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Abstract

We show that the prevalence of prolonged contests in professional tennis drops
sharply when the ambient environment deteriorates through heat or pollution. We
develop a dynamic model of multi-battle competition to investigate how the disutility
from a protracted competition shapes agents’ willingness to fight on. Our theory
predicts that a poor environment amplifies the momentum of a competitor’s head
start. We show how model primitives including preferences for improved working
conditions (environmental amenities in our setting) can be inferred from battle-to-
battle transition probabilities. We provide clean evidence that heat and pollution
affect individuals’ incentives to compete strategically. Model estimates show that in
a contest between equally able rivals at the median prize of $15,100, the value of a
head start is $130 to $370 higher in a degraded environment compared with a climate-
controlled one.
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1 Introduction

Research of mostly theoretical nature considers dynamic competitions in which a winner
is determined through a multi-battle contest.! These adversarial competitions require
persistent effort from participants and are used widely in innovation, product advertising,
job promotion, litigation and conflict, political campaigns, and sports (Corchon, 2007;
Konrad, 2009). In a best-of-N contest, the agent who wins the majority of N battles is
declared the winner and takes the prize. Agents’ performance as they transition from one
battle to the next is determined by relative ability and continuation values, which jointly
determine their effort choices. Economic incentives in such dynamic multi-battle contests
produce a result known as strategic momentum: When facing an equally able rival, the
agent who wins battles early on and moves closer to overall victory will raise equilibrium
effort relative to her opponent, increasing the likelihood that she continues winning.?

In this paper, we develop a dynamic contest model of complete information in which
agents incur a fixed cost from engaging in each battle—say an opportunity cost or disutility
from protracted competition that is invariant to effort and unobserved by the researcher.
When this per-battle disutility grows, the importance of an early win is magnified. We
show how the shift in momentum due to variation in the unobservable disutility (fixed
cost) reveals its magnitude. The intuition is as follows. Consider two ex-ante symmetric
agents competing in a best-of-three contest. There is a fixed cost per battle. To win the
contest and collect the prize, an agent needs to win two battles. By design, one agent wins
the first battle and faces win-loss continuation values in the second battle whose difference
grows when a higher fixed cost makes the prospect of competing in a third battle (should
she lose the second battle) less attractive. Similarly, in the second battle the agent who
lost the first battle now faces win-loss continuation values whose difference narrows as the
prospect of competing in a third battle and incurring another round of fixed cost (should

she win the second battle) becomes less attractive. Thus, as per-battle disutility grows,

See, for example, Harris and Vickers (1987), Snyder (1989), Konrad and Kovenock (2009), Gelder
(2014), and Feng and Lu (2018).

’In an intriguing example, Klumpp and Polborn (2006) compare sequential to simultaneous multi-
district elections to explain the “New Hampshire effect” in sequential US primaries, whereby gaining a
head start can be crucial to the final win even when there are many districts to fight over.



the agent who starts winning raises effort relative to her opponent and the contest is (in
expectation) resolved sooner. Our focus is in showing how the change in interim transition
probabilities reveals the per-battle disutility and the value of a head start.

Our specific setting links contest theory to environmental valuation. The economic
agents are tennis professionals competing in best-of-three outdoor contests (matches) in
which the per-battle disutility shifts with environmental quality, namely heat and air pol-
lution. We show how the increase in momentum as the ambient environment deteriorates
identifies agents’ preferences over environmental amenities. We provide evidence that heat
and pollution affect individuals’ willingness to compete strategically.

Empirical work is relatively scarce in the contest literature. Szymanski (2003) argues
that testing contest theory is challenging, as ability is rarely observed or the stakes are
low, with the exception of sporting contests. Boudreau et al. (2016) argue that data rarely
meet the econometric demands of theoretical models. In a study of best-of-three contests
in professional tennis—the same contest as in our application—Malueg and Yates (2010)
provide observational evidence of strategic momentum. The player who wins two of three
sequential battles (tennis sets) is the winner and takes the match prize. When equally
skilled agents compete, theory predicts that the battle-1 winner is more likely than not to
win battle 2.3 Thus, the likelihood that the match requires a third battle for closure is less
than 0.5. Absent the strategic behavior predicted by theory, 0.5 is the probability that a
match completes in two battles, i.e., battle scores 2-0 or 0-2 with probability 0.5% + 0.52.
Malueg and Yates (2010) report that in a sample of 351 matches between equally able
athletes, identified using betting-market odds, the proportion of three-battle matches is
0.36. This is statistically significantly lower than 0.5.4

To test and apply our amplified-momentum theory, we assemble a dataset on Women’s

Tennis Association (WTA) tournament matches played outdoors in Australia and China.

3Having won battle 1, a player is one step away from victory, advantaged by the near prospect of taking
the prize after exerting costly effort in the current battle 2; in contrast, the battle-1 loser can possibly take
the prize only after incurring effort cost over two more battles. To this model we add an unobserved fixed
cost per battle and show how it is identified from environmental shocks and informative of preferences.

%As an alternative to strategic incentives, Malueg and Yates (2010) do not find evidence that the
momentum observed in the field is driven by the “psychology” of a recent win. Specifically, in a smaller
sample of 125 matches between equal-odds players that do reach a third battle, the player who won the
most recent battle, the battle-2 winner, is as likely to lose as to win the third battle.



Plausibly, an agent’s disutility from a prolonged competition is higher when it is uncom-
fortably hot or visibly polluted. The 75th percentile of the mean temperature distribution
over Australian Open matches, played in Melbourne’s summer, is 30 °C (86 °F). The 75th
percentile of the mean PM2.5 distribution over China Open matches, played in Beijing’s

5 While such conditions are

fall, is 133 pg/m?, a level that is visible to the naked eye.
harsh, they are quite common in our settings and are not extreme or rare.

The raw data already suggest that environmental degradation increases momentum.
Consider a subset of 591 matches in our sample in which agents are ex-ante relatively
similar (as implied by pre-match betting odds). In this subsample, the proportion of
three-battle matches is 0.41. Strikingly, in the 192 matches played in poor environments—
defined here as either temperature over 29 °C or PM2.5 over 100 pg/m>—the proportion
of three-battle matches falls to 0.30, i.e., there is more momentum. By contrast, in the 399
matches in which both temperature and PM2.5 were below these cutoffs, the proportion
of three-battle matches is 0.46. An equality test, (0.30, N = 192) vs. (0.46, N = 399), has
a p-value of 0.0001. The data indicate that first battles are not shorter in a poor envi-
ronment. This suggests that the underlying mechanism is not explained by idiosyncratic
player sensitivity to heat or pollution, as such player asymmetry would shorten not only
the match but also battle 1. Reduced-form evidence also suggests that when asymmet-
ric players compete, a poor environment does not raise a weaker player’s overall chance
against a stronger opponent.

Using the entire range of opponent asymmetry, we estimate the dynamic contest model
by maximum likelihood on a sample of 2200 to 2700 matches (depending on the availabil-
ity of alternative ability measures). By one set of estimates, raising temperature from
27 to 37 °C reduces a contestant’s expected payoff by $670 when facing an equal-odds
rival; raising PM2.5 from 150 to 250 ug/m? reduces a player’s expected payoff by $1800.
How environmental shocks, working through a per-battle fixed cost, shift momentum is
moderated by the size of the contest prize and may be asymmetric across players (e.g., a

player about to retire, with potentially lower reputation gains from winning).

SPM2.5 is particulate matter of diameter up to 2.5 micron. The 24-hour US standard is 35 ug/m3.



Intuitively, at each node of the dynamic contest, an agent weighs the benefit and cost
of supplying effort, which includes the fixed cost of extending the competition. In our
setting, how players differentially respond after winning vs. losing the first battle, in
bad compared to good environments, provides a measure of the damage from exposure
to degraded environments. More generally, the differential dynamic response when battle
opportunity costs are high compared to low reveals the magnitude of these fixed costs.

The increase in momentum due to players’ reduced willingness or discouragement to
fight on extends beyond sport contests into other economic contexts. Internal promotions
typically involve multiple battles among candidates. The lengthy procedure is designed
to encourage them to contribute to their organization and display their capacities, tal-
ents, skills, and personalities vis-a-vis those judged desirable. The endurance race induces
productive effort and enables the organization to identify which contestant to promote
(DeVaro, 2006).% The discouragement effect, however, means that the multi-stage screen-
ing can be compromised when candidates’ incentives to fight on are blunted, even giving up
prematurely. Our study highlights that a deteriorating competitive environment amplifies
momentum and, by the same token, can be mitigated in an environment that maintains
the candidates’ incentives as the competition extends. Universities, for example, can im-
prove the competitive environment by offering research grants, teaching support, office
facilities, and training and mentoring.

Other settings in which momentum induced by difficult working conditions may pre-
vent participants from reaching their potential include multi-stage R&D and political
competitions (Grossman and Shapiro, 1987; Klumpp and Polborn, 2006). A planner may
offer research subsidies to encourage laggards to stay in an R&D race, to the benefit of
society, as in the multi-stage search for a vaccine amid a pandemic (WHO, 2020). Cam-
paign restrictions can hinder a political contest by increasing the discouragement effect,
whereas technologies such as social media can reduce the fixed cost of campaigning on.

Our paper contributes to a sparse empirical literature on agents’ incentives in contest

5Bognanno (2001) finds that 80% of high-level executives were promoted internally and that even before
promotion a successful candidate earned more than peers. This suggests the presence of interim ranks and
the potential relevance of discouraged laggards to a firm’s performance (Goltsman and Mukherjee, 2011).



settings. For instance, Brown (2011) studies the superstar effect in competitions. Con-
test models in this literature are typically offered to guide interpretation of reduced-form
(regression) analysis and not for direct estimation of economic primitives, as is our case.
An exception is Ferrall and Smith Jr. (1999)’s test of momentum in team sports using a
structural best-of-five contest model based on Lazear and Rosen (1981) and Rosen (1986).
Genakos and Pagliero (2012), Huang et al. (2014), and Boudreau et al. (2016) estimate
contest models with varying levels of structure and that differ in design and context,
e.g., one-shot innovation tournaments. Related to our application, a mostly nonstructural
literature in environmental economics quantifies the impact of heat or pollution on socioe-
conomic outcomes.” The tractable model we estimate can generally be applied to dynamic
competitions in which shocks to fighting on—which encompass institutional, political, and

operational factors—may lead competitors who fall behind to simply give up.

2 Data and institutions

Our data consist of outdoor WTA matches held in Australia and China, including envi-
ronmental conditions during match time. Melbourne in January can be hot: Percentiles
50, 75, and 90 of the mean temperature distribution over the 2004-2016 Australian Open
matches in our sample are 25, 30, and 34 °C. Beijing’s air quality in the fall varies and
can be poor: Percentiles 50, 75, and 90 of the mean PM2.5 distribution over China Open
matches are 52, 133, and 220 pg/m3. Data for the Beijing-based China Open start only in
2008, so we further compile data for five other outdoor WTA tournament series held an-
nually in China. Figure 1 and Table 1 report the wide variation in environmental quality
in our sample (yet freezing weather is not applicable).

We examine women’s singles series, in which each match is a best-of-three contest
between two players. In such matches, the first player to win two tennis sets (battles)
over her rival, with one battle played immediately after the other on the same day, wins

the match. Thus, battle transitions that yield a match win are either win-win (in two

TA selected list includes heat- or PM-induced mortality and defensive expenditures (Deschenes and
Greenstone, 2011; Chen et al., 2013; Salvo, 2018; Ito and Zhang, 2019); and output, productivity, and
labor supply (Dell et al., 2014; Hanna and Oliva, 2015; Archsmith et al., 2018; Somanathan et al., 2019).



sets), win-lose-win or lose-win-win (three-setters). The contest winner earns cash (sample
median = $15,092) and WTA ranking points and, except in the series’ final round, plays
another opponent on another day, typically a day or two later.®

To describe a series, consider the Australian Open, where the “main draw” features
128 qualifying athletes. The single winners of the 64 matches played by the 128 players
in round 64 progress to round 32, and similarly for subsequent rounds. There are more
matches in round 64 than in all six later rounds combined (32 +16+8 +4+2+1 =63
matches). It helps to think of the “median” contest as a round-64 match, not the famed
series final. Athletes who do not qualify for a series’ initial round 64, based mainly on
WTA ranking points, may do so in “qualifying” matches held shortly before round 64.

The Australian Open is one of the four “Grand Slam” tennis series attended by the
world’s top athletes. The China Open was upgraded in 2009 to “Premier Mandatory”
status and also attracts top players. The five other WTA series played in China are less
prestigious but attract similar professionals.? In the player-by-match distribution in our
sample, the median player’s world rank is 48 in Melbourne, 28 in Beijing, and 63 in other
Chinese venues. Because main-draw matches in the China Open start only in round 32,
its median player ranks even higher than in the Australian Open. Excluding round-64
matches in the Australia Open, the median player rank happens to equal that in the
China Open, at 28. Figure 2 shows that players in Melbourne, Beijing, and other Chinese
locations rank among the world’s top 100 tennis athletes, including at the very top.

Match-level data. Our sample consists of main-draw WTA matches in the following
years and locations: summer 2004-2016 in Melbourne; fall 2008-2016 in Beijing; fall 2011-
2016 in Guangzhou; winter 2013-2016 in Shenzhen; and summer/fall 2014-2016 in Hong
Kong, Tianjin and Wuhan. We cannot extend a given venue’s matches to earlier years due

to high-frequency environmental conditions not being available or because a given series

81n terms of sample, we do not consider doubles matches, which would require that we model strategies
between players within a team. Men’s singles matches in the Australian Open are best-of-five contests.
Subsequent research can study momentum in the context of teams, longer contests, and gender differences.
Future research accessing more granular data can model battles as tennis games or tennis points, both of
which are subunits of a tennis set, but will need to contend with game serve advantage.

