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Abstract

Consider a repeated interaction where it is unknown which of various stage games

will be played each period. This framework captures the logic of intertemporal in-

centives even though numeric payoffs to any strategy profile are indeterminate. A

natural solution concept is ex post perfect equilibrium (XPE): strategies must form

a subgame-perfect equilibrium for any realization of the sequence of stage games.

When (i) there is one long-run player and others are short-run, and (ii) public ran-

domization is available, we can adapt the standard recursive approach to determine

the maximum sustainable gap between reward and punishment. This leads to an

explicit characterization of what outcomes are supportable in equilibrium, and an

optimal penal code that supports them. Any non-XPE-supportable outcome fails to

be an SPE outcome for some (possibly ambiguous) specification of the stage games.

Unlike in standard repeated games, restrictions (i) and (ii) are crucial.

Thanks to (in random order) Drew Fudenberg, Andrzej Skrzypacz, Paul Milgrom, and Takuo Sugaya

for discussions, as well as seminar audiences at UCSD, Columbia, and Rice.

The author is supported by an NSF CAREER award.

1 Introduction

This paper studies a model of repeated interactions in which it is unknown what stage

game will be played in each period. The stage game may vary from one period to the

next, and there is no prior over the process determining its evolution.
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Repeated games are the classic theoretical paradigm for studying how, and to what ex-

tent, non-myopic behavior can be incentivized by the promise of future rewards. Typically,

the analyst models an interaction by writing down some game and asks what outcomes

can be supported in equilibrium. The standard theory offers, at least in principle, a

recipe for answering this question: first, use the recursive analysis of Abreu, Pearce and

Stacchetti (1990) (henceforth APS) to determine the worst possible equilibrium payoff

for each player (which may be strictly worse than just repeatedly playing a static Nash

equilibrium); then, the possible outcome paths are identified as those for which deviations

can be deterred using this worst equilibrium as punishment (Abreu, 1988).

However, the canonical model makes the rigid assumption that players play exactly

the same game over and over. In reality, the nature of interactions between players may

vary over time, and the players may not be able to precisely describe or agree on its

future evolution. We might expect that the basic principle of dynamic incentives—that

a player can be induced to forgo a short-run temptation of, say, 3 payoff units if he can

be promised a reward of 3/δ in the future—should remain valid even when the future

evolution of the environment cannot be fully specified. It is therefore natural to explore

such incompletely-specified models to try to express this intuition. And once we have

formulated such a model, it is natural to ask more generally to what extent the analytical

tools from the standard theory carry over.

An important feature of our setting is that a strategy profile does not determine

a numeric payoff for each player, since the payoffs depend on what stage games arise.

Much of the standard toolkit for studying repeated games, such as the APS recursive

characterization, works in payoff space. Thus, another perspective on the analysis here

is that it explores how much of this toolkit can be developed without reference to payoff

levels.

Our main focus here will be on repeated interactions with a fixed discount factor δ < 1,

and the following four features:

(i) One long-run strategic player interacts with a series of short-run players (as in

e.g. Fudenberg, Kreps and Maskin (1990)).

(ii) A public randomization device is available.

(iii) Attention is restricted to pure strategies (conditional on the public randomization).

(iv) Actions are perfectly observed.
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We will show how, in this setting, the recursive method can be adapted and used to

characterize what outcomes are supportable in equilibrium.

Feature (i) is of course restrictive, but it still gives plenty of scope for studying the

structure of dynamic incentives. As usual in the literature, this formulation allows multiple

interpretations: the short-run players may be different individuals in each period, they

may be long-lived but completely impatient individuals, or they may be a continuum

of players in the same role and whose individual deviations are not detectable. This

assumption can be varied somewhat; for example, the techniques developed here should

also be applicable with two long-run players, one of whom has full commitment. The

crucial feature is that there is only one player who needs to be given dynamic incentives.

As will be explained below, the analysis does not extend to multiple such players.

Assumption (ii) is also crucial. This is in contrast to the usual setting of repeated

games, where allowing for public randomization is mostly a technical convenience (for

example, the APS recursive analysis can be carried out with or without public random-

ization). Here, this assumption is a substantive necessity, as described below.

Assumptions (iii) and (iv) are made mostly for ease of exposition; many of the ideas

here could be developed without them. Admittedly, many of the interesting applications

of repeated games involve imperfect monitoring, but it seems clearest to develop the

conceptual machinery first in the simpler setting considered here.

The interaction assumed here has the following structure: There is a known set of stage

games that may arise. Each period, the players all observe what stage game comes up.

They then choose their actions and receive their payoffs. The long-run player maximizes

the δ-discounted sum of stage payoffs. Although the process governing the stage games

in each period is unspecified, it is common knowledge that future stage games do not

depend on players’ past actions (unlike in stochastic games).

We will adopt a solution concept based on the idea that the long-run player can

be induced to forgo a short-run gain if it is promised that future play will compensate

him enough to deter him from deviating, no matter what later stage games may come

up. Formally, this solution concept, ex-post perfect equilibrium (XPE), requires that the

strategies should form a subgame-perfect equilibrium for every sequence of stage games

that may be realized. We wish to characterize what outcomes can be supported by XPE

strategies.

Note that this solution concept is not rooted in a model of individual maximiza-

tion.1 In principle, one could demand that if players have uncertainty about future stage

1In particular, XPE is strictly stronger than just requiring maximization in the worst case over future
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games, they should have beliefs (and higher-order beliefs) about them; even if they are

not Bayesian, they should have preferences over acts on future stage games, specifying

how they trade off a better outcome in one possible future environment against a worse

outcome in another, and they should maximize those preferences. One possible interpreta-

tion of XPE is that it gives players a simple way to coordinate on self-enforcing strategies,

without needing to think about their beliefs (or each other’s). An alternative interpre-

tation is that the players do know the stage game process, but the analyst is uncertain,

and she would like to offer a simple description of strategies that demonstrate that some

amount of non-myopic behavior is supportable, where “simplicity” is operationalized by

requiring that behavior should not depend on the players’ knowledge about the future.

The key analytic technique is to adapt a version of the recursive characterization from

APS to our setting. We characterize the set of values of w such that it is possible to

find two XPE profiles, one “reward” and one “punishment,” such that the reward gives

the long-run player a payoff at least w more than the punishment no matter what stage

games are realized. Thus, instead of recursing on continuation values, we recurse on the

reward-punishment gap.

This leads to our first main result, an explicit characterization of the outcomes that

can be supported in XPE. In the leading case where on-path behavior does not condition

on the public randomization, there is an especially intuitive description of such outcomes:

they are the ones in which, at each period, the “debt” owed to the long-run player for

forgoing short-run gains in past periods never accumulates beyond the maximum sustain-

able reward-punishment gap. A special case of this result applies when only one stage

game is possible, in which case the result characterizes the SPE outcomes of a traditional

repeated game with only one long-run player; this description does not seem to exist in

the literature and may be independently worthwhile.

Although this result is cast as describing the supportable outcomes for a given spec-

ification of uncertainty, we can equivalently view it as characterizing the extent of un-

certainty that is consistent with sustaining a particular outcome. For example, in the

“product-choice game” traditionally used as an example of an interaction between long-

run and short-run players, we can use this to ask: what must the consumers believe

about the firm’s future opportunities in order to be persuaded that the firm has enough

incentives to provide high quality in the present period?

A second result, which falls out of the proof of the first, is the existence of an optimal

penal code that can be used as punishment to support any XPE outcome, as in Abreu

stage games.
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(1988). This optimal penal code gives the long-run player his worst outcome among all

XPE, no matter what stage games are realized. These two results together illustrate how

classic ideas from repeated games successfully carry over to our framework.

Because, as observed above, the XPE solution concept is not based on individual

maximization, one might well ask about its relevance for positive prediction. In particular,

it is clear that any outcome that is supportable in XPE can be achieved no matter what

players believe about the stage game process. But might the same be true for outcomes

that are not supportable in XPE? In fact, if players have standard Bayesian beliefs and

maximize expected utility, there may indeed be outcomes that are not supportable in

XPE, yet are supportable in SPE no matter what these beliefs are. However, if we

broaden the possible preferences to allow for ambiguity aversion, this is no longer the

case: any outcome that is not supportable in XPE is not even supportable in SPE under

some specification of preferences. This is our third result, and it gives a reason why

characterizing the XPE outcomes is relevant even for an analyst who views SPE, rather

than XPE, as the correct description of behavior.

As mentioned above, our recursive analysis relies both on having a single long-run

player and on the availability of public randomization. Dropping either of these assump-

tions would lead the analysis of this paper to break down. Although it is unclear how to

formulate a theorem that no recursive characterization exists, we can show concretely that

the theory fails to carry over by demonstrating that optimal penal codes can fail to exist

when either assumption is dropped. Since the optimal penal code plays a central role in

the proof of the description of supportable outcomes, this suggests that such a description

in general, if one can be given, would have to look quite different. Section 6 provides the

relevant counterexamples, and offers some discussion of why both assumptions are crucial

to the recursive technique. This contrasts with standard repeated games, where either or

both assumptions can be dropped without trouble.

The rest of the paper proceeds linearly: first an illustrative example, then the model,

analysis, results, and discussion. Literature will be discussed as it comes up.

2 Illustration

This extended example demonstrates the central questions and novel features of our set-

ting.

Example 2.1. We begin with a typical specification of the “product-choice” game often
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used to illustrate long-run / short-run player models (e.g. Mailath and Samuelson, 2006,

Section 1.5). Player 1 (the long-run player) is a firm, who can produce low-quality or

high-quality products in each period; in each period, player 2 (the short-run player) is a

buyer who can buy either an expensive or a cheap product, without seeing the quality in

advance. The products are priced at 6 and 0 respectively; an expensive product is worth

8 to the buyer if high quality and 0 if low, while a cheap one is always worth 0. For the

firm, producing high quality costs 2 while low quality is costless. This gives rise to the

net payoffs shown in the matrix G at the left side of Figure 1. In the repeated game, this

stage game is played each period, past actions are observed, and the firm maximizes the

δ-discounted sum of stage payoffs.

G :

e c
h 4, 2 −2, 0
l 6,−6 0, 0

G′ :

e d c
h 4, 2 1, 1 −2, 0
l 6,−2 3, 1 0, 0
s 4,−6 1,−3 −2, 0

G′′ :

e d c
h 5, 2 3, 4

3
−1, 0

l 6,−2
3

4, 4
3

0, 0
s 3,−6 1,−4 −3, 0

Figure 1: Variants of the product-choice game.

Given the pure-strategy restriction and the fact that the short-run players must be

best-responding, only he or lc can ever be played in equilibrium. The unique stage Nash

equilibrium is lc, but if δ ≥ 1/3, the “cooperative” outcome he can be sustained in

equilibrium by the threat of reversion to lc if player 1 ever deviates.

As is well-known, however, more complex punishments can often support cooperation

more effectively than Nash reversion, and the middle game G′ in the figure illustrates this.

For a story behind this game, imagine that each buyer may be either a “discerning” type

who values the products as before, or an “undiscerning” type who values the expensive

good at 8 regardless of its quality. The firm does not know the buyer’s type; each type

has probability 1/2. In addition, we give the firm an extra “sabotage” action which is also

costly (it costs 2) but makes both products worth 0 to both buyer types. The firm now has

three actions: (h)igh quality, (l)ow, or (s)abotage; and the buyer has three: (e)xpensive,

(d)ifferentiate (i.e. buy expensive iff the undiscerning type), and (c)heap. The payoffs are

as shown.

Three action profiles satisfy the buyer’s best-response constraint, namely he, ld, sc.

The unique stage Nash is ld. The cooperative outcome he can be sustained by the threat

of reversion to stage Nash only for δ ≥ 2/3: otherwise, the firm’s short-run gain of 2

by deviating to l is too tempting relative to the loss of 1 in future periods. However,
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as long as δ ≥ 1/3, the cooperative outcome can be supported by the “carrot-and-stick”

punishment wherein, if the firm ever deviates, then sc is played for one period, followed

by a return to he in subsequent periods. If the firm deviates when sc is supposed to be

played, then we again specify punishing with sc for one period (and then returning to

he), and so forth. This works because, both in the cooperation and in the punishment

phases, the short-run gain of 2 from deviating is outweighted by the loss of 6 next period

(resulting from playing sc instead of he). Note also that if δ < 1/3, then cooperation can

never be sustained. Indeed, the firm can always guarantee itself at least 0 by playing l in

every period. Since the equilibrium payoff can never be above 4 (due to the buyer’s best-

response constraint), the punishment for a deviation cannot exceed 4 in all subsequent

periods. When δ < 1/3, a short-run gain of 2 cannot be deterred by such a punishment,

and so the only equilibrium outcome is the stage Nash ld forever.

The right game G′′ is similar, but with a few changes: high quality now costs 1 rather

than 2; sabotage costs 3; and the undiscerning type now arrives with probability 2/3.

Suppose this game is played each period. Again, he, ld or sc must be played. Here, the

carrot-and-stick strategies support the he outcome for δ ≥ 3/8. For δ < 3/8, only stage

Nash is possible: First note that since the long-run player can never get more than 5,

and can be assured at least 0 by playing l, no possible future punishment can offset a

short-run deviation gain of 3. Hence, sc can never arise in equilibrium, as the incentive

to deviate to l is too strong. So the only profile available as punishment is the stage Nash

ld, but this is insufficient to deter deviations from he when δ < 1/2.

Thus, in repeated game G′, the cooperative outcome is supportable iff δ ≥ 1/3, and

in G′′ it is supportable iff δ ≥ 3/8.

