
Manuscript submitted to The Econometrics Journal , pp. 1–28.

Testing overidentifying restrictions with many
instruments and heteroskedasticity using regularized

Jackknife IV

Marine Carrasco† and Mohamed Doukali‡

†Department of Economics, University of Montreal, CP 6128,
succ Centre Ville, Montreal, QC H3C3J7, Canada.

E-mail: marine.carrasco@umontreal.ca
‡ Department of Economics, McGill University, and Centre interuniversitaire

de recherche en analyse des organisations (CIRANO), Montreal, Canada.

E-mail: mohamed.doukali@mail.mcgill.ca

Summary This paper proposes a new overidentifying restrictions test in a linear
model when the number of instruments (possibly weak) may be smaller or larger than
the sample size n or even infinite in a heteroskedastic framework. The proposed J
test combines two techniques: the Jackknife method and the regularization technique
which consists in stabilizing the projection matrix. We theoretically show that our new
test achieves the asymptotically correct size in the presence of many instruments. The
simulation results demonstrate that our modified J statistic test has better empirical
properties in small samples than existing J tests. We also propose a regularized F-test
to assess the strength of the instruments, which is robust to heteroskedasticity and
many instruments.
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1. INTRODUCTION

When the number of the instruments grows, it is well known that the conventional J
test for overidentifying restrictions performs poorly. It was shown that the asymptotic
behavior of the conventional J test of Hansen (1982) gives a limit distribution which is
not standard when the number of instruments or moment conditions is very large (see
Kunitomo et al. (1983) and Burnside and Eichenbaum (1996)). Here, we focus on linear
models with many instruments.
We propose a modified version of the J test which remains valid in presence of many
(semi-)weak instruments and when the error is heteroskedastic. We construct our pro-
posed test by using regularization to compute the inverse involved in the projection
matrix P , instead of using the usual projection matrix (see Carrasco et al. (2007) for
a review on inverse problems). For that purpose, we apply the Tikhonov regularization
method, which is also known as the ridge regression. It depends on a tuning or regular-
ization parameter α. To compute the residual of the regression, we replace the unknown
regression coefficient by the regularized Jackknife IV estimator (RJIVE) proposed by
Carrasco and Doukali (2017). We show that our test has correct asymptotic size pro-
vided that the regularization parameter α goes to zero at a certain rate which depends
on the strength of the instruments. Interestingly, no restrictions are imposed on the num-
ber of instruments which can be larger or smaller than the sample size. In practice, the
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tuning parameter, α, is chosen so that it minimizes the cross-validation approximation
of the mean squared error (MSE) derived in Carrasco and Doukali (2017). Our Monte
Carlo study shows that our proposed J test performs favorably compared to other exist-
ing J tests. Indeed, its empirical size remains close to the theoretical one even when the
number of instruments is large and its power is large.
We also develop a new test to assess the strength of the instruments. This test based on
Jackknife and regularization is robust to many instruments and heteroskedasticity of the
error. Following Stock and Yogo (2005), the critical value is selected so that the bias of
the Jackknife estimator does not exceed 10%.
Other regularization techniques could have been used in this framework such as the
Landweber-Fridman technique which is an iterative method or the principal compo-
nent which consists in selecting the eigenvectors associated with the largest eigenvalues.
Carrasco (2012) used those regularization techniques to estimate a linear model in the
presence of many instruments in a consistent and efficient way. Carrasco and Doukali
(2017) proposed a new estimator which they called the regularized Jackknife instrumen-
tal variable estimator (RJIVE) when the number of available instruments is very large
in linear models.
There are many studies related to this paper. Lee and Okui (2012) proposed a mod-
ification of the Sargan (1958)’s test of overidentifying restrictions in a homoskedastic
framework when the number of instruments L grows with the sample size n. They es-
tablished the asymptotic null distribution of their proposed test statistic and studied its
local power under some regularity conditions. Anatolyev and Gospodinov (2011) pro-
posed a modification of the Anderson-Rubin (AR) test and of the conventional J test
for overidentifying restrictions in linear models with homoskedasticity assumption under
many instruments asymptotics. They consider an alternative way to compute the critical
values of the chi-squared distribution. In a recent paper, Carrasco and Tchuente (2018)
propose to use regularization techniques to construct a robust Anderson Rubin (AR)
test in linear models when the number of instruments is large. Their inference relies on
a new restricted efficient boostrap method and simulated Monte Carlo test. The closest
paper to our approach is Chao et al. (2014), where they propose a new version of the
J test that is robust to many instruments and heteroskedasticity. Their test is based on
subtracting out the diagonal terms in the numerator of the test statistic. They consider
the heteroskedasticity robust version of the Fuller (1977) estimator of Hausman et al.
(2012). Here, we consider instead the regularized Jackknife instrumental variable estima-
tor (RJIVE). We choose this estimator because of its good properties (see Carrasco and
Doukali (2017) for more details) and we implement the Tikhonov technique to stabilize
the projection matrix P that appears in the numerator of the test statistic in order to
improve the accuracy of the overidentifying restrictions test. The advantage of the regu-
larization is that it permits to handle the case where the number of instruments exceeds
the sample size.
Our F-test for weak instruments is closely related to a recent paper by Mikusheva and
Sun (2020) who propose a pre-test for weak identification which also uses Jackknife and
is robust to many instruments and heteroskedasticity. However, it does not rely on regu-
larization and hence needs to restrict the number of instruments to be smaller than the
sample size.
The remainder of this paper is organized as follows. Section 2 describes the model and
the test statistic. Section 3 establishes asymptotic results. Section 4 reports Monte Carlo
simulation results. In Section 5, we propose a regularized F-test for weak instruments.
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Empirical applications are illustrated in section 6. Section 7 concludes. All of the proofs
are provided in the appendix.

2. MODEL, ESTIMATOR, AND TEST STATISTIC

This section presents the model, the estimator, and the regularized J test.
Consider the linear IV regression model:

yi = X ′iδ0 + εi (2.1)

Xi = Υi + Ui (2.2)

i = 1, . . . ,n. The vector of interest is δ0 which is a p × 1 vector for some fixed p. yi is
the scalar outcome variable. The vector Υi is the optimal instrument, which is typically
unknown. We assume that yi and Xi are observed but the Υi is not and E(Xiεi) 6= 0.
The estimation will be based on a sequence of instruments Zi = Z(τ ; νi) where νi is a
vector of exogenous variables and τ is an index taking countable values.
For the estimation of δ0, we consider the Tikhonov Jackknife estimator proposed in
Carrasco and Doukali (2017) because of its good properties relative to other existing
IV estimators in the presence of many instruments. First we recall the expression of
the Jackknife estimator (JIVE) proposed by Angrist et al. (1999) when the number of
instruments is finite.

δ̂ = (Υ̂′X)−1(Υ̂′Y ) (2.3)

= (

n∑
i=1

Υ̂iX
′
i)
−1

n∑
i=1

Υ̂iyi (2.4)

The leave-one-out estimator Υ̂i is defined as Υ̂i = Z ′iπ̂−i, where π̂−i = (Z ′Z−ZiZ ′i)−1(Z ′X−
ZiX

′
i) is the OLS coefficient from running a regression of X on Z using all but the ith

observation.
The JIVE estimator can alternatively be written as:

δ̂ = (

n∑
i=1

π̂′−iZiX
′
i)
−1

n∑
i=1

π̂′−iZiyi (2.5)

with

π̂′−iZi = (X ′Z(Z ′Z)−1Zi − PiiXi)/(1− Pii) =
∑n
j 6=i PijXj/(1− Pii)

where P is a n×n matrix defined as P = Z(Z ′Z)−1Z ′ and Pij denotes the (i,j)
th

element
of P .
Then, the JIVE estimator is given by:

δ̂ = Ĥ−1
n∑
i6=j

XiPij(1− Pjj)−1yj ,

where Ĥ =
∑n
i 6=j XiPij(1−Pjj)−1X ′j , and

∑
i 6=j denotes the double sum

∑
i

∑
j 6=i. When

the number of the instruments is large, the inverse of Z ′Z needs to be regularized because
it is singular or nearly singular.
Now let us suppose that the number of moment conditions is finite or countable infinite.
Here are some examples of Zi.
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- If Zi = νi where νi is a L-vector of exogenous variables with a fixed L, then Z(τ ; νi)
denotes the τth element of νi.
- Z(τ ; νi) = (νi)

τ−1 with τ ∈ N , thus we have an infinite countable sequence of instru-
ments.
We note that, unlike the other existing test statistics, the number of moment conditions
is not restricted and may be smaller or larger than the sample size.
The expression of the Tikhonov Jackknife IV estimator δ̂α is

δ̂α = Ĥ−1
n∑
i 6=j

XiP
α
ij(1− Pαjj)−1yj , (2.6)

Ĥ =

n∑
i 6=j

XiP
α
ij(1− Pαjj)−1X ′j (2.7)

where Pα is a n× n matrix defined as

Pα = Z(Z ′Z + αI)−1Z ′, (2.8)

and Pαij denotes the (i, j)th element of Pα. The Tikhonov Jackknife estimator depends
on a regularization term α. In practice, we choose α that minimizes the mean square
error (MSE) as in Carrasco and Doukali (2017).