9Other series are the Guangzhou International Women’s Open, Hong Kong Open, Shenzhen Open,
Tianjin Open, and Wuhan Open.



was recently introduced. In total, we observe 1651 scheduled matches in Melbourne, 499
matches in Beijing, and 661 matches in other locations in China, of which 98%, 95%,
and 94%, respectively, were completed. The remaining 2%, 5%, and 6% of matches at
these respective locations were won either by “retirement,” due to an injured player’s
withdrawal, or, less frequent still, by “walkover,” when a player does not attend.

Matches follow a prescheduled order and start between 10 am to 7 pm local time. In
addition to match status (e.g., completed), we observe player characteristics (name, WTA
rank, ranking points), and the number of tennis games each player won in each battle.
For example, player X wins two battles and loses one, with sequential scores of 6-4, 6-7,
and 6-2 (in games won).! Rain other than a light shower typically delays play. Due to
controversy over the Australian Open’s heat policy,!! playing in ambient heat has been
common even in the few instances in which a retractable roof was available (the Rod Laver
and Hisense arenas).

The mean length of battle 1, as measured by the number of tennis games played, is
similar across locations: 9.2 in Melbourne, 9.4 in Beijing, and 9.3 elsewhere in China.
Compared with battle 1, battle 2 tends to be shorter by about 0.2 game. Upon losing
battle 1, the likelihood that the battle-1 loser wins the next two battles to win the match
is less than 1 in 5, and similar across locations. Third battles tend to last 9.5 games.

Opponent symmetry vs. asymmetry. A scheduled match’s opponents are typi-
cally confirmed a day or two in advance. We observe pre-match betting odds according to a
leading prediction market (bet365). From these odds, we calculate implied match winning
probabilities prior to the start of play. For example, the odds for players X and Y are 1.57
and 2.37, implying winning probabilities of 64% (i.e., 100%/1.57) and 42% (100%/2.37),
with a winning probability difference between the two players of 64 — 42 = 22% in abso-

lute value.'? Figure 3(a) shows the distribution of this winning probability difference over

10T the example, player Y wins battle 2 by a tie-breaker after both players are tied at 6 games each.
A battle consists of at most 13 games, the last decided by a tie-breaker, except in third battles in Grand
Slam matches in which a player must win 2 games more than her rival and at least 6 games, e.g., 8-6.

1A player may feel that heat works to her advantage. Even a referee’s call for a short break between
battles can be controversial. Our findings apply to hot, and not specifically extreme, weather. We sub-
sequently show robustness of our main results when dropping 66 matches for which a retractable roof
appears to have been closed to protect from heat or rain (Table A.4).

12Betting $100 on player Y winning the match pays out $237, netting $137, should she win. Other online



matches in the sample. We are missing odds prior to 2008 (about 500 matches).

By incorporating available information, including expected location- and time-specific
conditions that affect athletes differentially, the difference in players’ winning probabili-
ties captures the ex-ante asymmetry: for instance, compare the above match’s winning
probability difference of 22% with 72% in another match among asymmetric competitors.
A player may have a history of performing better on a hard court or in hot weather
than her opponent, and such expected conditions should be reflected in betting prices.
Matches with a low winning probability difference are those in which the opponents’ rela-
tive strength—comparative ability, fitness, or motivation—was deemed most symmetric.

As alternative measures of the relative strength of athletes paired in matches in our
sample, Figure 3 also shows (panel b) the distribution of the absolute difference in op-
ponents’” WTA ranks, e.g., a difference of 30 for a match between players ranked 25 and
55; and (panel c¢) the distribution of the difference in opponents” WTA ranking points
or z-scores, e.g., a difference of 2 standard deviations for a match between players with
points 5 and 3 standard deviations above the mean in the worldwide population of WTA
players.'3 These alternative measures are based on aggregates over time and integrated
over an athlete’s performance at venues with varying court surfaces and environments.

The pairwise correlation coefficient for (a) the winning probability difference against
(b) the rank difference (in log) is 0.43, or (c) the z-score difference is 0.61. The left panels
of Figure 4 show that as each asymmetry measure grows, the stronger player is indeed
more likely to win the match. (We will later refer to the right panels.) For each measure,
we group matches in 10 same-width bins, with the first bin starting at the minimum
difference and the last bin ending at the 95th percentile of the difference distribution over

asymmetric matches.'* Matches in which player ranks differ by 100 or more tend to be

betting sites report similar odds to bet365. 64% and 42% exceed 100% due to bookmaker fees (about 6%).
3The time-adjusted world z-score is a player’s unadjusted WTA ranking points minus the mean over

all worldwide WTA players (on the match’s date), divided by the standard deviation over all worldwide

WTA players. The adjustment accounts for changes in the variance of WTA ranking points over time.

14 Using the sample of matches without missing measures, we implement three separate regressions. In
each case, we regress an indicator that the match was won by the stronger player (alternatively defined
as that with the higher winning probability, the better rank, or the higher z-score) on the corresponding
asymmetry measure, i.e., as the respective regressor, the winning probability difference, log rank difference,
or z-score difference. The R? of the first regression, at 9%, is more than double that of the others.



those between weaker players, for which rank difference is a noisier measure of asymmetry.

Exogenously varying environments. We observe temperature and particle pol-
lution, among other ambient weather conditions, mostly in the form of 1-hour readings
(several sources, described in Table 1 notes). For Melbourne, we lack 1-hour PM2.5 prior
to 2015, so we use the Victoria EPA’s 1-hour Airborne Particle Index (API) instead. We
verified that daily mean PM2.5, available once every 3 days, closely tracks the 1-hour API
aggregated into daily means. Specifically, at each of two sites less than 9 km from the
venue, the pairwise correlation coefficient between PM2.5 and API is 0.94 over 2004-2016.
One API unit is associated with 15 pg/m® PM2.5, so a maximum of 5.1 units in the
Australian Open match sample corresponds to 77 ug/m3 PM2.5. For Beijing, PM2.5 was
measured at the US Embassy, located 19 km from the venue in 2008 and 11 km thereafter.
In north China, PM2.5 fluctuates substantially from one day to the next, due to exogenous

shifts in atmospheric stagnation (He et al., 2019).

3 Reduced-form regressions

We now document that environmental quality affects contest duration in professional
tennis. We later interpret the relationships in the data through the lens of a dynamic
contest model, in which we explicitly characterize players’ incentives and effort choices at
each state, and quantify these agents’ preferences for environmental amenities.
Amplified momentum. Spectators, advertisers, and organizers presumably derive
value from a tighter and longer match. Consider the probability that a match ends in
three battles rather than two. Without conditioning on player asymmetry, the probability
that a match lasts three battles is about one-third. When opponents are more symmetric,
the proportion of three-battle matches (three-setters) is higher. This proportion is 0.40 in
the first quartile of the players’ winning probability difference distribution.'® Recall that
absent dynamic behavior, the probability that a match between symmetric players lasts

three battles would be 0.5.

15Similarly, the probability of ending in three battles is 0.36 and 0.35 in the first quartiles of the rank
difference and z-score difference distributions. In contrast, the probability of a three-setter is 0.20 for
matches in the fourth quartile of the winning probability difference distribution.



Table 2 reports our key finding: A degraded environment, whether heat or pollution,
sharply reduces the probability that an ex-ante even match is played over three battles.
Two players may be symmetric when starting a match, but a degraded environment in-
duces more asymmetric outcomes, as it raises the advantage in battle 2 from having won
battle 1. Start with very asymmetric pairings, in column 1. In the subsample of matches
for which opponents’ winning probabilities differ by at least 65% (N = 566), heat or
pollution does not change the probability that a match lasts three battles (0.20 in this
subsample). In contrast, in relatively symmetric pairings in columns 2 to 8, heat or pol-
lution significantly lower the probability that a match lasts three battles. Columns 2 to
6 progressively shrink the subsample based on opponents’ winning probabilities, from at
most 30% apart (N = 700) to at most 10% apart (N = 194). The likelihood of a three-
setter is flat at about 0.4, even as the definition of symmetry becomes more stringent (i.e.,
< 30% to < 10% difference). Compared to matches played in cooler and cleaner air, the
probability of a three-setter is about (i) 18 percentage points lower when the temperature
exceeds 29 °C, and this estimate is significant at the 1% level even as standard errors
grow; and (ii) 10 percentage points lower when PM2.5 exceeds 100 ug/m3, with loss of
precision. Comparing columns 7 and 3, estimates grow in magnitude upon adding controls
for series by round (e.g., Australian Open’s round 64),'% year, time-of-day, humidity, wind
speed, and rain. (We do not use all of these shifters in our structural model, to keep it
parsimonious, but could do so in principle.) Column 8 specifies finer PM2.5 bins, namely
100 to 200 ug/m3 and over 200 pug/m3. We write our first key result:

Fact 1 (Battle-2 transition probability): In a contest between players with fairly
even strengths, as measured by similar winning probabilities, the battle-1 loser is more likely
to lose than to win in battle 2, and this momentum grows as the environment deteriorates.

As in the subsequent structural analysis, column 9 pools the estimation sample over
the entire range of opponent asymmetry (N = 2130). Here, we control for the winning

probability difference and its interactions with heat and pollution indicators. Naturally,

SWinning a contest later in a series, and in more prestigious series, carries a higher cash (and continu-
ation/reputation) prize, so we condition on series-round. Three-setters tend to be more prevalent in later
vs. earlier rounds, and in more prestigious series, even among relatively symmetric pairings.

10



environmental quality impacts transitions less when a top 10 player faces a rival ranked
100-200. The patterns reported in Table 2 are robust to extending the sample to include
qualifying matches (Tables A.1 and A.2) and to controlling for opponents’ age difference.!”

Table 2 regression results are readily seen in the combined match-environment data.
Figure 5 partitions the set of completed matches along two dimensions: (i) into 10 bins for
the winning probability difference, namely a zero-difference bin and nine same-width bins
in increasing order of opponent asymmetry along the horizontal axis; and (ii) whether
either temperature or PM2.5 exceeded a threshold (marked by red circles), against a
“control” in which both environmental variables were below their respective cutoff (green
squares). The plots show increased momentum whether we specify temperature cutoffs of
27 or 29 °C and PM2.5 cutoffs of 100 or 200 ug/m?.

Table 3, columns 1 to 4, report that the battle-1 loser’s gain in terms of tennis games
won in battle 2 relative to battle 1 shrinks as the environment deteriorates. Because a
battle is won with 6 or 7 games, a 0.4 to 1.1 reduction in relative games won is large in
magnitude. This is another manifestation of momentum amplified by a poor environment.

Heterogeneity vs. dynamic incentives. The next section formalizes the within-
match dynamics of player incentives. However, a natural question is whether the envi-
ronment’s effect on the likelihood that the battle-1 loser successfully fights back in battle
2 can be explained by an alternative hypothesis. Were one opponent, the battle-1 loser,
more sensitive to the environment than her opponent, this might also explain why she
already fell behind in battle 1. By this alternative hypothesis, momentum would be due
to physiology (biology) rather than dynamic incentives.

Suppose one player were systematically more sensitive to the environment. Such pub-
lic information would likely be incorporated into betting odds. For example, prediction
markets would level the odds of a player with poor resistance to heat and who meets an
otherwise less able opponent on a hot Melbourne afternoon. By Fact 1, we use betting
odds to control for differences in player strength.

Now suppose that heterogeneous environmental sensitivity were instead idiosyncratic,

7 Across matches, the median age difference is 3.6 years. In the player-by-match distribution, percentiles
25, 50, and 75 of player age are 22, 25, and 27 years (players are young and professional careers short).

11



and thus not incorporated into betting odds. If a publicly even player were privately
weaker than her opponent when playing in a poor environment, we would observe not
only a shorter match but also a shorter first battle, which the data show not to be the
case, as Fact 2 summarizes next. Columns 5 to 8 of Table 3 show that the length of battle
1, in the tennis games played, is not lower in a low-quality environment. For example, in
column 6’s relatively symmetric subsample, battle 1 is longer by a statistically insignificant
0.1 game when the temperature exceeds 29 °C compared to matches played in cooler air.
This small and insignificant difference is robust as we reduce the subsample to define
symmetry more strictly (as we did in Table 2, columns 2 to 6).

Fact 2 (Battle-1 competitiveness): In a contest between players with fairly even
strengths, as measured by similar winning probabilities, the length of the first battle does
not change significantly as the environment deteriorates.

The evidence thus suggests that heterogeneous environmental sensitivity—whether
public or private—is not the key driver of shorter contests. We subsequently show that
momentum amplified by environmental degradation obtains in a smaller sample of matches
with similar winning probabilities and with tight battle-1 outcomes, e.g., 7-6.

Environment and randomness. Table 4 suggests that match outcomes are not
more random, or less predictable, in poor environments. As environmental quality de-
clines, the less favored opponent—when betting odds indicate there is one—is about as
likely to lose the match (columns 1 to 4) and as likely to lose battle 1 (columns 5 to
7) compared to matches in milder environments.'® Column 9 indicates that the ex-ante
winning probability of the match winner, with a sample mean of 0.67, is not significantly
associated with environmental quality. Heat or pollution do not level the playing field,
in the sense that “upsets” do not become significantly more likely under environmental
stress (Figure 4, right panels). If anything, to judge by the sign of most point estimates,
upsets become somewhat less likely as the environment deteriorates. We summarize this

relationship in the data as follows:

18To the extent that betting markets use heat or pollution forecasts, prices may already incorporate any
randomness that is driven by a poor environment. If we instead define the favorite as the opponent with
the strictly better rank or higher z-score (aggregates over time), similar results obtain.

12



Fact 3 (Favorite still wins): Upsets, defined as the less favored player winning the
contest, or winning battle 1, do not become more likely as the environment deteriorates.

Table A.3 considers tennis points, which are a subunit of a tennis game.'® We similarly
find that the favorite wins a share of tennis points in the match—and in battle 1-—at least
as large in a poor environment compared with a mild one.