Now we turn to the focus of this paper: suppose that each period, G′ or G′′ is to be

played, but it is not known in advance which one. One of the two games arrives, the

players observe it and then make their moves.

Note that the carrot-and-stick strategies now support he as long as δ ≥ 1/2. Indeed,

in either game and in either phase (cooperation or punishment), the short-run gain from

deviating is at most 3, whereas the loss the following period from playing sc instead of

he will be at least 6, which outweighs the gain. Thus, we can conclude confidently that

these strategies form an equilibrium, even though we cannot compute the payoffs without

knowing the realized sequence of games. Conversely, for δ < 1/2, these strategies are

not assured to work: If, when time for punishment comes, the players find themselves in

G′′ but expect to be in G′ the following period, then the firm’s short-run gain of 3 from

deviating from sc outweighs the loss of 6 next period. Consequently, in the cooperative
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phase, the firm cannot be trusted to play h when it should, since it may not be possible

to sustain punishment the next period.

In fact, if δ < 3/7, only stage Nash is sustainable without knowing the stage games in

advance. To see this, suppose G′′ is to be played today but the firm anticipates G′ in all

future periods. The maximum punishment inflictable in each future period is 4 (since the

firm will get at most 4 on-path, and can assure itself at least 0 by playing l); hence, for

δ < 3/7, sc cannot be played today, since deviation cannot be adequately punished. This

means that there is no way to get sc to be played when G′′ arrives. Then, he can never be

sustained in either game (nor, for that matter, sc in G′) because the buyer worries that

the firm may expect G′′ in all future periods, so that the largest possible punishment is

a loss of 1 in future periods (from he to ld), not enough to deter the short-run deviation.

Notice, in particular, that for δ ∈ [3/8, 3/7), the good outcome he can never arise in

equilibrium of this game with uncertainty, even though it was supportable both in the

repeated game with G′ played every period and with G′′ played every period.

Finally, what about δ ∈ [3/7, 1/2)? It turns out that he can be supported in equi-

librium (both when G′ arrives and when G′′ arrives), even though the carrot-and-stick

punishments no longer do the trick. As we shall see later, it can be supported with more

complex punishments that randomize the timing of the return to the cooperative phase

(thus using the public randomization) in order to make the overall punishment more

severe, and therefore better able to discourage the most tempting deviations (namely,

deviations from sc in G′′).

4

In the following sections, we study the general version of the questions we have explored

here: Given a set of stage games that may arrive, and a discount factor, how can the

analyst figure out what outcomes are supportable in equilibrium (and how they can be

supported)?

3 Model

We proceed by first developing the model in terms of a standard repeated-game setup.

The notation will largely follow Mailath and Samuelson (2006), suitably adapted for our

framework of uncertainty. We then introduce some adaptations to notation that will be

a bit more convenient for our focus on a single player’s long-run incentives.
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3.1 Standard formulation

There are n ≥ 2 players. Player 1 is a long-run player, with a discount factor δ ∈ (0, 1),

and the others are short-run players. As usual, we can be agnostic as to whether player

i > 1 in period t is physically the same person (or persons) as player i in period t′, but

it is notationally simpler to use the same label i for both. There is a nonempty set G of

possible stage games. In any stage game G ∈ G, we denote the set of actions available

to player i as Ai(G). We assume that actions are labeled so that Ai(G) and Ai(G
′) are

disjoint for G 6= G′; this makes the definitions up front slightly cumbersome but will

simplify notation later. Write A(G) = ×ni=1Ai(G). Also, write Ai = ∪G∈G Ai(G) for the

set of all actions that i can ever play, and likewise A = ∪GA(G). Then, player i’s stage

payoff function is simply written ui : A → R. We assume a uniform bound M on the

possible stage payoffs: |ui(a)| ≤ M for all i, a. All these objects are exogenously given

primitives. We assume that each Ai(G) is a compact metric space, and that ui(a) is

continuous on A(G) for each G. (Finite action sets are a special case.) We equip Ai and

A with their disjoint union topologies.

In the repeated game, in each period t = 0, 1, 2, . . ., the players observe the realized

stage game Gt ∈ G, as well as the public randomization signal ωt ∼ U [0, 1], and then

they simultaneously choose actions. Thus, a history at time t consists of the stage games,

public random signals, and actions at past dates, together with the stage game and random

signal at the present date. So the set of time-t histories is

H t = (∪G∈G ({G} × [0, 1]× A(G)))t × (G × [0, 1])

with representative element

ht = (G0, ω0, a0; G1, ω1, a1; . . . ; Gt−1, ωt−1, at−1; Gt, ωt).

We focus on pure strategies; thus, a strategy for player i is a measurable function si :

∪∞t=0H
t → Ai, such that si(h

t) ∈ Ai(Gt) whenever the history ht ends in Gt. A strategy

profile takes the form s = (s1, . . . , sn), or can be equivalently written s : ∪tH t → A, with

the corresponding restriction s(ht) ∈ A(Gt). It will sometimes be useful to abbreviate a

finite history of random signals (ω0, . . . , ωt) by ω0,...,t, and to write Et[· · · ] for the time-t

expectation operator (i.e. the expectation conditional on signals ω0,...,t).

We refer to a realization of the sequence of stage games as an environment, E =

(G0, G1, . . .). A history ht is consistent with the environment E if the stage games ap-
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pearing at all periods 0, 1, . . . , t in ht are the same as those specified in E. Given a

strategy profile s, an environment E, and a history ht = (G0, ω0, a0; . . . ;Gt, ωt) that

is consistent with E, we define subgame payoffs as follows. For any realization path

(ωt+1, ωt+2, . . .) for the subsequent random signals, we can recursively define the action

profiles at
′
= s(G0, ω0, a0; . . . ;Gt′ , ωt

′
) for each t′ ≥ t. Then, player 1’s subgame payoff at

ht is the (normalized) discounted sum of stage payoffs

U1(s|E, ht) = (1− δ)E

[
∞∑
t′=t

δt
′−tu1(at

′
)

]
,

where the expectation is over the (future) public randomization. Player i’s payoff, for

each i > 1, is simply

Ui(s|E, ht) = ui(a
t).

Given environment E, strategy profile s is a subgame-perfect equilibrium (SPE) for E

if, for each player i, each history ht consistent with E, and each alternative strategy s′i,

Ui(s|E, ht) ≥ Ui(s
′
i, s−i|E, ht). (3.1)

The usual arguments for the one-shot deviation principle apply: it suffices to have (3.1)

hold for all ht consistent with E and all s′i that differ from si only at the history ht.

We can also define player 1’s continuation payoff in environment E, following a history

ht consistent with E and an action profile at, as

U1(s|E, ht, at) = (1− δ)E

[
∞∑

t′=t+1

δt
′−(t+1)u1(at

′
)

]
,

where, again, the expectation is over the public random signals (ωt+1, ωt+2, . . .), and

the future actions are determined by beginning from ht followed by at and then playing

according to s. This quantity is not part of the definition of SPE, but it is relevant to

player 1’s incentives to deviate: (3.1) is satisfied for one-shot deviations by player 1 at ht

if and only if

(1− δ)u1(s(ht)) + δU1(s|E, ht, s(ht)) ≥ (1− δ)u1(a′1, s−1(ht)) + δU1(s|E, ht, (a′1, s−1(ht)))
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for all deviations a′1. Similarly, we can define

U1(s|E) = (1− δ)E

[
∞∑
t=0

δtu1(at)

]
,

the expected payoff from the beginning of the game in environment E.

Strategy profile s is an ex-post perfect equilibrium (XPE) if it is an SPE for every

environment.2 Later, we will indicate sufficient conditions on primitives to ensure that an

XPE exists.

3.2 More convenient notation

We can apply a standard simplification for games with short-run players (e.g. Fudenberg,

Kreps and Maskin, 1990): For each G ∈ G, let A∗(G) be the set of action profiles at which

no short-run player wishes to deviate,

A∗(G) = {a ∈ A(G) | ui(a) ≥ ui(a
′
i, a−i) for all i > 1, a′i ∈ Ai(G)}.

Evidently, the constraints (3.1) for the short-run players are satisfied iff s(ht) ∈ A∗(Gt)

for all histories ht (consistent with the environment E).

With this in mind, we can now dispense with explicit consideration of the short-run

players’ incentives, focusing only on the long-run player. We accordingly drop the player

subscript for payoffs: henceforth, we write u and U rather than u1 and U1 unless there is

ambiguity.

We can summarize the above as

Lemma 3.1. Strategy profile s is an XPE if and only if both the following conditions

hold:

1. for every history ht, with stage game Gt arising at time t, we have s(ht) ∈ A∗(Gt);

2. for every environment E, every history ht consistent with E, and every possible

deviation s′1 by player 1 that differs from s1 only at history s′1, we have U(s|E, ht) ≥
U(s′1, s−1|E, ht).

2The terminology is inspired by that of Fudenberg and Yamamoto (2010), who study a repeated game
in which the stage game is fixed over time but unknown; their equilibrium concept requires subgame-
perfection for each such game. Some literature has used the name “belief-free equilibrium” for related
concepts, e.g. Ely, Hörner and Olszewski (2005); Hörner and Lovo (2009).
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Notice that the set of XPE has a recursive structure: s is an XPE if it meets conditions

(1)–(2) at every period-0 history and each continuation strategy profile starting from date

1 is an XPE.

In addition, when a ∈ A(G), let us write û(a) = maxa′1∈A1(G) u(a′1, a−1) for the stage

payoff that would result from the myopically optimal deviation from a. (Here and hence-

forth, we take “myopically optimal deviation” to mean “conforming” when 1’s action is

already a best reply in the stage game.) Clearly û(a) ≥ u(a), and û is again continuous on

A(G). Although it makes no difference formally, a conceptual reframing may be helpful:

rather than think of action profiles as consisting specifically of an action by each player,

and contemplating explicit deviations by player 1, we may think of action profiles (that

may arise in equilibrium) in a stage game G simply as abstract objects belonging to a set

A∗(G), and focus on û(a) as the quantity relevant to player 1’s incentive to deviate.

Finally, if E = (G0, G1, G2, . . .), it will be useful to write E−t = (Gt, Gt+1, . . .), the

continuation environment starting in period t, and to further abbreviate E−1 as simply

E−.

4 Analysis

4.1 Recursive technique

Player 1 can be dissuaded from a deviation that earns a short-term gain of g only if doing

so reduces the continuation payoff by at least 1−δ
δ
g in every possible environment. This

suggests trying to find the largest “gap” w ≥ 0 such that there exist two XPE’s, say s

and s, such that U(s|E) − U(s|E) ≥ w for every environment E; doing so then lets us

rule out some action profiles because deviation cannot be prevented.

We adapt the recursive machinery from APS to describe the set of such values w.

Their B operator for n-player games maps subsets of Rn to subsets of Rn. Here, we

are concerned only with one long-run player, so the recursion is done on subsets of R.

Moreover, public randomization makes our set convex, hence an interval, and its lower

bound is zero. So we only need to keep track of the upper bound, i.e. a single number.

With this in mind, we first define, for any w ≥ 0 and G ∈ G,

A∗(G,w) =

{
a ∈ A∗(G) | û(a)− u(a) ≤ δ

1− δ
w

}
.
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Now define

B(w;G) = (1− δ)
(

max
a∈A∗(G,w)

u(a)− min
a′∈A∗(G,w)

û(a′)

)
+ δw. (4.1)

(If A∗(G,w) is empty, then take B(w;G) = −∞. Note that as long as A∗(G,w) is

nonempty, it is closed, and the max and min exist by continuity.)

Intuitively, this B(w;G) represents the largest possible gap in 1’s payoff between two

different strategy profiles, given that G is played at date 0, the date-0 incentive constraints

must be satisfied, and all continuation payoffs starting from date 1 must lie within an in-

terval of width w. Indeed, these last two requirements together imply that both profiles

must specify an action in A∗(G,w) at date 0. Moreover, the payoff from following the

“bad” strategy profile cannot be less than the payoff from a date-0 deviation; thus the

payoff gap between the good and bad strategy profiles is at most the gap between con-

forming to the good profile and deviating from the bad profile. Decomposing this gap

into its period-0 component and its continuation component produces the two terms on

the right side of (4.1).

The above argument sketches why the expression in (4.1) is an upper bound on the

payoff gap between two strategy profiles, and suggests how to attain it: Normalizing the

interval of allowable continuation payoffs to [0, w], specify that the “good” profile begins

with the a attaining the max in (4.1) and promises a continuation payoff of w if 1 conforms;

the “bad” profile begins with the a′ attaining the min and promises a continuation payoff

of 0 if 1 deviates. To ensure the correct gap in the on-path payoffs, the continuation

payoff after conforming in the “bad” profile should be set so that 1 is indifferent between

initially conforming and deviating. This can indeed be done (the fact that a′ ∈ A∗(G,w)

ensures that this continuation is at most w). Note that public randomization is essential

for this, as it ensures that the set of allowable continuation payoffs is an interval. We will

revisit this point in Section 6.

Now define

B(w) = inf
G∈G

B(w;G).

This is the maximum payoff gap that can be guaranteed regardless of what stage game

arrives in the initial period, given that continuation payoffs lie in an interval of width w.

Notice that B(w;G) is strictly increasing in w at a rate of at least δ (the first term

of (4.1) is weakly increasing because A∗(G,w) is increasing in w, and the second term is

clearly increasing at rate δ). Therefore, B(w) is as well.
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We now adopt an assumption that will be maintained for the rest of the paper:

Assumption 4.1. There exists w ≥ 0 such that B(w) ≥ w.

As we shall see, this assumption will imply that an XPE exists (and in fact, the

converse is also true).

