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Abstract

A (partially naive) quasi-hyperbolic discounter repeatedly chooses whether to com-

plete a task. Her net benefits of task completion are drawn independently between

periods from a time-invariant distribution. We show that the probability of complet-

ing the task conditional on not having done so earlier increases towards the deadline.

Conversely, we establish non-identifiability by proving that for any time-preference pa-

rameters and any data set with such (weakly increasing) task-completion probabilities,

there exists a stationary payoff distribution that rationalizes the agent’s behavior if she

is either sophisticated or fully naive. Additionally, we provide sharp partial identifica-

tion for the case of observable continuation values.
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1 Introduction

Intuition and evidence suggests that many individuals are present-biased (e.g. Frederick et

al., 2002; Augenblick et al., 2015; Augenblick and Rabin, 2019). Building on work by Laibson

(1997) and others, O’Donoghue and Rabin (1999, 2001) illustrate within the quasi-hyperbolic

discounting model that present bias, especially in combination with a lack of understanding

thereof, leads individuals to procrastinate unpleasant tasks and to precrastinate pleasant

experiences. Since excessive procrastination is a robust prediction of (naive) hyperbolic

discounting models, it seems natural to use task-completion data to identify present bias from

the pattern of completion times. In line with this idea, previous research uses completion

near the deadline as an indication of present bias (Brown and Previtero, 2018; Frakes and

Wasserman, 2016) or estimates the degree of time inconsistency from completion times under

parametric assumptions (Martinez et al., 2017).1

This paper asks whether time preferences can be inferred by an outside observer—referred

to as the analyst—when only task completion is observed absent parametric assumptions on

the (unobservable) cost and benefit of task completion.2 The key difficulty in doing so is to

separate naivete or time-preference-based explanations of delay from those due to the option

value of waiting (Wald, 1945; Weisbrod, 1964; Dixit and Pindyck, 1994): whenever the cost

of doing a certain task is stochastic, an individual may wait in the hope of getting a lower

cost draw tomorrow.3 This challenge for the identification of time preferences is present even

if the analyst imposes that the agent discounts payoffs exponentially.

Section 2 introduces our task-completion model. We consider an analyst who, from

observing task completion times of a partially-naive quasi-hyperbolic discounter, tries to

learn about some or all of the following parameters: the long-run discount factor δ, the

present-bias parameter β, and the degree of sophistication β̂. To facilitate learning by the

1Brown and Previtero (2018) classify individuals that select their health care plan close to the deadline as
procrastinators and look for correlated behavior in other financial domains. Frakes and Wasserman (2016)
investigate the behavior of patent officers that have to complete a given quota of applications supposing
that the cost of working on a patent are deterministic and identical across days. In their model, for conven-
tional discount rates the empirically observed bunching close to the deadline is inconsistent with exponential
discounting. Slemrod et al. (1997) observe that random opportunity cost can explain a distribution over
different stopping times, and Martinez et al. (2017) parametrically identify time preferences in such a model.

2De Oliveira and Lamba (2019) raise a closely related question in a different setting. See Section 8.
3To highlight this identification challenge, we abstract from forgetting. Conceptually, think of the agent

as getting a non-intrusive reminder at the beginning of every period. This is not to say that limited memory
and the strategic response to it are unimportant in determining task-completion behavior in the field. See,
for example, Heffetz et al. (2016) for how reminders determine when parking fines are payed, Altmann et al.
(2019) for how deadlines and reminders determine the probability of making a check-up appointment at the
dentist, and Ericson (2017) for how present bias and limited memory interact.
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analyst, we assume that the agent’s task-completion payoffs are drawn each period from the

same payoff distribution. Without this restriction, it is straightforward to rationalize any

observed stopping behavior independently of the agent’s taste for immediate gratification

and degree of sophistication, leaving no hope for identification thereof.4 Furthermore, to

make identification easier, we suppose that the analyst observes the agent’s exact stopping

probability in each period. Again, this assumption strongly favors the analyst’s ability to

learn about underlying parameters. Finally, we impose that the agent can be described as a

(partially) naive quasi-hyperbolic discounter. We are agnostic as to the nature of the task,

so our analysis applies when task-completion leads to immediate benefits, costs, or both.

Section 3 contains motivating examples. The first highlights that, even when the para-

metric form of the underlying unobservable payoff distribution is known, stopping proba-

bilities that increase close to the deadline are insufficient to distinguish a time-consistent

from a present-biased agent. The second example illustrates how the estimated present bias

can depend crucially on common parametric assumptions about the unobservable payoff

distribution—such as that it is an extreme value distribution—, which are often imposed

for analytical ease. This holds in our example even though the analyst knows (or guesses

correctly) the long-run discount factor, as well as the mean and variance of the underlying

stationary payoff distribution. Furthermore, the functional-form-driven time-preference es-

timates are not only incorrect but the squared error associated with some them is extremely

low—suggesting that with finite noisy data it is difficult for the analyst to realize when she

picks an incorrect functional form. Motivated by the importance of the parametric assump-

tions in the example as well as variants thereof, we turn to the main focus of the paper:

what lessons about present bias and naivete thereof can be learned non-parametrically?

As a useful preliminary step, Section 4 establishes that the agent’s perceived continuation

value is characterized by a simple recursive equation. Section 5 establishes that for any quasi-

hyperbolic discounter—independently of whether she is sophisticated or (partially) naive and

of her degree of impatience—the perceived continuation value decreases over time. Because

the agent in our model completes the task when the current benefit is greater than her

perceived continuation value, Theorem 1 implies that a quasi-hyperbolic discounter becomes

4For example, suppose in every period the cost of doing the task is either one or zero, allowing for
time-varying probability that the cost are zero. Simply setting the probability that the cost are zero in
each period equal to that period’s observed task completion probability rationalizes the data for any time-
separable utility function. More generally, adopting well-known arguments from the dynamic discrete choice
literature (e.g., Section 3.5 in Rust, 1994; Magnac and Thesmar, 2002), Section 8 shows that otherwise even
parametric identification is infeasible.
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more and more likely to complete the task the closer she is to the deadline.5

Section 6 establishes our main result: if the agent is either sophisticated or fully naive,

for any given long-run discount factor δ and present-bias parameter β, any given penalty of

not completing the task, and any weakly increasing profile of task completion, there exists

a stationary payoff distribution that rationalizes the agent’s behavior (Theorems 2 and 3,

respectively). This implies that for any dataset the analyst may observe, absent parametric

assumptions it is impossible for her to learn anything about the agent’s long-run-discount

factor, degree of present bias or level of sophistication. Importantly, this complete absence

of partial identification continues to hold even if the analyst imposes a priori restrictions

on permissible long-run discount factors, or imposes that the agent is time consistent. A

very rough intuition for this fact is as follows: whether a self prefers to do a task today or

tomorrow depends on her time preferences and on the perceived option value of waiting. The

option value of waiting, in turn, depends on the payoff distribution. Through changing the

unobservable payoff distribution, we can hence undo a change in the present bias or long-run

discount factor of the agent.

In our proofs of Theorems 2 and 3, we freely construct an iid payoff distribution F .

One may hope to identify present bias through economically meaningful restrictions on this

distribution. Arguably, the most natural assumptions are those regarding the moments of

the payoff distribution; for example, an analyst may have an idea regarding the possible

expected payoff of doing the task—that is regarding the mean of F—or may be willing to

impose that payoffs do not vary to much between periods—that is to restrict the variance

of F . Example 2 in Section 3, however, already highlights that even fixing these moments,

common parametric assumptions can lead to widely varying estimates of the agent’s time

preferences. To expand on this point, in Section 6.3 we establish that as long as the penalty

is unobservable or the task is mandatory, we can find a payoff distribution with any given

mean and non-zero variance that rationalizes the observed stopping behavior for a time-

consistent agent with δ = 1. Any identification of the present-bias parameter β in this case,

thus, follows from restrictions on higher-order moments.

Section 7 asks whether non-parametric identification is feasible with richer data in which

the analyst in each period observes the agent’s willingness to pay for continuing with the

stopping problem in addition to the stopping probability. In the case of tax-filing, for exam-

ple, this amount to eliciting the willingness to pay for having someone else file one’s taxes

immediately with zero hassle.6 For the case of a sophisticated agent whose contemporaneous

5This result relies on payoffs each period being drawn independently from the same distribution.
6As we explain carefully in Section 7, our procedure does not explicitly or implicitly rely on the agent
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utility function is quasi-linear in money, Theorem 4 provides an analytical answer in closed

form. Indeed, to check whether or not the data is consistent with a given pair of parameters

β, δ, the analyst only needs to check a simple set of inequalities. Intuitively, observing the

continuation values allows the analyst to distinguish between a taste for immediate grati-

fication and option-value-of-waiting-based delays because a high option value requires the

unobservable payoffs to differ significantly. As a consequence, as the deadline approaches

and the agent foresees less future draws, the option value must decrease quickly. In contrast,

an impatient agent’s continuation value decreases at a slower rate. At the cost of relying on

numerical techniques commonly used in applied work, our sharp set-identification result can

be extended straightforwardly to cover partial naivete and non-linear utility in money.

Applying our Theorem 4 to Example 2, however, illustrates that the analyst may need to

observe a large number of continuation values to be able to tightly identify the present-bias

parameter β. In the example, there is no meaningful identification with 5 periods of data.

With 20 periods, however, β can be tightly identified if the analyst—based on other data

or theory—is willing to impose a particular value for δ. Given that we made a number

of assumptions facilitating identification—such as that the exact stopping probabilities and

continuation values are observable to the analyst—, our results suggests that absent para-

metric assumptions a substantial amount of additional data is needed to identify a taste for

immediate gratification or the degree of sophistication.

Section 8 relates our finding to work on identification in dynamic discrete choice models

(e.g., see Rust, 1994).7 Most of this literature focuses on allowing for flexible functional

forms that map actions and observable states into mean utilities, while imposing that the

unobservable state affects utility through an additively separable shock drawn from a distri-

bution with known functional form.8 When shocks are drawn iid from a known functional

form, the literature provides conditions under which time preferences can be identified. In

contrast, we prove for our stopping model that the chosen parametric form of the unobserv-

able shock fully determines the time-preference estimates.

Section 9 concludes by discussing broader implications of our analysis.

comparing monetary rewards at different points in time, so it is robust to standard critiques of eliciting
time-preference via monetary rewards (Augenblick et al., 2015; Ericson and Laibson, 2019; Ramsey, 1928).

7Technically, our setup is not a special case of the usual dynamic discrete choice framework. Furthermore,
the dynamic discrete choice literature overwhelmingly imposes time consistency (β̂ = β = 1), thereby
precluding issues of present bias we are interested in. See Section 8 for details.