We also compared the proportion of uneven first and second battle outcomes, defined
as scores of 6-0 or 6-1 (tennis games), for matches that are played in varying environments.
Taking cutoffs of 29 °C and 100 ug/m?3, uneven first battles are as prevalent with heat or
pollution (0.193, N = 802) as under cool and clean air (0.196, N = 1880); the p-value of
an equality test is 0.86. In contrast, uneven second battles are more prevalent in heat or
pollution (0.241) than in a mild environment (0.211), with a p-value of 0.09. If we lower
the temperature cutoff to 27 °C to include more matches played in poor environments,
the prevalence of uneven first battles again does not vary with heat or pollution, yet
the p-value of an equality test of uneven second battle prevalence is now 0.006, namely
(0.247, N = 1064) with heat or pollution vs. (0.202, N = 1618) otherwise.

Withdrawals. Our analysis conditions on completed matches: 2722 of 2811 scheduled
matches, for a 97% completion rate. Due to large penalties, no-shows and retiring from
the court rarely happen in these high-profile contests; our sample includes 15 walkovers
and 74 retirements. A player needs a medical reason for either. Here we briefly examine
whether the environment affects this additional margin of labor supply. For Melbourne,
we find that temperatures were on average similar for the 27 scheduled but not completed
matches, compared to the 1624 completed matches in the sample: 26.2 against 26.1 °C,
respectively. For Beijing, PM2.5 was on average 33% higher for the 23 non-completed
matches compared to the 444 completed matches: 115 against 87 ug/m?, respectively.?’ In
all of 7 no-show cases in Beijing, the absentee had played in a preceding round, so she had
traveled to Beijing and was possibly injured. We conclude that an adverse environment,

and pollution in Beijing in particular, may reduce the likelihood that a scheduled match

19A tennis game can be won by winning at least 4 tennis points. For this analysis, we obtained total
tennis points won by each player in a match and in battle 1.

20The p-value of a one-sided test of equality is 0.08. For other Chinese venues, average PM2.5 for the
37 non-completed matches and the 614 completed matches were similar; respectively, 53 and 50 pg/m>.
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is completed, but this effect is of limited significance.
We also checked that the distribution of players’ WTA rank in Melbourne in hotter-
than-usual annual events (2006, 2009, and 2014) was similar to that in less hot events

(2004, 2011, and 2015).

4 Amplified momentum in a contest model

We develop a dynamic contest model that lends itself naturally to estimation. The model
offers a lens through which to interpret the reduced-form results. We set up a best-of-
three contest (a tennis match), and solve for the transition probabilities between battles
(tennis sets as stages of the contest) as a function of economic primitives. These primitives
include marginal effort cost and fixed cost parameters that, in the empirical model, shift

with observables such as ability, heat, and pollution.

4.1 Model setup

Two possibly asymmetric players, labeled h and [, face marginal costs c; > ¢; > 0 that are
constant over the range of effort z. The opponents engage in a contest in which up to three
battles are held sequentially. In each battle, players simultaneously choose effort z; > 0,
i € {l,h}, conditional on preceding battle outcomes. We model the contest technology
following Tullock (1980), specifying the battle-transition probabilities as
k

away) = i € i £ )
for the case max{x;,x;} > 0, where p; = p(x;, x;) is the probability that i wins a battle
given her effort choice and that of her opponent, and p(0,0) = 0.5 when both players choose
zero effort. Technology parameter k, 0 < £ < 1, measures the degree of randomness in the
winner selection process, reflecting the contest success function’s discriminatory power. A
smaller k£ corresponds to a noisier technology. In particular, as k approaches 0, relative

effort does not matter and the winner is effectively a random draw.?!

21The Tullock family of contest success functions is the most popular in the contest literature. Skaperdas
(1996) and Fu and Lu (2012), respectively, provide axiomatization and micro foundations for it. Following
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The player who wins at least two of the three battles wins the contest. The single
prize for winning the contest is V; (the subscript reflects a potentially asymmetric prize).
Consistent with the data, we implicitly assume a sufficiently large penalty for no-shows
such that players show up to play. We introduce a per-battle fixed cost, specifically an
environmental disutility parameter ¢ (hereafter disutility), which scales with environmen-
tal degradation and captures the disutility to a player from added exposure to adverse
environmental conditions. Much like the situation of spectators who do not exert player
effort but still suffer disutility from heat or pollution (which may induce lower attendance
at the arena), we assume ¢ enters player utility separately from effort cost; we formalize
this below.?? We further introduce an environmental effort cost factor A > 0 by which a
player’s constant marginal effort cost, Ac;, also scales with environmental degradation.

The environment enters the model both as a direct utility shifter and by shifting
marginal cost. Despite our model accommodating both channels, we learn that marginal
cost shifts do not affect players differentially and do not drive transition probabilities.
The environmental effort cost factor A thus cannot be identified from empirical winning
probabilities, which are at the heart of our design. In contrast, the first shifter, disutility
J, does shift transitions. To show that A “cancels out,” we keep it in the model. (A can
increase both in a poor environment and with the battle number, as players grow tired.)
With richer cost specifications in Appendix B, we show that even when a poor environment

makes the cost function more convex (less concave), it does not increase momentum.?

4.2 A one-shot game: The building block

We solve for the subgame perfect equilibrium by backward induction, so it is convenient

to consider a single battle. Let V; and V, denote continuation value to player i if she,

Klumpp and Polborn (2006) and Malueg and Yates (2010), we formulate cost to depend on the effort
chosen in each battle, not the cumulative effort, but we can allow the mapping from player ability to
marginal cost to vary by battle. The structural approach allows us to pool the estimation sample over the
entire range of asymmetry. We focus on pure-strategy subgame perfect Nash equilibria.

22Inspired by Gelder (2014), the environment entered an early version of the model by discounting
continuation value from future battles exposed to adverse conditions, not through an additive fixed cost.

ZWe specify player i’s effort cost in battle b as Ci(z:; A\, b) = apc; [(x; + 1) — 1], X > k. Cost is convex
(or, less naturally, concave) in effort, e.g., A = 2 (or A = 0.5). Marginal cost is apAci(x; + 1)* 7!, noting
that players growing tired from one battle to the next could be captured by az > a2 > a1 > 0.
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respectively, wins and loses the one-shot game, with win-loss prize spread AV; := V; — V..

Given her rival’s action z;, player i solves:

Nk . RY
arg max (xz) i + (a:])

(zi)"
i Vi—Aeiwi—6 = — o AVi+ V= heiwi =,
L L T R

()" + (x;)

where the terms of the expression account for the expected benefit of effort, the effort cost,
and the environmental disutility. At an interior solution, with AV; > 0, player i equates
marginal effort benefit with marginal effort cost:

(0)* ()"

[(i)* + (25)"]

SkAV; = Aci, i€ {l,h},j#1.

An isomorphic representation of the problem has player asymmetry entering the contest
success function directly, p; = (yiz:)*/[(vixi)* + (vj7;)F], with parameters v;,7; > 0
capturing players’ skill, and homogeneous marginal cost ¢;, c; normalized to 1. In this
representation, a unit of effort contributes more to a win, the more skilled the player.

Solving the system of best-response functions, and noting that c;z;/AV; = c;x;/AVj,

the optimal bidding strategies as a function of prize spreads (and other parameters) are

KAV (2R
ri(AV, AVy) = =2 — i je{l,h},i # ] (2)
T L (@ Rp)e

Multiplying both sides of (2) by Ac¢;, equilibrium effort cost Ac;x; does not depend on the
environmental factor A, as effort x is inversely proportional to A in equilibrium. For an
equal prize spread, this effort cost is equal across players.

The reduced-form winning probabilities are

1 . .,
1+(250)

Facing equal incentives, a lower relative marginal cost makes a player’s success more likely.
Figure 6 illustrates the best-response functions when players are symmetric, and when

they are not (whether heterogeneity enters through marginal cost or through the contest
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prize). In both symmetric and asymmetric cases, as her rival’s effort increases from zero,
a player’s optimal response is to increase her effort level. As the rival’s effort increases

beyond a threshold, the player responds by cutting back on effort.

4.3 Transition probabilities

Let binary variable x;; indicate the event in which battle b is won by player i, i.e., xp = 1
denotes her battle win and y;; = 0 denotes her loss. We use AVj,; = Vi — V4, to denote
player i’s win-loss prize spread in battle b. Note this is in general history-dependent.

In a final battle 3, played only when each previous battle was won by a different player
(i.e., x21 # Xx11), the winner takes the contest prize and the loser earns 0. Setting win-loss

spreads AVg; = V; and AVs, =V, in (3) yields battle-3 transition probabilities:

(cnV)*
Cth)k + (ChW)k ’

p3r = Pr(xz = 1|xu # xu) = ( p3n = Pr(x3 = 0|x2 # xu) = 1-p3.

In battle 2, a player’s winning probability is state-dependent. There are two states,
depending on whether battle 1 was won or lost by the low-cost player. Starting with a
history x1; = 1 (battle 1 was won by player 1), continuation values conditional on battle-2

outcomes are:

V2l|Xll:1 = V’ (4)

if xo; = 1 (contest ends 2-0)
KQ]’L|XU=1 = 07
Voijxy=1 = p3iVi — Az (Vi, Vi) — 6,

v (5)
Vonu=1 = P3uVh — Acpain (Vi, Vi) — 6.

if xo; = 0 (contest continues 1-1)

Having won battle 1, player I’s continuation values are (i) V2l\><u=1 =V, from winning
battle 2 and the contest, and (ii) Votu=1=paiVi— Az (.) — 0 from losing battle 2, which
means taking the contest to battle 3 and incurring further effort cost and environmental
exposure. Player h, having lost battle 1, faces continuation values V2h|X1l=1 z 0 and
Vonxu=1=0 from, respectively, winning and losing battle 2. When player h’s continuation
value from taking the contest to battle 3 is negative (Vghbm:l < 0), she can do better by

exerting 0 effort and securing a continuation value of 0: In this situation, player [ exerts an
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effort infinitesimally higher than 0 and wins the contest. Other than this corner solution,
we obtain actions by plugging battle-2 win-loss incentives AVy;)y,,—1 = VQ,L"XU:I ~Voia=1
into one-shot effort (2). Plugging these actions into technology (1) yields conditional
battle-2 transitions. Appendix A reports actions and transitions at all contest nodes.

Given the alternative history x1; = 0 (battle 1 was lost by player ), continuation values
conditional on battle-2 outcomes are expressed similarly to (4) and (5). For example,
player I’s continuation values are VQ”XUZO = psiVi— Az (Vy, Vi) — 6 from winning battle 2,
triggering further effort and exposure, and V), —o =0 otherwise.?* Again, for an interior
solution, using each player’s win-loss spread AVy;,,,—o in (2) yields optimal actions, and
battle-2 transitions conditional on history x1; = 0 follow from (1).

We pause to discuss how a degraded environment amplifies momentum in the model.
With only one player winning battle 1, in battle 2 players’ win-loss spreads are asymmetric
even when marginal cost and the contest prize are equal across players, i.e., ¢; = ¢ and
Vi = V. To see this, we derive battle-2 incentives for this symmetric player case. Start
by considering a possible battle 3. Using battle-3 win-loss spreads AVs; = V' in effort (2),
battle-3 effort cost is Acxz = kV/4 (and invariant to the environmental factor, as higher A
induces lower effort); moreover, each player’s winning probability is 0.5. Now move back
to battle 2. The player who won battle 1 faces continuation values from battle 2 of V' from
winning and V/2 — kV/4 — ¢ from losing, with a difference of (2+ k)V/4+ 4. By contrast,
the player who lost battle 1 faces continuation values from battle 2 of V/2—kV/4—¢ from
winning and 0 from losing, with a difference of (2 — k)V/4 — 4.

Two key points are immediate. First, even absent environmental shocks § = 0, the
battle-1 winner enjoys a larger spread and chooses higher effort in battle 2 relative to the
battle-1 loser (as k > 0). Such differential battle-2 incentives yield momentum. Second, as
environmental disutility é grows, the battle-1 winner’s win-loss spread in battle 2 increases
relative to that of her rival, amplifying momentum.

Back to the general asymmetric player case, we complete the derivation of transition

probabilities, to be taken to the data. Battle-1 transitions are obtained from continuation

21ike Vgh‘xllzl above, VQHXM:O can be negative, in which case player [ exerts 0 effort in battle 2 to
avoid a third battle. In contrast, a battle-1 winner’s win-loss spread in battle 2 is always positive.
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values conditional on battle-1 outcomes, plugging the associated win-loss spreads for each
player in (2) and the resulting effort in technology (1). For example, player [’s continuation
values in the event she, respectively, wins and loses battle 1 are a function of battle-2

conditional transitions, continuation values, effort cost, and environmental disutility:®
Vi =Pr(xa = lxu = 1)Vay,=1 + Pr(xa = Olxu = D)Vaop,,=1 — AaZapy,,=1 — 0, (6)

Vi =Pr(xa = 1xu = 0)Vyy,,—0 + Pr(xar = Olxu = 0)Vaoypp,,—0 — Aoy =0 — 0. (7)

For clarity, the first equation is player I’s continuation value from winning battle 1 (x1; =

1), leading her to a battle-2 win (xg; = 1) or loss (x2; = 0) with effort cost and disamenity.

4.4 Identification and illustration

Identification follows from the discussion above. Consistent with amplified momentum as
documented in the descriptive analysis, environmental quality shifts transition probabili-
ties via the per-battle environmental disutility parameter §. As § increases from 0, players
are exposed to a more degraded environment.

As in the one-shot game, one can show that in each subgame a player’s transition
probabilities, effort cost, and expected payoff in equilibrium do not depend on the en-
vironmental effort cost factor A\. Environmental degradation shifts the marginal cost of
effort A¢;, but this is offset by an inversely proportional response in effort x;(.). Because
A is not identified from the data, on implementation we set it to 1. Notice that environ-
mental parameters A and ¢ are similar in that, in principle, they function through their
impact on total costs (effort cost and fixed cost).