Remark 2.1. It is useful to write the RJIVE as

δ̂α = Ĥ−1
n∑

i,j=1

XiC
α
jiyj , (2.9)

where Ĥ =
∑n
i,j=1XiC

α
jiX

′
j, and Cα = (Cαij) =

{
Pαij

1−Pαii
if i 6= j

Cαii = 0 if i = j
. Then, we ob-

tain:

√
n(δ̂α − δ0) =

(
X ′Cα′X

n

)−1(
X ′Cα′ε√

n

)
. (2.10)

The test statistic.
Chao et al. (2014) proposed a modified J statistic with many instruments based on the
heteroskedasticity-robust version of the Fuller (1977) estimator, which is known as HFUL
estimator. Their test statistic takes the form:

JCHNSW =
ε̂′P ε̂−

∑n
i=1 Piiε̂

2
i√

V̂
+ L (2.11)

with

V̂ =
ε̂(2)′P (2)ε̂(2)−

∑n
i=1 P

2
iiε̂

4
i

tr(P )
=

∑n
i 6=j ε̂

2
iP

2
ij ε̂

2
j

L

where L is the number of instruments, P is the projection matrix, ε̂i = yi − X ′i δ̂,
ε̂(2) = (ε̂21, ...., ε̂

2
n), P (2) is the n-dimensional square matrix with ijth component equal

to P 2
ij . Note that the numerator of the test statistic,

∑n
i 6=j ε̂iPij ε̂j , is the numerator of the

traditional Sargan test without the observation i. The denominator is a heteroskedastic
consistent estimator of the variance of

∑n
i 6=j ε̂iPij ε̂j . The test rejects the null hypothesis
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when JCHNSW is greater than the critical value of a chi-squared distribution with L− p
degrees of freedom. Chao et al. (2014), Anatolyev and Gospodinov (2011) and Lee and
Okui (2012) have proposed tests that allow for many instruments but they impose that
the number of moment conditions L cannot be larger than n, which is not the case in
our present work.
In this paper, we assume that the number of moment conditions L is large relatively to
n. The inverse of Z ′Z needs to be stabilized because it is nearly singular or even not
invertible whenever L ≥ n. The main contribution is the use of the Tikhonov regulariza-
tion method to stabilize the inverse of (Z ′Z) in presence of many instruments. Let Pα

be defined as (2.8) when the number of instruments is finite and as (7.16) in Appendix
A when the number of instruments is infinite. We note here that the Tikhonov technique
involves a tuning parameter α. The case α = 0 corresponds to the case without regular-
ization. We obtain P 0 = P = Z(Z ′Z)†Z, where † denotes the Moore-Penrose generalized
inverse. The regularization parameter needs to go to zero at a certain rate characterized
in Section 3.
To describe our proposed test statistic, let Pα(2) be the n-dimensional square matrix

with (i, j) element equal to (Pαij)
2
.

The test statistic we propose is

JTikh =
ε̂′Pαε̂−

∑n
i=1 P

α
ii ε̂

2
i√

V̂
+ tr(Pα) (2.12)

with

V̂ =
ε̂(2)′Pα(2)ε̂(2)−

∑n
i=1 (Pαii )

2
ε̂4i

tr(Pα)
=

∑n
i6=j ε̂

2
i (P

α
ij)

2
ε̂2j

tr(Pα)
, (2.13)

where ε̂i = yi − X ′i δ̂α where δ̂α is the regularized Jackknife estimator of Carrasco and
Doukali (2017). It will be shown in the next section that JTikh follows asymptotically
a chi-squared with tr(Pα) − p degrees of freedom. Let qr(τ) be the τth quantile of chi-
squared distribution with r degrees of freedom. We reject the null hypothesis of our test
with the asymptotic rejection frequency β if JTikh ≥ qtr(Pα)−p(1− β).
Our test has the same form as Chao et al. (2014) test with the projection matrix P
replaced by the regularized projection matrix Pα and the number of instruments L
replaced by the trace of Pα, i.e tr(Pα).

3. ASYMPTOTIC DISTRIBUTION

This section presents the asymptotic theory under which we establish the limiting be-
haviour of our proposed test statistic in the presence of many moment conditions. We
consider many weak instruments asymptotic as in Chao et al. (2014).
Let K be the covariance operator defined in Appendix A. For a finite number of instru-
ments, K = Z ′Z/n.

Assumption 3.1. (i) The operator K is nuclear. (ii) There exists a constant C̄ such that
Pαii ≤ C̄ < 1, i = 1, ..., n.

Assumption 3.1 (i) is the same as in Carrasco (2012). Condition (i) means that the
eigenvalues of the covariance operator K are summable. Condition (ii) is reminiscent of
Assumption 1 in Chao et al. (2014): “for some C̄ < 1, Pii < C̄, i = 1, ..., n“. However it
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is much less restrictive. Indeed, Pii < C̄ < 1 implies that
∑
i
Pii
n = L

n < 1, L =rank(Z),
which restricts the number of instruments. Our condition Pαii ≤ C̄ < 1 implies that

trace(Pα) =
∑
i qi < n, which implies a condition on α, where qj =

λ2
j

λ2
j+α

, and λj are

the eigenvalues of K. Recall that from Carrasco (2012)
∑
i qi = O( 1

α ). So Assumption
(ii) implies 1

αn < 1.
The next assumption allows for the presence of many weak instruments. A measure of
the strength of the instruments is the concentration parameter, which can be seen as a
measure of the information contained in the instruments. If one could approximate the
reduced form Υ by a sequence of instruments Z, so that X = Z ′π+u where E[u2|Z] = σ2

u,
the concentration parameter would be given by

µ2
n = π′Z′Zπ

σ2
u

.

The following assumption generalizes this notion.

Assumption 3.2. Υi = Snfi/
√
n where Sn = Ŝndiag(µ1n, . . . , µpn) such that Ŝn is a

p×p bounded matrix, the smallest eigenvalue of ŜnŜ
′
n is bounded away from zero, for each

j, either µjn =
√
n (strong identification) or

µjn√
n
→ 0 (weak identification). Moreover

µn = min
1<j<p

µjn → ∞ and 1/(
√
αµ2

n) → 0, α → 0. Also there is a constant C̄ such that

||
∑n
i=1 fif

′
i/n|| ≤ C̄ and λmin(

∑n
i=1 fif

′
i/n) ≥ 1/C̄, a.s.n.

Assumption 3.2 allows for both strong and weak instruments. If µjn =
√
n, the instrument

j is strong. If µ2
jn is growing slower than n, this leads to a weak identification as that of

Chao and Swanson (2005). fi defined in Assumption 3.2 is unobserved and has the same
dimension as the infeasible optimal instrument, Υi. Then fi can be seen as a rescaled
version of this optimal instrument.
An illustration of Assumption 3.2 is as follows. Let us consider the simple linear model
yi = zi1δ1 + δ0pxi2 + εi, where zi1 is an included instruments and xi2 is an endogenous
variable. Suppose that xi2 is a linear combination of the included instrumental zi1 and
an unknown excluded instruments zip, i.e xi2 = π1zi1 + ( µn√

n
)zip. The reduced form is:

Υi=

(
zi1
xi2

)
=

(
zi1

π1zi1 + ( µn√
n

)zip

)
=

(
1 0
π1 1

) (
1 0
0 µn√

n

) (
zi1
zip

)
with

Ŝn =

(
1 0
π1 1

)
, µjn =

{ √
n , j = 1
µn , j = 2

, with µn√
n
→ 0, and fi =

(
zi1
zip

)
.

Assumption 3.3. There is a constant C > 0 such that (ε1, U1), ..., (εn, Un) are indepen-
dent, with E[εi] = 0, E[Ui] = 0, E[εiΥi] = 0, E[ε2i ] < C, E[||Ui||2] ≤ C, V ar((εi, U

′
i)
′) =

diag(Ωi, 0), and λmin(
∑n
i=1 Ωi/n) ≥ 1/C.

Note that (εi, Ui) are independent but not necessarily identically distributed. This as-
sumption allows for heteroskedasticity but requires the second moment of the distur-
bances to be bounded. It also imposes uniform nonsingularity of the variance of the
reduced form disturbances.

Assumption 3.4. There exists a πL such that
∑n
i=1 ||fi − πLZi||2/n→ 0.
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Assumptions 3.1 and 3.4 imply that the structural parameters are identified asymptoti-
cally. Although Assumption 3.4 implies that fi belongs to the closure of the linear span
of instruments, it does not imply that fi is a finite linear combination of the instruments.

Assumption 3.5. There is a constant C > 0 such that, with probability one,
∑n
i=1 ||fi||4/n2 →

0, E[ε4i ] ≤ C and E[||Ui||4] ≤ C.

Assumption 3.5 can be found in Chao et al. (2014). It simplifies the asymptotic theory
in the sense that certain terms vanish asymptotically.

Assumption 3.6. α goes to zero and 1/(αµ2
n)→ C for a finite C.

Note that Assumptions 3.1, 3.2, and 3.6 imply some restrictions on α, namely α needs
to go to zero but not too fast.
Define σ2

i = E[ε2i ], Hn =
∑
i fif

′
i/n, Ωn =

∑
i fif

′
iσ

2
i /n,

Ψn = S−1
n

∑n
i 6=j(P

α
ij)

2(E[UiU
′
i ]σ

2
j (1− Pjj)−2

+E[Uiεi](1− Pii)−1
E[Ujεj ](1− Pjj)−1

)S′−1
n .

Theorem 3.1. Suppose that Assumptions 3.1-3.6 are satisfied. Then,

V
−1/2
n (δ̂α − δ0)

d→ N (0, Ip), where Vn = H−1
n (Ωn + Ψn)H−1

n .

Proof: See the proof in Carrasco and Doukali (2017) (Theorem 2).

Remark 3.1. As in Chao et al. (2012), the term Ψn in the asymptotic variance of δ̂α

accounts for the presence of many instruments. The order of this term is 1
αµ2

n
. So if

1
αµ2

n
→ 0, the term Ψn vanishes asymptotically and the asymptotic variance becomes

Vn = H−1
n ΩnH

−1
n .

Theorem 3.2. Let qtr(Pα)−p(1− β) be the (1− β) quantile of a chi-square distribution

with tr(Pα) − p degrees of freedom. If assumptions 3.1-3.6 are satisfied then Pr(T̂ ≥
qtr(Pα)−p(1− β))→ β.

