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1 Introduction

Institutional investors’ allocation to private market funds nears the $10 trillion landmark.1

These funds span a wide range of investments from real estate to leveraged buyouts and

venture capital. A unique feature of private market funds, irrespective of their focus, is

that they require investors to commit capital ex-ante to fund managers and, therefore, to

relinquish control on investment timing and quantity. This paper is the first to study the

effect of capital commitment on portfolio allocation decisions and investors’ welfare.

Consider the asset allocation of Yale University Endowment: 26% hedge funds, 24%

liquid assets, and 50% private equity funds. Their capital commitments stand at 33% of

their assets under management, which is more than the value of their liquid asset holdings.2

The 2008 financial crisis showed that large capital commitments can impose a significant

cost for institutional investors. Pension funds (e.g., Calpers), universities (e.g., Harvard),

and foundations (e.g. Carnegie) attempted to rebalance their portfolios away from private

market funds at great costs.3 Since 2008, capital commitments have doubled. Globally,

capital commitments (a.k.a. dry powder) now add up to as much as $3 trillion. However, in

the meanwhile, a secondary market for private market funds has emerged.

In this paper, we solve the dynamic portfolio optimization problem of a risk-averse in-

vestor with an infinite horizon and access to stocks, bonds, and private equity funds. We find

that the effects of commitment on investors’ welfare and portfolio are large. In particular,

they are much larger than investors’ welfare gain from having a liquid secondary market.

We model investments in private equity funds as follows. At time 0, the investor commits

a positive amount to private equity and does not know either when her capital will be called,

or when investment proceeds will be distributed. We use a Poisson process to model the

stochastic timing of capital calls and payouts. The first jump triggers the capital call,

date at which the investor transfers the committed amount to the fund manager. If the

investor is unable to make this transfer, she defaults on her pledge. The second jump of the

Poisson process marks the time at which the fund manager distributes the proceeds from

the investment back to the investor. At the same time, a capital commitment is made to a

new private equity fund, and the above is repeated all the way to infinity.

1Information about assets under management and dry powder is from the Preqin dataset; end of year 2020.
2https://your.yale.edu/sites/default/files/20192020-annual-financial-report.pdf

3Institutional investors resorted to costly strategies such as redeeming capital from other investments despite
low overall liquidity, selling private market funds on the secondary market at large discounts, and issuing
high yield bonds. See Barron’s, 69009,“The Big Squeeze”; Forbes, 104009, “Did Harvard Sell At the
Bottom?”; Institutional Investor, 11009, “Lessons Learned: Colleges Lose Billions in Endowments.”
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We define and isolate the different types of liquidity frictions. Two frictions stem from

not being able to immediately deploy the capital into the illiquid asset (commitment risk):

i) the timing of the capital call is unknown; ii) the amount of capital that will be called as

a fraction of wealth is unknown.4 We define the welfare cost of commitment-timing risk to

the investor as the amount she is willing to pay to know when the capital call will occur.

Similarly, the cost of commitment-quantity risk is the amount the investor is willing to pay

to update her commitment at the time of capital call. In addition to these frictions linked to

commitment risk, additional illiquidity stems from the non-tradability of the private equity

fund, as studied in Ang et al. (2014).

This setup is sufficiently flexible to incorporate three realistic features of private markets:

i) strategic default: the investor can skip a capital call, at the cost of no longer being able to

invest in private equity; ii) access to a secondary market: the investor can sell her invested

private equity holdings at a discount; iii) contemporary commitments to multiple private

equity funds. We can, therefore, not only analyze the different frictions induced by capital

commitment, observe whether some are more important than others, but also study the

interactions between these frictions and different features of private markets.

We conduct a unique and thorough calibration of our model. We search for the combina-

tion of parameters that best capture the empirically observed speed of capital calls and the

cross-sectional distribution of fund performance as measured by the Kaplan-Schoar Public

market Equivalent (PME). We obtain a correlation between private and public equity of 80%.

The drift and volatility are 14.5% and 25% for private equity returns. These returns are,

however, gross of management fees paid during the commitment period. The (net-of-fees)

public equity returns drift and volatility are calibrated at 8% and 15%. These parameters

imply a private equity beta of 1.32, which coincides what has been found in the literature

using different approaches (e.g. Ang et al. (2018)).

The expected PME distribution that results from our calibration matches the empirical

one remarkably well, despite a weakness at reproducing the relatively high frequency of low

PMEs. As a result, our optimal commitment to PE is quite high, at 22% of wealth.5

4During the time period between commitment and capital call (commitment period), the investor’s wealth
faces random shocks, causing the committed amount to be sub-optimal at the time of the capital call.
Following a decline in stock prices during the commitment period, the amount called may for example be
larger than the optimal amount.

5Aggregate asset allocation across endowments and foundations as of March 2020 according
the bank of New York Mellon Corp. was 31.1% in listed equity, 16% in fixed income,
18.8% in hedge funds, and 16.9% in private equity. https://www.pionline.com/interactive/

larger-endowments-foundations-lean-private-equity-allocations
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Our findings are as follows:

• Large under-commitment to PE. On average, investors significantly under-commit

to private equity from an ex-post perspective. This result rationalizes the increased

offering of co-investment opportunities to investors by fund managers at the time of

capital call. We show that co-investment opportunities are valuable options to increase

exposures ex-post, whereas the literature mostly presents them as tools to reduce fees.

• The cost of commitment-quantity risk is large. Whenever capital is called to be

invested, the asset allocation is sub-optimal because the stock-market has moved since

the time of commitment. Investors are willing to pay 5% of their wealth (15% of their

PE allocation) to be able to change their PE allocation when capital is called.

• Other commitment risks have minor effects. The cost of commitment-timing

risk is small and slightly negative. Investors receive a utility gain at capital call, whose

value is exponentially discounted. Due to the convexity of exponential discounting,

they prefer uncertainty to certainty over the timing of this gain.

• Liquid secondary markets are not valuable per se. A more liquid secondary

market for PE funds leads to a modest increase in the optimal PE allocation.6

• Secondary market liquidity and commitment risk are complements. Liquid

secondary markets exacerbate the cost of commitment-quantity risk: investors are

willing to pay even more (6% of their wealth) to be offered the possibility to change

their PE allocation when capital is being called if the secondary market is more liquid.

• No time diversification benefits. With access to multiple funds, the cost of

commitment-quantity risk further increases to 6.4% of wealth. This result is the oppo-

site of a naive prediction based on time diversification but is consistent with different

types of liquidity being complements. When the commitment on one of the funds has

been called, the investor does not know whether she will receive the proceeds of the

investment before the commitment on the second fund is called. In the event that

the second fund calls before the first fund distributes, the investor faces a liquidity

mismatch. Also, following a negative shock to stock prices, the commitment on the

second fund may become large relative to liquid wealth, which increases default risk.

She then decreases her allocation to stocks and increases that to bonds.

6Our secondary market is restricted to the trading of private equity funds that have called their capital. We
do not allow for unfunded commitments to be traded. In practice, secondary markets are most active for
funds that are fully invested (Nadauld et al. (2019)).
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2 Institutional Setup & Literature Review

2.1 Fund Structure

Private Equity (PE) funds are set up as private limited partnerships and pursue a wide range

of investment strategies (e.g. leveraged buyout, real estate, venture capital, infrastructure,

mezzanine etc.). A PE firm acts as a General Partner (GP) in the limited partnership and

the capital providers are the Limited Partners.

During a fund-raising period that spans three to eighteen months, the PE firm (e.g.,

KKR) seeks capital for its fund (e.g., KKR millennium fund). Investors admitted as Limited

Partners (LPs) commit a certain amount of capital, i.e. agree to provide cash to the fund

on demand up to that committed amount. When the PE firm ends its fundraising, it has

its ‘final close’ and the year this occurs is called the fund vintage year. The total capital

committed to a fund is referred to as the fund size.