8Exceptions are Norets and Tang (2014) who consider partial identification of δ for a time-consistent
agent in a dynamic binary discrete choice model that rules out stopping problems, and Christensen and
Connault (2019) who consider robust estimation in a general framework. See Section 8.
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2 Setup

Time-Preferences Let time t = 1, 2, · · · , T + 1 be discrete. We consider an agent with

quasi-hyperbolic preferences who can choose when and whether to complete a task before

some deadline T . The agents’ utility is time-separable, and we denote a level of instantaneous

utility the agent receives in period t by ut; let

U t = E

[
ut + β

T+1∑
s=t+1

δs−t us

]
(1)

denote the expected utility Self t derives from the random sequence (ut, · · · , uT+1). Following

O’Donoghue and Rabin (1999), we allow the agent to have incorrect beliefs regarding future

selves’ behavior. The agent believes that all future selves r > t maximize

Û r = E

[
ur + β̂

T+1∑
s=r+1

δs−r us

]
. (2)

We allow for any vector of preference and belief parameters (δ, β, β̂) ∈ (0, 1]3. In case

β̂ = β = 1, the agent has time-consistent preferences with an exponential discount factor δ.

In case β < 1, she has a taste for immediate gratification. We say she is sophisticated—i.e.

perfectly predicts her future behavior—when β̂ = β, she is fully naive—i.e. believes that her

future selves behave according to her current preference—if β̂ = 1, and otherwise say that

she is partially naive. Our setup allows the agent to overestimate her own future taste for

immediate gratification β̂ < β as well as to underestimate it β̂ > β.9

Task-Completion Environment The agent can complete the task once during the peri-

ods t = 1, · · · , T , so that T is the deadline before which the task needs to be completed. If

the agent does not undertake the task in a given period t ≤ T , we assume her instantaneous

utility ut equals zero.10 If she completes the task, she gets an instantaneous utility of zero

in period T + 1. If she did not complete the task by the end of period T , the agents gets

9The special case of the model where the agent is fully sophisticated β̂ = β and the time-horizon is infinite
T =∞ is studied in Section 4 of Fudenberg and Levine (2006).

10We thus focus on task-completion problems—such as paying a parking ticket or writing a referee report—
in which current payoffs in periods prior to the deadline do not depend on whether the task has already
been undertaken. This rules out problems in which completing the task subsequently generates a positive
flow payoff, which we discuss in Section 9.
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a known utility of yT+1 ∈ R− ∪ {−∞} in period T + 1.11 Setting yT+1 = −∞ captures

a mandatory task that the agent is forced to complete by the end of period T ; yT+1 = 0

captures an optional task; yT+1 ∈ (−∞, 0) captures a task with a finite penalty for not

completing it. We denote by y = βδyT+1 the agent’s continuation value in period T . Finally,

we suppose that in every period t < T + 1 the instantaneous utility of completing the task

is drawn independently from a given payoff distribution F , which is known to the agent.

Prior to taking a decision at time t, the agent observes yt, but does not know the payoffs

yt+1, . . . , yT from completing the task in later periods.

Strategies and Equilibrium We look for perception-perfect equilibria in which each self

t chooses an optimal strategy given its prediction of future selves’ behavior, and a self t’s

prediction of future selves’ behavior is consistent with how future selves with preference

parameter β̂ would optimally behave (O’Donoghue and Rabin, 1999, 2001). Formally, a

pure strategy σt for Self t maps a history of payoff realizations y1, . . . , yt to {0, 1}, with the

interpretation that 1 means Self t completes the task. A perception-perfect equilibrium is a

pair of strategies (σ1, · · · , σT ) and (σ̂2, · · · , σ̂T ) such that for all t ∈ {1, · · · , T}, σt maximizes

U t under the assumption that selves r > t use strategy σ̂r, and for all t ∈ {2, · · · , T}, the

strategy σ̂t maximizes Û t under the assumption that selves r > t use strategy σ̂r. We restrict

attention to perception-perfect equilibria in which all selves that are indifferent between

completing the task and waiting choose to wait.

3 Examples on the Influence of Parametric Assumptions

To illustrate the difficulty of identifying present bias from an agent’s stopping behavior,

consider the following stylized example.

Example 1. A sophisticated agent receives a parking fine, which has to be paid within thirty

days. In case she does not pay the fine, she incurs a known payoff yT+1 = −5. Furthermore,

the agent’s long-run (daily) discount rate is (well approximated by) δ = 1. Figure 1 compares

the stopping probability conditionally on not having stopped earlier of a time consistent agent

who draws the cost of completing the task from a log-normal distribution whose underlying

normal distribution has mean µ = 1 and variance η = 1 (dark gray bars) to that of a

sophisticated one with a present-bias parameter β = 0.8 who draws the cost from a log-

normal distribution with parameters µ = 0.48, η = 1.52 (light gray bars).

11For some results, we also discuss the case in which the agent gets a reward for not completing the task
yT+1 > 0. When doing so, we explicity highlight that we allow for yT+1 > 0.

6

Electronic copy available at: https://ssrn.com/abstract=3386017



β=1, Log(-y)~N (1,1)

β=0.8, Log(-y)~N (0.48,1.52)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0.0

0.2

0.4

0.6

0.8

1.0

Period

C
o

n
d

.
S

to
p

p
in

g
P

ro
b

a
b

il
it

y

Figure 1: Conditional stopping probabilities in Example 1 for a time-consistent agent β = 1
(dark gray) and a sophisticated time-inconsistent agent with β = 0.8 (light gray).

An obvious first lesson from the example is that the likelihood of stopping close to the

deadline is no reliable guide to identifying present bias: both agents probability of completing

the task in the final period is just above 73%. Indeed, both agents observed stopping

probabilities are remarkably similar and differ by less than 0.5% in any period, suggesting

that in practise even an analyst who wants to test only between these two possible types

may face a difficult problem.12

In the above illustrative example, the analyst knows or correctly guesses the parametric

class of distributions (log-normal) from which the payoffs are drawn. Without knowing its

exact parameters, however, it is hard to correctly identify the time-preference parameters in

that example. In reality, however, payoffs are drawn from an unobservable payoff distribution

and for typical field data—such as parking tickets—an analyst does not know the parametric

form of the payoff distribution. The following example highlights how crucial functional form

assumptions routinely imposed in applied papers can be in determining the analyst’s findings.

12Independently of our work, Heffetz, O’Donoghue and Schneider observe that substantially different values
of β can predict essentially equivalent day-to-day behavior in how people pay their parking tickets. In a
simple model motivated by observed parking-ticket response behavior in New York City, which they analyze
in Heffetz et al. (2016), they illustrate this supposing that the cost for paying the parking ticket is drawn
from the small parametric family of distributions that has a mass point at zero and admit a constant density
on an interval above zero. Their real-world application nicely demonstrates the practical importance of the
identification challenge we illustrate in Example 1. We are very grateful to these authors for sharing their
example with us during private communication.
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Parametric Family
Sq. Distance Minimzation Likelihood Maximization

β Distance β Log-Likelihood

Uniform Naive 1. 0 1. -1.59186

Uniform Sophisticate 1. 0 1. -1.59186

Normal Naive 0.817 0.00231668 0.816 -1.59187

Normal Sophisticate 0.819 0.00267663 0.818 -1.59188

Extreme Value Naive 0.564 0.03968760 0.562 -1.59627

Extreme Value Sophisticate 0.570 0.04028880 0.570 -1.59638

Logistic Naive 0.757 0.00267137 0.756 -1.59188

Logistic Sophisticate 0.761 0.00331131 0.760 -1.59189

Laplace Naive 0.630 0.00806500 0.627 -1.59202

Laplace Sophisticate 0.638 0.00933172 0.634 -1.59207

Table 1: Parameter estimates of β and squared distance and log-likelihood.

Example 2. We suppose that the agent has 5 periods to complete the task and the payoffs

from completing the task are drawn from a uniform distribution with mean 0 and standard

deviation 1; in reality the agent is time-consistent with β = δ = 1. The analyst can

directly observe the exact stopping probabilities and, in addition, knows the true mean and

standard deviation of the payoff distribution but not its exact functional form. Furthermore,

suppose the analyst correctly imposes that δ = 1 when analyzing the data. Let the analyst

consider four standard parametric families of distributions: normal, extreme value, logistic,

and Laplace. For each of these families, the analyst selects the parameter β that best fits—in

the sense of squared distance or log-likelihood—the observed stopping probabilities allowing

the agent to be either naive or sophisticated. Table 1 reports the parameter estimates for

β and the squared distance/log-likelihood for the different parameterizations of the error

distribution. The analyst’s estimates of β range between 0.56 − 0.82 even in this idealized

situation in which she has infinite data, knows the mean and standard deviation of F , and

knows the long-run discount factor δ. And if the analyst engaged in model testing selecting

the model on the basis of minimizing squared distance or maximizing log-likelihood, she

would conclude that the agent is naive time-inconsistent with β ≈ 0.816 while in truth the

agent is time-consistent and β = 1. Furthermore, for the normal distribution the squared

difference in stopping probabilities in the sophisticated and naive case are remarkably small

8
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(less than 0.232%), so (in a finite dataset analogue) nothing would indicate to the analyst

that these are bad distributional choices to model the unobservable shocks.13

The observed importance of functional form assumptions is robust to various changes

of the example (see the Supplementary Appendix for details). As in the case with known

mean and variance, the analyst also misestimates β to be substantially below 1 when she

does not know (and thus estimates) the mean and standard deviation. Similarly, when the

analyst uses 30 or 60 periods of data, she incorrectly estimates β to be substantially below

1. And in a variant of Example 2 in which the true distribution is logistic, the functional

form assumption determines whether β is over- or underestimated. The analyst significantly

underestimates β in a further variant of Example 2 in which the agent is truly present-biased

and naive with β = 0.9. Furthermore, in this variant, we show that eventually as the number

of periods the analyst observes increases, her estimates move further and further away from

truth; contradicting the intuition that more data alleviates the identification problem.

These examples illustrate that without knowledge of the functional form of the unob-

servable payoff distribution, the analyst can end up significantly misestimating β even in a

best case scenario where she has access to arbitrarily much data and knows the other pa-

rameters of the model (mean and variance). Our general results below, which establish that

non-parametrically the degree of time inconsistency is never identified from task completion

data, prove that the above examples are not artefacts of the numbers we have chosen. For

every set of model parameters δ, β, β̂ and any given dataset, there exists some unobserved

stationary payoff distribution that perfectly fits the data. As a consequence, the analyst’s

conclusions are—in line with Example 2—solely determined by her parametric choice for the

unobservable payoff distribution.

4 Preliminary Analysis: Recursive Structure

This section establishes that the agent’s problem has a simple recursive structure. We say

a strategy σ is a cutoff strategy if there exists cutoffs z = (z1, . . . , zT ) such that the agent

stops in period t if and only if yt > zt. It follows from backward induction that the agent

uses a cutoff strategy: Self T completes the task if and only if her realized payoff is strictly

greater than y. Furthermore, selves t < T believe that Self T will complete the task if and

only if her realized payoff is strictly greater than (β̂/β)y. Hence both the perceived and actual

13If the analyst needs to estimate the mean and standard deviation of the shock distribution as well, she
is able to fit the data even better, making it even harder to detect her misspecification.
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strategy in the final period are cutoff strategies. Similarly, if all future selves are perceived

to use cutoff strategies, Self t can calculate the perceived continuation value of waiting vt,

and will complete the task if and only if her current payoff is greater than this perceived

continuation value. Hence, by induction, all selves use a cutoff strategy and perceive their

future selves to use cutoff strategies.