Randomness k in the winner-selection technology is identified from variation in tran-
sition probabilities, holding constant both environmental disutility and players’ relative
strength ¢;/cp,. We illustrate with symmetric contest prizes V; = V' = 1 (and subsequently
consider asymmetric prizes, e.g., reputation win-loss differentiated through player age).

Figure 7 illustrates transition probabilities as a function of the per-battle environmental

25The example is for an interior solution. In contrast, if VQHXH:O < 0, a battle-1 loss leads player [ to
exert O effort in battle 2, with a battle-1 continuation value from loss of V;; = —46.
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disutility parameter § when players are symmetric, and when there is moderate player
asymmetry ¢, = 2¢.25 As the environment deteriorates, momentum increases, with a
rising probability that the battle-1 winner also wins battle 2. Heat or pollution reduces
the probability that battle 2 is won by the player who lost battle 1, and thus the likelihood
that the contest transitions to a third battle falls, which is consistent with the descriptive
analysis. For comparison, in battles 1 and 3, each player has won an equal number
of battles (zero or one): Facing the same win-loss spread, equally able players respond
equally to the environment, and thus winning probabilities for these battles, of 0.5, do not
depend on the environment.

Figure A.1 plots overall contest winning probabilities for two degrees of randomness, for
k =1 in the top panels and for k = 0.7 (more randomness) in the bottom panels. Among
symmetric players (left panels), a contest winning probability of 0.5 does not depend on
the environment as, intuitively, this affects both players equally. With asymmetric players
(right panels), the difference in contest winning probabilities may widen slightly as ¢ grows.
This suggests that the likelihood of an upset changes little—perhaps falls slightly—as the

environment deteriorates, consistent with the descriptive analysis.?”

5 Dynamic contest model estimates

5.1 Empirical implementation

For each match n = 1,..., N, we observe alternative proxies for each opponent i’s relative
ability at the time of the match, a;,, based on betting odds, rank, or z-score, respectively,

odds;y,, rank;y,, or zscore;,. We specify marginal effort cost parametrically:

Cin = f(ain7 95 Ein)a (8)

26Subsequent model estimates indicate that stronger degrees of asymmetry, such as ¢, = 5¢;, are not
uncommon in the data (Figure A.6). In such cases, a poor environment still increases momentum but the
slope is flatter. Intuitively, even in the unlikely event that battle 1 is won by the weak player, her winning
battle 2 is unlikely and environmental degradation can provide little momentum.

2TPrediction markets may or may not capture this environment-induced change in overall winning odds.
In any case, the widening in favor of the more able player appears small. Figure A.2 plots player I’s contest
winning probability for asymmetry up to ¢, = 5¢;, as § varies. Figure A.3 shows the probability that a
contest lasts three battles, as opposed to two. Figure A.4 shows effort choices in battles 1 to 3.
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where 6 is a parameter to be estimated, and player-match shock €;, is a mean-zero normally

2

2, and invariant within

distributed error, i.i.d. over matches n and players ¢ with variance o
a match.?® Relying on parameter k, which already captures randomness in mapping effort
to success, our main empirical model sets o = 0. Marginal cost is, alternatively, given by

O(zscorein)  Note that z-scores are occasionally

Cin = (0ddsin)?, cin = (rank;,)?, or ¢ = €~
negative, for the few players below world average, which explains the variation in the
forms of specification. The constraint 6 > 0, which may be imposed during estimation,
implies that marginal cost increases in the odds or the rank and decreases in the z-score.
We find that different measures of player strength yield similar results.

We observe mean temperature, 7;,, and PM2.5, P,,, and make functional form assump-

tions relating ambient conditions to the per-battle environmental disutility parameter:

5% :g(Tnapna5T75P)7 (9)

where 07, dp are unrestricted parameters to be estimated, governing how disutility varies
in the respective temperature and PM2.5 excess (°C and pg/m?) relative to cutoffs T and
P:

dp = 00 + o7 In(1 + max(T,, — T, 0)) + dp In(1 + max((P, — P)/100,0)). (10)

The temperature and pollution cutoffs and the intercept &g are either specified or esti-
mated. In our data, we rarely observe matches played under both heat and pollution, for
example, no match was played at a temperature above 27 °C and PM2.5 above 150 g /m?

at the same time. Alternatively, we estimate models with dummy variables, such as

5n:50+5T1(Tn >I)+5P1(Pn >£) (11)

The vector of parameters to be estimated is then, at a minimum, ¥ = (k, 6,67, dp).
We can also impose the model constraint that 0 < k < 1. However, neither this constraint
on the technology parameter nor the constraint on the parameter that governs how ability

maps to marginal cost (6 > 0) turn out to bind during optimization. Our main model

28While €;,, and €jn can be correlated, transition probabilities shift with opponents’ relative strength.
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takes the match’s prize money as a proxy for Vj,, but note that this ignores a winner’s

continuation value from playing the next round and prestige as the series final approaches.

5.2 Likelihood function

For a guess of parameters ¥, we calculate the likelihood contribution for every match n in
the sample as follows. Compute ¢;n, = f(ain,0), cjn = f(ajn,0), and 6, = g(Ty, Py, 07,9p)
from (8) and (9), and use ¢, = min(cin, ¢jn) and cp,, = max(cin, ¢jn) to label the players
(weakly) low-cost and high-cost. Denote possible outcomes by ¢, = ab(c), where a, b,
and (for three-setters) c label the players who won battles 1, 2, and 3. A match has 6
mutually exclusive outcomes, ¢, € O := {1l,1hl,1hh, hll, hlh hh}. For example, facing
a relatively high-cost opponent ranked 40, a player ranked 20 wins battles 1 and 2, such
that the match outcome is 1, i.e., the low-cost player wins the match in two sets.
Model-predicted probabilities follow from the transition probabilities derived earlier.

For example, matches with outcomes 1l and 1hl contribute, respectively:

Pr(l|¥) = Pr(xy=1)Pr(xaa=1lxu=1),

Pr(lhl|¥) = Pr(xu=1)Pr(xai=0|xu=1)Pr(xs =1|xu# xa)-

Appendix A reports all expressions. Write match n’s likelihood contribution, conditional

(tn)

on parameters ¥, as [[, .o (Pr(, 1@ ) ) where indicator 1(c,) is 1 if outcome ¢, was

observed in match n and 0 otherwise. The likelihood across all matches is

Now we take logs, and our task is to find parameters ¥ that maximize the log likelihood.
To test robustness, we restrict the sample to matches in which the prize money is not too

high, to matches for which opponent asymmetry is low, and so on.
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5.3 Results

Table 5 shows that estimates are robust across alternative ability measures. Across
columns, the technology parameter k is stable at about 0.7, implying that effort yields a
win with some degree of randomness. Alternative 6 parameters imply that marginal cost
increases in the betting odds (inverse winning probability) and the WTA rank, and de-
creases in the WTA z-score. In the isomorphic representation, in which asymmetry shifts
technology, the degree to which a player converts effort into success decreases in the odds
and the rank, and increases in the the z-score.

With regard to the key economic primitives, we obtain that the environmental disutility
grows as ambient (i) temperature increases from 7' = 27 °C and (ii) PM2.5 increases
from P = 150 pg/m? (in this table we fix the poor environment cutoffs and set the
intercept 0y = 0). Parameters 7, Jp are estimated to be significant both statistically and
economically. Across columns, the fixed cost per battle grows by o1 =$120 to $150 as the
temperature shifts from 27 to 27 + e — 1 ~ 28.7 °C. The coefficient is multiplied by 1000
because the match’s prize money—the proxy for the contest prize here—is expressed in
thousands of dollars, per Table 1. Euler’s number e follows from the natural logarithm
in (10);2? this logarithmic form implies that over the range of temperature variation, to a
sample maximum of 44 °C, impacts grow at a diminishing rate. The concavity may stem
from heat relief technologies being adopted as conditions deteriorate, like ice misters when
players switch sides on the court after every odd tennis game.30 Thus the disutility grows
by twice as much, 267 =$250 — 300, for a temperature shift from 27 to 27 +e? — 1 ~ 33.4
°C, and by 367 =$370 — 450 for a shift from 27 to 46 °C.

To read the coefficient on pollution, the per-battle disutility grows by 6p =$1100 to
$1400 for a large PM2.5 shift from 150 to (1.5 + e — 1) x 100 ~ 322 ug/m3. The disutility
grows by half as much, 0.56p =$570 — 700, for a still sizable PM2.5 shift from 150 to
(1.5 + €%® — 1) x 100 ~ 215 pg/m3.

29That is, for a shift in the temperature covariate in (10) from In(1+27—27) = 0 to In(1+27+e—1-27) =
1.

30WsJ (2014) may help interpret: “Tennis is, of course, not a terrible sport to play in the heat. There
are no helmets or protective pads. There are plenty of stops and starts. Players can rest in the shade
between games with ice-filled towels. They can take bathroom breaks and call for medical timeouts.”
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Taking betting odds to measure ability, Table 6 further reports on robustness. Column
1 allows the technology parameter to vary by battle k, b € {1,2,3}, with point estimates
of 0.67, 0.67 and 0.67, indicating that the contest success function’s discriminatory power
is similar during the course of a match. Column 2 allows for battle-specific marginal cost
parameters 65, b € {1,2,3}, with point estimates of 0.87, 0.85, and 0.88, suggesting that
the mapping from ability to marginal cost varies little within a match. The estimated
environmental disamenities hardly change. In column 3, slopes d7,dp remain significant
when the fixed cost intercept ¢ is estimated, at $56, and statistically insignificantly dif-
ferent than zero. This suggests that setting dp = 0 in our preferred specification (Table 5,
column 1) is not too restrictive. In column 4, we estimate (rather than specify) the poor
environment cutoffs subject to the constraints 25 < 7' < 35 °C and 100 < P < 300 ,ug/m?’.
With estimated cutoffs of T ~ 26.1 °C and P ~ 220 pg/m?, the heat slope is slightly lower
and the pollution slope is higher. With technology and environment interacting in column
5, randomness falls (k increases) as the environment worsens, but not significantly so.

Model predictions. Figure 8 further interprets our preferred estimates, providing a
welfare analysis that underscores one strength of structural work. The figure illustrates a
match with prize money at the sample median, $15,100 (we later illustrate for a lower-prize
match). For a given environment, the vertical intercept in panel (a) shows the increase
in likelihood that a player wins battle 2 after winning vs. losing battle 1 against an
equally able player. Compared to a “threshold” environment, this momentum (likelihood
increase) grows by 3 percentage points when the temperature shifts from 27 to 37 °C and
by 8 percentage points when PM2.5 shifts from 150 to 250 ug/m?3.3! The panels report on
cases of increased asymmetry along the horizontal axis. In panel (b), the probability of a
tighter three-battle contest against an equally able player falls by up to 4 percentage points
in the illustrated poor environments compared with a threshold one—again, compare the
vertical intercepts. In panel (c¢), environmental degradation slightly reduces the likelihood
of an upset. Reassuringly, the stronger player’s model-predicted winning probability rises

linearly with the betting-market winning probability difference. The expected utility loss

31'Momentum is calculated as Pr (x2: = 1|x1 = 1)—Pr (x2: = 1 |x1: = 0) (equivalent if we write h instead
of [ in the subscript, because one player’s win is the other player’s loss).
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from heat and pollution at the outset of a contest is shown in panels (d) and (e) for strong
and weak players, respectively. In a symmetric contest, raising temperature from 27 to 37
°C reduces a player’s expected payoff, net of her effort cost, by $670; raising PM2.5 from
150 to 250 ug/m3 reduces a player’s expected payoff by $1800.

These model estimates inform the continuation values to a player from winning relative
to losing the first battle (calculated from (6) and (7)) and, importantly, how this value
difference—the value of a head start—grows as the environment worsens. At 27 °C and
150 pg/m?3, in a symmetric contest with median prize ($15,100), this differential value
from winning vs. losing battle 1 is $9610 — $1150 = $8470. At 37 °C (and 150 pg/m?),
the differential value from winning battle 1 is $130 higher (i.e., $8600). At 250 ug/m?
(and 27 °C), the differential value from winning battle 1 is $370 higher (i.e., $8840) than
at 150 pg/m3.

Figure 9 is similar to Figure 8 except that it illustrates a lower-prize match, at the
25th-percentile prize money of $8700. Comparing panels (a) and (b) across the two figures,
environmental degradation amplifies momentum and reduces three-setter occurrences to
a greater degree when the contest prize is lower.??

Figure A.5 is similar to Figure 9 in illustrating a lower-prize match except that it
takes WTA rank to measure ability. As stated earlier, environmental impacts are similar
across alternative ability measures. Figure A.6 shows how alternative ability measures
in the data map onto estimated marginal cost. Fitted marginal cost ranges from 1 to
as high as 30, depending on the measure and parametric form; see the left panels. The
right panels of Figure A.6 compare the low-cost player’s winning probability advantage
predicted by betting markets to that predicted by the empirical model.3®> When the ability
measure is based on betting odds, model predictions line up fairly well with betting-market
predictions. In fact, panel (b) suggests that the model predicts a somewhat better chance
for the strong player in poor environments compared with betting-market predictions.

On the possibility of negative expected payoffs at the start of a match (e.g., Fig-

32Figure 9 shows that compared to a threshold environment, momentum increases by 5 percentage points
when the temperature shifts from 27 to 37 °C and by 14 percentage points when PM2.5 shifts from 150
to 250 pg/m®. The environmental impact is larger as we further reduce the prize money.