Proof: See Appendix.
Theorem 3.2 shows that, under the many instruments asymptotic condition, our mod-
ified J test achieves the correct asymptotic critical value β. We can see this test as a
specification test for the linear instrumental variables regression (see Hansen (1982)). If
the model is correctly specified, all the moment conditions (including the overidentifying
restrictions) should be close to zero. The novelty of our proposed test is that it is robust
to many instruments in the sense that we do not make any assumption on the number
of instruments.

Related Literature.
In the literature on testing overidentifying restrictions in linear models with many instru-
ments, the J test performs poorly when one increases the number of the instruments. To
deal with this problem, Anatolyev and Gospodinov (2011) proposed a new J test that
guarantees the asymptotical sizes, but their test is valid only under the homoskedas-
ticity assumption and when the number of instruments is a fraction of the sample size
0 < L

n < 1. Lee and Okui (2012) proposed a modification of the Sargan (1958) test in
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the presence of a large number of instruments. They gave the limiting behavior of their
proposed test statistic when the number of instruments and the sample size go to infinity,
but they still maintained the assumption 0 < L

n < 1. Donald et al. (2003) established the
asymptotic distribution of some parameter and specification tests in models when the
number of instruments L increases asymptotically, but again slowly relative to the sam-
ple size n. They called this assumption a moderately many instruments, but the validity
of their test fails in the case of the many instruments theory of Bekker (1994). Hahn
and Hausman (2002) developed a new specification test for the validity of instrumental
variables in linear models. They compared the difference of the forward (conventional)
2SLS estimator with the reverse 2SLS estimator under the assumption 0 < L

n < 1.
In this paper, we consider the case when the number of instruments is potentially very
large. The matrix Z ′Z may be nearly singular or possibly not invertible, so the projec-
tion matrix P = Z(Z ′Z)−1Z ′ that appears in the numerator of the J test may affect the
precision of the test statistic. Inverting Z ′Z can be seen as solving an ill-posed problem.
We implement the Tikhonov technique to stabilize the projection matrix. The advantage
of the regularization is that we can use all the available information and we do not need
to discard some instruments a priori. This yields an improved performance of the J test
as illustrated in the simulation study.

4. SIMULATION STUDY ON REGULARIZED J TEST

The goal of our simulation study is to demonstrate the finite-sample performance of the
proposed J test and compare it to other existing J tests. We consider a linear model with
one regressor and L instruments. The J statistic is interpreted as a test of the validity of
the L − 1 overidentifying restrictions. We investigate two cases: the homoskedastic and
heteroskedastic case.
Homoskedastic case. The data generating process (DGP) is generated as follows:

yi = δXi + εi

Xi = z′iπ + ui,

where (εi, ui)
iid∼ N(0,

∑
) and

∑
=

(
0.25 0.20
0.20 0.25

)
, zi

iid∼ N(0, IL), δ = 1, and π = 1√
L
ιL,

where ιL is an L-vector of ones.
Heteroskedastic case. Now the error is allowed to be heteroskedastic. We keep the same
DGP except that the errors are now generated as follows:

ui
iid∼ N(0, 1), εi = ρui +

√
1−ρ2

φ2+0.864 (φv1i + 0.86v2i), where v1i
iid∼ N(0, z2

1i) and v2i
iid∼

N(0, (0.86)2). We choose ρ = 0.3, φ = 0.2.
Tables 1 and 2 present the empirical size at 5% nominal level of J , JCorr, JCHNSW
and JTikh tests which denote respectively the conventional J test, the modified J test
proposed in Anatolyev and Gospodinov (2011), the modified J test proposed in Chao
et al. (2014), and the Tikhonov J test proposed in this paper. These results are based
on 5000 Monte Carlo replications. We consider values of λ = L

n equal to 0.2, 0.5, 0.8,
0.95, and 1.1. The values of λ are used in combination with sample sizes of 100, 200 and
500. For the Tikhonov J test, the regularization parameter α is chosen by minimizing1

the cross-validation approximation of the mean squared error (MSE) as in Carrasco and

1The regularization parameter α is searched over the interval [0.01,0.5] with 0.01 increment.
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Doukali (2017) (Equation 7):

Ŝ(α) = σ̂2
ε

1

n
‖X − CαX‖2 + σ̂2

uε

tr(Cα2)

n

where σ̂2
ε and σ̂2

uε are consistent estimators of σ2
ε and σ2

uε.
Description of the other tests:
Hansen-Sargan J test.
Let δ̂2SLS = (X ′PX)−1X ′Py be the two stage least-squared estimator and ε̂ = y −
Xδ̂2SLS . The Hansen-Sargan J test takes the following form:

J =
ε̂′P ε̂

σ̂2
, (4.14)

with σ̂2 = ε̂′ε̂/(n− p). The decision rule of Hansen-Sargan J test consists in rejecting the
null hypothesis if J exceeds the critical value given by the chi-square distribution with
L− p degrees of freedom.
Anatolyev and Gospodinov (2011)’s J test.

They suggest to use the same J statistic as in (4.14) with ε̂ = y−Xδ̂LIML where δ̂LIML is
the limited information maximum likelihood estimator of δ but the critical value is modi-
fied. The decision rule consists in rejecting H0 at the level β if J exceeds the quantile of a

chi-square distribution with L−p degrees of freedom and probability Φ(
√

1− L
nΦ−1(β)),

where Φ is the distribution function of the standard normal.
Chao et al. (2014)’s J test.

JCHNSW uses the test described in Equation (2.11) with ε̂ = y − Xδ̂HFULL, where

δ̂HFULL is the heteroskedasticity-robust version of the Fuller (1977) estimator of Haus-
man et al. (2012).

Table 1. Empirical rejection rates at 0.05 nominal level of the J test - homoskedastic case
λ 0.2 0.5 0.8 0.95 1.1

n = 100
J 0.059 0.017 0 0 NA
JCorr 0.069 0.056 0.049 0.049 NA
JCHNSW 0.072 0.057 0.049 0.057 NA
JTikh 0.073 0.066 0.070 0.062 0.063
n = 200
J 0.054 0.027 0 0 NA
JCorr 0.058 0.059 0.045 0.040 NA
JCHNSW 0.061 0.057 0.043 0.029 NA
JTikh 0.063 0.063 0.059 0.061 0.053
n = 500
J 0.058 0.044 0 0 NA
JCorr 0.055 0.057 0.047 0.039 NA
JCHNSW 0.056 0.056 0.047 0.031 NA
JTikh 0.056 0.062 0.053 0.050 0.048

Tables 1 and 2 report the empirical sizes of the four tests in the homoskedastic and the
heteroskedastic cases respectively. We remark that the performance of the conventional
J test is sensitive to the number of instruments, i.e. the rejection frequencies for the J
test is not close to the nominal value 5% throughout these tables. We also remark that
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Table 2. Empirical rejection rates at 5% nominal level of the J test - heteroskedastic case
λ 0.2 0.5 0.8 0.95 1.1

n = 100
J 0.049 0.007 0 0 NA
JCorr 0.062 0.047 0.070 0.045 NA
JCHNSW 0.067 0.050 0.073 0.098 NA
JTikh 0.069 0.058 0.046 0.046 0.050
n = 200
J 0.044 0.012 0 0 NA
JCorr 0.056 0.046 0.053 0.067 NA
JCHNSW 0.058 0.046 0.051 0.082 NA
JTikh 0.061 0.055 0.046 0.050 0.046
n = 500
J 0.045 0.016 0 0 NA
JCorr 0.054 0.052 0.046 0.067 NA
JCHNSW 0.054 0.051 0.045 0.064 NA
JTikh 0.057 0.052 0.049 0.047 0.046

Figure 1. Power curves of J tests, n=500, λ = 0.8, homoskedastic case.
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Figure 2. Power curves of J tests, n=500, λ = 0.8, heteroskedastic case.

Anatolyev and Gospodinov (2011)’s J test, the JCHNSW and the JTikh perform very
well when the number of instruments increase as long as L is not too large. However,
J , JCorr, and JCHNSW tests exhibit a large size distortion when λ is close to 1 (i.e. λ=
0.95), which is worse in the heteroskedastic case. Our regularized JTikh has almost cor-
rect size even with very large number of instruments. When the number of instruments
is larger than the sample size, the J , JCorr, and JCHNSW cannot be computed. Tables 1
and 2 show also that our proposed regularized J test performs well when L > n, in the
sense that the empirical rejection rates are close to the nominal value 5%.
To compare the powers of the different J tests, we consider the same design as before,
but the structural error is giving by: ξi = εi +ρzz1i. We allow the correlation ρz between
structural error and instrument to vary between 0 and 1. We choose n = 500 and λ = 0.8.
The rejection frequencies under the null hypothesis (ρz=0) are 0.047, 0.047, 0.053 respec-
tively for JCorr JCHNSW and the JTikh for homoskedastic case. For the heteroskedastic
case they are 0.046, 0.045, 0.049. The power curves (rejection frequencies) are plotted in
Figures 1 and 2. We see that JTikh statistic has clearly better power properties than the
JCorr and JCHNSW .
In conclusion, simulations suggest that the implementation of the Tikhonov regularization
can increase the power, while controlling for the size. Thus, the regularization provides
a correction to size distortions for the J test arising from the use of many instruments.

5. DETECTION OF WEAK INSTRUMENTS

In this section, we propose a regularized F-test to assess the strength of the instruments
in the first stage equation. We will consider the case where there is a single endogenous
regressor (case where δ is scalar) and we will use the notations xi and ui to emphasize
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the fact that Xi and Ui are scalar. The first stage equation is then

xi = Υi + ui = π′zi + ui

where Υi = π′zi and π is a L× 1 vector. When the number of instruments is countable
infinite, then

xi = 〈π (.) , zi (.)〉+ ui

where 〈, 〉 denotes the inner product in L2 (ω) for some pdf ω and π and zi are elements
of L2 (ω) (see Appendix A for more details). The remaining of the section will present
the test using vector notations.
First, we develop a test for H0 : π = 0. We propose a F-test robust to heteroskedasticity
and many instruments.

