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Abstract

We show that the prevalence of prolonged contests in professional tennis drops
sharply when the ambient environment deteriorates through heat or pollution. We
develop a dynamic model of multi-battle competition to investigate how the disutility
from a protracted competition shapes agents’ willingness to fight on. Our theory
predicts that a poor environment amplifies the momentum of a competitor’s head
start. We show how model primitives including preferences for improved working
conditions (environmental amenities in our setting) can be inferred from battle-to-
battle transition probabilities. We provide clean evidence that heat and pollution
affect individuals’ incentives to compete strategically. Model estimates show that in
a contest between equally able rivals at the median prize of $15,100, the value of a
head start is $130 to $370 higher in a degraded environment compared with a climate-
controlled one.
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1 Introduction

Research of mostly theoretical nature considers dynamic competitions in which a winner

is determined through a multi-battle contest.1 These adversarial competitions require

persistent effort from participants and are used widely in innovation, product advertising,

job promotion, litigation and conflict, political campaigns, and sports (Corchon, 2007;

Konrad, 2009). In a best-of-N contest, the agent who wins the majority of N battles is

declared the winner and takes the prize. Agents’ performance as they transition from one

battle to the next is determined by relative ability and continuation values, which jointly

determine their effort choices. Economic incentives in such dynamic multi-battle contests

produce a result known as strategic momentum: When facing an equally able rival, the

agent who wins battles early on and moves closer to overall victory will raise equilibrium

effort relative to her opponent, increasing the likelihood that she continues winning.2

In this paper, we develop a dynamic contest model of complete information in which

agents incur a fixed cost from engaging in each battle—say an opportunity cost or disutility

from protracted competition that is invariant to effort and unobserved by the researcher.

When this per-battle disutility grows, the importance of an early win is magnified. We

show how the shift in momentum due to variation in the unobservable disutility (fixed

cost) reveals its magnitude. The intuition is as follows. Consider two ex-ante symmetric

agents competing in a best-of-three contest. There is a fixed cost per battle. To win the

contest and collect the prize, an agent needs to win two battles. By design, one agent wins

the first battle and faces win-loss continuation values in the second battle whose difference

grows when a higher fixed cost makes the prospect of competing in a third battle (should

she lose the second battle) less attractive. Similarly, in the second battle the agent who

lost the first battle now faces win-loss continuation values whose difference narrows as the

prospect of competing in a third battle and incurring another round of fixed cost (should

she win the second battle) becomes less attractive. Thus, as per-battle disutility grows,

1See, for example, Harris and Vickers (1987), Snyder (1989), Konrad and Kovenock (2009), Gelder
(2014), and Feng and Lu (2018).

2In an intriguing example, Klumpp and Polborn (2006) compare sequential to simultaneous multi-
district elections to explain the “New Hampshire effect” in sequential US primaries, whereby gaining a
head start can be crucial to the final win even when there are many districts to fight over.
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the agent who starts winning raises effort relative to her opponent and the contest is (in

expectation) resolved sooner. Our focus is in showing how the change in interim transition

probabilities reveals the per-battle disutility and the value of a head start.

Our specific setting links contest theory to environmental valuation. The economic

agents are tennis professionals competing in best-of-three outdoor contests (matches) in

which the per-battle disutility shifts with environmental quality, namely heat and air pol-

lution. We show how the increase in momentum as the ambient environment deteriorates

identifies agents’ preferences over environmental amenities. We provide evidence that heat

and pollution affect individuals’ willingness to compete strategically.

Empirical work is relatively scarce in the contest literature. Szymanski (2003) argues

that testing contest theory is challenging, as ability is rarely observed or the stakes are

low, with the exception of sporting contests. Boudreau et al. (2016) argue that data rarely

meet the econometric demands of theoretical models. In a study of best-of-three contests

in professional tennis—the same contest as in our application—Malueg and Yates (2010)

provide observational evidence of strategic momentum. The player who wins two of three

sequential battles (tennis sets) is the winner and takes the match prize. When equally

skilled agents compete, theory predicts that the battle-1 winner is more likely than not to

win battle 2.3 Thus, the likelihood that the match requires a third battle for closure is less

than 0.5. Absent the strategic behavior predicted by theory, 0.5 is the probability that a

match completes in two battles, i.e., battle scores 2-0 or 0-2 with probability 0.52 + 0.52.

Malueg and Yates (2010) report that in a sample of 351 matches between equally able

athletes, identified using betting-market odds, the proportion of three-battle matches is

0.36. This is statistically significantly lower than 0.5.4

To test and apply our amplified-momentum theory, we assemble a dataset on Women’s

Tennis Association (WTA) tournament matches played outdoors in Australia and China.

3Having won battle 1, a player is one step away from victory, advantaged by the near prospect of taking
the prize after exerting costly effort in the current battle 2; in contrast, the battle-1 loser can possibly take
the prize only after incurring effort cost over two more battles. To this model we add an unobserved fixed
cost per battle and show how it is identified from environmental shocks and informative of preferences.

4As an alternative to strategic incentives, Malueg and Yates (2010) do not find evidence that the
momentum observed in the field is driven by the “psychology” of a recent win. Specifically, in a smaller
sample of 125 matches between equal-odds players that do reach a third battle, the player who won the
most recent battle, the battle-2 winner, is as likely to lose as to win the third battle.
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Plausibly, an agent’s disutility from a prolonged competition is higher when it is uncom-

fortably hot or visibly polluted. The 75th percentile of the mean temperature distribution

over Australian Open matches, played in Melbourne’s summer, is 30 ◦C (86 ◦F). The 75th

percentile of the mean PM2.5 distribution over China Open matches, played in Beijing’s

fall, is 133 µg/m3, a level that is visible to the naked eye.5 While such conditions are

harsh, they are quite common in our settings and are not extreme or rare.

The raw data already suggest that environmental degradation increases momentum.

Consider a subset of 591 matches in our sample in which agents are ex-ante relatively

similar (as implied by pre-match betting odds). In this subsample, the proportion of

three-battle matches is 0.41. Strikingly, in the 192 matches played in poor environments—

defined here as either temperature over 29 ◦C or PM2.5 over 100 µg/m3—the proportion

of three-battle matches falls to 0.30, i.e., there is more momentum. By contrast, in the 399

matches in which both temperature and PM2.5 were below these cutoffs, the proportion

of three-battle matches is 0.46. An equality test, (0.30, N = 192) vs. (0.46, N = 399), has

a p-value of 0.0001. The data indicate that first battles are not shorter in a poor envi-

ronment. This suggests that the underlying mechanism is not explained by idiosyncratic

player sensitivity to heat or pollution, as such player asymmetry would shorten not only

the match but also battle 1. Reduced-form evidence also suggests that when asymmet-

ric players compete, a poor environment does not raise a weaker player’s overall chance

against a stronger opponent.

Using the entire range of opponent asymmetry, we estimate the dynamic contest model

by maximum likelihood on a sample of 2200 to 2700 matches (depending on the availabil-

ity of alternative ability measures). By one set of estimates, raising temperature from

27 to 37 ◦C reduces a contestant’s expected payoff by $670 when facing an equal-odds

rival; raising PM2.5 from 150 to 250 µg/m3 reduces a player’s expected payoff by $1800.

How environmental shocks, working through a per-battle fixed cost, shift momentum is

moderated by the size of the contest prize and may be asymmetric across players (e.g., a

player about to retire, with potentially lower reputation gains from winning).

5PM2.5 is particulate matter of diameter up to 2.5 micron. The 24-hour US standard is 35 µg/m3.
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Intuitively, at each node of the dynamic contest, an agent weighs the benefit and cost

of supplying effort, which includes the fixed cost of extending the competition. In our

setting, how players differentially respond after winning vs. losing the first battle, in

bad compared to good environments, provides a measure of the damage from exposure

to degraded environments. More generally, the differential dynamic response when battle

opportunity costs are high compared to low reveals the magnitude of these fixed costs.

The increase in momentum due to players’ reduced willingness or discouragement to

fight on extends beyond sport contests into other economic contexts. Internal promotions

typically involve multiple battles among candidates. The lengthy procedure is designed

to encourage them to contribute to their organization and display their capacities, tal-

ents, skills, and personalities vis-à-vis those judged desirable. The endurance race induces

productive effort and enables the organization to identify which contestant to promote

(DeVaro, 2006).6 The discouragement effect, however, means that the multi-stage screen-

ing can be compromised when candidates’ incentives to fight on are blunted, even giving up

prematurely. Our study highlights that a deteriorating competitive environment amplifies

momentum and, by the same token, can be mitigated in an environment that maintains

the candidates’ incentives as the competition extends. Universities, for example, can im-

prove the competitive environment by offering research grants, teaching support, office

facilities, and training and mentoring.

Other settings in which momentum induced by difficult working conditions may pre-

vent participants from reaching their potential include multi-stage R&D and political

competitions (Grossman and Shapiro, 1987; Klumpp and Polborn, 2006). A planner may

offer research subsidies to encourage laggards to stay in an R&D race, to the benefit of

society, as in the multi-stage search for a vaccine amid a pandemic (WHO, 2020). Cam-

paign restrictions can hinder a political contest by increasing the discouragement effect,

whereas technologies such as social media can reduce the fixed cost of campaigning on.

Our paper contributes to a sparse empirical literature on agents’ incentives in contest

6Bognanno (2001) finds that 80% of high-level executives were promoted internally and that even before
promotion a successful candidate earned more than peers. This suggests the presence of interim ranks and
the potential relevance of discouraged laggards to a firm’s performance (Goltsman and Mukherjee, 2011).
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settings. For instance, Brown (2011) studies the superstar effect in competitions. Con-

test models in this literature are typically offered to guide interpretation of reduced-form

(regression) analysis and not for direct estimation of economic primitives, as is our case.

An exception is Ferrall and Smith Jr. (1999)’s test of momentum in team sports using a

structural best-of-five contest model based on Lazear and Rosen (1981) and Rosen (1986).

Genakos and Pagliero (2012), Huang et al. (2014), and Boudreau et al. (2016) estimate

contest models with varying levels of structure and that differ in design and context,

e.g., one-shot innovation tournaments. Related to our application, a mostly nonstructural

literature in environmental economics quantifies the impact of heat or pollution on socioe-

conomic outcomes.7 The tractable model we estimate can generally be applied to dynamic

competitions in which shocks to fighting on—which encompass institutional, political, and

operational factors—may lead competitors who fall behind to simply give up.

2 Data and institutions

Our data consist of outdoor WTA matches held in Australia and China, including envi-

ronmental conditions during match time. Melbourne in January can be hot: Percentiles

50, 75, and 90 of the mean temperature distribution over the 2004-2016 Australian Open

matches in our sample are 25, 30, and 34 ◦C. Beijing’s air quality in the fall varies and

can be poor: Percentiles 50, 75, and 90 of the mean PM2.5 distribution over China Open

matches are 52, 133, and 220 µg/m3. Data for the Beijing-based China Open start only in

2008, so we further compile data for five other outdoor WTA tournament series held an-

nually in China. Figure 1 and Table 1 report the wide variation in environmental quality

in our sample (yet freezing weather is not applicable).

We examine women’s singles series, in which each match is a best-of-three contest

between two players. In such matches, the first player to win two tennis sets (battles)

over her rival, with one battle played immediately after the other on the same day, wins

the match. Thus, battle transitions that yield a match win are either win-win (in two

7A selected list includes heat- or PM-induced mortality and defensive expenditures (Deschenes and
Greenstone, 2011; Chen et al., 2013; Salvo, 2018; Ito and Zhang, 2019); and output, productivity, and
labor supply (Dell et al., 2014; Hanna and Oliva, 2015; Archsmith et al., 2018; Somanathan et al., 2019).
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sets), win-lose-win or lose-win-win (three-setters). The contest winner earns cash (sample

median = $15,092) and WTA ranking points and, except in the series’ final round, plays

another opponent on another day, typically a day or two later.8

To describe a series, consider the Australian Open, where the “main draw” features

128 qualifying athletes. The single winners of the 64 matches played by the 128 players

in round 64 progress to round 32, and similarly for subsequent rounds. There are more

matches in round 64 than in all six later rounds combined (32 + 16 + 8 + 4 + 2 + 1 = 63

matches). It helps to think of the “median” contest as a round-64 match, not the famed

series final. Athletes who do not qualify for a series’ initial round 64, based mainly on

WTA ranking points, may do so in “qualifying” matches held shortly before round 64.

The Australian Open is one of the four “Grand Slam” tennis series attended by the

world’s top athletes. The China Open was upgraded in 2009 to “Premier Mandatory”

status and also attracts top players. The five other WTA series played in China are less

prestigious but attract similar professionals.9 In the player-by-match distribution in our

sample, the median player’s world rank is 48 in Melbourne, 28 in Beijing, and 63 in other

Chinese venues. Because main-draw matches in the China Open start only in round 32,

its median player ranks even higher than in the Australian Open. Excluding round-64

matches in the Australia Open, the median player rank happens to equal that in the

China Open, at 28. Figure 2 shows that players in Melbourne, Beijing, and other Chinese

locations rank among the world’s top 100 tennis athletes, including at the very top.

Match-level data. Our sample consists of main-draw WTA matches in the following

years and locations: summer 2004-2016 in Melbourne; fall 2008-2016 in Beijing; fall 2011-

2016 in Guangzhou; winter 2013-2016 in Shenzhen; and summer/fall 2014-2016 in Hong

Kong, Tianjin and Wuhan. We cannot extend a given venue’s matches to earlier years due

to high-frequency environmental conditions not being available or because a given series

8In terms of sample, we do not consider doubles matches, which would require that we model strategies
between players within a team. Men’s singles matches in the Australian Open are best-of-five contests.
Subsequent research can study momentum in the context of teams, longer contests, and gender differences.
Future research accessing more granular data can model battles as tennis games or tennis points, both of
which are subunits of a tennis set, but will need to contend with game serve advantage.

9Other series are the Guangzhou International Women’s Open, Hong Kong Open, Shenzhen Open,
Tianjin Open, and Wuhan Open.
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was recently introduced. In total, we observe 1651 scheduled matches in Melbourne, 499

matches in Beijing, and 661 matches in other locations in China, of which 98%, 95%,

and 94%, respectively, were completed. The remaining 2%, 5%, and 6% of matches at

these respective locations were won either by “retirement,” due to an injured player’s

withdrawal, or, less frequent still, by “walkover,” when a player does not attend.

