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Abstract

The main purpose of this paper is to provide a simple criterion enabling to conclude

that two agents do not share a common prior. The criterion is simple, as it does not re-

quire information about the agents’ knowledge and beliefs, but rather only the record of

a dialogue between the agents. In each stage of the dialogue the agents tell each other

the probability they ascribe to a fixed event and update their beliefs about the event. To

characterize dialogues consistent with a common prior, we first study monologues, which

are sequences of probabilities assigned by a single agent to a given event in an exogenous

learning process. A dialogue is consistent with a common prior if and only if each selection

sequence from the two monologues comprising the dialogue is itself a monologue.
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hhhh

Two monologues do not make a dialogue.

De Nevers’ Law of Debate

1 Introduction

Theoretical arguments against the common prior assumption were raised most notably by Mor-

ris (1995) and Gul (1998). This paper offers a simple criterion for showing that two agents do

not have a common prior (CP).

We consider a learning process in which two agents exchange information about the proba-

bility they ascribe to a given event E. In the first stage of this process the agents truthfully and

simultaneously report to each other their initial probabilities. This means that these probabil-

ities become common knowledge. Acquiring this information each of the agents updates the

probability she ascribes to E. In the second stage they again make their updated probabilities

common knowledge. And so on.1 We assume that in each stage the conditional probability

of E given the new information is well defined. That is, the event on which the probability

is conditioned has a positive probability. If, moreover, the cumulative information when the

process is completed has a positive probability, we say that the process is positive. To easily

meet the positivity conditions we assume that the state space is countable.2

A pair of sequences of probability numbers generated in such a learning process, one for

each agent, is called a dialogue. We provide a necessary and sufficient condition for a pair of

sequences to be a dialogue in a positive learning process, where the agents have a CP. This

condition does not prove the existence of a CP, it only guarantees that there is a knowledge-

belief structure with a CP in which the dialogue can be realized. However, failure of this

condition proves that the agents do not have a CP.

To describe our condition for dialogues we first study learning processes of a single agent

who sequentially acquires new information. In such a process the information acquired by the

1We assume that the agents report truthfully the probability of E in each stage. This would be the case if each
is facing a decision problem whose result depends only on whether E is the case or not. Since the agents do not
compete, it is the interest of both to truthfully share the information about E. For this reason they exchange their
views of the probability of E. This leads them of course to generate a dialogue. In each stage, it is the interest of
each to report her true probability, because the rest of the process depends on her report. If she reports a different
probability, the information she receives in later stages will be also flawed.

2Our results hold for finite spaces and also for uncountable measurable spaces with countable or finite parti-
tions.
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agent is exogenously, given as opposed to the information in a dialogue which is endogenously

generated by the agents. The sequence of the probabilities ascribed by the agent to a given event

E along such a process is called a monologue. Obviously, a dialogue consists in particular of

two monologues.

We first characterize sequences of numbers that are monologues. This characterization is

made in terms of the fluctuation of the sequence. It is known that a positive monologue must

have bounded variation. This condition, however, is not sufficient. We introduce a stronger

notion of fluctuation, named bounded ratio variation. This condition is necessary and sufficient

for a sequence to be a positive monologue.

The condition for dialogues reflects an intuitive understanding of priors and common prior.

The prior characterizes an agent. Information can change, and with it the posterior beliefs. But

it is the prior that remains constant. Now, if agents have a common prior it means that in a

sense they are the same, but for informational differences. Therefore, we could possibly think

of a dialogue of agents with a CP to be a monologue of one agent which is characterized by the

CP. How can this be formalized?

Imagine that we listen to a dialogue as follows. At some points in time we hear only the

report of agent 1, and in the rest of the times we hear only agent 2. For example, we may

listen to 1 at odd periods and to 2 at even periods. This way we observe only one sequence of

probability numbers which is a selection from the two monologues that comprise the dialogue.

If two agents with a CP are essentially two faces of one agent, we can expect this selection to

be a monologue of this single agent. We show indeed that a necessary and sufficient condition

for two sequences to be a positive dialogue of agents that have a CP is that any selection

of the two sequences is a positive monologue. The requirement that any selection of the two

sequences should be a positive monologue seems at first glance highly demanding, as it involves

a continuum of selection sequences. We show, however, that it suffices to check only the

boundedness of three sequences.

Our result seems to be a formal rendering of the claim of the motto, known as De Nevers’

Law of Debate. If agents share a CP, then not every pair of monologues makes a dialogue.

However, we show that every pair of monologues is a dialogue if we do not require that the

agents share a CP. In that case the dialogue sounds much like dialogues in the theater of the

absurd.
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Literature Contribution. We are bringing here together dialogues, monologues, and a nec-

essary and sufficient condition for the existence of a common prior. Each of these three topics

is discussed in the literature. We compare this literature to the results in this work.

Necessary and sufficient condition for the existence of a CP. There are several works that pro-

vide, like this work, a necessary and sufficient condition for the existence of a CP. The most

conspicuous ones are no-trade theorems (Morris, 1994; Feinberg, 2000; Samet, 1998a; Lehrer

and Samet, 2014). In such theorems CP does not exist if and only if there is a state-contingent

zero-sum trade which the agents commonly know to yield each of them positive gains. Heifetz

(2006) provided a condition analogous to the no-trade condition in syntactic terms. Samet

(1998b) provided yet another condition in terms of iterated expectations. Common to all these

conditions is their dependence on the state space. More specifically, to refute the existence of

a CP one needs to know the knowledge-belief space, or equivalently, know everything about

the knowledge and belief of the agents. In contrast, in this paper all that one needs to know in

order to refute the existence of a CP is a pair of sequences of probability numbers.

Dialogues. Dialogues of the type studied here were first delineated in the last paragraph of

Aumann (1976). He describes a simultaneous dialogue concerning the probability of a coin

falling on H after each of the individuals made a number of observations known only to her. A

dialogue is simultaneous when at each stage both posteriors become common knowledge, as in

our paper. In light of the agreement theorem proved in Aumann (1976), common knowledge of

the posteriors of an event implies that the two posteriors coincide. Aumann therefore concluded

that the dialogue must end with the same posterior.

Geanakoplos and Polemarchakis (1982) proved formally that any serial dialogue in a finite

model must end with the same probability ascribed by both individuals to the given event. A

dialogue is serial when in each period only one of the individuals informs the other of his

posterior. They showed, moreover, that in all but the last period, the individuals can repeat each

the same probability, and only in the last period an agreement is reached which is commonly

known. Polemarchakis (2016), which inspired our paper, showed that any two finite, internal

sequences can be obtained as a serial dialogue in a finite model with a common prior. Hart and

Taumann (2004) showed, in a similar model, but with communication replaced by observation

of the market, that behavior in the market can remain constant for several periods, and then

crash. In contrast to our work, the analysis in these papers is made locally. That is, a state

is fixed and the updating of the knowledge of the players is followed in this state. All these
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papers assumed finite partitions, which guarantees that common knowledge of the posterior

probability of the event is reached in finite time.

Nielsen (1984) extended both Aumann (1976) and Geanakoplos and Polemarchakis (1982)

by allowing knowledge structures given by sigma algebras rather than finite partitions. He for-

mulated and proved Aumann’s agreement theorem for such knowledge structures and showed

that dialogues, simultaneous and sequential, that may be infinite, converge almost surely to

the same probability. His analysis, like ours, is global: in each period the knowledge of the

individuals is described in all states by specifying a knowledge structure in each period.3

To show that a dialogue is inconsistent with a CP, we need to examine the infinite dialogue.

Any finite part of the dialogue is consistent with a CP. An analogous result was presented by

Lipman (2003), who showed that any finite set of descriptions of a player’s beliefs is consistent

with a CP.

Monologues. The sequence of probabilities of one individual in a dialogue is a monologue,

which is simply the result of a learning process of one agent. The literature on individual

learning processes dealt with such sequences. Burkholder (1966) showed that an L1-bounded

martingale sequence is of bounded variation almost surely on every atom of the basic probabil-

ity space. A simpler proof was given in Tsuchikura and Yamasaki (1976). We prove a stronger

result: for our martingales, the sequence must be of bounded ratio variation. Moreover, we

show that every sequence can be realized when the prior of a state is 0. Recently, Shaiderman

(2018) has shown that any L2-bounded martingale, when conditioned on a positive probability

event, has bounded variation. This is typically false when the martingale is only L1-bounded.

2 Monologues

A monologue is the sequence of conditional probabilities assigned to a fixed event along a

learning process. Formally, a learning process is a tuple (Ω,µ,E,(πk)k>1) where (Ω,µ) is a

countable or finite probability space, E ⊆Ω is an event, and (πk)k>1 is a a sequence of partitions

of Ω which is a filtration, that is, πk+1 refines πk.

Let Pk be the set of ω’s such that µ(πk(ω))> 0, where πk(ω) is the element of πk containing

ω . By the countability of Ω it follows that µ(Pk) = 1. Define P = ∩kPk, then µ(P) = 1. For

3Bacharach (1979) looked at dialogues when information is normally distributed.
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ω ∈ P we call the sequence
(

pk(ω)
)

k =
(
µ(E|πk(ω))

)
k, the monologue at ω . We say that

the monologue at ω is positive if µ(∩kπk(ω)) > 0. Clearly, if the monologue at a state is

not positive, then the probability of that state is zero. Thus, monologues are positive with

probability one. A sequence of numbers (pk) is a (positive) monologue if it is a (positive)

monologue at some state in a learning process.

Example 1. Independent trials are conducted sequentially to find out whether a machine can

fail. The probability of success in the k-th trial is qk > 0, so the probability that all tri-

als are successful is ∏
∞
k=1 qk. After each trial, the probability that the machine is infallible

is announced. The states of the world are 1,2, . . . ,n, . . . ,∞, where state n means that trials

1, . . . ,n−1 were successful and trial n failed. Obviously, for n < ∞, µ(n) = (∏n−1
k=1 qk)(1−qn),

and µ(∞) = ∏
∞
k=1 qk. The first partition, π1, reflects the knowledge before the trials, and it is

the trivial partition. At that point it is not clear if the machine will ever fail, and if it fails at

what time it happens. At time k+1 , it is known if the machine failed at any time before k+1,

but if it did not fail, it is not known if it ever fails or at what time after k it will fail. Thus the

partition is πk+1 = {{1},{2}, . . . ,{k},{k+1, . . . ,∞}}. Let E = {∞} be the event that the ma-

chine is infallible. The announcement sequence pk(∞) = µ(E|πk(∞)) = ∏
∞
n=k qn, k = 1,2, ...,

is the monologue at state ∞.

