankiw and Gu-
venen et al sense) is countercyclical: negative skewness becomes more negative in recessions, mak-
ing upward income movements less likely and downward income movements more likely therein.

10As standard for Bernoulli distributions there is negative skewness for s > .5 and leptokurtosis (positive excess kurtosis
kurt (.) − 3) outside of the 1

2 ±
1√
12

interval, i.e. for s smaller than 0.21 or larger than 0.79. Notice that s > 0.79 ensures
both negative skewness and leptokurtosis, with s ≥ 1− h ensuring positive autocorrelation.
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Notice that this does not depend on the size of income inequality.
On the other hand, the cyclicality of variance is made of two components:

d (var)
dY

=
1− s

Y

−sYY
1− s

(2s− 1) (ln Γ)2︸ ︷︷ ︸
pure risk

+
ΓYY

Γ
s ln (Γ)2︸ ︷︷ ︸

inequality

 (8)

The first component, akin to an "extensive" margin of risk, is related to the skewness concept
just discussed: risk understood as variance is countercyclical whenever skewness is 1. negative,
2s − 1 > 0 and; 2. decreasing with aggregate activity, −sY < 0. The second component, akin to
an "intensive" margin, is due to cyclical inequality and is unrelated to skewness. When ΓY < 0, risk
is countercyclical because income at the bottom overreacts, increasing variance in both expansions
and recessions. Notice that the former channel operates even whit acyclical inequality ΓY = 0, while
the latter operates even when skewness is acyclical or absent, i.e. the pure-risk channel is turned off.

This simple setup allows nesting several scenarios to disentangle the importance of the corre-
sponding economic mechanisms, and for arbitrary relationship between risk and inequality. Thus,
inequality can be cyclical ΓY ≶ 0 with no impact on risk whatsoever in three scenarios: 1. s = 1,
no transition between states (TANK); 2. s = 0 with agents oscillating between states every other pe-
riod and 1

2 mass in each state; and 3. when approximating the model around a steady-state with no
inequality Γ = 1, whereby income in the two states is rendered uniform by whatever fiscal means.
Notice that in the last case the two channels become entirely orthogonal to first order: cyclical prob-
ability and skewness does not change variance. Similarly, when the distribution is symmetric s = .5
risk is acyclical according to the skewness definition but still cyclical due to the variance—which is
then exclusively driven by the cyclicality of inequality.

2.2 Cyclical Inequality and Aggregate Demand in THANK

To isolate the role of cyclical inequality, we derive an aggregate Euler-IS equation. Start from the
individual Euler equation pricing the asset whose return is the central bank’s instrument, the self-
insurance equation for bonds (1), loglinearized around the symmetric steady state CH = CS:

cS
t = sEtcS

t+1 + (1− s) EtcH
t+1 − σrt, (9)

where rt is the ex-ante real rate rt = it − Etπt+1 and Etπt+1 is expected inflation.
To express this in terms of aggregates, we need individual cj

t as a function of aggregate ct.
Take first the hand-to-mouth, who consume all their income and loglinearize the budget constraint:
cH

t = yH
t = wt + nH

t +
τD

λ dt. Substituting the wage schedule derived using the economy resource
constraint, production function, and aggregate labor supply wt =

(
ϕ+ σ−1) ct ; the profit function

dt = −wt; and their labor supply, we obtain H′s consumption function:

cH
t = yH

t = χyt, (10)

χ ≡ 1+ ϕ

(
1− τD

λ

)
≶ 1,

9



H’s consumption comoves one-to-one with their income, but not necessarily with aggregate income,
and this parameter χ is the model’s keystone: the elasticity of H’s consumption and income to
aggregate income yt, which depends on fiscal redistribution and labor market characteristics.

Cyclical distributional effects make χ different from 1. The other agents, S, with income yS
t =

wt+ nS
t +

1−τD

1−λ dt, face an additional (relative to RANK) income effect of the real wage, which reduces
their profits dt = −wt. Using this and their labor supply, we obtain:

cS
t =

1− λχ

1− λ
yt, (11)

so whenever χ < 1 S’s income elasticity to aggregate income is larger than one, and vice versa.
Equilibrium cyclical income inequality γt, the log deviation of Γt ≡ YS

t /YH
t , is thus:

γt ≡ yS
t − yH

t = (1− χ)
yt

1− λ
, (12)

and is procyclical (∂γ/∂y > 0) iff χ < 1 and countercyclical (∂γ/∂y < 0) iff χ > 1.
It is important to stress that this is but one possible simple theory of the income distribution.

Several different income distribution models have been advanced in the subsequent literature that
can lead to similar reduced-form equilibrium implications, or χ. A prominent stream assumes sticky
wages, avoiding the negative comovement of profits and monetary policy featured above that is
arguably counterfactual; an early contribution in TANK is Colciago (2011) and more recent examples
in HANK include Broer et al (2018) and Auclert et al (2018).11

In RANK, such distributional considerations are absent since one agent works and receives all
the profits. When aggregate income goes up, labor demand goes up and the real wage increases.
This drives down profits (wage=marginal cost), but because the same agent incurs both the labor gain
and the "capital" (monopolistic rents) loss, the distribution of income between the two is neutral.

Income distribution matters under heterogeneity; to understand how, start with no fiscal redis-
tribution, τD = 0 and χ > 1. If demand goes up and, with upward-sloping labor supply ϕ > 0,
the wage goes up, H’s income increases. Their demand increases proportionally, as they do not get
hit by profits falling. Thus aggregate demand increases by more than initially, shifting labor demand
and increasing the wage even further, and so on. In the new equilibrium, the extra demand is pro-
duced by S, whose decision to work more is optimal given the income loss from falling profits. Since
the income of H goes up and down more than proportionally with aggregate income, inequality is
countercyclical: it goes down in expansions and up in recessions.

Redistribution τD > 0 dampens this channel, lowering χ. Through the transfer, H start internal-
izing the negative income effect of profits, and increase demand by less. The benchmark considered
by Campbell and Mankiw’s (1989) seminal paper is χ = 1, which occurs when the distribution of
profits is uniform τD = λ (the income effect disappears) or when labor is infinitely elastic ϕ = 0 (all
households’ consumption comoves perfectly with the wage); income inequality is then acyclical.

Finally, χ < 1 occurs when H receive a disproportionate share of the profits τD > λ. The AD
expansion is now smaller than the initial impulse, as H recognize that this will lead to a fall in their

11It is by now straightforward to build a model of inequality determination based on sticky wages, rather than prices, and
show that it leads to a similar χ. Auclert et al (2018) show how a particular tax incidence function and wage stickiness jointly
imply χ = 1. See also Ascari, Colciago, and Rossi (2017) and Walsh (2018) for further analysis in TANK.
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income; while S, given the positive income effect from profits, optimally work less. As the income
of H now moves less than proportionally with aggregate income, inequality is procyclical.

Replacing the consumption functions of H (10) and S (11) in the self-insurance equation (9), we
obtain the aggregate Euler-IS:

ct = δEtct+1 − σ
1− λ

1− λχ
rt, where δ ≡ 1+ (χ− 1)

1− s
1− λχ

. (13)

The contemporaneous AD elasticity to interest rates is the TANK one, σ 1−λ
1−λχ , reflecting the New

Keynesian Cross logic described above. Even though the "direct effect" of a change in interest rates
is scaled down by (1− λ) (λ agents do not respond directly), the "indirect effect", which amounts
to the aggregate-MPC slope of the planned-expenditure curve, is increasing with λ. The rate at
which it does so depends on χ, and with χ > 1 the latter effect dominates the former, delivering
amplification relative to RANK (while for χ < 1 the reverse holds).

In other words, the aggregate MPC out of an increase in aggregate income is a convex combina-
tion of the MPCs of the two types out of their own incomes; we thus need to sum the products of:
shares in the population, MPCs out of own income, and elasticity of own income to aggregate income.
For a transitory shock, this is:

mpc = (1− λ)× (1− β)× 1− λχ

1− λ
+ λ× 1× χ = 1− β (1− λχ) .

This aggregate MPC is the slope of a planned-expenditure, consumption function as in Samuelson’s
Keynesian cross. It yields amplification whenever χ > 1, for then the increase in slope correspond-
ing to adding λ agents dominates the decrease in the shift of this curve corresponding to λ agents
being directly insensitive to policy changes.

The key property and novelty relative to TANK is that the Aggregate Euler-IS equation of THANK
(with 1− s > 0) is characterized by, echoing Proposition 3 in the companion paper Bilbiie (2019):

discounting (δ < 1) iff inequality is procyclical (χ < 1) and

compounding (δ > 1) iff inequality is countercyclical (χ > 1).

In RANK, good news about future income imply a one-to-one increase in aggregate demand
today as the household wants to substitute consumption towards the present and, with no assets,
income adjusts. (The same holds in TANK, s = 1: no self-insurance and no discounting δ = 1).

Discounting occurs when procyclical inequality meets idiosyncratic uncertainty: When good
news about future aggregate income arrive, households recognize that in some states of the world
they will be constrained and, because χ < 1, not benefit fully from it. They self-insure, i.e. increase
their consumption less than if they were alone in the economy, or if there were no uncertainty. Like
in RANK and TANK, this (now, self-insurance) increase in saving demand cannot be accommodated
as there is no asset, so the household consumes less today and income adjusts accordingly.

Conversely, countercyclical inequality leads to compounding instead. The Keynesian-cross am-
plification that is the staple of TANK extends intertemporally: good aggregate income news boost
today’s demand because they imply less need for self-insurance. Since future consumption in states
where the constraint binds over-reacts to good aggregate news, households demand less "saving".

11



But savings still need to be zero in equilibrium, so households consume more than one-to-one and
income increases more than without risk.12

The foregoing focuses on cyclical inequality and embeds a notion of idiosyncratic risk that is in-
timately related to whether liquidity constraints bind or not but is by construction acyclical. This key
point can be formally illustrated, first, by referring to the standard measure of idiosyncratic risk,
the conditional variance of idiosyncratic income for an agent S who contemplates self-insurance
computed in (4). Its derivative with respect to aggregate income Yt+1, evaluated at the steady state, is
proportional to steady-state inequality ln Γ; thus, locally around a symmetric steady-state Γ = 1 the
variance of idiosyncratic income is acyclical. Idiosyncratic risk may still be cyclical if the probabil-
ities s (.) are cyclical, making the skewness cyclical; but this has locally no first-order effect on the
variance, on precautionary saving, and thus on Euler discounting-compounding.

The other useful special case of my model with acyclical risk illustrating this, hinted to in Section
2.1, is the limit s = 0 with agents oscillating between the two states every other period and mass
λ = 1 − λ = 1

2 .13 In fact, one could say that risk is not only acyclical but absent altogether, for
the conditional variance of individual income is nil, even though the unconditional variance is still
positive and time-varying λ (1− λ) (ln Γt+1)

2 = 1
4 (ln Γt+1)

2. Yet even in that extreme case my
model implies Euler discounting-compounding with, replacing s = 0 and λ = 1

2 in (13):

δ|s=0 =
χ

2− χ
≶ 1 iff χ ≶ 1. (14)

There is again discounting with pro- and compounding with counter-cyclical inequality, regardless
of the risk cyclicality.

These two observations illustrate clearly that cyclical risk is not necessary for obtaining discount-
ing/compounding in the Euler equation: cyclical inequality is sufficient, combined with idiosyn-
cratic uncertainty, even when risk is acyclical.

2.3 Liquidity, Inequality, and Intertemporal MPCs in THANK

THANK embeds a second amplification channel, orthogonal to this NK Cross: the "intertemporal
Keynesian cross" of Auclert et al (2018) (see also Hagedorn et al (2018)) and allows a novel analytical
representation for their key summary statistics, the intertemporal MPCs, or iMPCs. To illustrate this,
we need to consider the equilibrium with liquidity provided by the government. The equivalent
of the individual consumption functions (10)-(11) in this case are, see Appendix B:

cH
t = ŷH

t + β−1 1− s
λ

bt, (15)

cS
t +

1
1− λ

bt+1 = ŷS
t + β−1 s

1− λ
bt,

12This effect is increasing with 1 − s, χ, and λ (δ derivatives’ being proportional to (χ− 1)); the highest compounding
occurs in the iid case 1− s = λ. Furthermore, the self-insurance channel is complementary with the (TANK) cyclical-inequality:
compounding (discounting) is increasing with idiosyncratic risk at a higher rate with higher λ (∂2δ/ (∂λ∂ (1− s)) ∼ χ− 1); an
increase in (1− s) has a larger effect on self-insurance with a longer expected hand-to-mouth spell (1− h)−1.

13This limit case is akin to Woodford (1990), abstracting from the endogenous income distribution that is of the essence here.
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where bt denotes total private liquid assets demanded at the beginning of period t, as shares of
steady-state total income; while ŷj

t ≡ yj
t − tj

t denotes disposable income of agent j. Importantly, I
again approximate around the no-inequality and zero-liquidity symmetric steady-state where the
real rate is 1+ r = β−1. The aggregation of (15) delivers:

ct = ŷt + β−1bt − bt+1. (16)

The iMPCs, defined as the partial derivatives of aggregate consumption ct with respect to changes
in aggregate disposable income ŷt+k at different horizons k, keeping fixed everything else (in particu-
lar, taxes and public debt) are found by solving for the equilibrium dynamics of private liquid assets
bt. To that end, replace the individual budget constraints (15) into the loglinearized self-insurance
equation for bonds (9). The main intuition can be grasped from a simple extreme case of my model
used above, while the analysis for the general case is relegated to Appendix B: the limit as agents
oscillate between the two states every other period, with the mass of half of the agents in each state
in every period: s = 0 and λ = 1

2 . The asset accumulation equation is:

bt+1 =
ŷS

t − EtŷH
t+1

2
(

1+ β−1
) = 1

2
(

1+ β−1
) (1− λχ

1− λ
ŷt − χEtŷt+1

)
, (17)

with agents (dis-)saving when they expect (higher) lower income tomorrow. The consumption func-
tion follows immediately by substituting this into (16), which directly delivers Proposition 1.

ct =
2− χ+ βχ

2 (1+ β)
ŷt +

2− χ

2 (1+ β)
ŷt−1 +

βχ

2 (1+ β)
ŷt+1; (18)

Proposition 1 The iMPCs for THANK with s = 0, in response to a one-time shock to disposable income at
any time T are given by:

dcT
dŷT

=
2− χ+ βχ

2 (1+ β)
;

dcT+1

dŷT
=

2− χ

2 (1+ β)
;

dcT−1

dŷT
=

βχ

2 (1+ β)
;

dct

dŷT
= 0 for any t < T − 1 or t > T + 1.

This case illustrates the key points most transparently. Even in Auclert et al’s benchmark case
of acyclical inequality χ = 1 implying ŷj

t = ŷt, faced with a current income shock agents optimally
self-insure, i.e. save in liquid wealth to maintain a higher consumption in the future. While when
facing a future income shock they consume in anticipation, depleting their liquid savings.

The second point, that generalizes to arbitrary s, concerns adding cyclical inequality: higher in-
come cyclicality in the constrained state χ makes agents consume more (save less) out of news of
aggregate income and consume less (save more) out of past and current aggregate income. When
self-insuring against becoming constrained, agents now take into account how the aggregate in-
come shock affects their income in each respective state and change their demand for assets and
equilibrium liquidity holdings consequently.

This special case allows matching the two key iMPCs emphasized by Auclert et al, the contem-
poraneous dc0/dŷ0 = 0.55 and one-year-after MPC dc1/dŷ0 = 0.15: these values obtain, for an
annual calibration with β = 0.95, if χ = 1.47. (That said, this case is not meant as a quantitative
approximation in other dimensions, e.g. higher moments of the income process.)
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Importantly, TANK (the other, s = 1 limit) misses this intertemporal amplification altogether, in
particular out of past income shocks which are of the essence in the data, since the iMPCs are:

dcT
dŷT

= λχ+ (1− λχ) (1− β) βT;
dct

dŷT
= (1− λχ) (1− β) βT ∀t 6= T.

The expressions for the general THANK with s ∈ (0, 1), while still analytical, are more tedious:
see Proposition 7, Appendix B; but the key intuition is unchanged. Figure 1 plots those iMPCs for
the general THANK with countercyclical inequality, along with the data from Fagereng et al, and
the TANK iMPCs (Figure B1 in the Appendix conducts a more thorough comparison for different
calibrations, and iMPCs in response to future shocks). In the general THANK with arbitrary risk,
I match the two target MPCs with λ = 0.33, s = 0.82 (0.96 quarterly) and χ = 1.4. This is coinci-
dentally close to the calibration used in Bilbiie (2019) to match other aggregate, general-equilibrium
objects with the same model. The intertemporal path of the iMPCs is remarkably in line with that
documented by Fagereng et al in the data and with Auclert et al’s quantitative HANK. In particular,
the effect of the income shock dies off a few years after, whereas TANK implies no persistence at all
(I recalibrate λ = 0.375 in TANK to match the contemporaneous MPC).

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

year (t)

iMPC(t,0)

Figure 1: iMPCs in THANK (blue solid); TANK (red dash); Data (dots)

To conclude, my THANK model captures analytically in a realistic and flexible way a key am-
plification mechanism at work in quantitative HANK and missing from TANK, persistent and con-
ditionally volatile idiosyncratic income, and also, albeit in a stylized way given the coarse two-state
implicit discretization, the key feature of concomitant left-skewness and leptokurtosis that a dis-
cretization with more states matches very well.14

14Using (5), the conditional skewness and excess kurtosis are−1.66 and 0.77 respectively; while the quarterly autocorrelation
is (s+ h− 1)1/4 = (1− (1− s) /λ)1/4 = 0.819 (corresponding to the quarterly transition probability 1 − s = 1 − 0.821/4=
1− 0.952 ' .04). Given the coarse two-state discretization, it is no surprise that these moments are not perfectly aligned with
the micro data.
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3 NK Analytics with THANK: Determinacy, Puzzles, and Amplification

The first part sought to convince the reader that THANK is a reasonable reduced representation
of richer-heterogeneity quantitative HANK in the three key dimensions of uncertainty (income
processes), inequality (New Keynesian cross), and liquidity (intertemporal Keynesian cross). The
second part exploits the tractability to conduct a pencil-and-paper, full-fledged analysis of the main
RANK topics: determinacy with interest-rate rules, solving the FG puzzle, conditions for amplification-
multipliers, and optimal monetary policy—in normal times and in liquidity traps.