Matches follow a prescheduled order and start between 10 am to 7 pm local time. In

addition to match status (e.g., completed), we observe player characteristics (name, WTA

rank, ranking points), and the number of tennis games each player won in each battle.

For example, player X wins two battles and loses one, with sequential scores of 6-4, 6-7,

and 6-2 (in games won).10 Rain other than a light shower typically delays play. Due to

controversy over the Australian Open’s heat policy,11 playing in ambient heat has been

common even in the few instances in which a retractable roof was available (the Rod Laver

and Hisense arenas).

The mean length of battle 1, as measured by the number of tennis games played, is

similar across locations: 9.2 in Melbourne, 9.4 in Beijing, and 9.3 elsewhere in China.

Compared with battle 1, battle 2 tends to be shorter by about 0.2 game. Upon losing

battle 1, the likelihood that the battle-1 loser wins the next two battles to win the match

is less than 1 in 5, and similar across locations. Third battles tend to last 9.5 games.

Opponent symmetry vs. asymmetry. A scheduled match’s opponents are typi-

cally confirmed a day or two in advance. We observe pre-match betting odds according to a

leading prediction market (bet365). From these odds, we calculate implied match winning

probabilities prior to the start of play. For example, the odds for players X and Y are 1.57

and 2.37, implying winning probabilities of 64% (i.e., 100%/1.57) and 42% (100%/2.37),

with a winning probability difference between the two players of 64 − 42 = 22% in abso-

lute value.12 Figure 3(a) shows the distribution of this winning probability difference over

10In the example, player Y wins battle 2 by a tie-breaker after both players are tied at 6 games each.
A battle consists of at most 13 games, the last decided by a tie-breaker, except in third battles in Grand
Slam matches in which a player must win 2 games more than her rival and at least 6 games, e.g., 8-6.

11A player may feel that heat works to her advantage. Even a referee’s call for a short break between
battles can be controversial. Our findings apply to hot, and not specifically extreme, weather. We sub-
sequently show robustness of our main results when dropping 66 matches for which a retractable roof
appears to have been closed to protect from heat or rain (Table A.4).

12Betting $100 on player Y winning the match pays out $237, netting $137, should she win. Other online
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matches in the sample. We are missing odds prior to 2008 (about 500 matches).

By incorporating available information, including expected location- and time-specific

conditions that affect athletes differentially, the difference in players’ winning probabili-

ties captures the ex-ante asymmetry: for instance, compare the above match’s winning

probability difference of 22% with 72% in another match among asymmetric competitors.

A player may have a history of performing better on a hard court or in hot weather

than her opponent, and such expected conditions should be reflected in betting prices.

Matches with a low winning probability difference are those in which the opponents’ rela-

tive strength—comparative ability, fitness, or motivation—was deemed most symmetric.

As alternative measures of the relative strength of athletes paired in matches in our

sample, Figure 3 also shows (panel b) the distribution of the absolute difference in op-

ponents’ WTA ranks, e.g., a difference of 30 for a match between players ranked 25 and

55; and (panel c) the distribution of the difference in opponents’ WTA ranking points

or z-scores, e.g., a difference of 2 standard deviations for a match between players with

points 5 and 3 standard deviations above the mean in the worldwide population of WTA

players.13 These alternative measures are based on aggregates over time and integrated

over an athlete’s performance at venues with varying court surfaces and environments.

The pairwise correlation coefficient for (a) the winning probability difference against

(b) the rank difference (in log) is 0.43, or (c) the z-score difference is 0.61. The left panels

of Figure 4 show that as each asymmetry measure grows, the stronger player is indeed

more likely to win the match. (We will later refer to the right panels.) For each measure,

we group matches in 10 same-width bins, with the first bin starting at the minimum

difference and the last bin ending at the 95th percentile of the difference distribution over

asymmetric matches.14 Matches in which player ranks differ by 100 or more tend to be

betting sites report similar odds to bet365. 64% and 42% exceed 100% due to bookmaker fees (about 6%).
13The time-adjusted world z-score is a player’s unadjusted WTA ranking points minus the mean over

all worldwide WTA players (on the match’s date), divided by the standard deviation over all worldwide
WTA players. The adjustment accounts for changes in the variance of WTA ranking points over time.

14Using the sample of matches without missing measures, we implement three separate regressions. In
each case, we regress an indicator that the match was won by the stronger player (alternatively defined
as that with the higher winning probability, the better rank, or the higher z-score) on the corresponding
asymmetry measure, i.e., as the respective regressor, the winning probability difference, log rank difference,
or z-score difference. The R2 of the first regression, at 9%, is more than double that of the others.
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those between weaker players, for which rank difference is a noisier measure of asymmetry.

Exogenously varying environments. We observe temperature and particle pol-

lution, among other ambient weather conditions, mostly in the form of 1-hour readings

(several sources, described in Table 1 notes). For Melbourne, we lack 1-hour PM2.5 prior

to 2015, so we use the Victoria EPA’s 1-hour Airborne Particle Index (API) instead. We

verified that daily mean PM2.5, available once every 3 days, closely tracks the 1-hour API

aggregated into daily means. Specifically, at each of two sites less than 9 km from the

venue, the pairwise correlation coefficient between PM2.5 and API is 0.94 over 2004-2016.

One API unit is associated with 15 µg/m3 PM2.5, so a maximum of 5.1 units in the

Australian Open match sample corresponds to 77 µg/m3 PM2.5. For Beijing, PM2.5 was

measured at the US Embassy, located 19 km from the venue in 2008 and 11 km thereafter.

In north China, PM2.5 fluctuates substantially from one day to the next, due to exogenous

shifts in atmospheric stagnation (He et al., 2019).

3 Reduced-form regressions

We now document that environmental quality affects contest duration in professional

tennis. We later interpret the relationships in the data through the lens of a dynamic

contest model, in which we explicitly characterize players’ incentives and effort choices at

each state, and quantify these agents’ preferences for environmental amenities.

Amplified momentum. Spectators, advertisers, and organizers presumably derive

value from a tighter and longer match. Consider the probability that a match ends in

three battles rather than two. Without conditioning on player asymmetry, the probability

that a match lasts three battles is about one-third. When opponents are more symmetric,

the proportion of three-battle matches (three-setters) is higher. This proportion is 0.40 in

the first quartile of the players’ winning probability difference distribution.15 Recall that

absent dynamic behavior, the probability that a match between symmetric players lasts

three battles would be 0.5.

15Similarly, the probability of ending in three battles is 0.36 and 0.35 in the first quartiles of the rank
difference and z-score difference distributions. In contrast, the probability of a three-setter is 0.20 for
matches in the fourth quartile of the winning probability difference distribution.
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Table 2 reports our key finding: A degraded environment, whether heat or pollution,

sharply reduces the probability that an ex-ante even match is played over three battles.

Two players may be symmetric when starting a match, but a degraded environment in-

duces more asymmetric outcomes, as it raises the advantage in battle 2 from having won

battle 1. Start with very asymmetric pairings, in column 1. In the subsample of matches

for which opponents’ winning probabilities differ by at least 65% (N = 566), heat or

pollution does not change the probability that a match lasts three battles (0.20 in this

subsample). In contrast, in relatively symmetric pairings in columns 2 to 8, heat or pol-

lution significantly lower the probability that a match lasts three battles. Columns 2 to

6 progressively shrink the subsample based on opponents’ winning probabilities, from at

most 30% apart (N = 700) to at most 10% apart (N = 194). The likelihood of a three-

setter is flat at about 0.4, even as the definition of symmetry becomes more stringent (i.e.,

≤ 30% to ≤ 10% difference). Compared to matches played in cooler and cleaner air, the

probability of a three-setter is about (i) 18 percentage points lower when the temperature

exceeds 29 ◦C, and this estimate is significant at the 1% level even as standard errors

grow; and (ii) 10 percentage points lower when PM2.5 exceeds 100 µg/m3, with loss of

precision. Comparing columns 7 and 3, estimates grow in magnitude upon adding controls

for series by round (e.g., Australian Open’s round 64),16 year, time-of-day, humidity, wind

speed, and rain. (We do not use all of these shifters in our structural model, to keep it

parsimonious, but could do so in principle.) Column 8 specifies finer PM2.5 bins, namely

100 to 200 µg/m3 and over 200 µg/m3. We write our first key result:

Fact 1 (Battle-2 transition probability): In a contest between players with fairly

even strengths, as measured by similar winning probabilities, the battle-1 loser is more likely

to lose than to win in battle 2, and this momentum grows as the environment deteriorates.

As in the subsequent structural analysis, column 9 pools the estimation sample over

the entire range of opponent asymmetry (N = 2130). Here, we control for the winning

probability difference and its interactions with heat and pollution indicators. Naturally,

16Winning a contest later in a series, and in more prestigious series, carries a higher cash (and continu-
ation/reputation) prize, so we condition on series-round. Three-setters tend to be more prevalent in later
vs. earlier rounds, and in more prestigious series, even among relatively symmetric pairings.
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environmental quality impacts transitions less when a top 10 player faces a rival ranked

100-200. The patterns reported in Table 2 are robust to extending the sample to include

qualifying matches (Tables A.1 and A.2) and to controlling for opponents’ age difference.17

Table 2 regression results are readily seen in the combined match-environment data.

Figure 5 partitions the set of completed matches along two dimensions: (i) into 10 bins for

the winning probability difference, namely a zero-difference bin and nine same-width bins

in increasing order of opponent asymmetry along the horizontal axis; and (ii) whether

either temperature or PM2.5 exceeded a threshold (marked by red circles), against a

“control” in which both environmental variables were below their respective cutoff (green

squares). The plots show increased momentum whether we specify temperature cutoffs of

27 or 29 ◦C and PM2.5 cutoffs of 100 or 200 µg/m3.

Table 3, columns 1 to 4, report that the battle-1 loser’s gain in terms of tennis games

won in battle 2 relative to battle 1 shrinks as the environment deteriorates. Because a

battle is won with 6 or 7 games, a 0.4 to 1.1 reduction in relative games won is large in

magnitude. This is another manifestation of momentum amplified by a poor environment.

Heterogeneity vs. dynamic incentives. The next section formalizes the within-

match dynamics of player incentives. However, a natural question is whether the envi-

ronment’s effect on the likelihood that the battle-1 loser successfully fights back in battle

2 can be explained by an alternative hypothesis. Were one opponent, the battle-1 loser,

more sensitive to the environment than her opponent, this might also explain why she

already fell behind in battle 1. By this alternative hypothesis, momentum would be due

to physiology (biology) rather than dynamic incentives.

Suppose one player were systematically more sensitive to the environment. Such pub-

lic information would likely be incorporated into betting odds. For example, prediction

markets would level the odds of a player with poor resistance to heat and who meets an

otherwise less able opponent on a hot Melbourne afternoon. By Fact 1, we use betting

odds to control for differences in player strength.

Now suppose that heterogeneous environmental sensitivity were instead idiosyncratic,

17Across matches, the median age difference is 3.6 years. In the player-by-match distribution, percentiles
25, 50, and 75 of player age are 22, 25, and 27 years (players are young and professional careers short).
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and thus not incorporated into betting odds. If a publicly even player were privately

weaker than her opponent when playing in a poor environment, we would observe not

only a shorter match but also a shorter first battle, which the data show not to be the

case, as Fact 2 summarizes next. Columns 5 to 8 of Table 3 show that the length of battle

1, in the tennis games played, is not lower in a low-quality environment. For example, in

column 6’s relatively symmetric subsample, battle 1 is longer by a statistically insignificant

0.1 game when the temperature exceeds 29 ◦C compared to matches played in cooler air.

This small and insignificant difference is robust as we reduce the subsample to define

symmetry more strictly (as we did in Table 2, columns 2 to 6).

Fact 2 (Battle-1 competitiveness): In a contest between players with fairly even

strengths, as measured by similar winning probabilities, the length of the first battle does

not change significantly as the environment deteriorates.

The evidence thus suggests that heterogeneous environmental sensitivity—whether

public or private—is not the key driver of shorter contests. We subsequently show that

momentum amplified by environmental degradation obtains in a smaller sample of matches

with similar winning probabilities and with tight battle-1 outcomes, e.g., 7-6.

Environment and randomness. Table 4 suggests that match outcomes are not

more random, or less predictable, in poor environments. As environmental quality de-

clines, the less favored opponent—when betting odds indicate there is one—is about as

likely to lose the match (columns 1 to 4) and as likely to lose battle 1 (columns 5 to

7) compared to matches in milder environments.18 Column 9 indicates that the ex-ante

winning probability of the match winner, with a sample mean of 0.67, is not significantly

associated with environmental quality. Heat or pollution do not level the playing field,

in the sense that “upsets” do not become significantly more likely under environmental

stress (Figure 4, right panels). If anything, to judge by the sign of most point estimates,

upsets become somewhat less likely as the environment deteriorates. We summarize this

relationship in the data as follows:

18To the extent that betting markets use heat or pollution forecasts, prices may already incorporate any
randomness that is driven by a poor environment. If we instead define the favorite as the opponent with
the strictly better rank or higher z-score (aggregates over time), similar results obtain.
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Fact 3 (Favorite still wins): Upsets, defined as the less favored player winning the

contest, or winning battle 1, do not become more likely as the environment deteriorates.

Table A.3 considers tennis points, which are a subunit of a tennis game.19 We similarly

find that the favorite wins a share of tennis points in the match—and in battle 1—at least

as large in a poor environment compared with a mild one.

We also compared the proportion of uneven first and second battle outcomes, defined

as scores of 6-0 or 6-1 (tennis games), for matches that are played in varying environments.

Taking cutoffs of 29 ◦C and 100 µg/m3, uneven first battles are as prevalent with heat or

pollution (0.193, N = 802) as under cool and clean air (0.196, N = 1880); the p-value of

an equality test is 0.86. In contrast, uneven second battles are more prevalent in heat or

pollution (0.241) than in a mild environment (0.211), with a p-value of 0.09. If we lower

the temperature cutoff to 27 ◦C to include more matches played in poor environments,

the prevalence of uneven first battles again does not vary with heat or pollution, yet

the p-value of an equality test of uneven second battle prevalence is now 0.006, namely

(0.247, N = 1064) with heat or pollution vs. (0.202, N = 1618) otherwise.