Capital calls are usually made in connection to either a fee payment or a specific invest-

ment, but some pooling occurs to reduce the frequency of capital calls to Limited Partners.

This pooling of capital calls is enabled by credit facilities contracted by the General Part-

ner using LP commitments as collateral. It is also the case that institutional investors are

exposed to private equity funds via intermediary vehicles (e.g. fund-of-funds, separately

managed accounts) which may also partially pool capital calls.

Both the timing and the size of the capital calls (also known as draw-downs) are uncer-

tain for LPs. They only know an ex-ante specified investment period, during which most

capital calls should occur. For leveraged buyout funds, for example, the investment period is

typically five years. Some capital may be called after this investment period for fee payments

or follow-on investments in existing portfolio companies. For venture capital funds, the in-

vestment period is longer than for buyout funds to allow for large follow-on investments in

portfolio companies that are successful.

When an investment is exited, the payout is usually distributed to LPs and cannot be

recycled to make a new investment, but there are some exceptions. The divestment period

is flexible, spanning the entire life of the fund, including an overlap with the investment

period. Funds life is 10 years but there are multiple circumstances under which funds obtain

extensions. We observe many funds that are not fully liquidated in their fifteenth year and

beyond.
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2.2 Defaulting on Capital Calls & Secondary Markets

LPs defaulting on capital calls is a rare event. Penalties for doing so can be high: forfeiture

of some or all existing investments in the fund, and impossibility to invest in PE going

forward. The 2008 financial crisis shows how LPs incurred a cost due to their unfunded

commitments: “A growing set of limited partners find themselves short on cash amid the

financial crisis – and thus are scrambling for ways to make good on undrawn obligations

to private equity vehicles. Among those in the same boat: Duke University Management,

Stanford Management, University of Chicago and University of Virginia... Brown, whose $2.3

billion endowment has a 15% allocation for private equity products, is apparently thinking

about redeeming capital from hedge funds to raise the money it needs to meet upcoming

capital calls from private equity firms (...) Carnegie, a $3.1 billion charitable foundation, is

also in a squeeze. Its managers have been calling on commitments faster than expected, while

distributions from older funds have slowed down, creating a cash shortfall. As for Duke, the

university’s endowment has been named as one of the players most likely to default on private

equity fund commitments. That partly explains a massive secondary-market offering that

the school floated last month, as it sought to raise much-needed cash and get off the hook for

undrawn obligations by unloading most of its $2 billion of holdings in the sector... Some of

the bigger investors are considering tapping credit facilities to meet near-term capital calls.”7

But, in the end, they all avoided default on PE commitments. In addition, once incipient

due to contractual restrictions on transfers (see Lerner and Schoar (2004)), the secondary

market for PE fund stakes took off right after the 2008 financial crisis to an annual turnover

of $88 billion in 2019.8 Specialized secondary funds raised as much as $100 billion in 2017-

2020 to buy fund stakes.9 The increasing volume of trades suggests that PE funds are much

less illiquid than they used to be. Applying the practitioners’ judgement, which measures

illiquidity by the observed discount to the reported Net Asset Value (NAV) in each trans-

action, PE investing is quasi-liquid because the average discount since 2010 has been less

than 10% and zero in several quarters. However, and importantly, liquidity varies greatly

across fund types and fund age. For example, there are few transactions of funds during

their investment period, and most transactions are for relatively large funds (Nadauld et al.

(2019))

7From the magazine ’Private Equity Insider’ in its issue of November 5, 2008.
8Volume passed $10 billion in 2006, $20 billion in 2010, $40 billion in 2014.
9Other buyers include funds-of-funds, which raise third party capital to invest in both the primary and
secondary market; and various asset owners (investment banks, hedge funds, sovereign funds), which have
dedicated teams to secondary market purchases.
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2.3 Co-Investments

Another major transformation of the structure of the PE industry post crisis is the growth

in LP co-investments and direct investments. In a nutshell, when GPs call capital for an

investment, they select some LPs to whom they offer the possibility to co-invest, i.e., add

additional capital in that deal. Direct investment refers to a situation where an LP directly

executes a PE transaction: e.g., a pension fund buys an operator of nursing homes.

Pre-2008, co-investment invitations were limited to large global LPs and to other PE firms

in so-called club deals (Officer et al. (2010)). Post-2008, invitations are more widespread but

mostly restricted to LPs in the PE fund that makes the transaction. These co-investments

remain a small fraction of the total amount committed to PE but their prevalence is growing

fast.10 Similarly, direct investments remain a small fraction of overall PE investments, but

are also fast-growing.

The main motivation LPs give for co-investments is to lower fees (Da Rin and Phalippou

(2017), Fang et al. (2015)). A second motivation – highlighted by Braun et al. (2020) is

that: “co-investments give the opportunity for LPs to increase their exposure, above the

pro rata interest obtained via their fund investment, in particular companies or sectors.

This could be driven by a belief that investors can spot particularly attractive portfolio

companies. Alternatively, investors could use co-investment to tilt their portfolio toward

particular sectors, such as new technologies, that are difficult to gain exposure to via public

markets. While co-investments allow investors greater control, they need to have the relevant

skills and experience to evaluate which transactions to participate in.”

The above comment is particularly important in the context of our model. It means that,

in practice, LPs have the possibility to adjust upwards, but not downwards, their allocation

to PE. Direct investments offer a similar opportunity. Again, the amounts are still modest

but they are growing fast and this is happening at the same time that both secondary markets

and allocation to PE funds have grown significantly. We also note that Fang et al. (2015)

find some evidence that when LPs find themselves under-exposed to PE, they accept more

co-investment invitations, possibly to ramp-up their PE allocation. Similarly, it is routinely

argued that some LPs buy funds on the secondary market to be more quickly exposed to PE

than if they go with the usual route of committing capital to newly raised funds.

10Triago, a PE specialist, estimates that in 2019, $66 billion was co-invested by LPs. For comparison,
amount committed to PE funds is about $1 trillion yearly. Lerner et al. (2020) show that in 2017, 40% of
all capital raised in PE was done via alternative vehicles (a.k.a. ’shadow capital’), but this statistic also
include things like feeder funds and separately managed accounts.
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2.4 Literature Review

Several papers look at the investor’s portfolio choice problem in the presence of an illiquid

asset, defined as an asset that the investor cannot trade during a given period of time. In

Dai et al. (2015), this period is deterministic. In Ang et al. (2014), like in our setting, this

period is stochastic. In Dimmock et al. (2019), this period is deterministic but they allow

for a secondary market: investors can voluntarily transact in the illiquid asset at any time

by paying a proportional transaction cost. They also allow for multiple illiquid assets. In

Giommetti and Sorensen (2020), funds are gradually called and distributed from a composite

private equity fund.

Our model allows for more than one illiquid asset, solves an infinite horizon problem, has

a secondary market, has periods of illiquidity that are stochastic, and incorporates capital

commitments.

In a related setup, Sorensen et al. (2014) model illiquidity by constraining an investor to

hold a private equity fund until maturity. The private equity fund is acquired at time 0, hence

the capital is immediately put at work by the fund. There is therefore no capital commitment

or possible default on the committed capital. The fund is liquidated at maturity T , which is

finite and known ex ante. The main objective of the paper is to extend the valuation of the

performance-related fee (carry) charged by general partners solved in Metrick and Yasuda

(2010) to a setting where funds are not continuously traded.