3.1 HANK, Taylor, and Wicksell

The model is completed by adding the simple aggregate-supply, Phillips-curve specification (3) and
a monetary policy rule; all the results carry through with the more familiar forward-looking (2) as I
show in Appendix D. To start with, assume that the central bank sets the nominal rate it according
to a Taylor rule:15

it = φπt. (19)

With this simplified, RANK-isomorphic HANK we can first derive a classic determinacy result:
a HANK Taylor principle. Replacing (3) and (19) in the aggregate Euler equation (13), THANK boils
down to one equation:

ct = νEtct+1, where ν ≡
δ+ κσ 1−λ

1−λχ

1+ φκσ 1−λ
1−λχ

(20)

captures the effect of good news on AD, and the elasticity to interest rate shocks.16

There are three channels shaping this key summary statistic. First, the "pure AD" effect through δ

discussed above coming from cyclical inequality, operating even when prices are fixed or the central
bank fixes the ex-ante real rate it = Etπt+1.

The second term comes from a supply feedback cum intertemporal substitution; the inflationary
effect (κ) of good news on income triggers, ceteris paribus (given nominal rates) a fall in the real rate
and intertemporal substitution towards today, the magnitude of which depends on the within-the-
period amplification/dampening resulting from cyclical inequality ( 1−λ

1−λχ ).
Finally, all this demand amplification generates inflation and triggers movements in the real

rate. When the monetary rule is "active" in Leeper’s (1991) terminology, φ > 1, inflation leads to
higher real rate and a contractionary effect today, the strength of which also depends on the "TANK"
cyclical-inequality channel through 1−λ

1−λχ . These considerations drive the main determinacy result,
Proposition 2; a version for the standard case with forward-looking NKPC (2) is in Appendix D.1.

15The remainder of the paper derives results using the zero-liquidity limit; these results apply equally well in the version
with liquidity insofar as fiscal policy is passive-Ricardian and (thus) the steady-state level of public debt-liquidity is zero. The
text discusses the implications of departing from these assumptions, a thorough analysis of which is relegated to future work.

16This analysis generalizes to the case of endogenous liquidity (Section 2.3), locally around a steady state with zero public
debt. That implies de facto a passive-Ricardian fiscal rule and, assuming that the debt accumulation equation is stable, an
uncoupling from the AD side (20). There are potentially interesting implications for fiscal theory with positive steady-state
debt that I pursue in separate work; Hagedorn (2017) shows an alternative route to determinacy with positive debt demand
discussed in Section 3.3.
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Proposition 2 The HANK Taylor Principle: The HANK model under a Taylor rule (20) has a determinate,
locally unique rational expectations equilibrium if and only if (as long as λ < χ−1):

ν < 1⇔ φ > φ∗ ≡ 1+
δ− 1

κσ 1−λ
1−λχ

.

The Taylor principle φ > 1 is sufficient for determinacy if and only if there is Euler-IS discounting: δ ≤ 1.

The proposition follows by recalling that the requirement for a (locally) unique rational expecta-
tions equilibrium is that the root ν be inside the unit circle; in the discounting case δ < 1, the thresh-
old φ is evidently weaker than the Taylor principle, while in the compounding case it is stronger.

The intuition is the same as for other "demand shocks": in the compounding case, there is a more
powerful demand amplification to sunspot shocks, which raises the need for a more aggressive
response to rule out self-fulfilling sunspot equilibria. The higher the risk (1− s) and the higher the
elasticity of H income to aggregate χ the higher this endogenous amplification, and the higher the
threshold. The opposite is true in the discounting case: since the transmission of sunspot shocks on
demand is dampened, the Taylor principle is sufficient for determinacy. The Taylor threshold φ > 1
reappears for either of χ = 1 (acyclical inequality), s → 1 (no risk), or κ → ∞ (flexible prices).
The determinacy region for φ squeezes very rapidly with countercyclical inequality because of a
complementarity between idiosyncratic and aggregate risk apparent from φ∗ = 1+ (χ−1)(1−s̃)

κσ(1−λ)
.

Figure 2 plots the threshold φ∗ as a function of λ (for λ < χ−1) for different 1− s, with procyclical
inequality in the left panel and countercyclical in the right. The parametrization assumes κ = 0.02,
σ = 1, and ϕ = 1. In the countercyclical-inequality case, the threshold increases with λ and does so
at a faster rate with higher risk 1− s. The required response can be large: for the calibration used in
Bilbiie (2019) to match Kaplan et al’s quantitative HANK aggregate outcomes (χ = 1.48, λ = 0.37,
1− s = 0.04) it is φ∗ = 2.5 and can be as high as 5 for other calibrations therein.
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Fig. 2: Taylor threshold φ∗ with 1− s = 0 (dash, TANK); 0.04 (solid); λ (dots). Note: determinacy above the curve.

With procyclical inequality, the Taylor principle is sufficient but not necessary for determinacy. For
a large subset of the region, there is in fact determinacy even under a peg φ = 0, undoing the classic
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Sargent and Wallace (1975) result, namely if and only if:

ν0 ≡ δ+ κσ
1− λ

1− λχ
< 1. (21)

With enough discounting, the sunspot is ruled out by the economy’s endogenous forces, unlike in
RANK where ν0 = 1+ κσ ≥ 1; as we shall see, (21) also rules out the forward guidance puzzle.

My determinacy Proposition is intimately related to subsequent results developed for quantita-
tive HANK by Auclert et al (2019); they show that the Taylor principle is sufficient when the sum of
iMPCs is larger than 1. The intuition is that if the total MPC out of an income shock far into the fu-
ture is larger than 1, the model is "explosive" (stable forward) and thus determinate. The connection
can be clearly seen by summing up the iMPCs in Proposition 1 to obtain:

µimpc = 1+ (1− χ)
1− β

1+ β
> 1 iff χ < 1. (22)

Thus, the sum of the iMPCs is larger than 1 and there is determinacy (the Taylor principle is suffi-
cient) with procyclical inequality and Euler-discounting; otherwise, there is indeterminacy (µimpc <

1). This property holds in the general model, as I prove analytically in Appendix B.17

Indeterminacy under Taylor rules is therefore pervasive in HANK models with countercyclical
inequality. What can the central bank do in such an economy to anchor expectations, when for a
standard calibration it would need to change nominal rates by 5 percent if inflation changed by one
percent? One solution is to adopt the "Wicksellian" policy rule of price level targeting:

it = φp pt with φp > 0, (23)

which yields determinacy in RANK (Woodford (2003); Giannoni (2014)). This rule is especially
powerful in HANK, as emphasized in the following Proposition.

Proposition 3 Wicksellian rule in HANK: In the THANK model, the Wicksellian rule (23) satisfying
φp > 0 leads to a locally unique rational-expectations equilibrium (determinacy) even when δ > 1.

The simple proof is outlined in Appendix D.4 and D.5; the intuition is that, no matter how strong
the AD-amplification, this rule anchors agents long-run expectations: they recognize that bygones
are not bygones and that adjustment will eventually take place: some inflation will a fortiori imply
deflation in the future. We revisit this rule’s virtues in the context of the FG puzzle.

3.2 A Catch-22 for HANK: No Puzzle, No Amplification?

We are now in a position to state the Catch-22: the closed-form conditions under which THANK
provides amplification are the opposite of the conditions needed to solve the forward guidance puz-
zle. To state this formally, we introduce two policy shocks: discretionary changes in interest rates
captured by exogenous shocks to the Taylor rule it = φπt+ i∗t ; and public spending: the government

17The iMPC-based criterion developed by Auclert et al is particularly useful in quantitative HANK models in which the
eigenvalues, unlike in my tractable model, are impossible to calculate—but the iMPCs can still be calculated.
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buys an amount of goods Gt with zero steady-state value (G = 0) and taxes all agents uniformly in
order to finance it.18 Straightforward derivation delivers the aggregate Euler-IS:

ct = δEtct+1 − σ
1− λ

1− λχ
(it − Etπt+1) +

ϕσ

1+ ϕσ

[
λ (χ− 1)
1− λχ

(gt − Etgt+1) + (δ− 1) Etgt+1

]
. (24)

Together with the static Phillips curve πt = κct + [κϕσ/ (1+ ϕσ)] gt and using an AR(1) process for
spending Etgt+1 = µggt we obtain Proposition 4, this extends to the more familiar case with NKPC,
see Appendix D.2.

Proposition 4 A Catch-22 for HANK: In THANK, there is amplification of monetary policy relative to
RANK and the fiscal multiplier on consumption is positive if and only if:

χ > 1,

whereas the forward-guidance puzzle is ruled out ( ∂2ct
∂(−i∗t+T)∂T

< 0) only if

χ < 1.

The first part pertains to amplification of shocks and policies with respect to RANK, the focus
of the majority of quantitative HANK studies; Kaplan et al (2018) show that their HANK yields
higher total effect of monetary policy than RANK, driven by "indirect", general-equilibrium forces,
and similar insights apply to Auclert (2018), Gornemann et al (2015), and Debortoli and Galí (2018).
As discussed above, such amplification of monetary policy shocks occurs only when inequality is
countercyclical, χ > 1. Bilbiie (2019) calibrates TANK and the acyclical-risk, zero-liquidity version
of THANK to match the aggregate predictions of these quantitative models.

The fiscal multiplier in THANK is:

∂ct

∂gt
=

1
1− νµg

ϕσ(
1+ φκσ 1−λ

1−λχ

)
(1+ ϕσ)

(χ− 1)
λ
(

1− µg

)
+ (1− s) µg

1− λχ︸ ︷︷ ︸
TANK + HANK AD

− κσ
1− λ

1− λχ

(
φ− µg

)
︸ ︷︷ ︸

RANK AS

 .

(25)
The main feature of T(H)ANK in this realm is that positive multipliers can occur regardless of the
RANK AS-channel, i.e. with fixed prices κ = 0. The necessary condition is, again, countercyclical
inequality χ > 1; thereby, a G increase has a demand effect that translates into an increase in labor
demand, wages, the income of H, and so on: the "new Keynesian cross" channel.19 If the stimulus is
expected to persist (µg > 0), there is an additional multiplier due to self-insurance: as agents expect
higher aggregate demand and income, with χ > 1 they expect even higher income in the H state

18The implicit redistribution of the taxation scheme used to finance the spending is of the essence for the multiplier—see
Bilbiie (2019) in TANK: I sidestep it assuming uniform taxation to isolate the multiplier effect. See Bilbiie, Monacelli, and
Perotti (2013) for redistribution in TANK, and Oh and Reis (2012), Ferrière and Navarro (2018), Hagedorn et al (2018) and
Auclert et al (2018) for fiscal multipliers in quantitative HANK with progressivity.

19This channel is at work in Gali et al’s (2007) earliest quantitative model on this (but convoluted with several other channels),
as well as in Bilbiie and Straub (2004), Bilbiie, Meier and Mueller (2008), and Eggertsson and Krugman (2012).
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and thus less need to self-insure today.20

The second part of Proposition 4 pertains to solving the forward guidance puzzle: the necessary
and sufficient condition is ν0 < 1, i.e. determinacy under a peg φ = 0. This is found by iterating
forward (24) with φ = 0 to obtain:

ct = ν0Etct+1 − σ
1− λ

1− λχ
i∗t = νT̄

0 Etct+T̄ − σ
1− λ

1− λχ
Et ∑T̄−1

j=0 ν
j
0i∗t+j

The response at time t to a one-time cut in interest rates at t+ T is, for any T ∈ (t, T̄): ∂ct
∂(−i∗t+T)

=

σ 1−λ
1−λχ νT

0 , which is decreasing in T if and only if ν0 < 1 (the derivative being σ 1−λ
1−λχ νT

0 ln ν0). Fur-

thermore, since with ν0 < 1 the term νT̄
0 Etct+T̄ vanishes when taking the limit as T̄ → ∞, we can

solve the equation forward for arbitrary i∗t process and find a unique solution; this is the determinacy
under a peg result found earlier.21

The condition ν0 < 1, slightly rewritten:

1− δ > κσ
1− λ

1− λχ
,

captures a powerful intuition. To rule out the puzzle, the HANK-discounting on the left side needs
to be enough to dominate the right-side AS-compounding of news that is the source of trouble in
RANK. This entails jointly some idiosyncratic uncertainty 1 − s > 0 and procyclical enough in-
equality χ < 1 − σκ 1−λ

1−s < 1.22 One side implication is an interpretation of McKay et al (2016):
the power of forward-guidance is dampened in my framework through procyclical inequality (with
enough idiosyncratic risk, 1− s > (1− λ) σκ). This holds in McKay et al because profits are redis-
tributed disproportionately to low-productivity households, "as if" τD > λ in my model; and also
in McKay et al (2017), where income of H is exogenous (χ = 0 in my model), and idiosyncratic risk
iid s = 1− λ. Importantly, the foregoing results hold even when income risk is acyclical.

3.3 Cyclical Inequality and Risk, and the Catch-22

The preceding section isolated cyclical inequality as independent from cyclical risk. I now reintro-
duce cyclical risk by both allowing the probability s to depend on the cycle s (Yt+1) and approxi-
mating around a steady state with inequality Γ > 1; as explained above, risk is then cyclical both
through the cyclicality of inequality and through unrelated channels emphasized by others (Acharya
and Dogra (2018), Holm (2018), Ravn and Sterk (2018), and Werning (2015)).

20The last term is the well-understood RANK channel: one the one hand, spending is extra demand and hence inflationary,
which via the Taylor rule leads to higher nominal rates today; on the other hand, if spending persists (µg > 0) it creates
expected inflation, which reduces the real rate, generating intertemporal substitution towards the present. Under an active
Taylor rule φ > 1 > µg the former effect always dominates the latter. Insofar as the interest-elasticity can be amplified or

dampened in HANK and TANK, this AS-channel is correspondingly amplified or dampened through both 1−λ
1−λχ and ν.

21The same condition rules out neo-Fisherian effects in THANK, ∂ct/∂i∗t < 0 and unique ct = −σ 1−λ
1−λχ

1
1−ν0µ i∗t (with an

AR(1) process with persistence µ for i∗): interest rate increases are short-run contractionary and deflationary (no neo-Fisherian
effects). This, a theme of a previous version, is studied separately in Bilbiie (2018).

22This substantiates analytically the mechanism at work in the quantitative papers that studied this previously, such as
McKay et al (2016), as well as, subsequently to this analysis, Hagedorn, Luo, Manovskii, and Mitman (2019).
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The aggregate Euler-IS curve in loglinearized form, derived in detail in Appendix C, becomes:

ct = ( δ︸︷︷︸
cycl.-ineq HANK

+ η︸︷︷︸ )
cycl.-risk HANK

Etct+1 − σ
1− λ

1− λχ
(it − Etπt+1 − ρt)︸ ︷︷ ︸

cyclical-inequality TANK

(26)

with η ≡ sYY
1− s

(
1− Γ−1/σ

)
(1− s̃) σ

1− λ

1− λχ
,

where I denote by 1 − s̃ = (1−s)Γ1/σ

s+(1−s)Γ1/σ > 1 − s the inequality-weighted transition probability, an

inequality-adjusted measure of risk leading to a slightly different expression for δ ≡ 1+ (χ−1)(1−s̃)
1−λχ .

The novel composite parameter η encapsulates the effect of "pure" cyclical risk, i.e. risk that is
independent on cyclical inequality, through its key determinant, the elasticity −sYY/ (1− s); this is
the first term in (8) above. Dampening/amplification of future shocks only occurs depending on risk
cyclicality (the sign of η), even in the Campbell-Mankiw acyclical-inequality benchmark χ = 1 and
δ = 1. Procyclical risk η < 0 implies Euler discounting 1+ η < 1: good news generate an expan-
sion today to start with. This increases the probability of moving to the bad state, which triggers
"precautionary" saving, thus containing the expansion. Conversely, countercyclical risk (sY > 0)
generates compounding 1+ η > 1: an aggregate expansion reduces the probability of moving to the
bad state and mitigates the need for insurance, amplifying the initial expansion.23 This formaliza-
tion of cyclical risk has similar (to the cyclical-inequality channel) reduced-form implications for the
link between current and future consumption, but the underlying economic mechanism is different.
Furthermore, while η in the Euler equation is observationally equivalent to Acharya and Dogra’s
(2018) different formalization with CARA preferences leading to a P(seudo-)RANK, the underlying
implications for risk are also different; as shown above, in my model η also captures the cyclicality
of skewness (a key element of the reviewed evidence), whereas Acharya and Dogra’s PRANK relies
on symmetry, abstracting from skewness altogether to focus on variance.

The pure-risk channel captured by η operates only if there is long-run inequality Γ > 1, i.e.
literally income risk of moving to a lower income level; whereas the cyclical-inequality channel, pur-
posefully derived as a benchmark for the case of no long-run inequality, relies on the idiosyncratic
cyclicality of income χ. Both channels capture precautionary saving: the former, through the effect
of uncertainty and the third derivative of the utility function (η is proportional to prudence σ);24 the
latter, through the effect of constraints, a separate source of concavity in the consumption function.

The following proposition emphasizes the conditions under which the separate cyclical risk
channel can, by providing an additional and unrelated source of Euler-discounting, help the THANK
model resolve the Catch-22—if inequality is countercyclical and risk procyclical enough.

23In the Appendix, I also consider a different setup whereby the probability depends on current Yt; this delivers contempo-
raneous amplification: the within-period AD elasticity to r depends on risk cyclicality. Recall that I assume throughout that λ
is invariant to the cycle (implying that the probability h also depends on Y in a compensating way).

24This channel operates even in the limit cases with little to no risk s → 1 or acyclical inequality (χ = 1) and is akin to
Acharya and Dogra’s pseudo-RANK abstracting from inequality to focus on cyclical risk (the exact opposite of TANK).
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Proposition 5 THANK resolves the Catch-22 (amplification without the FG puzzle) if and only if:

(i) χ > 1 (countercyclical inequality) and

(ii) η < 1− δ ≤ 0 (procyclical enough risk).