Not every sequence in the interval [0,1] is a monologue. For example, the boundaries of

the unit interval are absorbing for monologues, that is, if pk = 0 or pk = 1 for some k, then

pn = pk for all n > k. Thus, any sequence that hits a boundary and is not absorbed there is

not a monologue. Using the techniques presented below, it is easy to show that every sequence

that is absorbed in one of the boundaries is a monologue in some learning process. This is why

in what follows we consider only sequences lying in the open interval (0,1), which we call

internal. In particular, we are interested in characterizing internal sequences that are positive

monologues, which are the monologues observed with probability one.

Our characterization involves a condition restricting the fluctuation of the sequences. Let

(pk) be an internal sequence and define p̄k = 1− pk for every k. We define the ratio variation

of the sequence as

∑
k

max
{

pk+1

pk
−1,

p̄k+1

p̄k
−1
}

(1)

and say that the ratio variation is bounded if the sum is finite.

The logic behind the definition of ratio variation is as follows. If the sequence (pk) is the
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monologue concerning an event E, then the sequence (p̄k) is the monologue concerning the

complement Ē of E. The ratios pk+1/pk and p̄k+1/p̄k measure the change in the agent’s beliefs

at stage k. The closer they are to 1, the smaller is the change. Thus, the sums of |pk+1/pk−1|
or |p̄k+1/ p̄k−1| measure the total change in the agent’s belief along the learning process. The

ratio variation picks at each k one of |pk+1/pk−1| and |p̄k+1/p̄k−1| according to the following

reasoning. When pk+1 > pk the information at stage k confirms E, that is, it increases the

probability of E. In this case p̄k+1 < p̄k, which means that Ē is disconfirmed. The ratio variation

picks up the change in the probability of the confirmed event E, namely, |pk+1/pk − 1| =
pk+1/pk−1. When p̄k+1 > p̄k the event Ē is confirmed, while E is disconfirmed. In this case

|p̄k+1/p̄k−1|= p̄k+1/ p̄k−1 measures the change. Note that pk+1/pk−1 and p̄k+1/ p̄k−1 are

of opposite sign, and the maximum in the definition of ratio variation yields the choice we have

just described.

Theorem 1. An internal sequence is a positive monologue if and only if it has bounded ratio

variation.

We discuss later (after Corollary 1 below) the connection between positiveness of the pro-

cess and boundedness of the ratio variation.

Variation and Ratio Variation. Our novel notion of ratio variation measures fluctuation of a

sequence (pk) by comparing the ratios pk+1/pk and p̄k+1/p̄k to 1. A more standard measure

of fluctuation, which compares the differences pk+1− pk to 0, is the variation of the sequence,

∑k |pk+1− pk|. In this case it does not matter if we use pk or p̄k to measure fluctuation, as

|pk+1− pk| = |p̄k+1− p̄k|. Given this equality, we can rewrite the ratio variation in terms of

differences as follows:

∑
k
|pk+1− pk|/rk, (2)

where rk = pk when pk+1 > pk and rk = p̄k when pk > pk+1.4 Since rk 6 1 for every k, we

immediately obtain:

Observation 1. Bounded ratio variation implies bounded variation.

Thus, bounded variation is a necessary condition for a sequence to be a positive monologue,

4We can equally define ratio variation in terms of the ratios pk/pk+1 rather than pk+1/pk, by max{1−
pk/pk+1,1− p̄k/p̄k+1}. In this case, rk in equation (2) is defined as pk+1 when pk+1 > pk and p̄k+1 when
pk+1 6 pk. Our results hold also for this definition of ratio variation.
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but it is the stronger notion of bounded ratio variation that turns out to be the necessary and

sufficient condition. The next example shows that the two notions are not equivalent.

Example 2. Consider the sequence x,y,x/2,y/2, . . . ,x/2n,y/2n,x/2n+1 . . . , where y > x >

0. The variation of this sequence is ∑
∞
n=1 |x/2n − y/2n|+ ∑

∞
n=1 |y/2n − x/2n+1|. Each of

the two sums is a geometric series with quotient 1/2, hence it converges. Thus, the varia-

tion is bounded. But, for each n, y/2n > x/2n, hence the ratio variation contains the sum

∑n |x/2n− y/2n|/(x/2n). Since each term in this sum is |1− y/x| > 0, the ratio variation is

unbounded.

We note that bounded variation of a sequence implies that the sequence is Cauchy and hence

converges.5 Thus, by Observation 1 and Theorem 1 we obtain the following:

Corollary 1. Positive monologues are converging sequences.

This claim can be easily verified also directly. Given a learning process (Ω,µ,E,(πk)k>1),

for every state ω the sequence of events (πk(ω))k>1 is decreasing and converges to
⋂

k πk(ω).

Thus, if the learning process is positive at ω , then the sequence (pk(ω))k>1 converges to µ(E |
⋂

k πk(ω)).

Corollary 1 and the discussion thereafter gives an intuitive appeal to the connection between

positiveness of the process and the boundedness of the ratio variation of the monologue. The

basic intuition is that the steps in a journey cover a finite distance if and only if the journey

reaches a final destination. Analogously, and more abstractly, it stands to reason that an in-

cremental process reaches a terminal point if and only if the sum of the increments is finite.

Positiveness of the learning process means that it reaches a terminal point. That is, it converges

to the probability of E given everything that is learned in the process. The increments of the

learning process are given by the terms in Equation (1), as argued before. Theorem 1 states that

the sum of the increments is finite, that is, the relative variation is bounded, if and only if the

process reaches a terminal point, i.e., it is positive.

While bounded ratio variation is strictly stronger than bounded variation, there are cases in

which the two notions are equivalent. Call a sequence strictly internal if for some 0 < ε < 1

the sequence lies in the interval (ε,1− ε).

5The converse of this claim is not true. For example, the internal sequence pk = ∑
k
n=1(−1)n+1/(n+ 1) con-

verges to 1− ln2, but its variation is ∑
∞
n=3 1/n, which is unbounded.
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Observation 2. In the following two cases, bounded variation is equivalent to bounded ratio

variation:

(i) the sequence is strictly internal;

(ii) the sequence is internal and converges monotonically to zero or to one.

Thus, for the two cases listed in Observation 2, the equivalence in Theorem 1 can be stated

in terms of bounded variation.

Corollary 2. Fix a sequence that is either strictly internal, or internal and monotonically con-

verging to zero or one. The sequence is a positive monologue if and only if it has bounded

variation.

The following example exhibits a family of sequences guaranteed by Theorem 1 to be

positive monologues, and constructs a learning process in which this is satisfied.

Example 3. Consider a decreasing (and hence converging) internal sequence (pk). The se-

quence converges and its variation, p1− lim pk, is bounded. The sequence also has bounded

ratio variation. This follows from Observation 2(i) if the limit is positive (and hence the se-

quence is strictly internal) and from Observation 2(ii) if the limit is 0. Thus, by Theorem 1,

there exists a learning process in which the sequence is a positive monologue. To construct

such a process, let Ω = {ω1,ω2,ω3, . . . ,ω} and E = Ω \ {ω}. Also let (πk)k>1 be a filtra-

tion such that for every k, πk(ω) = {ωk,ωk+1, . . . ,ω}. We construct the unique probability

µ that makes (pk) a monologue at ω , and show that the monologue is positive. Since for

each k, µ(ωk) = µ(πk(ω))− µ(πk+1(ω)), and µ(ω) = limk µ(πk(ω)), it is enough that we

define µ(πk(ω)) for each k. Let ak = µ(πk(ω)), and bk = µ(E ∩πk(ω)). Then bk− bk+1 =

ak−ak+1 = µ(ωk). If (pk) is the monologue at ω , then for each k, bk = pkak. Subtracting from

this equality the equality bk+1 = pk+1ak+1 yields pkak− pk+1ak+1 = ak−ak+1, or equivalently,

ak+1 = ak p̄k/p̄k+1. Given that a1 = 1, we have ak+1 = ∏
k
n=2 p̄n/p̄n+1 = (1− p2)/(1− pk+1).

Thus, µ(∩πk(ω)) = limak = (1− p2)/(1− lim pk)> 0 and the monologue is positive.

Giving Up Positivity. We conclude this section by showing that if we do not require positivity,

then there is nothing that prevents a sequence from being a monologue.

Proposition 1. Every internal sequence is a monologue.
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To illustrate Proposition 1, we consider in the following example an internal sequence with

unbounded variation. By Theorem 1 and Observation 1, the sequence is not a positive mono-

logue. Yet, we construct a learning process in which the sequence is a monologue, the existence

of which is guaranteed by Proposition 1.

Example 4. Consider the alternating sequence 2/3,1/3,2/3,1/3, . . . . Obviously, this sequence

does not converge and hence does not have bounded variation. We construct a learning process

in which the sequence is a monologue at some state. Let Ω and (πk) be as in Example 3, but now

let E = {ω1,ω3,ω5, . . .}. Also, let µ(ωk)= 2−k and µ(ω)= 0, so that the monologue at ω is not

positive. Then, for odd k, µ(E∩πk(ω)) = 2−k+2/3, while for even k, µ(E∩πk(ω)) = 2−k+1/3,

and for each k, µ(πk(ω)) = 2−k+1. Thus for odd k, µ(E|πk(ω)) = 2/3, while for even k,

µ(E|πk(ω)) = 1/3.

3 Dialogues and Common Priors

A dialogue is the pair of monologues generated by a joint learning processes where in each

stage two agents simultaneously tell each other the probability they assign to a fixed event. By

telling each other these probabilities, the agents make them not only known to both, but also

commonly known.