Longstaff (2001, 2009) is the first to model how the presence of an illiquid asset affects

optimal portfolio decisions and pricing. The model is in general equilibrium and features a

representative agent endowed with an illiquid asset. This asset becomes liquid at a random

time. The problem has finite horizon, with maturity when the illiquid asset pays off.

There is also a small empirical literature on private equity illiquidity. Ljungqvist et al.

(2017) propose a hazard/duration regression approach to model the speed at which capital

is called as a function of market conditions for a sample of US buyout funds. In a similar

exercise, Robinson and Sensoy (2016) find that fund net cash flows are pro cyclical, i.e.

distributions tend to decrease and capital calls tend to increase in bad times, suggesting high

liquidity risk. However, they argue that this liquidity might be diversifiable. We show that

some liquidity risks seem benign indeed but commitment risk is not, and that commitment

risk is not diversifiable. To the contrary, the presence of more funds in a portfolio increases

the probability of a liquidity mismatch.11

11Also related is Franzoni et al. (2012) who empirically quantify the liquidity risk premium for private equity
in the four factor model of Pastor and Stambaugh (2003). They also show that private equity returns are
particularly sensitive to changes in aggregate liquidity conditions during the life of the investments.
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3 Model

We consider an information structure that obeys standard assumptions. There exists a

complete probability space (Ω,F ,P) supporting the vector of two independent Brownian

motions Zt = (Z1
t , Z

2
t ) and an independent Poisson processes (Mt). P is the corresponding

measure and F is a right-continuous increasing filtration generated by Z ×M .

3.1 The Three Assets

There are two liquid assets in the economy in the sense that they can be rebalanced con-

tinuously at no cost: i) a risk-free asset, which captures the fixed-income market, labelled

bond; and ii) a risky asset, which captures the public equity market, labelled stock.

The price Bt of the bond appreciates at constant rate r:

dBt = rBtdt (1)

The stock price Pt follows a geometric Brownian motion:

dPt
Pt

= µ dt+ σdZ1
t (2)

where Z1
t is a standard Brownian motion, µ is the return drift, and σ the return volatility.

Investors can allocate capital to a third asset: a private equity fund. As illustrated

below, the fund manager collects capital commitments to this third asset from the investor

at time t = 0, then calls the committed capital at time t = τC and pays out the value of

the investment at time t = τD. At this point the next commitment is being made and the

above is repeated, all the way to infinity. We will call the commitment period the time period

[τ0, τC ], and the holding period the time period [τC , τD].

0

Commitment

τC

Call

τD

Payout

Search for investment
Commitment period

State C
2% fee paid

on commitment

Capital invested
Holding period

State D
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3.2 Modelling Private Equity

At time τ0, the investor commits a positive amount X0 to the private equity fund. This

commitment is a promise to make capital available when the manager calls it at time τC > 0.

During the commitment period [τ0, τC ], fees are being paid to the fund manager (set to

0.02×X0), but no investment is made.

In a slight abuse of notation, we denote by Xt the amount of capital committed between

times τ0 and τC , and use Xt again to refer to the amount of capital invested in the fund

after τC . Because no capital is invested at time 0 and the commitment cannot be changed,

dXt = 0 until τC (time at which the committed amount is called.)

We use a Poisson process Mt to model the transfers of capital between the investor and

the fund manager. The process starts at M0 = 0 and has initial intensity λC . The first jump

triggers the capital call, at t = τC , date at which the investor transfers X0 of liquid wealth

to the fund manager.

At time τC , the intensity of the Poisson process changes and becomes λD, and the capital

committed is invested in the private equity fund at that point in time.12 During the holding

period [τC , τD], the value of the private equity investment, net of all fees evolves as a geometric

Brownian Motion, with drift ν, and volatility ψ:

dXt

Xt

= νdt+ ψdZt, (3)

Where dZt = ρdZ1
t +

√
1− ρ2

LdZ
2
t

This setup implies that the correlation between public and private equity is ρ; and

β = ρ.
ψ

σ
(4)

The Poisson process Mt jumps at time t = τD, at which point the private equity invest-

ment is fully exited, and the investors receive the value of the private equity fund: XτD . The

process Mt is reset to zero, and the investor immediately makes a new capital commitment

Xt to a new private equity fund. The intensity of the process Mt switches back to λC , and

the above is repeated.

12In terms of fees, we can either switch the fee base from capital committed to asset value, or ignore fees
after commitment. These two options are strictly equivalent, the former simply makes notations heavier,
and we thus opt for the latter. What we can not easily do is switch the fee base to invested capital because
that would require another state variable.
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During the holding period, the investor can sell her private equity stake on a secondary

market. In this case, she receives αXt. At that point, she makes a new commitment to

private equity and the above is repeated (wait until capital is called, and then until it is

paid out). If the investor is unable to pay for the capital call at time τC , i.e. X0 ≥ WτC , she

defaults on her commitment. The consequences of such a default is that she is forever banned

from accessing private equity – which is a realistic feature (Banal-Estañol et al. (2017)).13

To ensure parsimony and analytical tractability, we made several simplifying assumptions.

First, as explained in Section 2, in practice, capital calls are spread across the investment

period, with the sum of the capital calls equal to the committed amount. In our model,

there is a single capital call equal to the committed amount. Similarly, our model has a

single payout. This stylized representation allows us to have state equations that have no

memory, and to use numerical methods based on Markov chain approximations to solve the

portfolio allocation problem.

Second, the investment opportunity set contains a single private equity fund at any point

in time. We extend our model to a two-fund setup in Section 6.4. The model can actually

be extended to any number N of funds. However, the computational cost becomes quickly

prohibitive. Each fund can either be in state S = C or S = D, the number of state variables

thus equals 2N .

Third, our fee structure is highly simplified. Our most important omission is that of the

carried interest. Since the carried interest calculation requires the knowledge of X0 at time

t = τD, we would need an additional state variable. Similarly, the base of the management

fees during the holding period is usually the amount invested, which is also X0 in our model.

Hence, choosing this fee base would also require to track X0, and thus an additional state

variable. However, given the complex nature of the capital structure used in private equity

transactions and the multiple operational changes private equity funds implement, it is an

open empirical question as to whether it is the net of fees or the gross of fees private equity

value dynamics that is closest to a geometric Brownian motion.

13Note that the investor can only sell her full investment in a fund on the secondary, which is realistic. She
cannot sell her commitment on the secondary market, however, which is also realistic as such transactions
are extremely rare.
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3.3 The Investor Problem

At each time t, the investor chooses how to allocate her liquid wealth between the two liquid

assets. θt denotes the fraction of liquid wealth allocated to stocks at time t.14 In addition,

at time τ0, and each time a private equity fund is liquidated, she chooses how much capital

to commit to private equity (X). Finally, she decides her consumption rate (out of liquid

wealth), ct = Ct/Wt.

Hence, the evolution of the investor’s liquid wealth Wt, is given by:

dWt

Wt

= (r + (µ− r) θt − ct) dt+ θtσdZ
L
t −

dIt
Wt

(5)

where dIt denotes any transfer between illiquid wealth and liquid wealth. The optimal

value function is then given by:

F (Wt, Xt, St) = max
{θ,X, c}

Et

[∫ ∞
t

e−δ(u−t)U(Cu)du

]
(6)

subject to constraints (3) and (5), with δ denoting the subjective discount factor, and St =

{C,D} denoting the state.

When t = τC , dIτC = X0; i.e. committed capital is called, and dIt is transferred out

of liquid wealth to private equity. The value function jumps discretely from F (W,X, S) to

F+C(W,X, S) = F (W −X,X, S). The state S changes from C (commitment period) to D

(holding period).15

When t = τD, dIτD = −XτD ; i.e. capital is paid out and dIt is added to liquid wealth.