As an aside, either of the following sufficient conditions on primitives implies that

Assumption 4.1 is satisfied:

1. For every G ∈ G, there exists a ∈ A∗(G) such that û(a) = u(a) (i.e. a stage Nash

equilibrium).

(This ensures the assumption holds with w = 0.)

2. There exists ε > 0 such that, for every G ∈ G, there exist a, a′ ∈ A∗(G) with

u(a) ≥ û(a′) + ε, and δ ≥ 2M
2M+ε

.

(In this case, A∗(G, ε) = A∗(G) for all G, and then B(ε;G) ≥ ε for all G, so we can

take w = ε.)

However, rather than adopt either of these, we will just make Assumption 4.1 directly.

Let w∗ be the largest value such that B(w) ≥ w. It is straightforward that this

maximum indeed exists, and that in fact B(w∗) = w∗.

This w∗ is the limiting value of a recursion. To show this, we need a continuity

argument (our analogue to Theorem 5 of APS):

Lemma 4.2. The functions B(w;G) and B(w) are right-continuous in w.

(The proof of this result, and all others not given in the text, are in Appendix A.)

With this property, one can readily show that starting with a value of w large enough

to be an upper bound for w∗, for example any w0 > 2M (note that indeed w > 2M

implies B(w;G) < w for each G), and then iterating B gives a decreasing sequence that

converges to w∗. However, for technical reasons, it will be useful to take a slightly different

sequence, one in which wk+1 is strictly above B(wk). Specifically:

Lemma 4.3. Define a sequence as follows: w0 > 2M , w1 ∈ (B(w0), w0), and for k =

2, 3, . . ., put wk = (B(wk−1) +B(wk−2))/2. Then:

1. w0 > w1 > w2 > · · · ;

2. wk > B(wk−1) for k ≥ 1;

14



3. wk → w∗.

We can now show that there is no way to guarantee a payoff gap between two different

XPE’s of more than w∗. In fact, a stronger statement is true: For any ε > 0, we can find

an “adversarial” environment such that, in this environment, even if any SPE is allowed,

the largest and smallest attainable payoffs differ by less than w∗ + ε.

Lemma 4.4. Given any ε > 0, there exists a finite T and a sequence of stage games

G0, G1, . . . , GT ∈ G with the following property: For any environment E that begins with

stage games G0, . . . , GT , and any two SPE’s s and s for this environment,

U(s|E)− U(s|E) < w∗ + ε.

The proof uses the sequence from Lemma 4.3. We show by induction that there is an

adversarial environment that prevents the payoff gap from exceeding wk. In particular,

since wk > B(wk−1), we can choose a stage game G such that B(wk−1;G) < wk. Then,

if G is played in the initial period, and subsequent periods feature the sequence of stage

games that prevents a gap of more than wk−1 (which exists by the induction hypothesis),

then the total payoff gap cannot exceed wk.

Proof of Lemma 4.4. For each k = 1, 2, . . ., let Gk ∈ G be such that B(wk−1;Gk) < wk;

this exists by Lemma 4.3 part 2. We will show that in any environment that begins with

the stage games Gk, Gk−1, . . . , G1 (in that order), the payoffs from any two SPE’s differ by

less than wk. Since wk → w∗, the lemma then follows, by taking k large enough relative

to ε.

We prove the statement by induction on k. The base case k = 0 is trivial, since

in any environment at all, the payoffs of any two action profiles within a stage differ

by at most 2M < w0, and therefore the same is true for the payoffs of any two SPE’s.

Now suppose the statement holds for k − 1. Consider an environment E beginning with

Gk, Gk−1, . . . , G1.

Let s be any SPE. Let a0 be the action profile played at some date-0 history h0 =

(Gk, ω
0), and a′1 be player 1’s myopically optimal deviation; the incentive constraint reads

(1− δ)u(a0) + δU(s|E, h0, a0) ≥ (1− δ)u(a′1, a
0
−1) + δU(s|E, h0, (a′1, a

0
−1))

or, rearranging,

(1− δ)(u(a′1, a
0
−1)− u(a0)) ≤ δ(U(s|E, h0, a0)− U(s|E, h0, (a′1, a

0
−1))).
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The left side is (1 − δ)(û(a0) − u(a0)), while the right side is δ times the difference of

two SPE payoffs in the continuation environment E−, and so is less than δwk−1 by the

induction hypothesis. Hence, a0 must lie in A∗(Gk, wk−1). That is, only action profiles in

A∗(Gk, wk−1) can be played at date 0 in SPE.

Now let s, s be two different SPE’s. The payoff from s is

E[(1− δ)u(a0) + δU(s|E,Gk, ω
0, a0)]

(where the expectation is over the random signal ω0 and resulting action profile a0)

≤ (1− δ) max
a∈A∗(Gk,wk−1)

u(a) + δ sup
s′ is SPE for E−

U(s′|E−).

Likewise, the payoff from s is at least the payoff from deviating to the myopically action

a′1 in date 0, which is

E[(1− δ)û(a0) + δU(s|E,Gk, ω
0, (a′1, a

0
−1))]

(note that a0 is now determined by s instead of s)

≥ (1− δ) min
a∈A∗(Gk,wk−1)

û(a) + δ inf
s′ is SPE for E−

U(s′|E−).

Subtracting, and using the fact that two different SPE payoffs in environment E− differ

by at most wk−1 by induction, gives us exactly

U(s|E)− U(s|E) ≤ B(wk−1, Gk).

Since this is less than wk, the desired statement follows.

This result partially justifies an understanding of w∗ as the largest reward-punishment

gap that can be sustained in XPE. We say “partially” because it shows that a higher gap

cannot be sustained, but it does not show that w∗ is attainable; this will follow from

Section 4.3.

As a consequence of the preceding analysis, we can return to make good on the promise

at the beginning of this section, to rule out some actions where deviation is too tempting:

Lemma 4.5. In any XPE, at any history ht ending in a current stage game Gt, the action
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profile played must be in A∗(Gt, w∗).

Proof. It suffices to prove this for date-0 histories. Consider any initial stage game G

and any ε > 0. Consider any environment E that begins with G followed by the finite

sequence of stage games given by Lemma 4.4. For any SPE s for this environment, any

action profile a0 played at date 0 must satisfy

(1− δ)(û(a0)− u(a0)) ≤ δ(w∗ + ε),

by the same logic used in the proof of Lemma 4.4 (and the fact that continuation payoffs

of two different SPE’s from period 1 onward differ by at most w∗ + ε).

Therefore, if s is an XPE, then at any date-0 history with any stage game G0, the

action profile to be played must satisfy û(a0) − u(a0) ≤ δ
1−δ (w

∗ + ε). Since ε > 0 is

arbitrary, the right side can be replaced by δ
1−δw

∗, giving the desired result.

As a side observation, there may be nontrivial interactions between the different stage

games in G in determining the value of w∗. That is: Suppose that for each G ∈ G, we define

w∗(G) as the highest fixed point of w 7→ B(w;G). Then, w∗ may be bounded strictly

below all of the w∗(G). This also implies that the adversarial environments constructed

in Lemma 4.4 may need to have the stage game vary from one period to the next.

In fact, we effectively saw this in the opening Example 2.1, with the two stage games

G′ and G′′. Suppose that δ = 2/5, which is in the parameter region where the cooperative

outcome was sustainable in either game individually, but not with both games available.

It is straightforward to check that the B(·; ·) functions are given by

B(w;G′) =

{
2
5
w if w < 3,

12
5

+ 2
5
w if w ≥ 3

and

B(w;G′′) =


2
5
w if w < 3

2
,

3
5

+ 2
5
w if 3

2
≤ w < 9

2
,

3 + 2
5
w if w ≥ 9

2
.

These are plotted as the solid and dashed lines, respectively, in Figure 2 (the two functions

coincide for w < 3/2 but are shown spaced apart for visibility). The highest fixed points

of the two functions are w∗(G′) = 4 and w∗(G′′) = 5, as shown in the figure by the

intersections of the solid and dashed lines (respectively) with the 45◦ diagonal. However,
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3/2 3 w9/2

B(w;G')

B(w;G'')

Figure 2: An example where the sustainable reward-punishment gap w∗ is lower than
the gap sustained by any individual stage game.

w∗ is the largest value for which the lower of the two functions meets the diagonal, and

this happens only at w∗ = 0.

4.2 Quasi-minmax payoffs

Lemma 4.5 leads to bounds on the payoffs that can arise in any XPE. In particular, for

each stage game G, let us pick “most effective reward” and “most effective punishment”

action profiles

a(G) ∈ argmax
a∈A∗(G,w∗)

u(a); a(G) ∈ argmin
a∈A∗(G,w∗)

û(a).

(As before, these exist, by compactness, and by the fact that B(w∗) 6= −∞ implying

A∗(G,w∗) is nonempty.)

The latter give a lower bound on payoffs in XPE. For any environment E = (G0, G1, . . .),

define

U(E) = (1− δ)
∞∑
t=0

δtû(a(Gt)).
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Lemma 4.6. If s is an XPE, then for any environment E,

U(s|E) ≥ U(E).

Proof. Fix the environment E. Suppose that players 2, . . . , n follow the strategy s,

whereas 1 simply plays the myopically optimal deviation at each history. By Lemma 4.5,

at each period t, regardless of the past history, s specifies playing an action in A∗(Gt, w∗).

Therefore, by myopically deviating, player 1 gets a payoff of at least û(a(Gt)) in this

period. Summing across all periods shows that 1’s payoff from the repeated deviation is

at least U(E). Hence, the payoff from conforming to s is at least this much.

We can think of û(a(G)) as a “quasi-minmax” payoff for player 1 when the stage game

is G, providing a straightforward lower bound on 1’s equilibrium payoffs. Although it

involves a minimum over action profiles of 1’s myopic best-reply payoff, it differs from the

usual minmax in two ways. First, the min is taken only over a restricted set of action

profiles, those in A∗(G,w∗). This is natural; because we are not in a folk theorem setting

but are considering a fixed δ, some action profiles are ruled out as unsustainable. And

second, the action profile that actually produces the stage payoff of û(a(G)) typically

cannot be played in equilibrium, as it does not satisfy the incentive constraints of the

short-run players. This is again familiar from the literature on repeated games with

short-run players, such as Fudenberg, Kreps and Maskin (1990) (though they nonetheless

use the term “minmax value” for the analogous quantity).

Now that we have a lower bound on XPE payoffs, our next step is to develop an XPE

strategy profile whose payoffs exceed this bound by a controlled amount.

4.3 Automaton strategies

We present the strategy profile in the form of an automaton, as in (Mailath and Samuelson,

2006, Section 2.3).3 The automaton enters each period t in some state. After the stage

game Gt and public random signal ωt are realized, the automaton specifies the action

profile at to be played, and then the automaton transitions to a new state for period t+ 1

depending on the actions observed. In fact, since dynamic incentives are irrelevant for

3Section 5.7 of Mailath and Samuelson (2006) develops automata for dynamic games. The formalism
used there is in some sense closer to our setting, since actions and transitions depend on the current game
state, which is analogous to our stage game Gt. However, in their setup, automaton state transitions
happen after the game state in period t is realized and before actions at time t are chosen, whereas for
our purposes it is more convenient to have state transitions between periods.
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players 2, . . . , n, we can focus on state transitions that depend only on 1’s action.

More specifically, we consider an automaton whose state space is the interval W =

[0, w∗]. The state w ∈ W is to be interpreted as a promise that the payoff will exceed

the lower bound U(E) by exactly w. The main elements to be specified are the action

(output) function f : W × G × [0, 1] → A (which, of course, must output an action

profile in A(G) when the input involves stage game G) and the state transition function

τ : ∪G∈G (W × {G} × [0, 1]× A(G))→ W . These objects, together with a choice of initial

state w ∈ W , determine a strategy profile in the natural way.

For any G ∈ G, define

λ(G) =
1

(1− δ)(u(a(G))− û(a(G))) + δw∗
.

The denominator equals B(w∗;G) ≥ B(w∗) = w∗, so for any w ∈ W , we have λ(G)w ∈
[0, 1]. (The denominator of λ(G) may be zero, but only if w∗ = 0, in which case w = 0.

In this case, interpret λ(G)w as 0 throughout the following.)

Now, for any w,G, ω, a:

• If ω ≤ λ(G)w: Put f(w,G, ω) = a(G), and

τ(w,G, ω, a) =

{
w∗ if a1 = a1(G),

w∗ − 1−δ
δ

(û(a(G))− u(a(G))) otherwise;

• If ω > λ(G)w: Put f(w,G, ω) = a(G), and

τ(w,G, ω, a) =

{
1−δ
δ

(û(a(G))− u(a(G))) if a1 = a1(G),

0 otherwise.

In words, we use public randomization to play a(G) with probability λ(G)w ∈ [0, 1] and

play a(G) with complementary probability, and then transition to a new state depending

on which of the two action profiles was to be played and on whether player 1 deviated. We

need to check that all the possible values specified for τ are indeed valid states (i.e. they

lie in the interval [0, w∗]); this follows from the fact that a(G) and a(G) are in A∗(G,w∗).

Starting in any state w ∈ [0, w∗] and proceeding according to the automaton defines

a strategy profile. Denote this strategy profile by s[w]. The following is a key step in our

analysis.

Proposition 4.7. Pick any w ∈ [0, w∗], and let E be any environment. Then:
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1. For each w, U(s[w]|E) = U(E) + w.

2. If the short-run players are following s[w], then at any history ht, player 1 is indiffer-

ent between following s[w] and playing the myopically optimal (one-shot) deviation.