Formally, a joint learning process is a tuple

(Ω,µ1,µ2,E,(π1
k )k>1,(π

2
k )k>1),

such that (Ω,µ1,E,(π1
k )k>1) and (Ω,µ2,E,(π2

k )k>1) are learning processes in the same count-

able space Ω, and the probabilities µ1 and µ2 have the same support.

Starting with the partitions π1
1 and π2

1 that are exogenously given, the remaining partitions

are defined endogenously by induction. Let k > 1 and suppose that π1
k and π2

k are defined. The

partitions π1
k+1 and π2

k+1 should describe the agents’ knowledge after the pair of posteriors

pk(ω) = (p1
k(ω), p2

k(ω)) = (µ(E | π1
k (ω)),µ(E | π2

k (ω)))

becomes commonly known. First we describe the set of states in which this pair is well defined.

For i = 1,2, let Pi
k be the set of ω’s such that µ(π i

k(ω))> 0, and let Pk = P1
k ∩P2

k . Thus, pk(ω)
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is well defined in all the states of Pk. Now, for each i, µ i(Pi
k) = 1, and since µ1 and µ2 have the

same support, it follows that µ1(Pk) = µ2(Pk) = 1. Let π ′k be the partition of Pk induced by pk,

that is, π ′k(ω) consists of all states ω ′ such that pk(ω
′) = pk(ω). We extend π ′k to a partition

π̂k of Ω by adding the complement of Pk, that is, π̂k = π ′k ∪{P̄k}. For the agents to commonly

know pk(ω) in stage k+ 1 means that for ω ∈ Pk, the event π̂k(ω) is commonly known at ω .

For this , the partition π i
k+1 is defined as the common refinement of π i

k and π̂k, for each i. Note

that for ω ∈ Pk, π̂k(ω) is a union of elements of π1
k+1 and also a union of elements of π2

k+1.

Since pk(ω) is the pair of posteriors at all the states in π̂k(ω), it is commonly known at ω . This

completes the definition of the filtrations (π1
k ) and (π2

k ).

Let P =
⋂

Pk. Then for i = 1,2, µ i(P) = 1, (Ω,µ i,E,(π i
k)k>1) is a learning process, and for

each ω ∈ P, the sequence
(

pi
k(ω)

)
k is the monologue at ω . For each state ω ∈ P, we call the

pair of monologues
(
(p1

k(ω)),(p2
k(ω))

)
, the dialogue at ω . We say that the dialogue is positive

if both monologues are positive. When µ1 = µ2 = µ , we say that the dialogue has a common

prior. A pair of sequences
(
(p1

k),(p2
k)
)

is a (positive) dialogue (with a common prior) if it is a

(positive) dialogue (with a common prior) at some state in a joint learning process.

The next theorem characterizes pairs of sequences that are positive dialogues with a com-

mon prior. The characterization involves sequences obtained as selections from the two mono-

logues. Formally, we say that a sequence (pk) is a selection from two sequences (p1
k) and (p2

k)

if pk ∈ {p1
k , p2

k} for each k. Note that, in particular, each of the sequences (p1
k) and (p2

k) is a

selection from the two sequences.

Theorem 2.

(i) If a pair of internal sequences is a positive dialogue with a common prior, then every

selection from the two sequences is a positive monologue.

(ii) If every selection from a pair of strictly internal sequences is a positive monologue, then

the pair of sequences is a positive dialogue with a common prior.

By Theorem 1 and Observations 1 and 2(i), Theorem 2 can be stated equivalently as follows:

Theorem 2*.

(i) If a pair of internal sequences is a positive dialogue with a common prior, then every

selection from the two sequences has bounded ratio variation.
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(ii) If every selection from a pair of strictly internal sequences has bounded variation, then

the pair of sequences is a positive dialogue with a common prior.

Of the two parts of the theorem, part (i) delivers the main purpose of this paper, which is

to provide a criterion to falsify the existence of a common prior. If the condition in this part

fails, then we can answer with a definite No the question whether agents have a CP. In contrast,

the condition in part (ii) does not enable us to answer with a definite Yes. The condition only

asserts that some joint learning process with a common prior yields the positive dialogue. But

the dialogue might also arise in a joint learning process without a CP.

Unlike part (i), part (ii) of Theorem 2 assumes strictly internal sequences. We conjecture

that part (ii) holds also for just internal sequences, but our construction of the learning process

required the assumption of strictness. Obviously, part (i) holds in particular when the sequence

is strictly internal. Thus, Theorem 2 provides a necessary and sufficient condition for strictly

internal sequences to be a positive dialogue with a common prior.

The following example presents a pair of strictly internal sequences that satisfy the con-

dition on selections and therefore by Theorem 2(ii), is a positive monologue with a common

prior.

Example 5. Let (pk) be a sequence that is a strictly internal positive monologue. Consider the

pair of sequences (p1
k) = (p2

k) = (pk). All selections from these two sequences are (pk) which

is a positive monologue. Thus, by Theorem 2(ii), these two sequences form a positive dialogue

with a common prior. In this example the agents always agree with each other, and yet, due

to the dialogue they conduct, they learn from each other: along the process they change their

beliefs about E.

The next example presents a pair of internal sequences that does not satisfy the condition

on selections and therefore, by Theorem 2(i), is not a positive dialogue with a common prior.

Example 6. The following two internal sequences do not satisfy the condition on selections.

Let xk = ∑
k
n=1(−1)n+1/(n+1). Define

(p1
k) = (x1,x1,x3,x3,x5,x5, . . .),

and

(p2
k) = (x0,x2,x2,x4,x4, . . .).
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where x0 is an arbitrary number in (0,x1). Now, (xk) = (p1
1, p2

2, p1
3, p2

4, . . .), and hence it is

a selection from (p1
k) and (p2

k). But the variation of (xk) is 1/3+ 1/4+ 1/5+ · · · , which is

unbounded, and thus, by Observation 1 (xk) does not have bounded ratio variation. Thus, the

two sequences violate the condition on selections in Theorem 2(i), and therefore the pair of

monologues
(
(p1

k),(p2
k)
)

is not a positive dialogue with a CP.

Giving Up Positivity or Common Prior. Theorem 2 concerns positive dialogues with a com-

mon prior. The proposition below characterizes dialogues where either positivity or the com-

mon prior property is omitted.

Proposition 2.

(i) Any pair of internal sequences is a dialogue with a common prior.

(ii) Any pair of strictly internal positive monologues is a positive dialogue.

Similarly to Proposition 1, part (i) of Proposition 2 shows that omitting positivity makes

any pair of internal sequences a dialogue with a common prior. As part (ii) shows, omitting the

common prior property while keeping positivity makes positivity of a pair of monologues—

which holds by definition when the two monologues form a positive dialogue—a sufficient

condition for them to form a positive dialogue.

When Two Monologues Make a Dialogue. Theorem 2 provides a necessary and sufficient

condition for a pair of strictly internal sequences to be a positive dialogue with a common prior.

Our third main result, Theorem 3 below, gives a simple necessary and sufficient condition for a

pair of strictly internal monologues to be a positive dialogue with a common prior—addressing

directly De Nevers’ Law of Debate, the motto of this paper.

On our way to the result, we first strengthen Theorem 2(ii) by weakening the assumption

that all selection sequences have bounded variation. As Proposition 3 below shows, to estab-

lish bounded variation of all selection sequences it suffices to check the bounded variation of

only three sequences. Given two sequences (p1
k) and (p2

k) in the interval (0,1), consider the

following three sequences:

(a) (p1
1, p2

2, p1
3, p2

4, . . .),

(b) (p2
1, p1

2, p2
3, p1

4, . . .),

13



(c) (p1
k− p2

k)

The sequence (a) is the selection sequence whose elements are selected alternately from the

two sequences starting from (p1
k). The sequence (b) is an alternating selection starting with

(p2
k). The sequence (c) is not a selection, but the difference of the two sequences.

Proposition 3. Let (p1
k) and (p2

k) be strictly internal sequences. Then, the following four

conditions are equivalent:

(i) All the selections from (p1
k) and (p2

k) have bounded variation;

(ii) The three sequences (p1
k), (p2

k), and (a) have bounded variation;

(iii) The three sequences (p1
k), (p2

k), and (b) have bounded variation;

(iv) The three sequences (p1
k), (p2

k), and (c) have bounded variation.

Suppose now that each of two strictly internal sequences (p1
k) and (p2

k) is a positive mono-

logue. Then, by Theorem 1 and Observation 2(ii), these two sequences have bounded variation.

By Theorem 2 and Proposition 3, to guarantee that the pair of sequences is a positive dialogue

with a common prior it is sufficient that one of the sequences (a), (b), and (c) has bounded vari-

ation. Thus, the following theorem, which explicitly assumes that (p1
k) and (p2

k) are positive

monologues, follows directly from Theorem 2 and Proposition 3.

Theorem 3. A pair of strictly internal positive monologues (p1
k) and (p2

k) is a positive dialogue

with a common prior if and only if ∑k |p1
k− p2

k |< ∞.

Example 7. Consider the pair of sequences in Example 6. We claim that each sequence is a

strictly internal positive monologue. Both sequences are strictly internal, as they lie in (x0,x1).

The sequence (p1
k) is weakly decreasing, while (p2

k) is weakly increasing, hence they both have

bounded variation. Being strictly internal, by Observation 2(i) they also have bounded ratio

variation. Thus, by Theorem 1, each of the two sequences is a positive monologue. But, as we

have shown, they do not form a positive dialogue with a common prior. Theorem 3 implies that

the difference between the sequences does not have bounded variation. Of course, this can be

also checked directly.
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Eventual Agreement. Consider two internal sequences forming a positive dialogue with a

common prior. By Theorem 2(i), every selection from the two sequences is a positive mono-

logue and hence, by Theorem 1, it must converge. This implies that the two sequences converge

to the same limit. Thus, we obtain the following:

Corollary 3. If two internal monologues form a positive dialogue with a common prior, then

they converge to the same limit.