The value function jumps discretely to F+D(W,X, S) = F (W +X,X, S). The state changes

from D to C.

When t 6= τC and t 6= τD, dIτD = −XτD , and dIt = 0.

In the base case, the investor has a standard power utility U , i.e. has Constant Relative

Risk Aversion (CRRA) over sequences of consumption, U(Ct) =
C1−γ
t

1−γ , with γ > 1.

14Following Dybvig and Huang (1988) and Cox and Huang (1989), we restrict the set of admissible trading
strategies, θ, to those that satisfy the standard integrability conditions. All policies are appropriately
adapted to Ft.

15We drop the time subscript for notation simplicity.
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3.4 Solution

To avoid the objective function to be infinite, optimal policies are such that the liquid wealth

W is at all time positive: W > 0 and the illiquid wealth is bounded from below by zero:

X ≥ 0, almost surely (a.s.) At the time of capital commitment, the amount X is chosen so

that X < W a.s. at any time in the future. If X ≥ W at the time of the capital call, the

investor defaults on her commitment, driving her utility to infinity.

The investor’s optimal consumption and allocation in the three assets solve the Hamilton-

Jacobi-Bellman (HJB) equation:

βF = max
{θ,X, c}

{
U(c) + (r + (µ− r)θ − c)WFW +

1

2
θ2σ2W 2FWW + νXFX +

1

2
ψ2(X)2FXX

+θσψρLWXFWX + λC
(
F+C − F

)
1S=C + λD

(
F+D − F

)
1S=D

}
. (7)

Because the utility function is homothetic and the return processes have constant mo-

ments, it must be the case that the value function F is homogenous of degree 1− γ in total

wealth. If we denote TW the investor’s total wealth, i.e. the sum of liquid and illiquid

wealth:

TW ≡ W +X1S=D (8)

where the indicator 1 is one if state id D, then the value function can thus be written as the

product of a power function of total wealth and a function of the wealth composition:

F (W,X, S) = TW 1−γH (ξ, S) , (9)

where ξ = X
TW

denotes the ratio of private equity to total wealth and is required to be smaller

than one in state D.

Proposition 1 The investor’s value function can be written as in (9), where H(ξ, S) exists

and is finite, continuous, and concave for ξ ∈ (1,∞). Whenever the investor can commit

capital, she selects ξ∗ ≡ arg maxξH(ξ, S = C), which exists.

The function H is characterized by the set of ODEs shown in Appendix A.1, and our

method for generating numerical results is detailed in Appendix B.
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3.5 The Illiquidity Stack

The model (3)-(6) is referred to as the baseline economy (Economy 0), i.e. an economy

where all the sources of private equity liquidity risk are present. We now define seven other

economies. Each economy corresponds to a situation where one or several of the features of

our baseline model are modified.

In the baseline economy, the investor does not know when she will need to pay the

committed capital out of her liquid wealth. To turn this commitment-timing risk off, we

make the call time deterministic.

Furthermore, in the baseline economy, the investor does not know how much she will

need to pay into private equity relative to her liquid wealth. As her wealth evolves randomly

between commitment time and call time, this relative amount is random and no longer

optimal at call time. To turn this commitment-quantity risk off, we let the investor choose

the quantity invested in private equity when the capital is called, instead of at commitment

time. In this case, the investor is no longer exposed to default risk.

If neither commitment-timing nor commitment-quantity risk is present, there is no com-

mitment risk. Absent commitment risk, our model still features a delayed investment into

private equity; the investor still needs to wait until call time to access the private equity

returns. This restriction is lifted in economy 4.

Economies 5 to 7 below still have commitment risk, and focus on the liquidity frictions

during the holding period.

Economy 1: Deterministic call time, choose quantity when committing

The length of the commitment period is set to 1
λC

, commitment-timing risk is therefore

switched off. The investor is still exposed to commitment-quantity risk: the amount called

relative to liquid wealth at call time τC is uncertain.

Economy 2: Stochastic call time, choose quantity when called

In this economy, commitment-quantity risk is turned off. The commitment-to-wealth

ratio ξ∗ is no longer chosen at commitment time t = 0, but at call time (τC). The timing of

the capital call remains stochastic.

Economy 3: Deterministic call time, choose quantity when called

Both commitment-timing risk and commitment-quantity risk are turned off. This econ-

omy is one without commitment risk. The private equity fund remains illiquid and the

payout time remains uncertain.

13



Economy 4: Immediate private equity access, no commitment risk

The commitment period time is brought to zero. Hence, at time t = 0, and after each

private equity fund liquidation, the investor freely allocates capital between bonds, stocks

and private equity. Private equity remains illiquid: capital allocated to private equity is

unavailable until a stochastic payout time τD (unless the investor opts to sell on the secondary

market).

Economy 5: Deterministic payout time

To turn off the payout-timing risk, the capital distribution is no longer random. Instead,

it is deterministic and equal to 1
λD

. Payout-timing risk was introduced under the label

’illiquidity risk’ by Ang et al. (2014) – it refers to the uncertainty about when the illiquid

asset will pay out.16 This economy still contains commitment risk.

Economy 6: Fully liquid secondary market, with commitment risk

During the commitment period, the investor can sell her private equity stakes on the

secondary market at no cost. This economy still contains commitment risk.

Economy 7: Secondary market with 40% discount

During the commitment period, the investor can sell her private equity stakes on the

secondary market at a 40% haircut. This economy still contains commitment risk.

We define the welfare cost to the investor of any economy A with respect to any

economy B as the fraction of wealth ζ the investor would be willing to pay to switch from

economy A to economy B:

HA(ξA∗, S = C) = (1− ζ)1−γHB(ξB∗, S = C), (10)

where ξA∗ and ξB∗ denote, respectively, the optimal commitments in economies A and B. If

the cost ζ is zero, then the investor is indifferent between the two economies. We measure

these costs at time t = 0 (right before the investor makes a capital commitment).

16Note that Longstaff (2009) introduces a general equilibrium model with an illiquid asset, which cannot be
traded between inception and a deterministic time T . After this time T , the asset becomes liquid again.
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4 Model Calibration

We restrict the investment opportunity set to the US and to three assets (a risk-free asset,

public equity and private equity), and use the past thirty years of data (1991-2020) to

calibrate our model.

The average 3-Month Treasury Bill is 2.5%, which we round to 3%. We derive the mean

and volatility of public equity from the S&P 500 index log returns at monthly frequency.

The average log-return is 8.1%, which we round to 8%, and the volatility is 14.7%, which we

round up to 15%. To sum up, we have r = 0.03, µ = 0.08, and σ = 0.15. In addition, we use

standard values for the investor risk aversion and discount factor: γ = 4 and δ = 0.5. The

discount for PE-funds secondary market sales is set to 13.8%, which is the average reported

in Nadault et al. (2019).

One of the contributions of this paper is the detailed calibration of the private equity

return dynamics. We use the Preqin dataset with private equity fund cash flows as of the end

of year 2020. We select all private equity funds (venture capital, growth equity, leveraged

buyout) focused on the US and raised between 1991 and 2015, hence thirty year of data.

We construct two cumulative distribution functions for PE-funds cash inflows: i) the

empirical one, and ii) the model-implied one. The former is derived directly from the Pre-

qin dataset. Preqin records all cash inflows into any given private equity fund, without a

distinction between fee payments and capital invested.

The latter is generated by using 100,000 simulations of our model: a PE-fund cash

inflows consist of the management fees from the time of capital commitment (τ0) to the time

of investment (τC), plus the capital called for investment at time τC .