Using the fact that any two selves t and t′ believe that future selves s > max{t, t′} use

the same perceived cutoff v̂s, in the Appendix we derive a simple recursive equation that

characterizes the perceived continuation value (or actual cutoff) Self t uses as well as the

perceived cutoff that earlier selves believe Self t uses.

Lemma 1 (Recursive Characterization). A pair of strategies (σ, σ̂) constitute a perception-

perfect equilibrium if and only if both are cutoff strategies with cutoffs (v, v̂) ∈ RT ×RT that

satisfy the equations v̂t =
(
β̂/β
)
vt and

vt =

β δ
∫∞
β̂/β vt+1

z dF (z) + F (β̂/β vt+1) δ vt+1 for t < T

y for t = T
. (3)

To see the intuition behind Equation 3, suppose first that the agent is sophisticated in

which case β̂/β = 1. Then the first term is the expected discounted payoff from stopping

tomorrow times the probability of doing so, which the agent does whenever the payoff from

stopping falls above the continuation value that tomorrow’s self uses. This payoff is dis-

counted according to Self t’s short-term discount factor βδ. The second term captures the

fact that with probability F (vt+1) tomorrow’s self continues because it prefers its perceived

continuation value vt+1. As today’s self discounts payoffs that realize after period t + 1 by

a factor of δ more than tomorrow’s self, this term is discounted with δ. When predicting

future behavior, a partially naive agent uses the perceived cutoffs v̂t = (β̂/β) vt determined

by the continuation value a former time s < t self believes Self t has. If β̂ > β (respectively

β̂ < β) current selves overestimate (respectively underestimate) future selves’ patience and,

hence, the cutoff they use.

For a given distribution F , Lemma 1 allows for a straightforward calculation of stopping

probabilities, which we used to solve the examples in Section 3. Indeed, when imposing

a given parametric form, Lemma 1 allows to analytically solve for the log-likelihood of

different parameters given observed stopping probabilities, which is how we computed the

log-likelihood (and similarly minimum-distance) estimators in Section 3. This is noteworthy

as prior empirical approaches based on dynamic discrete choice models—which simulate

10
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a naive agent’s beliefs—are computationally costly and restricted to unobservable payoffs

that are drawn from a logistic distribution (derived from two unobservable extreme-value-

type-1 shocks).14 Furthermore, for a given vector of parameters, Lemma 1 can be used

to numerically check parametric identification, which for general distributions is an open

question. An important exception is the case of logistic shocks with known variance for

which Martinez et al. (2017, Section A.4.1.) and Daljord et al. (2019) provide parametric

identification results.

5 Rate of Task Completion Increases Over Time

This section establishes that a partially-naive quasi-hyperbolic agent is (weakly) more likely

to stop and complete the task, the closer she is to the deadline T . Hence, any dataset

consistent with quasi-hyperbolic discounting and independent draws from a given payoff

distribution has a weakly increasing conditional stopping probability.

Theorem 1 (Monotonicity of the Continuation Value). The perceived continuation values

are non-increasing over time

v1 ≥ v2 ≥ . . . ≥ vT .

To understand intuitively why the perceived continuation value decreases, consider first

the case in which doing the task is always costly—i.e., where the support of F is a subset

of R−, and compare the penultimate Self T − 1 to the ultimate Self T . The ultimate self’s

perceived continuation value is the discounted penalty. If the penultimate self decides to

wait, there are two possible cases; either the ultimate self waits or she completes the task. In

case the ultimate self waits, the penultimate self discounts the penalty by an extra δ making

her (weakly) better off. In case the ultimate self completes the task, she strictly prefers it

to waiting, implying that the realized costs are strictly lower than the penalty. But in this

case the penultimate self is strictly better of as she, in addition, discounts these lower costs.

Replacing the penalty in the above argument with the perceived continuation value of a

future self, extends the argument to earlier selves.

Suppose now instead that the agent is sophisticated and that the payoff of completing

the task is always positive—i.e., the support of F is a subset of R+. Because there is a

14Indeed, upon circulation of a first version of this paper, Martinez et al. (2017) developed an estimation
technique based on our procedure for their tax-filing data in order to provide robustness tests under different
parametric assumptions that complement their core development, which hews closely to the type-1 extreme
value tradition that gives rise to logistic shocks in our setting.
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penalty if the agent does not complete the task in period T , Self T never waits. Self T − 1

waits whenever her benefit of doing the task is so low that she prefers the positive discounted

expected benefit from completing it tomorrow. Thus, she has a (weakly) higher perceived

continuation value. If Self T − 1 always completes the task immediately, Self T − 2 and Self

T−1’s benefit from waiting coincide. But whenever the drawn benefit from doing the task in

period T −1 is low enough for Self T −1 to prefer to wait, Self T −2 who is (at least weakly)

more patient regarding tradeoffs between period T − 1 and T , must prefer Self T − 1 to wait

rather than to complete the task immediately. As a result, Self T − 2 benefits from the fact

that Self T − 1 sometimes waits and hence has a higher perceived continuation value than

Self T − 1. Iterating this argument, the perceived continuation values are weakly increasing

in the distance to the deadline. Partially naive agents think they are sophisticated, and

since the perceived continuation value falls for a sophisticated agent they predict tomorrow’s

self to have a lower continuation value—and hence to wait less often—the closer they are

to the deadline. At the same time, because a partially naive self predicts that tomorrow’s

self is (weakly) less patient than she is, she realizes that she benefits whenever tomorrow’s

self chooses to wait. Hence, she predicts a lower benefit from waiting, i.e. her perceived

continuation value decreases over time. Formally, our proof studies properties of solutions

to the recursive equation (3) to extend the above intuitions to cases in which the support of

the payoff distribution may contain positive and negative elements.

Note that the probability pt that the agent stops in period t conditional on not having

stopped before equals the probability that the value of completing the task yt is above the

perceived continuation value vt; i.e.

pt = P[yt ≥ vt] = 1− F (vt) .

As the perceived continuation value vt is non-increasing, we have that the objective proba-

bility pt that the agent stops in period t is non-decreasing.

Corollary 1. For any payoff distribution F and in every perception-perfect equilibrium, the

probability with which the agent completes the task conditional on not having completed it

before is non-decreasing towards the deadline, i.e.

p1 ≤ p2 ≤ . . . ≤ pT .

Importantly, Corollary 1 establishes that the probabilities of stopping conditional on

not having stopped previously increase over time. The unconditional stopping probability,
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however, may either increase or decrease.15

Remark 1. Because Theorem 1 implies that the perceived continuation value decreases as the

deadline approaches, each self prefers the deadline to be as far away from today as possible.

Thus, perhaps surprisingly, the agent never wants to commit to a shorter deadline in an iid

environment even if she is sophisticated and present biased. This is in contrast to examples

from non-iid environments in which a present-biased quasi-hyperbolic discounter wants to

commit to an earlier deadline to manage her conflict with future selves.16

Remark 2. If an analyst observes data from a heterogenous population, one can generate

non-monotone aggregate conditional stopping probabilities.17 Our later non-identification

results (Theorem 2 and 3) extend to the case of a heterogeneous population as they establish

non-identification for a better informed analyst.

6 Time Preferences are Unidentifiable from Task Completion

We showed that for any arbitrary preference profile β, δ and any belief β̂, the conditional

stopping probabilities p are non-decreasing. This section establishes the converse: absent

(parametric) restrictions on the payoff distribution F , any non-decreasing profile of stopping

probabilities is consistent with any arbitrary preference profile β, δ in case the agent is either

sophisticated or fully naive. Hence, it is impossible, for example, to distinguish a naive

time-inconsistent agent from a time-consistent one based on their task-completion behavior.

Importantly, this impossibility continues to hold even if the analyst exogenously imposes

that the long-run discount factor δ = 1, as is plausible if she observes task completion on

a frequent (e.g. daily) basis. Similarly, even if the researcher is willing to impose a priori

restrictions on plausible levels of β, absent exogenous restrictions on F , no information on δ

or β can be inferred from the task-completion data.

Intuitively, whether a self prefers to do a task today or tomorrow depends on her time

preferences (as well as beliefs about future selves’ time preferences) and on the perceived

15This difference is of practical relevance: for example, Figure 1 and 2 in Martinez et al. (2017) imply
that the conditional stopping probabilities increase over time in their tax-filing data while the unconditional
stopping probabilities decrease.

16See our working paper version or Bisin and Hyndman (2018) for examples.
17Suppose, for example, there are two types of agents in the population that face a three-period task-

completion problem. The first type stops in each period with probability 1, while the second type stops
only in the final period. If α > 0 is the fraction of the first type, then the aggregate conditional stopping
probability is α in the first period, 0 in the second, and 1 in the final period. Heffetz et al. (2016) discuss
heterogeneity and provide evidence for its importance in determining when individuals pay their parking
fines.
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option value of waiting. The option value of waiting, in turn, depends on the payoff distribu-

tion. Through changing the unobservable payoff distribution, we can hence potentially undo

a change in the agent’s present bias or long-run-discount factor. Technically, however, a local

change in the payoff distribution affects continuation values in every period in a highly non-

linear way, so to establish that we can construct an appropriate payoff distribution, we need

a non-local argument. When the agent is either sophisticated or fully naive—for different

technical reasons—the analysis simplifies to a tractable fixed-point problem, which allows us

to establish that we can rationalize the stopping behavior for any arbitrarily chosen β, δ.

If the penalty is unobservable, we furthermore illustrate that the data is rationalizable

as the optimal behavior of a fully patient time-consistent agent (β̂ = β = δ = 1) facing an

unobservable payoff distribution F with any given expected value and (non-zero) variance

of the distribution; any parametric identification of present bias in such a task-completion

setting, therefore, is based on higher-order moments of the payoff distribution.

6.1 Time Preferences are Unidentifiable: Sophisticated Case

In this subsection, we establish that absent (parametric) restrictions on the payoff distribu-

tion F , any non-decreasing profile of stopping probabilities is consistent with any arbitrary

preference profile β, δ of a sophisticated quasi-hyperbolic discounter. In particular, we have:

Theorem 2 (Non-identifiability). Suppose the agent is sophisticated β̂ = β. For every non-

decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every (δ, β) ∈
(0, 1]× (0, 1], and every penalty yT+1 ∈ R, there exists a distribution F that rationalizes the

agent’s stopping probabilities as the outcome of the unique perception perfect equilibrium.

Technically, to prove the theorem, we construct a distribution with t + 2 mass points,

where each of the non-extreme values equals the perceived continuation value of a self t ∈
{1, . . . , T}; i.e. the second lowest mass point is set at the value vT = y, and so on. The

probability on each mass point is chosen so that the agent—who waits if and only if yt ≤ vt—

selects the exogenously given stopping probability. The constructions is feasible since when

β̂ = β, the recursive representation (Lemma 3) takes a particular simple form, and together

with the chosen construction of the distribution gives rise to a system of linear equations,

which can be solved.