33The model’s prediction for a player-l win advantage is computed as Pr(1lUlhlUh1l)—Pr(hhUhlhUlhh).
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ure 9(e)), notice that harsh penalties for no-shows—such as cancelled sponsorship con-
tracts or angry fans, to be added to these payoffs—would induce (weaker) players to show
up to play. Our model specifies environmental disutility for every battle played. We as-
sume that § is incurred also for battle-2 corner solutions in which a player chooses minimal
exertion yet has to remain in court in battle 2 after losing battle 1.34

Age heterogeneity. Table 7 illustrates how our framework is amenable to the analysis
of player heterogeneity. We allow environmental disutility (10) to shift by age, specifically,
the coefficient on the heat covariate In(1+max(7;, —T,0)) is now &7 + 02 if a player’s age
on match day exceeds the 75th percentile of the player-by-match distribution (27.2 years),
and remains d7 otherwise. Superscipt S denotes such senior (or seasoned) professionals.
Similarly, the coefficient on the pollution covariate is dp + 5;@ if a player is in the upper
quartile of the age distribution and ép otherwise. The top panel suggests that for senior
players the disutility (i) from heat is 40-60% higher (e.g., 0.053+0.118 vs. 0.118, in column
1) and (ii) from pollution 10-30% higher relative to the rest of the players. While positive,
the seniority differential for the pollution disamenity is not statistically significant.

Possible interpretations for such age heterogeneity are that players in the upper quartile
of the age distribution (i) are not as young, e.g., the sample includes players aged 15
years, and (ii) they are wealthier—the oldest players are aged 44 and the data show that
professionals who are active in this labor market over longer careers tend to be better
ranked. The bottom panel of Table 7 goes one step further and scales the contest prize
Vin by a factor p if a player’s age is in the upper quartile, i.e., pV;,, and V;, otherwise
(as in Table 5, with the match prize money as a proxy). With parameter p estimated at
0.95-0.99 across ability measures, there is suggestive evidence that senior players slightly
discount winning relative to younger athletes; for example, with a longer career ahead
and thus reputation gains adding to the cash prize, a young battle-1 loser may still fight

on.?® Importantly, the complementarity between momentum and adverse environmental

31 An alternative model can specify & only for the third (identifying) battle. Through their battle-2 effort,
players can influence the likelihood that battle 3 is avoided, without angering their fan base too much.
Specifying ¢ as a fixed entry cost only in battle 3 would not change equilibrium behavior or estimated
parameters relative to our model, but it would raise expected payoffs (because § is incurred at most once).

35Consider a senior player i, with a short career left, facing a median rival j as driving a wedge V; < Vj.
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conditions is stable (compare ST and & p to that in Table 5), as is its interaction with
player seniority (compare Table 7’s top and bottom panels).

Sample composition. Table 8 analyzes sensitivity to the likelihood function and to
sample composition. In column 1, we use only observed vs. predicted battle-2 transitions
to pin down the model parameters, i.e., alternative criterion function (17) in the appendix
instead of all transitions in (12). In principle, the win-loss spread V' to a match winner
should incorporate value from moving closer to the WTA series final and the associated
fame and sponsorship benefits. Thus column 2 drops quarterfinal, semifinal, and final
matches from the estimation sample. Estimates change little. Similarly, column 3 drops
matches with prize money higher than the 75th percentile ($25,896), to control for possibly
different behavior in such matches. Column 4 shows that estimates are also robust to
dropping Australian Open matches (a Grand Slam series), in a sample comprising only
Chinese venues. Column 5 restricts the sample to 700 matches in which the ex-ante
winning probability difference is at most 30%, obtaining a smaller k (more randomness in
this sample) and a larger 07 and dp (and the estimated standard error on dp is large).3

Dummy variables. Table A.5 considers a dummy-variable specification for environ-
mental disutility, i.e., (11). Column 1 shows that the per-battle fixed cost increases by (i)
$190 at temperatures above 27 °C and (ii) $670 at PM2.5 levels above 150 ug/m®. Rel-
ative to column 1, column 2 additionally estimates the per-battle fixed cost intercept dy
at a statistically insignificant $30; and column 3 additionally estimates poor environment
cutoffs at 7' ~ 26.9 °C and P ~ 210 pg/m3. Column 4 specifies finer environment bins.
Estimates of heat stress are similar for 7;, > 29 °C compared to T, € (27,29]; estimates
of PM2.5 stress grow for P, > 200 pug/m? compared to P, € (100, 200].

Subsequent matches in a series. The extent to which winning a match enhances
player value through prestige and by attracting sponsors is unobservable. But on imple-
menting the model one can increase the contest prize V;, to include, on top of the match’s

prize money, value from subsequent rounds within the WTA series. Such a model variant

36To capture “unforseen reasons, [by which] one player simply turned out to be better on match day”
(Malueg and Yates, 2010), we restricted the column 5 sample to 320 matches with tight battle-1 outcomes
comprising at least 10 tennis games (i.e., 6-4, 7-5, 7-6). We obtain even larger o7 and dp.
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would plausibly assume that players are forward-looking and internalize the effect of cur-
rent match effort on playing in a subsequent round. There are different ways to model a
player’s expectations regarding future matches’ opponent abilities and environments. To
simplify, and because our findings are unlikely to qualitatively change, the implementa-
tion that follows assumes that going forward a player expects to meet opponents of similar
caliber (reasonable on average) in mild environments (the modal environment).

Using Table 5 estimates and for every series (venue-year), we begin by computing the
expected payoff to participating in the final contest, for which there are no subsequent

37T We add the final’s expected payoff to the semifinal’s prize money to obtain

contests.
a new measure of the semifinal’s contest prize, and use this measure to calculate the
semifinal’s expected effort cost and thus expected payoff. We backward induct and consider
the perspective of a player choosing effort in the quarterfinal, for whom the contest prize is
the quarterfinal’s prize money plus continuation value from reaching the semifinal (which
itself subsumes the chance of reaching the final). We proceed recursively to the series’
first round of contests.

Equipped with a contest prize vector V that now includes a winner’s continuation
value from participating in a series’ subsequent rounds, we supply V;,—along with ability
ain, environmental conditions 7T),, P,, and match outcomes ¢,—to criterion function (12).
We obtain a new parameter vector. We iterate until the parameter vector converges.

In this “matches ahead” implementation of V', Table 9 reports that the fixed cost per
battle increases (i) by b1 =$260 as temperature shifts from 27 to 27 + e — 1 ~ 28.7 °C,
and (ii) by dp =$3490 for a large PM2.5 shift from 150 to (1.54e—1) x 100 ~ 322 ug/m?.
These estimates are about double what we obtained with match prize money as a proxy
for V', which ignores continuation value (Table 5). The intuition, as we discuss next, is
that the valuation of behavior underlying the amplified momentum in the data is larger

when we consider that more is at stake than match day’s cash reward alone (Figure A.7).

37This is the winning probability times the final’s prize money less the expected cost. For a symmetric
match played in a mild environment, the only parameter estimate this relies on is k.
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6 Discussion

We find that heat and pollution affects elite workers’ willingness to compete over the
successive battles that determine a contest winner. In our setting, a battle (tennis set)
lasts on average just under one hour, played over more than 9 tennis games and 60 tennis
points, with each tennis point consisting of a sequence of back and forth shots between
players until a miss ends the rally. A quick battle can be over in 20 minutes, yet long
battles can extend over 90 minutes, in particular third battles in Grand Slam matches.
Adverse environmental shocks amplify the discouragement effect.

Given a good measure of the award enjoyed by the contest winner, we show that how
players differentially respond after winning vs. losing the first battle, in bad vs. good
environments, reveals their fixed entry cost into an optional third battle. We interpret
this entry cost as informative of contestants’ preferences over environmental amenities.

In our setting, we specify two alternative measures of the contest prize. The first
measure of V' considers the contest’s prize money alone. In a contest between equally able
athletes, raising temperature from 27 to 37 °C reduces a player’s expected payoff, net of
her effort cost, by $670; raising PM2.5 from 150 to 250 ug/m? reduces a player’s expected
payoff by $1800. The second measure of V adds, to a match’s prize money, value from
playing a subsequent match in the series. Because the second measure of V is larger, the
amplified momentum we observe in the data is rationalized through a higher fixed cost.

One limitation of our structural estimates is that more comprehensive measures of V'
than those we implemented would include the impact of a match win on a player’s state
of fame (e.g., become a celebrity), sponsorship prospects (attract a major sports brand),
and WTA ranking points (qualify as a seed player in a subsequent series). We leave the
implementation of such continuation value, within a more general dynamic model than
ours, to future research. Such work can assess how V' interacts with players’ heterogeneous
ability to sustain wins all the way to a series final.®

Specific to our setting, we note that these young players are among the world’s top

38 As noted previously, betting odds, on which we base our preferred measure of opponents’ relative
ability, may partly capture differential motivation and fitness.
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athletes, typically in top physical (and mental) form. They enjoy high earning potential
over short and intense professional careers. They hire professional managers to advise
them on competitive strategy. They invest substantial monetary and nonmonetary effort
to stay healthy and fit. In analogy to preferences for environmental amenities estimated
here, it is conceivable that to reduce fatigue these players are willing to pay thousands of
dollars to fly in a business-class cabin, as they move from one WTA series to the next.

With Australian Open revenues nearing half a billion dollars per series, it is clear that
the types of markets examined here create substantial welfare to the economic agents in-
volved, including spectators, advertisers, suppliers, and organizers. Faced with a warming
climate and growing popularity of venues subject to poor ambient air,>® adapting con-
test design through widespread use of retractable roofs and air conditioning may result
in a greater proportion of contests reaching three battles. Our model estimates show,
for a median cash prize, that three-setters when played between equally able rivals in
a degraded environment are as (un)likely as when asymmetric players—with pre-match
winning probability differences of 30-50%—meet in a climate-controlled environment (e.g.,
Figure 8(b)). In principle, with sufficient data, reduced-form work can deliver such find-
ings. Our structural estimates enable other counterfactual analyses. For the high-income
players themselves, a demographic group for which there is limited empirical evidence, the
individual disutility from heat and pollution exposure can run in the order of hundreds
to thousands of dollars per hour. Such numbers can be interpreted as a statement about
how difficult it is to compete at a high level as the environment deteriorates.

Future work with a continued emphasis in this specific setting can construct a player-
level panel over many years and venues to examine individual heterogeneity in the distaste
for, and adaptation to, adverse environmental shocks. For example, does heat disutility
07,4 vary across home region, gender, skill level, and tenure of players ¢ over time ¢?

Multi-battle contests are ubiquitous in the economy, with settings as diverse as labor,
innovation, advertising, politics, foreign relations, and litigation. We believe that the

willingness to win early, to avoid the fixed cost of participating in a protracted competition

39China in particular and the routinely polluted urban developing world in general (Marlier et al., 2016)
offer a growing fan base. Poor air quality may also result from wildfires in the (warming) rich world.
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and instead redeploy resources to outside opportunities, has broad appeal. For example,
rising licensing costs for existing patents from other inventors may induce innovators who
fall behind in a patent race to throw in the towel. A tightening high-skill labor market may
raise the opportunity cost of a protracted internal promotion, inducing key managers who
fall behind to reduce effort relative to peers who get ahead, compromising the screening
procedure and the organization’s overall effort supply.

Beyond professional sport and environmental valuation, our empirical framework can
be used to study alternative theories of behavior? and individual heterogeneity in dynamic
competitions, e.g., gender differences (Mago et al., 2013; Gauriot and Page, 2018; Gill and
Prowse, 2014; Gonzalez-Diaz and Palacios-Huerta, 2016; Jetter and Walker, 2015; Cohen-
Zada et al., 2017). In particular, models such as the one we estimate have the potential to
test the relative strengths of economic incentives vs. psychological factors at explaining
empirically observed momentum, in addition to uncovering economic primitives of interest,

such as preferences, opportunity costs, and technological parameters.
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Table 5: Contest model estimates: Continuous measures of heat and pollution

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score
(1) (2) (3)
k, randomness in winner selection 0.668 0.720 0.734
(0.026) (0.024) (0.025)
0, ability to marginal cost mapping 0.869 0.485 0.189
(0.063) (0.035) (0.015)
Environmental disutility parameters:
dr, coefficient on In(1 + max(7,, — T,0)) 0.123 0.136 0.149
(0.026) (0.025) (0.032)
dp, coefficient on In(1 + max((P, — P)/100,0)) 1.136 1.402 1.336
(0.070) (0.068) (0.072)
Number of parameters 4 4 4
Observations 2157 2670 2670
Median contest prize V' ($ x 1000) 18.300 15.092 15.092
Log likelihood -2897 -3700 -3735

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment series held in Australia or China over the entire range of opponent asymmetry. A match’s
likelihood contribution is defined using all possible transitions. Marginal cost is alternatively
modeled as ¢in, = (oddsm)g in column 1, ¢;p = (rankm)e in column 2, and ¢;p, = e~ 0(zscorein)
in column 3 (and missing odds prior to 2008 explain column 1’s smaller sample). The inter-
cept to per-battle disutility dp is set to $0, and temperature and PM2.5 pollution cutoffs T
and P are set to 27 °C and 150 pg/m?®. The contest prize Vi, is proxied by the match’s prize
money; the table reports the median in the given estimation sample. Solver Knitro using the
interior-point algorithm, constraints 0 < £ < 1 and 6 > 0, and initial values for £ = 1 and
0 = 6r = 6p = 0. Estimates are robust to specifying Matlab’s unconstrained fminsearch solver
and other initial values. Standard errors, in parentheses, are obtained from the Hessian estimate
of the asymptotic covariance matrix.

41



Table 6: Contest model estimates: Robustness checks

Robustness check: Random. MC Estimate, Estimate, Random.
parameter parameter  not fix, not fix, shift w/
by battle by battle oo T& P environ.