The second condition requires that the procyclicality of risk through the separate s (Y) channel
dominate the countercyclicality implied by χ > 1. This instead requires high enough steady-state
inequality in levels Γ and high enough prudence σ, a strong enough precautionary-saving channel
due to uncertainty:

−sYY
(

1− Γ−1/σ
)

σ > (1− s)
χ− 1
1− λ

> 0.

This is a manifestation of the dependence of the cyclicality of risk channel upon the level of inequal-
ity; recall that without inequality in levels the cyclicality of risk is irrelevant for Euler discount-
ing/compounding, while without risk in levels (1− s = 0) the cyclicality of inequality is instead
irrelevant. Proposition 5 says that when the two channels coexist, go in opposite directions, and
have the right relative strengths, the Catch-22 is resolved.

However, when Proposition 5’s conditions are not met, cyclical risk aggravates the Catch-22:
when both risk and inequality are countercyclical (the more empirically plausible scenario) THANK
delivers amplification and aggravates the puzzles further, while the determinacy conditions with a
Taylor rule become even more stringent: it is "as if" δ was higher.25

Can a HANK model calibrated to deliver "amplification" without also aggravating the FG puzzle,
even when both inequality and risk are countercyclical? Yes, under the Wicksellian rule (23). I prove
this in the Appendix as part of the proof of Proposition 3. The essence is that under the Wicksellian
rule THANK reduces, instead of one difference equation (20), to a second-order equation obtained,
for the static PC case, by replacing (3) and the policy rule (23) in the aggregate Euler-IS (26), and
substituting in it the static PC rewritten with the price level pt − pt−1 = κct. This delivers:

Et pt+1 −
[

1+ ν−1
0

(
1+ σ

1− λ

1− λχ
φpκ

)]
pt + ν−1

0 pt−1 = σ
1− λ

1− λχ
κν−1

0 i∗t . (27)

It is easy to show by standard techniques that (27) has a unique solution if and only if φp > 0; and
that the effect of an interest rate cut decreases with the horizon at which it takes place (∂ct/∂

(
−i∗t+T

)
is decreasing in T): the FG puzzle disappears. The intuition is that the source of the puzzle is inde-
terminacy under a peg and a Wicksellian rule provides determinacy under a "quasi-peg". What is
needed is some, no matter how small, response to the price level, which anchors long-run expecta-
tions. This is particularly important in HANK, for even when heterogeneity aggravates the puzzle,
this rule still works and restores standard logic, thus resolving the "Catch-22".26

This paper assumes throughout a passive-Ricardian fiscal policy and a monetary authority that
is pro-active in trying to determine nominal variables. A different route to determinacy and solving
the puzzle is to resort to fiscalist equilibria, the same way one does in the standard model, by intro-

25In work subsequent to the determinacy analysis in this paper’s Proposition 2, Acharya and Dogra (2018) derive a modified
Taylor principle with the pure cyclical risk channel; Auclert et al (2018) provided numerical simulations in their quantitative
HANK observing that counter- (pro-)cyclical risk makes determinacy conditions more (less) stringent.

26An interesting and hitherto unnoticed to the best of my nowledge corrollary is that in RANK too, the puzzle disappears
under a Wicksellian rule (recall that RANK is nested here for λ = 0 or χ = 1, the Campbell-Mankiw benchmark).
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ducing, in the version with positive debt, a fiscal rule that is "active" in the sense of Leeper (1991),
i.e. it does not ensure debt repayment for any price level (and hence that the government debt equa-
tion is a constraint; see also Woodford (1996), and Cochrane (2017) for further implications). In an
incomplete-markets economy, a further option to determine the price level was discovered by Hage-
dorn (2017, 2018). Self-insurance generates a demand for nominal debt. If the government supplies
that nominal debt according to a rule that responds to the price level, the latter is determined with-
out an interest-rate rule. While the Wicksellian rule I propose specifies i = f (p) directly, this com-
bines the demand for bonds Bd (i) with a supply rule Bs (p) and requires a specific fiscal-monetary
coordination: the government sets nominal debt responding to the price level, sets nominal taxes
so as to balance the budget intertemporally, thus making policy passive-Ricardian and ruling out
fiscal theory; while the central bank sets freely the nominal interest rate that clears the liquid-bond
market, with no need to respond to any endogenous variable. One could in principle adopt such a
policy in (the version with positive long-run B of) my model too.27

4 Optimal Policy in THANK

THANK is also useful for studying optimal monetary policy analytically, to provide a benchmark
and help elucidate some key mechanism that are also at work in the important quantitative-HANK
studies featuring richer heterogeneity (and several additional channels shaping optimal policy) such
as Bhandari et al (2017). To do so, I follow Woodford’s (2003, Ch. 6) analysis in RANK. In Appen-
dix E, I first spell out the full Ramsey problem and then derive a linear-quadratic problem that is
equivalent to it under certain conditions; specifically, I take a second-order approximation to aggre-
gate household welfare around a flexible-price equilibrium that is efficient. That is, I consider as a
benchmark equilibrium around which the central bank tries to stabilize the economy the perfect-
insurance equilibrium obtained by imposing a fiscal policy generating zero profits to first order
(this follows the TANK analysis in Bilbiie (2008, Proposition 5)). This ensures that the central bank’s
target equilibrium is socially desirable, and delivers Proposition 6.

Proposition 6 Solving the welfare maximization problem is equivalent to solving:

min
{ct,πt}

1
2

E0

∞

∑
t=0

βt

π2
t + αyy2

t︸ ︷︷ ︸
RANK

+ αγγ2
t︸ ︷︷ ︸

inequality-THANK

 , (28)

where the optimal weights on output and inequality stabilization are, respectively:

αy ≡
σ−1 + ϕ

ψ
; αγ ≡ λ (1− λ) σ−1ϕ−1αy

Several results are worth emphasizing. While the weight on output (gap) stabilization αy is the
same as in RANK, there is an additional term pertaining to income inequality that is proportional in

27Insofar as HANK are models of liquidity demand, the difference between this (part of this) paper and Hagedorn can be
illustrated via a familiar taxonomy: Hagedorn builds a "quantity theory" (of public debt), while my work focuses on interest
rate rules, two alternative policy mixes in models where fiscal-monetary boundary is even fuzzier than in RANK.
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this simple model with the income Gini coefficient, or with a measure of generalized entropy.28 This
evidently affects the central bank’s stabilization tradeoff, introducing a redistribution motive. This
distributional channel happens to be the same as in TANK: idiosyncratic risk 1− s, even when cycli-
cal, is irrelevant for optimal policy insofar as the target flexible-price equilibrium is the first-best
with perfect insurance, without inequality. Furthermore, cyclical risk does not matter for imple-
mentation either: recall that the Euler-IS curve approximated around the no-inequality equilibrium
is independent of cyclical risk, and so will the interest rate that implements optimal policy.

To solve for optimal policy and substantiate these points, consider the constraints of the central
bank, the private equilibrium conditions: the aggregate IS (13) (recall we approximate around the
efficient equilibrium with Γ = 1), the equilibrium expression for inequality over the cycle (12), and
a Phillips curve. Notice that, as in RANK, the IS curve is not a constraint: it merely determines the
policy instrument it once the optimal allocation (yt, πt) is found. The Phillips curve, instead, is a
constraint and we consider the more general:

πt = β f Etπt+1 + κyt + ut, (29)

where ut are cost-push shocks that generate a meaningful trade-off between stabilizing inflation and
real activity; with heterogeneity, they can arise through any mechanism that makes the flexible-price
equilibrium inefficient (e.g. inefficient fiscal redistribution, profit variations under flexible prices),
but we leave it unspecified for generality.

Consider for simplicity only shocks that drive no wedge between inequality and aggregate output
(gap), which stay proportional: (12) holds; the analysis of shocks that do drive a wedge is interesting
and relevant, but beyond the scope of this paper. We can then simplify the problem by replacing
(12) in (28), obtaining the per-period loss:

π2
t + αy2

t , with α ≡ αy

(
1+

λ

1− λ
σ−1ϕ−1 (χ− 1)2

)
(30)

The inequality motive thus amounts, in my benchmark THANK relative to RANK, to a weight on
output stabilization that increases with λ. Importantly, this holds regardless of whether inequality
is counter- or pro-cyclical, as long as it is cyclical: the extra stabilization motive is proportional to
(χ− 1)2. The simple intuition is based, as in TANK, on the key role of profits which are eroded
by inflation volatility. With higher λ, less agents receive profits; the weight on inflation falls, and
vanishes in λ→ 1 the limit, where there is no rationale for stabilizing profit income.

We can now study optimal policy in THANK under both discretion (Markov-perfect equilib-
rium) and commitment (time-inconsistent Ramsey equilibrium). The former is obtained by solving
(28) by assuming that the central bank lacks a commitment technology and treats all expectations
parametrically, without internalizing the effect of its actions on expectations; this amounts to re-
optimizing every period subject to the (29) constraint whereby all expectations at time t when the

28This is different from Challe (2019), where an isomorphism occurs between RANK and a benchmark HANK without the
cyclical-inequality channel but with cyclical risk through search and matching as in Ravn and Sterk (2018) with full worker
reallocation. Other studies found additional stabilization motives using TANK extensions or different reduced-heterogeneity
models, e.g. Nistico (2016) and Curdia and Woodford (2016) for a financial-stability motive, and Bilbiie and Ragot (2016)
for a liquidity-insurance motive arising around an imperfect-insurance target equilibrium which gives rise to a linear term
in the quadratic approximation. Benigno (2009) emphasized deviations from price stability induced by imperfect financial
integration in a two-country setup.
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policy is chosen are fixed. Since the problem is mathematically identical to that in RANK, we can
go directly to the solution:

πt = −
α

κ
yt, (31)

This targeting rule under discretion requires that the bank engineer an increase (decrease) in ag-
gregate demand for a given increase (decrease) in inflation. Assuming an AR(1) process for the
cost-push shock Etut+1 = µuut, we obtain the equilibrium:

πd
t =

α

κ2 + α
(

1− β f µu

)ut; yd
t = −

κ

κ2 + α
(

1− β f µu

)ut. (32)

Optimal policy under discretion implies that both output and inflation deviate from their target
values in response to cost-push shocks that thus creates a trade-off between inflation and output
stabilization. Since α is increasing in λ as discussed above, it follows immediately that optimal
policy in THANK results in greater inflation volatility and lower output volatility than in RANK.

One instrument rule implementing this equilibrium is found by using the aggregate IS (13):

it = ρt + φ∗dEtπt+1, with φ∗d ≡ 1+
κ

α

µ−1
u − δ

σ 1−λ
1−λχ

Unlike in RANK the instrument rule implementing optimal policy may be passive φ∗d < 1 with
enough compounding δ > µ−1

u , i.e. with enough idiosyncratic risk and countercyclical enough
inequality: optimal policy requires a real rate cut in THANK when in RANK it would require an
increase. Whereas with procyclical inequality, δ < 1 and the required instrument rule is not only
active but also more so than in RANK.

Optimal commitment policy (from a timeless perspective) requires committing to a different targeting
rule by similar arguments as in RANK, Woodford (2003) Ch. 7, namely:

πt = −
α

κ
(yt − yt−1) . (33)

It is straightforward to show that commitment to (33) delivers determinacy regardless of hetero-
geneity.29 The difference from RANK is still captured by the inequality motive shaping the output-
stabilization weight α, but optimal commitment policy still amounts to price-level targeting, like in
RANK; this equivalence no longer holds with behavioral agents, as shown by Gabaix (2019).

4.1 Application: Liquidity Traps in THANK and Optimal Policy

I finally illustrate THANK’s usefulness by using it for a closed-form analysis of liquidity traps, an
illustration of the Catch-22 therein, and a calculation of optimal policy. Following the seminal paper
of Eggertsson and Woodford (2003), I introduce a shock ρt to the natural interest rate capturing
impatience, or the urgency to consume in the present (its steady-state value is the normal-times
discount rate ρ = β−1 − 1): when it increases, S households try to bring consumption into the

29This is to be expected, since it is similar in spirit to the Wicksellian price-level targeting rule; furthermore, Bilbiie (2008,
Proposition 6) showed this result in TANK.
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present, and when it decreases they want to save.30 I assume that ρt follows a Markov chain with
two states. The first is the good, "intended" steady state with ρt = ρ and is absorbing: once in it,
there is a probability of 1 of staying. The other state is transitory, denoted by L: ρt = ρL < 0 with
persistence probability z (conditional upon starting in L, the probability that ρt = ρL is z, while the
probability that ρt = ρ is 1− z). At time t, a negative realization of ρt = ρL < 0 occurs; its duration
is a random variable T with expected value E (T) = (1− z)−1.

Given this Markov chain structure and the Taylor rule subject to a zero lower bound (where
it is expressed in levels): it = max (0, ρt + i∗t + φπt) with φ > 1, the LT equilibrium is found by
conjecturing that it is time-invariant (cL, πL) prevailing for any time t between 0 and T (thereafter,
the model returns to the steady state). Equation (3) implies πL = κcL and, with a binding iL = 0, the
aggregate IS implies:

cL =
1

1− zν0
σ

1− λ

1− λχ
ρL. (34)

Clearly, this is an equilibrium with a recession and deflation (cL < 0; πL < 0) if and only if z < ν−1
0 .31

The mechanism by which LT-recessions occur is similar to RANK, but in THANK their magnitude
depends on the key parameters λ, χ, 1− s, through both the AD elasticity to interest rates (σ 1−λ

1−λχ )
and through the AD effect of news under a peg parameter ν0.

Amplification, understood as a liquidity-trap recession deeper than in RANK, obtains if and only
if inequality is countercyclical, χ > 1 by the same logic as for monetary or fiscal policies.32 This
also applies to forward guidance, a feature of optimal policy; see Eggertsson and Woodford (2003) for
the original analysis, and Bilbiie (2016) for an analytical treatment and literature review. I follow
the latter paper to model forward guidance stochastically through a Markov chain as follows. After
the trap end-time TL (with expected value E(TL) = (1− z)−1) the central bank commits to keep the
interest rate at 0 while ρt = ρ > 0, with probability q. Denote this state by F, with expected duration
TF = (1− q)−1. The Markov chain has three states: liquidity trap L (it = 0 and ρt = ρL), forward
guidance F (it = 0 and ρt = ρ) and absorbing steady state (it = ρt = ρ). The probability to transition
from L to L is still z, and from L to F it is (1− z) q. The persistence of F is q, and the probability to
move back to steady state from F is hence 1− q.

Under this stochastic structure, expectations are determined by Etct+1 = zcL + (1− z) qcF and
similarly for inflation. Evaluating the aggregate Euler-IS (13) and Phillips (πt = κct) curves during
states F and L respectively and solving for the time-invariant equilibria delivers (the solution with
NKPC (2) is in Appendix D.3):

cF =
1

1− qν0
σ

1− λ

1− λχ
ρ; (35)

cL =
1− z

1− zν0

qν0

1− qν0
σ

1− λ

1− λχ
ρ+

1
1− zν0

σ
1− λ

1− λχ
ρL,

30This can be microfounded as deleveraging (Eggertsson and Krugman, 2012) or spreads (Curdia and Woodford, 2016).
31This condition rules out liquidity traps driven by sunspots with persistence z (e.g. Mertens and Ravn (2014); see Bilbiie

(2018) for further literature and analysis of these neo-Fisherian equilibria). When ν0 < 1, the restriction is always satisfied
since z is a probability z < 1 < ν−1

0 . Notice, nevertheless, that a sunspot equilibrium may always be constructed insofar as e.g.
prices are flexible enough (or whatever makes ν0 > 1) and indeed as long as the ZLB equilibrium is a steady state.

32The fiscal multiplier in a liquidity trap can be readily calculated as in (25), replacing µg with z and φ = 0 to obtain
ϕσ

(1−zν0)(1+ϕσ)

[
(χ− 1) λ(1−z)+(1−s)z

1−λχ + κσ 1−λ
1−λχ z

]
, which is higher than in RANK only if χ > 1.
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and πF = κcF, πL = κcL. It is immediately apparent that the future expansion cF is increasing in q
regardless of the model—but more so with countercyclical inequality (χ > 1).

The upper row of Figure 3 distinguishes χ < 1 (left) and χ > 1 (right), and plots in both panels
consumption in the trap (thick) and in the F state (thin), as a function of q (with q < ν−1

0 ). With pro-
(counter-)cyclical inequality, forward guidance has a dampened (amplified) effect on both cF and cL

in TANK, and is further dampened (amplified) in THANK, substantially so.33

0.2 0.4 0.6 0.8

0.10

0.05

0.00

0.05

0.10

q

cF,cL

0.2 0.4 0.6 0.8

0.10

0.05

0.00

0.05

0.10

q

cF,cL

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

z

PFG

χ = .5 (procyclical inequality)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

z

PFG

χ = 2 (countercyclical inequality)

Fig. 3: Upper: cL (thick) and cF (thin); Lower: FG power PFG. RANK (black solid), TANK (red dashed) and

THANK-iid (blue dots).

To illustrate the puzzle in a liquidity trap, I define forward-guidance power PFG as:

PFG ≡
dcL
dq

=

(
1

1− qν0

)2 (1− z) ν0

1− zν0
σ

1− λ

1− λχ
ρ.

As apparent from inspecting the top row Figure 3, this is much larger in THANK with counter-
cyclical inequality, following the same logic as for any demand shock. The puzzle is then that PFG

33Other than the parameter values used for Figure 2, it uses z = 0.8 and a spread shock of 4 percent per annum (ρL = −0.01),
implying a 5 percent recession and 1 percent annualized inflation in RANK with q = 0. In THANK, even though χ = 2 and
λ = 0.1 are conservative numbers (TANK amplification is limited), amplification in THANK is substantial: the recession is
three times larger than in RANK. This goes up steeply when using the forward-looking (2), or when increasing λ or χ even
slightly; indeed, with β = 0.99 in (2), the recession is 10 (ten) times larger.
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increases with the trap persistence z (duration): dPFG/dz ≥ 0 and is resolved (dPFG/dz < 0) if
and only if ν0 < 1: the general insight of Proposition 4 applies in a liquidity trap too.34 The bottom
row of Figure 3 illustrates this by plotting PFG as a function of z (fixing q = 0.5) for the same cases
as before. This shows most clearly that it is the interaction of procyclical inequality and idiosyn-
cratic risk that resolves the puzzle: the power becomes decreasing in the duration of the trap (blue
dots, left). Procyclical inequality by itself (red dash, left) alleviates the puzzle relative to RANK but
does not make the power decrease with the horizon z. While idiosyncratic risk by itself added to
countercyclical-inequality magnifies power even further, aggravating the puzzle (blue dots, right).