We remark that if for each k and i, π i
k = π i

k+1, then the claim in Corollary 3 is the agreement

theorem of Aumann (1976). In fact, we can prove Corollary 3 without using Theorem 2, in a

way that resembles the proof in Aumann (1976). Let πk be the meet of the partitions π1
k and

π2
k . Since the sequences π i

k are ordered by refinement, so is the sequence πk. In particular,

πk+1(ω) ⊆ πk(ω). Let ω ∈ P, and Qi
k(ω) be the set of states ω ′ in πk(ω) such that µ(E |

π i
k(ω

′)) = µ(E | π i
k(ω)) = pi

k. Since πk(ω) is a union of elements of π i
k, it follows that µ(E |

Qi
k(ω)) = pi

k. By definition, Qi
k(ω)⊆ π i

k(ω). As πk+1(ω) is a union of elements of π i
k+1, and

since πk+1(ω)⊆ πk(ω), it follows by the definition of the partition πk+1 that π i
k+1(ω)⊆Qi

k(ω).

Therefore
⋂

k Qi
k(ω) =

⋂
k πk(ω). Hence, pi

k → µ(E | ⋂k Qi
k(ω)) = µ(E | ⋂k πk(ω)). This

shows that the two sequences pi
k converge to the same limit.

4 Proofs – monologues

The condition of bounded ratio variation of a sequence (pk) is given in terms of sums of ratios

of the pk’s. In Claim 1, we characterize this condition in terms of products of ratios of the pk’s.

We use the following lemma to establish a connection between sums and products.

Lemma 1. Let (εk) be a non-negative sequence. Then limn ∏
n
k=1(1+ εk) < ∞ if and only if

limn ∑
n
k=1 εk < ∞.

Proof. For the “only if” direction, observe that ∏
n
k=1(1+ εk)> 1+∑

n
k=1 εk. For the “if” direc-

tion, note that limn ∑
n
k=1 εk > limn ∑

n
k=1 ln(1+ εk), and limn ∑

n
k=1 ln(1+ εk)< ∞, if and only if

limn ∏
n
k=1(1+ εk)< ∞.

Using Lemma 1, we describe bounded ratio variation in terms of products rather than sums.
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Claim 1. An internal sequence (pk) has bounded ratio variation if and only if

lim
n

n

∏
k=1

max
{

pk+1

pk
,

p̄k+1

p̄k

}
< ∞ (3)

Proof. Note that

max
{

pk+1

pk
,

p̄k+1

p̄k

}
= 1+max

{
pk+1

pk
−1,

p̄k+1

p̄k
−1
}

(4)

Setting εk = max{pk+1/pk− 1, p̄k+1/ p̄k− 1}, it follows from Lemma 1 that (3) holds if and

only if limn ∑
n
k=1 max{pk+1/pk − 1, p̄k+1/ p̄k − 1} < ∞, namely that (pk) has bounded ratio

variation.

Let (Ω,µ,(πk)k>1) be a learning process, E ⊆Ω and ω ∈Ω. Denote for brevity Qk = πk(ω)

and ak = µ(Qk). The sequence pk = µ(E|Qk) is a monologue.

The following claim characterizes positivity of a monologue in terms of the product of

ratios of the ak’s.

Claim 2. The following statements are equivalent:

(i) (pk) is a positive monologue;

(ii) limn an > 0;

(iii)

lim
n

n

∏
k=1

ak

ak+1
< ∞. (5)

Proof. The finite products (up to n) in (5) are equal to a1/an+1. They converge if and only if

limn an > 0. This is equivalent to saying that the monologue is positive as µ(
⋂

Qk) = limn an.

The next claim relates ratios of pk’s with ratios of ak’s, which enables us, using Claim 1

and Claim 2, to tie together bounded ratio variation with positivity of a monologue.

Claim 3. For each k,
ak

ak+1
> max

{
pk+1

pk
,

p̄k+1

p̄k

}
. (6)
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Proof. Observe that inequality (6) holds if and only if ak/ak+1 > pk+1/pk and ak/ak+1 >

p̄k+1/p̄k. These two inequalities hold if and only if

0 6 pkak− pk+1ak+1 6 ak−ak+1. (7)

But (7) holds because µ(E∩(Qk \Qk+1)) = µ(E∩Qk)−µ(E∩Qk+1) = pkak− pk+1ak+1, and

0 6 µ(E ∩ (Qk \Qk+1))6 µ(Qk \Qk+1) = ak−ak+1.

For the proof of Theorem 1 and Proposition 1 we use the same learning process
(
Ω,µ,E,(πk)k>1

)
,

which we call the basic learning process. In the basic learning process, Ω= {ω1,η1,ω2,η2, . . . ,η ,ω}.
Thus, Ω consists of infinitely many states ωk and ηk and a pair of states η and ω . We set

E = {ω1,ω2, . . . ,ω}. The partitions are defined by π1 = {Ω} and for k > 1,

πk =
{
{ω1},{η1}, . . . ,{ωk−1},{ηk−1},{ωk,ηk, . . . ,η ,ω}

}
.

We are interested in the monologue at ω . As before, we define Qk = πk(ω)= {ωk,ηk, . . . ,η ,ω}
for brevity.

Proof of Theorem 1. We start by showing that every internal positive monologue has bounded

ratio variation. Using the notation above, assume that pk = µ(E | Qk) is a positive monologue.

Then, by Claim 2, (5) holds. Therefore, the inequality (6) implies the inequality (3). Thus, by

Claim 1, (pk) has bounded ratio variation.

Next, we prove that every internal sequence (pk) with bounded ratio variation is a positive

monologue in the basic learning process at ω . For this we need to define the probability

measure µ such that pk = µ(E | Qk), and µ(
⋂

k Qk) > 0, which means that the process is

positive. Note that µ(Qk)−µ(Qk+1) = µ({ωk,ηk}), and limk µ(Qk) = µ({ω,η}). Thus, it is

enough to define for each k > 1, µ(Qk), and µ(ωk) and also µ(ω).

Let a1 = 1 and define by induction a sequence ak that satisfies for every k,

ak

ak+1
= max

{
pk+1

pk
,

p̄k+1

p̄k

}
. (8)

Note that (8) is obtained by replacing the inequality in (6) by an equality. The right-hand side

of (8) is at least 1, hence the sequence (ak) is weakly decreasing. Therefore, for the decreasing

sequence of events Qk, we can define µ(Qk) = ak, and thus µ(Qk \Qk+1) = µ({ωk,ηk}) =
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ak−ak+1. Since (6) is equivalent to (7), it follows that we can define µ(ωk) = pkak− pk+1ak+1,

which is non-negative and does not exceed µ(Qk \Qk+1).

Let a = limak. By Observation 1, (pk) has bounded variation and hence it converges.

Let p = lim pk. We define µ(ω) = pa. This completes the definition of µ . Now, µ(E ∩
Qk) = (∑i>k piai− pi+1ai+1)+ pa. As piai converges to pa, this sum is pkak, implying that

µ(E | Qk) = pk, which means that (pk) is the monologue at ω . To show that the monologue

is positive, we note that, by Claim 1, (3) holds since (pk) has bounded ratio variation. In

virtue of (8), Claim 2 implies that a > 0 and as µ(∩kQk) = a, this means that the monologue is

positive.

Note that in the proof of Theorem 1, the sequence ak = µ(Qk) can be weakly decreasing.

Indeed, when pk = pk+1, the right hand side of (8) is 1, and thus, ak = ak+1. In the proof of

Theorem 2 we need to define a positive monologue on the basic learning process with a strictly

decreasing sequence ak. We show here that this is possible.

Lemma 2. An internal sequence with bounded ratio variation is a positive monologue in the

basic learning process at ω with a strictly decreasing sequence
(
µ(πk(ω))

)
.

Proof. Let βk be a sequence such that for each k, βk > 1 and limn ∏
n
k=1 βk < ∞. In the proof of

Theorem 1 define the sequence ak by

ak

ak+1
= max

{
pk+1

pk
,

p̄k+1

p̄k

}
βk. (9)

rather than by (8). Obviously, ak is strictly decreasing. Since (9) implies the inequality (6), the

proof holds verbatim up to the point where we need to show that (5) holds in order to prove

that the monologue is positive. This follows from (9), (3) and the boundedness of the product

of the β ’s.

Proof of Observation 2. For (i) we note that if (pk) is in (ξ ,1−ξ ) for some ξ > 0, then |pk+1−
pk|/rk < |pk+1− pk|/ξ . For (ii) assume that (pk) converges monotonically to 0. We can assume

that pk 6 1/2 for all k. The ratio variation of pk is ∑k(p̄k+1− p̄k)/ p̄k 6 2∑k(p̄k+1− p̄k). If

(pk) converges monotonically to 1, we can assume that pk > 1/2 for all k. The ratio variation

of pk is ∑k(pk+1− pk)/pk 6 2∑k(pk+1− pk).

Proof of Proposition 1. Let (pk) be an internal sequence. If (pk) has bounded ratio variation,

the result follows from Theorem 1. So we assume that (pk) does not have bounded ratio vari-
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ation. We show that (pk) is the monologue in the basic learning process at ω . We define µ

for all Qk and ωk as in the proof of Theorem 1. Since (pk) does not have bounded ratio varia-

tion, it follows from (8) and Claims 1 and 2 that limak = 0. Therefore, µ({η ,ω}) = 0. Thus,

µ(E ∩Qk) = ∑i>k(piai− pi+1ai+1) = pkak, implying that µ(E | Qk) = pk.

5 Proofs – dialogues

Before proving Theorem 2 and Proposition 2 we consider three auxiliary subjects:

• Proposition 3 which belongs to the theory of variation of sequences;

• Some basic lemmas concerning the probabilities of disjoint events and their intersection

with another event;

• A basic joint learning process which is used in both Theorem 2 and Proposition 2.

Selection sequences and bounded variation

In the proof of part (ii) of Theorem 2 we use the equivalence of (i) and (iv) in Proposition 3.

Therefore we first prove this proposition.

Proof of Proposition 3. Suppose that all the selections from the sequences (p1
k) and (p2

k) have

bounded variation. Then in particular the two sequences (p1
k) and (p2

k) and the sequences

(a) and (b) have bounded variation in virtue of being selections from (p1
k) and (p2

k). Since

|p1
k − p2

k | 6 |p1
k − p1

k+1|+ |p1
k+1− p2

k |, it follows that also (c) has bounded variation because

(p1
k) and (b) have bounded variation.