(1) (2) (3) (4) (5)

Battle-1 randomness ki, battle-invariant k as 0.674 0.669 0.655 0.667 0.662

in main model, or random. intercept kg (0.053) (0.030) (0.024) (0.027) (0.029)
Battle-2 randomness ko 0.668
(0.055)
Battle-3 randomness k3 0.666
(0.053)
Randomness coefficient k7 on heat covariate 0.006
In(1 + max(T,, — T,0)) (0.018)
Randomness coeff. kp on pollution covariate 0.091
In(1 + max((P, — P)/100,0)) (0.059)
Battle-1 ability-to-marginal-cost 61, or 0.865 0.874 0.888 0.871 0.871
battle-invariant 6 as in main model (0.069) (0.106) (0.055) (0.066) (0.067)
Battle-2 ability-to-marginal-cost 62 0.854
(0.111)
Battle-3 ability-to-marginal-cost 63 0.875
(0.084)
Environmental disutility parameters:
or, coefficient on the heat covariate 0.125 0.122 0.090 0.112 0.121
In(1 + max(7,, — T,0)) (0.030) (0.029) (0.035) (0.021) (0.030)
dp, coefficient on the pollution covariate 1.140 1.133 1.090 1.901 1.024
In(1 + max((P, — P)/100,0)) (0.072) (0.071) (0.069) (1.855) (0.092)
dg, per-battle disutility intercept, or set to 0 0.056
(0.043)
T, temperature cutoff (°C), or set to 27 26.110
(0.147)
P, pollution cutoff (ug/m?), or set to 150 220.000
(18.255)

Number of parameters 6 6 5 6 6

Observations 2157 2157 2157 2157 2157

Log likelihood -2897 -2897 -2897 -2897 -2897

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-

nament series held in Australia or China. A match’s likelihood contribution is defined using
all possible transitions. Marginal cost is modeled as ¢;, = (oddsm)o. Column 1 allows the
randomness parameter to vary by battle b € {1,2,3}. Column 2 allows the mapping from
player ability to marginal cost to vary by battle b € {1,2,3}. The intercept to per-battle disu-
tility do is set to $0, except in column 3 where this intercept is estimated. Except in column
4, the poor environment cutoffs are set to 27 °C and 150 pg/m?; column 4 estimates these
cutoffs imposing the constraints 25 < T < 35 °C and 100 < P < 300 ,ug/m?’. Column 5 al-
lows the winner-selection technology to shift with heat and pollution, specifying randomness as
kn = ko + k7 In(1 + max(T,, — T,0)) + kp In(1 + max((P, — P)/100,0)). The contest prize Vi,
is proxied by the match’s prize money. Solver Knitro using the interior-point algorithm, with
initial values for all parameters set to 0 except for k = 1 (k = 1 in column 1 and intercept ko = 1
in column 5) and for T = 25 °C and P = 100 pg/m?® in column 4. Randomness parameters
(including &, Vn in column 5) are constrained to lie between 0 and 1. Marginal cost parameters
are constrained to be positive. Standard errors, in parentheses, are obtained from the Hessian
estimate of the asymptotic covariance matrix.
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Table 7: Contest model estimates: Age heterogeneity (player age in the upper quartile)

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score
(1) (2) 3)
k, randomness in winner selection 0.665 0.717 0.730
(0.022) (0.023) (0.025)
0, ability to marginal cost mapping 0.873 0.488 0.191
(0.053) (0.034) (0.015)
Environmental disutility parameters (w/ heterog.):
o7, coefficient on the heat covariate 0.118 0.133 0.143
In(1 4+ max(T,, — T,0)) (0.025) (0.025) (0.030)
62, coeff on: 1(age > 27.2 y) x heat covariate 0.053 0.066 0.081
(add to dp, for senior players only) (0.038) (0.039) (0.045)
dp, coefficient on the pollution covariate 1.139 1.405 1.379
In(1 + max((P, — P)/100,0)) (0.070) (0.069) (0.797)
5%, coeff on: 1(age > 27.2 y) x pollution covariate 0.264 0.455 0.110
(add to dp, for senior players only) (1.402) (2.253) (2.687)
Number of parameters 6 6 6
Log likelihood -2897 -3699 -3735
(4) (%) (6)
k, randomness in winner selection 0.665 0.717 0.730
(0.023) (0.022) (0.024)
0, ability to marginal cost mapping 0.874 0.491 0.192
(0.054) (0.032) (0.015)
Contest prize: Heterogeneity factor:
p, parameter on the contest prize if 1(age > 27.2 y) 0.989 0.951 0.971
(otherwise equal to 1) (0.034) (0.034) (0.034)
Environmental disutility parameters (w/ heterog.):
o1, coefficient on the heat covariate 0.120 0.139 0.145
In(1 + max(T,, — T,0)) (0.026) (0.021) (0.028)
62, coeff on: 1(age > 27.2'y) x heat covariate 0.049 0.044 0.069
(add to 7, for senior players only) (0.039) (0.033) (0.041)
dp, coefficient on the pollution covariate 1.146 1.444 1.362
In(1 + max((P, — P)/100,0)) (0.070) (0.072) (0.071)
53, coeff on: 1(age > 27.2 y) x pollution covariate 0.208 0.245 -0.026
(add to dp, for senior players only) (1.221) (2.375) (2.557)
Number of parameters 7 7 7
Log likelihood -2897 -3699 -3734
Observations 2157 2670 2670

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. Compared with the specification for environmental
disutility in Table 5, i.e., (10), here we add an indicator for a player’s age greater than 27.2
years (the 75th percentile in the player-by-match distribution of age) interacted with each of
the two environmental covariates. The intercept to per-battle disutility dop is set to $0, and
temperature and PM2.5 pollution cutoffs T and P are set to 27 °C and 150 ug/m?. In the top
panel, the contest prize Vi, is proxied by the match’s prize money. In the bottom panel, V;,, is
the match’s prize money scaled by a factor p if a player is aged over 27.2 years, and the prize
money otherwise. A match’s likelihood contribution is defined using all possible transitions.
Marginal cost is alternatively modeled as c¢;n, = (oddsm)g in columns 1 & 4, ¢in = (rankm)g in
columns 2 & 5, and ¢;, = e~ ?(=scorein) i columns 3 & 6. Solver Knitro using the interior-point
algorithm, constraints 0 < £ < 1,0 > 0, and 0 < p < 2, and initial values for k = p = 1 and
0 =67 =68 =6p =dp = 0. (Superscript S denotes a “senior” player.) Standard errors, in
parentheses, are obtained from the Hessian estimate of the asymptotic covariance matrix.
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Table 8: Contest model estimates: Sample composition

Estimation sample: Only Drop Drop > 75 Only Restrict
battle-2  quarterfinal percentile matches asymmetry to
transitions to final prize in win. prob.

in match matches matches China diff. < 30%

() (2) 3) (4) ()

k, randomness in winner selection 0.669 0.662 0.675 0.686 0.588
(0.029) (0.027) (0.029) (0.032) (0.163)
6, ability to marginal cost mapping 0.854 0.874 0.830 0.836 0.966
(0.077) (0.065) (0.067) (0.075) (0.334)
Environmental disutility parameters:
dp, coeff. on In(1 + max(7,, — T,0)) 0.123 0.125 0.125 0.122 0.294
(0.029) (0.026) (0.027) (0.025) (0.099)
dp, coeff. on In(1 + max((P, — P)/100,0)) 2.049 1.142 1.137 1.120 1.490
(0.187) (0.069) (0.071) (0.074) (1.427)
Number of parameters 4 4 4 4 4
Observations 2157 1912 1578 1048 700
Median contest prize V ($ x 1000) 18.300 14.066 11.106 9.083 12.917
Log likelihood -1204 -2556 -2128 -1446 -1121

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. Marginal cost is modeled as c¢i, = (oddsm)g. Compared with
the estimation sample in Table 5(1): Column 1 defines a match’s likelihood contribution using
only battle-2 transitions. Column 2 drops round 4 (quarterfinal) to round 1 (series final) matches
from the sample. Column 3 drops matches with prize money higher than the 75th percentile
($25,896) from the sample. Column 4 drops Australian Open matches, with the estimation
sample comprising only Chinese venues. Column 5 restricts the sample to matches in which
the two opponents’ absolute difference in winning probability is at most 30%. The intercept to
per-battle disutility o is set to $0, and the poor environment cutoffs T and P are set to 27 °C
and 150 pg/m?®. The contest prize V;, is proxied by the match’s prize money; the table reports
the median in the given estimation sample. Solver Knitro using the interior-point algorithm,
constraints 0 < k£ < 1 and 6 > 0, and initial values for k = 1 and 0 = dr = dp = 0. Standard
errors, in parentheses, are obtained from the Hessian estimate of the asymptotic covariance
matrix.
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Table 9: Contest model estimates: Augmenting V;, with continuation value from subse-
quent matches in a series

(1)

k, randomness in winner selection 0.667
(0.027)
6, ability to marginal cost mapping 0.870
(0.065)
Environmental disutility parameters:
o7, coefficient on In(1 + max(7,, — T,0)) 0.256
(0.058)
dp, coefficient on In(1 4+ max((FP, — P)/100,0)) 3.490
(0.102)
Number of parameters 4
Observations 2157
Median contest prize V' prize money & some continuation value ($ x 1000) 32.857
Log likelihood -2898

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. A match’s likelihood contribution is defined using all
possible transitions. Marginal cost is modeled as c;n, = (oddsm)e. The intercept to per-battle
disutility ¢ is set to $0, and temperature and PM2.5 pollution cutoffs T" and P are set to 27
°C and 150 pg/mg. The contest prize Vi, is proxied by the match’s prize money augmented
with continuation value from remaining in the series and competing in at least one subsequent
match, which the contest winner is entitled to (the loser is eliminated from the series). See
the text on players’ expectations of future conditions of play and the recursive procedure that
yields continuation value at each round in a series for every vector of parameters W. For every
iteration on ¥, we compute the associated augmented contest prize vector V and re-estimate
the contest model. We iterate until ¥ converges: adopting the sup norm with a tolerance of
.0001, this happens after 108 iterations, with ¥ changing little from the second iteration on
after adding continuation value to prize money in V. Solver Knitro using the interior-point
algorithm, constraints 0 < k£ < 1 and 6 > 0, and initial values for k =1 and 0 = 7 = ép =0
(at each iteration of estimation). Standard errors, in parentheses, are obtained from the Hessian
estimate of the asymptotic covariance matrix.
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Figure 1: [Data] Distribution of ambient temperature and PM2.5 over matches: Aus-
tralian Open (Melbourne, summer 2004-2016), China Open (Beijing, fall 2008-2016), and
other WTA series in China (Guangzhou, Hong Kong, Shenzhen, Tianjin, Wuhan, 2011-
2016). An observation is a match. We take mean environmental conditions, recorded at
sites close to the venues, over the three 1-hour periods that encompass the hour in which
the match started and the two subsequent hours, e.g., 2:00 pm to 4:59 pm for a match
that started at 2:23 pm. In the right panels, the vertical lines mark the US annual and
24-hour primary PM2.5 standards; for readability, we do not show PM2.5 up to the sample
maximum of 520 pg/m? (Table 1). Sources: Victoria EPA, US Department of State, Hong
Kong EPD, Chinese Ministry of EP, NASA.
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Figure 2: [Data] Distribution of WTA rank (log scale) and WTA z-score over player
by match observations: Australian Open (Melbourne, summer 2004-2016), China Open
(Beijing, fall 2008-2016), other WTA series in China (Guangzhou, Hong Kong, Shenzhen,
Tianjin, Wuhan, 2011-2016). The top-ranked player worldwide has rank 1. Due to shifts
in the worldwide distribution of points across players over time, for each player by match
in the sample we compute a time-adjusted world z-score: From her observed points we
subtract the mean points over all worldwide WTA players at the time the match was
played, and divide by the standard deviation of points over all worldwide WTA players
at the time. Most players are well above world average. Source: flashscore.com, tennis-
data.co.uk. A7
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Figure 3: [Data] Distribution of paired opponents’ relative strength over matches in our
sample: Absolute difference in the two players’ (a) winning probabilities implied from pre-
b) WTA rank (log scale), and (¢) WTA z-scores. An observation
is a match, comprising two opponents. Source: flashscore.com, tennis-data.co.uk.
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Figure 4: [Data] Proportion of matches won by the stronger player against the degree
of opponent asymmetry, as measured alternatively by the absolute difference in the two
players’ pre-match winning probabilities, ranks, or z-scores. For each measure, we group
matches in 10 bins of equal width, with the first bin starting at the minimum difference
and the last bin ending at the 95th percentile of the distribution of the respective difference
over asymmetric matches (otherwise the stronger player is undefined). Bins are labeled at
the midpoint difference. The right panels consider only matches played in temperatures
above 27 °C or PM2.5 above 100 pg/m?, i.e., about two-fifths of the matches considered

in the left panels.
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Figure 5: [Data] Environmental quality and momentum. Among fairly symmetric players,
the proportion of matches lasting three sets (rather than two) drops sharply when either
temperature or PM2.5 exceeds its respective cutoff, marked by the red circles, compared
to when both conditions are milder, marked by the green squares. Across the panels, we
vary the cutoffs: (a) 27 °C or 100 ug/m3, (b) 27 °C or 200 ug/m?, (c) 29 °C or 100 ug/m3,
and (d) 29 °C or 200 pg/m3. We group matches in 10 bins, the first bin for matches with
equal odds, and nine other bins of same width labeled at the midpoint difference, up to
the maximum winning probability difference in the sample.
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Figure 6: [Model] Best-response functions in a single battle: Two examples. Left panel:
The symmetric player case, ¢, = ¢; (homogeneous marginal cost) and AV, = AV, =V
(symmetric win-loss prize spread). Right panel: The asymmetric player case, ¢, = 2¢
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Figure 7: [Model] Battle transition probabilities, as a function of the per-battle en-
vironmental disutility parameter §. In the model, a higher § captures a more adverse
environment, i.e., a stronger dose of heat or pollution. Left panel: Players are symmetric,
cp, = ¢;. Right panel: Players are asymmetric, ¢, = 2¢;. We illustrate with technology
k =1 (low randomness), symmetric contest prizes V;, =V, =V =1, and A¢, = 0.5V
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Figure 8: [Model estimates: Odds-based ability measure, median prize| Model
predictions against the degree of opponent asymmetry evaluated at the median cash prize
in the sample ($15,092; N = 2811 matches). Model according to Table 5, column 1,
with player strength based on betting odds, ¢, = (oddsiy,)?

state-induced change in battle-2 success rate shown in panel (a).
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Figure 9: [Model estimates: Odds-based ability measure, 25th-percentile prize|
Model predictions against the degree of opponent asymmetry evaluated at the 25th-
percentile cash prize in the sample ($8672; N = 2811 matches). Model according to
Table 5, column 1, with player strength based on betting odds, ¢;, = (odds;,)?.
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A Dynamic contest model: Theory and estimation

A.1 Optimal player effort and transition probabilities

We proceed by backward induction. In battle 3, the winner takes the contest prize and
the loser earns 0, so optimal bidding strategies are given by (2) with AVs; =V, —0=1V;
and AV3; = Vj:

c; Vi
Vi k(o)

Cj 1

;o hj el h}i# ]

In battle 2, given a history xq1; = 1, players [ and h choose effort levels:

Tou=1 = T(Varpy=1 = Yar,=1> Vonp=1 = Yonjx,=1);

Tonxu=1 = Th(Vanxy=1 = Yonu=1:Vapnu=1 = Varjy,=1):

where win-loss spreads AVa;y,,=1 = Vajjy,=1 — Vilxy,=1 are calculated from (4) and (5),
i.e., we plug these in (2) to obtain reduced-form effort choices. Transition probabilities
follow from (1):

(Zoupyry=1)"
x21|X11=1)k + (I?’L|X1z=1)k7
Pr(xaa =0[xu=1)=1-Pr(xaa=1lxu=1).