Withdrawals. Our analysis conditions on completed matches: 2722 of 2811 scheduled

matches, for a 97% completion rate. Due to large penalties, no-shows and retiring from

the court rarely happen in these high-profile contests; our sample includes 15 walkovers

and 74 retirements. A player needs a medical reason for either. Here we briefly examine

whether the environment affects this additional margin of labor supply. For Melbourne,

we find that temperatures were on average similar for the 27 scheduled but not completed

matches, compared to the 1624 completed matches in the sample: 26.2 against 26.1 ◦C,

respectively. For Beijing, PM2.5 was on average 33% higher for the 23 non-completed

matches compared to the 444 completed matches: 115 against 87 µg/m3, respectively.20 In

all of 7 no-show cases in Beijing, the absentee had played in a preceding round, so she had

traveled to Beijing and was possibly injured. We conclude that an adverse environment,

and pollution in Beijing in particular, may reduce the likelihood that a scheduled match

19A tennis game can be won by winning at least 4 tennis points. For this analysis, we obtained total
tennis points won by each player in a match and in battle 1.

20The p-value of a one-sided test of equality is 0.08. For other Chinese venues, average PM2.5 for the
37 non-completed matches and the 614 completed matches were similar; respectively, 53 and 50 µg/m3.
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is completed, but this effect is of limited significance.

We also checked that the distribution of players’ WTA rank in Melbourne in hotter-

than-usual annual events (2006, 2009, and 2014) was similar to that in less hot events

(2004, 2011, and 2015).

4 Amplified momentum in a contest model

We develop a dynamic contest model that lends itself naturally to estimation. The model

offers a lens through which to interpret the reduced-form results. We set up a best-of-

three contest (a tennis match), and solve for the transition probabilities between battles

(tennis sets as stages of the contest) as a function of economic primitives. These primitives

include marginal effort cost and fixed cost parameters that, in the empirical model, shift

with observables such as ability, heat, and pollution.

4.1 Model setup

Two possibly asymmetric players, labeled h and l, face marginal costs ch ≥ cl > 0 that are

constant over the range of effort x. The opponents engage in a contest in which up to three

battles are held sequentially. In each battle, players simultaneously choose effort xi ≥ 0,

i ∈ {l, h}, conditional on preceding battle outcomes. We model the contest technology

following Tullock (1980), specifying the battle-transition probabilities as

p(xi, xj) =
(xi)

k

(xi)k + (xj)k
, i, j ∈ {l, h}, i 6= j, (1)

for the case max{xi, xj} > 0, where pi = p(xi, xj) is the probability that i wins a battle

given her effort choice and that of her opponent, and p(0, 0) = 0.5 when both players choose

zero effort. Technology parameter k, 0 < k ≤ 1, measures the degree of randomness in the

winner selection process, reflecting the contest success function’s discriminatory power. A

smaller k corresponds to a noisier technology. In particular, as k approaches 0, relative

effort does not matter and the winner is effectively a random draw.21

21The Tullock family of contest success functions is the most popular in the contest literature. Skaperdas
(1996) and Fu and Lu (2012), respectively, provide axiomatization and micro foundations for it. Following
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The player who wins at least two of the three battles wins the contest. The single

prize for winning the contest is Vi (the subscript reflects a potentially asymmetric prize).

Consistent with the data, we implicitly assume a sufficiently large penalty for no-shows

such that players show up to play. We introduce a per-battle fixed cost, specifically an

environmental disutility parameter δ (hereafter disutility), which scales with environmen-

tal degradation and captures the disutility to a player from added exposure to adverse

environmental conditions. Much like the situation of spectators who do not exert player

effort but still suffer disutility from heat or pollution (which may induce lower attendance

at the arena), we assume δ enters player utility separately from effort cost; we formalize

this below.22 We further introduce an environmental effort cost factor λ > 0 by which a

player’s constant marginal effort cost, λci, also scales with environmental degradation.

The environment enters the model both as a direct utility shifter and by shifting

marginal cost. Despite our model accommodating both channels, we learn that marginal

cost shifts do not affect players differentially and do not drive transition probabilities.

The environmental effort cost factor λ thus cannot be identified from empirical winning

probabilities, which are at the heart of our design. In contrast, the first shifter, disutility

δ, does shift transitions. To show that λ “cancels out,” we keep it in the model. (λ can

increase both in a poor environment and with the battle number, as players grow tired.)

With richer cost specifications in Appendix B, we show that even when a poor environment

makes the cost function more convex (less concave), it does not increase momentum.23

4.2 A one-shot game: The building block

We solve for the subgame perfect equilibrium by backward induction, so it is convenient

to consider a single battle. Let V i and V i denote continuation value to player i if she,

Klumpp and Polborn (2006) and Malueg and Yates (2010), we formulate cost to depend on the effort
chosen in each battle, not the cumulative effort, but we can allow the mapping from player ability to
marginal cost to vary by battle. The structural approach allows us to pool the estimation sample over the
entire range of asymmetry. We focus on pure-strategy subgame perfect Nash equilibria.

22Inspired by Gelder (2014), the environment entered an early version of the model by discounting
continuation value from future battles exposed to adverse conditions, not through an additive fixed cost.

23We specify player i’s effort cost in battle b as Ci(xi;λ, b) = abci [(xi + 1)λ − 1], λ > k. Cost is convex
(or, less naturally, concave) in effort, e.g., λ = 2 (or λ = 0.5). Marginal cost is abλci(xi + 1)λ−1, noting
that players growing tired from one battle to the next could be captured by a3 ≥ a2 ≥ a1 > 0.
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respectively, wins and loses the one-shot game, with win-loss prize spread ∆Vi := V i−V i.

Given her rival’s action xj , player i solves:

arg max
xi

(xi)
k

(xi)k + (xj)k
V i+

(xj)
k

(xi)k + (xj)k
V i−λcixi−δ =

(xi)
k

(xi)k + (xj)k
∆Vi+V i−λcixi−δ,

where the terms of the expression account for the expected benefit of effort, the effort cost,

and the environmental disutility. At an interior solution, with ∆Vi > 0, player i equates

marginal effort benefit with marginal effort cost:

(xi)
k−1(xj)

k

[(xi)k + (xj)k]2
k∆Vi = λci, i ∈ {l, h}, j 6= i.

An isomorphic representation of the problem has player asymmetry entering the contest

success function directly, pi = (γixi)
k/[(γixi)

k + (γjxj)
k], with parameters γi, γj > 0

capturing players’ skill, and homogeneous marginal cost ci, cj normalized to 1. In this

representation, a unit of effort contributes more to a win, the more skilled the player.

Solving the system of best-response functions, and noting that cixi/∆Vi = cjxj/∆Vj ,

the optimal bidding strategies as a function of prize spreads (and other parameters) are

xi(∆Vi,∆Vj) =
k∆Vi
λci

( cicj
∆Vj
∆Vi

)k

[1 + ( cicj
∆Vj
∆Vi

)k]2
, i, j ∈ {l, h}, i 6= j. (2)

Multiplying both sides of (2) by λci, equilibrium effort cost λcixi does not depend on the

environmental factor λ, as effort x is inversely proportional to λ in equilibrium. For an

equal prize spread, this effort cost is equal across players.

The reduced-form winning probabilities are

pi = p(xi(∆Vi,∆Vj), xj(∆Vj ,∆Vi)) =
1

1 + ( cicj
∆Vj
∆Vi

)k
, i, j ∈ {l, h}, i 6= j. (3)

Facing equal incentives, a lower relative marginal cost makes a player’s success more likely.

Figure 6 illustrates the best-response functions when players are symmetric, and when

they are not (whether heterogeneity enters through marginal cost or through the contest

16



prize). In both symmetric and asymmetric cases, as her rival’s effort increases from zero,

a player’s optimal response is to increase her effort level. As the rival’s effort increases

beyond a threshold, the player responds by cutting back on effort.

4.3 Transition probabilities

Let binary variable χbi indicate the event in which battle b is won by player i, i.e., χbi = 1

denotes her battle win and χbi = 0 denotes her loss. We use ∆Vbi = V bi − V bi to denote

player i’s win-loss prize spread in battle b. Note this is in general history-dependent.

In a final battle 3, played only when each previous battle was won by a different player

(i.e., χ2l 6= χ1l), the winner takes the contest prize and the loser earns 0. Setting win-loss

spreads ∆V3l = Vl and ∆V3h = Vh in (3) yields battle-3 transition probabilities:

p3l := Pr (χ3l = 1 |χ2l 6= χ1l ) =
(chVl)

k

(clVh)k + (chVl)k
, p3h := Pr (χ3l = 0 |χ2l 6= χ1l ) = 1−p3l.

In battle 2, a player’s winning probability is state-dependent. There are two states,

depending on whether battle 1 was won or lost by the low-cost player. Starting with a

history χ1l = 1 (battle 1 was won by player l), continuation values conditional on battle-2

outcomes are:

if χ2l = 1 (contest ends 2-0)

 V 2l|χ1l=1 = Vl,

V 2h|χ1l=1 = 0,
(4)

if χ2l = 0 (contest continues 1-1)

 V 2l|χ1l=1 = p3lVl − λclxl(Vl, Vh)− δ,

V 2h|χ1l=1 = p3hVh − λchxh(Vh, Vl)− δ.
(5)

Having won battle 1, player l’s continuation values are (i) V 2l|χ1l=1 = Vl from winning

battle 2 and the contest, and (ii) V 2l|χ1l=1 = p3lVl−λclxl(.)−δ from losing battle 2, which

means taking the contest to battle 3 and incurring further effort cost and environmental

exposure. Player h, having lost battle 1, faces continuation values V 2h|χ1l=1 R 0 and

V 2h|χ1l=1 = 0 from, respectively, winning and losing battle 2. When player h’s continuation

value from taking the contest to battle 3 is negative (V 2h|χ1l=1 < 0), she can do better by

exerting 0 effort and securing a continuation value of 0: In this situation, player l exerts an
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effort infinitesimally higher than 0 and wins the contest. Other than this corner solution,

we obtain actions by plugging battle-2 win-loss incentives ∆V2i|χ1l=1 = V 2i|χ1l=1−V 2i|χ1l=1

into one-shot effort (2). Plugging these actions into technology (1) yields conditional

battle-2 transitions. Appendix A reports actions and transitions at all contest nodes.

Given the alternative history χ1l = 0 (battle 1 was lost by player l), continuation values

conditional on battle-2 outcomes are expressed similarly to (4) and (5). For example,

player l’s continuation values are V 2l|χ1l=0 = p3lVl−λclxl(Vl, Vh)−δ from winning battle 2,

triggering further effort and exposure, and V 2l|χ1l=0 = 0 otherwise.24 Again, for an interior

solution, using each player’s win-loss spread ∆V2i|χ1l=0 in (2) yields optimal actions, and

battle-2 transitions conditional on history χ1l = 0 follow from (1).

We pause to discuss how a degraded environment amplifies momentum in the model.

With only one player winning battle 1, in battle 2 players’ win-loss spreads are asymmetric

even when marginal cost and the contest prize are equal across players, i.e., ci = c and

Vi = V . To see this, we derive battle-2 incentives for this symmetric player case. Start

by considering a possible battle 3. Using battle-3 win-loss spreads ∆V3i = V in effort (2),

battle-3 effort cost is λcx = kV/4 (and invariant to the environmental factor, as higher λ

induces lower effort); moreover, each player’s winning probability is 0.5. Now move back

to battle 2. The player who won battle 1 faces continuation values from battle 2 of V from

winning and V/2− kV/4− δ from losing, with a difference of (2 + k)V/4 + δ. By contrast,

the player who lost battle 1 faces continuation values from battle 2 of V/2−kV/4−δ from

winning and 0 from losing, with a difference of (2− k)V/4− δ.

Two key points are immediate. First, even absent environmental shocks δ = 0, the

battle-1 winner enjoys a larger spread and chooses higher effort in battle 2 relative to the

battle-1 loser (as k > 0). Such differential battle-2 incentives yield momentum. Second, as

environmental disutility δ grows, the battle-1 winner’s win-loss spread in battle 2 increases

relative to that of her rival, amplifying momentum.

Back to the general asymmetric player case, we complete the derivation of transition

probabilities, to be taken to the data. Battle-1 transitions are obtained from continuation

24Like V 2h|χ1l=1 above, V 2l|χ1l=0 can be negative, in which case player l exerts 0 effort in battle 2 to
avoid a third battle. In contrast, a battle-1 winner’s win-loss spread in battle 2 is always positive.
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values conditional on battle-1 outcomes, plugging the associated win-loss spreads for each

player in (2) and the resulting effort in technology (1). For example, player l’s continuation

values in the event she, respectively, wins and loses battle 1 are a function of battle-2

conditional transitions, continuation values, effort cost, and environmental disutility:25

V 1l = Pr(χ2l = 1|χ1l = 1)V 2l|χ1l=1 + Pr(χ2l = 0|χ1l = 1)V 2l|χ1l=1 − λclx2l|χ1l=1 − δ, (6)

V 1l = Pr(χ2l = 1|χ1l = 0)V 2l|χ1l=0 + Pr(χ2l = 0|χ1l = 0)V 2l|χ1l=0 − λclx2l|χ1l=0 − δ. (7)

For clarity, the first equation is player l’s continuation value from winning battle 1 (χ1l =

1), leading her to a battle-2 win (χ2l = 1) or loss (χ2l = 0) with effort cost and disamenity.

4.4 Identification and illustration

Identification follows from the discussion above. Consistent with amplified momentum as

documented in the descriptive analysis, environmental quality shifts transition probabili-

ties via the per-battle environmental disutility parameter δ. As δ increases from 0, players

are exposed to a more degraded environment.

As in the one-shot game, one can show that in each subgame a player’s transition

probabilities, effort cost, and expected payoff in equilibrium do not depend on the en-

vironmental effort cost factor λ. Environmental degradation shifts the marginal cost of

effort λci, but this is offset by an inversely proportional response in effort xi(.). Because

λ is not identified from the data, on implementation we set it to 1. Notice that environ-

mental parameters λ and δ are similar in that, in principle, they function through their

impact on total costs (effort cost and fixed cost).

Randomness k in the winner-selection technology is identified from variation in tran-

sition probabilities, holding constant both environmental disutility and players’ relative

strength cl/ch. We illustrate with symmetric contest prizes Vi = V = 1 (and subsequently

consider asymmetric prizes, e.g., reputation win-loss differentiated through player age).