We now show that if (p1
k), (p2

k) and one of (a), (b), and (c) have bounded variation, then

all three sequences (a), (b), and (c) have bounded variation. Suppose first that (p1
k), (p2

k) and

(a) have each bounded variation. Since |p2
k − p1

k | 6 |p2
k − p2

k+1|+ |p2
k+1− p1

k | it follows that

(c) also has bounded variation. Similarly, if (p1
k), (p2

k) and (b) have each bounded variation,

(c) also has bounded variation. If (p1
k), (p2

k) and (c) have each bounded variation, then, since

|p2
k+1− p1

k |6 |p2
k+1− p2

k |+ |p2
k− p1

k | it follows that (a) has bounded variation and in a similar

way also (b).

Observe that any summand in a selection from (p1
k), (p2

k) appears in the variation of either

(p1
k), (p2

k), (a), (b), or (c). This shows that if all of these sequences have bounded variation,

then all selections have bounded variation.
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Three lemmas concerning the probabilities of three events.

In the first two lemmas we study a function that we have already met in the definition of ratio

variation. For every x,y ∈ (0,1) we denote

ϕ(x,y) = max
{

y
x
−1,

ȳ
x̄
−1
}
.

Note that whenever ξ 6 x,y 6 1−ξ , for some ξ > 0,

ϕ(x,y)6 |x− y|/ξ . (10)

Lemma 3. Let x,y∈ (0,1), (Ω,µ) be a measurable space, A,B⊆Ω be two disjoint events, and

E ⊆Ω be an event such that (a) µ(A)> 0, (b) µ(B) = 2ϕ(x,y)µ(A); (c) µ(E | A) = y; and (d)

µ(E ∩B) = (x+1lx>y)ϕ(x,y)µ(A). Then, µ(E | A∪B) = x.

Proof. Suppose first that x > y. Then,

µ(E | A∪B) =
µ(A)(xϕ(x,y)+ϕ(x,y)+ y)

µ(A)(2ϕ(x,y)+1)

=
(x− y)(1+ x)+ y(1− x)

2(x− y)+1− x
=

x(x−2y+1)
x−2y+1

= x.

Now suppose that x 6 y. Then,

µ(E | A∪B) =
µ(A)(xϕ(x,y)+ y)
µ(A)(2ϕ(x,y)+1)

=
(y− x+ y)x
2(y− x)+ x

= x.

Lemma 3 is of a great importance for the constructive proofs that follow. Suppose that the

probability of an event A, say µ(A), and the conditional probability µ(E | A) have already been

defined. We would like to add another event B, disjoint of A, such that (i) the probability of B is

µ(B) = 2ϕ(x,y)µ(A), and (ii) the conditional probability of E given the union A∪B is equal to

x. Is this possible, and if so, what should be the probability of E within B? Lemma 3 provides
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sufficient conditions for when this is possible. Furthermore, if

µ(E ∩B) = (x+1lx>y)2ϕ(x,y)µ(A), (11)

then µ(E | A∪B) = x. The case where x = y requires a special treatment. When x = y, ϕ(x,y) =

0, which would make µ(B)= 0. In this case ϕ(x,y) is replaced by ε > 0. We set µ(B)= 2εµ(A)

and µ(E ∩B) = x ·2εµ(A). In this case, the conditional probability of E given the union A∪B

is equal to x. We give a name for the fixing of B and E in a way that gives rise to the result of

Lemma 3

When we set µ(B) = 2ϕ(x,y)µ(A) and µ(E∩B) = (x+1lx>y)ϕ(x,y)µ(A), we say

that we apply the (x; µ(A),y)-scheme on B.

Suppose that µ(A)> 0 and µ(E|A) = y. If we apply (x; µ(A),y)-scheme on B, then Lemma 3

states that µ(E | B∪A) = x. In the construction below we apply (x; µ(A),y)-schemes only to

events A whose probability is positive.

Lemma 4. Let x,y ∈ (0,1), (Ω,µ) be a measurable space, A,B ⊆ Ω two disjoint events, and

E ⊆ Ω an event such that (a) µ(A) > 0, (b) µ(B) > 2ϕ(x,y)µ(A); (c) µ(E | A) = y. There

exists a number z such that if µ(E ∩B) = z, then µ(E | A∪B) = x.

Proof. In case µ(B) = 0, the result is trivial. Assume then that µ(B)> 0 and let

z =
µ(B)x+µ(A)(x− y)

µ(B)
.

We show first that z > 0. It is clear when x > y. If x < y, then ϕ(x,y) = (y− x)/x and µ(B)x+

µ(A)(x−y)> ((y−x)/x)x+µ(A)(x−y) = (1−µ(A))(y−x)> 0. Thus, z > 0. We now show

that z6 1. In case x 6 y, this is clear. When x > y, µ(B)> 2ϕ(x,y)µ(A)> µ(A)(x−y)/(1−x).

Therefore, z = x + µ(A)(x− y)/µ(B) 6 x + 1− x = 1. To complete the proof assume that

µ(E | B) = z. Then,

µ(E | A∪B) =
µ(B)µ(E|B)+µ(A)µ(E|A)

µ(B)+µ(A)
=

µ(B)x+µ(A)(x− y)+µ(A)y
µ(B)+µ(A)

= x.

The next lemma will be used for estimating the growth in the total weight during the induc-

tion process.
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Lemma 5. Let D = D1∪D2 and E be events with D1∩D2 = /0 and let µ be a measure. Suppose

that µ(E | D1) = p, µ(E | D2) = z and µ(E | D) = q. Then, for every p′,

µ(D1 | D)|p− p′|+µ(D2 | D)|z− p′|6 |p− p′|+ |q− p|.

Proof. By assumption, q = µ(D1 | D)p+µ(D2 | D)z = (1−µ(D2 | D))p+µ(D2 | D)z. Thus,

µ(D2 | D)z = q+µ(D2 | D)p− p. Hence,

µ(D1 | D)|p− p′|+µ(D2 | D)|z− p′|

= µ(D1 | D)|p− p′|+ |q+µ(D2 | D)p− p−µ(D2 | D)p′|

6 µ(D1 | D)|p− p′|+ |q− p|+µ(D2 | D)|p− p′|= |p− p′|+ |q− p|.

The basic joint learning process.

We consider a joint learning process (Ω,µ1,µ2,E,(π1
k )k>1,(π

2
k )k>1) defined as follows. The

state space is Ω = {ωi, j,ηi, j | i, j ∈ [1, . . . ,∞]}. We call the events Ci, j = {ωi, j,ηi, j} cells.

Define, Ei, j = {ηi, j} and set E =
⋃

i, j Ei, j. Thus, ηi, j is the only common state to E and Ci, j.

We denote Row(m,~k) =
⋃

j>k Cm, j and call it the k-truncated m-row. Similarly, the k-truncated

m-column is Col(~k,m) =
⋃

i>k Ci,m. We set ω = ω∞,∞, and study the dialogue at ω . We assume

that the agents have a CP, that is, µ1 = µ2 = µ .

We assume that for two sequences (p1
k) and (p1

k) the CP µ satisfies the following conditions.

For every k = 1,2, ... and for every i, j ∈ [k+1,∞],

µ
(
E | Row(i,~k)

)
= p1

k and µ
(
E | Col(~k, j)

)
= p2

k , (12)

and

µ
(
E | Row(k,~k)) 6= p1

k and µ
(
E | Col(~k,k)

)
6= p2

k . (13)

Note that (12) can be equivalently written in a different order of quantification: for i = 1,2, . . .

and for every k 6 i−1, µ(E | Row(i,~k)) = p1
k , and similarly for agent 2.

The initial partition of player 1, π1
1 , consists of all the 1-truncated rows Row(i,~1) for i ∈

[1, . . .∞]. For player 2, π2
1 consists of all the 1-truncated columns Col(~1, j) for j ∈ [1, . . .∞].

The rest of the partitions are define endogenously as described in Section 3. In stage k > 1,
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Row(i,~k)) for i > k are elements of the partition π1
k , and Col(~k, j) for j > k are elements of the

π2
k . By equations (12) and (13), the event that the pair of posteriors is (p1

k(ω), p2
k(ω)) is

π̂k(ω) =
( ⋃

i>k+1

Row(i,~k)
)⋂( ⋃

j>k+1

Col(~k, j)
)

=
⋃

i>k+1

Row(i,
−−→
k+1)

=
⋃

j>k+1

Col(
−−→
k+1, j)

Thus, Row(i,
−−→
k+1) for i > k+ 1 are elements of the partition π1

k+1 and Col(
−−→
k+1, j) for j >

k+1 are elements of the partition π2
k+1. It is common knowledge in π̂k(ω) that the posteriors

at stage k were (p1
k(ω), p2

k(ω)). Stage k of the process is depicted in Figure 1.

· · ·

···

Ck,k

Ck+1,k+1

···

· · ·

C∞,∞

︷ ︸︸ ︷

︷
︸︸

︷

µ(E | Col(�k, j)) = p2k

µ
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Ck,∞

· · ·
· · ·Ci,k Row(i,�k)

π̂k(ω)

C
ol( �k

,j)

Ck,j

···
···

The truncated rows Row(i,~k) and columns Col(~k, j), for i, j > k, are elements of the partitions π1
k

and π2
k , respectively. The conditional probability of E is p1

k in all these truncated rows, but the first,
and p2

k in all these truncated columns, but the first. Thus the posterior probabilities of E are (p1
k , p2

k)
in all the states of π̂k(ω), which consists of the cells Ci, j with i, j > k+ 1. When π̂k(ω) becomes
common knowledge, the truncated rows Row(i,

−−→
k+1) and columns Col(

−−→
k+1, j), for i, j > k+ 1,

become elements of π1
k+1 and π2

k+1, respectively. The sequence (p1
k , p2

k) is the dialogue at ω =ω∞,∞.

Figure 1: The basic joint learning process in stage k
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Proof of Theorem 2.