Prixay=1lxu=1)= (

For simplicity, we consider the situation in which players exert positive effort in battle
2. The expressions can easily be extended to allow for the corner solution, i.e., when ¢ is
too high and the battle-1 loser’s continuation value from winning battle 2 is negative; thus
she chooses to lose battle 2 by exerting 0 effort and the contest ends after two battles.
(Both players still incur a battle-2 environmental disutility J, as they are in court despite
the minimal exertion.) Specifically, following player h’s defeat in battle 1, a corner solution
in battle 2 obtains when the continuation value from continuing play in a third battle is
negative. That is, the expected benefit of effort in battle 3 would be less than the sum of
effort cost and environmental disutility:

1 (&)
Vi——— < kV—n 4§
Vink — v, )
1+ (Zph)k [1+ (250)F]?
or, equivalently:
v
0 S 1 - (gfv,i )* ]
= v, Vine !
Vi T 14 (2ph)E 1+ (27l
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Given an alternative history x1; = 0, choices are:
Tatp=0 = BV atx=0 = YVaug =00 Vanlxu=0 = Vanjy,=0);
L2hlxu=0 = xh(v?hb(u:o - K2h|)(1z=0’ Vatly=0 — Kzl\><11=0)’
with continuation values conditional on battle-2 outcomes (and battle-1 history):

V=0 = paiVi — Ay (Vi, Vi) — 6,

if =1 (contest continues 1-1 13
X ( ) { Vonpxu=0 = P3nVi — Acn@n(Vi, Vi) — 6, (13)
% =0
if yo; = 0 (contest ends 0-2) { =07 (14)
2hlx1=0 = Vh-

Optimal player actions then follow from (2), yielding transition probabilities:

(xQZIXlzZO)k
x21|X1l:0)k + (x2h|X1z=0)k
PT(X2Z = O‘Xll = 0) =1 —PI‘(XQl =1 |X1[ = 0)

i

Pr(xo=1|xu=0) = (

Again, these expressions can be extended to allow for the battle-2 corner solution in which,
having lost battle 1, player [ exerts 0 effort to avoid taking the contest to a third battle
where her continuation value is negative.

In battle 1, there is no history to condition on. Both opponents’ continuation values
in the alternative events that player [, respectively, wins and loses battle 1 are given by:

if x1; = 1 (contest continues 1-0), (15)

Vi =Pr(xa = 1xu = 1)Vayyy,=1 + Pr(xa = Olxu = 1)V, =1 — Aoy, =1 — 0,
Vi =Pr(xa = 1xu = 1)Vopy,,=1 + Prixa = 0[x1 = 1)Vonpy,=1 — AcnZanjy,=1 — 0,

if x1; = 0 (contest continues 0-1), (16)

Vi =Pr(xa = 1xu = 0)Vay,—0 + Pr(xar = Olx1: = 0)Vaypp;,—0 — ATy, =0 — 0,
Vin = Pr(xa = 1xu = 0)Vop)y,,=0 + Pr(xar = 0lxu = 0)Vapn|y, =0 — AChZan|yy,=0 — 6.

Finally, plugging differences in continuation values in (2) yields battle-1 actions:
w1 =x;(Vii =V, Viy = Va;), 6,5 € {l,h},i #J.
Transition probabilities are:

(z1)"

Pr (Xll = 1) = (l'll)k + (fﬁlh)k

, Pr(xu=0=1-Pr(xu=1).

Players’ effort choices battle by battle, as a function of environmental degradation o
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and cost asymmetry, are illustrated in Figure A.4. For example, in the top-left panel for
symmetric players (with & = 0.7), battle-1 effort rises with 0, but not steeply.

A.2 Likelihood contribution

A tennis match’s likelihood contribution is computed from the battle-transition probabil-
ities derived above, which are functions of optimal player effort. We list within-match
outcome probabilities predicted by the model here:

Pr(ll|¥) = Pr(xu=1)Pr(xa=1xu=1)
Pr(lhl|¥) = Pr(xy=1)Pr(xa=0|xu=1)Pr(xz =1|xa # xu)
Pr(lhh [¥) = Pr(xuy=1)Pr(xa=0|xu=1)Pr(xs =0[xa # xu)
Pr(hll|¥) = Pr(xu=0)Pr(xy=1|xu=0)Pr(xs=1Ixa# xu)
Pr(hlh ) = Pr(xy =0)Pr(xa=1|xu=0)Pr(xs =0|xa # xu)
Pr(hh|¥V) = Pr(xuy=0)Pr(xe=0|x1; =0)

As an alternative to criterion function (12), for which a match’s likelihood contribution
is defined using all possible transitions, the model can be estimated using only battle-2
outcomes, conditional on the battle-1 realization. Given a history x1; € {0,1}, there
are two possible outcomes. For example, given player | winning battle 1 (x1; = 1) in
match n, battle 2 may be won by either player t2,, € {1, h} with conditional probabilities
Pr(xz =1|xy = 1) and Pr(xo; = 0[x1; = 1). The likelihood is

I 11 (Pr(xar [xu; @) 20) (17)
ne1 L2,n€{1,h} riXa1 |X11; )

whereby only model predictions for battle-2 transitions are taken to the data.

A.3 Further model variants

We implemented more general versions of the main model-—with a match’s prize money
as a proxy for V;,—along two dimensions. We briefly outline these here.

Random coefficients. Instead of fixing the variance of the player-match level cost
shocks 02 = 0—see (8)—we specified a mean-zero i.i.d. normal error entering additively
into each player’s marginal effort cost, ¢, = f(ain,0) + €. Now o, is an additional
parameter to be estimated. This allows for a serially correlated shock that is common
over battles within a match, which randomness parameter k& does not account for. For
example, one of the otherwise equally able opponents suffers from a bad cold on match
day, which can work to her rival’s advantage over the course of the match. Estimation is
by simulated likelihood.

Our findings are robust to this model variant. On introducing random coeflicients
over 1000 simulations (each with 2 x N player-match €;, draws), we obtained parameters
(l;:, é, 5T, 5 p) that on average line up with the point estimates obtained in the main model.
During optimization we constrain . < 0.2 and verified that marginal cost is necessarily
positive V i,n. The constraint turns out not to bind and the mean &, is 0.017 (compare
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to Figure A.6 showing estimated marginal cost). This suggests that serially correlated
shocks are of low magnitude relative to estimated “base” marginal cost, f(ap,@).

Psychological momentum. We extended our model to allow for another form
of state dependence studied in psychology and economics (Iso-Ahola and Mobily, 1980;
Malueg and Yates, 2010). This is based on an abstract psychological impact on a player’s
current performance from recently winning a battle—abstract in that it is not formal-
ized through economic incentives.*! We introduced the psychological channel either (i)
additively to marginal cost, by which a player i’s marginal cost ¢;,; in battle b € {2, 3}
of match n is ¢;, + 7 if she won the preceding battle b — 1 and is ¢;, otherwise, or (ii)
multiplicatively to marginal cost, by which marginal cost ¢;,,; in battle b € {2,3} of match
n is negy, if player ¢ won battle b — 1 and is ¢;;, otherwise. During optimization we impose
n > —1 in specification (i) and 7 > 0 in specification (ii) to ensure that state-dependent
marginal cost is necessarily positive V i,n,b.

In battle 1, there is no immediate history and thus no momentum. Battle 2, in contrast,
may have psychology complementing strategic momentum. Identification of psychology
follows from battle-3 outcomes in the subset of three-battle matches as the state varies.

Table A.6 shows some evidence of a psychological effect for some specifications. A
recent win can reduce a player’s marginal cost. Taking WTA rank to measure ability, we
obtain 77 = -0.31 < 0 in column 2’s additive specification, and 7 = 0.85 < 1 in column
4’s multiplicative specification (i.e., a 15% reduction in marginal cost). Taking betting
odds to measure ability, we again obtain that a recent win lowers marginal cost (7 = -0.07
< 0 in column 1 and 7 = 0.94 < 1 in column 3) but now the marginal cost reduction is
statistically insignificant.

The marginal significance of psychological state dependence may partly be due to
these agents’ experience in handling loss/win. Importantly, our finding of strategic mo-
mentum amplified by environmental shocks is robust as we enrich the model to allow for
psychological mechanisms.

B An alternative effort cost specification

The model we developed and estimate above specifies linear effort cost Ac;x;, where A > 0
is a factor by which environmental conditions shift the slope. That is, marginal cost is
constant in player i’s effort x; and increases in a poor environment. We briefly consider
an alternative specification in which a poor environment makes the effort cost function
more convex:

Ci(245 A, b) = apei[(zi + 1) — 1],

“Malueg and Yates (2010) were unable to reject the null that a psychological effect was absent in a
sample of 125 three-battle matches among equally able players. We repeat their statistical test on the 246
three-setters in our sample where opponents’ ex-ante winning probabilities are at most 30% apart. We
find that the battle-2 winner wins 55% of third battles; the p-value for a two-tailed test of Ho = 0.5 is
0.13. Though we lack power, any psychological momentum does not appear to grow with environmental
degradation. Among symmetric-player three-battle matches, the incidence of lose-win-win is 0.49 in a poor
environment compared to 0.57 in a mild environment; the p-value of an equality test is 0.33.
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where parameter A > 1 scales with environmental degradation, and b = 1,2, 3 indexes the
battle number. Parameters as > as > a3 > 0 reflect player ¢ growing more tired as the
contest progresses. Here, marginal cost ayAc;(z; + 1)}~ increases with (i) battle number
b, (ii) the environmental factor A, (iii) effort z;, and (iv) individual-specific cost ¢; > 0.
We show that even when a poor environment makes the cost function more convex, it does
not increase momentum, in contrast to the descriptive analysis. Here we shut the direct
utility channel by setting the environmental disutility parameter § = 0.

Before proceeding, we briefly note that we later consider an arguably less natural
variant in which the cost function can be concave in effort, i.e., we then require only
A >k >0, allowing A < 1.

Mirroring the analysis above, consider battle 3, reached in the event that each previous
battle was won by a different player. For simplicity, assume a symmetric contest prize V.
Facing a win-loss prize spread AV; =V and given her rival’s action x;, player 7 solves:

()" A

—V - (x; + D)™ —1].

arg max @) + (@) ascif(zi +1) ]

(For simplicity, we omit the battle number from the effort subscript, i.e., here x; denotes
x3;.) The first-order conditions (FOC) are:

@) @) e 1M i oy
[(Cﬂz)k T (J;J)R]Zkv = aS)\Cz(xz + 1) , 1,)€ {l, h},l # 3. (18)

Thus, in equilibrium, we have:

x  xp+1 c
AT 1y
Th rp+1 Cl

which means that the high-cost player h exerts lower effort than the low-cost player [.
(Note that ;—i > 1 means ;—i > ;fi—ill > 1.) Moreover, players’ effort levels x; and xj,
change in the same direction when the environment A shifts, because:

c
wy(z+ 1) = ?hxh(xh + 1M
1
We proceed considering the symmetric player case, ¢; = ¢ and C;(.) = C(.). With
x; = xp = x, we can write the FOC as:

LIS

=) nAt.
Tage x(x+1)

implying that effort x decreases when A increases (the environment deteriorates).

Recall battle-2 incentives when players have symmetric costs. In battle 2, the player
who won battle 1 faces continuation values of (a) V' from winning battle 2 and ending the
contest, vs. (b) V/2 minus the subsequent effort cost from having to play in a third battle.
For her part, the player who lost battle 1 faces continuation values in battle 2 of (¢) V/2
minus the effort cost that would follow a win that takes the contest to a third battle, vs.
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(d) 0 from losing outright.

Thus, to generate strengthened momentum from a poor environment, a higher A would
need to induce increased battle-3 effort cost such that expected payoffs (b) and (c) from
transiting to battle 3 fall for both of the respective players. We next show that in general
this is not so. We show that degrading environmental conditions between A\ = 1 (linear
effort cost) and A = 2 (convex effort cost) lower battle-3 equilibrium effort cost, increasing
expected payoffs (b) and (c). This weakens the incentive for players to decide the contest
in two battles (Below we extend this analysis to concave effort cost.)