FTikh =

∑n
i=1

∑
j 6=i P

α
ijxixj√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
û2
i û

2
j

where û = (I − Pα)X = X − Zπ̂α, π̂α = (Z ′Z + αI)
−1
Z ′X is the ridge estimator of π.

Let

γ2 =
1
n

∑n
i=1

∑
j 6=i π̃

′ziP
α
ijz
′
j π̃√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
E (u2

i )E
(
u2
j

) .
Assumption 5.1. (a) Υi satisfies the condition∑n

i=1

∣∣∣∑j 6=i P
α
ijΥj

∣∣∣3(∑n
i=1

(∑
j 6=i P

α
ijΥj

)2

E (u2
i )

)3/2
→

n→∞
0.

(b) Let Υ (zi) ≡ Υi, Υ̂α (zi) ≡ π̂α′zi. Let D be the domain of the distribution of zi. Then,

sup
z∈D

∣∣∣Υ (z)− Υ̂α (z)
∣∣∣ P→ 0.

Assumption 5.1(a) is a Lyapunov’s condition needed in the proof of the asymptotic

normality of FTikh. Assumption 5.1(b) is used to show that
∑n
i=1

∑
j 6=i
(
Pαij
)2
û2
i û

2
j is

a consistent estimator of
∑n
i=1

∑
j 6=i
(
Pαij
)2
E
(
u2
i

)
E
(
u2
j

)
, once rescaled. It is satisfied

under some regularity conditions on Υ (.), see Carrasco, Florens, and Renault (2007) and
Hall and Horowitz (2007). Both conditions imply restrictions on the rate of convergence
of α depending on how regular (or smooth) the function Υ is.

Theorem 5.1. Let qγ (1− β) be the 1 − β quantile of a normal distribution with mean
γ2 and variance 1. Assume Assumption 3.1 and 3.7 hold, that ui is independent with
mean 0 and there exists a constant C > 0 such that E

(
u4
i

)
< C, and that α → 0 as n

goes to infinity. Under the weak instrument assumption π = π̃/
√
n, we have

Pr (FTikh ≥ qγ (1− β))→ β

as n goes to infinity.

Remark 5.1. 1. The expression of γ2 may seem complicated. However, it can be bounded
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by a simple expression. Using

1

n

n∑
i=1

∑
j 6=i

π̃′ziP
α
ijz
′
j π̃ =

1

n

n∑
i=1

π̃′ziz
′
i (Z ′Z + αI)

−1
∑
j 6=i

zjz
′
j π̃

≤ 1

n

n∑
i=1

π̃′ziz
′
iπ̃

= π̃′
(
Z ′Z

n

)
π̃.

We obtain

γ2 ≤
π̃′
(
Z′Z
n

)
π̃√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
E (u2

i )E
(
u2
j

) .
This upper bound is equal to

π̃′
(
Z′Z
n

)
π̃√

2V (ui)2 (tr (Pα2)−
∑n
i=1 P

α2
ii )

in the homoskedastic case. We recognize the usual concentration parameter normalized
by a term which is of the same order as

√
trPα, i.e. 1/

√
α.

2. The expression of the test statistic is similar to that of Mikusheva and Sun (2020)
(Equation 5). The main difference is in the numerator where they use a different esti-
mator of the variance based on cross-fit. They derive the joint distribution of the Wald
test on δ and the F-test in order to control the size of the two step procedure using the
F-test as pre-test. Here, we will not investigate the Wald test. Another difference with
Mikusheva and Sun (2020) is that we use regularization which permits to handle an ar-
bitrary number of instruments, while, in their paper, the number of instruments has to
be smaller than the sample size.
3. The term γ2 is nonnegative for L large enough so that the test can be treated as a
one-sided test.

An important question is which critical value to use. The critical value based on π = 0
(similarly on γ2 = 0) would be too small as it is well-known that the estimators of δ have
bad properties when π is close to zero. We follow Stock and Yogo (2005) and motivate
our choice of the critical value based on the bias. We wish that the absolute bias of the
Jackknife estimator does not exceed 10%. Here, we focus on JIVE2 estimator proposed
by Angrist, Imbens, and Krueger (1999) because it has a simpler expression than the
JIVE. The regularized version of the JIVE2 estimator is given by

δ̂JIV 2 =

 n∑
i=1

∑
j 6=i

Pαijxixj

−1
n∑
i=1

∑
j 6=i

Pαijxiyj .

To characterize the value of γ2 yielding a 10% bias, we need to restrict ourselves to the
case with normal errors and constant correlation.
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Assumption 5.2. (
εi
ui

)
∼ iidN

((
0
0

)
,

(
σεi σεui
σεui σui

))
and σεui/ (σεiσui) = ρ does not depend on i.

Ideally, we would like to compute the absolute bias:

B = lim
n→∞

∣∣∣E (δ̂JIV 2

)
− δ
∣∣∣ .

But caution is in order here because the JIVE estimator does not have any moments,
see Davidson and MacKinnon (2007). The regularization may help in that matter, for
instance Carrasco and Tchuente (2015) show that the regularized LIML estimator has
moments under certain conditions. However, it is not clear whether the regularized JIVE
estimator has moments. So instead of computing B, we compute the bias of the leading
terms of the distribution of δ̂JIV 2 − δ using an Edgeworth expansion similar to that of
Rothenberg (1984, p.920). Montiel Olea and Pflueger (2013) use a similar approach based
on Nagar approximation in the context of a finite number of weak instruments.

Theorem 5.2. Under the assumptions of Theorem 5.1 and assuming Assumption 5.2
holds, the asymptotic absolute bias based on the leading terms is given by

BLT =

∣∣∣∣ ργ4

∣∣∣∣
where ρ is the correlation between ui and εi.

Remark 5.2. 1. Interestingly, the asymptotic bias depends on α and the number of in-
struments, only through γ4.
2. The instruments will be deemed strong if they lead to a bias smaller than 10%. Given
|ρ| ≤ 1, we obtain a bias BLT ≤ 0.1 for γ2 =

√
10. This value of γ2 is an upper bound

and could be quite a bit smaller if ρ is small. We can deduce the critical value of the
FTikh with level 5% by adding γ2 to 1.64. If FTikh exceeds this critical value, 4.8, we can
conclude that the instruments are strong enough to lead to a reliable estimation of δ.
3. In the weak instrument literature, it is customary to consider the relative bias with

respect to the ordinary least-squares estimator (OLS), namely limn→∞

∣∣∣∣E(δ̂JIV 2)−δ
E(δ̂OLS)−δ

∣∣∣∣ to

determine the critical value for the F test. However, this ratio would depend on σu/σε
which is not estimable. Therefore, we use the absolute bias instead of relative bias. Stock
and Yogo (2005) mention that both measures can be used interchangeably.

As an illustration, we performed a small simulation. The model is as in (2.1) and (2.2)

with δ = 1, (εi, ui)
iid∼ N(0,Σ), Σ =

(
σ2
ε σεu

σεu σ2
u

)
, with σεu = 0.5, σ2

ε = 1, and σ2
u = 1

zi
iid∼ N(0, IL) and π = c√

n
ιL, where c is chosen such that the absolute bias is near to

0.1, and ιL is an L-vector of ones. We set the sample size n = 500, 800, and 1000 and
show the results in Table 3 for 1,000 Monte Carlo replications. We report the mean and
standard deviation of the proposed F-test, the rejection frequency of the proposed F-test,
the absolute mean bias of the JIVE estimator and of the OLS estimator, the parameter
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γ2, and the concentration parameter CP. The regularization parameter α is selected by
minimizing the MSE for the first simulation, then this value of α is kept fixed for the
other simulations. This chosen α may be too small in same cases explaining why the
standard deviation of FTikh is larger than 1. We find that the rejection frequency of the
F-test using our critical value is near to 5% at the 5% nominal level. Table 4 reports the
same statistics for two cases where γ2 is larger. We observe that our F test displays good
power in these cases.

Table 3. Simulations results when π = c√
n
ιL.

n L FTikh FTikh Rej freq OLS JIV E γ2 CP

mean st. bias bias

500 250 1.54 1.67 3.1% 0.76 0.108 1.29 30

800 450 1.42 1.73 3.2% 0.77 0.098 1.12 35

1000 800 1.51 1.95 5.4% 0.77 0.103 0.94 40

Table 4. Simulations results under the alternative

n L FTikh FTikh Rej freq OLS JIV E γ2 CP

mean st. bias bias

500 250 11.04 2.87 99.3% 0.58 0.02 9.91 230

800 450 9.56 2.52 98.3% 0.63 0.04 7.99 250

6. EMPIRICAL APPLICATIONS.

6.1. Institutions and Growth

We consider the empirical work of Hall and Jones (1999). In their paper, they argue that
the difference between output per worker across countries is mainly due to the differences
in institution and government policies - the so-called social infrastructure. They write
“Countries with corrupt government officials, severe impediments to trade, poor contract
enforcement, and government interference in production will be unable to achieve levels
of output per worker anywhere near the norms of western Europe, northern America,
and eastern Asia.” Their linear IV model is given as follows.