We start with the short proof of part (i) of the theorem.

Proof of part (i) of Theorem 2. Suppose that the pair (p1
k) and (p2

k) forms a dialogue at ω with a

common prior µ . We show that every selection of these sequences has bounded ratio variation.

Consider a sequence i(k) of names in {1,2}. We define a decreasing sequence of events Qk

such that Qk ⊆ πk(ω), where πk(ω) is the element of the meet of π1
k and π2

k that contains ω .

We define Qk as follows:

Qk = {ω | π i(k)
k (ω)⊆ πk(ω) and µ(E | π i(k)

k ) = pi(k)
k }.

In other words, the event Qk is the union of all the elements of the partition π
i(k)
k contained

in πk(ω) in which agent i(k) assigns probability pi(k)
k to E. Since Qk+1 ⊆ πk+1(ω) ⊆ Qk, it

follows that the sequence Qk is decreasing. Thus, the sequence pi(k)
k is the monologue at ω

generated by the sequence Qk and the common prior µ . By construction,
⋂

k πk+1(ω)⊆⋂k Qk.

Since the dialogue is positive, µ(
⋂

k πk+1(ω)) > 0. Thus, the monologue pi(k)
k is positive as

well. By Theorem 1 and Observation 2, the sequence pi(k)
k has bounded ratio variation.

Proof of part (ii) of Theorem 2. Assume that two strictly internal sequences (p1
k) and (p2

k) sat-

isfy the condition in part (ii) of the theorem. The sequences are strictly internal and thus one

can find ξ > 0 such that ξ < pi
k < 1−ξ for every k and i = 1,2. We use the basic joint learning

process and construct the CP µ such that the two sequences form a positive dialogue at ω . In

view of Proposition 3, we can assume that ∑
∞
k=0 |p1

k− p2
k |< ∞.

A sketch of the construction of µ .

We construct the probabilities backward. Define, Hi, j =
⋃

Rowk>i(k,
−→
j ). This is the

bottom-right corner whose top-left cell is Ci, j. Suppose that all the probabilities of Ci, j and

Ei, j in Hk+1,k+1 have been defined. We want to extend the definition to Hk,k. This is done is

Steps 4–6 below. We first define the probabilities on the k-th column, Col(
−−→
k+1,k). By doing

it, we ensure that the conditional probability of E on every row Row(i,
−→
k ) is p1

k , i > k+1. We

then define the probability of the cells on Row(k,
−−→
k+1). This is done in a way that makes the

probability of the event E conditional on every column starting at Ck, j, j > k+1 equal to p2
k .

Finally, the probability on the Ck,k is defined. The objective here is to make the probability

of E conditional on the row Row(k,
−→
k ) different from p1

k , and at the same time the probability
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of E conditional on the column Col(
−→
k ,k) different from p2

k . This point in the construction

guarantees, for instance, that when agent 1 announces p1
k at time k, agent 2 knows that the

event related to the row Row(k,
−→
k ) did not occur and he updates his belief accordingly.

An important issue in the construction is to control the size of Col(
−−→
k+1,k), Row(k,

−→
k ) and

Ck,k added in the induction process. It should not grow too fast, the reason being that when we

define the measure on these events, we add a weight to each and by the end of the process, we

normalize the measure obtained. If the added weight is too large, the normalized probabilities

at the end of the process might be very small and eventually vanish.

The bounded variation of the sequences involved is the property that ensures that the nor-

malizing factors are uniformly bounded. The probabilities in the limit, including the conditional

ones, are therefore well defined.

The construction of µ .

We proceed in two stages. In the first stage we define for every integer ` a measure µ` on Ω.

It will not necessarily be a probability measure. The measure µ` will be define inductively

in Steps 0–6 below. At each stage, the measure of more cells will be introduced. The added

measure will be called also the weight or size added.

The idea of the construction is to add inductively weight to more and more cells without

taking care of the total weight. Only at the end of the inductive process µ` is normalized in

order to obtain a probability measure µ
`. Note that the conditional measures do not change

after normalization. In the second stage a measure µ will be defined as a limit of the sequence

(µ`). One of the objectives of the construction is to make sure that the the sequence (µ`) is not

vanishing in the limit. That is, µ is indeed a measure.

Stage 1: Defining the measure µ`. Fix an integer `. During the construction we are going to

define a few arrays of weights, not necessarily probabilities, and conditional probabilities:

c`i, j := µ`(Ci, j) = µ`(ωi, j,ηi, j);

α`
i, j := µ`(E|Ci, j) = µ`(ηi, j)/µ`(ωi, j,ηi, j);

d`
i, j := µ`(Col(

−→
i , j));

γ`i, j := µ`(E|Col(
−→
i , j));

r`i, j := µ`(Row(i,
−→
j ));
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ρ`
i, j := µ`(E|Row(i,

−→
j ));

During the construction, for every i, j < ∞, we will take care to keep c`i, j (across `) away from

0. The reason is that in the second stage a converging subsequence (as ` goes to infinity) will

define µ , and we want to make sure that limit lim`→∞ c`i, j does not vanish. This, in turn, will

guarantee that the conditional probabilities are well defined.

Step 0: Defining the probabilities on the margins. We start with the weights on the right

margin, Col(
−→
1 ,∞): (α`

i,∞) and (c`i,∞), i= 1, ...,∞. By assumption, (p2
k) is a positive monologue.

That is, one can find a sequence of decreasing events (Qk), an event E and a measure ν2 such

that ν2(
⋂

k Qk)> 0 and (p2
k) = (ν2(E|Qk)).

Define c∞,∞ = ν2(
⋂

k Qk) and α`(η∞,∞) = (µ`(η∞,∞))/(µ
`(η∞,∞,ω∞,∞)) = limk p2

k . This

takes care of the limit cell in which the conditional probability is limk p2
k . Next define, ck,∞ =

ν2(Qk \Qk+1) and µ`(ηk,∞)) = ν2(E ∩ (Qk \Qk+1)) (i.e., α`
k,∞ = ν2(E ∩ (Qk \Qk+1)) · ck,∞).

By Lemma 2, ck,∞ > 0 for every k = 1,2, ....

We turn to the probabilities defined on the bottom margin, Row(∞,
−→
1 ): (α`

∞, j) and (c`
∞, j).

As (p1
k) is a positive monologue, we can find a sequence of decreasing events (Q′k), an event E ′

and a measure ν1 such that ν1(
⋂

k Q′k) > 0 and (p1
k) = (ν1(E|Q′k)) is a monologue concerning

E ′ with respect to (Q′k). Without loss of generality6 ν1(
⋂

k Q′k) = ν2(
⋂

k Qk). We now define

probabilities on the bottom margin in a manner similar to that of the right margin. These

definitions guarantee that (a) c∞,k > 0 for every k = 1,2, ... and (b) (12) holds for i, j = ∞.

Note that the weights on the last row and column do not depend on `. Denote by M their

total size, i.e., M := r`
∞,1 +d`

1,∞− c`∞,∞.

We proceed with the other cells. For any `+ 1 6 i, j < ∞, set c`i, j = α`
i, j = 0. That is,

the bottom-right corner H`+1,`+1, excluding the right and bottom margins, gets total weight 0.

Steps 1–3 define the probabilities over H`,`. For the following definitions recall the definition

of the scheme introduced above.

Step 1: Defining the measure on the truncated column Col(
−−→
`+1, `). Fix i > `+1. Apply

the (p1
` ;r`i,`+1,ρ

`
i,`+1)-scheme on Ci,`.

What is the total size of the `-th column just added? From Step 0 we deduce that r`i,`+1 = c`i,∞

6This is so because otherwise we can assume, without loss of generality, that ν1(
⋂

k Q′k) > ν2(
⋂

k Qk). By
redefining the conditional probabilities (ν1(E|Q′k)), actually by multiplying them all by ν2(

⋂
k Qk)/ν1(

⋂
k Q′k),

one can make their limit equal to ν2(
⋂

k Qk).
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and ρ`
i,`+1 =α`

i,∞. The scheme dictates that the size of Ci,` is 2ϕ(p1
` ,α

`
i,∞)r

`
i,`+1. This is bounded

by 2r`i+1,`/ξ (recall that ξ < p1
` < 1− ξ ). Thus, the total weight added (due to all the cells

Ci,`, i > `+1) is bounded by 2M/ξ .

Step 2: Defining the measure on the truncated row Row(`,
−−→
`+1). Fix j > `+1 and apply

the (p2
` ;d`

`+1, j,γ
`
`+1, j)-scheme on the cell C`, j. Again, the total added weight is bounded by

2M/ξ .

Step 3: Defining the measure on the diagonal cell C`,`. The diagonal cell requires a special

treatment. We have to define the probabilities µ`(C`,`) and µ`(E ∩C`,`) in a way that (a) ρ`
i,`+1

is close to p1
` ; and (b) (13) holds for k = `. That is, ρ`

`,` should be different from p1
` and γ``,`

should be different from p2
` . Here, we choose ρ`

`,` and γ``,` to be bounded away (across different

`’s), respectively, from p1
` and p2

` .7

Let (ε`) be a sequence of positive numbers such that ∑` ε` < ∞ and ε` < ξ/2 for every `.

Let q̃`` be in the interval [p1
` + ε`, p1

` + 2ε`]. Its precise value will be determined shortly. Note

that since ε` < ξ/2, we have 0 < q̃`` < 1). Let

µ
`(C`,`) = max

{
2ϕ(q̃``;r``,`+1,ρ

`
`,`+1),ε`

}
.

We now use Lemma 4 with A = Row(`,
−−→
`+1), y = ρ`

`,`+1 and B =C`,`. The lemma states that

there is z such that if µ`(ε`,`)/µ`(C`,`) = z, then ρ`
`,` = q̃``.

The probability µ`(C`,`) induces also the conditional probability on Col(
−→̀
, `). Our goal is

to have it different from p2
k by at least ε2

` . Since, µ`(C`,`) is at least ε` = q̃`` when we choose

q̃`` in the interval [p2
` + ε`, p2

` + 2ε`] and move from one end of the interval to the other, the

probability of E conditional on Col(
−→̀
, `) is changing by at least ε2

` (one ε` for the size of

µ`(C`,`) and the other because the size of the interval is ε`). We conclude that by a proper

choice of q̃`` we have that |ρ`,`− p1
` |> ε` and |γ`,`− p2

` |> ε2
` /2.