3. Strategy profile s[w] is an XPE.

Proof. 1: Suppose G = G0 is the first stage game encountered in E. By directly consid-

ering the possible cases depending on public randomization, and splitting each case into

the initial stage and the continuation payoff, we have

U(s[w]|E) = λ(G)w ×
(
(1− δ)u(a(G)) + δU(s[w∗]|E−)

)
+ (4.2)

(1− λ(G)w)×
(

(1− δ)u(a(G)) + δU

(
s

[
1− δ
δ

(û(a(G))− u(a(G)))

]∣∣∣∣E−)) .
In contrast, write Ũ(w|E) = U(E) + w. We will show that Ũ satisfies the same

recurrence:

Ũ(w|E) = λ(G)w ×
(

(1− δ)u(a(G)) + δŨ(w∗|E−)
)

+ (4.3)

(1− λ(G)w)×
(

(1− δ)u(a(G)) + δŨ

(
1− δ
δ

(û(a(G))− u(a(G)))

∣∣∣∣E−)) .
To see this, expand both the Ũ terms on the right-hand side of (4.3) and obtain (after

slightly simplifying the second line)

λ(G)w ×
(
(1− δ)u(a(G)) + δU(E−) + δw∗

)
+

(1− λ(G)w)×
(
(1− δ)û(a(G)) + δU(E−)

)
.

Now by combining the terms with the λ(G)w coefficient, this rearranges to

((1− δ)û(a(G)) + δU(E−)) + λ(G)w × ((1− δ)(u(a(G))− û(a(G))) + δw∗).

But the first parenthesized term is simply U(E) from the definition, and the second term

is λ(G)w/λ(G) = w, so the whole expression reduces to U(E) +w = Ũ(w|E) as claimed.

Now a standard contraction argument shows that the solution to the recurrence is

unique: Write ∆(w|E) = U(s[w]|E)− Ũ(w|E). Subtracting (4.3) from (4.2) gives

∆(w|E) = λ(G)w × δ∆(w∗|E−) + (1− λ(G)w)× δ∆
(

1− δ
δ

(û(a(G))− u(a(G)))

∣∣∣∣E−) .
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Put C = supw,E |∆(w|E)|, and note the supremum is finite since both U and Ũ are

bounded. Using C to bound each of the ∆(· · · ) terms in the previous equation gives

|∆(w|E)| ≤ λ(G)w × δC + (1− λ(G)w)× δC = δC.

Thus, for all w and E, we have |∆(w|E)| ≤ δC. In other words, C ≤ δC, which forces

C = 0. Therefore, U(s[w]|E) = Ũ(w|E) for all w and E, which completes the proof of

part 1.

2: It suffices to prove the statement at period-0 histories. So suppose the date-0

history is h0 = (G0, ω0). Assume that the automaton specifies an action profile a0 for

which 1’s action is not already a myopic best reply (otherwise there is nothing to prove).

There are two cases:

• If ω0 ≤ λ(G0)w, then the action profile to be played is a(G0). If player 1 conforms,

the state next period is w∗, so the continuation payoff will be U(E−) + w∗ by part

1, and therefore the total payoff is

(1− δ)u(a(G0)) + δ
(
U(E−) + w∗

)
.

If player 1 deviates (optimally) then the stage payoff is û(a(G0)) and the state next

period is w∗− 1−δ
δ

(û(a(G0))− u(a(G0))), so by a similar calculation, the total payoff

is

(1− δ)û(a(G0)) + δ

(
U(E−) + w∗ − 1− δ

δ

(
û(a(G0))− u(a(G0))

))
= (1− δ)u(a(G0)) + δ

(
U(E−) + w∗

)
.

• If ω0 > λ(G0)w, then the action profile to be played is a(G0). Similar calculations

show that the total payoff if player 1 conforms is

(1− δ)u(a(G0)) + δ

(
U(E−) +

1− δ
δ

(
û(a(G0))− u(a(G0))

))
= (1− δ)û(a(G0)) + δU(E−)

and if player 1 deviates is

(1− δ)û(a(G0)) + δU(E−).
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So in each case, the payoffs from conforming and deviating are equal.

3: We have just shown that in every environment and at every history, player 1 is

indifferent to the myopically optimal one-shot deviation. Playing a non-optimal deviation

cannot do better, since it leads to the same next-period state (and so the same continuation

payoff) as the optimal deviation while giving a lower stage payoff. (Note that if the action

profile a specified is such that 1’s action is already a best reply, then û(a) = u(a), so by

inspection of the formulas, the next-period state after a deviation is the same as after

conforming, and the same argument applies.) So, player 1 cannot benefit from a one-shot

deviation of any sort, and 1’s incentive constraint is satisfied.

The other players’ incentives are also satisfied, since whenever a stage game G is to

be played, the automaton specifies an action profile in A∗(G,w∗) ⊆ A∗(G). So we have

an XPE.

With this result, we are now justified in thinking of w∗ as the largest sustainable

reward-punishment gap (as mentioned in Section 4.1), since we do indeed have two

XPE’s—namely, s[w∗] and s[0]—whose payoffs differ by w∗ in every environment.

5 Main results

With this machinery in hand, we are ready to take up our main question of interest: what

outcomes might arise in equilibrium?

5.1 Defining outcomes

A first question is how outcomes should be defined, in this setting without a prior over

environments. One option is to take the perspective that there exists a “true” (but initially

unknown) environment; the outcome should then consist of this realized environment,

together with the action profiles played in each period. Of course, the latter may be

random, depending on the public signals. Accordingly, we define a realizable outcome

as a pair (E, z), where E = (G0, G1, . . .) is an environment, and z : ∪∞t=0[0, 1]t+1 → A,

specifying an action profile z(ω0,...,t) ∈ A(Gt) for each date and history of public signals.4

4Alternatively, we could simply define a realizable outcome as consisting of an environment and a joint
distribution over (a0, a1, . . .). This description would contain less information, since it does not specify
which periods’ public random signals are involved in determining at for any given t. (For example,
suppose the at are independent. We could have each at determined by ωt, thus unpredictable until time
t; or could have all of (a0, a1, . . .) determined by the date-0 signal ω0; or anywhere in between.)
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In the special case where the time-t action is independent of the random signals for each

t, we call the outcome deterministic; such an outcome can simply be described by a single

stage game Gt and action profile at ∈ A(Gt) in each period. The reader may find it

useful to focus on deterministic outcomes for concreteness, but we will state results for

the general case since they are not much more involved.

An alternative perspective is to view an outcome as a full description of the actions

that may be played “on-path,” for whatever environment may be realized. Accordingly,

define a full outcome to be a function z : ∪∞t=0 (G × [0, 1])t+1 → A, specifying an action

profile z(G0, ω0, . . . , Gt, ωt) ∈ A(Gt) for each possible initial sequence of stage games and

public signals. We again say that such an outcome is deterministic if actions are always

independent of the signals. A realizable outcome (E, z′), where E = (G0, G1, . . .), belongs

to the full outcome z if z(G0, ω0, . . . , Gt, ωt) = z′(ω0,...,t) for all t and ω0,...,t.

We will mostly focus on realizable outcomes for expository simplicity. Section 5.5 will

state the corresponding results for full outcomes.

Let us say that a strategy profile s supports the realizable outcome given by (E, z) if,

for all t and ω0,...,t, if we define at
′
= z(ω0,...,t′) for each t′ ≤ t then s satisfies

s(G0, ω0, a0;G1, ω1, a1; . . . , Gt, ωt) = at.

Thus, in the environment E, actions on-path are chosen as specified by z. We similarly

say that s supports a full outcome z if it supports every realizable outcome that belongs

to z.

Note that even if the outcome itself is deterministic, randomization off-path may be

needed to support it in equilibrium.

5.2 Supportable outcomes

It is not hard to see that the following are necessary conditions for a realizable outcome

(G0, G1, . . . ; z) to be supported by an XPE s:

z(ω0,...,t) ∈ A∗(Gt, w∗) for all t and ω0,...,t; (5.1)

(
û(at)− u(at)

)
+

t∑
t=t+1

δt−t
(
û(a(Gt))− Et[u(at)]

)
≤ δt+1−t

1− δ
w∗ (5.2)

for all t < t and ω0,...,t,
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where at = z(ω0,...,t), and likewise at for t > t.

(Note that an equivalent formulation is simply that at ∈ A∗(Gt) for all t and (5.2)

holds for all t ≤ t, where the sum is empty if t = t.)

Indeed, we have already seen that (5.1) is necessary. For (5.2), consider any ε > 0,

and consider the environment E ′ that consists of (G0, . . . , Gt), followed by the sequence

of stage games identified in Lemma 4.4 for this ε (and any other stage games thereafter).

Consider player 1’s decision at time t, with history ht. Conforming to s gives a payoff

U(s|E ′, ht) = (1− δ)

(
t∑
t=t

δt−tEt[u(at)]

)
+ δt+1−tEt[U(s|E ′, ht, at)]. (5.3)

(Here, ht represents the history arising at period t.)

An alternative strategy s′1 would play a myopic best reply to the short-run players’

anticipated actions at each period t = t, . . . , t, and then follow s1 from date t+ 1 onward.

This would give a stage payoff of û(at) in period t, and would guarantee at least û(a(Gt))

in each period t = t+ 1, . . . , t. So player 1’s deviation payoff satisfies

U(s′1, s−1|E ′, ht) ≥ (1− δ)

(
û(at) +

t∑
t=t+1

δt−tû(a(Gt))

)
+ δt+1−tEt[U(s|E ′, h̃t, ãt)] (5.4)

(where h̃t and ãt denote the history and period-t actions produced by 1’s deviations).

Since the deviation should not be profitable, subtracting (5.3) from (5.4) and dividing by

1− δ gives

(
û(at)− u(at)

)
+

t∑
t=t+1

δt−t
(
û(a(Gt))− Et[u(at)]

)
+

δt+1−t

1− δ

(
Et[U(s|E ′, h̃t, ãt)]− Et[U(s|E ′, ht, at)]

)
≤ 0.

However, the two U(s| · · · ) terms both represent SPE payoffs in the environment

starting at date t + 1, and so by Lemma 4.4, they differ by less than w∗ + ε. Applying

this bound, rearranging, and taking ε→ 0 gives (5.2).

Condition (5.2) essentially says that the payoff gains from repeated myopic deviation

across any interval of periods must be bounded by w∗ (suitably discounted). Notice that

the terms û(a(Gt)) − Et[u(at)] may be positive or negative, so it is unknown a priori for

which pairs (t, t) the constraint will be tightest.
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Our first main result is that conditions (5.1)–(5.2) actually give a complete charac-

terization of the realizable outcomes that can be supported in XPE. At first, this may

be surprising in light of the derivation of (5.2) above, which connects it specifically to

repeated deviations that continue until the realized environment differs from that in the

target outcome. Why does it also suffice to rule out other kinds of deviations? An in-

tuition comes from the indifference result of Proposition 4.7: If deviations are optimally

punished using the automaton strategies s[0], then the payoff from deviating repeatedly is

the same as from deviating once, so the condition suffices to rule out one-shot deviations

(and therefore all others).

Theorem 5.1. A realizable outcome (E, z) is supported by some XPE s if and only if it

satisfies the necessary and sufficient conditions (5.1)–(5.2).

Proof. Necessity was just argued, so we prove sufficiency. Construct a strategy profile s

as follows:

• At any history ht such that all stage games (G0, . . . , Gt) so far have been consistent

with E and all actions so far (a0, . . . , at−1) have been as prescribed by z, play as

specified by z.

• For any history ht where the stage games and action profiles through time t−1 were

all as specified by (E, z), but the period-t stage game is different, play according to

s[w∗] from ht onward.

• For any history ht where all past stage games through time t−1 and all action profiles

through time t − 2 were as specified by (E, z), but the action profile observed at

t − 1 was different from that indicated by z, play according to s[0] from period t

onward.

Notice that at every history, either all stage games and action profiles so far agreed

with (E, z), or there was a unique earliest stage game or action profile that did not agree

with (E, z), so this description does specify a well-defined strategy profile. By construction

it supports (E, z); we need to check that it is an XPE.

At any history where any stage game or past action has differed from (E, z), there

is no incentive to deviate; this follows because we already know that s[w∗] and s[0] are

XPE’s. Moreover, the incentives of the short-run players are automatically satisfied since

an action profile in A∗(G) is indicated at every history. So we only need to check the

incentives of player 1 to deviate at histories ht that have so far agreed with (E, z).
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Consider such a history ht, and any environment Ẽ consistent with it. Suppose Ẽ 6= E.

Let t+ 1 be the earliest period in which Ẽ and E differ. So, writing E = (G0, G1, . . .) as

usual, then Ẽ begins (G0, G1, . . . , Gt, G̃t+1, . . .). Evidently t ≥ t.

If t = t, then by conforming when asked to play at, player 1 achieves a payoff (from

the period-t vantage point) of (1− δ)u(at) + δ(U(Ẽ−(t+1)) +w∗), since play transitions to

s[w∗] next period. By deviating, player 1’s payoff is (1− δ)û(at) + δU(Ẽ−(t+1)) (or less, if

a non-optimal deviation is chosen). So the overall gain from deviating is (1− δ)(û(at)−
u(at))− δw∗, which is ≤ 0 by condition (5.1).

If t > t, then by conforming, player 1 achieves a payoff of

(1− δ)

(
t∑

t′=t

δt
′−tEt[u(at

′
)]

)
+ δt+1−t

(
U(Ẽ−(t+1)) + w∗

)
.

By deviating, player 1’s payoff is

(1− δ)û(at) + δU(Ẽ−(t+1)).