Note that the time from τ0 to τC follows an exponential distribution. Therefore, at any

time t, the proportion of funds across simulations having not called yet is e−λCt. The total

fee paid by these funds is (fee)(e−λCt); where fee = 2%. The cumulative cash inflow across

simulations at time t is the sum of the cumulative fees paid by each fund until its capital call,∫ t
τ0

(fee)(e−λCt)dt = fee
λC

(
1− e−λCt

)
, and of the amount of capital already called 1 − e−λCt.

The total inflow thus follows an exponential distribution with parameter λC .

We search for the λC that minimizes the least-square distance between this model-implied

and the empirical cumulative distribution. The best fit is obtained for λC = 0.344, which

corresponds to an average commitment period of about three years. Panel A of Figure 1

shows that the two cumulative functions are very close to one another, which validates our

modeling choice.
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To calibrate the PE cash-outflows, we do not directly use the fund distributions observed

in Preqin, as we do for the inflows. The reason is that it takes about fifteen years to observe

the complete time-series of fund distributions. Hence, we would be restricted to using a

sample of funds raised before 2005.

Instead, we use the same sample as above, hence funds raised up to 2015, and match

the distribution of their performance as of the end of the year 2020, valuing their unexited

investments at their reported Net Asset Value (NAV), as done in practice. To measure fund

performance, we also adopt the most common measure: the Kaplan-Schoar Public Market

Equivalent (PME). That is, for each fund, we compute the present value of cash inflows

and cash outflows, each discounted using the realized S&P 500 index returns. Finally, the

empirical cumulative distribution of PMEs is weighted by fund size in order to have a more

economically meaningful performance measure (compared to equal-weight).

The model-implied PMEs are obtained by simulating the cash flows of 100,000 private

equity funds, using i) the return dynamics of equation 3, and ii) draws from Poisson distri-

butions to trigger capital calls. There are four free parameters in our model: the intensity of

capital distributions, λD, the correlation between private and public equity (ρ), PE expected

return (ν) and PE volatility (φ).

As with the calibration above, we choose the four free parameters (ν, φ, λD, ρ) which

minimize the least-square distance between the model-implied and the empirical cumulative

distributions. The best fit is obtained with a combination of a relatively high ν and φ:

ν = 14.5%; φ = 24.7%; ρ = 80%; λD = 0.227

We therefore assume an expected PE return that is 6.5% higher than that of public equity

(using the S&P 500 index) and a volatility of PE is 63% higher than that of public equity.17

17The interpretation of volatility is not trivial. The value-weighted distribution of PMEs has a volatility
of about 50% and the volatility of the GBM depends primarily (but not only) of this parameter. If we
had equally weighted PMEs, this cross-sectional volatility would have much larger (about 80%). If we
create portfolios of funds, the volatility decreases with the number of funds in the portfolio. With 5 funds
in a portfolio we would have the same volatility as the value weighted one (40%). Most importantly, as
shown below, this implied volatility of the GBM leads to a reasonable estimate of Beta, which leads to a
reasonable allocation to PE. Also, the usual approach to estimate volatility consists in using a time-series
of NAV-to-NAV IRRs at a quarterly frequency. These time-series are readily available; for example, on
the website of Cambridge Associates. The resulting volatility is typically about half the volatility of public
equity due to the well-known staleness of NAVs (see, e.g., Stafford (2020)). Using standard de-smoothing
approaches (i.e. assuming an autoregressive process) brings the volatility closer to that of public equity,
which is surprising.
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The calibrated λD implies an average holding period nearly 4.5 years, which matches

both anecdotal evidence and large sample evidence (Lopez de Silanes et al. 2011). The

correlation of 80% also matches estimates that are used in practice.18 Notice that these

parameters produce an implied private equity β that matches empirical estimates obtained

with direct approaches (e.g. Ang et al. (2018)):19

β = ρ. σ
ψ

= 0.8(0.25
0.15

) = 1.32

The value-weighted cumulative distribution of PMEs is shown in Panel B of Figure 1. The

blue bars represent the empirical distribution and the red line the model-implied distribution.

The two curve are close with the partial exception of the tails.

5 Portfolio Allocation in the Baseline Economy

With the above calibration, the investor optimally commits 21.7% of her wealth to private

equity (ξ). This initial PE allocation will then vary with time, following changes in the

investor’s wealth. Figure 2, Panels A, B, C and D plot four functions describing the solution

to the model: i) the value function solving (9), ii) the probability density function of ξ, iii)

the consumption rate and iv) the stock allocation; all as functions of ξ. The dashed line

displays the functions during the commitment period, i.e. before the capital has been called,

and the solid line during the holding period, i.e. after the capital has been called. The

optimal pledge is shown as a vertical dotted line and coincides with the maximum of the

value function during the commitment period. Note that these functions differ across the

two sub-periods (commitment versus holding period), but not within sub-periods.

Panel A displays the value function (− log(−H(.)) as a function of ξ. Interestingly,

we note that the region around the optimal pledge is fairly flat, implying that as long as

the PE allocation remains between 0% and 40%, welfare does not vary much. However, if

the PE allocation goes above 40%, welfare is quickly reduced. If it becomes larger than

78.7% of liquid wealth (black circle), the investor will strategically default on her pledge

and permanently lose access to the private equity market. However, Panel B shows that the

likelihood of reaching a 40% PE allocation during the commitment period is almost zero.

Hence, default hardly ever happens. In fact, the PE allocation does not vary much and

18https://www.blackrock.com/institutions/en-us/insights/charts/capital-market-assumptions.
Notice as well that the estimate of the volatility of US private equity is 32%, which is close to our estimate.

19Ang et al. (2018) propose a methodology to estimate the β of all private equity funds in a CAPM setting.
They find a β of 1.43, which is close to the β found above. The fact we have implied parameters that
match existing point estimates is very reassuring.
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remains smaller than 25.2% with a 90% probability during the commitment period.

Upon capital call, the value function jumps up to the solid black line. At that point

in time, the optimal PE allocation is 34.3%. The investor is therefore significantly under-

committed to PE at this point in time. If she had committed more to PE, however, she

would have increased the probability to reach lower values of welfare, and to default.

Ideally, an investor would therefore like to commit 21.7% of her wealth to PE, and have

the possibility to top-up that amount by more than 60% at the time of capital call. This

result gives an order of magnitude for the amount of co-investment opportunities an investor

would like to be offered. In practice, although this practice has developed substantially

over the last 15 years, the usual top-up is about 10%. The asymmetry of demand is also

interesting. Because the investor is under-committed to PE, she does not value much the

option to reduce her allocation to PE upon capital call. In contrast, she values a lot a top-up

option. The latter is exactly what co-investments offer.

After the capital call, the investor can either keep the investment until capital distri-

bution, or sell her stakes on the secondary market at a discount. The latter is optimal if

the private equity share ξ reaches 94.5% of total wealth (black square). It is therefore an

extremely rare event. We believe this is a realistic feature as secondary markets are indeed

rarely used for fire sale exits.

Panel C shows that the consumption function is similar to the value function. During

the commitment period, consumption is relatively insensitive to the PE allocation. At the

optimal PE allocation, the consumption rate is at its highest point (4.8%). If the PE

allocation goes beyond 40%, the investor reduces consumption, and at the point of default

(ξ = 78.7%), the consumption rate is 4.5%. In contrast, during the holding period (the

solid line), consumption becomes much more sensitive to the PE allocation. If the PE

allocation goes beyond 50% of wealth, consumption decreases rapidly to about 4%. Overall,

consumption is higher during the holding period than during the commitment period.