y = c+ δS + ε

S = b+ β′Z + u

where y is an n× 1 vector of log income per capita, S is n× 1 vector which is the proxy
for social infrastructure, c, b and δ are scalars. Z is an n×L matrix of instruments. Hall
and Jones (1999) use four instruments Z = (EnL,EuL,Lt, FR), where EnL is the frac-
tion of population speaking English at birth, EuL is the fraction of population speaking
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one of the five major European languages at birth, Lt is the distance from the equator,
and the geography-predicted trade intensity (FR). These instruments are intended to
capture the influences of colonial origin on current institutional quality. To address the
issue of weak identification, we increased the number of instruments from 4 to 38 by
including interactions and power functions2. The use of many instruments increased the
concentration parameter (a measure of the weakness of instruments) from µ̂2

n = 28.6 to
µ̂2
n = 80.05. We apply our proposed F−test to assess whether instruments are weak. We

find that the regularized F−test (58.76) is larger than the critical value 4.8, which means
that the instruments are strong enough. As the regularized JIVE estimator corrects the
bias due to the use of many instruments, the JIVE should provide better point estimates.
We use a sample of 79 countries for which no data were imputed3.
Table 5 reports the test statistics corresponding to different J tests. We find that the
conventional J test, the Jcorr, and the JCHNSW are larger than chi-square critical value,
which means that the null hypothesis is rejected. However, our proposed Tikhonov J
test is smaller than the chi-square critical value, then we can conclude that the model is
correctly specified.
It may seem surprising that the JTikh is so much smaller than other J tests. One pos-
sible explanation is the presence of heteroskedasticity. The errors are found to be het-
eroskedastic according to the F test (p-value= 0). The J and JCorr are not robust to
heteroskedasticity which may explain the difference of conclusions. However, JCHNSW
is robust to heteroskedasticity. An explanation for the difference between JCHNSW and
JTikh may be that the matrix Z ′Z is very ill-conditioned. The condition number4, which
is the ratio of the largest eigenvalue on the smallest eigenvalue of Z ′Z/n, is an indicator
on how ill-posed the matrix Z ′Z/n. The higher the condition number, the more impre-
cise the inverse of Z ′Z/n will be. The smallest possible condition number is 1 (which
corresponds to the identity matrix). In this application, the condition number is equal
to 3.42 1016.

Table 5. Estimated J statistics for the Institutions’ Model.
J JCorr JCHNSW JTikh

J statistic 361.56 361.56 144.11 22.93
Note: The chi-square critical value= 52.19 (level=5% and the degree of freedom=37). Critical value of
the Jcorr= 47.22 (level=5% and the degree of freedom=37). tr(Pα) = 15.51, the critical value for the

JTikh = 23.04.

2The 38 instruments used in our regression are derived from Z and are given by Z =
[Z,Z.2, Z.3, Z.4, Z.5, Z.6, Z.7, Z.8, Z(:, 1)?Z(:, 2), Z(:, 1)?Z(:, 3), Z(:, 1)?Z(:, 4), Z(:, 2)?Z(:, 3), Z(:, 2)?Z(:
, 4), Z(:, 3)?Z(:, 4)]. All the instruments are standardized, which means that the instruments are divided
with their standard deviation. Such standardizations are customary whenever regularizations are used,
see for instance De Mol et al. (2008), and Stock and Watson (2012).
3The data were downloaded from Charles Jones’ webpage: https://

web.stanford.edu/vchadj/HallJones400.asc
4The condition number is scale invariant.



Regularized J test 17

6.2. Elasticity of intertemporal substitution

The elasticity of intertemporal substitution (EIS) in consumption is crucial in macroeco-
nomics and finance. We follow the specification in Yogo (2004)5 who analyzes the problem
of the estimation of the EIS using the linearized Euler equation.
The estimated model is as follows:

∆ct+1 = τ + ψrf,t+1 + ξt+1 (6.15)

rf,t+1 = µ+
1

ψ
∆ct+1 + ηt+1, (6.16)

where ψ is the EIS, ∆ct+1 is the consumption growth at time t + 1, rf,t+1 is the real
return on a risk free asset, τ and µ are constants, and ξt+1 and ηt+1 are the innovations
to consumption growth and asset return respectively.
Yogo (2004) explains how weak instruments have been the cause of the EIS empirical puz-
zle. He shows that, using conventional IV methods, the estimated EIS, ψ, is significantly
less than 1 but its reciprocal is not different from 1. Carrasco and Tchuente (2015) esti-
mate EIS using regularized LIML estimator. They increase the number of instruments6

from 4 to 18 by including interactions and power functions. As a result, the concentration
parameters is increased in the following way: from µ̂2

n = 11.06 to µ̂2
n = 68.77 for model

(6.14) and from µ̂2
n = 9.66 to µ̂2

n = 33.54 for model (6.15). We apply our regularized
F−test, and find that its value7 is larger than the critical value 4.8 for models (6.14)
and (6.15). We conclude that the instruments are strong enough. Moreover, the point
estimates are similar to those used for macro calibrations.
According to Table 6, the J statistic of the conventional J test, the Jcorr, and JCHNSW
are larger than chi-square critical value, which means that they reject the null hypoth-
esis. However, the Tikhonov J test is smaller than the chi-square critical value. We can
conclude that the model is correctly specified according to our proposed test, so the
instruments used in the model seem to be exogenous. The difference in the conclusion
may be due to the fact that the matrix Z ′Z is very ill-conditioned. In this application,
the condition number is equal to 5.06 105. Moreover, the F test for heteroskedasticity
reveals that the errors are heteroskedastic (p-value=0).

Table 6. Estimated J statistics for the EIS Model.
J JCorr JCHNSW JTikh

ψ 34.46 34.84 32.68 1.09
1/ ψ 48.79 56.30 41.48 0.49

Note: The chi-square critical value= 26.29 (level=5% and the degree of freedom=16). Critical value of
the Jcorr= 25.72 (level=5% and the degree of freedom=16). tr(Pα) = 1.88, the critical value for

JTikh = 3.53.

5Yogo (2004) used quarterly data from 1947.3 to 1998.4 for the United States.
6The instruments used by Yogo (2004) are: the twice lagged, nominal interest rate (r), inflation (i),

consumption growth (c) and log dividend rate (p). We denote this bloc of instruments by Z=[r, i, c,
p]. The 18 instruments used in our regression are derived from Z and are given by Z = [Z,Z.2, Z.3, Z(:
, 1) ? Z(:, 2), Z(:, 1) ? Z(:, 3), Z(:, 1) ? Z(:, 4), Z(:, 2) ? Z(:, 3), Z(:, 2) ? Z(:, 4), Z(:, 3) ? Z(:, 4)].
7The value of our proposed F−test for weak instruments is 7.14 for model (6.15) and 99.02 for model

(6.16).
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7. CONCLUSION

The J test for overidentifying restrictions is a popular test to assess the correct specifi-
cation of a model. However, it exhibits important size distortions when the number of
instruments is large. This paper proposes a new J test, based on Tikhonov regularization
and studies its properties under many possibly weak instruments and heteroskedasticity.
Simulations results show that the proposed test performs very well. Its empirical size
is close to the theoretical size and its power is greater than that of competing tests.
We recommend the use of this modified J test in applied studies because of its ease
of implementation and its robustness. We also propose a regularized F-test robust to
heteroskedasticity and many instruments to assess the strength of instruments.

ACKNOWLEDGEMENTS

The authors are grateful for comments from Victor Chernozhukov, Prosper Dovonon,
Benoit Perron, and a referee. We benefited from discussions with participants at the
CIREQ Econometrics Conference in honor of Jean-Marie Dufour, the economics de-
partment at Pompeu Fabra University, and the SCSE2018. Carrasco thanks SSHRC for
partial financial support.

REFERENCES

Anatolyev, S. and N. Gospodinov (2011). Specification testing in models with many
instruments. Econometric Theory 27 (02), 427–441.

Angrist, J., G. Imbens, and A. Krueger (1999). Jackknife instrumental variables estima-
tion. Journal of Applied Econometrics (14), 57–67.

Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental
variable estimators. Econometrica: Journal of the Econometric Society , 657–681.

Burnside, C. and M. Eichenbaum (1996). Small-sample properties of gmm-based wald
tests. Journal of Business & Economic Statistics 14 (3), 294–308.

Carrasco, M. (2012). A regularization approach to the many instruments problem. Jour-
nal of Econometrics 170 (2), 383–398.

Carrasco, M. and M. Doukali (2017). Efficient estimation using regularization jackknife
estimator. Annals of economics and statistics (128), 109–149.

Carrasco, M., J.-P. Florens, and E. Renault (2007). Linear inverse problems in structural
econometrics estimation based on spectral decomposition and regularization. Handbook
of econometrics 6, 5633–5751.

Carrasco, M. and G. Tchuente (2015). Regularized liml for many instruments. Journal
of Econometrics 186 (2), 427–442.

Carrasco, M. and G. Tchuente (2018). Regularization based Anderson Rubin tests for
many instruments. Mimeo.

Chao, J. C., J. A. Hausman, W. K. Newey, N. R. Swanson, and T. Woutersen (2014). Test-
ing overidentifying restrictions with many instruments and heteroskedasticity. Journal
of Econometrics 178, 15–21.

Chao, J. C. and N. R. Swanson (2005). Consistent estimation with a large number of
weak instruments. Econometrica 73 (5), 1673–1692.

Chao, J. C., N. R. Swanson, J. A. Hausman, W. K. Newey, and T. Woutersen (2012).
Asymptotic distribution of jive in a heteroskedastic iv regression with many instru-
ments. Econometric Theory , 42–86.



Regularized J test 19

De Mol, C., D. Giannone, and L. Reichlin (2008). Forecasting using a large number of
predictors: Is bayesian shrinkage a valid alternative to principal components? Journal
of Econometrics 146 (2), 318–328.

Donald, S. G., G. W. Imbens, and W. K. Newey (2003). Empirical likelihood estima-
tion and consistent tests with conditional moment restrictions. Journal of Economet-
rics 117 (1), 55–93.

Fuller, W. A. (1977). Some properties of a modification of the limited information esti-
mator. Econometrica: Journal of the Econometric Society , 939–953.