By expanding using the definition of U , we get U(Ẽ−(t+1)) = (1−δ)
(∑t

t′=t+1 δ
t′−(t+1)û(a(Gt′))

)
+

δt−tU(Ẽ−(t+1)), and so the deviation payoff is

(1− δ)

(
û(at) +

t∑
t′=t+1

δt
′−tû(a(Gt′))

)
+ δt+1−tU(Ẽ−(t+1)).

Now condition (5.2) (with t in place of t) implies that the deviation is unprofitable.

One loose end remains: what about play in the exact environment E specified by the

target outcome? In this case, for each t′ > t, let Ẽt′ be an alternative environment that

agrees with E until period t′ and disagrees with it starting at t′ + 1. History ht is then

consistent with Ẽt′ . Taking limits as t′ → ∞, we have U(s|Ẽt′ , ht) → U(s|E, ht) and,

for any proposed deviating strategy s′1, U(s′1, s−1|Ẽt′ , ht) → U(s′1, s−1|E, ht). So the fact

that the deviation is not profitable in any Ẽt′ (which we have already shown) implies, by

taking limits, that it is not profitable in E either.

A few remarks are in order.

First, as a special case when G = {G} is a singleton, we can cover the case of a

standard repeated game with a single long-run player; our analysis so far identifies the
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long-run player’s worst SPE payoff (which reduces simply to û(a(G))) and characterizes

the supportable outcomes. This does not seem to be noted in existing literature.

Second, we can compare the conditions for an XPE outcome against those for an SPE

outcome in standard repeated games. By taking the limit as t→∞ in (5.2), we get

(
û(at)− u(at)

)
+

∞∑
t=t+1

δt−t
(
û(a(Gt))− Et[u(at)]

)
≤ 0 for all t, ω0,...,t. (5.5)

This condition says that the payoff from following the proposed outcome, beginning in

period t, is at least as high as that from a one-period deviation followed by the ensuing

punishment. In repeated games, the corresponding condition is in fact sufficient for sup-

portability in SPE (see Abreu, 1988, Proposition 4). Here, we need a condition indexed

both by t and t because of the possibility of different stage games arising in future periods.

That is, the proposed realizable outcome may satisfy (5.5) if there is a large temptation

to deviate at period t but large rewards promised at some future period. Such an outcome

may not be supportable because, when the future comes along, the stage game may be one

in which large rewards are impossible, and thus the deviation at t cannot be discouraged.

Third, at least in the deterministic case, we can slightly rewrite the conditions in a

way that offers an alternative interpretation. Given a deterministic realizable outcome

(E, z), recursively define d−1(z) = 0 and

dt(z) = max

{
1

δ
dt−1(z) +

(
û(a(Gt))− u(at)

)
, û(at)− u(at)

}
for t = 0, 1, . . .. Then we have (proof in Appendix A):

Proposition 5.2. A deterministic realizable outcome (E, z), with E = (G0, G1, . . .) and

z = (a0, a1, . . .), is supported by some XPE if and only if it satisfies at ∈ A∗(Gt) for all t,

and dt(z) ≤ δ
1−δw

∗ for all t.

We can think of dt as the “debt” owed to player 1 after period t for refraining from

deviation in the past. The proposition then says that an outcome can be supported in

XPE just so long as the debt owed never exceeds the amount that can be promised. In

each period t, the debt repayment promised in the future needs to be large enough to

cover the previous debt, with “interest,” adjusted by whatever portion is being delivered

in the present period (this is the first term of the max); it also needs to be large enough

to outweigh the gains from a one-time deviation at t.
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Fourth, we have so far been viewing the set of possible stage games as fixed and asking

what outcomes are supportable. But we could equally well flip things around and ask:

given a proposed outcome, what sets of stage games allow it to be supported? This

question might be of interest, for example, to a long-run player who is confident about

the environment and has a desired outcome in mind, but who worries that the short-run

players are more uncertain about the environment, and who wants to know what the

short-run players need to know in order for them to be assured that the long-run player

is willing to follow the plan.

More formally, let G be some “universe” of potential stage games, and ui : A → R
the corresponding payoff functions, satisfying the assumptions of Section 3 (where A is

the disjoint union of the sets A(G) for G ∈ G). Let (E, z) be a realizable outcome and

G ⊆ G such that each stage game Gt of E lies in G. We consider various sets G with

G ⊆ G ⊆ G; any choice of such a G specifies the possible stage games in such a way

that the environment E can occur. Under what conditions on G will it be the case that

(E, z) is supportable in XPE over G? For the deterministic case, Proposition 5.2 gives

an answer: this happens if and only if the value of w∗ for G is greater than or equal to
1−δ
δ

supt d
t(z); equivalently, if and only if there exists some w ≥ 1−δ

δ
supt d

t(z) such that

B(w;G) ≥ w for each G ∈ G. (And likewise, for the more general case, this condition

must hold for some w large enough to satisfy (5.1)–(5.2) along all signal histories.) As a

side note, observe that this condition is not closed under taking unions: that is, it may

be that a set of stage games G supports z as an XPE outcome, and another set G ′ does

also, but their union G ∪ G ′ does not, because the value of w that works for G is different

than the one that works for G ′. Indeed, we saw this in Example 2.1.

5.3 Universal penal codes

Another central result from standard repeated games that does carry over to our setting

is the existence of “worst punishments” that can be used to support any equilibrium

outcome path. Explicitly, let us say that a strategy profile s is a universal penal code if

it has the following property: For every realizable outcome (E, z) that is supportable in

XPE, there is in particular an XPE supporting z where, following any initial deviation

by player 1 (i.e. a history ht = (G0, ω0, a0; . . . ;Gt, ωt) consistent with E, where all actions

so far are as specified by z, followed by an action profile (a′1, a
t
−1) where 1’s action differs

from that given by z), continuation play is given by s. We then have the following result:

Theorem 5.3. There exists a universal penal code.
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Proof. It follows from the proof of Theorem 5.1 that s[0] is a universal penal code, since,

for any realizable outcome meeting conditions (5.1)–(5.2), that proof constructs an XPE

supporting it with player 1’s deviations punished by s[0].

(However, unlike the repeated-game setting, here the statement that z should be played

with deviations punished by s does not give a full description of the strategy profile, since

it does not specify what happens once a stage game differing from E gets realized.)

As a brief note on literature, Abreu (1988) is usually credited for the notion of penal

codes. The relevant definition there is that of an optimal penal code, which is a specifi-

cation of an SPE for each player that delivers to that player the lowest payoff among all

SPE’s. Although it is also true here that our s[0] is an optimal penal code, in the strong

sense of delivering the lowest XPE payoff in any environment, this definition does not

explicitly relate to its use as a punishment, which is why we have instead emphasized the

definition of universal penal codes here. In general, the notions of an optimal penal code

and a universal penal code need not coincide.

5.4 Comparing XPE to SPE outcomes

As mentioned in the introduction, a difficulty with giving a positive interpretation to

XPE is that it is not rooted in individual maximization. One might instead argue that

agents should play an SPE of the dynamic game induced by whatever process (perhaps

random) they believe governs the stage games. (And even if the agents are unsure about

this process, and there is asymmetric information about it, they should presumably play

an equilibrium of the the resulting incomplete information game.)

Of course, any XPE is automatically an equilibrium of any such fully-specified game as

well, and so an XPE-supported outcome is one that the analyst can confidently describe

as being attainable in whatever world the players actually live in. However, a natural

converse statement is not true. As shown by Example 5.1 below, there can be realizable

outcomes that can be supported in SPE no matter what process governs the stage games,

but that require different punishments for deviation depending on the process, and so

cannot be supported in XPE.5

5A parallel is the question of foundations for dominant-strategy implementation in mechanism design
(Bergemann and Morris, 2005; Chung and Ely, 2007). Dominant-strategy mechanisms, when they exist,
allow for a desired outcome to be achieved regardless of agents’ beliefs or higher-order beliefs about each
other. This robustness has led to a large literature focusing on such mechanisms. But even when they do
not exist, it may be still be possible to implement the desired outcome with a mechanism where agents’
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Before giving this example, we sketch the concepts in a little more detail. For sim-

plicity, here and for the rest of this subsection, we assume A is finite, i.e. the set of stage

games and the action spaces are all finite.

A stage game process consists of a specification of π(G0,...,Gt) ∈ ∆(G) for each initial

history of stage games (G0, . . . , Gt), describing the distribution over Gt+1 given the pre-

vious realizations. We denote such a process by π.6 Histories and strategies are defined

exactly as in the main model. At any history of stage games, the transition probabilities

given by π recursively determine a conditional distribution over (Gt+1, Gt+2, . . .), which

allows us to define the expected payoffs from a strategy profile at any history (with the

understanding that the public random signals (ω0, ω1, . . .) are drawn independently of the

stage game transitions). Strategy profile s is an SPE for π if, at each history, no player

can improve his expected payoff by deviating.

The definitions of realizable (and full) outcomes, and strategies supporting such out-

comes, are unchanged. Then, the statement that s supports (E, z) can be interpreted as

saying that z describes the actions played conditional on E realizing.

Evidently, any strategy profile that is an XPE is an SPE for any stage game process:

since deviating can never increase the payoff in any environment, it cannot increase the

payoff in expectation either. A fortiori, any XPE-supportable outcome is SPE-supportable

for any stage game process. Below is the example showing that the converse is not true.

A rough intuition is that the argument for necessity of (5.2), applied in an SPE setting,

would require two things: first, that at time t, the subsequent stage games Gt+1, . . . , Gt

in the target outcome are expected to arise with high probability (otherwise (5.2) is

not relevant to incentives from deviation); and second, at each intervening time t, the

environment starting at time t+ 1 is likely to be the adversarial one identified in Lemma

4.4 (because otherwise actions outside of A∗(Gt, w∗) can be played, so a(Gt) is not the

worst available punishment). A single stage game process cannot simultaneously satisfy

both conditions.

Example 5.1. Consider two possible stage games, G and G′, as shown in Figure 3. Part

(a) of the figure illustrates them in the standard matrix form, whereas part (b) rearranges

them to a form more suitable for us, by showing the action profiles in A∗(G) and A∗(G′),

and the player-1 payoffs u and û for each.

strategies depend on their beliefs.
6Alternatively, we could define a stage game process directly as a distribution over environments E,

but then we would need to add a full-support assumption to avoid the difficulty of defining expectations
about the future stage games at probability-zero histories.
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G :

a b c d
a 24, 1 0, 0 0, 0 −22, 0
b 40, 0 8, 1 0, 0 −40, 0
c 0, 0 15, 0 0, 1 −40, 0
d 0, 0 0, 0 0, 0 −40, 1

G′ :

e f
e 16, 1 0, 0
f 16, 0 0, 1

(a)

G :
aa bb cc dd

u 24 8 0 −40
û 40 15 0 −22

G′ :
ee ff

u 16 0
û 16 0

(b)

Figure 3: Example with a realizable outcome that is supportable in SPE for any stage
game process, but not supportable in XPE.

We take the discount factor δ = 1/2. This leads to w∗ = 16, A∗(G,w∗) = {aa, bb, cc}
and A∗(G′, w∗) = A∗(G′) = {ee, ff}. In particular, û(a(G)) = û(a(G′)) = 0.

Consider the deterministic realizable outcome in which G is played every period, and

the action profiles are (bb, cc, bb, aa, aa, aa, aa, . . .). This outcome does not satisfy (5.2)

with t = 0, t = 2, so it cannot be supported in XPE. However, we claim that it can always

be supported in SPE for any full-support stage game process π. To see this, write q for

the probability of G2 = G given that (G0, G1) = (G,G), and consider two cases:

Case 1: q ≤ 1/2.

Consider the following strategy profile. For the “on-path” actions (as long as there

have been no deviations), as long as G has arisen in every period, play according to the

target outcome; once G′ realizes, play ee, and then play either aa or ee in every subsequent

period. If there is ever a deviation by player 1, play the punishment actions cc or ff in

every subsequent period. (Further deviations can be ignored.)

Let us check that there is never an incentive to deviate. During the punishment phase,

there is no gain from deviating. During the on-path phase, if G′ has ever arisen, or if only

G has ever arisen and the current period is t ≥ 2, then the deviation brings a short-run

gain of at most 16 but a loss of at least 16 in each subsequent period, so is not optimal.

If only G has ever arisen and t = 1, then there is no myopic gain, only a subsequent loss.

This leaves only the case t = 0, when playing G in the initial period. The myopic gain

is 7. We consider two possibilities:
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• Conditional on G1 = G′, the deviation in period 0 leads to a loss of at least 16 in

each subsequent period, so a loss overall.

• Conditional on G1 = G, the punishment entails no loss in period 1, but it entails a

loss in period 2 of either 8 or 16 depending on whether G2 = G or G′, and then a

loss of at least 16 in every subsequent period. Hence, the total net gain, in period-0

payoff terms, is at most

(1− δ)[7− δ2 · (q · 8 + (1− q) · 16)− (δ3 + δ4 + · · · ) · 16] =

(
1

2

)
[7− (4− 2q)− 4] ≤ 0.

Case 2: q ≥ 1/2.

In this case, we first consider the following strategy profile, call it sd, for the game

from period 1 onwards: If G1 = G, we play dd in period 1, and then on-path play aa

or ee in all subsequent periods. If there is ever a deviation, punish using cc or ff in all

subsequent periods (and ignore further deviations). If G1 = G′, play ff in period 1, and

then cc or ff in all subsequent periods (and ignore deviations).

We claim that sd is an SPE of the subgame starting in period 1 conditional on G0 = G.