Optimal Policy in a Liquidity Trap in THANK

In a liquidity trap, one notion of optimal policy consists of solving for the optimal forward-guidance
duration, found by maximizing welfare with respect to q. This is developed in Bilbiie (2016) in
RANK and shown to be close to the full Ramsey-optimal policy calculated by Eggertsson and Wood-
ford (2003) and several others since. The aggregate welfare function in Proposition 6, given the
Markov chain structure, is of the form:

/W =
1

1− βz
1
2

[
c2

L +ω (q) c2
F

]
,

where ω (q) is the appropriate discount factor for the F state.35 The central bank chooses forward
guidance duration (probability q) by solving the optimization problem minq /W taking as constraints
the equilibrium values cF and cL given in (35) above. The first-order condition of this problem is:

cL
dcL
dq
+ω (q) cF

dcF
dq
+

1
2

dω (q)
dq

c2
F = 0. (36)

This has a clear intuitive interpretation (in the Appendix E, Proposition 9 I include a special
case that affords an analytical solution for the optimal duration and substantiates this intuition).
The first term is the welfare benefit of more forward guidance, of mitigating the trap-recession and
minimizing consumption volatility therein. This is proportional to the level of consumption in the
trap: the larger the initial recession, the higher the marginal utility of extra consumption, and the
larger the scope for a policy delivering it. The last two terms are the total cost of forward guidance:
the former is the direct cost, a future consumption boom creating inefficient volatility; the latter is
the discounting effect discussed above: the longer the guidance duration, the larger the cost, which
is proportional to consumption volatility in the F state.

Figure 4 plots the optimal duration, the solution of (36), as a function of λ, under our baseline
parameterization, distinguishing χ < 1 (left) and χ > 1 (right). With procyclical inequality, optimal
FG is decreasing with λ, the more so, the higher idiosyncratic risk. Intuitively, all forces work in the

34This is proved by calculating dPFG/dz = (ν0−1)ν0

[(1−qν0)(1−zν0)]
2 σ 1−λ

1−λχ ρ. The model has implications for the paradox of flexibility

(Eggertsson and Krugman, 2012), that an increase in price flexibility κ worsens the trap-recession. In THANK, ∂
(

∂cL
∂ρL

)
/∂κ =

z
(

1
1−zν0

σ 1−λ
1−λχ

)2
> 0. The paradox is mitigated (the derivative decreases) with λ iff χ < 1 and aggravated if χ > 1.

35The equilibrium being time-invariant in each state, the per-period loss is: π2
j + αc2

j =
(
α+ κ2) c2

j , j = {L, F}. The optimal

weight ω (q) = 1−βz+β(1−z)q
1−βq counts the time spent in F, with ω′ (q) > 0: the longer time spent in F, the larger the welfare cost.

See Bilbiie (2016) for details, including second-order sufficient conditions.
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same direction: the recession is lower to start with, implying less scope for forward guidance, and
forward-guidance power is monotonically decreasing in λ.

The amplification case is, in view of our previous results, more surprising: the optimal duration
is almost invariant to λ in TANK because of two counterbalancing forces. On the one hand, the
benefit is higher: the recession is larger, creating more scope for using forward guidance, whose
power is also higher. But on the other hand, the welfare cost is also increasing and at some thresh-
old λ level, it is no longer worth bearing: the implied inefficient volatility during F is so high that
the optimal duration drops rapidly to zero. In THANK, these effects are further amplified by the
complementarity with risk: an increase in λ makes the recession larger and accelerates the increase
in forward-guidance power, making the optimal duration initially increasing; but the same amplifi-
cation applies to the welfare cost of future volatility, which kicks in at a lower λ making the optimal
duration drop abruptly towards zero. This sharp increase in the welfare cost occurs precisely when
the power is large: the "dark side" of forward-guidance power.

In both cases, it becomes optimal to do no forward guidance at all beyond a threshold λ. The
underlying reason is, however, very different. With dampening, it is because a higher λ implies
both low power and a weaker scope for forward guidance. With amplification, it is because a high λ

implies high power, but also a high welfare cost, and the former effect is dwarfed by the latter.
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Figure 4 Optimal FG persistence as a function of λ for χ < 1 (left) and χ > 1 (right)

5 Conclusions

THANK, a tractable HANK model with two types and two assets, captures analytically several key
channels of quantitative HANK models. I use it for a full analysis of the main themes of the NK lit-
erature of the past decades: determinacy properties of interest rate rules, amplification, multipliers,
resolving the forward guidance puzzle, liquidity traps, and optimal monetary policy.

The key channel is cyclical inequality: whether the income of constrained hand-to-mouth agents
comoves more (countercyclical) or less (pro-) with aggregate income. This channel already operates
and is the main focus of TANK in Bilbiie (2008), but interacts with idiosyncratic uncertainty and self-
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insurance in THANK, as it does in quantitative HANK models. Thus, procyclical inequality delivers
discounting in the aggregate Euler equation, which makes the Taylor principle not necessary for
equilibrium determinacy and can cure the forward guidance puzzle.

Conversely, however, countercyclical inequality generates Euler-equation compounding, mak-
ing the Taylor principle (potentially: vastly) insufficient for determinacy and aggravating the puz-
zle. This is a Catch-22, for countercyclicality is precisely the condition for HANK models to deliver
amplification or multipliers, which is what most studies focus on, exploiting a New Keynesian cross
inherent in these models.

The paper provides a possible resolution, amplification without puzzles, by enlarging the notion
of idiosyncratic risk and disentangling its separate channels. In particular, if a distinct, inequality-
orthogonal risk channel delivers enough discounting without mitigating amplification it can resolve
this tension. I illustrate how a notion of cyclical risk previously emphasized by others but formalized
here in a novel way can deliver that independently of the cyclicality of inequality.

Yet this raises a further uncomfortable observation: when both inequality and (pure) risk are
countercyclical, the puzzles are aggravated further and the requirement for a central bank to en-
sure determinacy with a Taylor rule is significantly more stringent than merely being "active". A
Wicksellian rule of price-level targeting resolves this tension by making THANK determinate and
puzzle-free, even with countercyclical inequality and risk.

Optimal monetary policy, solved for analytically in THANK, requires a separate inequality ob-
jective, in addition to stabilizing inflation and real activity around an efficient perfect-insurance
equilibrium. Regardless of the cyclicality of inequality and regardless of risk, optimal policy implies
tolerating more inflation volatility as a result of distributional concerns. While timeless-optimal
commitment policy ultimately still amounts to price-level targeting, even though along the adjust-
ment path there it still entails tolerating more inflation. In a liquidity trap, optimal policy implies
that even with countercyclical inequality the very same amplification that boosts forward-guidance
power also magnifies its welfare cost, thus containing its optimal duration.

It is conceivable that for the analysis of many important macroeconomic questions the tractable
HANK framework proposed here, THANK, is sufficient and one does not always need a full-heterogeneity
model; the latter is certainly needed for many important questions, e.g. for identifying the most rel-
evant micro heterogeneity dimensions. To date and to the best of my knowledge, THANK is the
only tractable framework, among the several reviewed, to capture all of these channels found to be
key in rich-heterogeneity models: cyclical income inequality, precautionary self-insurance saving,
intertemporal marginal propensities to consume, and features of idiosyncratic income uncertainty
and risk (cyclical variance and skewness, and kurtosis).

As models of the economy as a whole become larger and more complex, with many sectors,
frictions, and sources of heterogeneity, the quest for tractable representations seems important for
entropic reasons. It is my hope that this framework is thus useful for policymakers and central
banks, for communicating to the larger public, for students and colleague economists from other
fields seeking to enter the fascinating realm of macro stabilization policy in a world where hetero-
geneity and inequality are of the essence.

References

Acharya, S. and K. Dogra, 2018 "Understanding HANK: Insights from a PRANK," Mimeo

29



Aiyagari, R., 1994, “Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly Journal of Eco-
nomics, 109, 659–684.

Andrade, P., G. Gaballo, E. Mengus, and B. Mojon, 2016, "Forward Guidance with Heterogeneous Be-
liefs," American Economic Journal: Macroeconomics

Angeletos, G.M. and C. Lian, 2017, Forward Guidance without Common Knowledge, American Eco-
nomic Review

Ascari, G., A. Colciago and L. Rossi, 2017, "Limited Asset Market Participation, Sticky Wages, and Mon-
etary Policy", Economic Inquiry

Auclert, A. 2018, "Monetary Policy and the Redistribution Channel," American Economic Review

Auclert, A. and M. Rognlie 2016, "Inequality and Aggregate Demand," Mimeo

Auclert, A., M. Rognlie, and L. Straub 2018, "The Intertemporal Keynesian Cross," Mimeo

Bayer, C., R. Luetticke, L. Pham-Dao, and V. Tjaden, 2018, "Precautionary Savings, Illiquid Assets, and
the Aggregate Consequences of Shocks to Household Income Risk," Econometrica

Benigno, P., 2009, "Price stability with imperfect financial integration," Journal of Money, Credit and
Banking

Benigno, P. and G. Benigno, 2003, "Price stability in open economies," Review of Economic Studies 70
(4), 743-764

Bewley, T., 1977, “The Permanent Income Hypothesis: A Theoretical Formulation,” Journal of Economic
Theory, 16, 252–292.

Bhandari, A., D. Evans, M. Golosov, and T. Sargent, 2017, "Inequality, Business Cycles and Monetary-
Fiscal Policy", Mimeo

Bilbiie F. 2008. "Limited Asset Market Participation, Monetary Policy, and (Inverted) Aggregate Demand
Logic". Journal of Economic Theory 140, 162-196.

Bilbiie F. and R. Straub, 2013, "Asset Market Participation, Monetary Policy Rules and the Great Infla-
tion", Review of Economics and Statistics, 95(2), pp 377-392

Bilbiie F., Monacelli T. and R. Perotti 2013, “Public Debt and Redistribution with Borrowing Constraints",
The Economic Journal, F64-F98

Bilbiie, F. 2016, "Optimal Forward Guidance", American Economic Journal: Macroeconomics

Bilbiie, F. and X. Ragot, 2016, "Optimal Monetary Policy and Liquidity with Heterogeneous House-
holds", CEPR DP

Bilbiie, F. 2019, "The New Keynesian Cross," Journal of Monetary Economics

Bilbiie, F. 2018, "Neo-Fisherian Policies and Liquidity Traps," CEPR DP

Broer, T., N. J. Hansen, P. Krusell, and E. Oberg, "The New Keynesian transmission mechanism: a het-
erogeneous agent perspective," Review of Economic Studies

Campbell, J. Y. and Mankiw, N. G. 1989. ”Consumption, Income, and Interest Rates: Reinterpreting the
Time Series Evidence,” NBER Macroeconomics Annual 185-216

30



Cantore, C. and L. Freund, 2019. “Workers, Capitalists, and the Government: Fiscal Policy and Income
(Re)Distribution.”

Carlstrom, C., T. Fuerst, and M. Paustian, 2015. "Inflation and output in New Keynesian models with a
transient interest rate peg," Journal of Monetary Economics, 76(C), 230-243

Challe, E., 2019 “Uninsured Unemployment Risk and Optimal Monetary Policy in a Zero-Liquidity
Economy,” American Economic Journal

Challe, E. and X. Ragot, 2016 “Precautionary Saving Over the Business Cycle,” The Economic Journal

Challe, E, J. Matheron, X. Ragot and J. Rubio-Ramirez, 2017, "“Precautionary Saving and Aggregate
Demand", Quantitative Economics

Cloyne, J., C. Ferreira and Surico, P., 2015 "Monetary Policy when Households have Debt: New Evidence
on the Transmission Mechanism" Review of Economic Studies

Cochrane, J. 2011 "Determinacy and Identification with Taylor Rules,"Journal of Political Economy, 119
(3), pp. 565-615

Cochrane, J., 2017 "Michelson-Morley, Fisher and Occam: The Radical Implications of Stable Inflation at
the Zero Bound," NBER Macroeconomics Annual.

Colciago, A. 2011, Rule-of-thumb consumers meet sticky wages, Journal of Money Credit and Banking
43(2), 325-353.

Curdia, V. and M. Woodford 2016, “Credit Frictions and Optimal Monetary Policy,” Journal of Monetary
Economics

Debortoli, D., and J. Galí, 2018, "Monetary Policy with Heterogeneous Agents: Insights from TANK
models"; Mimeo

Del Negro, M., M. Giannoni, and C. Patterson 2012: “The Forward Guidance Puzzle,” Mimeo

Den Haan, W. J.; P. Rendahl, and M. Riegler 2016, "Unemployment (Fears) and Deflationary Spirals"
Journal of the European Economic Association

Diba, B. and O. Loisel, 2017, "Pegging the Interest Rate on Bank Reserves: A Resolution of New Keyne-
sian Puzzles and Paradoxes," Mimeo

Eggertsson G. and M. Woodford 2003, "The Zero Bound on Interest Rates and Optimal Monetary Pol-
icy", Brookings Papers on Economic Activity, No. 1.

Eggertsson, G. 2010, "What Fiscal Policy Is Effective at Zero Interest Rates?" NBER Macroeconomics
Annual

Eggertsson G. and P. Krugman 2012, "Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo
Approach," Quarterly Journal of Economics, 127(3): 1469-1513.

Eser, F. 2009. "Monetary Policy in a Currency Union with Heterogeneous Limited Asset Markets Partic-
ipation," Mimeo

Fagereng, A., M. Holm and G. Natvik, 2018, “MPC Heterogeneity and Household Balance Sheets"
Mimeo

Farhi, E. and I. Werning, 2017, "Monetary policy with bounded rationality and incomplete markets"

31



Ferrière, A. and G. Navarro, 2017 "The Heterogeneous Effects of Government Spending: It’s All About
Taxes," Mimeo

Gabaix, X., 2019, "A Behavioral New Keynesian Model," American Economic Review

Galí, J. 2008, "Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian
Framework and Its Applications", Princeton University Press

Galí, J., D. López-Salido, and J. Vallés, 2007. "Understanding the Effects of Government Spending on
Consumption". Journal of the European Economic Association, March, vol. 5 (1), 227-270.

Garcia-Schmidt, M. and M. Woodford, 2014. “Are Low Interest Rates Deflationary? A Paradox of Perfect
Foresight Analysis,” American Economic Review

Gorea, D. and V. Midrigan, 2017, "Liquidity Constraints in the U.S. Housing Market" Mimeo

Gornemann, N., K. Kuester, and M. Nakajima, 2016, "Doves for the Rich, Hawks for the Poor? Distribu-
tional Consequences of Monetary Policy," Mimeo

Guerrieri, V. and G. Lorenzoni, 2017, "Credit Crises, Precautionary Savings, and the Liquidity Trap"
Quarterly Journal of Economics

Guvenen, F., S. Ozkan, and J. Song, “The Nature of Countercyclical Income Risk,” Journal of Political
Economy, 122 (3):621-660.

Hagedorn, M., 2017, "A Demand Theory of the Price Level", Mimeo

Hagedorn, M., 2018, “Prices and Inflation when Government Bonds are Net Wealth,” mimeo

Hagedorn, M., I. Manovskii, and K. Mitman, 2017, "The Fiscal Multiplier," Mimeo

Hagedorn, M., J. Luo, I. Manovskii, and K. Mitman, 2019, "Forward Guidance," Journal of Monetary
Economics

Heathcote, J., F. Perri, and G. Violante, 2010. "Unequal We Stand: An Empirical Analysis of Economic
Inequality in the United States: 1967-2006," Review of Economic Dynamics

Heathcote, J. and F. Perri, 2018, "Wealth and Volatility," Review of Economic Studies

Holm, M., 2018, "Monetary Policy Transmission with Income Risk," Mimeo

Huggett, M., 1993, “The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance Economies,”
Journal of Economic Dynamics and Control, 17, 953–969.

Kaplan, G., G. Violante, and J. Weidner, 2014 “The Wealthy Hand-to-Mouth,” Brookings Papers on Eco-
nomic Activity.

Kaplan, G., B. Moll and G. Violante, 2018, "Monetary Policy According to HANK", American Economic
Review

Krusell, P., T. Mukoyama, and A. Smith. 2011. "Asset Prices in a Huggett Economy," Journal of Economic
Theory, 146 (3), 812-844

Leeper, E., 1991, "Equilibria Under "Active" and "Passive" Monetary and Fiscal Policies", Journal of Mon-
etary Economics

Lucas R. E. Jr., 1990 "Liquidity and Interest Rates." Journal of Economic Theory 50, 237 - 264.

32



Luetticke, R., 2018 "Transmission of Monetary Policy with Heterogeneity in Household Portfolios,"
Mimeo

Mankiw, N. G. 1986. “The Equity Premium and the Concentration of Aggregate Shocks.”Journal of Fi-
nancial Economics, 17: 211–19

Mankiw, N. G. 2000. ”The Savers-Spenders Theory of Fiscal Policy,” American Economic Review, 90 (2):
120-125.

McKay, A. and R. Reis, 2016 “The Role of Automatic Stabilizers in the U.S. Business Cycle,” Economet-
rica, 84-1

McKay, A., E. Nakamura, and J. Steinsson 2015: “The Power of Forward Guidance Revisited,” American
Economic Review

McKay, A., E. Nakamura and J. Steinsson 2016: "The Discounted Euler Equation", Economica

Mertens K. and M. Ravn 2013. "Fiscal Policy in an Expectations Driven Liquidity Trap," Review of Eco-
nomic Studies

Michaillat, P. and E. Saez, 2018, "A New Keynesian Model with Wealth in the Utility Function", Mimeo

Nistico, S., 2015, "Optimal monetary policy and financial stability in a non-Ricardian economy." Journal
of the European Economic Association

Nuño, G. and C. Thomas, 2017, "Optimal Monetary Policy with Heterogeneous Agents" Mimeo

Oh, H. and R. Reis, 2012, "Targeted transfers and the fiscal response to the great recession." Journal of
Monetary Economics, 59(S), S50-S64

Patterson, C., 2019, "The Matching Multiplier and the Amplification of Recessions," Mimeo

Ravn, M. and V. Sterk, 2017 “Job Uncertainty and Deep Recessions,” Journal of Monetary Economics.