The added weight in this step is µ`(C`,`), which is bounded by max
{

2ϕ(q̃``,ρ
`
`,`+1)r

`
`,`+1,ε`

}
.

By Step 1, r``,` 6 2M/ξ and therefore 2ϕ(q̃``;ρ`
`,`+1,r

`
`,`+1)6 4M/(ξ 2). Thus, the added weight

in Step 3 is bounded by max
{

4M/ξ 2,ε`
}

. Since the sequence (εk) is bounded, we obtain that

7The reason is that in stage 2, at the end of this proof, we let ` go to infinity. This makes sure that the
probabilities in the limit are still different.
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the total weight added in Steps 0–3 is bounded by M1 (which does not depend on `). That is,

M+4M/ξ +max
{

4M/ξ
2,ε`

}
6 M1. (14)

To summarize, on H`,` the conditional probabilities satisfy ρ`
i,` = p1

` for i > `+1, γ``, j = p2
`

for j > `+1, ρ`(`,`) = q̃`` > p1
` + ε` and |γ``,`− p1

` | > (ε`)
2. The conditional probability of E

given H`,` is a convex combination of p2
` and q̃`` and we denote it by q``.

We now continue the definitions of µ` on all other cells by a backward induction. Suppose

that all c`i, j and α`
i, j, k+ 1 6 i, j, have been defined. The inductive procedure has three steps

that are analogous to Steps 1–3.

Step 4: Defining the measure on the truncated column Col(
−−→
k+1,k). For each i > k+ 1,

apply the (p1
k ;r`i,k+1,ρ

`
i,k+1)-scheme on Ci,k.

Step 5: Defining the measure the truncated row Row(k,
−−→
k+1). For each j > k+ 1, apply

the (p2
k ;d`

k+1, j,γ
`
k+1, j)-scheme on Ck, j.

Step 6: Defining the measure on the diagonal cell Ck,k. We iterate the construction in Step

3. The weights µ`(Ck,k) and µ`(Ek,k) are defined in such a way that (a) ρ`
i,k+1 is close, but not

equal to p1
k ; and (b) γ`k,k is different from p2

k . That is, (13) holds for k. Moreover, we choose the

measures so that ρ`
k,k and γ`k,k are bounded away across different `’s, respectively, from p1

k and

p2
k . This will avoid a coincidence as ` goes to infinity.

We choose q̃`k in the interval [p1
k +εk, p1

k +2εk]. Its precise value will be determined shortly.

Note that since εk < ξ/2, we have 0 < q̃`k < 1. Let

µ
`(Ck,k) = max

{
2ϕ(q̃`k;r`k,k+1,ρ

`
k,k+1),εk

}
· r`k,k+1. (15)

We now use Lemma 4 with A = Row(k,
−−→
k+1), y = ρ`

k,k+1 and B =Ck,k. The lemma states that

there is z such that if µ`(Ek,k |Ck,k) = z, then ρ`
k,k = q̃`k.

When setting µ`(Ck,k), the induced conditional probability of E given Col(
−→
k ,k) is deter-

mined as well. Our goal is to have it different from p2
k by at least ε2

k . Since, µ`(Ck,k) is at least

εk · r`k,k+1 when we choose q̃`` in the interval [p1
k + εk, p1

k + 2εk] and move from one end of the

interval to the other, the probability of E given Col(
−→
k ,k) (recall, it is denoted γ`k,k) is changing

by at least ε2
` (as is Step 3, one εk for the size of µ`(Ck,k) and the other because the size of the
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interval is εk). We obtain that by a proper choice of q̃`k we have

|ρ`
k,k− p1

k |> εk, and, |γ`k,k− p2
k |> ε

2
k /2. (16)

It is important to note that the bounds in (16) are independent of `. This implies that when we

take the limits as `→ ∞, these bounds stay untouched.

Due to Steps 4 and 6, the conditional probability of E given Hk,k is a convex combination

of p1
k and q̃`k and we denote it by q`k. Since, |q̃`k− p1

k |6 2εk, we obtain that |q`k− p1
k |6 2εk,

By how much the total weight has increased? We start by estimating the weight increase due

to Step 4, which takes care of Col(
−−→
k+2,k) and of Ck+1,k. We start with the estimation of the

weight of Col(
−−→
k+2,k). For this purpose we use Lemma 5 with D = Hk+1,k+1, D1 = Hk+2,k+1

and D2 = Row(k+1,
−−→
k+1). Using the notation of this lemma, we have p = p1

k+1,z = ρ`
k+1,k+1

and q = q`k+1. Letting p′ = p1
k , we obtain

µ`(D1 | D)|p1
k+1− p1

k |+µ`(D2 | D)|z− p1
k |

6 |p1
k+1− p1

k |+ |q`k+1− p1
k+1|.

(17)

In the inductive construction, ρi,k+1 = p1
k+1 when i > k + 2. Step 4 states that the cell Ci,k

should have the size 2ϕ(p1
k , p1

k+1)r
`
i,k+1. Therefore the total size of Col(

−−→
k+2,k) is µ`(D1) ·

2ϕ(p1
k , p1

k+1). The cell Ck+1,k is also defined in Step 4. Its size, µ`(Ck+1,k), is µ`(D2) ·
2ϕ(p1

k ,z).

We conclude that the total weight added in Step 4 is

µ
`(D1) ·2ϕ(p1

k , p1
k+1)+µ

`(D2) ·2ϕ(p1
k ,z)

6 2µ
`(D)

[
µ
`(D1 | D)|p1

k+1− p1
k |+µ

`(D2 | D)|z− p1
k |
]
/ξ

6 2µ
`(D)

[
|p1

k+1− p1
k |+ |q`k+1− p1

k+1|
]
/ξ

= 2µ
`(Hk+1,k+1)

[
|p1

k+1− p1
k |+ |q`k+1− p1

k+1|
]
/ξ . (18)

The first inequality holds by (10) and the second inequality is by (17).

We apply a similar calculation to determine the growth of µ` due to Step 5. We obtain that

this growth is bounded by

2µ
`(Hk+1,k+1)

[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]
/ξ . (19)
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Recall that we defined the weight of the cell Ck,k in (15). In case 2ϕ(q̃`k;r`k,k+1,ρ
`
k,k+1)> εk,

we define D = Hk,k+1, D1 = Hk+1,k+1 and D2 = Row(k,
−−→
k+1). We get p = q`k+1,z = γ`k,k+1 and

q = p2
k . Thus, by Lemma 5

µ
`(D2) ·2ϕ(q̃`k,z)6 2µ

`(D)µ`(D2|D)|z− q̃`k|/ξ

6 2µ
`(D)

[
µ
`(D1|D)|q`k+1− q̃`k|+µ

`(D2|D)|z− q̃`k|
]
/ξ

6 2µ
`(D)

[
|q`k+1− q̃`k|+ |q`k+1− p2

k |
]
/ξ (20)

= 2µ
`(Hk+1,k+1)

[
|q`k+1− q̃`k|+ |q`k+1− p2

k |
]
/ξ .

In the other case where 2ϕ(q̃`k;r`k,k+1,ρ
`
k,k+1)< εk, we employ the estimation related to Step 5.

This bound is given by (19). We see that the added weight in step 6 is bounded by

2µ
`(Hk+1,k+1)max

{[
|q`k+1− q̃`k|+ |q`k+1− p2

k |
]
,
[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]}

/ξ . (21)

To summarize, the total weight defined in Steps 4–6 is bounded from above by total weights

added in (18), (19) and (21), which is

2µ
`(Hk+1,k+1)

([
|p1

k+1− p1
k |+ |q`k+1− p1

k+1|
]
+
[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]

+max
{[
|q`k+1− q̃`k|+ |q`k+1− p2

k |
]
,
[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]})

/ξ . (22)

When we start with Steps 0–3 and add up the their added weights, we obtain that the total

weight added in all Steps 0-6 is bounded from above by

M1Π
`
k=1

(
1+
([
|p1

k+1− p1
k |+ |q`k+1− p1

k+1|
]
+
[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]

+max
{[
|q`k+1− q̃`k|+ |q`k+1− p2

k |
]
,
[
|p2

k+1− p2
k |+ |q`k+1− p2

k+1|
]})

/ξ

)
. (23)

We show that these products have a uniform bound. In other words, there is a constant W such

that the quantity in (23) is bounded by W , for every `. We do it by using Lemma 1 and showing

that each of the sequences involved in (23) has bounded variation which is independent of `.

In order to verify it, we have to check only the total variation of the following sequences:

|q`k+1− p1
k+1|6 2εk+1.

|q`k+1− p2
k+1|6 |q`k+1− p1

k+1|+ |p1
k+1− p2

k+1|6 2εk+1 + |p1
k+1− p2

k+1|.
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|q`k+1− q̃`k|6 |q`k+1− p1
k+1|+ |p1

k+1− p1
k |+ |p1

k− q̃`k|6 4εk+1 + |p1
k+1− p1

k |.

|q`k+1− p2
k |6 |q`k+1− p2

k+1|+ |p2
k+1− p2

k |6 2εk+1 + |p1
k+1− p2

k+1|+ |p2
k+1− p2

k |.

Note that the right-hand sides of all these inequalities do not depend on `. Moreover, by the

assumptions of (ii) of Theorem 2, the sequences on the right-hand sides have bounded variation.

Thus, there is a universal constant W , which bounds from above the quantity in (23) for every `.

One can therefore normalize the measure µ` to obtain a probability measure on Ω that satisfies

(12), (13) and (16) for any k 6 `. We denote the normalized measure by µ
`.

Stage 2: Taking a limit of µ
`. In order to define the measure µ we take a converging

subsequence of 8 µ
` and denote it by µ . It is important to note that over the margins the

measure µ` does not depend on `: it was defined in Step 0 once and for all. Moreover, the

µ`-measure of every cell in the margins is positive. After normalization, since the normalizing

factors across ` are smaller than W , the µ
`-probability of every cell in the margins is bounded

away from zero. Hence, the µ-probability of every cell in the margins is strictly positive.