Remark 3. Theorem 2 extends to mandatory tasks for stopping probabilities 0 < p1 ≤ p2 ≤
. . . ≤ pT−1 < pT = 1 by simply considering the auxiliary tasks with T − 1 periods for which

completion in period T − 1 is not mandatory.
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6.2 Time Preferences are Unidentifiable: Naive Case

We now consider a fully naive agent and establish that for every non-decreasing profile of

stopping probabilities and every preference profile β, δ, there exists a payoff distribution

F that admits a piecewise constant density and induces the agent to choose the stopping

behavior given by the data.

Theorem 3 (Non-identifiability). Suppose the agent is fully naive β̂ = 1. For every non-

decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every (δ, β) ∈
(0, 1)× (0, 1], and every penalty yT+1 < 0, there exists a distribution F that rationalizes the

agent’s stopping probabilities as the outcome of the unique perception perfect equilibrium.

Our formal proof in the Appendix proceeds roughly as follows. Step (i). Fix the agent’s

time preference as well as period T ’s perceived continuation value (which equals y). Step

(ii). Take an arbitrary (T − 1)-element vector of non-increasing perceived continuation

values v1 ≥ v2 ≥ . . . ≥ vT−1. Step (iii). Here, we generate a payoff distribution for these

perceived continuation values that induces the desired stopping probabilities. To do so, we

put a probability mass equal to the difference in the exogenously given stopping probability

between periods t and t+1 between the corresponding periods’ perceived continuation values,

for simplicity using a uniform density. This step, hence, amounts to mapping perceived

continuation values into distributions that lead to the correct stopping probabilities. Step

(iv). Calculate the actual perceived continuation values that the new payoff distribution

from the third step gives rise to. This maps the set of distributions back into the vector of

perceived continuation values. By Theorem 1, these perceived continuation values are again

non-decreasing, and thus the combined function maps a non-increasing sequence of perceived

continuation values into a non-increasing sequence of perceived continuation values. Step (v).

We show that this function is bounded and maps sequences from an appropriately chosen

interval into itself. Furthermore, the function is monotone as higher perceived continuation

values lead to a better distribution (in the sense of first-order stochastic dominance) and a

better distribution increases the perceived continuation values for an agent who believes to

be time-consistent. Thus, the mapping from perceived continuation values into perceived

continuation values is a monotone mapping from a complete lattice into a complete lattice,

and by Tarski’s Theorem admits at least one fixed point. Any fixed point gives the desired

distribution, since by Step (iii) the stopping probabilities are correct and by Step (iv) the

perceived continuation values are those consistent with the limit distribution.

Step (v) in the proof relies on the fact that a first-order dominance shift in the payoff
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distribution increases the perceived continuation value, which is where we use the assumption

of a fully naive agent.18

6.3 Known Expected Value and Variance

For our general results, we have not restricted the class of permissible distribution functions.

One may hope to rule out time consistency and find evidence through restricting features of

the distribution. We first note that Theorems 2 and 3 extend to the case in which we only

consider well-behaved (smooth) distributions:

Remark 4. The distributions we construct to establish Theorems 2 and 3 have bounded

support and thus admit all moments. Furthermore, it follows from the construction in

the respective proofs that the non-identifiability result extends if we restrict attention to

distributions that admit a density.

In light of this remark, the perhaps most natural way of even further narrowing down the

class of possible distribution is to add restrictions regarding the moments of F ; an analyst

may have an idea regarding the possible expected payoff of doing the task—that is regarding

the mean of F—or may be willing to impose that payoffs do not vary to much between

periods—restricting the variance of F .

If the continuation payoff yT+1 ∈ R is unobservable (or the task mandatory), however,

even with a priori knowledge of the mean and variance of F it is impossible to rule-out

time-consistent behavior. To see this, consider an agent for whom β = δ = 1. Theorem 2

implies that a payoff distribution F exists that rationalizes any increasing profile of stopping

probabilities. Furthermore, in this case the recursive formulation in Lemma 1 simplifies to

vt = E [max{yt+1, vt+1}] for all t < T.

Hence, if the distribution F together with the penalty yT+1 rationalize the data, so does the

distribution F + κ1 together with the penalty yT+1 + κ1 for any κ1 ∈ R. In other words,

we can always select a payoff distribution with a given expected value. Furthermore for any

κ2 > 0, the stopping behavior remains optimal if we scale the payoffs and yT+1 by κ2. This

implies that we can not only select a distribution with a given mean but that we can at the

same time select any desired variance and explain the observed stopping behavior.19

18See the working paper version for a counterexample in which a first-order dominance shift in the payoff
distribution decreases the perceived continuation value when the agent is not fully naive.

19Indeed, since the construction of F in the proof of Theorem 2 uses bounded support, we can rationalize

16

Electronic copy available at: https://ssrn.com/abstract=3386017



Corollary 2. Suppose the agent is time-consistent and fully patient β̂ = β = δ = 1. For

every non-decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, and

every µ ∈ R and σ2 > 0, there exists a distribution F with mean µ and variance σ2 and a

penalty yT+1 ∈ R that rationalizes the agent’s stopping probabilities as the outcome of the

unique perception perfect equilibrium.

Corollary 2 does not preclude that knowledge regarding higher moments could rule out

β̂ = β = δ = 1 for some datasets. Knowledge regarding the skewness of the payoff distribu-

tion, such as that it is symmetric, might for example facilitate set identification. Given the

importance of such an assumption, however, it should be carefully justified.

7 Non-Parametric Identification with Richer Data

Since stopping data is insufficient to identify time preferences, we now asks whether richer

data helps. Intuitively, the analyst needs to disentangle whether the stopping behavior is

driven by a desire to delay incurring costs or the option value of waiting. In the latter case,

a considerable option value requires payoffs to differ significantly. Hence, as the deadline

approaches and a waiting agent faces fewer future draws, the continuation value should drop

considerably. In contrast, even with a (relatively) constant option value, an agent who is

present biased is willing to delay a costly activity to the last minute. Thus, observing, in

addition to task-completion times, continuation values should facilitate the non-parametric

identification of the time-preference parameters δ, β, β̂.

This section, hence, analyzes the case in which the agent’s stopping behavior as well as

her exact willingness to pay for continuing with the task are observable. Conceptually, the

analyst could elicit this information by selecting some stopping problems in which she offers

the agent a mechanism at the end of period t that truthfully elicits her willingness to pay

for continuing with the task from t + 1 onwards.20 Denote the amount she is willing to

pay at the end of period t by mt. If the agent’s utility is quasi-linear in money, which is

a good approximation for a quasi-hyperbolic discounter when the involved stakes are small,

observing mt is equivalent to observing the continuation value vt; otherwise, vt = u(mt) for

some monotonically increasing utility function mt. We provide an analytical result regarding

the observed stopping behavior as resulting from a patient agent (β = δ = 1) whose net benefits vary
arbitrarily little.

20If the analyst sees infinitely many identical agents, she can randomly select T agents. Label these agents
k = 1, . . . , T . At the end of period k, the analyst then elicits agent k’s willingness to pay for facing the
task-completion problem from period k + 1 to T .
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sharp partial identification for the case of linear utility in money and a sophisticated agent.

But—at the cost of using numerical methods common in empirical work—our results can

be readily extended in multiple directions, including partial naivete and non-linear utility in

money.

Theorem 1 and Corollary 1 imply that the elicited continuation values must be non-

increasing and the observed stopping probabilities non-decreasing. We refer to data (v, p)

that has these properties as plausible.21 Any data that is not plausible cannot be justi-

fied by our quasi-hyperbolic setup. Imposing that the agent is sophisticated, we now non-

parametrically identify the set of β, δ consistent with the observed data. Using Lemma 1

and the fact that an agent stops whenever his payoff is strictly above the perceived continu-

ation value, for a sophisticate the perceived continuation values v and conditional stopping

probabilities p must satisfy

vt = u(mt) for all t ∈ {1, . . . , T} ,∫ ∞
vt+1

z dF (z) =
δ−1 vt − (1− pt+1) vt+1

β
for all t ∈ {1, . . . , T − 1} ,

1− F (vt) = pt for all t ∈ {1, . . . , T} .

(4)

Conversely, if (u, F ) satisfies (4) for a given plausible dataset, Lemma 1 implies that (v, p)

are the perceived continuation values and stopping probabilities of a sophisticated agent.

Note that for u(mt) = mt the right-hand-side of (4) is given by the data and hypothesized

values of β and δ. Thus, the data is consistent with a given pair β, δ if and only if there exists

a distribution F that solves (4). Lemma 4 in the Appendix shows that whenever (4) admits

a solution, it also admits a solution that is a distribution consisting of T + 1 mass points.

Using this insight, (4) becomes a non-linear system with finitely many real-valued unknowns.

Theorem 4 exploits that this system can be transformed into a simple set of inequalities that

identify the values of δ and β that are consistent with the observed stopping behavior and

elicited continuation values.

Theorem 4 (Non-Parametric Identification). Suppose u(mt) = mt for all t and that p1 >

0.22 Plausible data (v, p) is consistent with β, δ and sophistication β̂ = β if and only if (i)

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

21If yt+1 is observable, we require that vT = βδyt+1.
22We require p1 > 0 only to simplify the statement.
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and (ii) vt+1β < vt+1a(δ, t) ≤ vtβ for all t ∈ {2, . . . , T − 1}, where

a(δ, t) = 1− δ−1(vt−1 − vt)− (1− pt)(vt − vt+1)

vt+1(pt+1 − pt)
.

The theorem provides a sharp characterization of what time-preference parameters are

consistent with the observed rich data. To illustrate its implications, reconsider Example

2 from Section 3 in which T = 5, the agent’s payoff of completing the task are uniformly

distributed with mean zero and variance 1, and β = δ = 1. Figure 2 shows the set of

parameters the analyst can identify non-parametrically for T = 5 and T = 20. When

continuation values are observable, not all parameter combinations β, δ are consistent with

the data. Figure 2, however, also illustrates that even if the analyst correctly imposes that

δ = 1, she cannot make precise inference when T = 5. Indeed, in the example any β between

0.82 and 1.28 is consistent with the data. This changes drastically for T = 20 in which case

β is tightly identified once δ = 1 is imposed. Without imposing δ = 1, however, the inference

about β remains imprecise even in the case of T = 20, as it is impossible to reject β = 0.84.

Similarly, if the analyst imposes that the agent is time consistent, she can identify δ tightly

for the case of T = 20 while absent this restriction a wide range of δ is consistent with

the observed stopping behavior. Overall, the example suggests that rich data—including

a significant number of continuation values—is needed for tight parameter estimates. It is

also in line with conventional wisdom in behavioral economics that knowledge from theory

or other datasets that pins down δ is useful in identifying present bias.