Ravn, M. and V. Sterk, 2018, "Macroeconomic Fluctuations with HANK and SAM: an analytical ap-
proach"

Sargent, T. and N. Wallace, 1975, "Rational" Expectations, the Optimal Monetary Instrument, and the
Optimal Money Supply Rule," Journal of Political Economy, 83(2), 241-254

Storesletten, K., C. Telmer, and A. Yaron, 2004. “Cyclical Dynamics in Idiosyncratic Labor Market Risk,”
Journal of Political Economy, 112(3), 695-717.

Walsh, C., 2016, "Workers, Capitalists, Wages, Employment and Welfare", Mimeo

Werning, I., 2015, "Incomplete markets and aggregate demand", Mimeo

Woodford, M., 1990, "Public Debt as Private Liquidity," American Economic Review Papers and Pro-
ceedings, 80 (2), pp. 382-388

Woodford, M., 1996, "Controlling the public debt: a requirement for price stability?" Mimeo

Woodford, M., 2003, Interest and prices: foundations of a theory of monetary policy, Princeton Univer-
sity Press

Woodford, M. 2011. "Simple Analytics of the Government Expenditure Multiplier," American Economic
Journal: Macroeconomics, 3(1), p 1-35.

33



Appendix to Monetary Policy and Heterogeneity: An Analytical Framework
Florin O. Bilbiie, University of Lausanne and CEPR

A Model and Literature Details

This Appendix presents in detail the model and reviews the connection to the literature.

A.1 Aggregate Demand: Asset Markets Details

There is a mass 1 of households, indexed by j ∈ [0, 1], who discount the future at rate β and derive
utility from consumption Cj

t and dis-utility from labor supply N j
t . Households have access to two as-

sets: a government-issued riskless bond (with nominal return it > 0), and shares in monopolistically
competitive firms.

Households participate infrequently in financial markets. When they do, they can freely adjust their
portfolio and receive dividends from firms. When they do not, they can use only bonds to smooth
consumption. Denote by s the probability to keep participating in period t+ 1, conditional upon partic-
ipating at t (hence, the probability to switch to not participating is 1− s). Likewise, call h the probability
to keep non-participating in period t+ 1, conditional upon not participating at t (hence, the probability
to become a participant is 1− h). The fraction of non-participating households is λ = (1− s) / (2− s− h),
and the fraction 1− λ participates.

Furthermore, households belong to a family whose head maximizes the intertemporal welfare of
family members using a utilitarian welfare criterion (all households are equally weighted), but faces
some limits to the amount of risk sharing that it can do. Households can be thought of as being in two
states or "islands"36. All households who are participating in financial markets are on the same island,
called S. All households who are not participating in financial markets are on the same island, called H.
The family head can transfer all resources across households within the island, but cannot transfer some
resources between islands.

Timing: At the beginning of the period, the family head pools resources within the island. The ag-
gregate shocks are revealed and the family head determines the consumption/saving choice for each
household in each island. Then households learn their next-period participation status and have to
move to the corresponding island accordingly, taking only bonds with them. There are no transfers to
households after the idiosyncratic shock is revealed, and this taken as a constraint for the consump-
tion/saving choice.

The flows across islands are as follows. The total measure of households leaving the H island each
period is the number of households who participate next period: λ (1− h). The measure of households
staying on the island is thus λh. In addition, a measure (1− s) (1− λ) leaves the S island for the H
island at the end of each period.

Total welfare maximization implies that the family head pools resources at the beginning of the
period in a given island and implements symmetric consumption/saving choices for all households in
that island. Denote as BS

t+1 the per-capita beginning-of-period-t + 1 bonds of S: after the consumption-
saving choice, and also after changing state and pooling. The end-of-period-t per capita real values (after
the consumption/saving choice but before agents move across islands) are ZS

t+1. Denote as BH
t the per

capita beginning-of-period bonds in the H island (where the only asset is bonds). The end-of-period
values (before agents move across islands) are ZH

t+1. We have the following relations:

(1− λ) BS
t+1 = (1− λ) sZS

t+1 + (1− λ) (1− s) ZH
t+1 (A.1)

λBH
t+1 = λ (1− h) ZS

t+1 + λhZH
t+1.

36This follows e.g. Challe et al (2017) and Bilbiie and Ragot (2016). See Heathcote and Perri (2018) for a related way of
reducing heterogeneity and eliminating the wealth distribution as a state variable.
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or rescaling by the relative population masses and using λ = 1−s
1−s+1−h :

BS
t+1 = sZS

t+1 + (1− s) ZH
t+1 (A.2)

BH
t+1 = (1− h) ZS

t+1 + hZH
t+1.

(as stocks do not leave the S island, we can ignore them).
The program of the family head is (with πt denoting the net inflation rate):

W
(

BS
t , BH

t , ωt

)
= max

{CS
t ,ZS

t+1ZH
t+1,CH

t ,ωt+1}
(1− λ)U

(
CS

t

)
+ λU

(
CH

t

)
+βEtW

(
BS

t+1, BH
t+1, ωt+1

)
subject to:

CS
t + ZS

t+1 + vtωt+1 = YS
t +

1+ it−1

1+ πt
BS

t +ωt (vt + Dt) ,

CH
t + ZH

t+1 = YH
t +

1+ it−1

1+ πt
BH

t (A.3)

ZS
t+1, ZH

t+1 ≥ 0 (A.4)

and the laws of motion for bond flows relating the Zs to the Bs, (A.2). S-households (who own all the
firms) receive dividends Dt, and the real return on bond holdings. With these resources they consume
and save in bonds and shares. Equation (A.3) is the budget constraint of H. Finally (A.4) are positive
constraints on bond holdings. Using the first-order and envelope conditions, we have:

U′
(

CS
t

)
≥ βEt

{
vt+1 + Dt+1

vt
U′
(

CS
t+1

)}
and ωt+1 = ωt = (1− λ)−1 ; (A.5)

U′
(

CS
t

)
≥ βEt

{
1+ it

1+ πt+1

[
sU′

(
CS

t+1

)
+ (1− s)U′

(
CH

t+1

)]}
(A.6)

and 0 = ZS
t+1

[
U′
(

CS
t

)
− βEt

{
1+ it

1+ πt+1

[
sU′

(
CS

t+1

)
+ (1− s)U′

(
CH

t+1

)]}]
U′
(

CH
t

)
≥ βEt

{
1+ it

1+ πt+1

[
(1− h)U′

(
CS

t+1

)
+ hU′

(
CH

t+1

)]}
(A.7)

and 0 = ZH
t+1

[
U′
(

CH
t

)
− βEt

{
1+ it

1+ πt+1

[
(1− h)U′

(
CS

t+1

)
+ hU′

(
CH

t+1

)]}]
The first Euler equation corresponds to the choice of stock: there is no self-insurance motive, for they

cannot be carried to the H state: the equation is the same as with a representative agent.37

The bond choice of S-island agents is governed by (A.6), which takes into account that bonds can be
used when moving to the H island. The third equation (A.7) determines the bond choice of agents in
the H island; both bond Euler conditions are written as complementary slackness conditions.

With this market structure, the Euler equations (A.6) and (A.7) of the same form as in fully-fledged
incomplete-markets model of the Bewely-Huggett-Aiyagari type. In particular, the probability 1 − s
measures the uninsurable risk to switch to a bad state next period, risk for which only bonds can be
used to self-insure—thus generating a demand for bonds for "precautionary" purposes.

Two more assumptions deliver our simple equilibrium representation. First, we focus on equilibria

37As households pool resources when participating (which would be optimal with t=0 symmetric agents and t=0 trading),
they perceive a return conditional on participating next period. This exactly compensates for the probability of not participat-
ing next period, thus generating the same Euler equation as with a representative agent.
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where (whatever the reason) the constraint of H agents always binds and their Euler "equation" is in
fact a strict inequality (for instance, because the shock is a "liquidity" or impatience shock making them
want to consume more today, or because their average income in that state is lower enough than in the
S state—as would be the case if average profits were high enough; or simply because of a technological
constraint preventing them from accessing any asset markets).

For the most part, we work with the zero-liquidity limit. That is, we assume that even though the
demand for bonds from S is well-defined (the constraint is not binding), the supply is zero so there are
no bonds traded in equilibrium. Under these assumptions the only equilibrium condition from this part
of the model is the Euler equation for bonds of S. The Euler equation of shares simply determines the
share price vt, and the H’s constraint binding implies that they are hand-to-mouth CH

t = YH
t .

A.2 Relation to Literature: Details

Relation to other analytical HANK Others studies also provide different analytical frameworks, both
because they isolate different HANK mechanisms and focus on different questions. The clearest separa-
tion in terms of channels is illustrated by the subsequent paper by Acharya and Dogra (2018) reviewed
in text, that is explicitly set to isolate cyclical risk using CARA preferences. That paper shows that indeed
intertemporal amplification may occur purely as a result of uninsurable income volatility going up in re-
cessions, even when inequality is acyclical. (the paper also studies determinacy and puzzles referring to
this paper’s results from the previous version.) In a previous contribution, Werning (2015) similarly em-
phasizes the possibility of AD amplification/dampening of monetary policy relative to RANK in a more
general model of income risk and market incompleteness where inequality and risk coexist. My paper’s
subject is very different, a full analysis of NK topics. So is the mechanism, although some of its equi-
librium implications pertaining to intertemporal amplification or dampening have a similar flavor. But
the key here is cyclical inequality: the distribution of income (between labor and "capital" understood as
monopoly profits) and how it depends on aggregate income, as summarized through χ, the chief feature
of my earlier TANK model Bilbiie (2008). Whereas the discussion in Werning emphasizes the cyclicality
of income risk: as uninsurable income risk goes up in a recession, agents increase their precautionary
savings and decrease their consumption, amplifying the initial recession which further increases idio-
syncratic risk, and so on—a mechanism previously emphasized through endogenous unemployment
risk by Ravn and Sterk (2017) and Challe et al (2017). My model’s mechanism is instead an intertempo-
ral extension of the cornerstone amplification (dampening) mechanism in TANK, when any agent can
become constrained in any future period and self-insures (imperfectly) using liquid assets against the
(acyclical) risk of doing so. This puts the cyclicality of income of constrained, and thus of inequality, at the
core of transmission; whereas Werning emphasizes the cyclicality of income risk, although the two are
convoluted in the different, more general framework therein.

To incorporate this distinction, I embed a separate cyclical-risk channel in THANK, assuming that the
probability of becoming constrained is a function of aggregate output. With this different formalization,
the two different channels of cyclical inequality and risk jointly determine AD amplification. Not only
are the two channels naturally separate: my analysis implies that they better be distinct, for in order to
resolve the Catch-22 they need to go in opposite directions. Which channel prevails empirically is a very
interesting and hitherto unexplored topic that I pursue currently.

Additionally, my analysis is conducted in a loglinearized NK model that nests not only the three-
equation textbook RANK but also: TANK, a HANK with cyclical inequality and acyclical risk, and a
HANK with cyclical risk and acyclical inequality. Since it is so simple and transparent and close to
standard NK craft, it may be of independent interest to some researchers.

My results imply an analytical reinterpretation of McKay et al’s (2016, 2017) incomplete-markets
based resolution of the FG puzzle. My framework underscores the procyclicality of inequality as sufficient
for delivering Euler-equation discounting in the presence of (albeit acyclical) idiosyncratic risk. Procycli-
cality of inequality occurs in my model through labor market features and fiscal redistribution making
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the income of constrained agents vary less than one-to-one with the cycle χ < 1. If inequality is instead
countercyclical, the Euler equation is compounded in my model, implying an aggravation of the FG puzzle.
Furthermore, my paper addresses a wide range of NK topics as mentioned above.

Broer, Hansen, Krusell, and Oberg (2018) study a simplified HANK whose equilibrium has a two-
agent representation, underscoring the implausibility of some of the model’s implications for monetary
transmission through income effects of profit variations on labor supply—and showing that a sticky-
wage version features a more realistic transmission mechanism; Walsh (2017) provides another analyt-
ical model with heterogeneity emphasizing the role of sticky wages (see Colciago (2011), Ascari, Colci-
ago, and Rossi (2017), and Furlanetto (2011) for earlier sticky-wage TANK).

Auclert, Rognlie, and Straub (2018) also use a "Keynesian cross" version to capture a distinct, comple-
mentary HANK channel. In particular, they abstract from the cyclical-inequality channel emphasized
here to focus on the role of liquidity in the form of public debt; they unveil key summary statistics per-
taining to the marginal propensities to consume out of past and future income (labelled iMPCs) and how
they shape the responses of the economy to past and future income shocks. Their quantitative HANK
model with liquid and illiquid assets can in fact be viewed as the closest generalization of my THANK
model; or alternatively, it is among the wide spectrum of quantitative HANK models the one to which
my THANK model is the closest reduced representation. I use THANK to calculate analytically Auclert
et al’s iMPCs and provide insights into the important propagation mechanism they emphasize. Indeed,
self-insurance to idiosyncratic risk is necessary and sufficient in the presence of liquidity to generate
the tent-shaped path of iMPCs in THANK; whereas cyclical inequality is not of the essence to generate
persistent iMPCs, but is important to fit the magnitudes under realistic calibrations.

Ravn and Sterk (2018) also study an analytical HANK but with search and matching (SaM), that
is different from and complementary to my model and focusing on a different (sub)set of the issues
studied here; Challe (2018) studies optimal monetary policy therein. Their models include endogenous
unemployment risk (a feature of some HANK models) through labor SaM, risk against which workers
self-insure. The simplifying assumptions used to maintain tractability, in particular pertaining to the
asset market, are orthogonal to mine.38 Their framework delivers an interesting feedback loop from
precautionary saving to aggregate demand (see also Challe et al (2017)) that is absent here. My model
does much the opposite: in the zero-liquidity case, it gains tractability assuming exogenous transitions
and a different asset market structure, but emphasizes the NK-cross feedback loop through the endoge-
nous constrained income that is absent in Ravn and Sterk and Challe. While my extension to cyclical risk
can be viewed as a reduced-form formalization of their channel. This paper addresses additional topics:
restoring determinacy under a peg and how that rules out the FG puzzle, the uncomfortable (Catch-22)
implication that this also rules out multipliers and a way out of it, the virtues of a Wicksellian rule of
price-level targeting, and optimal monetary policy, both in normal times and in a liquidity trap.

Relation to Bilbiie (2019) and (2008) The THANK model proposed here is an extension of the TANK
model in Bilbiie (2008), which analyzed monetary policy introducing the distinction between the two
types based on asset markets participation:39 H have no assets, while S own all the assets, i.e. price bonds
and shares in firms through their Euler equation. That paper analyzed AD amplification of monetary
policy and emphasized the key role of profits and their distribution, as well as of fiscal redistribution, for
this in an analytical 3-equation TANK model isomorphic to RANK. In recent work, Bilbiie (2019) and
Debortoli and Galí (2018) both used this TANK model to argue that it can approximate reasonably well
some aggregate implications of some HANK models: several models from the HANK literature cited

38In my model savers hold, price, and receive the payoff (profits) of shares. In Ravn and Sterk, hand-to-mouth workers
get the return on shares but do not price them. Their mechanism creates an "unemployment-trap", a breakup of the Taylor
principle complementary to the one here, and fixes the puzzling NK effects of supply shocks in a LT, which I abstract from.

39Thus abstracting from physical investment, the element of distinction in previous two-agent studies: Mankiw (2000) had
used a growth model with this distinction, due to pioneerig work by Campbell and Mankiw (1989), to analyze long-run fiscal
policy issues. Galí, Lopez-Salido and Valles (2007) embedded this same distinction in a NK model and studied numerically the
business-cycle effects of government spending, with a focus on obtaining a positive multiplier on private consumption. They
also analyzed numerically determinacy properties of interest rate rules, that Bilbiie (2008) derived analytically.
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above, for the former; and the authors’ own, for the latter. This suggests that the cyclical-inequality
channel plays an important role in HANK transmission in and of itself.

The first extension here pertains to introducing self-insurance to idiosyncratic uncertainty: the risk
of becoming constrained in the future despite not being constrained today, a key HANK mechanism
that is absent in TANK; this gives the model another margin to fit the aggregate findings of quantitative
HANK, as shown in Bilbiie (2019).40 That paper introduces the New Keynesian Cross as a graphi-
cal and analytical apparatus for the AD side of HANK models, expressing its key objects—MPC and
multipliers—as functions of heterogeneity parameters. It studies the implications for monetary and
fiscal multipliers, the link between MPC and multipliers with the "direct-indirect" decomposition of Ka-
plan et al, and the ability of this simple model to replicate some aggregate equilibrium implications of
several quantitative, micro-calibrated HANK models. Finally, Bilbiie and Ragot (2016) builds a different
analytical HANK with three assets—one ("money") liquid and traded in equilibrium, two (bonds and
stock) illiquid—and studies Ramsey-optimal monetary policy as liquidity provision.

This paper’s novel elements include: adding cyclical risk from several sources, related or unrelated
to inequality, and pertaining to either variance or skewness; liquidity and a calculation of the iMPCs; an
aggregate supply side and closed-form conditions for determinacy with Taylor rules (the HANK Taylor
principle), for determinacy under price-level targeting, and for ruling out the forward-guidance puzzle;
a formal statement of the "Catch-22" and of the conditions on the cyclicalities of risk and inequality to
rule it out; an analysis of optimal monetary policy; and an application to the analysis of liquidity traps.