Figure 7 illustrates transition probabilities as a function of the per-battle environmental

25The example is for an interior solution. In contrast, if V 2l|χ1l=0 < 0, a battle-1 loss leads player l to
exert 0 effort in battle 2, with a battle-1 continuation value from loss of V 1l = −δ.
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disutility parameter δ when players are symmetric, and when there is moderate player

asymmetry ch = 2cl.
26 As the environment deteriorates, momentum increases, with a

rising probability that the battle-1 winner also wins battle 2. Heat or pollution reduces

the probability that battle 2 is won by the player who lost battle 1, and thus the likelihood

that the contest transitions to a third battle falls, which is consistent with the descriptive

analysis. For comparison, in battles 1 and 3, each player has won an equal number

of battles (zero or one): Facing the same win-loss spread, equally able players respond

equally to the environment, and thus winning probabilities for these battles, of 0.5, do not

depend on the environment.

Figure A.1 plots overall contest winning probabilities for two degrees of randomness, for

k = 1 in the top panels and for k = 0.7 (more randomness) in the bottom panels. Among

symmetric players (left panels), a contest winning probability of 0.5 does not depend on

the environment as, intuitively, this affects both players equally. With asymmetric players

(right panels), the difference in contest winning probabilities may widen slightly as δ grows.

This suggests that the likelihood of an upset changes little—perhaps falls slightly—as the

environment deteriorates, consistent with the descriptive analysis.27

5 Dynamic contest model estimates

5.1 Empirical implementation

For each match n = 1, ..., N , we observe alternative proxies for each opponent i’s relative

ability at the time of the match, ain, based on betting odds, rank, or z-score, respectively,

oddsin, rankin, or zscorein. We specify marginal effort cost parametrically:

cin = f(ain, θ, εin), (8)

26Subsequent model estimates indicate that stronger degrees of asymmetry, such as ch = 5cl, are not
uncommon in the data (Figure A.6). In such cases, a poor environment still increases momentum but the
slope is flatter. Intuitively, even in the unlikely event that battle 1 is won by the weak player, her winning
battle 2 is unlikely and environmental degradation can provide little momentum.

27Prediction markets may or may not capture this environment-induced change in overall winning odds.
In any case, the widening in favor of the more able player appears small. Figure A.2 plots player l’s contest
winning probability for asymmetry up to ch = 5cl, as δ varies. Figure A.3 shows the probability that a
contest lasts three battles, as opposed to two. Figure A.4 shows effort choices in battles 1 to 3.
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where θ is a parameter to be estimated, and player-match shock εin is a mean-zero normally

distributed error, i.i.d. over matches n and players i with variance σ2
ε , and invariant within

a match.28 Relying on parameter k, which already captures randomness in mapping effort

to success, our main empirical model sets σε = 0. Marginal cost is, alternatively, given by

cin = (oddsin)θ, cin = (rankin)θ, or cin = e−θ(zscorein). Note that z-scores are occasionally

negative, for the few players below world average, which explains the variation in the

forms of specification. The constraint θ > 0, which may be imposed during estimation,

implies that marginal cost increases in the odds or the rank and decreases in the z-score.

We find that different measures of player strength yield similar results.

We observe mean temperature, Tn, and PM2.5, Pn, and make functional form assump-

tions relating ambient conditions to the per-battle environmental disutility parameter:

δn = g(Tn, Pn, δT , δP ), (9)

where δT , δP are unrestricted parameters to be estimated, governing how disutility varies

in the respective temperature and PM2.5 excess (◦C and µg/m3) relative to cutoffs T and

P :

δn = δ0 + δT ln(1 + max(Tn − T , 0)) + δP ln(1 + max((Pn − P )/100, 0)). (10)

The temperature and pollution cutoffs and the intercept δ0 are either specified or esti-

mated. In our data, we rarely observe matches played under both heat and pollution, for

example, no match was played at a temperature above 27 ◦C and PM2.5 above 150 µg/m3

at the same time. Alternatively, we estimate models with dummy variables, such as

δn = δ0 + δT 1(Tn > T ) + δP 1(Pn > P ). (11)

The vector of parameters to be estimated is then, at a minimum, Ψ = (k, θ, δT , δP ).

We can also impose the model constraint that 0 < k ≤ 1. However, neither this constraint

on the technology parameter nor the constraint on the parameter that governs how ability

maps to marginal cost (θ > 0) turn out to bind during optimization. Our main model

28While εin and εjn can be correlated, transition probabilities shift with opponents’ relative strength.
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takes the match’s prize money as a proxy for Vin, but note that this ignores a winner’s

continuation value from playing the next round and prestige as the series final approaches.

5.2 Likelihood function

For a guess of parameters Ψ, we calculate the likelihood contribution for every match n in

the sample as follows. Compute cin = f(ain, θ), cjn = f(ajn, θ), and δn = g(Tn, Pn, δT , δP )

from (8) and (9), and use cln = min(cin, cjn) and chn = max(cin, cjn) to label the players

(weakly) low-cost and high-cost. Denote possible outcomes by ιn = ab(c), where a, b,

and (for three-setters) c label the players who won battles 1, 2, and 3. A match has 6

mutually exclusive outcomes, ιn ∈ O := {ll, lhl, lhh,hll,hlh,hh}. For example, facing

a relatively high-cost opponent ranked 40, a player ranked 20 wins battles 1 and 2, such

that the match outcome is ll, i.e., the low-cost player wins the match in two sets.

Model-predicted probabilities follow from the transition probabilities derived earlier.

For example, matches with outcomes ll and lhl contribute, respectively:

Pr(ll |Ψ) = Pr (χ1l = 1) Pr (χ2l = 1 |χ1l = 1) ,

Pr(lhl |Ψ) = Pr (χ1l = 1) Pr (χ2l = 0 |χ1l = 1) Pr (χ3l = 1 |χ1l 6= χ2l ) .

Appendix A reports all expressions. Write match n’s likelihood contribution, conditional

on parameters Ψ, as
∏
ιn∈O (Pr(ιn |Ψ))1(ιn), where indicator 1(ιn) is 1 if outcome ιn was

observed in match n and 0 otherwise. The likelihood across all matches is

∏N

n=1

∏
ιn∈O

(Pr(ιn |Ψ))1(ιn) . (12)

Now we take logs, and our task is to find parameters Ψ that maximize the log likelihood.

To test robustness, we restrict the sample to matches in which the prize money is not too

high, to matches for which opponent asymmetry is low, and so on.
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5.3 Results

Table 5 shows that estimates are robust across alternative ability measures. Across

columns, the technology parameter k is stable at about 0.7, implying that effort yields a

win with some degree of randomness. Alternative θ parameters imply that marginal cost

increases in the betting odds (inverse winning probability) and the WTA rank, and de-

creases in the WTA z-score. In the isomorphic representation, in which asymmetry shifts

technology, the degree to which a player converts effort into success decreases in the odds

and the rank, and increases in the the z-score.

With regard to the key economic primitives, we obtain that the environmental disutility

grows as ambient (i) temperature increases from T = 27 ◦C and (ii) PM2.5 increases

from P = 150 µg/m3 (in this table we fix the poor environment cutoffs and set the

intercept δ0 = 0). Parameters δT , δP are estimated to be significant both statistically and

economically. Across columns, the fixed cost per battle grows by δ̂T =$120 to $150 as the

temperature shifts from 27 to 27 + e− 1 ≈ 28.7 ◦C. The coefficient is multiplied by 1000

because the match’s prize money—the proxy for the contest prize here—is expressed in

thousands of dollars, per Table 1. Euler’s number e follows from the natural logarithm

in (10);29 this logarithmic form implies that over the range of temperature variation, to a

sample maximum of 44 ◦C, impacts grow at a diminishing rate. The concavity may stem

from heat relief technologies being adopted as conditions deteriorate, like ice misters when

players switch sides on the court after every odd tennis game.30 Thus the disutility grows

by twice as much, 2δ̂T =$250 – 300, for a temperature shift from 27 to 27 + e2 − 1 ≈ 33.4

◦C, and by 3δ̂T =$370 – 450 for a shift from 27 to 46 ◦C.

To read the coefficient on pollution, the per-battle disutility grows by δ̂P =$1100 to

$1400 for a large PM2.5 shift from 150 to (1.5 + e− 1)× 100 ≈ 322 µg/m3. The disutility

grows by half as much, 0.5δ̂P =$570 – 700, for a still sizable PM2.5 shift from 150 to

(1.5 + e0.5 − 1)× 100 ≈ 215 µg/m3.

29That is, for a shift in the temperature covariate in (10) from ln(1+27−27) = 0 to ln(1+27+e−1−27) =
1.

30WSJ (2014) may help interpret: “Tennis is, of course, not a terrible sport to play in the heat. There
are no helmets or protective pads. There are plenty of stops and starts. Players can rest in the shade
between games with ice-filled towels. They can take bathroom breaks and call for medical timeouts.”
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Taking betting odds to measure ability, Table 6 further reports on robustness. Column

1 allows the technology parameter to vary by battle kb, b ∈ {1, 2, 3}, with point estimates

of 0.67, 0.67 and 0.67, indicating that the contest success function’s discriminatory power

is similar during the course of a match. Column 2 allows for battle-specific marginal cost

parameters θb, b ∈ {1, 2, 3}, with point estimates of 0.87, 0.85, and 0.88, suggesting that

the mapping from ability to marginal cost varies little within a match. The estimated

environmental disamenities hardly change. In column 3, slopes δT , δP remain significant

when the fixed cost intercept δ0 is estimated, at $56, and statistically insignificantly dif-

ferent than zero. This suggests that setting δ0 = 0 in our preferred specification (Table 5,

column 1) is not too restrictive. In column 4, we estimate (rather than specify) the poor

environment cutoffs subject to the constraints 25 ≤ T ≤ 35 ◦C and 100 ≤ P ≤ 300 µg/m3.

With estimated cutoffs of T̂ ≈ 26.1 ◦C and P̂ ≈ 220 µg/m3, the heat slope is slightly lower

and the pollution slope is higher. With technology and environment interacting in column

5, randomness falls (k increases) as the environment worsens, but not significantly so.

Model predictions. Figure 8 further interprets our preferred estimates, providing a

welfare analysis that underscores one strength of structural work. The figure illustrates a

match with prize money at the sample median, $15,100 (we later illustrate for a lower-prize

match). For a given environment, the vertical intercept in panel (a) shows the increase

in likelihood that a player wins battle 2 after winning vs. losing battle 1 against an

equally able player. Compared to a “threshold” environment, this momentum (likelihood

increase) grows by 3 percentage points when the temperature shifts from 27 to 37 ◦C and

by 8 percentage points when PM2.5 shifts from 150 to 250 µg/m3.31 The panels report on

cases of increased asymmetry along the horizontal axis. In panel (b), the probability of a

tighter three-battle contest against an equally able player falls by up to 4 percentage points

in the illustrated poor environments compared with a threshold one—again, compare the

vertical intercepts. In panel (c), environmental degradation slightly reduces the likelihood

of an upset. Reassuringly, the stronger player’s model-predicted winning probability rises

linearly with the betting-market winning probability difference. The expected utility loss

31Momentum is calculated as Pr (χ2l = 1 |χ1l = 1)−Pr (χ2l = 1 |χ1l = 0) (equivalent if we write h instead
of l in the subscript, because one player’s win is the other player’s loss).
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from heat and pollution at the outset of a contest is shown in panels (d) and (e) for strong

and weak players, respectively. In a symmetric contest, raising temperature from 27 to 37

◦C reduces a player’s expected payoff, net of her effort cost, by $670; raising PM2.5 from

150 to 250 µg/m3 reduces a player’s expected payoff by $1800.

These model estimates inform the continuation values to a player from winning relative

to losing the first battle (calculated from (6) and (7)) and, importantly, how this value

difference—the value of a head start—grows as the environment worsens. At 27 ◦C and

150 µg/m3, in a symmetric contest with median prize ($15,100), this differential value

from winning vs. losing battle 1 is $9610 − $1150 = $8470. At 37 ◦C (and 150 µg/m3),

the differential value from winning battle 1 is $130 higher (i.e., $8600). At 250 µg/m3

(and 27 ◦C), the differential value from winning battle 1 is $370 higher (i.e., $8840) than

at 150 µg/m3.

Figure 9 is similar to Figure 8 except that it illustrates a lower-prize match, at the

25th-percentile prize money of $8700. Comparing panels (a) and (b) across the two figures,

environmental degradation amplifies momentum and reduces three-setter occurrences to

a greater degree when the contest prize is lower.32

Figure A.5 is similar to Figure 9 in illustrating a lower-prize match except that it

takes WTA rank to measure ability. As stated earlier, environmental impacts are similar

across alternative ability measures. Figure A.6 shows how alternative ability measures

in the data map onto estimated marginal cost. Fitted marginal cost ranges from 1 to

as high as 30, depending on the measure and parametric form; see the left panels. The

right panels of Figure A.6 compare the low-cost player’s winning probability advantage

predicted by betting markets to that predicted by the empirical model.33 When the ability

measure is based on betting odds, model predictions line up fairly well with betting-market

predictions. In fact, panel (b) suggests that the model predicts a somewhat better chance

for the strong player in poor environments compared with betting-market predictions.

On the possibility of negative expected payoffs at the start of a match (e.g., Fig-

32Figure 9 shows that compared to a threshold environment, momentum increases by 5 percentage points
when the temperature shifts from 27 to 37 ◦C and by 14 percentage points when PM2.5 shifts from 150
to 250 µg/m3. The environmental impact is larger as we further reduce the prize money.

33The model’s prediction for a player-l win advantage is computed as Pr(ll∪lhl∪hll)−Pr(hh∪hlh∪lhh).
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ure 9(e)), notice that harsh penalties for no-shows—such as cancelled sponsorship con-

tracts or angry fans, to be added to these payoffs—would induce (weaker) players to show

up to play. Our model specifies environmental disutility for every battle played. We as-

sume that δ is incurred also for battle-2 corner solutions in which a player chooses minimal

exertion yet has to remain in court in battle 2 after losing battle 1.34

Age heterogeneity. Table 7 illustrates how our framework is amenable to the analysis

of player heterogeneity. We allow environmental disutility (10) to shift by age, specifically,

the coefficient on the heat covariate ln(1 + max(Tn−T , 0)) is now δT + δST if a player’s age

on match day exceeds the 75th percentile of the player-by-match distribution (27.2 years),

and remains δT otherwise. Superscipt S denotes such senior (or seasoned) professionals.

Similarly, the coefficient on the pollution covariate is δP + δSP if a player is in the upper

quartile of the age distribution and δP otherwise. The top panel suggests that for senior

players the disutility (i) from heat is 40-60% higher (e.g., 0.053+0.118 vs. 0.118, in column

1) and (ii) from pollution 10-30% higher relative to the rest of the players. While positive,

the seniority differential for the pollution disamenity is not statistically significant.