There is no incentive to deviate whenever cc, ee, or ff is specified. When aa is indicated,

deviating brings a short-run gain of at most 16 and a loss at least 16 in each subsequent

period. This leaves us only to check the incentive to deviate from d in period 1 when

G1 = G. This deviation brings an immediate gain of 18, and a loss of at least 16 in

each subsequent period, including a loss of 24 in period 2 if G2 = G (which happens with

probability q), hence an overall net gain at most

(1− δ)[18− δ · (q · 24 + (1− q) · 16)− (δ2 + δ3 + · · · ) · 16] =

(
1

2

)
[18− (8 + 4q)− 8] ≤ 0.

With this in mind, we consider the following strategy profile for the overall game.

On-path actions are as in Case 1. A deviation in period 0, if G0 = G, is punished by

switching to sd in subsequent periods. Any other deviation is punished by playing cc or

ff in all subsequent periods (and further deviations are ignored).

As in Case 1, it is easy to check there is no incentive to deviate at all histories except

at the initial period when playing G. For this last, the short-run gain from deviating is

7. Conditional on G1 = G′, the loss in every period from 1 onward is at least 16, so the

deviation is not beneficial. And conditional on G1 = G, the loss in period 1 is 40 and

there is no further gain except possibly of 16 in period 2 (if G2 = G), so the net effect is
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at best (1− δ)[7 + δ · (−40) + δ2 · 16] < 0.

4

The lesson of this example, however, rests on the assumption that the long-run player

maximizes expected utility with respect to some belief about the future stage games.

One might instead imagine—and it is arguably in keeping with the spirit of our overall

exercise—that the long-run player evaluates the uncertainty over the future with some

non-expected utility; for example, he might be ambiguity averse.

We therefore proceed to consider a large class of (weakly) ambiguity-averse preferences

that mesh with the discounting structure of repeated games: namely, dynamic variational

preferences (Maccheroni, Marinacci and Rustichini, 2006). Such preferences, adapted for

our setting, are parameterized by a dynamic ambiguity index c, which specifies, for each

t ≥ 0 and each initial history of stage games (G0, . . . , Gt), a function c(G0,...,Gt) : ∆(G∞)→
R ∪ {∞} that is convex and is not everywhere infinite.

Given a dynamic ambiguity index c, at any history ht = (G0, ω0, a0; . . . ;Gt, ωt), we

define the subgame payoff for a strategy profile s by

U(s|c, ht) = (1− δ) inf
ψ∈∆(G∞)

(
Eψ

[
∞∑
t′=t

δt
′−tu(at

′
)

]
+ c(G0,...,Gt)(ψ)

)
. (5.6)

Here, the expectation is with respect to future stage games (Gt+1, Gt+2, . . .) drawn from

distribution ψ and signals (ωt+1, ωt+2, . . .) drawn independently U [0, 1], and at
′

are the

actions played by following s starting at ht, as usual.

Note that expected utility with respect to a particular stage game process π is a special

case, where we simply take c(G0,...,Gt)(ψ) to be 0 if ψ coincides with the distribution over

future stage games generated by π after (G0, . . . , Gt), and ∞ for any other ψ. Other

commonly-studied special cases include maxmin utility with multiple priors (Epstein and

Schneider, 2003) and multiplier preferences (Hansen and Sargent, 2001).

We then say that s is an SPE for c if, for every history ht and any possible deviation

s′1, U(s|c, ht) ≥ U(s′1, s−1|c, ht), and the short-run players’ incentives are always satisfied.

Let us also define a one-shot SPE for c by the same conditions except that we require

U(s|c, ht) ≥ U(s′1, s−1|c, ht) only for each s′1 that differs from s1 only at ht.

Preferences (5.6) are not dynamically consistent in general, and therefore the one-shot

deviation principle need not apply: a one-shot SPE may not be an SPE.7 However, it

7Maccheroni, Marinacci and Rustichini (2006) also identify a subclass of dynamic variational pref-
erences that are dynamically consistent. However, adapting this feature to our setting would require
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remains the case that if s is an XPE then it is also an SPE for any such preferences (even

allowing repeated deviations). This follows since a deviation from s1 to any alternate

strategy s′1 can never increase the expression inside the infimum for any particular ψ, and

therefore cannot increase the value of the infimum.

With this broader class of preferences, we restore the desired “converse” result relating

XPE-supportable outcomes to SPE-supportable ones, and moreover it holds even if SPE

is relaxed to one-shot SPE:

Theorem 5.4. If a realizable outcome (E•, z) is not supported by any XPE, then there

exists a dynamic ambiguity index c such that (E•, z) is not supported by any one-shot SPE

for c.

Proof. Write E• = (G0
•, G

1
•, . . .). Let w0, w1, . . . be the sequence from Lemma 4.3.

By Theorem 5.1, z must violate either (5.1) or (5.2). The former case is easy to

dispose of: In this case, there exist some t and ω0,...,t such that at = z(ω0,...,t) satisfies

û(at)−u(at) > δ
1−δwk for some k. (Or one of the short-run players’ incentives is violated,

but then our conclusion is immediate.) Lemma 4.4 gives an environment Ẽ = (G̃0, G̃1, . . .)

in which any two SPE payoffs differ by less than wk. Consider the environment E =

(G0
•, G

1
•, . . . , G

t
•, G̃

0, G̃1, G̃2, . . .). The proof of Lemma 4.4 shows that, in any SPE for this

environment, at can never be played at time t. So our conclusion follows, with c actually

given by expected utility for the (degenerate) stage game process that always follows E.

This leaves us with the case where (5.2) is violated for some t < t and ω0,...,t. Again,

(5.2) will remain violated if its right side is replaced by δt+1−t

1−δ wk for large enough k. Also,

our finiteness assumption implies that for all G ∈ G we have A∗(G,wk) = A∗(G,w∗) for

k large enough, so assume this holds as well. As above, let Ẽ = (G̃0, G̃1, . . .) be the

environment given by Lemma 4.4 for wk. Let Ũ be the infimum of payoffs of SPE’s for Ẽ,

so by the lemma, any SPE for Ẽ has payoff at most Ũ + wk. Also, write G for the stage

game that was Gk+1 in the proof of Lemma 4.4, so that B(wk;G) < wk+1 < wk.

We construct the ambiguity index c as follows:

• For each t > t and any (G0, . . . , Gt), let c(G0,...,Gt) be the function that assigns value

0 to ψ if ψ places probability 1 on the future stage games (Gt+1, Gt+2, Gt+3, . . .)

being equal to (G̃t−t, G̃t−t+1, G̃t−t+2, . . .), and assigns ∞ to any other ψ.

• For each t ≤ t and any (G0, . . . , Gt), let c(G0,...,Gt) be the function that assigns ∞
to ψ if ψ places positive probability on Gt′ 6= G̃t′−t−1 for some t′ > t, and otherwise

allowing a broader space of ψ’s in which future stage games may be correlated with future random
signals; we would then lose the result that every XPE is always an SPE.
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assigns ψ a value equal to −Eψ
[∑t

t′=t δ
t′−tû(a(Gt′))

]
. (Note that this sum includes

a term for Gt for which is already determined by the history, as well as terms for

future stage games drawn from ψ.)

This function is indeed convex, since it is finite-valued only for a convex set of ψ’s

and is affine on this set.

The affineness for t ≤ t means that the infimum in (5.6) is attained at a corner of the

set of possible ψ’s, which allows us to simplify (5.6) as follows. Given history ht, say that

an environment E = (G0, G1, . . .) is valid for ht if the stage games of E from time 0 to

t agree with those of ht and the stage games from t + 1 onward are (G̃0, G̃1, . . .). (The

intervening stage games may be arbitrary.) Then, for t ≤ t,

U(s|c, ht) = min
E valid for ht

(
U(s|E, ht)− (1− δ)

t∑
t′=t

δt
′−tû(a(Gt′))

)
. (5.7)

Denote the minimand in (5.7) as Ǔ(s|E, ht), and note for future reference the recursion

Ǔ(s|E, ht) = (1− δ)(u(s(ht))− û(a(Gt))) + δEt[Ǔ(s|E, (ht, s(ht), Gt+1, ωt+1))] (5.8)

when t < t.

Let s be any one-shot SPE. At any history at time t, the continuation game starting

in the next period is expected to deterministically follow the environment Ẽ, and so

continuation play will be an SPE for this environment. Now we make the following claim:

for any t ≤ t, at any history ht, ending in any stage game Gt, we have s(ht) ∈ A∗(Gt, wk),

and U(s|c, ht) ∈ [δt+1−tŨ , δt+1−tŨ +B(wk;G
t)].

We show this claim by downward induction on t. Suppose the claim holds for all times

from t+ 1 to t (this hypothesis is vacuous in the base case t = t). We prove that it holds

for t. Consider any time-t history ht, ending in some stage game Gt. Consider the specific

valid environment in which G realizes at every date t + 1, . . . , t (again, if t = t there are
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no such dates). Applying this particular environment in (5.7), we have

U(s|c, ht) ≤ (1− δ)

(
∞∑
t′=t

δt
′−tEt[u(at

′
)]−

t∑
t′=t

δt
′−tû(a(Gt′))

)

= (1− δ)

(
(u(at)− û(a(Gt))) +

t∑
t′=t+1

δt
′−t
(
Et[u(at

′
)]− û(a(G))

))
+δt+1−tEt[U(s|c, ht+1)].

Since each at
′

for t < t′ ≤ t always lies in A∗(G,wk) by the induction hypothesis, each

term
(
Et[u(at

′
)]− û(a(G))

)
is at most (B(wk;G)− δwk)/(1− δ) < wk; and the final term

is at most δt+1−t(Ũ + wk) because continuation play starting at time t + 1 must be an

SPE for Ẽ. Combining gives

U(s|c, ht) ≤ (1− δ)(u(at)− û(a(Gt))) + (δ − δt+1−t)wk + δt+1−t(Ũ + wk). (5.9)

Meanwhile, consider the strategy s′1 that myopically deviates at ht and follows s1

everywhere else. Still writing at = s(ht), we have, for any valid environment E, that

Ǔ(s′1, s−1|E, ht) ≥ (1− δ)(û(at)− û(a(Gt))) + δ · δt+1−(t+1)Ũ ,

where if t = t the last term follows from the lower bound for SPE payoffs in environment

Ẽ, and otherwise it comes from (5.8) and the induction hypothesis for the continuation

payoffs from time t+ 1 onward. Since this holds for each E, we have

U(s′1, s−1|c, ht) ≥ (1− δ)(û(at)− û(a(Gt))) + δt+1−tŨ . (5.10)

Since s is a one-shot SPE, U(s|c, ht) ≥ U(s′1, s−1|c, ht); combining with (5.9) and (5.10)

and rearranging gives

(1− δ)(û(at)− u(at)) ≤ δwk.

Consequently, at ∈ A∗(Gt, wk), giving the first part of the claim for t. As for the second

part, now that at ∈ A∗(Gt, wk) = A∗(Gt, w∗), we know û(at)− û(a(Gt)) ≥ 0 so that (5.10)

gives the lower bound, and likewise (1− δ)(u(at)− û(a(Gt))) + δwk ≤ B(wk;G
t) so that

(5.9) gives the upper bound.

This completes the proof of the claim.

Now consider the particular history ht = (G0
•, ω

0, a0; . . . ;Gt
•, ωt), where the stage
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games so far are as in the target environment E•, the random signals are those for which

(5.2) is violated, and the actions so far are as specified by z. Suppose the one-shot SPE s

supports (E•, z). Consider the valid environment E = (G0
•, . . . , G

t
•, G̃

0, G̃1, . . .). We have

U(s|c, ht) ≤ Ǔ(s|E, ht) = (1− δ)

 t∑
t=t

δt−t
(
Et[u(at)]− û(a(Gt

•))
)

+
∞∑

t=t+1

δt−tEt[u(at)]


(where the future actions at are as generated by s)

< (1− δ)(û(at)− û(a(Gt
•)))− δt+1−twk + (1− δ)

∞∑
t=t+1

δt−tEt[u(at)]

by applying the assumed violation of (5.2) (with the right side replaced by δt+1−t

1−δ wk)

≤ (1− δ)(û(at)− û(a(Gt
•)))− δt+1−twk + δt+1−t(Ũ + wk)

since play from period t+ 1 onward is an SPE of Ẽ and so has payoff at most Ũ + wk.

On the other hand, consider the strategy s′1 given by a one-shot optimal deviation at

ht. For any valid environment E, applying (5.8) and the claim for the continuation payoff

from date t+ 1, we have

Ǔ(s′1, s−1|E, ht) ≥ (1− δ)(û(at)− û(a(Gt
•))) + δ · δt+1−(t+1)Ũ .

Since this holds for any E, we have U(s′1, s−1|c, ht) ≥ (1−δ)(û(at)−û(a(Gt
•)))+δt+1−tŨ >

U(s|c, ht). So the deviation at date t is strictly profitable, a contradiction.

The preferences constructed in the proof of Theorem 5.4 have a simple interpretation:

After renormalizing the stage game payoffs so that û(a(G)) = 0 for each G, the long-run

player acts as though any sequence of stage games up until time t as possible, but the

subsequent stage games definitely follow Ẽ, and payoffs are evaluated by the worst case

over the uncertain early stages.

This result provides a “positive foundation” for focusing on XPE-supportable out-

comes: Even if the analyst thinks that (one-shot) SPE is the appropriate prediction of

behavior, the set of XPE-supportable outcomes nonetheless plays a distinguished role,

in that these are exactly the outcomes that are guaranteed to be supportable no matter

what the long-run player’s attitude toward the future stage games may be (if he may be
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ambiguity averse).

5.5 Full outcomes

All of the preceding results of this section have analogues for full outcomes rather than

realizable outcomes. We briefly develop the statements, leaving proofs to Appendix A.