As the intuition at the beginning of this section highlights, it is the change in option

value that allows identifying time-preference parameters. Since the willingness to pay for

extending the deadline reflects the drop in continuation value, observing it would also give

rise to a rich dataset that allows for non-parametric set identification.

Generalizations of the Methodology We think of Theorem 4 as a proof of concept

that analysts can adopt to the data at hand and the assumption they are willing to make.

For example, it is straightforward to incorporate partial naivete. One just needs to account

not only for the probability mass and expectation of falling between two actual continuation

values but also to differentiate whether a given probability mass falls above or below the

anticipated continuation values v̂. An analog to Lemma 4 implies that this can be done with

2T+1 mass points. For intervals that are bounded by anticipated and not actual continuation

values, however, the probability that yt falls into this interval is unknown. Thus, the analyst
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Figure 2: The above figures illustrates the set of parameters β, δ that the analyst can non-
parametrically identify if she correctly imposes that the agent’s instantaneous utility is linear
in money. The agent’s true values of completing the task are uniformly drawn with mean
0 and variance 1 and she is time-consistent with β = δ = 1. Lightly shaded is the case of
T = 5 periods of data and in dark shade T = 20 periods of data.

needs to choose both the mass point and the weight on it (with the appropriate constraints

from the observed stopping behavior), giving rise to quadratic constraints. While this can

be solved numerically using standard techniques, a closed-form solution as in the case of

Theorem 4 is unavailable. Similarly, because we only need to consider a finite number of

mass points, allowing for non-linear (strictly increasing) utility in money simply requires the

analyst to choose increasing utility values u(mt) in addition to the mass points.23

Time-Preferences over Money Our procedure does not (explicitly or implicitly) impose

constraints on how the agent handles monetary payments at different points in time. It is

sufficient for contemporaneous utility to be separable in money, and the marginal utility

23If the analyst wants to impose risk-aversion in money, this adds simple (linear) constraints that ensure
that the slope of u is non-increasing in mt. Again, this can be solved using standard numerical techniques.
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of receiving money to be the same across periods. This assumption is consistent with an

intertemporal set-up in which the agent can borrow and lend at given interest rates—in

which case the interest rate determines how she trades off monetary payments at different

points in time (Augenblick et al., 2015; Ericson and Laibson, 2019; Ramsey, 1928). But it

is also consistent with an agent narrow bracketing and consuming small monetary payments

immediately—or reasoning as if she does so—so long as she trades of money and effort

consistently over time.

8 Related Dynamic Choice Literature

There is a vast literature on identification in dynamic discrete choice models (for a survey see

Rust, 1994). These papers typically focus on allowing flexible (non-parametric) functional

forms for the mapping from actions and the observable state to the agent’s mean utility while

for analytical ease imposing that the unobservable state is an additively separable utility

shock from some known distribution. Because, whenever the agent takes a decision, the

action space is binary and time is excluded from affecting mean utilities, in our model there

is no difference between a parametric or non-parametric mapping of the agent’s observable

state and action into instantaneous payoffs. But, perhaps surprisingly, in our setting the

chosen parametric form on distributions of the unobservable shock fully determines time-

preference estimates.

While theoretically stopping problems are a special case of a dynamic discrete choice

problem, the assumptions imposed in the (applied) econometric literature on the topic often

rule out our setting.24 In particular, the usual paper assumes: i) infinite horizon; ii) additive

separability between the observable state-dependent part of utility and the unobservable

component; iii) the set of feasible actions does not depend on past actions; iv) shocks are

drawn from some given distribution with unbounded support; and v) the agent is time-

consistent. Assumptions ii), iii), and iv) jointly rule out that the modeled dynamic discrete

choice problem is equivalent to an optimal stopping problem.25 Of course, this does not

preclude insights from the dynamic discrete choice literature to carry over to our setting.

Classic parametric non-identification results in the dynamic discrete choice literature

(e.g., Section 3.5 in Rust, 1994; Magnac and Thesmar, 2002) consider the case in which

24See, for example, Rust (1994) or Magnac and Thesmar (2002) for a statement of these assumptions.
25To see why, suppose the agent stopped. Then it must be optimal for her not to do the task again even

though—in contrast to an optimal stopping problem—the action is available by iii). Yet, by assumption ii)
and iv), there is a realization of the shock for which it is optimal to do the task again.
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there is state-dependent unobserved utility and show that it possible to rationalize any data

with any time-preference parameter for any distribution of additive shocks using some state-

dependent utility. As the state in our model equals calendar time, this is equivalent to

the observation that if one allows for non-iid payoffs any time-preference (δ, β, β̂) can be

rationalized — even when the analyst knows the distribution of shocks.26

To circumvent this identification problem, as Levy and Schiraldi (2020) point out,27

“[a] typical approach to identification in the exponential discounting model adds exclusion

restrictions on utility (or conditional value function) across states, a choice restriction such

as an absorbing choice, (e.g. Magnac and Thesmar, 2002; Abbring and Daljord, 2019), or

restricts attention to finite horizon model (e.g. Yao et al., 2012; Chung et al., 2014; Bajari

et al., 2016; Chou, 2016), usually coupled with a strong normalization on the utility of a

reference alternative.”

The task-completion setting with iid payoffs imposes all of the above restrictions simul-

taneously. Indeed, focusing on present bias, Martinez et al. (2017) prove that β is identified

when the agent is naive, the analyst knows δ, and shocks are logistic with know variance.

For sophisticated agents and logistic shocks, Daljord et al. (2019) provide identification con-

ditions. When we relax the assumption that the analyst knows the parametric form of

the unobservable error distribution, in contrast, identification of time preference becomes

infeasible—even when restricting attention to a time-consistent agent as (most of) the dy-

namic discrete choice literature does or focusing on the present-biased and fully naive case

with known δ.

Closely related to Theorem 4 of our paper, Norets and Tang (2014) investigate identifica-

tion of time preferences when the stationary error distribution is unknown. Under Assump-

tions i) to v) above, they provide a system of equations for such dynamic discrete binary

choice models with time-consistent agents that allows one to check (numerically) whether a

distribution F exists that rationalizes the data for a given parameter δ.28 Recently, for a

26To see this, suppose Ft = µt + G for some given distribution G that is invertible and known to the
analyst. To match the data, simply proceed recursively and choose µT for any given vT so that the observed
stopping probability in the final period T matches the data, i.e. so that G

(
vT β̂/β − µT

)
= 1− pT . Once µT

is determined, use the analog to the Bellman equation in Lemma 1 to calculate vT−1 and then choose µT−1

to match the observed stopping probability in the penultimate period (i.e. so that G
(
vT−1

β̂/β − µT−1

)
=

1− pT−1); and so forth.
27For a sophistcated β, δ agent, Levy and Schiraldi investigate parametric identification of the time pref-

erences when the additive shock to utility follows an extreme-value distribution. Their identification result,
however, rules out our setup as it assumes at least four actions. Relatedly, Mahajan et al. (2020) exploit
exclusion restrictions that do not apply in our setting to establish parametric identification of present bias
in their dynamic discrete choice problem.

28Their setup differs from ours since they do not allow for present-bias, exclude optimal stopping problems,
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general set of problems Christensen and Connault (2019) develop a novel, generally applica-

ble, “robust-estimation” technique that also allows one to numerically check the importance

of parametric assumptions for a given dataset.29 Economically related, we highlight the

importance of parametric assumption by proving that absent these, in task-completion en-

vironments identification of time preferences is impossible for any dataset.

Imposing time consistency, De Oliveira and Lamba (2019) ask what an analyst can infer

about δ when she observes an agent who chooses actions over time.30 The analyst does not

know the agent’s information structure but knows payoffs conditional on the state and the

chosen action profile. They characterize rationalizable δ’s for a single sequence of actions in

a dynamic decision problem. In contrast, we allow the analyst to observe the distribution

over action profiles and consider iid payoffs absent which identification of time-preference is

impossible in task-completion environments (see Footnote 4).

9 Discussion

Our formal non-identification results apply to the specific task-completion setting ana-

lyzed, and should not be misconstrued as implying complete non-identifiability of the quasi-

hyperbolic discounting model in other settings. In richer and different datasets, it is possible

to identify β, β̂ more directly. For example, lotteries (or contracts) that pay off differently

depending on the agent’s own future behavior can be used to reveal whether the agent

missperceives her own future behavior and, hence, whether she is (partially) naive (see, for

example, DellaVigna and Malmendier, 2006; Spiegler, 2011). Similarly, if the agent is will-

ing to pay for reducing her choice set or for imposing a fine for certain future actions, she

values commitment and—within the quasi-hyperbolic discounting framework—must be time

inconsistent (see, for example, Strotz, 1956). Such identification strategies, however, rely on

data that is fundamentally different from the task-completion data for which we establish

the impossibility of non-parametric identification.

In the closely related, but different, problem of task timing (Carroll et al., 2009; Laibson,

and do not establish an analog of our non-identification result.
29They also provide two examples—one for a dynamic discrete choice dataset—that highlight the impor-

tance of parametric assumption on the unobservable shocks.
30More distantly related, Echenique et al. (forthcoming) provide a non-parametric revealed-preference

test to identify time preferences when consumption choices are observed for different intertemporal budget
sets and Dziewulski (2018) provides a revealed preference characterization of general discounted utility for
datasets that consists of finitely many choices over delayed rewards. As our setting corresponds to a game
between the different selves, it is conceptually related to Bergemann and Morris (2013, 2016) who derive
predictions that are robust to changes of the private information structure of players.
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2015) in which the benefit from doing the task start accumulating as soon as the agent

finishes it, it is possible to construct examples in which an agent wants to commit to an

earlier deadline, implying that at least partial identification of perceived present bias (β̂ 6= 1)

is theoretically feasible. While agents may theoretically benefit from imposing a deadline

in such task-timing problems, however, the calibration of the example in Laibson (1997)

suggests that their willingness to do so is small, implying that identifying time inconsistency

can nevertheless be challenging in real-world data.

Let us emphasize the obvious: even though present-bias is non-identifiable in our task-

completion settings absent data on continuation values, it may still be a major driver for

why some agents complete tasks last minute. Our results simply caution that the observed

task-completion behavior on its own is not enough to infer that present bias is widespread.

More broadly, in our setting the chosen parametric form of the unobservable shock fully

determines time-preferences’ estimates, raising the question in which other economic envi-

ronments parametric assumptions on the unobservable shocks determine parameter estimates

and economic conclusions.
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Appendix

Proof of Lemma 1: We first show that the conditions are necessary for a perception-perfect

equilibrium. We already argued that any equilibrium must be in cutoff strategies and that

the cutoffs used by each self must equal their perceived continuation value v. To characterize

these cutoffs, note that for a partially-naive quasi-hyperbolic discounter, the time t and t′

selves have the same beliefs about the strategy future selves—i.e. selves active after time

max{t, t′}—use. Self t thus believes that if she does not complete the task at time t, the

task will be completed at the (random) time

τ̂t = min{s > t : ys > v̂s} ,

where v̂s is the perceived cutoff that selves t < s believe Self s will use. Trivially, for all

s > t the stopping time τ̂s equals τ̂t conditional on not stopping before time s+ 1,

P[τ̂s = τ̂t | τ̂t > s] = 1 .