Possible interpretations for such age heterogeneity are that players in the upper quartile

of the age distribution (i) are not as young, e.g., the sample includes players aged 15

years, and (ii) they are wealthier—the oldest players are aged 44 and the data show that

professionals who are active in this labor market over longer careers tend to be better

ranked. The bottom panel of Table 7 goes one step further and scales the contest prize

Vin by a factor ρ if a player’s age is in the upper quartile, i.e., ρVin, and Vin otherwise

(as in Table 5, with the match prize money as a proxy). With parameter ρ estimated at

0.95-0.99 across ability measures, there is suggestive evidence that senior players slightly

discount winning relative to younger athletes; for example, with a longer career ahead

and thus reputation gains adding to the cash prize, a young battle-1 loser may still fight

on.35 Importantly, the complementarity between momentum and adverse environmental

34An alternative model can specify δ only for the third (identifying) battle. Through their battle-2 effort,
players can influence the likelihood that battle 3 is avoided, without angering their fan base too much.
Specifying δ as a fixed entry cost only in battle 3 would not change equilibrium behavior or estimated
parameters relative to our model, but it would raise expected payoffs (because δ is incurred at most once).

35Consider a senior player i, with a short career left, facing a median rival j as driving a wedge Vi < Vj .
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conditions is stable (compare δ̂T and δ̂P to that in Table 5), as is its interaction with

player seniority (compare Table 7’s top and bottom panels).

Sample composition. Table 8 analyzes sensitivity to the likelihood function and to

sample composition. In column 1, we use only observed vs. predicted battle-2 transitions

to pin down the model parameters, i.e., alternative criterion function (17) in the appendix

instead of all transitions in (12). In principle, the win-loss spread V to a match winner

should incorporate value from moving closer to the WTA series final and the associated

fame and sponsorship benefits. Thus column 2 drops quarterfinal, semifinal, and final

matches from the estimation sample. Estimates change little. Similarly, column 3 drops

matches with prize money higher than the 75th percentile ($25,896), to control for possibly

different behavior in such matches. Column 4 shows that estimates are also robust to

dropping Australian Open matches (a Grand Slam series), in a sample comprising only

Chinese venues. Column 5 restricts the sample to 700 matches in which the ex-ante

winning probability difference is at most 30%, obtaining a smaller k̂ (more randomness in

this sample) and a larger δ̂T and δ̂P (and the estimated standard error on δ̂P is large).36

Dummy variables. Table A.5 considers a dummy-variable specification for environ-

mental disutility, i.e., (11). Column 1 shows that the per-battle fixed cost increases by (i)

$190 at temperatures above 27 ◦C and (ii) $670 at PM2.5 levels above 150 µg/m3. Rel-

ative to column 1, column 2 additionally estimates the per-battle fixed cost intercept δ0

at a statistically insignificant $30; and column 3 additionally estimates poor environment

cutoffs at T̂ ≈ 26.9 ◦C and P̂ ≈ 210 µg/m3. Column 4 specifies finer environment bins.

Estimates of heat stress are similar for Tn > 29 ◦C compared to Tn ∈ (27, 29]; estimates

of PM2.5 stress grow for Pn > 200 µg/m3 compared to Pn ∈ (100, 200].

Subsequent matches in a series. The extent to which winning a match enhances

player value through prestige and by attracting sponsors is unobservable. But on imple-

menting the model one can increase the contest prize Vin to include, on top of the match’s

prize money, value from subsequent rounds within the WTA series. Such a model variant

36To capture “unforseen reasons, [by which] one player simply turned out to be better on match day”
(Malueg and Yates, 2010), we restricted the column 5 sample to 320 matches with tight battle-1 outcomes
comprising at least 10 tennis games (i.e., 6-4, 7-5, 7-6). We obtain even larger δ̂T and δ̂P .
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would plausibly assume that players are forward-looking and internalize the effect of cur-

rent match effort on playing in a subsequent round. There are different ways to model a

player’s expectations regarding future matches’ opponent abilities and environments. To

simplify, and because our findings are unlikely to qualitatively change, the implementa-

tion that follows assumes that going forward a player expects to meet opponents of similar

caliber (reasonable on average) in mild environments (the modal environment).

Using Table 5 estimates and for every series (venue-year), we begin by computing the

expected payoff to participating in the final contest, for which there are no subsequent

contests.37 We add the final’s expected payoff to the semifinal’s prize money to obtain

a new measure of the semifinal’s contest prize, and use this measure to calculate the

semifinal’s expected effort cost and thus expected payoff. We backward induct and consider

the perspective of a player choosing effort in the quarterfinal, for whom the contest prize is

the quarterfinal’s prize money plus continuation value from reaching the semifinal (which

itself subsumes the chance of reaching the final). We proceed recursively to the series’

first round of contests.

Equipped with a contest prize vector V that now includes a winner’s continuation

value from participating in a series’ subsequent rounds, we supply Vin—along with ability

ain, environmental conditions Tn, Pn, and match outcomes ιn—to criterion function (12).

We obtain a new parameter vector. We iterate until the parameter vector converges.

In this “matches ahead” implementation of V , Table 9 reports that the fixed cost per

battle increases (i) by δ̂T =$260 as temperature shifts from 27 to 27 + e − 1 ≈ 28.7 ◦C,

and (ii) by δ̂P =$3490 for a large PM2.5 shift from 150 to (1.5+e−1)×100 ≈ 322 µg/m3.

These estimates are about double what we obtained with match prize money as a proxy

for V , which ignores continuation value (Table 5). The intuition, as we discuss next, is

that the valuation of behavior underlying the amplified momentum in the data is larger

when we consider that more is at stake than match day’s cash reward alone (Figure A.7).

37This is the winning probability times the final’s prize money less the expected cost. For a symmetric
match played in a mild environment, the only parameter estimate this relies on is k̂.
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6 Discussion

We find that heat and pollution affects elite workers’ willingness to compete over the

successive battles that determine a contest winner. In our setting, a battle (tennis set)

lasts on average just under one hour, played over more than 9 tennis games and 60 tennis

points, with each tennis point consisting of a sequence of back and forth shots between

players until a miss ends the rally. A quick battle can be over in 20 minutes, yet long

battles can extend over 90 minutes, in particular third battles in Grand Slam matches.

Adverse environmental shocks amplify the discouragement effect.

Given a good measure of the award enjoyed by the contest winner, we show that how

players differentially respond after winning vs. losing the first battle, in bad vs. good

environments, reveals their fixed entry cost into an optional third battle. We interpret

this entry cost as informative of contestants’ preferences over environmental amenities.

In our setting, we specify two alternative measures of the contest prize. The first

measure of V considers the contest’s prize money alone. In a contest between equally able

athletes, raising temperature from 27 to 37 ◦C reduces a player’s expected payoff, net of

her effort cost, by $670; raising PM2.5 from 150 to 250 µg/m3 reduces a player’s expected

payoff by $1800. The second measure of V adds, to a match’s prize money, value from

playing a subsequent match in the series. Because the second measure of V is larger, the

amplified momentum we observe in the data is rationalized through a higher fixed cost.

One limitation of our structural estimates is that more comprehensive measures of V

than those we implemented would include the impact of a match win on a player’s state

of fame (e.g., become a celebrity), sponsorship prospects (attract a major sports brand),

and WTA ranking points (qualify as a seed player in a subsequent series). We leave the

implementation of such continuation value, within a more general dynamic model than

ours, to future research. Such work can assess how V interacts with players’ heterogeneous

ability to sustain wins all the way to a series final.38

Specific to our setting, we note that these young players are among the world’s top

38As noted previously, betting odds, on which we base our preferred measure of opponents’ relative
ability, may partly capture differential motivation and fitness.
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athletes, typically in top physical (and mental) form. They enjoy high earning potential

over short and intense professional careers. They hire professional managers to advise

them on competitive strategy. They invest substantial monetary and nonmonetary effort

to stay healthy and fit. In analogy to preferences for environmental amenities estimated

here, it is conceivable that to reduce fatigue these players are willing to pay thousands of

dollars to fly in a business-class cabin, as they move from one WTA series to the next.

With Australian Open revenues nearing half a billion dollars per series, it is clear that

the types of markets examined here create substantial welfare to the economic agents in-

volved, including spectators, advertisers, suppliers, and organizers. Faced with a warming

climate and growing popularity of venues subject to poor ambient air,39 adapting con-

test design through widespread use of retractable roofs and air conditioning may result

in a greater proportion of contests reaching three battles. Our model estimates show,

for a median cash prize, that three-setters when played between equally able rivals in

a degraded environment are as (un)likely as when asymmetric players—with pre-match

winning probability differences of 30-50%—meet in a climate-controlled environment (e.g.,

Figure 8(b)). In principle, with sufficient data, reduced-form work can deliver such find-

ings. Our structural estimates enable other counterfactual analyses. For the high-income

players themselves, a demographic group for which there is limited empirical evidence, the

individual disutility from heat and pollution exposure can run in the order of hundreds

to thousands of dollars per hour. Such numbers can be interpreted as a statement about

how difficult it is to compete at a high level as the environment deteriorates.

Future work with a continued emphasis in this specific setting can construct a player-

level panel over many years and venues to examine individual heterogeneity in the distaste

for, and adaptation to, adverse environmental shocks. For example, does heat disutility

δT,it vary across home region, gender, skill level, and tenure of players i over time t?

Multi-battle contests are ubiquitous in the economy, with settings as diverse as labor,

innovation, advertising, politics, foreign relations, and litigation. We believe that the

willingness to win early, to avoid the fixed cost of participating in a protracted competition

39China in particular and the routinely polluted urban developing world in general (Marlier et al., 2016)
offer a growing fan base. Poor air quality may also result from wildfires in the (warming) rich world.
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and instead redeploy resources to outside opportunities, has broad appeal. For example,

rising licensing costs for existing patents from other inventors may induce innovators who

fall behind in a patent race to throw in the towel. A tightening high-skill labor market may

raise the opportunity cost of a protracted internal promotion, inducing key managers who

fall behind to reduce effort relative to peers who get ahead, compromising the screening

procedure and the organization’s overall effort supply.

Beyond professional sport and environmental valuation, our empirical framework can

be used to study alternative theories of behavior40 and individual heterogeneity in dynamic

competitions, e.g., gender differences (Mago et al., 2013; Gauriot and Page, 2018; Gill and

Prowse, 2014; Gonzalez-Diaz and Palacios-Huerta, 2016; Jetter and Walker, 2015; Cohen-

Zada et al., 2017). In particular, models such as the one we estimate have the potential to

test the relative strengths of economic incentives vs. psychological factors at explaining

empirically observed momentum, in addition to uncovering economic primitives of interest,

such as preferences, opportunity costs, and technological parameters.
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Table 5: Contest model estimates: Continuous measures of heat and pollution

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score
(1) (2) (3)

k, randomness in winner selection 0.668 0.720 0.734
(0.026) (0.024) (0.025)

θ, ability to marginal cost mapping 0.869 0.485 0.189
(0.063) (0.035) (0.015)

Environmental disutility parameters:
δT , coefficient on ln(1 + max(Tn − T , 0)) 0.123 0.136 0.149

(0.026) (0.025) (0.032)
δP , coefficient on ln(1 + max((Pn − P )/100, 0)) 1.136 1.402 1.336

(0.070) (0.068) (0.072)
Number of parameters 4 4 4
Observations 2157 2670 2670
Median contest prize V ($ × 1000) 18.300 15.092 15.092
Log likelihood -2897 -3700 -3735

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment series held in Australia or China over the entire range of opponent asymmetry. A match’s
likelihood contribution is defined using all possible transitions. Marginal cost is alternatively
modeled as cin = (oddsin)θ in column 1, cin = (rankin)θ in column 2, and cin = e−θ(zscorein)

in column 3 (and missing odds prior to 2008 explain column 1’s smaller sample). The inter-
cept to per-battle disutility δ0 is set to $0, and temperature and PM2.5 pollution cutoffs T
and P are set to 27 ◦C and 150 µg/m3. The contest prize Vin is proxied by the match’s prize
money; the table reports the median in the given estimation sample. Solver Knitro using the
interior-point algorithm, constraints 0 < k ≤ 1 and θ > 0, and initial values for k = 1 and
θ = δT = δP = 0. Estimates are robust to specifying Matlab’s unconstrained fminsearch solver
and other initial values. Standard errors, in parentheses, are obtained from the Hessian estimate
of the asymptotic covariance matrix.
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Table 6: Contest model estimates: Robustness checks

Robustness check: Random. MC Estimate, Estimate, Random.
parameter parameter not fix, not fix, shift w/
by battle by battle δ0 T & P environ.