Hahn, J. and J. A. Hausman (2002). A new specification test for the validity of instru-
mental variables. Econometrica 70 (1), 163–189.

Hall, P. and J. Horowitz (2007). Methodology and convergence rates for functional linear
regression. The Annals of Statistics 35 (1), 70–91.

Hall, R. E. and C. I. Jones (1999). Why do some countries produce so much more output
per worker than others? The quarterly journal of economics 114 (1), 83–116.

Hansen, L. P. (1982). Large sample properties of generalized method of moments esti-
mators. Econometrica: Journal of the Econometric Society , 1029–1054.

Hausman, J. A., W. K. Newey, T. Woutersen, J. C. Chao, and N. R. Swanson (2012).
Instrumental variable estimation with heteroskedasticity and many instruments. Quan-
titative Economics 3 (2), 211–255.

Kress, R. (1999). Linear integral equations, volume 82 of applied mathematical sciences.
Kunitomo, N., K. Morimune, and Y. Tsukuda (1983). Asymptotic expansions of the

distributions of the test statistics for overidentifying restrictions in a system of simul-
taneous equations. International Economic Review , 199–215.

Lee, Y. and R. Okui (2012). Hahn–hausman test as a specification test. Journal of
Econometrics 167 (1), 133–139.

Mikusheva, A. and L. Sun (2020). Inference with many weak instruments. Working
paper .

Sargan, J. D. (1958). The estimation of economic relationships using instrumental vari-
ables. Econometrica: Journal of the Econometric Society , 393–415.

Stock, J. H. and M. W. Watson (2012). Generalized shrinkage methods for forecasting
using many predictors. Journal of Business & Economic Statistics 30 (4), 481–493.

Yogo, M. (2004). Estimating the elasticity of intertemporal substitution when instru-
ments are weak. Review of Economics and Statistics 86 (3), 797–810.

APPENDIX

A. Presentation of the Tikhonov Regularization.

Here we consider the general case where the estimation is based on a sequence of instru-
ments Zi = Z(τ ; νi) with τ ∈ N . Assume τ lies in a space Ξ (Ξ = {1, .., L} or Ξ = N) and
let ω be a positive measure on Ξ. Let K be the covariance operator of the instruments
from L2(ω) to L2(ω) such that:

(Kg)(τ) =

L∑
l=1

E(Z(τ, νi)Z(τl, νi))g(τl)ω(τl).

where L2(ω) denotes the Hilbert space of square integrable functions with respect to
ω. The inner product in L2(ω) denoted 〈v, w〉 is

∑
l vlwlω(l). K is supposed to be a
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nuclear operator which means that its trace is finite. The operator can be estimated by
Kn defined as:

Kn : L2(ω)→ L2(ω)

(Kng)(τ) =

L∑
l=1

1

n

n∑
i=1

(Z(τ, νi)Z(τl, νi))g(τl)ω(τl).

If the number of instruments L is large relatively to n, inverting the operator K is
considered as an ill-posed problem, which means that the inverse is not continuous.
To solve this problem, we need to stabilize the inverse of Kn using regularization. A
regularized inverse of an operator K is defined as: Rα : L2(ω) → L2(ω) such that
limα→0RαKρ = ρ,∀ρ ∈ L2(ω), where α is the regularization parameter (see Kress
(1999) and Carrasco et al. (2007)). Let λj and φj , j = 1... be respectively the eigenvalues
(ordered in decreasing order) and the orthogonal eigenfunctions of Kn.
Tikhonov regularization
We consider the Tikhonov regularization scheme.

(Kα
n )
−1

= (K2
n + αI)

−1
Kn.

(Kα
n )
−1
r =

∞∑
j=1

λj
λ2
j + α

〈r, φj〉φj .

where α > 0 and I is the identity operator. The Tikhonov regularization is related to
ridge regularization. Ridge method was first proposed to improve the properties of the
OLS estimator in regressions with many regressors. The aim was to stabilize the inverse of
XX ′ by replacing XX ′ by XX ′+αI. However, the reduction of variance was obtained at
the expense of a bias relative to OLS estimator. In the IV regression, the 2SLS estimator
has already a bias and the use of many instruments usually increases its bias. So, the
Tikhonov regularization tends to reduce the bias of the IV estimator (at the expense of
a larger variance).
Let (Kα

n )−1 be the regularized inverse of Kn and Pα a n×n matrix as defined in Carrasco
(2012) by

Pα = T (Kα
n )−1T ∗ (7.16)

where T : L2(ω)→ Rn with
Tg = (< Z1, g >,< Z2, g >

′, ...., < Zn, g >
′)′

and T ∗ : Rn → L2(ω) with
T ∗v = 1

n

∑n
j Zjvj

such that Kn = T ∗T and TT ∗ is a n × n matrix with typical element
<Zi,Zj>

n . Let φj ,
λ1 ≥ λ2 ≥ ..... ≥ 0, j = 1, 2, ... be the orthonormalized eigenfunctions and eigenvalues of
Kn and ψj the eigenfunctions of TT ∗. We then have Tφj =

√
λjψj and T ∗ψj =

√
λjφj .

For v ∈ Rn, Pαv =
∑∞
j q(α, λ2

j ) < v, ψj > ψj where q(α, λ2
j ) =

λ2
j

λ2
j+α

.

Remark that the case when α = 0 corresponds to no regularization Thus we have
q(0, λ2

j ) = 1 and P 0 = Z(Z ′Z)
+

Z ′, where (.)+ represents the Moore-Penrose general-
ized inverse.
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B. Proofs

Our proof of Theorem 3.2 follows the same steps as the proofs of Theorem 1 in Chao et al.
(2014). However, our results are not a straightforward application of Chao et al. (2014).
In their paper, there is no regularization. Instead, the number of instruments plays the
role of the regularization parameter and the matrix P = Z (Z ′Z)

−1
Z ′ is a projection

matrix. Their results rely often on the properties of projection matrices. In our paper, the
regularization parameter is α and the regularized matrix Pα =

∑
j q(α, λ

2
j ) < v, ψj > ψj

is not a projection matrix any longer. So we need to derive some properties on the
elements of Pα in Lemma 7.1 below. This lemma corresponds to Lemma A0 of Carrasco
and Doukali (2017).

Lemma 7.1. If Assumptions 3.1-3.3 are satisfied, then :
i) Pαii < 1 for α > 0,

ii)
∑
i6=j (Pαij)

2
= O(1/α) ,

iii)
∑
i6=j P

α
ij = O(1/α).

iv)
∑
i,l,k,r P

α
ikP

α
klP

α
lrP

α
ri = O(1/α).

v)
∑
i,j (Pαij)

4
= O(1/α).

Proof of Lemma 7.1. The proof can be found in Carrasco and Doukali (2017).
Let us define some notations that will be used in the following Lemmas. For random
variables8 Wi, Yi, ηi, let w̄i = E[Wi], ȳi = E[Yi], η̄i = E[ηi], W̃i = Wi − w̄i and
Ỹi = Yi−ȳi, η̃i = ηi−η̄i, w̄n = E[(W1, ....,Wn)′], ȳn = E[(Y1, ...., Yn)′], µ̄W = maxi≤n|w̄i|,
µ̄Y = maxi≤n|ȳi|, µ̄η = maxi≤n|η̄i|, σ̄2

Wn
= maxi≤nvar(Wi), σ̄

2
Yn

= maxi≤nvar(Yi),
σ̄2
η = maxi≤nvar(ηi).

Define the norm: ||W ||2L2
=
√
E[W 2], and let M, CS, T denote the Markov inequality,

the Cauchy-Schwarz inequality, and the triangle inequality, respectively. In the sequel,
C denotes a constant, which may be different from place to place, δ̂ denotes the regu-
larized Jackknife IV estimator previously denoted δ̂α (the dependence in α is hidden for
simplicity).

Lemma 7.2. Suppose the following conditions hold:
(i) Pαv = Z(Z ′Z + αI)−1Z ′v or

∑∞
j q(α, λ2

j ) < v, ψj > ψj as defined in Appendix A.

(ii)(W1n, U1, ε1), ..., (Wnn, Un, εn) are independent, and D1,n :=
∑n
i=1E[WinW

′
in] satis-

fies ||D1,n|| < C,
(iii) E[W ′in] = 0, E[Ui] = 0, E[εi] = 0, and there is a constant C such that E[||Ui||4] ≤ C
and E[ε4i ] ≤ C,
(iv)

∑n
i=1E[||Win||4]→ 0 a.s.

(v) α→ 0 as n→∝.
Then for:
D2,n := α

∑n
i 6=j(P

α
ij)

2(E[UiU
′
i ]E[ε2j ] + E[Uiεi]E[U ′jεj ])

and any sequences c1n and c2n with ||c1n|| ≤ C, ||c2n|| ≤ C, and
∑
n = c′1nD1,nc1n +

c′2nD2,nc2n > 1/C, it follows that:

Ȳn =
∑
n
−1/2

(c′1n
∑n
i=1Wi,n +

√
αc′2n

∑n
i 6=j Ui(P

α
ij)

2εj)
d−→ N(0, 1)

8Note that here Wi and ηi are arbitrary scalar variables that will take various forms in the sequel.
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Proof of Lemma 7.2. This is Lemma A2 of Carrasco and Doukali (2017) when Z and Υ
are not random.

Lemma 7.3. If assumptions 3.1-3.3 are satisfied then:
(i) S−1

n

∑n
i6=j XiP

α
ijX

′
jS
−1′

n = Op(1).

(ii) S−1
n

∑n
i6=j XiP

α
ijεj = Op(1 + 1√

αµn
).