Hence, Self t believes that her perceived continuation utility vt if she does not complete the

task at time t is given by

vt = β E
[
δτ̂t−tyτ̂t

]
.

We can rewrite the perceived continuation utility by considering the event that the task is

completed in period t+ 1 as well as the complementary event that it is completed later

vt = β E
[
δτ̂t−tyτ̂t

]
= β E

[
1τ̂t=t+1δ

τ̂t−tyτ̂t + 1τ̂t>t+1δ
τ̂t−tyτ̂t

]
.

Because Self t believes the task is completed in period t + 1 if and only if the benefit is

greater than the perceived cutoff yt+1 > v̂t+1, this equals

vt = β E
[
1yt+1>v̂t+1δyτ̂t + 1yt+1≤v̂t+1δ

τ̂t−tyτ̂t
]
.

Since yt+1 is distributed according to F and τ̂t = τ̂t+1 conditional on not stopping in period

t+ 1, we can use the definition of a Riemann–Stieltjes integral to rewrite the above as

vt = βδ

∫ ∞
v̂t+1

z dF (z) + F (v̂t+1) βδ E
[
δτ̂t+1−(t+1)yτ̂t+1

]
.
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Using the definition of vt+1 to rewrite the last summand above, we therefore have that

vt = βδ

∫ ∞
v̂t+1

z dF (z) + F (v̂t+1) δ vt+1 . (5)

Here, vt is the cutoff that Self t actually uses. Prior selves, however, believe that Self t

discounts with hyperbolic weight β̂, so the perceived cutoff v̂t they think Self t uses solves

v̂t = β̂ E
[
δτ̂t−tyτ̂t

]
=
(
β̂/β
)
β E

[
δτ̂t−tyτ̂t

]
=
(
β̂/β
)
vt .

Using this equation to replace v̂t+1 in (5) establishes that the continuation values v1, . . . , vT−1

satisfy the recursive equation

vt = β δ

∫ ∞
(β̂/β) vt+1

z dF (z) + F (
(
β̂/β
)
vt+1) δ vt+1 .

That any such pair of cutoff strategies constitutes a perception-perfect equilibrium follows

from checking the (perceived) optimality conditions inductively starting from the last period.

Define the function g : R→ R as

g(w) = β̂ δ

∫ ∞
w

z dF (z) + F (w) δ w . (6)

As the following lemma formally establishes, g has a number of convenient properties.

Lemma 2. The function g has the following properties:

i) For all t ∈ {1, . . . , T−1}, the perceived continuation values satisfy
(
β̂/β
)
vt = g

((
β̂/β
)
vt+1

)
.

ii) g(w) is non-decreasing for w ≥ 0, is right-continuous, and has only upward jumps.

iii) g(w) ≥ w for all w ≤ 0.

Let F (0) < 1. Then g has the following additional properties:

iv) g(w) > w for all w < 0.

v) Let w? = inf{w ∈ R : g(w) ≤ w}.31 If w? <∞ it satisfies g(w?) = w? and w? ≥ 0.

vi) If w′ ≥ 0 ≥ w, then g(w′) ≥ g(w).

Proof of Lemma 2: i) follows immediately from Lemma 1. To see that ii) holds, observe

31We follow the convention that inf ∅ =∞.
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that we can rewrite g as

g(w) = β̂ δ

∫ ∞
w

z dF (z) + β̂F (w) δ w + (1− β̂)F (w) δ w

= β̂ δ

∫ ∞
−∞

max{z, w} dF (z) + (1− β̂)F (w) δ w . (7)

Note that both the first and the second summand are non-decreasing for w ≥ 0, and that the

first summand is continuous in w while the second is right-continuous and has only upward

jumps as F is a CDF.

To see that iii) holds, observe that the integral in the first summand of (7) is bounded

from below by w and, thus, for w ≤ 0

g(w) ≥ β̂ δ w + (1− β̂)F (w) δ w ≥ β̂ δ w + (1− β̂)δ w = δw ≥ w .

To see that iv) holds observe that the second inequality is strict whenever w < 0 and

F (0) < 1.

We now show v). Suppose w? <∞. As g(w)−w and is right-continuous for any decreas-

ing, converging sequence wk with g(wk)−wk ≤ 0 we get that g(limk→∞wk)− limk→∞wk ≤ 0

and thus that w? = inf{w ∈ R : g(w) ≤ w} satisfies g(w?) = w?. Furthermore, it follows

immediately from iv) that the set {w ∈ R : g(w) ≤ w} contains only w ≥ 0, and hence that

w? ≥ 0.

To show vi), note that for 0 ≥ w (7) together with w′ ≥ 0 implies that

g(w′)− g(w) =β̂ δ

[∫ w

−∞
(w′ − w)dF (z) +

∫ w′

w

(w′ − z)dF (z)

]
+ (1− β̂)δ [F (w′)w′ − F (w)w] ≥ 0,

where the inequality follows from the facts that w′ ≥ 0 and w ≤ 0.

Proof of Theorem 1: We begin by establishing the result for the “pure cost” case in which

all the agent’s payoffs are negative F (0) = 1. In this case for w ≤ 0, we have that

g(w) = β̂ δ

∫ ∞
−∞

max{z, w} dF (z) + (1− β̂)F (w) δ w ≤ 0 .

As vT = y ≤ 0 and by Lemma 2, ii)
(
β̂/β
)
vt = g

((
β̂/β
)
vt+1

)
, it follows by induction that
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vt ≤ 0 for all t ∈ {1, . . . , T − 1}. By Lemma 2, i) and iii) we have that

(
β̂/β
)
vt = g

((
β̂/β
)
vt+1

)
≥
(
β̂/β
)
vt+1 ,

which establishes that the subjective continuation values are non-increasing.

We next consider the complementary case where some payoffs are strictly positive F (0) <

1. Self T ’s perceived continuation value is vT = y ≤ 0. Define w? = inf{w ∈ R : g(w) ≤ w}.
If w? = ∞ we get that g(w) > w for all w, and thus again by Lemma 2, i) we have that

vt > vt+1 for all t ∈ {1, . . . , T − 1}, which establishes that the subjective continuation values

are non-increasing.

Thus, consider the case where ω? <∞. By Lemma 2, i) and v) we have that

w? −
(
β̂/β
)
vt = g(w?)− g

((
β̂/β
)
vt+1

)
. (8)

As vT = y ≤ 0 and w? ≥ 0 (by Lemma 2, v)), we have that
(
β̂/β
)
vT ≤ w?. We now proceed

by induction to show that this implies that vt ≤ w? for all t ∈ {1, . . . , T}. The induction step

shows that vt+1 ≤ w? implies vt ≤ w?. We distinguish two cases: First, β̂/β vt+1 ≥ 0. In this

case the monotonicity of g, established in Lemma 2, ii), together with Equation 8 implies

that sgn(w? − β̂/β vt) = sgn(w? − β̂/β vt+1) and, thus, the induction step follows β̂/β vt ≤ w?.

Second if β̂/β vt+1 < 0, then by Lemma 2, vi), g(w?) ≥ g(β̂/β vt+1) and hence it follows from

Equation 8 that β̂/β vt ≤ w?. We conclude that β̂/β vt ≤ w? for all t ∈ {1, . . . , T}. Hence,

g
(
β̂/β vt+1

)
≥ β̂/β vt+1, and thus

β̂/β vt+1 ≤ g(β̂/β vt+1) = β̂/β vt ⇒ vt+1 ≤ vt .

This completes the proof.

Proof of Theorem 2: Fix a non-decreasing sequence of stopping probabilities 0 < p1 ≤
p2 ≤ . . . ≤ pT < 1, (δ, β) ∈ (0, 1]× (0, 1], and a penalty yT+1 =

y

βδ
∈ R. We will construct a

distribution F that implies the stopping probabilities p for a sophisticate.

Pick any constant c satisfying

c > max

{
0,−(1− β) δy

1− (δ 1−pT
2

)T−1

(1− (δ 1−pT
2

))(δ 1−pT
2

)T−1
−

y

(T − 1)(δ 1−pT
2

)T−1

}
. (9)
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We denote by f ∈ RT+2
+ the following non-negative vector

fk =


(1− pT )/2 if k = 0, 1

pT−k+2 − pT−k+1 if k ∈ {2, . . . , T}

p1 if k = T + 1

. (10)

Note that f0 > 0 as pT < 1 and that
∑T+1

k=0 fk = 1 and define Fk =
∑k

j=0 fj. We define the

a vector π ∈ RT+2 by π0 = y − c, π1 = y, and for k ∈ {2, . . . , T},

πk = πk−1 + (1− β) δfk−1πk−1 + δ Fk−2 (πk−1 − πk−2) , (11)

and

πT+1 =
(1− βδ(p2 − p1))πT − δ(1− p2)πT−1

βδp1
. (12)

As the right-hand-side of (11) and (12) depends only on elements with a smaller index, this

equation can be solved forward and admits a unique solution. We note for future reference

that (12) is equivalent to

πT = βδfT+1πT+1 + βδfTπT + δFT−1πT−1 . (13)

We first establish a serious of auxiliary results about the vector π.

Claim A: The vector π is strictly increasing.

Proof of Claim A: We will show that πk − πk−1 > 0 by induction for k ∈ {1, . . . , T}.
π0 < π1 by construction as c > 0. We next do the induction step and assume that π0 < π1 <

. . . < πk−1. Since for k ≥ 2 one has πk−1 ≥ π1 = y and Fk−2 ≥ f0, (11) implies that

(πk − πk−1) ≥ (1− β) δfk−1y + δ f0 (πk−1 − πk−2) .

Since for y ≥ 0, we have (1− β) δfk−1y ≥ 0, it follows that π is strictly increasing if y ≥ 0.

Thus, assume for the rest of the proof that y < 0. In this case we get that

(πk − πk−1) ≥ α + γ (πk−1 − πk−2) , (14)
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where α = (1− β) δy < 0 and γ = δ f0 ∈ (0, 1). This implies that

(πk − πk−1) ≥ α

k−2∑
j=0

γj + γk−1 (π1 − π0) = α
1− γk−1

1− γ
+ γk−1c ≥ α

1− γT−1

1− γ
+ γT−1c

= γT−1
(
c− |α| 1− γT−1

(1− γ)γT−1

)
> 0 . (15)

The last inequality here follows from our choice of c satisfying (9). We thus have shown that

π0 < π1 < . . . < πT . We are left to show that πT < πT+1.

Our choice of c furthermore ensures that πT > 0, since

πT = π1 +
T∑
l=2

(πl − πl−1) ≥ y + (T − 1)

[
γT−1

(
c− |α| 1− γT−1

(1− γ)γT−1

)]
> 0,

where the first inequality follows from (15) and the second from our choice of c.