(1) (2) (3) (4) (5)

Battle-1 randomness k1, battle-invariant k as 0.674 0.669 0.655 0.667 0.662
in main model, or random. intercept k0 (0.053) (0.030) (0.024) (0.027) (0.029)

Battle-2 randomness k2 0.668
(0.055)

Battle-3 randomness k3 0.666
(0.053)

Randomness coefficient kT on heat covariate 0.006
ln(1 + max(Tn − T , 0)) (0.018)

Randomness coeff. kP on pollution covariate 0.091
ln(1 + max((Pn − P )/100, 0)) (0.059)

Battle-1 ability-to-marginal-cost θ1, or 0.865 0.874 0.888 0.871 0.871
battle-invariant θ as in main model (0.069) (0.106) (0.055) (0.066) (0.067)

Battle-2 ability-to-marginal-cost θ2 0.854
(0.111)

Battle-3 ability-to-marginal-cost θ3 0.875
(0.084)

Environmental disutility parameters:
δT , coefficient on the heat covariate 0.125 0.122 0.090 0.112 0.121

ln(1 + max(Tn − T , 0)) (0.030) (0.029) (0.035) (0.021) (0.030)
δP , coefficient on the pollution covariate 1.140 1.133 1.090 1.901 1.024

ln(1 + max((Pn − P )/100, 0)) (0.072) (0.071) (0.069) (1.855) (0.092)
δ0, per-battle disutility intercept, or set to 0 0.056

(0.043)
T , temperature cutoff (◦C), or set to 27 26.110

(0.147)
P , pollution cutoff (µg/m3), or set to 150 220.000

(18.255)

Number of parameters 6 6 5 6 6
Observations 2157 2157 2157 2157 2157
Log likelihood -2897 -2897 -2897 -2897 -2897

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. A match’s likelihood contribution is defined using
all possible transitions. Marginal cost is modeled as cin = (oddsin)θ. Column 1 allows the
randomness parameter to vary by battle b ∈ {1, 2, 3}. Column 2 allows the mapping from
player ability to marginal cost to vary by battle b ∈ {1, 2, 3}. The intercept to per-battle disu-
tility δ0 is set to $0, except in column 3 where this intercept is estimated. Except in column
4, the poor environment cutoffs are set to 27 ◦C and 150 µg/m3; column 4 estimates these
cutoffs imposing the constraints 25 ≤ T ≤ 35 ◦C and 100 ≤ P ≤ 300 µg/m3. Column 5 al-
lows the winner-selection technology to shift with heat and pollution, specifying randomness as
kn = k0 + kT ln(1 + max(Tn − T , 0)) + kP ln(1 + max((Pn − P )/100, 0)). The contest prize Vin
is proxied by the match’s prize money. Solver Knitro using the interior-point algorithm, with
initial values for all parameters set to 0 except for k = 1 (kb = 1 in column 1 and intercept k0 = 1
in column 5) and for T = 25 ◦C and P = 100 µg/m3 in column 4. Randomness parameters
(including kn ∀n in column 5) are constrained to lie between 0 and 1. Marginal cost parameters
are constrained to be positive. Standard errors, in parentheses, are obtained from the Hessian
estimate of the asymptotic covariance matrix.
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Table 7: Contest model estimates: Age heterogeneity (player age in the upper quartile)

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score

(1) (2) (3)

k, randomness in winner selection 0.665 0.717 0.730
(0.022) (0.023) (0.025)

θ, ability to marginal cost mapping 0.873 0.488 0.191
(0.053) (0.034) (0.015)

Environmental disutility parameters (w/ heterog.):
δT , coefficient on the heat covariate 0.118 0.133 0.143

ln(1 + max(Tn − T , 0)) (0.025) (0.025) (0.030)
δST , coeff on: 1(age > 27.2 y) × heat covariate 0.053 0.066 0.081

(add to δT , for senior players only) (0.038) (0.039) (0.045)
δP , coefficient on the pollution covariate 1.139 1.405 1.379

ln(1 + max((Pn − P )/100, 0)) (0.070) (0.069) (0.797)
δSP , coeff on: 1(age > 27.2 y) × pollution covariate 0.264 0.455 0.110

(add to δP , for senior players only) (1.402) (2.253) (2.687)
Number of parameters 6 6 6
Log likelihood -2897 -3699 -3735

(4) (5) (6)

k, randomness in winner selection 0.665 0.717 0.730
(0.023) (0.022) (0.024)

θ, ability to marginal cost mapping 0.874 0.491 0.192
(0.054) (0.032) (0.015)

Contest prize: Heterogeneity factor:
ρ, parameter on the contest prize if 1(age > 27.2 y) 0.989 0.951 0.971

(otherwise equal to 1) (0.034) (0.034) (0.034)
Environmental disutility parameters (w/ heterog.):
δT , coefficient on the heat covariate 0.120 0.139 0.145

ln(1 + max(Tn − T , 0)) (0.026) (0.021) (0.028)
δST , coeff on: 1(age > 27.2 y) × heat covariate 0.049 0.044 0.069

(add to δT , for senior players only) (0.039) (0.033) (0.041)
δP , coefficient on the pollution covariate 1.146 1.444 1.362

ln(1 + max((Pn − P )/100, 0)) (0.070) (0.072) (0.071)
δSP , coeff on: 1(age > 27.2 y) × pollution covariate 0.208 0.245 -0.026

(add to δP , for senior players only) (1.221) (2.375) (2.557)
Number of parameters 7 7 7
Log likelihood -2897 -3699 -3734

Observations 2157 2670 2670

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. Compared with the specification for environmental
disutility in Table 5, i.e., (10), here we add an indicator for a player’s age greater than 27.2
years (the 75th percentile in the player-by-match distribution of age) interacted with each of
the two environmental covariates. The intercept to per-battle disutility δ0 is set to $0, and
temperature and PM2.5 pollution cutoffs T and P are set to 27 ◦C and 150 µg/m3. In the top
panel, the contest prize Vin is proxied by the match’s prize money. In the bottom panel, Vin is
the match’s prize money scaled by a factor ρ if a player is aged over 27.2 years, and the prize
money otherwise. A match’s likelihood contribution is defined using all possible transitions.
Marginal cost is alternatively modeled as cin = (oddsin)θ in columns 1 & 4, cin = (rankin)θ in
columns 2 & 5, and cin = e−θ(zscorein) in columns 3 & 6. Solver Knitro using the interior-point
algorithm, constraints 0 < k ≤ 1, θ > 0, and 0 < ρ < 2, and initial values for k = ρ = 1 and
θ = δT = δSP = δP = δSP = 0. (Superscript S denotes a “senior” player.) Standard errors, in
parentheses, are obtained from the Hessian estimate of the asymptotic covariance matrix.
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Table 8: Contest model estimates: Sample composition

Estimation sample: Only Drop Drop ≥ 75 Only Restrict
battle-2 quarterfinal percentile matches asymmetry to

transitions to final prize in win. prob.
in match matches matches China diff. ≤ 30%

(1) (2) (3) (4) (5)

k, randomness in winner selection 0.669 0.662 0.675 0.686 0.588
(0.029) (0.027) (0.029) (0.032) (0.163)

θ, ability to marginal cost mapping 0.854 0.874 0.830 0.836 0.966
(0.077) (0.065) (0.067) (0.075) (0.334)

Environmental disutility parameters:
δT , coeff. on ln(1 + max(Tn − T , 0)) 0.123 0.125 0.125 0.122 0.294

(0.029) (0.026) (0.027) (0.025) (0.099)
δP , coeff. on ln(1 + max((Pn − P )/100, 0)) 2.049 1.142 1.137 1.120 1.490

(0.187) (0.069) (0.071) (0.074) (1.427)

Number of parameters 4 4 4 4 4
Observations 2157 1912 1578 1048 700
Median contest prize V ($ × 1000) 18.300 14.066 11.106 9.083 12.917
Log likelihood -1204 -2556 -2128 -1446 -1121

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. Marginal cost is modeled as cin = (oddsin)θ. Compared with
the estimation sample in Table 5(1): Column 1 defines a match’s likelihood contribution using
only battle-2 transitions. Column 2 drops round 4 (quarterfinal) to round 1 (series final) matches
from the sample. Column 3 drops matches with prize money higher than the 75th percentile
($25,896) from the sample. Column 4 drops Australian Open matches, with the estimation
sample comprising only Chinese venues. Column 5 restricts the sample to matches in which
the two opponents’ absolute difference in winning probability is at most 30%. The intercept to
per-battle disutility δ0 is set to $0, and the poor environment cutoffs T and P are set to 27 ◦C
and 150 µg/m3. The contest prize Vin is proxied by the match’s prize money; the table reports
the median in the given estimation sample. Solver Knitro using the interior-point algorithm,
constraints 0 < k ≤ 1 and θ > 0, and initial values for k = 1 and θ = δT = δP = 0. Standard
errors, in parentheses, are obtained from the Hessian estimate of the asymptotic covariance
matrix.
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Table 9: Contest model estimates: Augmenting Vin with continuation value from subse-
quent matches in a series

(1)

k, randomness in winner selection 0.667
(0.027)

θ, ability to marginal cost mapping 0.870
(0.065)

Environmental disutility parameters:
δT , coefficient on ln(1 + max(Tn − T , 0)) 0.256

(0.058)
δP , coefficient on ln(1 + max((Pn − P )/100, 0)) 3.490

(0.102)
Number of parameters 4
Observations 2157
Median contest prize V prize money & some continuation value ($ × 1000) 32.857
Log likelihood -2898

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. A match’s likelihood contribution is defined using all
possible transitions. Marginal cost is modeled as cin = (oddsin)θ. The intercept to per-battle
disutility δ0 is set to $0, and temperature and PM2.5 pollution cutoffs T and P are set to 27
◦C and 150 µg/m3. The contest prize Vin is proxied by the match’s prize money augmented
with continuation value from remaining in the series and competing in at least one subsequent
match, which the contest winner is entitled to (the loser is eliminated from the series). See
the text on players’ expectations of future conditions of play and the recursive procedure that
yields continuation value at each round in a series for every vector of parameters Ψ. For every
iteration on Ψ, we compute the associated augmented contest prize vector V and re-estimate
the contest model. We iterate until Ψ converges: adopting the sup norm with a tolerance of
.0001, this happens after 108 iterations, with Ψ changing little from the second iteration on
after adding continuation value to prize money in V . Solver Knitro using the interior-point
algorithm, constraints 0 < k ≤ 1 and θ > 0, and initial values for k = 1 and θ = δT = δP = 0
(at each iteration of estimation). Standard errors, in parentheses, are obtained from the Hessian
estimate of the asymptotic covariance matrix.
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(d) PM2.5, Beijing matches
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(e) Temperature, other Chinese matches
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(f) PM2.5, other Chinese matches

Figure 1: [Data] Distribution of ambient temperature and PM2.5 over matches: Aus-
tralian Open (Melbourne, summer 2004-2016), China Open (Beijing, fall 2008-2016), and
other WTA series in China (Guangzhou, Hong Kong, Shenzhen, Tianjin, Wuhan, 2011-
2016). An observation is a match. We take mean environmental conditions, recorded at
sites close to the venues, over the three 1-hour periods that encompass the hour in which
the match started and the two subsequent hours, e.g., 2:00 pm to 4:59 pm for a match
that started at 2:23 pm. In the right panels, the vertical lines mark the US annual and
24-hour primary PM2.5 standards; for readability, we do not show PM2.5 up to the sample
maximum of 520 µg/m3 (Table 1). Sources: Victoria EPA, US Department of State, Hong
Kong EPD, Chinese Ministry of EP, NASA.
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(b) WTA z-score, Melbourne
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(d) WTA z-score, Beijing
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(f) WTA z-score, other China

Figure 2: [Data] Distribution of WTA rank (log scale) and WTA z-score over player
by match observations: Australian Open (Melbourne, summer 2004-2016), China Open
(Beijing, fall 2008-2016), other WTA series in China (Guangzhou, Hong Kong, Shenzhen,
Tianjin, Wuhan, 2011-2016). The top-ranked player worldwide has rank 1. Due to shifts
in the worldwide distribution of points across players over time, for each player by match
in the sample we compute a time-adjusted world z-score: From her observed points we
subtract the mean points over all worldwide WTA players at the time the match was
played, and divide by the standard deviation of points over all worldwide WTA players
at the time. Most players are well above world average. Source: flashscore.com, tennis-
data.co.uk.
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Figure 3: [Data] Distribution of paired opponents’ relative strength over matches in our
sample: Absolute difference in the two players’ (a) winning probabilities implied from pre-
match betting odds (%), (b) WTA rank (log scale), and (c) WTA z-scores. An observation
is a match, comprising two opponents. Source: flashscore.com, tennis-data.co.uk.
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(d) Restrict to > 27 ◦C or > 100 µg/m3
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(e) WTA z-score difference
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(f) Restrict to > 27 ◦C or > 100 µg/m3

Figure 4: [Data] Proportion of matches won by the stronger player against the degree
of opponent asymmetry, as measured alternatively by the absolute difference in the two
players’ pre-match winning probabilities, ranks, or z-scores. For each measure, we group
matches in 10 bins of equal width, with the first bin starting at the minimum difference
and the last bin ending at the 95th percentile of the distribution of the respective difference
over asymmetric matches (otherwise the stronger player is undefined). Bins are labeled at
the midpoint difference. The right panels consider only matches played in temperatures
above 27 ◦C or PM2.5 above 100 µg/m3, i.e., about two-fifths of the matches considered
in the left panels.
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(b) Cutoffs 27 ◦C or 200 µg/m3
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(d) Cutoffs 29 ◦C or 200 µg/m3

Figure 5: [Data] Environmental quality and momentum. Among fairly symmetric players,
the proportion of matches lasting three sets (rather than two) drops sharply when either
temperature or PM2.5 exceeds its respective cutoff, marked by the red circles, compared
to when both conditions are milder, marked by the green squares. Across the panels, we
vary the cutoffs: (a) 27 ◦C or 100 µg/m3, (b) 27 ◦C or 200 µg/m3, (c) 29 ◦C or 100 µg/m3,
and (d) 29 ◦C or 200 µg/m3. We group matches in 10 bins, the first bin for matches with
equal odds, and nine other bins of same width labeled at the midpoint difference, up to
the maximum winning probability difference in the sample.
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Figure 6: [Model] Best-response functions in a single battle: Two examples. Left panel:
The symmetric player case, ch = cl (homogeneous marginal cost) and ∆Vh = ∆Vl = V
(symmetric win-loss prize spread). Right panel: The asymmetric player case, ch = 2cl
(best-response functions are equivalent if we set ∆Vh = 0.5∆Vl instead). We illustrate
with technology k = 1 (low randomness) and normalize λch = 0.5V .
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Figure 7: [Model] Battle transition probabilities, as a function of the per-battle en-
vironmental disutility parameter δ. In the model, a higher δ captures a more adverse
environment, i.e., a stronger dose of heat or pollution. Left panel: Players are symmetric,
ch = cl. Right panel: Players are asymmetric, ch = 2cl. We illustrate with technology
k = 1 (low randomness), symmetric contest prizes Vh = Vl = V = 1, and λch = 0.5V .
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Figure 8: [Model estimates: Odds-based ability measure, median prize] Model
predictions against the degree of opponent asymmetry evaluated at the median cash prize
in the sample ($15,092; N = 2811 matches). Model according to Table 5, column 1,
with player strength based on betting odds, cin = (oddsin)θ. Footnote 31 defines the
state-induced change in battle-2 success rate shown in panel (a).
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(e) Weaker player’s expected payoff

Figure 9: [Model estimates: Odds-based ability measure, 25th-percentile prize]
Model predictions against the degree of opponent asymmetry evaluated at the 25th-
percentile cash prize in the sample ($8672; N = 2811 matches). Model according to
Table 5, column 1, with player strength based on betting odds, cin = (oddsin)θ.
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A Dynamic contest model: Theory and estimation

A.1 Optimal player effort and transition probabilities

We proceed by backward induction. In battle 3, the winner takes the contest prize and
the loser earns 0, so optimal bidding strategies are given by (2) with ∆V3i = Vi − 0 = Vi
and ∆V3j = Vj :

x3i = xi(Vi, Vj) =
Vi
λci

k(
ciVj
cjVi

)k

[1 + (
ciVj
cjVi

)k]2
, i, j ∈ {l, h}, i 6= j.