Proof of Lemma 7.3. Consider first (i): We have S−1
n

∑n
i 6=j XiP

α
ijX

′
jS
−1′

n =
∑n
i 6=j fiP

α
ijf
′
j/n+

op(1).
We also have

∑n
i6=j fiP

α
ijf
′
j/n = f ′Pαf/n −

∑n
i fif

′
iP

α
ii/n, and both f ′Pαf/n ≤ f ′f/n

and∑n
i fif

′
iP

α
ii/n ≤ f ′f/n are bounded, giving the first conclusion.

(ii) holds by Lemma A5 of Carrasco and Doukali (2017) and (i) of Lemma 7.1.

Lemma 7.4. If δ̂
p−→ δ, E[||Xi||2] ≤ C, E[ε4i ] ≤ C, ε1, ...., εn are mutually independent,

and either α→ 0 or maxi≤n P
α
ii → 0 then:

α
∑n
i 6=j (Pαij)

2
ε̂2i ε̂

2
j − α

∑n
i 6=j (Pαij)

2
σ2
i σ

2
j
P→ 0.

Proof of Lemma 7.4 . By δ̂
p−→ δ we have ||δ̂− δ||2 ≤ ||δ̂− δ|| with probability one. Denote

di = 2|εi|||Xi||+ |||Xi||2, we have:

ε̂i = yi −X ′i δ̂

= X ′iδ + εi −X ′i δ̂

= εi −X ′i(δ̂ − δ).

It follows that:
ε̂2i = ε2i − 2εiX

′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

Then:
ε̂2i − ε2i = −2εiX

′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

|ε̂2i − ε2i | ≤ 2|εX ′i(δ̂ − δ)|+ |(δ̂ − δ)′XiX
′
i(δ̂ − δ)|.

|ε̂2i − ε2i | ≤ 2|εi| ||Xi|| ||δ̂ − δ||+ |||Xi||2||δ̂ − δ||2 ≤ di||δ̂ − δ||.
Also by (ii) of Lemma 7.1,

∑n
i6=j (Pαij)

2
= O(1/α),

αE[
∑n
i 6=j (Pαij)

2
didj ] ≤ αC

∑n
i 6=j P

2
ij ≤ C,

αE[
∑n
i 6=j (Pαij)

2
ε2i dj ] ≤ C.

Then by M,
α
∑n
i 6=j (Pαij)

2
didj = Op(1) , α

∑n
i6=j (Pαij)

2
ε2i dj = Op(1) ,

Therefore, for V̂n = α
∑n
i 6=j (Pαij)

2
ε̂2i ε̂

2
j , Ṽn = α

∑n
i6=j (Pαij)

2
ε2i ε

2
j , we have

|V̂n − Ṽn| ≤ α
∑n
i 6=j (Pαij)

2|ε̂2i ε̂2j − ε2i ε2j |
|V̂n − Ṽn| ≤ α||δ̂ − δ||2

∑n
i 6=j (Pαij)

2
didj + 2α||δ̂ − δ||

∑n
i 6=j (Pαij)

2
ε2i dj → 0.

Let Vn = α
∑n
i 6=j (Pαij)

2
σ2
i σ

2
j and vi = ε2i − σ2

i . We have:∑n
i 6=j (Pαij)

2
ε2i ε

2
j −

∑n
i 6=j (Pαij)

2
σ2
i σ

2
j = 2

∑n
i 6=j (Pαij)

2
viσ

2
j +

∑n
i6=j (Pαij)

2
vivj .

We note that E[v2
i ] ≤ E[ε4i ] ≤ C, so we have:

E[(α
∑n
i6=j (Pαij)

2
viσ

2
j )2] = α2

∑
i

∑
i 6=j
∑
k 6=i (Pαij)

2
(Pαik)

2
E[v2

i ]σ2
i σ

2
k

E[(α
∑n
i6=j (Pαij)

2
viσ

2
j )2] ≤ Cα2

∑
i

∑
j (Pαij)

2∑
k (Pαik)

2
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We note that Pαij = Pαji, and
∑
i

∑
j (Pαij)

2∑
k (Pαik)

2
= O(1/α) by Lemma 7.1 (vi). So:

E[(α
∑n
i 6=j (Pαij)

2
viσ

2
j )2] = Cα→ 0.

Also by CS, maxij(P
α
ij)

2 ≤ maxii(Pαii )
2
, so that:

E[(α
∑n
i 6=j (Pαij)

2
vivj)

2] = 2α2
∑n
i 6=j (Pαij)

4
E[v2

i ]E[v2
j ] ≤ Cα2

∑n
i 6=j (Pαij)

4 ≤ Cα2O(1/α)→
0. Because of (v) of Lemma 7.1.

Then by T and M we have Ṽn − Vn
p−→ 0. The conclusion then follows by T.

Proof of Theorem 3.2.

√
α

n∑
i6=j

ε̂iP
α
ij ε̂j =

√
α

n∑
i 6=j

[εi −X ′i(δ̂ − δ)]Pαij [εj −X ′j(δ̂ − δ)]

=
√
α

n∑
i 6=j

εiP
α
ijεj + (δ̂ − δ)′Sn ×

√
α[S−1

n

n∑
i 6=j

XiP
α
ijX

′
jS
′−1
n ]S′n(δ̂ − δ)

+ 2
√
α(δ̂ − δ)′Sn[S−1

n

n∑
i 6=j

XiP
α
ijεj ].

If 1/(αµ2
n) → C < ∞, then by Theorem 2 of Carrasco and Doukali (2017) we have

S′n(δ̂ − δ) = Op(1). Then by Lemma 7.3 we have:

√
α

n∑
i 6=j

ε̂iP
α
ij ε̂j =

√
α

n∑
i 6=j

εiP
α
ijεj + op(1)

Next, note that σ2
i ≥ C by Assumption 3.3 and Pαii ≤ C < 1 by Assumption 3.1 so that:

Vn = α

n∑
i6=j

σ2
i (Pαij)

2
σ2
j > C(α

n∑
i,j

(Pαij)
2 −

n∑
i

(Pαii )
2
)

= Cα

n∑
i

Pαii (1− Pαii ) > C(1− C) > 0.

Moreover, E[ε4i ] ≤ C and,

E[

n∑
i 6=j

(εiP
α
ijεj)

2
] = E[

∑
i 6=j

∑
k∈{i,j}

PαikP
α
jkεiε

′
jε

2
k +

n∑
i 6=j

Pαijε
2
i ε

2
j

= E[2

n∑
i6=j

(Pαijε
2
i ε

2
j )] = 2

n∑
i 6=j

Pαijσ
2
i σ

2
j = 2tr(Pα)Vn

It follows from Lemma 7.2 with Win = 0, c1n = 0, c2n = 1, Ui = εi that :∑n
i 6=j εiP

α
ijεj√

2tr(Pα)Vn

d−→ N(0, 1).

Next by Theorem 1 of Carrasco and Doukali (2017), we have δ̂
p−→ δ. Moreover by Lemma

7.1 (iii), tr(Pα) = O( 1
α ). Hence, by Lemma 7.4, V̂n − Vn

p−→ 0. Then by Vn bounded and

bounded away from zero,
√

Vn
V̂n
→ 1. Therefore by Slutsky theorem,
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∑n
i6=j ε̂iP

α
ij ε̂j√

2tr(Pα)V̂n

=

∑n
i6=j εiP

α
ijεj√

2tr(Pα)V̂n

+
op(1)

2V̂n
=

√
Vn

V̂n

∑n
i 6=j εiP

α
ijεj√

2tr(Pα)Vn
+ op(1)

d−→ N(0, 1)

Next note that T̂ ≥ q(tr(Pα)−p)(1− β) if and only if∑n
i 6=j ε̂iP

α
ij ε̂j√

2tr(Pα)V̂n

≥
q(tr(Pα)−p(1− β)− tr(Pα)√

2tr(Pα)

Using the fact that tr(Pα) = O( 1
α ), we have, as α → 0, q(tr(Pα)−p)(1 − β) − (tr(Pα) −

p)/
√

2(tr(Pα)− p)→ q(1−β) where q(1−β) is the 1−β quantile of the standard normal
distribution, also, we have:√

(tr(Pα))− p
tr(Pα)

(
q(tr(Pα))−p(1− β)− (tr(Pα)− p)√

2tr(Pα)− p
)− p√

2tr(Pα)
→ q(1− β).

The conclusion now follows.

Proof of Theorem 5.1.
We will use the following two limiting distributions.
First, using Lemma A2 of Chao et al (2012) and results on Pα from Carrasco and Doukali
(2017), we have ∑n

i=1

∑
j 6=i P

α
ijuiuj√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
E (u2

i )E
(
u2
j

) d→ N (0, 1) .

Next, using Lindeberg theorem and Lyapunov’s condition which is satisfied by Assump-
tion 5.1(a), we have ∑n

i=1

∑
j 6=i P

α
ijuiΥj√∑n

i=1

(∑
j 6=i P

α
ijΥj

)2

E (u2
i )

d→ N (0, 1) .

Moreover, ∑
i 6=j

Pαijxixj =
∑
i 6=j

PαijΥiΥj +
∑
i 6=j

Pαijuiuj + 2
∑
i6=j

PαijuiΥj .

We have ∑
i 6=j P

α
ijuiΥj√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
E (u2

i )E
(
u2
j

)
=

∑
i 6=j P

α
ijuiΥj√∑n

i=1

(∑
j 6=i P

α
ijΥj

)2

E (u2
i )

√∑n
i=1

(∑
j 6=i P

α
ijΥj

)2

E (u2
i )√

2
∑n
i=1

∑
j 6=i
(
Pαij
)2
E (u2

i )E
(
u2
j

) .
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Given C > E
(
u2
i

)
> 0, it suffices to study

∑n
i=1

(∑
j 6=i P

α
ijΥj

)2

2
∑
i 6=j
(
Pαij
)2 =

∑
i 6=j
(
Pαij
)2

Υ2
j

2
∑
i 6=j
(
Pαij
)2 +

∑n
i=1

(∑
j 6=i P

α
ijΥj

)(∑
l 6=i P

α
ilΥl

)
∑
i 6=j
(
Pαij
)2 (7.17)

= O

(
1

n

)
+O

 γ2√∑
i6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

)
 (7.18)

= o (1) (7.19)

because Υj = z′j π̃/
√
n and the fact that

∑
i6=j
(
Pαij
)2

= O (1/α) by Lemma 7.1.