The stock allocation (Panel D) is flat during the commitment period at about 56%,

except when the PE allocation passes 60%. At this point, the stock allocation increases

rapidly as the PE allocation increases, and reaches 80% of wealth. The investor is ”gambling

for resurrection”, i.e., increasing her risky allocation with the hope to avoid default. The

allocation to the risk free asset during the commitment period is therefore relatively high as

long as the PE allocation stays below 60%. Despite the significant equity premium, 44% of

the investor’s wealth is invested in the bond, therefore the investor has almost surely enough

wealth to cover for her PE commitment, since bonds are risk-free.
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6 Liquidity frictions

In this section we quantify the impact of the different liquidity frictions described in Section

3.5 on the investor’s welfare, her portfolio allocation and consumption rate. The cost asso-

ciated with each friction is measured as the amount of wealth the investor is willing to pay

to remove the given friction. We measure these costs by comparing the different economies

described in Section 3.5.

6.1 Timing Risk

We switch off call timing risk by making the capital call time deterministic (Economy 1).

Surprisingly, removing timing risk has almost no impact on the optimal commitment, con-

sumption policy and stock allocation (Table 1 and Figure 3). In fact, the cost associated

with commitment timing risk is negative, implying that the agent prefers uncertainty about

the timing of capital calls to certainty. She is willing to pay 0.17% of her wealth to make

the call stochastic, i.e. nearly 1% of what she commits to PE.

Two competing forces can explain this result. On the one hand, when capital is called,

the value function jumps up, as shown by Panel A of Figure 2. A stochastic capital call time

induces uncertainty about the time at which the agent will realize this utility gain. As the

present value e−δτCU(1) of the utility of a dollar received at a random time τC is higher than

the present value e
− δ
λC U(1) of the utility of a dollar received at the time E[τC ], the investor

prefers that the time of her gain be stochastic rather than deterministic.20 This first force

pulls the cost of commitment-timing risk down.

On the other hand, a stochastic capital call time induces uncertainty in the ability of

the agent to fund her requirements. These requirements include the capital call, but also

the future consumption stream, taken out of liquid wealth. The larger the variance of the

capital call time, the more likely it is that capital call occur far beyond E[τC ] and that she

then needs to reduce consumption. This second force pushes the cost of commitment-timing

risk up. The cost of timing risk depends on the relative effect of these two forces. A low

subjective discount factor or low interest rate leads to the second force dominating.

To sum up, timing risk has a negligible effect and, with our default parameterization

leads to a negative cost.

In contrast, distribution timing risk matters. In Economy 5, we switch off this risk, by

making the time of distributions deterministic. Table 1 shows that that the optimal PE

20Applying Jensen’s inequality to the convex function t→ e−δt yields e−δE[τ ] ≤ E[e−δτ ].
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allocation significantly increases: from 21.7% to 25.9%. Figure 3, Panels B and D, show that

the investor’s consumption also increases during the commitment period. Other aspects

of the economy are more similar to Economy 1. Default is triggered only slightly later in

Economy 5 than in Economy 1. The stock allocation and the consumption rate are similar

in both economies.

Distribution timing risk has a positive and significant cost. Our estimate of 1.07% of the

investor’s wealth is similar to what is documented in Ang et al. (2014). The investor thus

strongly prefers a certain distribution time to an uncertain one. Certainty on the distribution

timing is particularly valuable when the investor needs to reduce her consumption to avoid

running out of liquid wealth by the time of capital distribution.

6.2 Quantity Risk

To evaluate the impact of quantity risk, we compare Economy 0 (baseline) to Economy 2, in

which the committed amount can be chosen at capital call time. If the investor can choose

the amount to invest when capital is called, it means that commitment risk is eliminated.

Table 1 shows that switching off quantity risk leads to a significant increase of the PE

allocation: from 21.7% to 33.6%. The rest of variables are hardly affected: consumption

increases only slightly (Figure 3, Panel C), and the stock-bond split is unaffected. The

investor is willing to pay as much as 5.45% of her wealth to switch from Economy 0 to

Economy 2, i.e. to be given the possibility to adjust her commitment at call time.

Switching off timing risk in Economy 2 leads us to Economy 3, in which the time of

capital call is deterministic, and the investor can choose the amount she invests at call time.

Removing timing risk actually decreases PE allocation (34% of wealth to 25%), and induces

a small cost of 0.43%. Consumption and stock allocation are left unchanged.

In Economy 3, the investor faces a deterministic period of nearly three years during which

she has no private equity exposure. We remove this period in Economy 4, by allowing her

to invest directly in the fund. Her portfolio allocation is similar to the one in Economy 2.

She increases her consumption by around 8%, in anticipation of the distributions that she

will now perceive earlier.
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6.3 Secondary Market Liquidity

The secondary market allows the investor to sell her private equity fund investment any time

after the capital has been called, at a cost. Our default parameterization sets this cost (a.k.a.

the haircut) to 13.8% of investment value. Table 2, Panel A, shows how the PE allocation

changes if the haircut increases to 40%, or decreases to 0%.

With a perfectly liquid secondary market, PE allocation only slightly increases: from

21.7% to 22.8%. Similarly, an illiquid secondary market only decreases PE allocation to

20.4%. Furthermore, Panel B shows that the investor is not willing to pay much to increase

the liquidity of the secondary market in a given economy. In the baseline economy, she is only

willing to give up 0.2% of her wealth to decrease the secondary market haircut, from 13.8% to

0. This amount grows to 0.8% in economies where quantity risk is switched off and to 4.1%

when getting rid of the commitment period. A secondary market is therefore more valuable

if there is no ex ante commitment of capital (i.e. no quantity risk). However, these amounts

remain small compared to the amounts the investor is willing to pay to switch economy, for

a given secondary market haircut. The discrepancy justifies our focus on commitment risk,

rather than on secondary market liquidity.

A perhaps surprising result is that the investor is willing to pay more to get rid off

quantity risk with a liquid secondary market than with an illiquid secondary market, as

shown in Panel C. The willingness to pay to get rid of quantity risk increases when the

liquid secondary market is liquid: from 5.5% to 6%. This increase in cost is explained by an

increase in PE allocations: from 33.6% to 38.3%. The willingness to pay to get rid of the

commitment period also increases, from 13.8% to 17.2%. The two types of frictions, namely

commitment risk and illiquidity of the secondary market, are therefore complement.

We also note that the effect is asymmetric. Changing the haircut from 13.8% to 0% had

a larger effect than when we increase it from 13.8% to 40%. The cost of quantity risk goes

down from 5.5% to 5%, and the PE allocation in Economy 2 goes from 33.6% to 30.7%.

Making the secondary market perfectly liquid does not affect much our previous results on

timing risk (allocations and cost).
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6.4 Extension to Two Private Equity Funds

We now analyze an economy with two private equity funds. Their return dynamics are given

by equation (3), with expected return ν and volatility ψ. The Brownian motions that drive

them have correlation ρPE. As we focus on the effect of commitment risk, we assume that

the two funds have almost perfectly correlated returns, and so any welfare changes compared

to the exercise with one fund must be the result of commitment risk effects: ρPE = 0.95.

Our analysis of the two-fund case builds upon the one-fund case. The main difference is

that the value function now admits two state variables and two fund states. At time zero,

the investor will choose the optimal ξ1 and ξ2 such that the value function H(ξ1, ξ2, S1 =

C, S2 = C) be at its maximum.

Table 3 displays the PE allocation to each PE fund, and the welfare costs of the different

economies. In the baseline economy, the PE allocation increases compared to the one-fund

case: from 21.7% to 29.6%. Intuitively, with access to two funds, the investor would like to

take advantage of liquidity diversification by spreading her allocation across funds. Doing

so allows her to smooth her capital inflows and outflows. As with all risk-averse investors,

smoothing wealth flows results in higher risky asset allocation.