Since the µ-measures of the cells in the margins are all positive, the conditional probabilities

discussed above are all well defined. In particular, all the conditional probabilities in (12) are

well defined and moreover, the equalities in (12) are satisfied by µ . Furthermore, due to (16),

the conditional probabilities on the diagonal cells are kept bounded away from their respective

probabilities. Therefore, the inequalities in (13) are also satisfied by µ .

It may be the case that the limit measure µ is not a probability measure. However, since

the margin cells have a positive measure, µ is not zero. We can now normalize µ , if needed, in

order to obtain a probability measure. This completes the proof.

Proof of Proposition 2. In order to prove part (i), let (p1
k) and (p2

k) be two internal sequences.

We use the basic joint learning process and construct the CP µ such that the two sequences

form a positive dialogue at ω .

In this construction we use the term center to denote the set of diagonal cells Ci,i and the

cells adjacent to the diagonal. Thus, the off center cells are those Ci, j with i, j in [0,∞] such that

either i > j+1 or j > i+1. The construction of µ is carried out in four steps.

In Step 1, µ(Ci, j) will be defined for all cells Ci, j. In Step 2 we define µ(Ei, j) for all cells

off center. In Step 3, we fix n < ∞ and define a probability µn that agrees with µ off center

8Each of the probability measures µ` is defined on a countable space, Ω, and so the sequence has a converging
subsequence.
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and generates a dialogue that agrees with the given sequences in the first n stages. In Step 4 we

define µ to be limit of the probabilities µn.

Step 1: Defining µ on all cells. For each k < ∞ let

ek =
(

max{1/p1
k ,1/ p̄1

k ,1/p2
k ,1/ p̄2

k}
)−1

,

and εk = min{e0, . . . ,ek}/3. Define for each i, j < ∞, µ(Ci, j) = Wε
j
j ε

i
i , µ(C∞, j) = Wε

2 j
j ,

µ(Ci,∞) = Wε2i
i , and finally µ(C∞,∞) = 0. The constant W is chosen to normalize the sum

of these numbers.

The only property of µ needed in the following steps is described in the next claim.

Claim 4. Let ai
k = µ(Row(i,~k)) and b j

k = µ(Col( j,~k)). Then, for all i, j in [1,∞] and k < ∞

such that i, j > k+1,

ai
k

ai
k+1

> max
{

1
p1

k
,

1
p̄1

k

}
and

b j
k

b j
k+1

> max
{

1
p2

k
,

1
p̄2

k

}
. (24)

Indeed, consider first a pair (i,k) where k+ 1 6 i < ∞. The ratio ai
k/ai

k+1 is (∑ j>k ε i
i ε

j
j +

ε2i
i )/(∑ j>k+1 ε i

i ε
j
j + ε2i

i ). After cancelling ε i
i this ratio becomes (∑ j>k ε

j
j + ε i

i )/(∑ j>k+1 ε
j
j +

ε i
i ). The numerator exceeds εk

k . We increase the denominator by replacing each ε
j
j in the infinite

sum by ε
j

k . This results in a geometric series whose sum is smaller than 2ε
k+1
k . Now, we further

increase the denominator by replacing ε i
i with ε

k+1
k (ε i

i > ε
k+1
k because 1 > εi > εk and i < k).

Thus, the ratio is bigger than

ε
k
k/(3ε

k+1
k ) = 1/ek > max{1/p1

k ,1/p̄1
k}.

This proves the first part of (24) for i < ∞.

Next, consider the pair (∞,k). The ratio ak
∞/ak+1

∞ is equal to ∑ j>k ε
2 j
j / ∑ j>k+1 ε

2 j
j . The

numerator exceeds ε2k
k . We increase the denominator by replacing each ε

2 j
j by ε

2 j
k , getting

∑
∞
j=k+1 ε

2 j
k = ε

2k+2
k (1− ε2

k ) 6 2ε
2k+2
k . Thus, the ratio is greater than 1/(2ε2

k ) > 1/(2εk) >

1/((2/3)ek) > max{1/p1
k ,1/p̄1

k}. This proves the first part of (24) for i = ∞. The proof for

individual 2 is similar.

Step 2: Defining µ(Ei, j) off center. For k < ∞ and i > k + 2 we let µ(Ei,k) = p1
kai

k −
p1

k+1ai
k+1. To justify this definition, we need to show that this difference falls between 0 and
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µ(Ci,k). Note that max{1/p1
k ,1/ p̄1

k} > max{p1
k+1/p1

k , p̄1
k+1/p̄1

k}. Thus, (24) and the equiva-

lence between (6) and (7) imply that µ(Ei, j) falls in the required range. Similarly, for k < ∞

and j > k+2 we let µ(Ek, j) = p2
kbi

k− p2
k+1bi

k+1.

Observe that if for i> k, µ(E |Row(i,~k)) = pk, then by the definition of µ(Ei,k−1) it follows

that µ(E | Row(i,
−−→
k−1)) = p1

k−1. Thus, in order to show that (12) holds in row i it is enough to

show that µ(E | Row(i,
−−→
i−1)) = p1

i−1, and similarly for the second agent. This is done in the

next step.

Step 3: Constructing probabilities in the center. It remains to define µ(Ei, j) for the cells

in the center. This is done as follows. For a fixed n > 1 we define µ(Ei, j) for center cells such

that (12) and (13) hold for all i, j 6 n. We denote the resulting probability by µn. Obviously,

all measures µn coincide off center. The construction of µn is carried out by induction on

k = n+1, . . . ,1.

For k = n+1 we define arbitrarily µn(En+1,n+1), µn(En+2,n+1), and µn(En+1,n+2). Suppose

the construction was carried out for k+1. We construct µn(Ek,k), µn(Ek+1,k), and µn(Ek,k+1).

We start with µ(Ek+1,k). Denote p = µ(E | Row(k + 1,
−−→
k+1)) and define µ(Ek+1,k) =

p1
kak+1

k − pak+1
k+1. As max{1/p1

k ,1/ p̄1
k}> max{p/p1

k , p̄/ p̄1
k}, it follows from (24) and the equiv-

alence between (6) and (7) that µ(Ei, j) falls between 0 and µ(Ek+1,k), and thus the definition is

valid. Moreover, µ(E | Row(k+1,~k) = p1
k . Thus, (12) holds in row k+1. We similarly define

µ(Ek,k+1).

We need to define µn(Ek,k) so that (13) is satisfied. Since we want to keep the inequality in

the limit of µn, we need p̂1
k and p̂1

k to be bounded away from p1
k and p2

k , respectively, uniformly

for all n. Let M1 = µn(E ∩Row(k,
−−→
k+1)) and K1 = µn(Row(k,~k)). We similarly define M2

and K2 for agent 2.

If we set µn(Ek,k) = 0, then µn(E | Row(k,~k)) = M1/K1 and µn(E | Col(~k,k)) = M2/K2.

If we set µn(Ek,k) = µn(Ck,k) = ε2k
k , then µn(E | Row(k,

−−→
k+1)) = (ε

2(k)
k +M1)/K1 and µn(E |

Col(
−−→
k+1,k)) = (ε2k

k +M2)/K2. Thus, we can choose the pair (p̂1
k , p̂2

k) in such a way that p̂1
k is

in the interval (M1/K1,(ε
2k
k +M1)/K1) and p̂2

k ∈ (M2/K2,(ε
2k
k +M2)/K2). Note that the lengths

of these intervals are ε2k
k /K1 and ε2k

k /K2, which depend only on the definition of µ(Ci, j) (that

is, neither on the definition of µ(Ei, j) nor on n)

Thus, we can find sufficiently small ρk > 0 and a pair (p̂1
k , p̂2

k) (in the respective intervals),

such that |p̂1
k− p1

k |> ρk and |p̂2
k− p2

k |> ρk. The choice of the pair p̂1
k , p̂2

k may depend on n, but

ρk will be the same for all n.
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Step 4: Taking the limit. Let I be the set of all the center cells indices. The set [0,1]I with

the product topology is compact. For each n, (µn(Ei, j))(i, j)∈I is an element of this set. Thus,

there exists a limit point xi, j of this sequence. Obviously, for each (i, j) ∈ I, 0 6 xi, j 6 µ(Ci, j).

We can therefore extend µ to Ei, j in the center by defining µ(Ei, j) = xi, j.

We need to show that µ satisfies (12) and (13). Each equation for i and k in (12) is a linear

equation in the three numbers µn(Ei,i−1), µn(Ei,i), and µn(Ei,i+1), where the coefficients are

the same for all n. Thus, the equation holds also in the limit, that is, for µ .

For (13), µn(Row(k,~k)) is a linear expression in µn(Ei,i), and µn(Ei,i+1) where the coeffi-

cients are independent of n. Thus, µn(Row(k,~k))→n µ(Row(k,~k)). Since, |µn(Row(k,~k))−
p1

k |> ρk > 0 for all n, it follows that µ(Row(k,~k)) 6= p1
k . The argument for agent 2 is the same,

which completes the proof of part (i).

We now proceed to proving part (ii) of Proposition 2. For this purpose we use twice part (ii)

of the theorem. In the construction we use the same space twice, but each time assign different

probabilities to the same cells.

In the first step we construct a dialogue in which both agents have the sequence p1
k . That

is, we construct a dialogue generating p1
k and p̃2

k , where p̃2
k = p1

k . Here, the two sequences

coincide. Since p1
k is a positive monologue, these two sequences satisfy the conditions of

Theorem 2(ii). The construction of Theorem 2(ii) yields a space, a sequence of partitions and a

measure µ1, with respect to which p1
k and p̃2

k is a positive dialogue. The measure µ1 is defined

to be the prior of agent 1.

In the second step we construct a dialogue generating the sequences p̃1
k = p2

k and p2
k . The

space and the sequence of partitions are the same as in the first step. The measure µ2 might

differ from µ1. The measure µ2 is defined to be the prior of individual 2.
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