So we get

FTikh =

∑
i 6=j P

α
ijxixj√

2
∑
i 6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

)
√

2
∑
i 6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

)√
2
∑
i 6=j
(
Pαij
)2
û2
i û

2
j

where

∑
i6=j P

α
ijxixj√

2
∑
i6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

) = γ2 +

∑
i 6=j P

α
ijuiuj√

2
∑
i 6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

) + o (1) . (7.20)

Hence, the term on the l.h.s. of (7.20) minus γ2 converges to a normal with mean 0 and
variance 1.

Finally, we need to prove that

∑
i 6=j
(
Pαij
)2
û2
i û

2
j∑

i 6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

) P→ 1. (7.21)

The proof of (7.21) is done in two steps. First, we establish

∑
i 6=j
(
Pαij
)2
û2
i û

2
j∑

i 6=j
(
Pαij
)2 −

∑
i6=j
(
Pαij
)2
u2
iu

2
j∑

i 6=j
(
Pαij
)2 P→ 0. (7.22)

Second, we show that

∑
i6=j
(
Pαij
)2
u2
iu

2
j∑

i 6=j
(
Pαij
)2 −

∑
i 6=j
(
Pαij
)2
E
(
u2
i

)
E
(
u2
j

)∑
i 6=j
(
Pαij
)2 P→ 0. (7.23)
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Using Pαij = Pαji, we have∑
i 6=j

(
Pαij
)2
û2
i û

2
j −

∑
i6=j

(
Pαij
)2
u2
iu

2
j = 4

∑
i 6=j

(
Pαij
)2
ui

(
Υi − Υ̂α

i

)
uj

(
Υj − Υ̂α

j

)
+4
∑
i6=j

(
Pαij
)2
ui

(
Υi − Υ̂α

i

)(
Υj − Υ̂α

j

)2

+
∑
i 6=j

(
Pαij
)2 (

Υi − Υ̂α
i

)2 (
Υj − Υ̂α

j

)2

+4
∑
i6=j

(
Pαij
)2
ui

(
Υi − Υ̂α

i

)
u2
j

+2
∑
i6=j

(
Pαij
)2 (

Υi − Υ̂α
i

)2

u2
j .

Consider the first term on the r.h.s.:∣∣∣∑i 6=j
(
Pαij
)2
ui

(
Υi − Υ̂α

i

)
uj

(
Υj − Υ̂α

j

)∣∣∣∑
i 6=j
(
Pαij
)2 ≤

∑
i6=j
(
Pαij
)2 |ui| |uj | ∣∣∣Υi − Υ̂α

i

∣∣∣ ∣∣∣Υj − Υ̂α
j

∣∣∣∑
i 6=j
(
Pαij
)2

≤
(

sup
z∈D

∣∣∣Υ (z)− Υ̂α (z)
∣∣∣)2

∑
i6=j
(
Pαij
)2 |ui| |uj |∑

i 6=j
(
Pαij
)2

= op (1)Op (1)

because of Assumption 5.1(b) and the fact that E |ui| < C, so that

E

[∑
i 6=j
(
Pαij
)2 |ui| |uj |∑

i 6=j
(
Pαij
)2

]
< C

and hence
∑
i6=j(P

α
ij)

2|ui||uj |∑
i6=j(Pαij)

2 = Op (1) by Markov inequality. Handling the other terms in

the same fashion yields the result (7.22).
Now, we turn our attention towards (7.23). Let vi = u2

i − E
(
u2
i

)
. We have∑

i 6=j

(
Pαij
)2
u2
iu

2
j −

∑
i 6=j

(
Pαij
)2
E
(
u2
i

)
E
(
u2
j

)
=
∑
i 6=j

(
Pαij
)2
vivj + 2

∑
i 6=j

(
Pαij
)2
viE

(
u2
j

)
.

Then, using E
(
v2
i

)
≤ E

(
u4
i

)
< C,

E

[∑i 6=j
(
Pαij
)2
vivj∑

i 6=j
(
Pαij
)2

]2
 =

2
∑
i6=j
(
Pαij
)4
E
(
v2
i

)
E
(
v2
j

)(∑
i 6=j
(
Pαij
)2)2

< 2C2

∑
i 6=j
(
Pαij
)4(∑

i6=j
(
Pαij
)2)2 → 0

as α → 0 because
∑
i 6=j
(
Pαij
)4

= O (1/α) and
∑
i 6=j
(
Pαij
)2

= O (1/α) from Lemma 7.1.
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Moreover,

E

[∑i 6=j
(
Pαij
)2
viE

(
u2
j

)∑
i6=j
(
Pαij
)2

]2
 =

∑
i

∑
j 6=i
∑
k 6=i
(
Pαij
)2

(Pαik)
2
E
(
v2
i

)
E
(
u2
j

)
E
(
u2
k

)(∑
i 6=j
(
Pαij
)2)2

≤ C3

∑
i

∑
j 6=i
∑
k 6=i
(
Pαij
)2

(Pαik)
2(∑

i 6=j
(
Pαij
)2)2

which goes to 0 as α goes to zero. Then, by the Triangle inequality and Markov inequal-
ity, the result (7.23) follows. This completes the proof of Theorem 5.1.

Proof of Theorem 5.2.

Let Ξn =
√

2
∑
i 6=j
(
Pαij
)2
E (u2

i )E
(
u2
j

)
.

δ̂JIV 2 − δ =

∑
i6=j P

α
ij (Υi + ui) εj∑

i 6=j P
α
ij (Υi + ui) (Υj + uj)

=
Ξ−1
n

∑
i 6=j P

α
ijΥiεj + Ξ−1

n

∑
i 6=j P

α
ijuiεj

γ2 + 2Ξ−1
n
∑
i 6=j P

α
ijuiΥj + Ξ−1

n
∑
i6=j P

α
ijuiuj

.

It follows that

γ2
(
δ̂JIV 2 − δ

)
=

A+B

1 + D
γ2 + E

γ2

where A = Ξ−1
n

∑
i 6=j P

α
ijΥiεj , B = Ξ−1

n

∑
i 6=j P

α
ijuiεj , D = 2Ξ−1

n

∑
i 6=j P

α
ijuiΥj , and

E = Ξ−1
n

∑
i 6=j P

α
ijuiuj . Instead of doing an expansion for n large, we do the expansion

for γ2 large. When γ2 is large enough, we can use the following expansion:

γ2
(
δ̂JIV 2 − δ

)
= (A+B)

(
1− D

γ2
− E

γ2
+

1

γ4
(D + E)

2

)
+
R

γ6

where R is a polynomial of normal distributions and hence satisfies condition (3.8) of
Rothenberg (1984) with γ2 replacing 1/n and can be neglected.

Moreover, we observe that, because of the independence assumption, E (A) = E (B) =
E (BD) = E (AE) = E((A+B)D2) = E((A+B)E2) = E(BDE) = 0. Therefore,

γ2E
(
δ̂JIV 2 − δ

)
can be approximated by

−E (AD)

γ2
− E (BE)

γ2
+

2E (ADE)

γ4
.
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E (BE)

γ2
=

1

γ2Ξ2
n

E

 n∑
i=1

∑
j 6=i

Pαijuiεj

 n∑
l=1

∑
k 6=i

Pαlkuluk


=

2

γ2Ξ2
n

n∑
i=1

E
(
u2
i

)∑
j 6=i

Pα2
ij E (εjuj)

=
2ρ

γ2Ξ2
n

n∑
i=1

E
(
u2
i

)∑
j 6=i

Pα2
ij E

(
u2
j

)
=

ρ

γ2

using E (εjuj) = ρE
(
u2
j

)
which follows from the joint normality assumption. This term

will be the dominant term as we will show below.
We have

E (AD)

γ2
=

2

γ2Ξ2
n

E

 n∑
i=1

∑
j 6=i

PαijεiΥj

 n∑
l=1

∑
k 6=i

PαlkulΥk


=

2

γ2Ξ2
n

n∑
i=1

E (εiui)

∑
j 6=i

PαijΥj

2

=
2ρ

γ2Ξ2
n

n∑
i=1

E
(
u2
i

)∑
j 6=i

PαijΥj

2

= o

(
ρ

γ2

)
by Equations (7.17), (7.18), and (7.19).

We have

E (ADE)

γ4
=

1

γ4Ξ3
n

E

 n∑
i=1

∑
j 6=i

PαijεiΥj

 n∑
l=1

∑
k 6=l

PαlkulΥk

 n∑
i′=1

∑
j′ 6=i′

Pαi′j′ui′uj′


=

2ρ

γ4Ξ3
n

n∑
i=1

E
(
u2
i

)∑
j 6=i

PαijΥj

∑
k 6=i

PαikE
(
u2
k

)∑
j′ 6=k

Pαkj′Υj′


=

2ρC2

γ4Ξ3
n

n∑
i=1

∑
j 6=i

PαijΥj

∑
k 6=i

Pαik

∑
j′ 6=k

Pαkj′Υj′


using the fact that E

(
u2
i

)
< C. For α small, the matrix Pα is almost idempotent and

the term E(ADE)
γ4 can be approximated by 2ρC2

γ2Ξ2
n

which is negligeable compared to ρ
γ2 .

So the bias of the dominant term is simply − ρ
γ4 . This completes the proof of Theorem

5.2.