A surprising result is that the investor is willing to pay more than in the one-fund case

to get rid of quantity risk, even though she does not change her PE allocation much: the

welfare cost increases from to 5.5% to 6.4%. This result too goes against the intuition of

liquidity diversification.

Robinson and Sensoy (2013) show that the timing of capital calls and distributions is

mostly idiosyncratic. In our model these times are fully idiosyncratic, as calls and distribu-

tions are driven by independent Poisson processes. Intuitively, access to two funds should

therefore induce liquidity diversification, and decrease the welfare costs of the different liq-

uidity frictions. Practically, with more than one fund the investor can space out investments

to reduce the impact of commitment delay. Funding capital calls should also be facilitated,

as the distribution of the first fund can be used to fund the capital call of the second fund.

However, this logic does not account for the funding mismatch that arises in the two-

fund case. The randomness of capital call and payout times raises uncertainty on the funding

needs of these funds. When the investor has two PE funds, she runs the risk that the second

fund calls her pledge before the first fund returns its capital. This effect is not possible

with one fund. As a result of this possible funding mismatch, a larger endogenous ‘escrow’

account is needed, which increase the welfare cost of commitment-quantity risk.
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A Model solutions

A.1 Baseline model solution - 1 fund

In the case where preferences are given by power utility, the investor solves problem (6). The
function F solves the HJB equation (7) and the value function F can be written as (9). We
give below the reduced HJB equation solved by H.

Proposition 2 (Baseline, one fund) The investor’s value function can be written as in
(9), where H(ξ, S) exists and is finite, continuous, and concave for ξ ∈ [0, 1). Whenever the
investor can pledge, she selects ξ∗ ≡ arg maxξH(ξ, S = C), which exists. Between private
equity pledges and capital calls, H(ξ, S = C) is characterized by

0 = max
c,θ

[
c1−γ

1− γ
− βH + A0(c, θ, S = C)H + A1(ξ, c, θ, S = C)Hξ

+A2(ξ, c, θ, S = C)Hξξ + λC
(
H+C −H

)]
(11)

where

A0(c, θ, S = C) = (1− γ)(r + θ(µ− r)− c) +
γ

2
(γ − 1)σ2θ2

A1(ξ, c, θ, S = C) =
[
−(r + θ(µ− r)− c) + σ2θ2γ

]
ξ

A2(ξ, c, θ, S = C) =
1

2
σ2θ2ξ2

H+C(ξ, S = C) = H(ξ, S = D).

Between capital calls and distributions, H(ξ, S = D) is characterized by

0 = max
c,θ

[
[c(1− ξ)]1−γ

1− γ
− βH + A0(ξ, c, θ, S = D)H + A1(ξ, c, θ, S = D)Hξ

+A2(ξ, c, θ, S = D)Hξξ + λD(max
ξ
H+D −H)

]
(12)

where

A0(ξ, c, θ, S = D) = (1− ξ)(1− γ)(r + θ(µ− r)− c) + ξ(1− γ)ν

+
γ

2
(γ − 1)

(
ξ2ψ2 + σ2θ2(1− ξ)2 + 2ξ(1− ξ)ρLψσθ

)
A1(ξ, c, θ, S = D) = −ξ(1− ξ)(r + θ(µ− r)− c) + ξ(1− ξ)ν

+ γ
(
−ψ2ξ2(1− ξ) + σ2θ2(1− ξ)2ξ − ξ(1− ξ)(1− 2ξ)ρLψσθ

)
A2(ξ, c, θ, S = D) =

1

2
ξ2(1− ξ)2

(
ψ2 − 2ρLσθψ + σ2θ2

)
H+D(ξ, S = D) = H(ξ, S = C)
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If the investor has Epstein-Zin preferences and solves Problem (??), the function HEZ

solves analogous ODEs.

Proposition 3 (Baseline Epstein-Zin, one fund) The investor’s value function can be
written as in (9). Between private equity pledges and capital calls, HEZ(ξ, S = C) is char-
acterized by

0 = max
c,θ

[
β

1− ζ

(
c1−ζ

((1− γ)HEZ)
γ−ζ
1−γ
− (1− γ)HEZ

)
+ A0(c, θ, S = C)HEZ

+A1(ξ, c, θ, S = C)HEZ
ξ + A2(ξ, c, θ, S = C)HEZ

ξξ + λC
(
HEZ,+C −HEZ

)]
(13)

Between capital calls and distributions, H(ξ, S = D) is characterized by

0 = max
c,θ

[
β

1− ζ

(
[c(1− ζ)]1−ζ

((1− γ)HEZ)
γ−ζ
1−γ
− (1− γ)HEZ

)
+A0(ξ, c, θ, S = D)HEZ

+A1(ξ, c, θ, S = D)HEZ
ξ +A2(ξ, c, θ, S = D)

1

2
HEZ
ξξ + λD(max

ξ
HEZ,+D −HEZ)

]
(14)

The functions A0, A1 and A2 are defined as above.

B Numerical Methods

After changing variables: ξ = eZ when S = C and ξ = 1
1+e−Z

when S = D, the value function
(9) can be rewritten as

F (W,X, S) = W 1−γG(Z, S), (15)

where Z = log(X/W ), and G solves the following transformed reduced HJB equation:

0 = max
c,θ,X

{
c1−γ

1− γ
+B0(c, θ)G+B1(c, θ)GZ +B2(c, θ)GZZ + λS

(
G+S −G

)}
, (16)

where λS = λC (resp. λS = λD) when S = C (resp. S = D). The functions B0, B1 and
B2 and G+S are defined as follows:


B0(c, θ) = −β + (1− γ) (r + (µ− r)θ − c)− 1

2
γ(1− γ)θ2σ2

B1(c, θ) = − (r + (µ− r)θ − c) + θ2σ2(γ − 1
2
) + ν − 1

2
ψ2 + θσψρL(1− γ)

B2(c, θ) = 1
2
θ2σ2 + 1

2
ψ2 − θσψρL

G+S = G(Z, S = D) if S = C and G+S = G(Z, S = C) if S = D.

(17)
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When S = C, the parameters ρL, ψ and ν are set equal to zero.

We use the Markov Chain Approximation (MCA) of Kushner and Dupuis (2001) to
evaluate equations (16), for S = C and S = D. The method used applies an MCA to
continuous-time continuous state stochastic control problems, by renormalizing finite differ-
ences forms as proper Markov chain transition probabilities. These transition probabilities
arise when deriving finite difference versions of the HJB equation. In our case, the ODEs
(PDEs with more than one fund) are linked: G(Z, S = C) depends on G(Z, S = D and vice
versa, which introduces additional complexity.

We present below the main steps of the algorithm, for one private equity fund and with
power utility.

We define a grid zi of values taken by Z, ranging from −10 to 5 with intervals of dz = 1
100

.
For each state S, we discretize the value function G on the grid of zi: gi = G(zi). gi satisfies
an equation of the form:

0 = max
c,θ

[
Ũ(zi, c, θ) +B0(zi, c, θ)gi +B+

1 (zi, c, θ)
gi+1 − gi

h
+B−2 (zi, c, θ)

gi − gi−1

h
+

B2(zi, c, θ)
gi+1 + gi−1 − 2gi

h2

]
,

where Ũ(zi, c, θ) includes the utility term as well as the jump term, B+
1 (zi, c, θ) (resp.

B−1 (zi, c, θ) is the positive (resp. negative) part of B1(zi, c, θ).

The optimal allocation and consumption policy, as functions of fi, are obtained from the
first order condition.