Let 8 = 2a - > 0. Battle-3 equilibrium effort levels when the environment deteriorates
between A = 1 and A = 2 follow from the FOC:

rA=1)= 28, a(r=2) =36+ 5 (19)

Battle-3 effort cost is lower in the degraded environment when

< Cz(A=1))
< azcf(x(A=1)+ 1) —1]
< z(A=1)+1

/\
/-\
>4
l\D
~—

— —

1
1)
L

[\

< asc|(z(\ —2)—1—1)2
= (z ()\ 2) +

After a little algebraic manipulation, this condition simplifies to 32 > 0, a condition that
holds.

In sum, battle-3 equilibrium effort and effort cost are lower in the degraded environ-
ment A\ = 2 compared with A = 1. Thus, in battle 2, both players’ continuation values
in the event that the contest transitions to a third battle are higher in the degraded en-
vironment compared with the milder one, weakening the incentive for the contest to be
decided in two battles, in contrast to the data pattern we document.

It is for this reason that our chosen effort cost specification is linear C;(x;;\,b) =
apAcixi, whereby higher A—or higher battle-specific marginal cost parameter as, for that
matter—induce lower effort, but the same effort cost in battle 3. Therefore, the environ-
ment does not induce a change in battle-2 momentum through the effort cost channel.
Importantly, we allow for a direct utility channel and thus do not constrain the per-battle
environmental disutility parameter § to be zero.

Cost function concave in effort. For generality, we relax the restriction A > 1 and
allow A < 1 (while requiring A > k > 0, which guarantees a pure-strategy equilibrium in
each battle).

We can rewrite the battle-3 FOC (18) (with player-specific cost ¢; and symmetric prize
V) as

k k
(@i)" (z;) i 1 . <1 + 1) — @Ci, i,j € {l,h},i #j.
[(i)* + ()" [ (i +1) Ti kV

Because both ——— and 1 + 7 are decreasing in x;, this still means that x; > x; if

(1)
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¢ < ¢j, i.e., the low-cost player exerts higher effort than the high-cost player.
In addition to the environments A = 1 and A = 2 in (19), we compute battle-3 equi-
librium effort level in the environment A = %:

1 1

A =3)=3

B+ 1+iﬁ2.

We can then compare the equilibrium effort cost when the environment deteriorates be-

tween A = % and \ = 1. Battle-3 effort cost is lower in the degraded environment when

Cla(A=1) < Cla(r =)
= azcf(zA=1)+ D' —1] < azc[(z(N= %) +1)Y2 1]
— (z(A=1)+1)? < x(/\:%)—i—l

1 1 1
‘E*Zﬁ?‘f‘ﬁ < 5524‘5 1+1527

a condition which holds because i < % and 1 < 4/1+ %,82.

Here, again, battle-3 equilibrium effort cost is lower in the degraded environment A = 1
compared with A = %

Effort cost channel. Overall, whether environmental degradation makes the cost
function (i) less concave, proxied by a shift from A = 1 to A = 1, or (ii) more convex,
proxied by a shift from A = 1 to A = 2, for both shifts a worse environment similarly
induces lower effort costs in battle 3, ie., C(z(A = 3)) > C(z(A = 1)) > C(z(\ = 2)).
Thus, in battle 2, both players’ continuation values in the event that the contest transitions
to a third battle rise in the worse environment compared with the milder one. This weakens
the incentive for players to decide the contest in two battles, in contrast to the data. We
thus choose a linear effort cost and focus on a direct utility channel through a per-battle
fixed cost . As we note in the text, the environmental parameters A and ¢ are similar in
that, in principle, they function through their impact on total costs (effort cost and fixed
cost).
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Table A.4: Contest model estimates: Dropping a few climate-controlled matches

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score
(1) (2) (3)
k, randomness in winner selection 0.662 0.715 0.728
(0.026) (0.027) (0.025)
0, ability to marginal cost mapping 0.896 0.497 0.197
(0.064) (0.039) (0.015)
Environmental disutility parameters:
d7, coefficient on In(1 + max(7T,, — T,0)) 0.122 0.135 0.145
(0.026) (0.026) (0.033)
dp, coefficient on In(1 + max((P, — P)/100,0)) 1.137 1.261 1.342
(0.069) (0.210) (0.071)
Number of parameters 4 4 4
Observations 2109 2605 2605
Log likelihood -2823 -3609 -3643

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. Compared with the estimation sample in Table 5,
we drop 66 matches for which our review of press articles on LexisNexis indicated that a re-
tractable roof, when available, was closed to protect from ambient environmental conditions,
namely heat and rain. (In practice, missing values for some covariates such as betting odds im-
ply that less than 66 matches are dropped.) A match’s likelihood contribution is defined using
all possible transitions. Marginal cost is alternatively modeled as cin = (0dds:,)? in column 1,
Cin = (rankm)e in column 2, and ¢;, = e~0(scorein) in column 3. The intercept to per-battle
disutility ¢ is set to $0, and temperature and PM2.5 pollution cutoffs T" and P are set to 27
°C and 150 pg/m®. The contest prize Vi, is proxied by the match’s prize money. Solver Knitro
using the interior-point algorithm, constraints 0 < £ < 1 and 6 > 0, and initial values for k =1
and 0 = 0r = dp = 0. Standard errors, in parentheses, are obtained from the Hessian estimate
of the asymptotic covariance matrix.
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Table A.5: Contest model estimates: Dummy variables (bins) for heat and pollution

Robustness check: Disutility Estimate, Estimate, Two heat
intercept  not fix, not fix, & PM2.5
50 =0 50 I & B bins
(1) (2) (3) (4)
k, randomness in winner selection 0.662 0.656 0.664 0.661
(0.027) (0.028) (0.024) (0.028)
0, ability to marginal cost mapping 0.880 0.889 0.875 0.880

(0.064) (0.066) (0.057) (0.070)
Environmental disutility parameters:

o1, coefficient on T, > T 0.188 0.163 0.185
(0.040)  (0.073)  (0.040)
ép, coefficient on P, > P 0.667 0.642 1.093
(0.062)  (0.065)  (0.068)
do, per-battle disutility intercept (or set to 0) 0.029
(0.061)
T, temperature cutoff (°C) (or set to 27) 26.890
(0.052)
P, pollution cutoff (ug/m?) (or set to 150) 209.060
(2.674)
071, coefficient on T, € (27,29] °C 0.174
(0.053)
d72, coefficient on T, > 29 °C 0.197
(0.040)
dp1, coefficient on P, € (100,200] ug/m? 0.019
(0.148)
S pa, coefficient on P, > 200 pg/m?> 1.095
(0.068)
Number of parameters 4 5 6 6
Observations 2157 2157 2157 2157
Log likelihood -2897 -2897 -2897 -2896

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. A match’s likelihood contribution is defined using all possible
transitions. Marginal cost is modeled as c¢i, = (oddsin)g. The intercept to per-battle disutility
do is set to $0, except in column 2 where this intercept is estimated. In columns 1 and 2,
temperature and PM2.5 pollution cutoffs are set to 27 °C and 150 ug/m3. Column 3 estimates
these cutoffs imposing the constraints 25 < T < 35 °C and 100 < P < 300 ,ug/m3. Column 4
specifies two heat bins (the lowest starting at 27 °C) and two PM2.5 bins (the lowest starting
at 100 pg/m?). The contest prize Vi, is proxied by the match’s prize money. Solver Knitro
using the interior-point algorithm, constraints 0 < £ < 1 and # > 0, and initial values for
all parameters set to 0 except for k¥ = 1 and, in column 3, initial values for T = 25 °C and
P =100 pg/m?. Standard errors, in parentheses, are obtained from the Hessian estimate of the
asymptotic covariance matrix.
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Table A.6: Contest model estimates: Allowing for psychological state dependence on
preceding battle outcome

Psychology of preceding-battle won: Additively enters player’'s MC  Multiplicat. enters player’s MC
this set if she won preceding set this set if she won preceding set
Alternative measure of player strength: Pre-match Pre-match
betting WTA rank betting WTA rank
(1) (2) (3) (4)
k, randomness in winner selection 0.655 0.703 0.647 0.668
(0.029) (0.025) (0.029) (0.028)
0, ability to marginal cost mapping 0.886 0.491 0.912 0.550
(0.066) (0.037) (0.070) (0.043)
7, add to ¢, in battle b > 1 if ¢ won -0.067 -0.313
battle b — 1 in match n (0.088) (0.138)
1, multiply with ¢;;, in battle b > 1 if ¢ 0.939 0.847
won battle b — 1 in match n (0.061) (0.050)
Environmental disutility parameters:
o, coeff. on In(1 + max(T,, — T,0)) 0.127 0.145 0.130 0.158
(0.027) (0.025) (0.028) (0.028)
6p, coeff. on In(1 + max((P, — P)/100,0))  1.169 1.436 1.191 1.579
(0.070) (0.066) (0.070) (0.066)
Number of parameters 5 5 5 5
Observations 2157 2670 2157 2670
Log likelihood -2897 -3699 -2897 -3698

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. A match’s likelihood contribution is defined using all possible
transitions. Marginal cost is modeled as ¢;n, = (oddsm)‘9 in columns 1 & 3 and ¢;, = (rankm)e
in columns 2 & 4. In columns 1 & 2, a player’s marginal cost in battle b € {2, 3} shifts additively
by 7 if she won battle b — 1, i.e., marginal cost ciny is ¢in + 1 if ¢ won match n’s battle b — 1
and c;n otherwise. In columns 3 & 4, a player’s marginal cost in battle b € {2,3} is multiplied
by 7 if she won battle b — 1, i.e., marginal cost cinp is Ncin, if @ won match n’s battle b — 1 and
cin otherwise. The intercept to per-battle disutility do is set to $0, and temperature and PM2.5
pollution cutoffs T and P are set to 27 °C and 150 ug/m3. The contest prize Vi, is proxied by
the match’s prize money. Solver Knitro using the interior-point algorithm, constraints 0 < k£ < 1
and 0 > 0, and initial values for k = 1 and § = §7 = §p = 0. We constrain n > —1 in columns
1 & 2 and n > 0 in columns 3 & 4 such that marginal cost is necessarily positive V i,n,b. The
initial value for 7 is set to 0 in columns 1 and 2 and to 1 in columns 3 and 4. Standard errors,
in parentheses, are obtained from the Hessian estimate of the asymptotic covariance matrix.
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Figure A.1: [Model| Contest winning probabilities, as a function of the per-battle en-
vironmental disutility parameter §. In the model, a higher § captures a more adverse
environment, i.e., a stronger dose of heat or pollution. Left panels: Players are symmet-
ric, ¢, = ¢;. Right panels: Players are asymmetric, ¢, = 2¢;. Top panels (a) set technology
k =1 and bottom panels (b) set k = 0.7 (more randomness). We illustrate with symmetric
contest prizes V), =V, =V =1 and A¢, = 0.5V.
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Con{est outcome predictability as environmental quality shifts
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Figure A.2: [Model] Predictability of the contest winner as a function of: opponent
asymmetry ¢;/c, (along the horizontal axis within a panel); environmental disutility §
(different curves within a panel); and randomness in the contest technology k (across
panels). The vertical axis plots the low-cost player’s contest ex-ante winning probability.
We illustrate with symmetric contest prizes V, =V, =V =1 and A¢, = 0.5V.
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(b) More randomness, k = 0.7

Figure A.3: [Model] Probability that the contest finishes in three battles, as a function of
the per-battle environmental disutility parameter §. Left panels: Players are symmetric,
¢n = ¢. Right panels: Players are asymmetric, ¢, = 2¢;. Top panels (a) set technology
k = 1 and bottom panels (b) set k = 0.7 (more randomness). We illustrate with symmetric
contest prizes V), = V; =V =1, and A¢y, = 0.5V.
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(c) Optimal effort in battle 3

Figure A.4: [Model] Optimal effort choices in battles 1 (top panels), 2 (middle panels)
and 3 (bottom panels), as a function of the per-battle environmental disutility parameter
0. Left panels: Players are symmetric, ¢, = ¢;. Right panels: Players are asymmetric,
cn, = 2¢;. We illustrate with k& = 0.7, symmetric contest prizes V, = V; =V =1, and
Acp, = 0.5V,
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Rank-based ability measure, 25th-percentile
prize] Model predictions against the degree of opponent asymmetry evaluated at the
25th-percentile cash prize in the sample ($8672; N = 2811 matches). Model according to

Table 5, column 2, with player strength based on WTA rank, ¢;,, = (rankiy)?.
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Figure A.6: [Estimated model diagnostics] Further diagnostics for estimated models
reported in: (top panels) Table 5, column 1, with ability based on betting odds, ¢;, =
(odds;,)?; and (bottom panels) Table 5, column 2, with ability based on WTA rank,

Cin = (Tank:m)e.

Each circle in these scatters represents a match in the sample; the
horizontal axes show data whereas the vertical axes show model predictions.

The left

panels show fitted marginal cost against the corresponding betting odds- or rank-based
ability measure in the data. The right panels show the model-predicted against the betting-
market winning probability difference across players; matches are color coded according

to ambient conditions.
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Figure A.7: [Model estimates| Augmenting the contest prize money with continuation
value to a player from winning the match and remaining in the WTA series. Augmented
contest prize V', defined as prize money plus continuation value per estimates in Table 9,
against prize money. Each circle in a scatter represents a match. The top panel (in log
scale) shows all contests in the estimation sample (with observed betting odds, N = 2157):
the median V is estimated at $32,857 and the median prize money is $18,300 for this
sample. Matches are color coded according to the round in the WTA series: final matches,
shown in black, lie along the diagonal because there is no subsequent round of contests.
For better visualization, the bottom panel (in linear scale) plots contests up to round 8
only. See the text on assumed player beliefs regarding the strength of the opponents and
environmental quality they expect to encounter in future matches (in this implementation,
the contest prize does not vary within series-year-round so many circles are overlaid).
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