Using πT > 0, if πT+1 ≤ πT , we have that (13) implies

πT = βδ(fTπT + fT+1πT+1) + δπT−1FT−1 ≤ πTβδfT + πTβδfT+1 + πT−1δFT−1

⇔ 1 ≤ βδfT + βδfT+1 +
πT−1
πT

δFT−1 .

As fT + fT+1 + FT−1 = 1, FT−1 ≥ f0 > 0, and πT−1 < πT , this is a contradiction and

completes the proof of Claim A.

Claim B: For k ∈ {2, . . . , T} the vector π satisfies the equation

πk = β δ
T+1∑
j=k

fjπj + δ Fk−1πk−1 . (16)

Proof of Claim B: We proof the claim by induction starting from T . For k = T the claim

is satisfied by (13). Now we establish that if (16) is satisfied for k > 3 it is also satisfied for
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k − 1. By (11) we have that for k ≥ 2

πk−1 = πk − (1− β) δfk−1πk−1 − δ Fk−2 (πk−1 − πk−2)

= β δ
T+1∑
j=k

fjπj + δ Fk−1πk−1 − (1− β) δfk−1πk−1 − δ Fk−2 (πk−1 − πk−2)

= β δ

T+1∑
j=k−1

fjπj + δ Fk−2πk−1 − δ Fk−2 (πk−1 − πk−2) = β δ

T+1∑
j=k−1

fjπj + δ Fk−2πk−2 .

This completes the induction step and thus the proof of Claim B.

We define the distribution F : R → [0, 1] that assigns to the points π0, . . . , πT+1 the

probabilities f0, . . . , fT+1

F (x) =
T+1∑
k=0

fk 1πk≤x . (17)

Claim C: The continuation values v1, . . . , vT induced by the distribution F are given by

vt = πT+1−t for t ∈ {1, . . . , T}.

Proof of Claim C: Using β̂ = β in Lemma 1, the perceived continuation values are the

unique solution to the equation

vt =

β δ
∫∞
vt+1

z dF (z) + F (vt+1) δ vt+1 for t ∈ {1, . . . , T − 1}

y for t = T
. (18)

As π1 = y, we have that πT+1−t = vt for t = T . For t < T , (18) simplifies to

vt = βδ

∫ ∞
vt+1

zdF (z) + F (vt+1)δvt+1 = β δ

T+1∑
j=0

1vt+1<πjfjπj + δ

(
T+1∑
j=0

1vt+1≥πjfj

)
vt+1 .

Plugging in vt = πT+1−t = πk on the left and right-hand-side and using that π is strictly
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increasing by Claim A, the above equation simplifies to the condition that for k ∈ {2, . . . , T}

πk = β δ

T+1∑
j=1

1πk−1<πjfjπj + δ

(
T+1∑
j=0

1πk−1≥πjfj

)
πk−1

= β δ

T+1∑
j=k

fjπj + δ

(
k−1∑
j=0

fj

)
πk−1 .

We established that this equation is satisfied in Claim B and thus completed the proof of

Claim C.

We finally show that the distribution F leads to the stopping probabilities p. We have

that the continuation probability in period t ∈ {1, . . . , T} equals

F (vt) =
T+1∑
j=0

1πj≤vtfj =
T+1∑
j=0

1πj≤πT+1−tfj =
T+1−t∑
j=0

fj

= (1− pT ) +
T+1−t∑
j=2

(pT+2−j − pT+1−j) = (1− pt) .

This completes the proof of Theorem 1.

Lemma 3. Suppose δ < 1 and the agent believes to be time-consistent β̂ = 1.

i) For every distribution F with F (y) > 0 and y < 0, the continuation values are strictly

decreasing v1 > v2 > . . . > vT .

ii) A first-order stochastic dominance increase in the payoff distribution F increases the

vector of perceived continuation values point-wise.

Proof of Lemma 3: i): Suppose towards a contradiction that the continuation values

are not strictly decreasing. Since they are weakly decreasing by Theorem 1, we thus have

vt′−1 = vt′ for some t′ ∈ {2, . . . , T}. By Lemma 2 i), we have that vt/β = g(vt+1/β) for all

t ∈ {1, . . . , T − 1}, where, by (7),

g(x) = δ

∫ ∞
−∞

max
{
z, x
}
dF (z) .

Thus, vt = vt′ for all t ≤ t′.

We next prove that vt′+1 = vt′ . Denote by m = min
(
suppF

)
the left end-point of

the support of F . By assumption m ≤ y < 0. As y < 0 and F (y) > 0, we get that
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0 < F (y) ≤ F (0). By Lemma 2 iv), any fixed point of g is non-negative, so that v′t ≥ 0. We

have that

g

(
vt′

β

)
=
vt′

β
= g

(
vt′+1

β

)
. (19)

As g is strictly increasing for x ≥ m and
vt′
β
≥ 0 ≥ m, (19) implies that vt′+1 = vt′ . By

induction, vs = vt for all s, t ∈ {1, . . . , T}. As vT = y, this implies that vt = y for all t. This

is a contradiction since we established that vt′ ≥ 0 and y < 0 by assumption.

We now show ii): Let v be the continuation values associated with F and ṽ the con-

tinuation values associated with F̃ ≺FOSD F . We want to show that vt ≥ ṽt for every

t ∈ {1, . . . , T}. We show the result by backward induction over T . The start of the induc-

tion is that vT = ṽT = y. To complete the induction step, we show that vt+1 ≥ ṽt+1 implies

vt ≥ ṽt

vt/β = δ

∫ ∞
−∞

max
{
z, vt+1/β

}
dF (z) ≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF (z)

≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF̃ (z) = ṽt/β .

Proof of Theorem 3: Throughout the proof fix an arbitrary non-decreasing sequence of

stopping probabilities 0 < p1 ≤ . . . ≤ pT < 1, a discount factor δ < 1, β ∈ (0, 1] and

a continuation payoff y = δβvT+1 < 0 in period T . We will show that there exists a

payoff distribution that leads to the stopping probabilities p for a naive agent with the time

preference (δ, β).

Let Ga,b denote the uniform CDF on [a, b] for a < b

Ga,b(x) =


0 for x < a

x−a
b−a for x ∈ [a, b]

1 for x > b

and a Dirac measure Ga,a(x) = 1a≤x for a = b.

Fix two arbitrary constants c1, c2 > 0. For every non-increasing sequence v1 ≥ . . . ≥ vT−1

with vT−1 ≥ y, define the function F (·; v) as the weighted sum of the CDFs of T + 1 uniform

distributions on the intervals [πk(v), πk+1(v)] for k ∈ {0, . . . T} as

F (x; v) =
T∑
k=0

fkGπk(v),πk+1(v)(x) . (20)

33

Electronic copy available at: https://ssrn.com/abstract=3386017



We set the endpoints of the intervals [πk(v), πk+1(v)]

πk(v) =



y − c1 if k = 0

y if k = 1

vT−k+1 if k ∈ {2, . . . , T}

v1 + c2 if k = T + 1

, (21)

and the probabilities fk assigned to each interval as

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}

p1 if k = T

. (22)

Note that fk ≥ 0, that for k < T

k∑
j=0

fj = 1− pT−k, (23)

and that
∑T

j=0 fj = 1. For every v, the function F (·; v) is non-decreasing and non-negative

as the CDF G is non-decreasing and non-negative. It thus follows that F is a well defined

CDF whose support satisfies suppF (·; v) ⊆ [π0, πT+1] = [y − c1, v1 + c2].

Consider now the continuation values w induced by F (·; v). By Lemma 1, they can be

computed by solving the equation

wt
β

= δ

∫ ∞
−∞

max
{
z,
wt+1

β

}
dF (z; v) for t ∈ {1, . . . , T − 1} , (24)

with wT = y. Denote by L : RT−1 → RT−1 the function mapping (v1, . . . , vT−1) to

(w1, . . . , wT−1) using (24). By Theorem 1, w = L(v) is non-increasing. As w is non-

increasing and wT = y, it follows that (Lv)t ≥ y for all t ∈ {1, . . . , T}. Furthermore,

as suppF (·; v) ⊆ [y − c1, v1 + c2]

w1 = βδ

∫ ∞
−∞

max
{
z,
w2

β

}
dF (z; v) ≤ βδ

∫ ∞
−∞

max
{
v1 + c2,

w1

β

}
dF (z; v)

= δβmax
{

(v1 + c2),
w1

β

}
.
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We distinguish two cases: w1 > 0 and w1 ≤ 0. If w1 > 0 we have that w1 > δw1 and for all

v1 such that v1 ≤ δ
1−δc2 we have in addition

w1 ≤ δβmax
{

(v1 + c2),
w1

β

}
= δβ(v1 + c2) ≤ δ(v1 + c2) ≤

δ

1− δ
c2 .

If w1 ≤ 0 we have that for all v1 ≤ δ
1−δc2

w1 ≤ δβmax
{

(v1 + c2),
w1

β

}
≤ max{δβ(v1 + c2), 0} ≤

δ

1− δ
c2 .

In either case, we have that y ≤ wt ≤ δ
1−δc2 for all t ∈ {1, . . . , T − 1}. Consequently,

L : RT−1 → RT−1 maps M ⊂ RT−1 into itself, where M is the set of non-increasing sequences

contained in [y, δ
1−δc2]

T−1, i.e.

M =

{
m ∈

[
y,

δ

1− δ
c2

]T−1
: m1 ≥ m2 ≥ . . . ≥ mT−1

}
.

We note that M combined with the pointwise order = forms a complete bounded lattice,

as the point-wise maximum and minimum over any set of non-increasing sequences is non-

increasing.

We note that v 7→ π(v) is monotone in the pointwise order. Furthermore, Ga,b(x) ≥
Ga′,b′(x) for all (a, b) 5 (a′, b′) and all x ∈ R. By (20) this implies that F (x; v) ≥ F (x, v′) for

all v 5 v′ and all x ∈ R, which means that v 7→ F (·; v) is monotone in first-order stochastic

dominance (FOSD). By Lemma 3 ii), increasing the distribution of payoffs in FOSD will

(weakly) increase the perceived continuation values. This implies that the operator L :

M → M is monotone with respect to the pointwise order. As L is a monotone operator,

i.e. L(v) = L(w) if v = w, it admits at least one fixed point on the complete lattice M by

Tarski’s fixed point theorem. We pick an arbitrary fixed point of L and denote it by ω?. By

construction the fixed point ω? is such that the payoff distribution F (·;ω?) will lead to the

sequence of continuation values ω?.

We next argue that the distribution F (·;w?) induces the stopping probabilities p and

thus solves our problem. First, we note that F (y;ω?) = 1 − pT > 0 and that y < 0 by

assumption. By Lemma 3 i), it follows that the continuation values w? induced by F (·;ω?)
must be strictly decreasing w?1 > w?2 > . . . > w?T−1. As w? is the continuation value associated

with F (·;ω?), the agent stops in period t ∈ {1, . . . , T} if and only if yt ≥ w?t , which happens
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with probability

P[y > w?t ] = 1− F (w?t ;w
?) = 1−

T∑
k=0

fkGπk(w?),πk+1(w?)(w
?
t ) = 1−

T∑
k=0

fk 1πk+1(w?)≤w?t

= 1−
T−1∑
k=1

fk 1w?T−k≤w?t − f01y≤w?t − fT1w?1+c2≤w?t

= 1−
T−t∑
k=0

fk = 1− (1− pt) = pt ;

where we used (23) in the second to last equality. Thus, F (·;ω?) leads to the stopping

probabilities p, which completes the proof.