Evidently, a full outcome z can only be supported in XPE if each of the realizable

outcomes belonging to it can, or equivalently, if each such realizable outcome satisfies

(5.1)–(5.2). The converse is also true, and thus:

Theorem 5.5. A full outcome z is supported by some XPE if and only if each of the

realizable outcomes belonging to it can be supported by some XPE.

Actually, more can be said. Recall that (5.2) implied (5.5), by taking the limit as

t → ∞. It turns out that for full outcomes, we can replace (5.2) with this weaker

condition:

Theorem 5.6. A full outcome z is supported by some XPE if and only if each of the

realizable outcomes belonging to it satisfies (5.1) and (5.5).

We no longer need to worry about what happens when the realized environment de-

parts from the specified outcome, because a full outcome by definition considers all pos-

sible environments.

Say that a strategy profile s is a universal penal code for full outcomes if it has the

following property: For every full outcome z that is supportable in XPE, there is in

particular an XPE supporting z where, following any initial deviation by player 1 (i.e. a

period-t history with at
′
= z(G0, ω0, . . . , Gt′ , ωt

′
) for each t′ = 0, . . . , t− 1, followed by an

action profile (a′1, a
t
−1) with a′1 6= z1(G0, ω0, . . . , Gt, ωt)), continuation play is given by s.

Then:

Theorem 5.7. There exists a universal penal code for full outcomes.

(In contrast to realizable outcomes, here, specifying a full outcome, together with the

punishments after 1’s deviations, fully describes the strategy profile—aside from the detail

that a strategy profile should say what happens after deviations by short-run players, but

these can simply be ignored.)

Finally:

Theorem 5.8. Assume that A is finite. If a full outcome z is not supported by any XPE,

then there exists a dynamic ambiguity index c such that z is not supported by any one-shot

SPE for c.
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6 Discussion

In some sense, the analysis so far seems quite straightforward: there is some maximum

reward gap w∗ that can be credibly promised to the long-run player; a contemplated

outcome is supportable just so long as doing so never requires accumulating a debt for

forgoing temptations (possibly in expected terms) that exceeds w∗. However, as discussed

in the introduction, our framework involves particular features, in particular the restric-

tion that there is only a single long-run player for whom dynamic incentives need to be

provided, and also the availability of public randomization. We will show here that the

results change if either of these conditions is removed. In particular, a universal penal

code may no longer exist. (Relatedly, an optimal penal code, i.e. an XPE giving the lowest

payoff in any environment, can also fail to exist.) Given the central role of the universal

penal code in the analysis, this suggests that the theory of XPE’s in these broader settings

would have to look very different.

In standard repeated games, the usual recursive analysis by way of continuation values,

and its corresponding role for optimal penal codes, applies equally well with or without

public randomization, and with any combination of long-run and short-run players. This

contrast suggests that the mapping between the reward-punishment gaps emphasized in

our analysis and continuation values as in the usual approach is not just a mechanical

renormalization.

For ease of exposition, the examples in this section are presented in a slightly different

framework than the main model: we assume a nonstationary framework (i.e. for each

period t, there is a different set of possible stage games Gt); we also assume a finite horizon,

and no discounting. None of these changes matters conceptually. For completeness,

Appendix B shows how to build on the examples below to express the same ideas while

retaining stationarity and discounting.

For brevity, we skip over some of the formalities for these examples.

6.1 No public randomization

We first consider a framework without public randomization available. Our example

features three periods, t = 0, 1, 2. The best way to give the long-run player a low payoff

starting at date 1 depends which stage game will be realized at date 2, because the latter

determines how expensive it is to deter stage-1 deviations. This means that there is no

XPE that gives the lowest payoff starting from date 1 in every environment. This in turn

leads to the lack of a universal penal code.
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Example 6.1. Consider the sets of stage games shown in Figure 4. There is one possible

stage game in each period t = 0, 1, and two possible stage games in period 2. As with

Figure 3, part (a) presents the stage games in standard matrix form, while part (b) shows

the sets A∗(G) in each stage game and the values of u, û for each.

G0 :

a b
a 0, 1 4, 0
b 4, 0 0, 1

→ G1 :

c d e
c 0, 1 0, 0 11, 0
d 5, 0 6, 1 0, 0
e 0, 0 7, 0 11, 1

↗
↘

G2 :

f g h
f 0, 1 1, 0 10, 0
g 0, 0 1, 1 10, 0
h 0, 0 1, 0 10, 1

G2′ :

i j
i 0, 1 5, 0
j 0, 0 5, 1

(a)

G0 :
aa bb

u 0 0
û 4 4

→ G1 :
cc dd ee

u 0 6 11
û 5 7 11

↗
↘

G2 :
ff gg hh

u 0 1 10
û 0 1 10

G2′ :
ii jj

u 0 5
û 0 5

(b)

Figure 4: Example without public randomization. No universal penal code exists.

Let sc denote the XPE profile for the subgame beginning in period 1 that plays actions

cc, hh, jj along the path of play and, if player 1 deviates in period 1, plays ff or ii in

period 2 accordingly. (As usual, deviations by 2 can be ignored.) Player 1’s total payoff

across the two stages is 10 or 5, depending whether G2 or G2′ is realized.

Let sd denote the XPE profile beginning in period 1 that plays actions dd, gg, jj on-

path, with ff or ii in period 2 if player 1 deviates in period 1. Player 1’s total payoff for

the two periods is 7 or 11, respectively.

In the three-period game, the realizable outcome (deterministic, of course) with actions

aa, ee, ff can be supported in XPE. Namely, specify aa, ee, ff, jj as on-path actions. If

player 1 deviates in period 0, then switch to sd as punishment. (Deviation in period 1
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only can be ignored, since it brings no within-period gain.) For both realizations of the

period-2 game, the punishment is sufficient to deter the period-0 deviation.

The realizable outcome with actions aa, ee, ii can also be supported in XPE: specify

aa, ee, hh, ii, and deter a period-0 deviation by using sc as punishment.

However, there is no punishment that can support both of these outcomes at once.

Indeed, to support aa, ee, ff , the punishment after a period-0 deviation to b has to deliver

total payoff ≤ 7 across the two remaining periods in environment (G0, G1, G2), which

requires beginning with dd (since ee is clearly too generous, and cc would have to be

followed by hh, otherwise 1 would deviate in period 1, but hh is also too generous). To

support aa, ee, ii, the punishment after b has to deliver total payoff ≤ 7 across G1 and

G2′, but this cannot be done using dd (because dd must be followed by jj to deter a

period-1 deviation, but this is again too generous). So, no one punishment can support

both outcomes.

This shows that Theorem 5.3 fails without public randomization (and the same is true

for Theorem 5.7). Note that it also shows that Theorem 5.5 fails, since the full outcome

aa, ee, ff, ii cannot be supported in XPE even though its consistuent realizable outcomes

can. Finally, a minor variant of this example suffices to give a case with a single full

outcome that can be supported, but only by using different punishments for different

date-1 histories. Namely, create a second stage-0 game G0′ that is a copy of G0, and now

consider the full outcome that specifies aa, ee, ff, jj if G0 is realized, and aa, ee, hh, ii if

G0′ is realized. This contrasts with stochastic games, where universal penal codes for full

outcomes do exist (Kitti, 2016).

4

6.2 Multiple long-run players

Let us now restore public randomization, but suppose that there are two long-run players,

who both act to maximize the sum of payoffs across periods. We again give a three-period

example where there is no universal penal code. Although randomization is allowed,

deterministic outcomes will suffice for our example.

Similar to the previous example, the most effective way to give the long-run player a

low payoff starting at date 1 depends what stage game will be realized at date 2. Here,

the reason is that there is an action profile at date 1 that gives a low payoff to player

1 but also a high temptation to deviate for player 2. It may or may not be possible to

reward player 2 in the next period for forgoing this temptation without also giving a high
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payoff to player 1, depending which period-2 stage game is realized.

Example 6.2. Again, one possible stage game in each period t = 0, 1, and two in period

2. The relevant stage games are illustrated in Figure 5.

G0 :

q
a 0, 0
b 1, 0

→ G1 :
r s

c 1, 1 0, 0
↗
↘

G2 :

t u v
d 0, 0 0, 0 0, 0
e 0, 0 1, 0 0, 0
f 0, 0 0, 0 3, 1

G2′ :

w x
g 0, 0 1, 0
h 0, 1 1, 1

Figure 5: Example with two long-run players. No universal penal code exists.

Let sr denote the XPE for the subgame starting in period 1 that consists of playing

cr followed by dt or gw. (Deviation by player 2 in period 1 can be ignored, since it brings

no gain.) This delivers to the two players total payoffs of (1, 1) across the two periods,

both when G2 is realized and when G2′ is realized.

Let ss (with apologies for the notation) be the XPE starting in period 1 that plays cs

followed by fv or hw on-path, and that punishes a deviation by player 2 at period 1 by

following up with dt or gw. This delivers total payoffs across the two periods of (3, 1) if

G2 is realized and (0, 1) if G2′ is realized.

In the overall game, the (deterministic) realizable outcome with actions aq, cr, eu can

be supported, with hx being chosen in period 2 if G2′ is realized. To see this, we just need

to be able to deter deviation to b in period 0 (since the specified play constitutes a stage

Nash in each subsequent period), and this can be done using sr as a punishment. The

realizable outcome with actions aq, cr, gw can also be supported, with fv being chosen

on-path in period 2 if G2 is realized. To do this, again we only need to deter the deviation

to b, and this can be done by punishing with ss.

However, no punishment can support both of these outcomes in XPE. Such a punish-

ment would need to deliver an (expected) payoff to player 1 of ≤ 1 across periods 1–2 if

G2 is realized and a payoff ≤ 0 if G2′ is realized. The latter, in particular, means that

cs must be played with probability 1 in period 1. But then the only way to deter 2 from

deviating is to reward her with fv (again with probability 1) if G2 is realized. This means

that player 1’s total payoff across the two periods is 3 in this environment, contrary to
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the requirement. Note also that this argument has accounted for the availability of public

randomization.

This shows that the analogue of Theorem 5.3 with two long-run players does not

hold. The example also can be modified to show that various other results from the main

analysis do not extend, just as was done in Example 6.1.

4

6.3 Why the difference?

Why does the recursive approach fail to extend to these settings? It may be helpful to try

to imagine a common generalization of the approach taken here and APS. Both seek to

characterize the set of appropriately-normalized reward vectors that can be achieved in

equilibrium, so as to determine which deviations can be deterred. In APS the normalized

reward is just the total payoff, whereas here it is the reward-punishment gap. B(W ) is

the set of normalized rewards that can be attained, given that the continuation rewards

are taken from the set W . But what does “attained” mean?

The incentive constraints require inequalities: as long as we can ensure a normalized

reward of at least v for each stage game G that might materialize, we can deter a deviation

gain of corresponding size. Doing so may involve using different rewards for different

realizations of G. The promise-keeping constraints, however, require equalities: a lower

bound on the continuation reward is not enough, because the total reward must be kept

low in order to be usable as a punishment at the next stage of the recursion. Thus, for the

recursive technique to apply, the same B(·) operator needs to be able to calculate both

{v | can ensure normalized reward ≥ v for all G}

and

{v | can ensure normalized reward = v for all G}.

In the “one-dimensional” case studied here with public randomization, the two sets are

just intervals, and they coincide. In general, this will not be true. (In APS, where there

is only one game G, the equality set uniquely determines the inequality set, so it suffices

to recurse on the equality set only.)
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7 Summary

Repeated games are a standard modeling tool for studying dynamic incentives in long-

run interactions. But the standard model adopts a stylized framework in which the same

game is played in every period, and the tools for studying this model apply in payoff

space. This paper has explored a generalization to a setting where multiple stage games

may arise in each period, and the stage game may vary unpredictably from one period to

the next, to try to understand how much of the standard toolkit carries through without

well-defined payoffs.

We adopted ex-post perfect equilibrium as a solution concept. Under two significant

restrictions—a single long-run player interacting with a series of short-run players, and

availability of public randomization—the recursive technique from APS adapts to identify

the maximum gap between future reward and punishment that can credibly be promised

to the long-run player. This leads to a characterization of the outcomes attainable in

equilibrium, as ones for which there can never be an expected gain above this maximum

gap from deviating repeatedly across an interval of successive periods—or equivalently

(for deterministic outcomes), the outcomes for which the debt owed to compensate past

obedience never exceeds the maximum gap. Any such outcome is supportable by using

a single worst punishment following any deviation. And, using the characterization of

supportable outcomes, we are able to connect the concept of ex-post perfect equilibrium

to the more standard one of subgame-perfect equilibrium, by showing that the ex-post

perfect equilibrium outcomes are exactly the ones that can be supported for any preference

specification for the long-run player, although this equivalence requires allowing ambiguity

aversion over the future stage games. We also saw that when we try to extend to multiple

long-run players, or we drop public randomization, the analysis does not replicate (and,

in particular, universal penal codes no longer exist).

A few words of broader perspective: The standard model of repeated games has proven

extremely valuable for understanding the possibilities and limitations of providing incen-

tives through repeated interactions. Central to the analysis of this model are certain

ideas, such as optimal penal codes and their use to characterize outcomes in payoff space.

It seems fitting to ask to what extent these ideas follow from the economic concept of

dynamic incentives, as opposed to being convenient features of a particular mathematical

model. For this distinction to be meaningful, it is necessary to argue that other models

are possible. This paper has undertaken a step in this direction, by offering a minimal

departure from the canonical model and showing that, indeed, the ideas do not fully ex-
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tend (as the negative examples show), but there is considerable overlap. Perhaps some

more general modeling framework will better elucidate the commonalities.