A.3 Aggregate Supply: New Keynesian Phillips Curve

The individual goods producers solve:

max
Pt(k)

E0

∞

∑
t=0

QS
0,t

[(
1+ τS

)
Pt(k)Yt(k)−WtNt(k)−

ψ

2

(
Pt(k)
P∗∗t−1

− 1
)2

PtYt

]
,

where I consider two possibilities for the reference price level P∗∗t−1, with respect to which it is costly for
firms to deviate. In the first scenario, this is the aggregate price index Pt−1 which small atomistic firms
take as given—this delivers the static Phillips curve. In the second, P∗∗t−1 is firm k’s own individual price

as in standard formulations. QS
0,t ≡ βt (P0CS

0 /PtCS
t
)σ−1

is the marginal rate of intertemporal substitution
of participants between times 0 and t, and τS the sales subsidy. Firms face demand for their products
from two sources: consumers and firms themselves (in order to pay for the adjustment cost); the demand
function for the output of firms z is Yt(z) = (Pt(z)/Pt)

−ε Yt. Substituting this into the profit function, the
first-order condition is, after simplifying, for each case:

Static PC case P∗∗t−1 = Pt−1

0 = Q0,t

(
Pt(k)

Pt

)−ε

Yt

[(
1+ τS

)
(1− ε) + ε

Wt

Pt

(
Pt(k)

Pt

)−1
]
−Q0,tψPtYt

(
Pt(k)
Pt−1

− 1
)

1
Pt−1

In a symmetric equilibrium all producers make identical choices (including Pt(k) = Pt); defining net
inflation πt ≡ (Pt/Pt−1)− 1, this becomes:

πt (1+ πt) =
ε− 1

ψ

[
ε

ε− 1
wt −

(
1+ τS

)]
,

loglinearization of which delivers the static PC in text (3).41

40That paper also discusses the differences with earlier work using type-switching to analyze monetary policy, e.g. Nistico
(2016) and Curdia and Woodford (2016). I spell out the differentiating assumptions below.

41In a Calvo setup, this amounts to assuming that each period a fraction of firms f keep their price fixed, while the rest can
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Dynamic PC case P∗∗t−1 = Pt−1; the first-order condition is

0 = Q0,t

(
Pt(k)

Pt

)−ε

Yt

[(
1+ τS

)
(1− ε) + ε

Wt

Pt

(
Pt(k)

Pt

)−1
]

−Q0,tψPtYt

(
Pt(k)

Pt−1(k)
− 1
)

1
Pt−1(k)

+

+ Et

{
Q0,t+1

[
ψPt+1Yt+1

(
Pt+1(k)
Pt(k)

− 1
)

Pt+1(k)
Pt(k)2

]}
In a symmetric equilibrium, using again the definition of net inflation πt, and noticing that Q0,t+1 =

Q0,tβ
(
CS

t /CS
t+1

)σ−1

(1+ πt+1)
−1 , this becomes:

πt (1+ πt) = βEt

( CS
t

CS
t+1

)σ−1

Yt+1

Yt
πt+1 (1+ πt+1)

+
+

ε− 1
ψ

[
ε

ε− 1
wt −

(
1+ τS

)]
,

the loglinearization of which delivers the NKPC in text (2). Notice that this nests the static PC when the
discount factor of firms β = 0.

B Liquidity: THANK and analytical intertemporal MPCs

Assume that liquidity is supplied by the government through issuing a bond: denote by BN
t+1 the

total nominal quantity of bonds outstanding at the end of each period. In nominal terms, BN
t+1 =

(1+ it−1) BN
t −PtTt, and in real terms:

Bt+1 = (1+ rt) Bt − Tt (B.1)

where 1+ rt =
1+it−1
1+πt

.
The bond market clears Bt+1 = λZH

t+1 + (1− λ) ZS
t+1. Denoting the disposable (net of taxes) income

of agent j by Ŷ j
t (where how this is determined in equilibrium depends on the particular model), we

have for H
CH

t + ZH
t+1 = ŶH

t + (1+ rt) BH
t

Recall now that ZH
t+1 = 0, so that Bt+1 = (1− λ) ZS

t+1; using the flow definitions:

BH
t+1 = (1− h) ZS

t+1 =
1− h
1− λ

Bt+1 =
1− s

λ
Bt+1

Replacing

CH
t = ŶH

t +
1− s

λ
(1+ rt) Bt

Similarly for S we obtain (using BS
t+1 = sZS

t+1 =
s

1−λ Bt+1):

CS
t +

1
1− λ

Bt+1 = ŶS
t +

s
1− λ

(1+ rt) Bt.

re-optimize freely but ignoring that this price affects future demand. This reduces to β f = 0 only in the firms’ problem (not
recognizing that today’s reset price prevails with some probability in future periods).
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Loglinearizing around a long-run steady-state with zero public debt (and thus zero liquidity) B =
0—one form of specifying a Ricardian, passive fiscal policy—we obtain:

cH
t = ŷH

t +
1− s

λ
β−1bt

cS
t +

1
1− λ

bt+1 = ŷS
t +

s
1− λ

β−1bt,

where we used that in a steady-state with zero liquidity and no inequality CH = CS, the self-insurance
Euler equation for bonds implies 1+ r = β−1. Loglinearizing the self-insurance equation we have the
equivalent of (9):

cS
t = sEtcS

t+1 + (1− s) EtcH
t+1 − σrt. (B.2)

B.1 Derivation of analytical iMPCs

The equilibrium dynamics of private liquid assets bt are found by replacing the individual budget con-
straints (15) into the loglinearized self-insurance equation for bonds (9), obtaining:

Etbt+2 −Θbt+1 + β−1bt =
1− λ

s

[
sEtŷS

t+1 + (1− s) EtŷH
t+1 − ŷS

t

]
, (B.3)

where Θ ≡ 1
s
+ β−1

[
1+

1− s
s

(
1− s

λ
− 1
)]

.

As clear from (B.3), finding the derivatives of bt+k with respect to ŷt requires a model of how individ-
ual disposable incomes are related to aggregate, such as this paper’s. Furthermore, since the calculation
of iMPCs keeps fixed by definition all the other variables (in particular taxes, their distribution, and thus
public debt), the partial derivatives of individual disposable incomes with respect to aggregate dispos-
able income are respectively dŷH

t = χdŷt and dŷS
t =

1−λχ
1−λ dŷt.42 Solving the asset dynamics equation

taking this into account delivers:

dbt+1 = xbdbt +
1− λχ

s

∞

∑
k=0
(βxb)

k+1 (dŷt+k − δdŷt+k+1) , (B.4)

where the roots of the characteristic polynomial of (B.3) are xb =
1
2

(
Θ−

√
Θ2 − 4β−1

)
and (βxb)

−1,

with 0 < xb < 1 as required by stability whenever β > 1− 1−s
λ .

Substituting (B.4) in (16) delivers the aggregate consumption function, the key equation for calculat-
ing the analytical iMPCs in Proposition 7:

dct = dŷt + β−1 (1− βxb) dbt +
1− λχ

s

∞

∑
k=0
(βxb)

k+1 (δdŷt+k+1 − dŷt+k) . (B.5)

Proposition 7 The intertemporal MPCs (iMPCs) for the THANK model, in response to a one-time shock to

42In particular, any model would deliver a reduced-form ŷH
t = χŷt + χtaxtt, χtax being an equilibrium elasticity depending

on the tax distribution, labor elasticity, etc. But for calculating iMPCs, we look at a partial equilibrium wherein dtt/ŷt = 0.
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disposable income at any time T and for any t ≥ 0: (i) are given by:

dct

dŷT
=


1−λχ

s
δ−βxb
1−βx2

b
(βxb)

T−t
(

1− xb + xb (1− βxb)
(

βx2
b

)t
)

, if t ≤ T − 1;

1− 1−λχ
s βxb − (δ− βxb) xb

1−λχ
s (1− βxb)

1−(βx2
b)

T

1−βx2
b

, if t = T;
1−λχ

s
1−βxb
1−βx2

b
xt−T

b

(
1− xbδ+ xb (δ− βxb)

(
βx2

b

)T
)

, if t ≥ T + 1.

and (ii) are increasing with the cyclicality of inequality χ when t < T and decreasing with χ when t ≥ T > 0
(keeping fixed the time-0 contemporaneous MPC dc0/dŷ0).

It is useful, in order to isolate this liquidity-amplification channel, to follow Auclert et al’s paper that
discovered it and start with the benchmark of acyclical inequality χ = 1. This amounts to replacing
individual disposable incomes with aggregate disposable income ŷj

t = ŷt, obtaining the expressions in
Proposition 7 with χ = 1 and δ = 1. The path of the iMPCs is apparent in this special case: faced
with a current income shock, agents optimally self-insure, saving in liquid wealth to maintain a higher
consumption in the future. While when facing a future income shock agents consume in anticipation,
decreasing their stock of liquid savings.

Ceteris paribus, countercyclical inequality χ > 1 leads to a higher contemporaneous MPC but to
lower future MPCs (without affecting persistence as described by xb which is independent of χ). Per-
sistence is instead increasing with the share of hand-to-mouth and decreasing with the level of idiosyn-
cratic risk (it can be directly verified that ∂xb/∂λ > 0 and ∂xb/∂ (1− s) < 0).

Figure B.1 illustrates this by plotting the iMPCs for four models: TANK, and three cases of THANK
(encompassing both liquidity and cyclical inequality) for pro- and counter-cyclical inequality, and the
benchmark acyclical-inequality akin to Auclert et al’s quantitative HANK, respectively. The left panel
looks at a date-0 aggregate income shock and calibrates the THANK with acyclical inequality to closely
follow Auclert et al, i.e. β = 0.8 and λ = 0.5; this requires s = 0.84 to match both the contemporaneous
and next-year MPCs (0.55 and 0.15 respectively). The discount rate is very large, even for the yearly
calibration adopted here; in the models with cyclical inequality (both TANK and THANK) I set β = 0.95
and match the two target MPCs with λ = 0.33, s = 0.82 and χ = 1.4. This is coincidentally close to
the calibration used in Bilbiie (2019) to match other (aggregate, general-equilibrium) objects with the same
model.

The intertemporal path of the iMPCs is remarkably in line with that documented by Fagereng et
al and Auclert et al in the data; in particular, the effect of the income shock dies off a few years after;
whereas the model with acyclical inequality implies unrealistically high persistence while TANK implies
no persistence at all. The reverse side of it is that, as clear from the right panel that compares iMPCs out
of current and future income shocks for THANK with acyclical and countercyclical inequality, the latter
implies larger iMPCs out of future income—an illustration of part (ii) of the Proposition; this is due,
intuitively, to the same self-insurance forces that generate Euler-compounding in general equilibrium
illustrated in the previous section. Direct differentiation of the analytical expressions in Proposition 7
reveals in fact that the iMPCs out of future income (news) are increasing in χ while the iMPCs out of
past income are decreasing in χ.
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Figure B.1: iMPCs in THANK with χ = 1 (thin black dot-dash); TANK (red dash); THANK with counter- and
pro-cyclical inequality (thick and thin blue solid). Left: T = 0; right: T = 0; 10

An important remark is that countercyclical inequality is, nevertheless, not necessary for the THANK
model to match the iMPCs. Indeed, the model with procyclical inequality χ < 1 also does it. To illustrate
this, consider the model with χ = 0.8. Clearly, we need to re-calibrate the model for a lower χ implies,
by the logic of the cyclical-inequality channel, a lower contemporaneous MPC and a higher MPC out of
past income; matching the two MPCs thus requires re-calibrating λ = 0.64 and s = 0.74. The resulting
path (the thin solid line in the Figure) illustrates our intuition: the MPC out of past income is virtually
identical, which is not surprising since we matched the one-period-ago MPC. But the whole path of the
"forward" MPCs is below the countercyclical-inequality case (with the acyclical-inequality case between
the two), which is a direct implication of the Euler discounting through δ discussed at length above.
Notice, however, that while discounting/compounding in the Euler equation is not per se of the essence
for matching the iMPCs (although it certainly matters quantitatively), idiosyncratic risk is.

B.2 Proof of Proposition 7

The solution of the asset-accumulation equation implies the following recursions for the responses of
assets to income shocks:

t ≤ T − 1:
dbt+1

dŷT
= xb

dbt

dŷT
+

1− λ

s
(βxb)

T−t (βxb − δ)

t = T :
dbt+1

dŷT
= xb

dbt

dŷT
+

1− λ

s
βxb

t > T :
dbt+1

dŷT
= xb

dbt

dŷT

The solutions of these equations are (setting initial debt equal to steady-state without loss of generality):

t ≤ T − 1:
dbt+1

dŷT
= (βxb)

T−t 1− λχ

s
(βxb − δ)

1− (xbβxb)
t+1

1− xbβxb

t = T :
dbT+1

dŷT
= xbβxb

1− λχ

s
(βxb − δ)

1− (xbβxb)
T

1− xbβxb
+

1− λχ

s
βxb

t ≥ T + 1 :
dbt+1

dŷT
= xt−T

b
dbT+1

dŷT
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Taking derivatives of the consumption function B.5, we have:

t ≤ T − 1:
dct

dŷT
= β−1 (1− βxb)

dbt

dŷT
+

1− λχ

s
(βxb)

T−t (δ− βxb)

t = T :
dct

dŷT
= 1+ β−1 (1− βxb)

dbt

dŷT
− 1− λχ

s
βxb

t > T :
dct

dŷT
= β−1 (1− βxb)

dbt

dŷT

Replacing the solution for assets:

t ≤ T − 1 :
dct

dŷT
= β−1 (1− βxb) (βxb)

T−t+1 1− λχ

s
(βxb − δ)

1− (xbβxb)
t

1− xbβxb
+

1− λχ

s
(βxb)

T−t (δ− βxb)

t = T :
dct

dŷT
= 1+ β−1 (1− βxb) βxb

1− λχ

s
(βxb − δ)

1− (xbβxb)
T

1− xbβxb
− 1− λχ

s
βxb

t ≥ T + 1 :
dct

dŷT
= β−1 (1− βxb)

dbt

dŷT
= β−1 (1− βxb) xt−T−1

b
dbT+1

dŷT

= β−1 (1− βxb) xt−T−1
b

(
xbβxb

1− λχ

s
(βxb − δ)

1− (xbβxb)
T

1− xbβxb
+

1− λχ

s
βxb

)

Rewriting and simplifying, we obtain the expressions in Proposition 7. Notice that, as argued by
Auclert et al, the present discounted sum of the iMPCs needs to be 1 (the increase in income is consumed
entirely, sooner or later). To prove that the iMPCs in THANK derived here satisfy this property, replace
the respective solution into the sum:

T−1

∑
t=0

βt−T dct

dŷT
+

dcT

dŷT
+

∞

∑
t=T+1

βt−T dct

dŷT

obtaining

1− λχ

s
δ− βxb

1− βx2
b

βTxb

[
1−

(
βx2

b
)T
]

+1− 1− λχ

s
βxb − (δ− βxb) xb

1− λχ

s
(1− βxb)

1− (xbβxb)
T

1− xbβxb

+
1− λχ

s
βxb

1− βx2
b

(
1− xbδ+ xb (δ− βxb)

(
βx2

b
)T
)

= 1

The calibration in text following Auclert et al concerns two iMPCs, dc0
dŷ0

= 1− 1−λχ
s βxb and dc1

dŷ0
=

1−λχ
s (1− βxb) xb.

Part (ii) of the Proposition concerns the dependence on χ (and δ Euler-compounding), keeping fixed
the time-0 contemporaneous MPC dc0

dŷ0
; denote this by:

m00 ≡
dc0

dŷ0
= 1− 1− λχ

s
βxb

Replacing in the Proposition and rewriting the iMPCs, taking the derivative with respect to the cyclical-

A-10



ity of inequality χ we obtain:

∂ dct
dŷT

∂χ
| ___
m00
=

∂

∂χ


1−m00

βxb

δ−βxb
1−βx2

b
(βxb)

T−t
(

1− xb + xb (1− βxb)
(

βx2
b

)t
)

, if t ≤ T − 1;

1− 1−m00
βxb

βxb − (δ− βxb)
1−m00

β (1− βxb)
1−(βx2

b)
T

1−βx2
b

, if t = T;
1−m00

βxb

1−βxb
1−βx2

b
xt−T

b

(
1− xbδ+ xb (δ− βxb)

(
βx2

b

)T
)

, if t ≥ T + 1.

It follows directly that "anticipation iMPCs" (t < T) are increasing in χ (using ∂δ
∂χ = (1− s) 1−λ

(1−λχ)2
> 0);

iMPCs out of past income (t > T) are decreasing in χ (the derivative is proportional to−xb

(
1−

(
βx2

b

)T
)

∂δ
∂χ<0),

and decrease the contemporaneous MPC at given T.

B.3 Determinacy and iMPCs

Auclert et al (2019) show that determinacy occurs when the unweighted sum of iMPCs for an income
shock occurring at T → ∞ is larger than 1. In my model, this object is calculated using the expressions
in Proposition 7.

µimpc = lim
T→∞

(
T−1

∑
t=0

dct

dŷT
+

dcT

dŷT
+

∞

∑
t=T+1

dct

dŷT

)
Replacing the expressions in Proposition 7 and taking the limit for T → ∞ we obtain, for the first term:

1− λχ

s
(δ− βxb) βxb

1− xb

(1− xbβxb) (1− βxb)

for the second term (contemporaneous iMPC):

1+ (1− βxb) xb
1− λχ

s
(βxb − δ)

1
1− xbβxb

− 1− λχ

s
βxb

and for the third sum:
(1− βxb) xb

1− λχ

s
1

1− xb

1− xbδ

1− xbβxb
.

Taking the total sum:

µimpc = 1+
1− λχ

s
xb

[
(δ− βxb)

β(1−xb)
(1−xbβxb)(1−βxb)

− β

− (δ− βxb)
1−βxb

1−xbβxb
+ (1− βxb)

1
1−xb

1−xbδ
1−xbβxb

]

= 1+ (1− δ)
1− λχ

s
(1− β) xb

(1− βxb) (1− xb)
(B.6)

Thus, the condition for determinacy (and for the Taylor principle to be sufficient) of Auclert et al µimpc >
1 is equivalent to my condition δ < 1.