In battle 2, given a history χ1l = 1, players l and h choose effort levels:

x2l|χ1l=1 = xl(V 2l|χ1l=1 − V 2l|χ1l=1, V 2h|χ1l=1 − V 2h|χ1l=1),

x2h|χ1l=1 = xh(V 2h|χ1l=1 − V 2h|χ1l=1, V 2l|χ1l=1 − V 2l|χ1l=1),

where win-loss spreads ∆V2i|χ1l=1 = V 2i|χ1l=1 − V 2i|χ1l=1 are calculated from (4) and (5),
i.e., we plug these in (2) to obtain reduced-form effort choices. Transition probabilities
follow from (1):

Pr (χ2l = 1 |χ1l = 1) =
(x2l|χ1l=1)k

(x2l|χ1l=1)k + (x2h|χ1l=1)k
,

Pr (χ2l = 0 |χ1l = 1) = 1− Pr (χ2l = 1 |χ1l = 1) .

For simplicity, we consider the situation in which players exert positive effort in battle
2. The expressions can easily be extended to allow for the corner solution, i.e., when δ is
too high and the battle-1 loser’s continuation value from winning battle 2 is negative; thus
she chooses to lose battle 2 by exerting 0 effort and the contest ends after two battles.
(Both players still incur a battle-2 environmental disutility δ, as they are in court despite
the minimal exertion.) Specifically, following player h’s defeat in battle 1, a corner solution
in battle 2 obtains when the continuation value from continuing play in a third battle is
negative. That is, the expected benefit of effort in battle 3 would be less than the sum of
effort cost and environmental disutility:

Vh
1

1 + ( chVlclVh
)k
≤ kVh

( chVlclVh
)k

[1 + ( chVlclVh
)k]2

+ δ,

or, equivalently:

δ

Vh
≥ 1

1 + ( chVlclVh
)k

[1− k
( chVlclVh

)k

1 + ( chVlclVh
)k

].
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Given an alternative history χ1l = 0, choices are:

x2l|χ1l=0 = xl(V 2l|χ1l=0 − V 2l|χ1l=0, V 2h|χ1l=0 − V 2h|χ1l=0),

x2h|χ1l=0 = xh(V 2h|χ1l=0 − V 2h|χ1l=0, V 2l|χ1l=0 − V 2l|χ1l=0),

with continuation values conditional on battle-2 outcomes (and battle-1 history):

if χ2l = 1 (contest continues 1-1)

{
V 2l|χ1l=0 = p3lVl − λclxl(Vl, Vh)− δ,
V 2h|χ1l=0 = p3hVh − λchxh(Vh, Vl)− δ,

(13)

if χ2l = 0 (contest ends 0-2)

{
V 2l|χ1l=0 = 0,

V 2h|χ1l=0 = Vh.
(14)

Optimal player actions then follow from (2), yielding transition probabilities:

Pr (χ2l = 1 |χ1l = 0) =
(x2l|χ1l=0)k

(x2l|χ1l=0)k + (x2h|χ1l=0)k
,

Pr (χ2l = 0 |χ1l = 0) = 1− Pr (χ2l = 1 |χ1l = 0) .

Again, these expressions can be extended to allow for the battle-2 corner solution in which,
having lost battle 1, player l exerts 0 effort to avoid taking the contest to a third battle
where her continuation value is negative.

In battle 1, there is no history to condition on. Both opponents’ continuation values
in the alternative events that player l, respectively, wins and loses battle 1 are given by:

if χ1l = 1 (contest continues 1-0), (15){
V 1l = Pr(χ2l = 1|χ1l = 1)V 2l|χ1l=1 + Pr(χ2l = 0|χ1l = 1)V 2l|χ1l=1 − λclx2l|χ1l=1 − δ,
V 1h = Pr(χ2l = 1|χ1l = 1)V 2h|χ1l=1 + Pr(χ2l = 0|χ1l = 1)V 2h|χ1l=1 − λchx2h|χ1l=1 − δ,

if χ1l = 0 (contest continues 0-1), (16){
V 1l = Pr(χ2l = 1|χ1l = 0)V 2l|χ1l=0 + Pr(χ2l = 0|χ1l = 0)V 2l|χ1l=0 − λclx2l|χ1l=0 − δ,
V 1h = Pr(χ2l = 1|χ1l = 0)V 2h|χ1l=0 + Pr(χ2l = 0|χ1l = 0)V 2h|χ1l=0 − λchx2h|χ1l=0 − δ.

Finally, plugging differences in continuation values in (2) yields battle-1 actions:

x1i = xi(V 1i − V 1i, V 1j − V 1j), i, j ∈ {l, h}, i 6= j.

Transition probabilities are:

Pr (χ1l = 1) =
(x1l)

k

(x1l)k + (x1h)k
, Pr (χ1l = 0) = 1− Pr (χ1l = 1) .

Players’ effort choices battle by battle, as a function of environmental degradation δ
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and cost asymmetry, are illustrated in Figure A.4. For example, in the top-left panel for
symmetric players (with k = 0.7), battle-1 effort rises with δ, but not steeply.

A.2 Likelihood contribution

A tennis match’s likelihood contribution is computed from the battle-transition probabil-
ities derived above, which are functions of optimal player effort. We list within-match
outcome probabilities predicted by the model here:

Pr(ll |Ψ) = Pr (χ1l = 1) Pr (χ2l = 1 |χ1l = 1)

Pr(lhl |Ψ) = Pr (χ1l = 1) Pr (χ2l = 0 |χ1l = 1) Pr (χ3l = 1 |χ2l 6= χ1l )

Pr(lhh |Ψ) = Pr (χ1l = 1) Pr (χ2l = 0 |χ1l = 1) Pr (χ3l = 0 |χ2l 6= χ1l )

Pr(hll |Ψ) = Pr (χ1l = 0) Pr (χ2l = 1 |χ1l = 0) Pr (χ3l = 1 |χ2l 6= χ1l )

Pr(hlh |Ψ) = Pr (χ1l = 0) Pr (χ2l = 1 |χ1l = 0) Pr (χ3l = 0 |χ2l 6= χ1l )

Pr(hh |Ψ) = Pr (χ1l = 0) Pr (χ2l = 0 |χ1l = 0)

As an alternative to criterion function (12), for which a match’s likelihood contribution
is defined using all possible transitions, the model can be estimated using only battle-2
outcomes, conditional on the battle-1 realization. Given a history χ1l ∈ {0, 1}, there
are two possible outcomes. For example, given player l winning battle 1 (χ1l = 1) in
match n, battle 2 may be won by either player ι2,n ∈ {l,h} with conditional probabilities
Pr (χ2l = 1 |χ1l = 1) and Pr (χ2l = 0 |χ1l = 1). The likelihood is∏N

n=1

∏
ι2,n∈{l,h}

(Pr(χ2l |χ1l; Ψ))1(ι2,n) , (17)

whereby only model predictions for battle-2 transitions are taken to the data.

A.3 Further model variants

We implemented more general versions of the main model—with a match’s prize money
as a proxy for Vin—along two dimensions. We briefly outline these here.

Random coefficients. Instead of fixing the variance of the player-match level cost
shocks σ2

ε = 0—see (8)—we specified a mean-zero i.i.d. normal error entering additively
into each player’s marginal effort cost, cin = f(ain, θ) + εin. Now σε is an additional
parameter to be estimated. This allows for a serially correlated shock that is common
over battles within a match, which randomness parameter k does not account for. For
example, one of the otherwise equally able opponents suffers from a bad cold on match
day, which can work to her rival’s advantage over the course of the match. Estimation is
by simulated likelihood.

Our findings are robust to this model variant. On introducing random coefficients
over 1000 simulations (each with 2×N player-match εin draws), we obtained parameters
(k̂, θ̂, δ̂T , δ̂P ) that on average line up with the point estimates obtained in the main model.
During optimization we constrain σε < 0.2 and verified that marginal cost is necessarily
positive ∀ i, n. The constraint turns out not to bind and the mean σ̂ε is 0.017 (compare
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to Figure A.6 showing estimated marginal cost). This suggests that serially correlated
shocks are of low magnitude relative to estimated “base” marginal cost, f(ain, θ).

Psychological momentum. We extended our model to allow for another form
of state dependence studied in psychology and economics (Iso-Ahola and Mobily, 1980;
Malueg and Yates, 2010). This is based on an abstract psychological impact on a player’s
current performance from recently winning a battle—abstract in that it is not formal-
ized through economic incentives.41 We introduced the psychological channel either (i)
additively to marginal cost, by which a player i’s marginal cost cinb in battle b ∈ {2, 3}
of match n is cin + η if she won the preceding battle b − 1 and is cin otherwise, or (ii)
multiplicatively to marginal cost, by which marginal cost cinb in battle b ∈ {2, 3} of match
n is ηcin if player i won battle b− 1 and is cin otherwise. During optimization we impose
η > −1 in specification (i) and η > 0 in specification (ii) to ensure that state-dependent
marginal cost is necessarily positive ∀ i, n, b.

In battle 1, there is no immediate history and thus no momentum. Battle 2, in contrast,
may have psychology complementing strategic momentum. Identification of psychology
follows from battle-3 outcomes in the subset of three-battle matches as the state varies.

Table A.6 shows some evidence of a psychological effect for some specifications. A
recent win can reduce a player’s marginal cost. Taking WTA rank to measure ability, we
obtain η̂ = -0.31 < 0 in column 2’s additive specification, and η̂ = 0.85 < 1 in column
4’s multiplicative specification (i.e., a 15% reduction in marginal cost). Taking betting
odds to measure ability, we again obtain that a recent win lowers marginal cost (η̂ = -0.07
< 0 in column 1 and η̂ = 0.94 < 1 in column 3) but now the marginal cost reduction is
statistically insignificant.

The marginal significance of psychological state dependence may partly be due to
these agents’ experience in handling loss/win. Importantly, our finding of strategic mo-
mentum amplified by environmental shocks is robust as we enrich the model to allow for
psychological mechanisms.

B An alternative effort cost specification

The model we developed and estimate above specifies linear effort cost λcixi, where λ > 0
is a factor by which environmental conditions shift the slope. That is, marginal cost is
constant in player i’s effort xi and increases in a poor environment. We briefly consider
an alternative specification in which a poor environment makes the effort cost function
more convex:

Ci(xi;λ, b) = abci[(xi + 1)λ − 1],

41Malueg and Yates (2010) were unable to reject the null that a psychological effect was absent in a
sample of 125 three-battle matches among equally able players. We repeat their statistical test on the 246
three-setters in our sample where opponents’ ex-ante winning probabilities are at most 30% apart. We
find that the battle-2 winner wins 55% of third battles; the p-value for a two-tailed test of H0 = 0.5 is
0.13. Though we lack power, any psychological momentum does not appear to grow with environmental
degradation. Among symmetric-player three-battle matches, the incidence of lose-win-win is 0.49 in a poor
environment compared to 0.57 in a mild environment; the p-value of an equality test is 0.33.
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where parameter λ ≥ 1 scales with environmental degradation, and b = 1, 2, 3 indexes the
battle number. Parameters a3 ≥ a2 ≥ a1 > 0 reflect player i growing more tired as the
contest progresses. Here, marginal cost abλci(xi + 1)λ−1 increases with (i) battle number
b, (ii) the environmental factor λ, (iii) effort xi, and (iv) individual-specific cost ci > 0.
We show that even when a poor environment makes the cost function more convex, it does
not increase momentum, in contrast to the descriptive analysis. Here we shut the direct
utility channel by setting the environmental disutility parameter δ = 0.

Before proceeding, we briefly note that we later consider an arguably less natural
variant in which the cost function can be concave in effort, i.e., we then require only
λ > k > 0, allowing λ < 1.

Mirroring the analysis above, consider battle 3, reached in the event that each previous
battle was won by a different player. For simplicity, assume a symmetric contest prize V .
Facing a win-loss prize spread ∆Vi = V and given her rival’s action xj , player i solves:

arg max
xi

(xi)
k

(xi)k + (xj)k
V − a3ci[(xi + 1)λ − 1].

(For simplicity, we omit the battle number from the effort subscript, i.e., here xi denotes
x3i.) The first-order conditions (FOC) are:

(xi)
k−1(xj)

k

[(xi)k + (xj)k]2
kV = a3λci(xi + 1)λ−1, i, j ∈ {l, h}, i 6= j. (18)

Thus, in equilibrium, we have:

xl
xh

(
xl + 1

xh + 1
)λ−1 =

ch
cl
≥ 1,

which means that the high-cost player h exerts lower effort than the low-cost player l.
(Note that xl

xh
≥ 1 means xl

xh
≥ xl+1

xh+1 ≥ 1.) Moreover, players’ effort levels xl and xh
change in the same direction when the environment λ shifts, because:

xl(xl + 1)λ−1 =
ch
cl
xh(xh + 1)λ−1.

We proceed considering the symmetric player case, ci = c and Ci(.) = C(.). With
xl = xh = x, we can write the FOC as:

kV

4a3c
= λx (x+ 1)λ−1 .

implying that effort x decreases when λ increases (the environment deteriorates).
Recall battle-2 incentives when players have symmetric costs. In battle 2, the player

who won battle 1 faces continuation values of (a) V from winning battle 2 and ending the
contest, vs. (b) V/2 minus the subsequent effort cost from having to play in a third battle.
For her part, the player who lost battle 1 faces continuation values in battle 2 of (c) V/2
minus the effort cost that would follow a win that takes the contest to a third battle, vs.

A.5



(d) 0 from losing outright.
Thus, to generate strengthened momentum from a poor environment, a higher λ would

need to induce increased battle-3 effort cost such that expected payoffs (b) and (c) from
transiting to battle 3 fall for both of the respective players. We next show that in general
this is not so. We show that degrading environmental conditions between λ = 1 (linear
effort cost) and λ = 2 (convex effort cost) lower battle-3 equilibrium effort cost, increasing
expected payoffs (b) and (c). This weakens the incentive for players to decide the contest
in two battles. (Below we extend this analysis to concave effort cost.)