We rearrange the terms to define transition probabilities and the time step of a Markov
chain:

pu(zi, c, θ) =
1
h
B+

1 (zi, c, θ) + 1
h2
B2(zi, c, θ)

−B0(zi, c, θ) + 1
h
B+

1 (zi, c, θ)− 1
h
B−1 (zi, c, θ) + 2

h2
B2(zi, c, θ)

pd(zi, c, θ) =
− 1
h
B−1 (zi, c, θ) + 1

h2
B2(zi, c, θ)

−B0(zi, c, θ) + 1
h
B+

1 (zi, c, θ)− 1
h
B−1 (zi, c, θ) + 2

h2
B2(zi, c, θ)

δ(zi, c, θ) =
1

−B0(zi, c, θ) + 1
h
B+

1 (zi, c, θ)− 1
h
B−1 (zi, c, θ) + 2

h2
B2(zi, c, θ)

(18)

Conditional on the allocation and consumption policy, the value function gi is then given
by:

gi = pu(zi, c, θ)gi+1 + pd(zi, c, θ)gi−1 + Ũ(zi, c, θ)δ(zi, c, θ). (19)

The algorithm then consists of two steps: i) the estimation of the value function gi, for
the two states, conditional on the allocation and consumption policy, and ii) the estimation
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of the optimal allocation and consumption policy given the value function. These two steps
are iterated until convergence. Denote the value function at iteration k by gki . We stop the
procedure when the sum of the absolute value of all innovations is below 10−6:

∑
i |g

k+1
i −gki <

10−6.

Evaluating the value function involves another iteration within step i), as the PDEs for
the two states of the economy are linked.

Finally, when studying economies in which there is a secondary market or the private
equity fund is fully liquid, an additional iteration within the above mentioned iteration is
required. Denote by h the index of that iteration. The value function is updated according
to:

gk,hi = pu(zi, c
k−1, θk−1)gk−1,h−1

i+1 +pd(zi, c
k−1, θk−1)gk−1,h−1

i−1 +Ũ(zi, c
k−1, θk−1)δ(zi, c

k−1, θk−1).

(20)

gk,hi is then updated to account for the value of selling the fund. Once this is done, gk,h+1
i

is calculated using (20), etc.

For two private equity funds, we use grid intervals for zi of 1
50

and a total tolerance of
10−3. Because N = 2 require two state variables, we are solving linked-PDEs on 751×751 =
564, 001 points, rather than linked-ODEs on 1501 points.

For probability distributions we use Monte Carlo methods: we use dt = 1
100

(dt = 1
50

for

N = 2,∞) and simulate wealth shocks using dZt = ε ∼ N(0,
√
dt). We create a single times

series lasting for 1, 000, 000 years, taking the evolution of wealth from the budget equations
and optimal allocations and consumption from the HJB equation.

Our standard parameters are shown in Table ??.
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Table 1: Optimal Commitments

Commitments Welfare costs

E0 Baseline economy 21.65% -
E1 Deterministic call time 21.44% -0.17%
E2 Choose quantity on call 33.62% 5.45%
E3 Choose quantity on call + Deterministic call 24.79% 5.02%
E4 No commitment period 32.96% 13.82%
E5 Deterministic payout time 25.92% 1.07%

This table reports optimal commitments and welfare costs of each economy compared to the
baseline economy. Each row references an economy with a different liquidity friction.
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Table 2: Secondary Market Liquidity

Panel A: Commitments

13.8% (baseline) 0% (fully liquid) 40%

E0 Baseline economy 0.217 0.228 0.204
E1 Deterministic call time 0.214 0.228 0.202
E2 Choose quantity on call 0.336 0.383 0.307
E3 Choose quantity on call + Deterministic call 0.248 0.273 0.231
E4 No commitment period 0.330 0.336 0.295
E5 Deterministic payout time 0.259 0.259 0.259

Panel B: Welfare cost of changing secondary market liquidity

13.8% (baseline) 0% (fully liquid) 40%
E0 Baseline economy 0 0.002 -0.002
E1 Deterministic call time 0 0.002 -0.002
E2 Choose quantity on call 0 0.008 -0.007
E3 Choose quantity on call + Deterministic call 0 0.008 -0.006
E4 No commitment period 0 0.041 -0.014
E5 Deterministic payout time 0 0.000 0.000

Panel C: Welfare cost of switching from E0 to another economy, given a haircut

13.8% (baseline) 0% (fully liquid) 40%

E0 Baseline economy 0 0 0
E1 Deterministic call time -0.002 -0.002 -0.002
E2 Choose quantity on call 0.055 0.060 0.050
E3 Choose quantity on call + Deterministic call 0.050 0.056 0.046
E4 No commitment period 0.138 0.172 0.128
E5 Deterministic payout time 0.011 0.009 0.013

This table reports optimal commitments and welfare costs of each economy compared to the
baseline economy, for different values of the secondary market haircut. Each row references
an economy with a different liquidity friction.
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Table 3: Two Fund Allocation and Costs

Commitments Welfare costs

Baseline economy 0.148 0
Choose quantity on call 0.148 0.064
No commitment period 0.138 0.142

This table reports optimal commitments and welfare costs of each economy compared to
the baseline economy, when the investor has access to two private equity funds. Each row
references an economy with a different liquidity friction.
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Figure 1: Model validation

Panel A: Fraction of called capital Panel B: Distribution of PME
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This figure illustrates the two steps of our calibration procedure for the parameters of the
private equity fund dynamics. In Panel A, the blue curve represents the empirical fraction
of called capital after n quarters since capital commitment, for n between 1 and 40. As the
exact time of capital commitment differs across investors in a fund and is unknown, the first
investment is taken as a proxy for the capital commitment time. The red curve represents
the model-implied fraction of capital calls for the our calibrated λC of 0.344. The calibration
of the intensity parameter is described in Section 4. Panel B displays the distribution of
PMEs in our data sample. Panel C applies a log transformation and compares the empirical
distribution of log(1+PME) to a normal distribution. The parameters ν, φ and λD are
calibrated in order for the model-implied mean and standard deviation of the log(1+PME)
to match their empirical counterparts.
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Figure 2: Optimal Allocation and Policies in the Baseline Economy

Panel A: Welfare Panel B: Distribution of PE commitment
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Panel C: Consumption Panel D: Stock allocation
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Panel A represents the value function of the investor during the commitment period (dashed
line) and the holding period (plain line). Default is represented as a circle, sale on the
secondary market as a square. Panel B displays the distribution of the PE allocation during
the commitment period (dashed line) and holding period (plain line). Panel C displays the
optimal consumption of the investor given her PE allocation. Panel D displays the optimal
stock allocation.
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Figure 3: Consumption and liquid asset allocation in Economies E0 to E7

Panel A: Consumption before call - Economies 0 and 1 Panel B: Consumption before call - Economies 5 to 7
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Panel E: Stock allocation before call - Economies 0 and 1 Panel F: Stock allocation - Economies 5 to 7
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This figure represents the optimal consumption rate and liquid asset allocation in the different economies, as functions of the
PE allocation. Consumption rates are given before and after capital call (Panels A to D). In Economies 2 to 4, the amount of
capital invested in private equity is chosen at capital call. Stock allocation is only given before capital call (Panels E and F).
After capital call, all allocations overlap, see Panel D of Figure 2.
Economies are summarized below:

Baseline economy E0 Model described in Section 3 All risks on
Economy E1 Deterministic call time Timing commitment risk off
Economy E2 Choose quantity when called Quantity commitment risk off
Economy E3 Choose quantity when called + deterministic call time Commitment risk off
Economy E4 No commitment delay Commitment risk off
Economy E5 Deterministic payout delay Timing payout risk off
Economy E6 Fully liquid secondary market Commitment risk on
Economy E7 Secondary market haircut at 40% Commitment risk on
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