C Cyclical Idiosyncratic Risk

The self-insurance equation when the probability depends on aggregate demand (tomorrow) is(
CS

t

)− 1
σ
= βEt

{
1+ it

1+ πt+1

[
s (Yt+1)

(
CS

t+1

)− 1
σ
+ (1− s (Yt+1))

(
CH

t+1

)− 1
σ

]}
. (C.1)
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We loglinearize this around a steady-state with inequality; in the context of our model, that requires
assuming that steady-state fiscal redistribution is imperfect and that a sales subsidy does not completely
undo market power (generating zero profits). In particular, we focus on a steady state with no subsidy,
so that the profit share is D/C = 1/ε and the labor share WN/C = (ε− 1) /ε. Under the same arbitrary
redistribution scheme, the consumption shares of each type are respectively

CH

C
=

WN + τD

λ D
C

= 1− 1
ε

(
1− τD

λ

)
CS

C
=

WN + 1−τD

1−λ D
C

= 1+
1
ε

λ

1− λ

(
1− τD

λ

)
>

CH

C
iff τD < λ.

Denoting steady-state inequality CS

CH ≡ Γ we loglinearize around a steady state:

1 = β (1+ r)
[
s (Y) + (1− s (Y)) Γ

1
σ

]
, (C.2)

where I restrict attention to cases with positive real interest-rate r (the topic of "secular stagnation" in this
framework is interesting in its own right—it can occur for high enough risk and high enough inequality).
Loglinearization delivers, denoting by rt the ex-ante real interest rate for brevity, and the steady-state
value of the probability by s (C) = s and its elasticity relative to the cycle (consumption) is − s′(Y)Y

1−s(Y) :

cS
t = −σrt +

s
s+ (1− s) Γ1/σ

EtcS
t+1 +

(1− s) Γ1/σ

s+ (1− s) Γ1/σ
EtcH

t+1 +

(
− s′ (Y)Y

1− s (Y)

)
σ (1− s)

(
1− Γ1/σ

)
s+ (1− s) Γ1/σ

Etct+1

which replacing individual consumption levels as function of aggregate becomes

cS
t = −σ

1− λ

1− λχ
rt +

(
1+

1− s̃
1− λχ

(χ− 1)−
(
− s′ (Y)Y

1− s (Y)

)
(1− s̃)

σ (1− λ)

1− λχ

(
1− Γ−1/σ

))
Etct+1

denote by 1− s̃ = (1−s)Γ1/σ

s+(1−s)Γ1/σ > 1− s the inequality-weighted transition probability, the relevant inequality-

adjusted measure of risk given steady-state inequality coming from financial income Γ ≡ YS/YH ≥ 1.

There can be discounting as long as risk is procyclical enough η > Γ1/σ(χ−1)
σ(1−λ)(Γ1/σ−1)

. But the contemporary

AD elasticity to interest rates is unaffected by the cyclicality of risk (this is thus isomorphic to Acharya
and Dogra’s different formalization of cyclical risk based on CARA utility).

C.1 Current aggregate demand

For the case where the probability depends on current (today) aggregate demand s (Yt), the aggregate
Euler-IS is

cS
t = −σrt + β (1+ r) sEtcS

t+1 + β (1+ r) (1− s) Γ
1
σ EtcH

t+1 + σβ (1+ r)
(
− s′ (Y)Y

1− s (Y)

)
(1− s)

(
1− Γ

1
σ

)
ct

Replacing β (1+ r)

cS
t = −σrt +

s

s+ (1− s) Γ
1
σ

EtcS
t+1 +

(1− s) Γ
1
σ

s+ (1− s) Γ
1
σ

EtcH
t+1 +

(
− s′ (Y)Y

1− s (Y)

) σ (1− s)
(

1− Γ
1
σ

)
s+ (1− s) Γ

1
σ

ct

Replace the consumption functions of H and S we obtain:

A-12



ct = θδEtct+1 − θσ
1− λ

1− λχ
(it − Etπt+1 − ρt) (C.3)

with θ ≡
[

1+
(
− s′ (Y)Y

1− s (Y)

)(
1− Γ−1/σ

)
(1− s̃) σ

1− λ

1− λχ

]−1

,

where the notation is as previously. Notice that now the two channels (cyclical inequality and cyclical
risk via s′ (.)) are intertwined for both the amplification/dampening of current interest rates and for
future consumption. A previous working paper version contained a full analysis of this version of the
model and its implications for curing puzzles and the Catch-22.

D The3-equation THANK with NKPC

This section derives the same results as in text but with the forward-looking NKPC (2).

D.1 The HANK Taylor Principle: Equilibrium Determinacy with Interest Rate Rules

Determinacy can be studied by standard techniques, extending the result in text (there will now be
two eigenvalues). Necessary and sufficient conditions are provided i.a. in Woodford (2003) Proposition
C.1. With the Taylor rule (19), the system becomes

(
Etπt+1 Etct+1

)′
= A

(
πt ct

)′ with transition
matrix:

A =

[
β−1 −β−1κ

δ−1σ 1−λ
1−λχ

(
φπ − β−1

)
δ−1

(
1+ σ 1−λ

1−λχ β−1κ
) ]

with determinant det A = β−1δ−1
(

1+ κσ 1−λ
1−λχ φπ

)
and trace trA = β−1 + δ−1

(
1+ σ 1−λ

1−λχ β−1κ
)

.
Determinacy can obtain in either of two cases. Case 2. (det A−trA < −1 and det A+trA < −1) can

be ruled based on sign restrictions. Case 1. requires three conditions to be satisfied jointly:

det A > 1; det A− trA > −1; det A+ trA > −1

The third condition is always satisfied under the sign restrictions, so the necessary and sufficient condi-
tions are:

φπ > 1+
(δ− 1) (1− β)

κσ 1−λ
1−λχ

(D.1)

together with φπ > max
(

βδ−1
κσ 1−λ

1−λχ

, 1+ (1−β)(δ−1)
κσ 1−λ

1−λχ

)
. The second term is larger than the first iff (2β− 1) δ <

κσ 1−λ
1−λχ + β, which holds generically for most plausible parameterizations. Condition (D.1) thus gener-

alizes the HANK Taylor principle to the case of forward-looking Phillips curve.

D.2 Ruling out FG Puzzle

The analogous of Proposition 4 for the case with NKPC (2) is:

Proposition 8 The analytical HANK model (with (2)) under a peg is locally determinate and solves the FG puzzle
( ∂2ct

∂(−i∗t+T)∂T
< 0) if and only if:

δ+ σ
1− λ

1− λχ

κ

1− β
< 1,
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Notice that the condition nests the one of Proposition 4 when β→ 0. Indeed, it has exactly the same
interpretation with δ + σ 1−λ

1−λχ
κ

1−β being the "long-run" effect of news, and κ
1−β being the slope of the

long-run NKPC.
Point 1. (determinacy under a peg with NKPC) follows directly from (D.1): a peg is sufficient if

both δ < β−1 and 1+ (1−β)(δ−1)
κσ 1−λ

1−λχ

< 0, the latter implying δ < 1− κ
1−β σ 1−λ

1−λχ < β−1, which delivers the

threshold in the Proposition.
Point 2 requires solving the model; focusing therefore on the case where the condition holds, and the

model is determinate under a peg, we rewrite the model in forward (matrix) form as:(
πt
ct

)
= A−1

(
Etπt+1
Etct+1

)
− σ

1− λ

1− λχ

(
κ
1

)
i∗t (D.2)

where

A−1 =

(
β+ κσ 1−λ

1−λχ κδ

σ 1−λ
1−λχ δ

)
is the inverse of matrix A defined above under a peg φ = 0. To find the elasticity of

(
πt ct

)′ to

an interest rate cut at T, −i∗t+T we iterate forward (D.2) to obtain σ 1−λ
1−λχ

(
A−1)T

(
κ
1

)
. But notice that

we know by point 1 that the eigenvalues of A are both outside the unit circle; it follows by standard
linear algebra results that the eigenvalues of A−1 are both inside the unit circle and therefore

(
A−1)T

is decreasing with T. (the eigenvalues to the power of T appear in the Jordan decomposition used to
compute the power of A−1). This proves that the FG puzzle is eliminated.

Point 3 requires computing the equilibrium given an AR1 interest rate with persistence µ as before
Eti∗t+1 = µi∗t ; since we are in the determinate case, the equilibrium is unique and there is no endogenous
persistence, so the persistence of endogenous variables is equal to the persistence of the exogenous
process. Replacing Etct+1 = µct and Etπt+1 = µπt in (D.2) we therefore have:(

πt
ct

)
= −σ

1− λ

1− λχ

(
I − µA−1

)−1
(

κ
1

)
i∗t .

Computing the inverse we obtain

(
I − µA−1

)−1
=

1
det

[
1− δµ κδµ

σ 1−λ
1−λχ µ 1−

(
β+ σ 1−λ

1−λχ κ
)

µ

]
,

where det ≡ µ2βδ− µ
(

δ+ σ 1−λ
1−λχ κ + β

)
µ+ 1. Replacing in the previous equation, differentiating, and

simplifying, the effects are: (
∂πt
∂i∗t
∂ct
∂i∗t

)
= −σ

1− λ

1− λχ

1
det

(
κ

1− µβ

)
Therefore, neo-Fisherian effects are ruled out iff det > 0, i.e.:

δ <
1− βµ− σ 1−λ

1−λχ κµ

µ (1− βµ)
.

But this is always satisfied under the condition in the proposition (for determinacy under a peg) δ < 1−
σ 1−λ

1−λχ κ

1−β ≤
1−βµ−σ 1−λ

1−λχ κµ

µ(1−βµ)
where the second inequality can be easily verified (it implies [(1− βµ) (1− β) + βσκµ] (1− µ) ≥
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0).
Figure D1 illustrates the threshold level of endogenous redistribution sufficient to deliver determi-

nacy under a peg and thus rule out the FG puzzle, as a function of λ and for different 1− s. Close to the
TANK limit (small 1− s), no level of redistribution delivers this (red dash); as idiosyncratic risk 1− s
increases (blue solid), the region expands and is largest in the iid case (blue dots).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2
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1.0
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τmin
D

Fig. D1: Redistribution threshold τD
min in TANK 1− s→ 0 (dash); 0.04 (solid); λ (dots).

Note: The crosses represent the threshold above which the IS slope is positive λχ < 1.

D.3 Liquidity trap and FG

Under the Markov chain structure used in text, we can use the same solution method to obtain the LT
equilibrium under forward guidance (which evidently nests the LT equilibrium without FG) . Using the
notations:

κz ≡
κ

1− βz
; κq ≡

κ

1− βq
; κzq ≡

κ

(1− βq) (1− βz)

ν0z ≡ δ+ σ
1− λ

1− λχ
κz; ν0q ≡ δ+ σ

1− λ

1− λχ
κq

ν0zq ≡ δ+ σ
1− λ

1− λχ
κzq

the equilibrium is:

cF =
1

1− qν0q
σ

1− λ

1− λχ
ρ; (D.3)

cL =
(1− p) qν0zq(

1− qν0q
)
(1− zν0z)

σ
1− λ

1− λχ
ρ+

1
1− zν0z

σ
1− λ

1− λχ
ρL,

and πF = κqcF, πL = β (1− z) qκzqcF + κzcL.

D.4 Ruling out puzzles with Wicksellian rule and Contemporaneous PC

Replacing (3) and the policy rule (23) in the aggregate Euler-IS (26) we have

ct = ν0Etct+1 − σ
1− λ

1− λχ

(
φp pt + i∗t

)
; (D.4)
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the static PC rewritten in terms of the price level is:

pt − pt−1 = κct. (D.5)

Combining, we obtain:

Et pt+1 −
[

1+ ν−1
0

(
1+ σ

1− λ

1− λχ
φpκ

)]
pt + ν−1

0 pt−1 = σ
1− λ

1− λχ
κν−1

0 i∗t . (D.6)

Notice that the RANK model is nested here for λ = 0 (or χ = 1, the Campbell-Mankiw benchmark),
which would yield a simplified version of Woodford and Giannoni’s analyses.

Recall that we are interested in the case whereby ν0 ≥ 1 (as the paper shows, for ν0 < 1 there there is
determinacy under a peg in HANK and thus no puzzles). The model has a locally unique equilibrium
(is determinate) when the above second-order equation has one root inside and one outside the unit
circle. The characteristic polynomial is J (x) = x2 −

[
1+ (ν0)

−1
(

1+ σ 1−λ
1−λχ φpκ

)]
x + ν−1

0 where by

standard results, the roots’ sum is 1+ ν−1
0

(
1+ σ 1−λ

1−λχ φpκ
)

and the product is ν−1
0 < 1. So at least one

root is inside the unit circle, and we need to rule out that both are; Since we have J (1) = −ν−1
0 σ 1−λ

1−λχ φpκ

and J (−1) = 2+ 2ν−1
0 + ν−1

0 σ 1−λ
1−λχ φpκ, the necessary and sufficient condition for the second root to be

outside the unit circle is precisely φp > 0—coming from J (1) < 0 and J (−1) > 0. This completes the
proof of Proposition 3.

To find the solution, denote the roots of the polynomial by x+ > 1 > x− > 0; the difference equation
is solved by standard factorization: The roots of the characteristic polynomial are

x± =
1+ ν−1

0

(
1+ σ 1−λ

1−λχ φpκ
)
±
√[

1+ ν−1
0

(
1+ σ 1−λ

1−λχ φpκ
)]2
− 4ν−1

0

2
x+ > 1 > x− > 0

Factorizing the difference equation (27):(
L−1 − x−

) (
L−1 − x+

)
pt−1 = σ

1− λ

1− λχ
κν−1

0 i∗t

we obtain:

pt = x−pt−1 − σ
1− λ

1− λχ
κν−1

0 x−1
+

1

1− (x+L)−1 i∗t

= x−pt−1 − σ
1− λ

1− λχ
κν−1

0 x−1
+

∞

∑
j=0

x−j
+ i∗t+j

Let ∆t+j ≡ −σ 1−λ
1−λχ κν−1

0 x−1
+ i∗t+j denote the rescaled interest rate cut:

pt = xt+1
− p−1 +

[
∞

∑
j=0
(x+)

−j ∆t+j + x−
∞

∑
j=0
(x+)

−j ∆t−1+j + ...+ xt−1
−

∞

∑
j=0
(x+)

−j ∆1+j + xt
−

∞

∑
j=0
(x+)

−j ∆j

]

Normalizing initial value to zero (since x− < 1 it vanishes when t goes to infinity), the solution is made
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of a forward and a backward component:

pt =
1−

(
x−x−1

+

)t+1

1− x−x−1
+

∞

∑
j=0

(
x−1
+

)j
∆t+j +

t−1

∑
k=0

x1+k
−

1−
(

x−x−1
+

)t−k

1− x−x−1
+

∆t−1−k

Lagging it once and taking the first difference we obtain the solution for inflation:

πt =
1−

(
x−x−1

+

)t+1

1− x−x−1
+

∞

∑
j=0

(
x−1
+

)j
∆t+j −

1−
(

x−x−1
+

)t

1− x−x−1
+

∞

∑
j=0

(
x−1
+

)j
∆t−1+j

+
t−1

∑
k=0

x1+k
−

1−
(

x−x−1
+

)t−k

1− x−x−1
+

∆t−1−k −
t−2

∑
k=0

x1+k
−

1−
(

x−x−1
+

)t−1−k

1− x−x−1
+

∆t−2−k

= A (t)
∞

∑
j=0

(
x−1
+

)j
∆t+j +Ψt−1.

where A (t) ≡ 1−(x−1
+ )+(x−)

t(x−1
+ )

t+1−(x−x−1
+ )

t+1

1−x−x−1
+

(if we put ourselves at time 0 this simply becomes A (0) =

σ 1−λ
1−λχ ν−1

0 ), while in Ψt−1 we grouped all terms that consist of lags of ∆t (∆t−1 and earlier) which are pre-
determined at time t and will not be used in any of the derivations of interest here—where we consider
shocks occurring at t or thereafter. This delivers, for consumption:

ct = −A (t) Et

∞

∑
j=0

(
x−1
+

)j+1
i∗t+j +Ψt−1 (D.7)

where Ψt−1 is a weighted sum of past realizations of the shock and A (t) > 0 is a function only of
calendar date; both Ψt−1 and A (t) are irrelevant for our purpose because they are invariant to current
and future shocks.

The effect of a one-time interest rate cut at t+ T is now:

∂ct

∂
(
−i∗t+T

) = A (t)
(

x−1
+

)T+1

which, since A (.) > 0 and x+ > 1, is a decreasing function of T: the FG puzzle disappears.43 Notice that
the Wicksellian rule also cures the FG puzzle in the (nested) RANK model (this follows immediately by
replacing λ = 0 or χ = 1 above).

D.5 Determinacy with Wicksellian rule and NKPC

Rewrite the system made of (13), (2) and the definition of inflation as (ignoring shocks):

43Likewise for neo-Fisherian effects: take an AR(1) process for i∗t with persistence µ as before; the solution is now both 1.
uniquely determined (by virtue of determinacy proved above) and 2. in line with standard logic—an increase in interest rates
leads to a fall in consumption and deflation in the short run: ∂ct

∂i∗t
= −A (t) 1

x+−µ ,which is negative as A (.) > 0 and x+ > 1 > µ.
Notice that in the long-run, i.e. if there is a permanent change in interest rates, the economy moves to a new steady-state and
the uncontroversial. long-run Fisher effect applies as usual.
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ct = δEtct+1 − σ
1− λ

1− λχ
φp pt + σ

1− λ

1− λχ
Etπt+1

πt = βEtπt+1 + κct

pt = πt + pt−1

Substituting and writing in canonical matrix form
(

Etct+1 Etπt+1 pt
)′
= A

(
ct πt pt−1

)′ with
transition matrix A given by

A =

 δ−1
(

1+ β−1σ 1−λ
1−λχ κ

)
δ−1σ 1−λ

1−λχ

(
φp − β−1

)
δ−1σ 1−λ

1−λχ φp

−β−1κ β−1 0
0 1 1

 .