Lemma 4. Whenever (4) admits a solution for a plausible dataset, there exists a solution

F that consists of exactly T + 1 mass points located at (π0, . . . , πT ) that satisfy

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT ,

with associated probabilities fk = P[y = πk] given by

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}

p1 if k = T

.

Proof of Lemma 4: Let the pair u,G solve 4. From now one, fix u. Let EG denote

the expectation taken with respect to the cumulative distribution function G, and PG the

probability mass with respect to G.

We now specify a distribution F that has the properties specified in the Lemma. The

T + 1 mass points (π0, . . . , πT ) are located at

πk =


EG[y|y ≤ vT ] if k = 0

EG[y|vT−k+1 < y ≤ vT−k] if k ∈ {1, . . . , T − 1}

EG[y|v1 < y] if k = T

.

and their probability mass is given by fk as specified in the Lemma. Observe that by
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construction, we have

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT .

Since G solves 4 and 1− F (vt) = pt for all t ∈ {1, . . . , T} by construction, one has

1− F (vt) = 1−G(vt) ∀t ∈ {1, . . . , T}.

Furthermore,

∫ ∞
vt+1

z dG(z) =
T−1∑
k=T−t

EG[y|vT−k+1 < y ≤ vT−k]PG[y|vT−k+1 < y ≤ vT−k] + EG[y|v1 < y]PG[y|v1 < y]

=
T∑

k=T−t

fkπk

=

∫ ∞
vt+1

z dF (z) .

Thus, since u,G solve 4 so do u, F .

Proof of Theorem 4: Lemma 4 implies for a plausible dataset that (4) admits a solution

if and only if there exists π ∈ RT+1, f ∈ ∆T+1 and a monotone function u such that

vt = u(mt) ∀t ∈ {1, . . . , T} , (25)

π0 ≤vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT , (26)

T∑
k=T−t

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
∀t ∈ {1, . . . , T − 1} , (27)

T∑
k=T−t+1

fk = pt , ∀t ∈ {1, . . . , T} . (28)

Equation 28 is equivalent to fT = p1, f0 = 1− pT and for all t ∈ {2, . . . , T}

pt − pt−1 =
T∑

k=T−t+1

fk −
T∑

k=T−t+2

fk = fT−t+1 ,

and thus completely determines f . From now on we thus consider f as given.
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Equation 27 for t = 1 is equivalent to

πT−1fT−1 + πTfT =
δ−1 v1 − (1− p2) v2

β
.

We note that there exists π satisfying the above equation and (26) if and only if

v2fT−1 + v1fT <
δ−1 v1 − (1− p2) v2

β
. (29)

That this is necessary follows as (26) provides a lower bound on πT−1 and πT . Since, fT =

p1 > 0, this is also sufficient as you can always chose πT arbitrarily large. Rearranging for β

and plugging in f yields

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (30)

Next, we consider (27) for t ∈ {2, . . . , T − 1}. Subtracting (27) evaluated at t− 1 from (27)

evaluated at t yields

πT−tfT−t =
T∑

k=T−t

πkfk −
T∑

k=T−t+1

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
− δ−1 vt−1 − (1− pt) vt

β
,

which is equivalent to

πT−t =
vt+1(pt+1 − pt)− δ−1(vt−1 − vt) + (1− pt)(vt − vt+1)

β(pt+1 − pt)
.

The above equation admits a solution satisfying (26) if and only if for all t ∈ {2, . . . , T − 1},
vt+1 < πT−t ≤ vt. Rewriting using the definition of a(δ, t) from the statement of the theorem,

27 admits a solution satisfying (26) if for all t ∈ {2, . . . , T − 1} both vt+1β < vt+1a(δ, t) and

vtβ ≥ vt+1a(δ, t), and in addition

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (31)

This completes the proof.
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Supplementary Appendix

This supplementary appendix contains variations of Example 2 in the main body of the pa-
per, which further illustrate the importance of functional form assumptions for the analyst’s
estimates. Table SA1 provides the corresponding log-likelihood estimates when the analyst
does not know (and thus estimates) the mean and standard deviation of the payoff distri-
bution. As in the case with known mean and variance, the analyst misestimates β to be
substantially below 1.32 Table SA2 and Table SA3 illustrate that also with 30 or 60 periods,
β is incorrectly estimated to be substantially below 1. Table SA4 provides estimates for a
variant of Example 2 in which the true distribution is logistic. In this variant, the functional
form assumption determines whether β is over- or underestimated.33 Table SA5 (and SA6)
provide estimates for β analogous to Example 2 if the agent is truly present-biased and
naive with β = 0.9, and the analyst does (or does not) know the mean and variance of the
distribution. In either case, the analyst significantly underestimates β. Furthermore, Fig-
ure SA1 illustrates that eventually as the number of periods the analyst observes increases,
her estimates move further and further away from truth.

Parametric Family β Mean Std. Deviation Log-Likelihood

Uniform Naive 1. -1.86762 5.78115 -1.59186

Uniform Sophisticate 1. -2.04179 1.87369 -1.59186

Normal Naive 0.822972 0.0942045 3.47898 -1.59187

Normal Sophisticate 0.826388 0.0978794 3.10058 -1.59187

Extreme Value Naive 0.807256 -2.05785 2.37227 -1.59186

Extreme Value Sophisticate 0.830535 -1.84762 1.85227 -1.59187

Logistic Naive 0.763135 0.193664 9.44528 -1.59187

Logistic Sophisticate 0.768789 0.105082 4.10288 -1.59188

Laplace Naive 0.640929 0.206991 8.82003 -1.59199

Laplace Sophisticate 0.650699 0.0614326 2.24342 -1.59204

Table SA1: Log-likelihood estimates of β and the mean and standard deviation for Example 2
if the analyst does not know the mean and standard deviation of the payoff distribution.

32If the analyst selects the model with the highest log-likelihood, for example, she concludes that the agent
is naive time-inconsistent with β = 0.807 and that the shocks follow an extreme value distribution.

33Independently of whether she supposes the agent is naive or sophisticated, (when not imposing β ≤ 1 a
priori) she estimates β to be 0.96 for the Laplace distribution and 1.19 for the extreme value distribution.
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Parametric Family β Log-Likelihood

Uniform Naive 1. -3.29153

Uniform Sophisticate 1. -3.29153

Normal Naive 0.871612 -3.29198

Normal Sophisticate 0.88423 -3.29228

Extreme Value Naive 0.765061 -3.29383

Extreme Value Sophisticate 0.792468 -3.29483

Logistic Naive 0.814908 -3.29203

Logistic Sophisticate 0.836259 -3.29254

Laplace Naive 0.758422 -3.29317

Laplace Sophisticate 0.787311 -3.29418

Table SA2: Log-likelihood estimates of β for the payoff distribution and parameters specified
in Example 2 if the analyst knows the mean and standard deviation of the payoff distribution
with T = 30 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 1. -3.95505

Uniform Sophisticate 1. -3.95505

Normal Naive 0.889306 -3.95576

Normal Sophisticate 0.903474 -3.95624

Extreme Value Naive 0.801094 -3.95715

Extreme Value Sophisticate 0.8301 -3.95833

Logistic Naive 0.835118 -3.95584

Logistic Sophisticate 0.85936 -3.9566

Laplace Naive 0.794377 -3.95701

Laplace Sophisticate 0.824827 -3.95823

Table SA3: Log-likelihood estimates of β for the payoff distribution and parameters specified
in Example 2 if the analyst knows the mean and standard deviation of the payoff distribution
with T = 30 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 1.1051 -1.61023

Uniform Sophisticate 1.10823 -1.61029

Normal Naive 1.02514 -1.60953

Normal Sophisticate 1.0253 -1.60953

Extreme Value Naive 1.1942 -1.61034

Extreme Value Sophisticate 1.19231 -1.61008

Logistic Naive 1. -1.60944

Logistic Sophisticate 1. -1.60944

Laplace Naive 0.959755 -1.61017

Laplace Sophisticate 0.960106 -1.61016

Table SA4: Log-likelihood estimates of β if the true distribution is Logistic and has the same
mean and standard deviation as in Example 2. We suppose the analyst knows the mean and
standard deviation of the payoff distribution, and that T = 5 periods.
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Parametric Family β Log-Likelihood

Uniform Naive 0.9 -1.57692

Uniform Sophisticate 0.900684 -1.57692

Normal Naive 0.725994 -1.57692

Normal Sophisticate 0.730595 -1.57693

Extreme Value Naive 0.467228 -1.58092

Extreme Value Sophisticate 0.477292 -1.58106

Logistic Naive 0.670309 -1.57692

Logistic Sophisticate 0.676695 -1.57693

Laplace Naive 0.545986 -1.57699

Laplace Sophisticate 0.555965 -1.57705

Table SA5: Log-likelihood estimates of β for the mean and standard deviation from Exam-
ple 2 if the agent is naive and β = 0.9, the true distribution is Uniform, and the analyst
knows the mean and standard deviation of the payoff distribution with T = 5 periods.
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Parametric Family β Mean Std. Deviation Log-Likelihood

Uniform Naive 0.899999 -0.0000121032 3.08835 -1.57692

Uniform Sophisticate 0.901039 0.00221368 0.838862 -1.57692

Normal Naive 0.729808 0.0281063 2.91605 -1.57692

Normal Sophisticate 0.736594 0.0731089 4.76987 -1.57692

Extreme Value Naive 0.706168 -0.347689 0.621169 -1.57692

Extreme Value Sophisticate 0.633785 0.144273 0.652626 -1.60398

Logistic Naive 0.6741 0.0166023 2.176 -1.57692

Logistic Sophisticate 0.683439 0.0773394 5.63958 -1.57693

Laplace Naive 0.55626 0.017136 1.21714 -1.57698

Laplace Sophisticate 0.569426 0.0941048 5.09827 -1.57703

Table SA6: Log-likelihood estimates of β, the mean, and standard deviation if the agent is
naive and β = 0.9, the true distribution is Uniform with parameters as in Example 2, and
the analyst does not know the mean and standard deviation of the payoff distribution with
T = 5 periods.
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Figure SA1: Estimates of β in Example 2 when the agent is naive and time-inconsistent
with β = 0.9, β̂ = 1, δ = 1 for different number of periods T under different parametric
assumptions. The analyst knows that δ = 1, β̂ = 1, as well as the mean and standard
deviation of the shock distribution, and estimates β. As the analyst observes the behavior
in more and more periods, the estimated value of β eventually moves further away from the
true value of 0.9.
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