A Omitted proofs

Proof of Lemma 4.2. Consider any decreasing sequence wk → w. Because B(w;G) is in-

creasing, the limit limk B(wk;G) is well-defined (with value −∞ if eventually B(wk;G) =

∞), and right-continuity will follow if we can show that B(w;G) ≥ limB(wk;G).

We can assume that B(wk;G) 6= −∞ for all k, since otherwise monotonicity implies

B(w;G) = −∞ = limB(wk;G). Granted this, take ak, a
′
k ∈ A∗(G,wk) attaining the max

and min in the definition of B(wk;G). By compactness, we can pass to a subsequence

for which ak and a′k converge to limits a∞, a
′
∞. Continuity of u and û then imply that

a∞, a
′
∞ ∈ A∗(G,w), and

B(w;G) ≥ (1− δ)(u(a∞)− u(a′∞)) + δw

= lim
k

(1− δ)(u(ak)− u(a′k)) + δwk

= lim
k
B(wk;G).

Thus, B(w;G) is right-continuous. For B(w), again consider a decreasing sequence

wk → w. If B(w) = −∞, then B(w;G) = −∞ for some G, hence the previous argument

implies B(wk) = B(wk;G) = −∞ for nearby wk. Otherwise, if the desired right-continuity

fails then there exists ε > 0 such that B(wk) > B(w) + ε for all k. Take G such that

B(w;G) < B(w)+ε/2; then right-continuity ofB(w;G) for this specificG impliesB(wk) ≤
B(wk;G) < B(w) + ε for large enough k, a contradiction.

Proof of Lemma 4.3. First, note that wk > w∗ by induction: This is clearly true for w0;

then w1 > B(w0) > B(w∗) = w∗ by strict monotonicity of B, and for k ≥ 2 we then

have wk = (B(wk−1) + B(wk−2))/2 > (B(w∗) + B(w∗))/2 = w∗ by strict monotonicity

and induction hypothesis.

In particular, the terms wk never fall to −∞. Now we prove the ensuing statements:

1: We have w1 < w0 from the construction, and then B(w1) < B(w0) < w1 by strict

monotonicity, from which w2 = (B(w0) + B(w1))/2 < w1. Now proceed by induction:

if k > 2 and wk−1 < wk−2 < wk−3, then wk = (B(wk−1) + B(wk−2))/2 < (B(wk−2) +

B(wk−3))/2 = wk−1 by strict monotonicity.
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2: For k = 1 this is given; for k ≥ 2 we have wk = (B(wk−1) +B(wk−2))/2 > B(wk−1)

using strict monotonicity of B and the fact that wk−2 > wk−1.

3: Since the sequence is decreasing and bounded below by w∗, it has a limit w∞.

Right-continuity of B implies w∞ = limk wk = limk(B(wk−1) + B(wk−2))/2 = (B(w∞) +

B(w∞))/2 = B(w∞). But since w∞ ≥ w∗, and no value greater than w∗ is a fixed point

of B, we have equality.

Proof of Proposition 5.2. As noted in the text, the conditions (5.1)–(5.2) as stated are

equivalent to requiring at ∈ A∗(Gt) for all t and (5.2) for all t ≤ t. So it suffices to check

that, in the deterministic case, the latter is equivalent to dt ≤ δ
1−δw

∗ for all t. Rewrite

(5.2) as

1

δt−t

(
û(at)− u(at)

)
+

t∑
t=t+1

δt−t
(
û(a(Gt))− u(at)

)
≤ δ

1− δ
w∗. (A.1)

(We have removed the expectation operator since at is no longer random.) Denoting

the left-hand side of (A.1) by dt,t(z), requiring (5.2) for all t, t is then equivalent to

maxt∈{0,...,t} d
t,t(z) ≤ δ

1−δw
∗ for all t. But it is easy to see by induction that dt(z) =

maxt∈{0,...,t} d
t,t(z).

Proof of Theorem 5.5. Necessity is immediate. For sufficiency, we need to argue that it

suffices for each realizable outcome to satisfy (5.1)–(5.2). This follows from sufficiency of

the weaker conditions in Theorem 5.6, so we defer to that proof.

Proof of Theorem 5.6. Again, we already have necessity, so we focus on sufficiency. Adapt-

ing the proof of Theorem 5.1, we construct a strategy profile s as follows: at any history

where actions have not yet deviated from z, play as specified by z; when a deviation first

occurs at some period t−1, play according to s[0] from period t onward. Since z specifies

an intended action profile for every possible initial sequence of stage games (and random

signals), this description fully specifies a strategy profile.

As in the earlier proof, we just need to check the incentives of player 1 at any history

ht where a deviation has not yet occurred. Fix any environment E = (G0, G1, . . .) such

that ht is consistent with E. Let at
′
, for each t′ ≥ t, be the actions specified by z in

this environment (which may depend on the already-realized signals ω0,...,t, as well as the
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random future signals). If player 1 conforms to s, then the payoff starting at ht from

conforming is

(1− δ)

(
∞∑
t′=t

δt
′−tEt[u(at

′
)]

)
. (A.2)

If player 1 deviates from s, then subsequent play transitions to s[0] and so the payoff from

t + 1 onward is given by U(E−(t+1)). Therefore, the payoff from deviating optimally, as

measured from ht, is

(1− δ)û(at) + δU(E−(t+1)) = (1− δ)

(
û(at) +

∞∑
t′=t+1

δt
′−tû(a(Gt′))

)
. (A.3)

Rearranging (5.5) tells us exactly that (A.2) is greater than or equal to (A.3). Hence,

deviating is never profitable, in any environment.

Proof of Theorem 5.7. It is immediate from the proof of Theorem 5.6 that s[0] is a uni-

versal penal code for full outcomes.

Proof of Theorem 5.8. If z is not supportable in XPE, then by Theorem 5.5, one of its

constituent realizable outcomes is not either. By Theorem 5.4, there is some dynamic

ambiguity index for which this realizable outcome is not supportable in one-shot SPE,

and a fortiori the full outcome z is not either.

B Stationary versions of counterexamples

We sketch here constructions analogous to Examples 6.1 and 6.2, but retaining the sta-

tionary structure of the original model (including infinite horizon and discounting).

Example B.1. For this example, we assume one long-run player and no public random-

ization, as in Example 6.1. We assume G consists of five stage games as shown in Figure

6. The discount factor is δ = 1/10. (This makes the numbers simple, but similar exam-

ples can be constructed for δ arbitrarily close to 1.) For brevity, we avoid writing out

the games in traditional matrix form, and instead just directly name the action profiles

assumed to comprise A∗(G) and list the values of u and û, as in Figure 4(b).
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G1 :
a b v

u 0 0 10000
û 0 4 10000

G2 :
c d e w

u 0 60 110 10000
û 50 70 110 10000

G3 :
f g x

u 0 100 10000
û 0 100 10000

G4 :
h i y

u 0 500 10000
û 0 500 10000

G5 :
j z

u 0 1000000
û 0 1000000

Figure 6: Stationary example of no universal penal code without public randomization.

There exists an XPE that supports the realizable outcome (c, i, j, j, j, . . .) (here we

suppress the list of stage games involved, for brevity). In particular, specify that if

“Nature deviates” by ever choosing a stage game different from that specified by the

outcome (and player 1 has not deviated in the past), then reward actions (v, w, x, y, z)

are played from then onward; if player 1 deviates from c in the first period, then the

worst stage-Nash actions (a, e, f, h, j) are played subsequently. All other deviations can

be ignored since there are no short-run gains.

There exists an XPE that supports the realizable outcome (d, g, j, j, j, . . .). If Nature

ever deviates, use reward actions as above; if player 1 deviates from d in the first period,

then use the worst stage-Nash actions in all subsequent periods.

These, in turn, can be used to support two different realizable outcomes that start with

b being played in G1 in period 0. First, we can support (b, e, f, j, j, j, . . .) by specifying

that reward actions are to be played if Nature deviates, and a deviation from b by player

1 is punished as follows: in period 1, if the stage game drawn is G2, we commence

the (d, g, j, j, j, . . .) equilibrium, and otherwise we simply play worst stage-Nash in every

period. It is straightforward to check that this deters the deviation to b in every possible

environment (note that there are several cases to check depending when the environment

first differs from the proposed outcome).

Second, we can support (b, e, h, j, j, j, . . .) by specifying that reward actions are to be

played if Nature deviates, and a deviation from b by player 1 is punished as follows: in

period 1, if G2 is drawn, then we commence the (c, i, j, j, j, . . .) equilibrium, and otherwise

we play worst stage-Nash in every period.

Finally, we claim there is no XPE punishment s that can support both the (b, e, f, j, j, j, . . .)

and (b, e, h, j, j, j, . . .) outcomes, thus showing nonexistence of an optimal penal code in

this environment. Indeed, to be an effective deterrent, s would have to give a total payoff

of at most 63 in both environments (G2, G3, G5, G5, G5, . . .) and (G2, G4, G5, G5, G5, . . .).
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We show that no XPE s can have this property.

Evidently, if G2 is drawn initially then either c or d must be played. Suppose that c

is played. In the continuation environment (G3, G5, G5, . . .), the total payoff needs to be

at most 630. This means that play should begin with f or g, and j must be played for at

least the next three periods. But this in turn means that if the continuation environment

turns out to be instead (G3, G5, G5, G5, G3, G3, G3, . . .), then the total payoff is at most

(1 − δ)(100 + (δ4 + δ5 + · · · ) · 10000) = 91, which is not enough reward to prevent the

deviation from c in the preceding period. Correspondingly, if s begins by playing d in

G2, then the continuation in environment (G4, G5, G5, G5, . . .) needs to have payoff at

most 90. It therefore needs to begin with h followed by at least three copies of j. This

means that if the continuation environment is instead (G4, G5, G5, G5, G3, G3, . . .) then

this continuation has payoff no more than 1, which means it cannot prevent the deviation

from d in the initial period.

4

Example B.2. We now restore public randomization but consider two long-run players.

We build on Example 6.2, using the ideas of Example B.1 to extend to a stationary

environment. The possible stage games are shown in Figure 7. We again assume the

discount factor is δ = 1/10 (for both players).

G1 :

q r
a 0, 0 0, 0
b 1, 0 0, 0
c 0, 0 10000, 10000

G2 :

s t u
d 10, 10 0, 0 0, 0
e 0, 0 0, 0 10000, 10000

G3 :

v w x
f 0, 0 0, 0 0, 0
g 0, 0 100, 0 0, 0
h 0, 0 0, 0 30000, 10000

G4 :

y z
i 0, 0 10000, 0
j 0, 10000 10000, 10000

Figure 7: Stationary example of no universal penal code with two long-run players.

We will use the term “reward” for the high-payoff profile in each stage game (cr, eu, hx, jz),

which is always stage Nash, and “punishment” for bq, ds, fv, iy, which achieves the lowest

payoff for player 1 among stage-Nash profiles.

Let ss be the XPE that always plays the punishment action profile. Deviations are

simply ignored. This is an XPE since it plays a stage Nash in every period and deviations
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do not affect future play.

Let st be the XPE that does the following: If G2 is drawn in the initial period, then

dt is to be played. If player 2 does not deviate from t, then in the next period, cr, eu, hx,

or jy is to be played depending on the stage game (i.e. the reward profile, except that

we play jy instead of jz in G4); and after that, the punishment profile is played in all

subsequent periods. If 2 does deviate in the initial period, then the punishment profile is

played in all subsequent periods. If the initial stage game is not G2, then we simply play

the punishment profile in every period. All deviations are ignored except deviation by 2

in the initial period as described above. Note that this is an XPE: it specifies stage Nash

in every period, except in the initial period if G2 is drawn, but the punishment the next

period is sufficient to deter 2 from deviating to s.

Now, we can use these to support two different (deterministic) realizable outcomes that

begin with aq being played inG1 in period 0. First, the realizable outcome (aq, ds, gw, fv, fv, fv, . . .)

can be supported as follows. If Nature deviates, play reward profiles forever. Deviations

by players are ignored unless they bring a short-run gain, as usual. So we need only

worry about deviation by player 1 to b in period 0, and we specify that this deviation is

punished by switching to ss. We can check that this punishment deters the deviation in

every environment (as in Example B.1, there are cases to check depending when the stage

games first diverge from those in the target outcome).

Second, the realizable outcome (aq, ds, iy, iy, iy, . . .) can be supported by specifying

that a deviation by Nature is followed with reward profiles, while a deviation by player 1

in period 0 is punished by following with st. Again, this punishment deters the deviation

in all environments (with several cases to check).

Finally, we cannot support both (aq, ds, gw, fv, fv, fv, . . .) and (aq, ds, iy, iy, iy, iy, . . .)

using the same XPE s to punish player 1 for a period-0 deviation in both cases. Such an

XPE would have to give a payoff to player 1 of at most 9 in the environment (G2, G3, G3, G3, . . .)

and at most 0 in the environment (G2, G4, G4, G4, . . .). The latter implies that in the ini-

tial period, in G2, only action profiles with payoffs (0, 0) can be played with positive

probability (accounting for the ability to use public randomization). However, player 2

needs to be guaranteed a total payoff at least 9 in environment (G2, G3, G3, G3, . . .), since

she can get this much by myopically deviating in the initial period. This means that in

this environment, s has to give player 1 an expected payoff of at least 27, because 1’s

payoff is always at least three times 2’s payoff (in the initial period this holds because

both are getting payoff 0, as argued above, and in subsequent periods it holds because

every action profile in G3 satisfies this relation). This contradicts the requirement that
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1’s payoff from s in this environment should be at most 9.

4
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