We can apply Proposition C.2 in Woodford (2003, Appendix C): determinacy requires two roots outside
the unit circle and one inside. The characteristic equation of matrix A is:

J (x) = x3 + A2x2 + A1x+ A0 = 0

with coefficients:

A2 = − 1
β
− 1

δ

(
σκ

β

1− λ

1− λχ
+ 1
)
− 1 < 0

A1 =
1
β
+

1
δ

[
σκ

β

1− λ

1− λχ

(
1+ φp

)
+ 1+

1
β

]
> 0

A0 = − 1
βδ

To check the determinacy conditions, we first calculate:

J (1) = 1+ A2 + A1 + A0 =
1
δ

σκ

β

1− λ

1− λχ
φp > 0

J (−1) = −1+ A2 − A1 + A0

= −2− 2
β
− 1

δ

[
2

σ 1−λ
1−λχ κ

β
+

σ 1−λ
1−λχ κ

β
φp + 2+

2
β

]
< 0

Since J (1) > 0 and J (−1) < 0 we are either in case Case II or Case III in Woodford Proposition C.2;
Case III in Woodford implies that φp > 0 is sufficient for determinacy if the additional condition is

satisfied:

A2 < −3→ δ <
σ 1−λ

1−λχ κ + β

2β− 1
. (D.8)

This is a fortiori satisfied in RANK (and delivers determinacy there), but not here with δ > 1. Therefore,
we also need to check Case II in Woodford and to that end we need to check the additional requirement
(C.15) therein:

A2
0 − A0A2 + A1 − 1 > 0,

which replacing the expressions for the Ais delivers:

φp >
(1− β) (δ− 1) + σ 1−λ

1−λχ κ

σ 1−λ
1−λχ κδβ

(1− δβ)
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Since the ratio is positive, this requirement is only stronger than the already assumed φp > 0 when

δ < β−1; (D.9)

It can be easily checked that the δ threshold D.9 is always smaller than the threshold D.8; therefore,
whenever δ < β−1, Case III applies and φp > 0 is sufficient for determinacy. While when D.8 fails (for
large enough δ), Case II applies and φp > 0 is still sufficient for determinacy.

E Optimal Policy in THANK

First, we write explicitly the Ramsey problem, and then we derive the second-order approximation
around an efifcient equilibrium that allows transforming it into a linear-quadratic problem.

E.1 The Ramsey Problem in THANK

The Ramsey problem of maximizing a utilitarian welfare objective is:

max
{CH

t ,CS
t ,NH

t ,NS
t ,πt}

E0

∞

∑
t=0

βt{λU
(

CH
t , NH

t

)
+ (1− λ)U

(
CS

t , NS
t

)
(E.1)

+ς1,t

(
UN

(
NS

t
)

UC
(
CS

t
) −UN

(
NH

t
)

UC
(
CH

t
) )

+ς2,t

(
CH

t +
UN(NH

t )

UC(CH
t )

NH
t −

τD

λ
(1−ψ

2
π2

t+
UN(NH

t )

UC(CH
t )
)(λNH

t +(1−λ)NS
t )

)
+ς3,t

(
λCH

t +(1−λ)CS
t −(1−

ψ

2
π2

t )(λNH
t +(1− λ)NS

t )

)

+ς4,t

{πt(1+ πt)− βEt[
UC(CS

t+1)

UC(CS
t )

λNH
t+1+(1−λ)NS

t+1

λNH
t +(1−λ)NS

t
πt+1(1+ πt+1)]

+ ε−1
ψ [

ε
ε−1

UN(NH
t )

UC(CH
t )
+1+ τS]}

where ςj,t the co-state Lagrange multipliers associated to them (with arbitrary initial values).

In the above Ramsey constraints, we already substituted Ct =
(

1− ψ
2 π2

t

)
Yt =

(
1− ψ

2 π2
t

)
Nt... ,

Wt = −UN
(

NS
t
)

/UC
(
CS

t
)
= −UN

(
NH

t
)

/UC
(
CH

t
)
, and eliminated Dt =

(
1− ψ

2 Π2
t −Wt

) (
λNH

t + (1− λ)NS
t
)

Importantly, notice that the self-insurance equation is not a constraint—just as in RANK the Euler-IS
curve is not a constraint. In other words, the equation

UC(CS
t ) = βEt

[
1+ it

1+ πt+1

(
s(Ct+1)UC(C

S
t+1) + (1− s(Ct+1))UC(C

H
t+1)

)]
determines it residually once we found the allocation.44

Note that it is trivial to show that the first-best equilibrium amounts to perfect insurance. And solving
the above Ramsey problem and finding the optimal steady-state inflation can be easily shown to deliver
long-run price stability (π = 0) as the optimal long-run target.

44This is likely to change in economies such as Acharya and Dogra’s (2019) whereby the interest rate influences the MPC
and hence the transmission of monetary policy to individual consumptions directly.
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E.2 A Second-Order Approximation to Welfare

We approximate the economy around an efficient equilibrium, defined as an equilibrium with both flexi-
ble prices and perfect insurance; this is the case in our baseline economy under the assumed steady-state
fiscal policy, because the optimal subsidy inducing zero profits in steady state implies that consumption
shares are equalized across agents. In particular, since the fiscal authority subsidize sales at the constant
rate τS and redistribute the proceedings in a lump-sum fashion TS such that in steady-state there is
marginal cost pricing, and profits are zero. The profit function becomes Dt (k) =

(
1+ τS) Pt(k)Yt(k)−

WtNt(k) − ψ
2

(
Pt(k)
P∗∗t−1
− 1
)2

PtYt + TS
t where by balanced budget TS

t = τSPt(k)Yt(k). Efficiency requires

τS = (ε− 1)−1 , such that under flexible prices P∗t (k) = W∗t and hence profits are D∗t = 0 (evidently,
with sticky prices profits are not zero as the mark-up is not constant). Under this assumption we have
that in steady-state:

UN
(

NH)
UC (CH)

=
UN

(
NS)

UC (CS)
=

W
P
= 1 =

Y
N

,

where N j = N = Y and Cj = C = Y.
Suppose further that the social planner maximizes a convex combination of the utilities of the two

types, weighted by the mass of agents of each type: Ut (.) ≡ λUH (CH
t , NH

t
)
+ [1− λ]US (CS

t , NS
t
)
. The

second-order approximation to type j′s utility around the efficient flex-price equilibrium delivers:

Ûj,t ≡ Uj
(
Cj,t, Nj,t

)
−Uj

(
C∗j,t, N∗j,t

)
=

= UCCj
[

cj
t +

1− σ−1

2

(
cj

t

)2
]
−UN N j

[
nj

t +
1+ ϕ

2

(
nj

t

)2
]
+ t.i.p+O

(
‖ ζ ‖3) , (E.2)

where we used that flex-price values are equal to steady-state values (because of our assumption of no

shocks to the natural rate) cj∗
t

(
≡ log Cj∗

t
C

)
= c∗t = 0 and nj∗

t

(
≡ log N j∗

t
N

)
= n∗t = 0.

Approximating the goods market clearing condition to second order delivers:

λCH,t + (1− λ)CS,t ' λcH,t + (1− λ) cS,t +
1
2
(
λc2

H,t + (1− λ) c2
S,t
)

= λNH,t + (1− λ)NS,t ' λnH,t + (1− λ) nS,t +
1
2
(
λn2

H,t + (1− λ) n2
S,t
)

The linearly-aggregated first-order term is thus found from this second-order approximation of the econ-
omy resource constraint as:

λcH,t + (1− λ) cS,t − λnH,t − (1− λ) nS,t +
1
2
(
λc2

H,t + (1− λ) c2
S,t −

(
λn2

H,t + (1− λ) n2
S,t
))
= 0 (E.3)

The economy resource constraint is

Ct =

(
1− ψ

2
π2

t

)
Yt =

(
1− ψ

2
π2

t

)
Nt

which approximated to second order is:

ct = nt −
ψπ

1− ψ
2 π2

πt −
1
2

ψ

1− ψ
2 π2

π2
t

It is straightforward to show that the optimal long-run inflation target in this economy is, just like in
RANK, π = 0. Replacing, we obtain the second-order approximation of the resource constraint around
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the optimal long-run equilibrium:

ct = nt −
ψ

2
π2

t , (E.4)

where the second term captures the welfare cost of inflation.
Note that since UCCj and UN N j are equal across agents we can aggregate the approximations of

individual utilities above (E.2), using (E.3) and (E.4) to eliminate linear terms, into:

Ût = −UCC
{

σ−1

2

[
λ
(

cH
t

)2
+ (1− λ)

(
cS

t

)2
]
+

ϕ

2

[
λ
(

nH
t

)2
+ (1− λ)

(
nS

t

)2
]
+

ψ

2
π2

t

}
+t.i.p+O

(
‖ ζ ‖3) .

Quadratic terms can be expressed as a function of aggregate consumption (output). Notice that in eval-
uating these quadratic terms we can use first-order approximations of the optimality conditions (higher
order terms imply terms of order O

(
‖ ζ ‖3)). Recall that up to first order, we have that cH

t = χyt and
cS

t =
1−λχ
1−λ yt and (after straightforward manipulation for hours worked):

nH
t =

(
1+ ϕ−1σ−1 (1− χ)

)
yt

nS
t =

(
1+ ϕ−1σ−1 λ

1− λ
(χ− 1)

)
yt

To second order we thus have(
cH

t

)2
= χ2y2

t +O
(
‖ ζ ‖3)(

nH
t

)2
=

[
1+ ϕ−1σ−1 (1− χ)

]2
y2

t +O
(
‖ ζ ‖3)

(
cS

t

)2
=

(
1− λχ

1− λ

)2

y2
t +O

(
‖ ζ ‖3)

(
nS

t

)2
=

[
1+ ϕ−1σ−1 λ

1− λ
(χ− 1)

]2

y2
t +O

(
‖ ζ ‖3)

Replacing, the aggregate per-period welfare function is thus up to second order, ignoring terms inde-
pendent of policy and of order larger than 2 and after straightforward algebra to simplify the relative
weight on consumption/output stabilization denoted by α:

α ≡ σ−1 + ϕ

ψ

[
1+ ϕ−1σ−1 λ

1− λ
(χ− 1)2

]
we obtain

Ût = −
UCCψ

2
{

αy2
t + π2

t
}

E.3 Inequality, Gini Coefficient, and Generalized Entropy

This section discusses the relationship between our measure of inequality Γt and the more standard
measures: first, Gini coefficient, and then generalized entropy.

The income Gini with two levels is given by

Φt =
(1− λ)YS

t
Yt

− (1− λ) = (1− λ)

(
YS

t
Yt
− 1
)
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and is between 0 and λ (when S get all income). Rewrite it using our measure as

Φt = (1− λ)

(
Γt

λ+ (1− λ) Γt
− 1
)
= λ

(1− λ) (Γt − 1)
1+ (1− λ) (Γt − 1)

and conversely Γt = 1+ Φt
(λ−Φt)(1−λ)

. Using the log-deviation of inequality γt ≡ Γt−Γ
Γ = yS

t − yH
t we have

the log-deviation of the Gini:

υt = (1− λ)
YS

Y

(
yS

t − yt

)
=

λ (1− λ) Γ
λ+ (1− λ) Γ

γt,

which around a symmetric SS simplifies to υt = λ (1− λ) γt.
A generalized entropy measure (with largest sensitivity to small incomes) is:

Ξt = −λ ln
YH

t
Yt
− (1− λ) ln

YS
t

Yt

Subtracting the steady-state value of this same measure we obtain the deviation (note, in a uniform
steady-state this measure is zero so we express this deviation in levels)

ξt = Ξt − Ξ = −λ ln
YH

t Y
YHYt

− (1− λ) ln
YS

t Y
YtYS

= yt − λyH
t − (1− λ) yS

t = λ

(
YH

Y
− 1
)

yH
t + (1− λ)

(
YS

Y
− 1
)

yS
t

= λ (1− λ)
YS −YH

Y
γt = λ (1− λ)

Γ− 1
λ+ (1− λ) Γ

γt =
Γ− 1

Γ
υt.

E.4 Optimal FG in a Liquidity Trap: An Analytical Special Case

The basic analytical insights can be obtained by focusing first on a simpler case whereby the central bank
attaches equal weights to future and present: ω (q) = 1, ω′ (q) = 0. This provides an upper bound on
optimal FG because it ignores the second-order discounting costs (see Bilbiie (2016) for an analysis of
accuracy in RANK). The optimal duration can then be solved in closed-form: (36) becomes cL

dcL
dq =

−cF
dcF
dq , which replacing cF and cL from (35) delivers:

Proposition 9 The optimal FG duration is q = 0 if ∆L <
(1−zν0)

2

1−z and q∗ > 0 otherwise, with:

q∗ =
1
ν0

∆L − (1−zν0)
2

1−z

1− z+ ∆L
,

where ∆L ≡ −ρL/ρ > 0 is the financial disruption causing the ZLB.

It is optimal to refrain from FG altogether (q∗ = 0) when there is not enough news-amplification
(ν0 < ν̃ ≡

(
1−

√
(1− z)∆L

)
/z, which is 0.86 under the baseline calibration). In the amplification case

(χ > 1) the region of λ for which FG is optimal is thus ceteris paribus smaller than in the dampening
(χ < 1) case. Moreover, since in the former case ν0 is increasing with both λ and 1− s, an increase in
either restricts the case for optimal FG.45 The reason is that more amplification also brings about a higher
welfare cost of FG. In the dampening case, the opposite is true: an increase in either λ or 1− s pushes
up the threshold and enlarges the region for which FG is optimal (ν0 is decreasing in both parameters).

45The derivatives are dν0
d(1−s) =

χ−1
1−λχ ; dν0

dλ = (χ− 1) χ(1−s)+κσ

(1−λχ)2
.
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Optimal FG duration depends on key heterogeneity parameters through the news-elasticity ν0:

dq∗

dν0
=

1
ν2

0

(
1− (zν0)

2

1− z
− ∆L

)
.

When the disruption causing the liquidity trap is lower than a certain threshold ∆L < (1− z)−1 (the
more empirically plausible case),46 q∗ is increasing in ν0 if ν0 < ν̄ ≡

√
1− ∆L (1− z)/z and decreasing

otherwise. Notice that this threshold is larger than the threshold needed for FG to be optimal at all
(q∗ > 0) derived above: ν̄ > ν̃ . We have dq∗/dν0 > 0 when ν̃ < ν0 < ν̄ and dq∗/dν0 < 0 when
ν̃ < ν̄ < ν. It is useful to again distinguish the two cases depending on χ.

In the dampening case (χ < 1) ν0 is decreasing in λ and 1 − s; if we start with ν0 > ν̄, optimal
FG duration first increases, then decreases as ν0 crosses the threshold. Whereas if we start below the
threshold, optimal FG duration decreases uniformly (this is the case shown in Figure 4). The effect is
mitigated by idiosyncratic risk which, because it reduces both the power of FG and the scope for it (the
LT recession is smaller) implies uniformly lower optimal duration.

With amplification (χ > 1), ν0 is increasing in both λ and 1− s; therefore, if we start below the thresh-
old ν̄, optimal FG first increases up to a maximum level (reached at the threshold) and then decreases
abruptly. Furthermore, it increases faster and reaches its maximum sooner when there is idiosyncratic
risk, because of the complementarity: amplification itself is in that case magnified—by the same token,
the welfare cost of FG suffers from the same amplification, so the point where FG ceases to be optimal
is reached sooner than without risk s = 1.

A Caveat is in order: when FG is less effective, shouldn’t optimal policy imply doing more (not less)
of it? Nakata, Schmidt, and Yoo ("Attenuating the Forward Guidance Puzzle: Implications for Optimal Mone-
tary Policy," 2018), in a calibrated model with a discounted Euler equation and FG mitigation, show that,
if instead of keeping the size of the disturbance fixed (as this paper does) one fixes the size of the recession,
itself a function of other structural parameters, one obtains the opposite conclusion to this paper’s with
χ < 1: the optimal duration of FG becomes increasing in the share of constrained households. The reason
is that, as λ increases, the shock necessary to generate the given recession gets larger and larger, which
adds a force calling for more optimal FG. If this force is strong enough, it can overturn the conclusion
obtained above for a given shock.

This also holds in my model with procyclical inequality (χ < 1) and little or no idiosyncratic risk,
i.e. TANK (red dash, upper left panel, Figure E1): the optimal duration becomes increasing with λ.
There is, however, an important qualification as the level of idiosyncratic risk increases: the blue dotted
line in the same panel (corresponding to THANK with the strongest self-insurance motive) is increasing
only slightly initially, and decreasing thereafter. The reason is that idiosyncratic risk delivers more
dampening overall; so while the shock necessary to deliver a given recession is increasing in λ at a
faster rate, FG power also goes down fast. The FG puzzle and having optimal FG increase with λ are
two sides of the same coin: in this model, you cannot throw one and keep the other.47

Moreover, the same logic that generates increasing FG duration is turned on its head in the ampli-
fication, χ > 1 case: as λ gets larger, a smaller shock is needed to generate a given recession (lower
right panel). This adds a force calling for less optimal FG, so the optimal duration is lower (and more
rapidly decreasing) than in the "fixed-shock" case. And since amplification is so powerful in THANK,
self-insurance makes the optimal duration decrease even faster. The general message is that keeping
fixed the observable recession (rather than the unobservable disturbance) is a useful exercise but does

46If instead ∆L > (1− z)−1, q∗ is uniformly decreasing in ν0: that is, it is decreasing in χ , λ, and 1− s in the "amplification"
case χ > 1. The reason is that the contractionary effect coming from the steeper recession dominates the expansionary effect
of increased FG effectiveness; the opposite is of course true with χ < 1: q∗ is increasing in λ and 1− s.

47Another qualification pertains to the implied shock, plotted in the lower left panel. With so much dampening as implied
by THANK, the shock necessary to replicate an even modest recession (4 percent) becomes very large indeed (several times
larger than the normal-times interest rate); while the shock is unobservable, this type of configuration seems unlikely.
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not necessarily imply a stronger case for longer optimal guidance duration. Indeed, in some cases such
as the "amplification" case whereby FG power is highest (and the puzzle at its most extreme) it unam-
biguously implies an even weaker case.
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Figure E1 q∗ as a function of λ: fixed recession, ∆L adjusts endogenously
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