Let β = kV
2a3c

> 0. Battle-3 equilibrium effort levels when the environment deteriorates
between λ = 1 and λ = 2 follow from the FOC:

x(λ = 1) =
1

2
β, x(λ = 2) =

√
1

4
β +

1

4
− 1

2
. (19)

Battle-3 effort cost is lower in the degraded environment when

C(x(λ = 2)) < C(x(λ = 1))

⇐⇒ a3c[(x(λ = 2) + 1)2 − 1] < a3c[(x(λ = 1) + 1)1 − 1]

⇐⇒ (x(λ = 2) + 1)2 < x(λ = 1) + 1

⇐⇒ (

√
1

4
β +

1

4
+

1

2
)2 <

1

2
β + 1.

After a little algebraic manipulation, this condition simplifies to β2 > 0, a condition that
holds.

In sum, battle-3 equilibrium effort and effort cost are lower in the degraded environ-
ment λ = 2 compared with λ = 1. Thus, in battle 2, both players’ continuation values
in the event that the contest transitions to a third battle are higher in the degraded en-
vironment compared with the milder one, weakening the incentive for the contest to be
decided in two battles, in contrast to the data pattern we document.

It is for this reason that our chosen effort cost specification is linear Ci(xi;λ, b) =
abλcixi, whereby higher λ—or higher battle-specific marginal cost parameter a3, for that
matter—induce lower effort, but the same effort cost in battle 3. Therefore, the environ-
ment does not induce a change in battle-2 momentum through the effort cost channel.
Importantly, we allow for a direct utility channel and thus do not constrain the per-battle
environmental disutility parameter δ to be zero.

Cost function concave in effort. For generality, we relax the restriction λ ≥ 1 and
allow λ < 1 (while requiring λ > k > 0, which guarantees a pure-strategy equilibrium in
each battle).

We can rewrite the battle-3 FOC (18) (with player-specific cost ci and symmetric prize
V ) as

(xi)
k(xj)

k

[(xi)k + (xj)k]
2

[
1

(xi + 1)λ

(
1 +

1

xi

)]
=
a3λ

kV
ci, i, j ∈ {l, h}, i 6= j.

Because both 1
(xi+1)λ

and 1 + 1
xi

are decreasing in xi, this still means that xi > xj if
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ci < cj , i.e., the low-cost player exerts higher effort than the high-cost player.
In addition to the environments λ = 1 and λ = 2 in (19), we compute battle-3 equi-

librium effort level in the environment λ = 1
2 :

x(λ =
1

2
) =

1

2
β2 + β

√
1 +

1

4
β2.

We can then compare the equilibrium effort cost when the environment deteriorates be-
tween λ = 1

2 and λ = 1. Battle-3 effort cost is lower in the degraded environment when

C(x(λ = 1)) < C(x(λ =
1

2
))

⇐⇒ a3c[(x(λ = 1) + 1)1 − 1] < a3c[(x(λ =
1

2
) + 1)1/2 − 1]

⇐⇒ (x(λ = 1) + 1)2 < x(λ =
1

2
) + 1

⇐⇒ 1

4
β2 + β <

1

2
β2 + β

√
1 +

1

4
β2,

a condition which holds because 1
4 <

1
2 and 1 <

√
1 + 1

4β
2.

Here, again, battle-3 equilibrium effort cost is lower in the degraded environment λ = 1
compared with λ = 1

2 .
Effort cost channel. Overall, whether environmental degradation makes the cost

function (i) less concave, proxied by a shift from λ = 1
2 to λ = 1, or (ii) more convex,

proxied by a shift from λ = 1 to λ = 2, for both shifts a worse environment similarly
induces lower effort costs in battle 3, i.e., C(x(λ = 1

2)) > C(x(λ = 1)) > C(x(λ = 2)).
Thus, in battle 2, both players’ continuation values in the event that the contest transitions
to a third battle rise in the worse environment compared with the milder one. This weakens
the incentive for players to decide the contest in two battles, in contrast to the data. We
thus choose a linear effort cost and focus on a direct utility channel through a per-battle
fixed cost δ. As we note in the text, the environmental parameters λ and δ are similar in
that, in principle, they function through their impact on total costs (effort cost and fixed
cost).
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Table A.4: Contest model estimates: Dropping a few climate-controlled matches

Alternative measure of player strength: Pre-match betting WTA rank WTA z-score
(1) (2) (3)

k, randomness in winner selection 0.662 0.715 0.728
(0.026) (0.027) (0.025)

θ, ability to marginal cost mapping 0.896 0.497 0.197
(0.064) (0.039) (0.015)

Environmental disutility parameters:
δT , coefficient on ln(1 + max(Tn − T , 0)) 0.122 0.135 0.145

(0.026) (0.026) (0.033)
δP , coefficient on ln(1 + max((Pn − P )/100, 0)) 1.137 1.261 1.342

(0.069) (0.210) (0.071)
Number of parameters 4 4 4
Observations 2109 2605 2605
Log likelihood -2823 -3609 -3643

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tour-
nament series held in Australia or China. Compared with the estimation sample in Table 5,
we drop 66 matches for which our review of press articles on LexisNexis indicated that a re-
tractable roof, when available, was closed to protect from ambient environmental conditions,
namely heat and rain. (In practice, missing values for some covariates such as betting odds im-
ply that less than 66 matches are dropped.) A match’s likelihood contribution is defined using
all possible transitions. Marginal cost is alternatively modeled as cin = (oddsin)θ in column 1,
cin = (rankin)θ in column 2, and cin = e−θ(zscorein) in column 3. The intercept to per-battle
disutility δ0 is set to $0, and temperature and PM2.5 pollution cutoffs T and P are set to 27
◦C and 150 µg/m3. The contest prize Vin is proxied by the match’s prize money. Solver Knitro
using the interior-point algorithm, constraints 0 < k ≤ 1 and θ > 0, and initial values for k = 1
and θ = δT = δP = 0. Standard errors, in parentheses, are obtained from the Hessian estimate
of the asymptotic covariance matrix.
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Table A.5: Contest model estimates: Dummy variables (bins) for heat and pollution

Robustness check: Disutility Estimate, Estimate, Two heat
intercept not fix, not fix, & PM2.5
δ0 = 0 δ0 T & P bins

(1) (2) (3) (4)

k, randomness in winner selection 0.662 0.656 0.664 0.661
(0.027) (0.028) (0.024) (0.028)

θ, ability to marginal cost mapping 0.880 0.889 0.875 0.880
(0.064) (0.066) (0.057) (0.070)

Environmental disutility parameters:
δT , coefficient on Tn > T 0.188 0.163 0.185

(0.040) (0.073) (0.040)
δP , coefficient on Pn > P 0.667 0.642 1.093

(0.062) (0.065) (0.068)
δ0, per-battle disutility intercept (or set to 0) 0.029

(0.061)
T , temperature cutoff (◦C) (or set to 27) 26.890

(0.052)
P , pollution cutoff (µg/m3) (or set to 150) 209.060

(2.674)
δT1, coefficient on Tn ∈ (27, 29] ◦C 0.174

(0.053)
δT2, coefficient on Tn > 29 ◦C 0.197

(0.040)
δP1, coefficient on Pn ∈ (100, 200] µg/m3 0.019

(0.148)
δP2, coefficient on Pn > 200 µg/m3 1.095

(0.068)

Number of parameters 4 5 6 6
Observations 2157 2157 2157 2157
Log likelihood -2897 -2897 -2897 -2896

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. A match’s likelihood contribution is defined using all possible
transitions. Marginal cost is modeled as cin = (oddsin)θ. The intercept to per-battle disutility
δ0 is set to $0, except in column 2 where this intercept is estimated. In columns 1 and 2,
temperature and PM2.5 pollution cutoffs are set to 27 ◦C and 150 µg/m3. Column 3 estimates
these cutoffs imposing the constraints 25 ≤ T ≤ 35 ◦C and 100 ≤ P ≤ 300 µg/m3. Column 4
specifies two heat bins (the lowest starting at 27 ◦C) and two PM2.5 bins (the lowest starting
at 100 µg/m3). The contest prize Vin is proxied by the match’s prize money. Solver Knitro
using the interior-point algorithm, constraints 0 < k ≤ 1 and θ > 0, and initial values for
all parameters set to 0 except for k = 1 and, in column 3, initial values for T = 25 ◦C and
P = 100 µg/m3. Standard errors, in parentheses, are obtained from the Hessian estimate of the
asymptotic covariance matrix.
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Table A.6: Contest model estimates: Allowing for psychological state dependence on
preceding battle outcome

Psychology of preceding-battle won: Additively enters player’s MC Multiplicat. enters player’s MC
this set if she won preceding set this set if she won preceding set

Alternative measure of player strength: Pre-match Pre-match
betting WTA rank betting WTA rank

(1) (2) (3) (4)

k, randomness in winner selection 0.655 0.703 0.647 0.668
(0.029) (0.025) (0.029) (0.028)

θ, ability to marginal cost mapping 0.886 0.491 0.912 0.550
(0.066) (0.037) (0.070) (0.043)

η, add to cin in battle b > 1 if i won -0.067 -0.313
battle b− 1 in match n (0.088) (0.138)

η, multiply with cin in battle b > 1 if i 0.939 0.847
won battle b− 1 in match n (0.061) (0.050)

Environmental disutility parameters:
δT , coeff. on ln(1 + max(Tn − T , 0)) 0.127 0.145 0.130 0.158

(0.027) (0.025) (0.028) (0.028)
δP , coeff. on ln(1 + max((Pn − P )/100, 0)) 1.169 1.436 1.191 1.579

(0.070) (0.066) (0.070) (0.066)

Number of parameters 5 5 5 5
Observations 2157 2670 2157 2670
Log likelihood -2897 -3699 -2897 -3698

Notes: Maximum likelihood estimates. An observation is a completed match in a singles WTA tourna-
ment held in Australia or China. A match’s likelihood contribution is defined using all possible
transitions. Marginal cost is modeled as cin = (oddsin)θ in columns 1 & 3 and cin = (rankin)θ

in columns 2 & 4. In columns 1 & 2, a player’s marginal cost in battle b ∈ {2, 3} shifts additively
by η if she won battle b − 1, i.e., marginal cost cinb is cin + η if i won match n’s battle b − 1
and cin otherwise. In columns 3 & 4, a player’s marginal cost in battle b ∈ {2, 3} is multiplied
by η if she won battle b− 1, i.e., marginal cost cinb is ηcin if i won match n’s battle b− 1 and
cin otherwise. The intercept to per-battle disutility δ0 is set to $0, and temperature and PM2.5
pollution cutoffs T and P are set to 27 ◦C and 150 µg/m3. The contest prize Vin is proxied by
the match’s prize money. Solver Knitro using the interior-point algorithm, constraints 0 < k ≤ 1
and θ > 0, and initial values for k = 1 and θ = δT = δP = 0. We constrain η > −1 in columns
1 & 2 and η > 0 in columns 3 & 4 such that marginal cost is necessarily positive ∀ i, n, b. The
initial value for η is set to 0 in columns 1 and 2 and to 1 in columns 3 and 4. Standard errors,
in parentheses, are obtained from the Hessian estimate of the asymptotic covariance matrix.
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Figure A.1: [Model] Contest winning probabilities, as a function of the per-battle en-
vironmental disutility parameter δ. In the model, a higher δ captures a more adverse
environment, i.e., a stronger dose of heat or pollution. Left panels: Players are symmet-
ric, ch = cl. Right panels: Players are asymmetric, ch = 2cl. Top panels (a) set technology
k = 1 and bottom panels (b) set k = 0.7 (more randomness). We illustrate with symmetric
contest prizes Vh = Vl = V = 1 and λch = 0.5V .
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Figure A.2: [Model] Predictability of the contest winner as a function of: opponent
asymmetry cl/ch (along the horizontal axis within a panel); environmental disutility δ
(different curves within a panel); and randomness in the contest technology k (across
panels). The vertical axis plots the low-cost player’s contest ex-ante winning probability.
We illustrate with symmetric contest prizes Vh = Vl = V = 1 and λch = 0.5V .
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Figure A.3: [Model] Probability that the contest finishes in three battles, as a function of
the per-battle environmental disutility parameter δ. Left panels: Players are symmetric,
ch = cl. Right panels: Players are asymmetric, ch = 2cl. Top panels (a) set technology
k = 1 and bottom panels (b) set k = 0.7 (more randomness). We illustrate with symmetric
contest prizes Vh = Vl = V = 1, and λch = 0.5V .
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(b) Optimal effort in battle 2
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(c) Optimal effort in battle 3

Figure A.4: [Model] Optimal effort choices in battles 1 (top panels), 2 (middle panels)
and 3 (bottom panels), as a function of the per-battle environmental disutility parameter
δ. Left panels: Players are symmetric, ch = cl. Right panels: Players are asymmetric,
ch = 2cl. We illustrate with k = 0.7, symmetric contest prizes Vh = Vl = V = 1, and
λch = 0.5V .
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Figure A.5: [Model estimates: Rank-based ability measure, 25th-percentile
prize] Model predictions against the degree of opponent asymmetry evaluated at the
25th-percentile cash prize in the sample ($8672; N = 2811 matches). Model according to
Table 5, column 2, with player strength based on WTA rank, cin = (rankin)θ.
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Figure A.6: [Estimated model diagnostics] Further diagnostics for estimated models
reported in: (top panels) Table 5, column 1, with ability based on betting odds, cin =
(oddsin)θ; and (bottom panels) Table 5, column 2, with ability based on WTA rank,
cin = (rankin)θ. Each circle in these scatters represents a match in the sample; the
horizontal axes show data whereas the vertical axes show model predictions. The left
panels show fitted marginal cost against the corresponding betting odds- or rank-based
ability measure in the data. The right panels show the model-predicted against the betting-
market winning probability difference across players; matches are color coded according
to ambient conditions.
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Figure A.7: [Model estimates] Augmenting the contest prize money with continuation
value to a player from winning the match and remaining in the WTA series. Augmented
contest prize V , defined as prize money plus continuation value per estimates in Table 9,
against prize money. Each circle in a scatter represents a match. The top panel (in log
scale) shows all contests in the estimation sample (with observed betting odds, N = 2157):
the median V is estimated at $32,857 and the median prize money is $18,300 for this
sample. Matches are color coded according to the round in the WTA series: final matches,
shown in black, lie along the diagonal because there is no subsequent round of contests.
For better visualization, the bottom panel (in linear scale) plots contests up to round 8
only. See the text on assumed player beliefs regarding the strength of the opponents and
environmental quality they expect to encounter in future matches (in this implementation,
the contest prize does not vary within series-year-round so many circles are overlaid).
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