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Abstract

Many empirical questions concern target parameters selected through optimiza-

tion. For example, researchers may be interested in the effectiveness of the best

policy found in a randomized trial, or the best-performing investment strategy based

on historical data. Such settings give rise to a winner’s curse, where conventional

estimates are biased and conventional confidence intervals are unreliable. This

paper develops optimal confidence intervals and median-unbiased estimators that

are valid conditional on the target selected and so overcome this winner’s curse. If

one requires validity only on average over targets that might have been selected,

we develop hybrid procedures that combine conditional and projection confidence

intervals to offer further performance gains relative to existing alternatives.
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1 Introduction

A wide range of empirical questions involve inference on target parameters selected through

optimization over a finite collection of candidates. In a randomized trial considering

multiple treatments, for instance, one might want to learn about the true average effect

of the treatment that performed best in the experiment. In finance, one might want to

learn about the expected return of the trading strategy that performed best in a backtest.

Estimators that do not account for data-driven selection of the target parameter can be

badly biased, and conventional t-test-based confidence intervals may severely under-cover.

To illustrate the problem, consider inference on the true average effect of the treatment that

performed best in a randomized trial.1 Since it ignores the data-driven selection of the treat-

ment of interest, the conventional estimate for this average effect will be biased upwards.

Similarly, the conventional confidence interval will under-cover, particularly when the num-

ber of treatments considered is large. This gives rise to a form of winner’s curse, where follow-

up trials will be systematically disappointing relative to what we would expect based on

conventional estimates and confidence intervals. This form of winner’s curse has previously

been discussed in contexts including genome-wide association studies (e.g. Zhong and Pren-

tice, 2009; Xu et al., 2011; Ferguson et al., 2013) and online A/B tests (Lee and Shen, 2018).

This paper develops estimators and confidence intervals that eliminate the winner’s

curse. There are two distinct perspectives from which to consider bias and coverage. The

first requires validity conditional on the target selected, for example on the identity of the

best-performing treatment, while the second is unconditional and requires validity on av-

erage over possible target parameters. Conditional validity is more demanding but may be

desirable in some settings, for example when one wants to ensure validity conditional on the

recommendation made to a policy maker. Both perspectives differ from inference on the ef-

fectiveness of the “true” best treatment, as in e.g. Chernozhukov et al. (2013) and Rai (2018),

in that we consider inference on the effectiveness of the (observed) best-performing treatment

1Such a scenario seems to be empirically relevant, as a number of recently published randomized
trials in economics either were designed with the intent of recommending a policy or represent a direct
collaboration with a policy maker. For example, Khan et al. (2016) assess how incentives for property
tax collectors affect tax revenues in Pakistan, Banerjee et al. (2018) evaluate the efficacy of providing
information cards to potential recipients of Indonesia’s Raskin programme, and Duflo et al. (2018)
collaborate with the Gujarat Pollution Control Board (an Indian regulator tasked with monitoring
industrial emissions in the state) to evaluate how more frequent but randomized inspection of plants
performs relative to discretionary inspection. Baird et al. (2016) find that deworming Kenyan children
has substantial beneficial effects on their health and labor market outcomes into adulthood, and
Björkman Nyqvist and Jayachandran (2017) find that providing parenting classes to Ugandan mothers
has a greater impact on child outcomes than targeting these classes at fathers.
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in the sample rather than the (unobserved) best-performing treatment in the population.2

For conditional inference, we derive optimal median-unbiased estimators and equal-

tailed confidence intervals. We further show that in cases where the winner’s curse does

not arise (for instance because one treatment considered is vastly better than the others)

our conditional procedures coincide with conventional ones. Hence, our corrections do not

sacrifice efficiency in such cases.

An alternative approach to conditional inference is sample splitting. In settings with

independent observations, choosing the target parameter using one subset of the data and

constructing estimates and confidence intervals using the remaining subset ensures unbiased-

ness of estimates and validity of conventional confidence intervals conditional on the target

parameter. The split-sample target parameter is necessarily more variable than the full-data

target, however. Moreover, since only a subset of the data is used for inference, split-sample

procedures are inefficient within the class of procedures with the same target. In the supple-

ment to this paper we build on our conditional inference results to develop computationally

tractable confidence intervals and estimators that dominate conventional sample-splitting.

We next turn to unconditional inference. One approach to constructing valid uncondi-

tional confidence intervals is projection, applied in various settings by e.g. Romano and Wolf

(2005), Berk et al. (2013), and Kitagawa and Tetenov (2018a). To obtain a projection confi-

dence interval, we form a simultaneous confidence band for all potential targets and take the

implied set of values for the target of interest. The resulting confidence intervals have correct

unconditional coverage but, unlike our conditional intervals, are wider than conventional

confidence intervals even when the latter are valid. On the other hand, we find in simulation

that projection intervals outperform conditional intervals in cases where there is substantial

randomness in the target parameter, e.g. when there is not a clear best treatment.

Since neither conditional nor projection intervals are uniformly best from an uncon-

ditional perspective, we introduce hybrid estimators and confidence intervals that combine

conditioning and projection. These maintain most of the good performance of our con-

ditional approach in cases for which the winner’s curse does not arise, while improving on

conditional procedures in cases where these underperform, e.g. by limiting the maximum

length of hybrid intervals relative to projection intervals. In simulations calibrated to our

applications we find that hybrid intervals are typically shorter than both conditional and

projection intervals, often by a large margin.

2See Dawid (1994) for an early discussion of this distinction, and an argument in favor of inference
on the best-performing treatment in the sample.
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We derive our main results in the context of a finite-sample normal model with an

unknown mean vector and a known covariance matrix. This model can be viewed as

an asymptotic approximation to many different non-normal finite-sample settings. To

formalize this connection, we note, and prove in the appendix, that feasible versions of our

procedures, based on non-normal data and plugging in estimated variances, are uniformly

asymptotically valid over a large class of data-generating processes.

We illustrate our results with two applications. The first uses data from Karlan and List

(2007) to conduct inference on the effect of the best-performing treatment in an experiment

studying the impact of matching incentives on charitable giving. Simulations calibrated

to these data show that conventional estimates ignoring selection are substantially upward

biased, while our corrections reduce bias and increase coverage. Applied to the original

Karlan and List (2007) data, our corrections suggest substantially less optimism about the

effect of the best-performing treatment than conventional approaches, with point estimates

below the lower bound of the conventional confidence intervals.

For our second application, we consider the problem of targeting neighborhoods based

on estimated economic mobility. In cooperation with the Seattle and King County public

housing authorities, Bergman et al. (2020) conduct an experiment encouraging housing

voucher recipients to move to high-opportunity neighborhoods, which are selected based on

census-tract level estimates of economic mobility from Chetty et al. (2018). We consider an

analogous exercise in the 50 largest commuting zones in the US, selecting top tracts based on

estimated economic mobility and examining conventional and corrected inference on the av-

erage mobility in selected tracts. Calibrating simulations to the Chetty et al. (2018) data, we

find that conventional approaches suffer from severe bias in many commuting zones. These

biases are reduced, but not eliminated, by the empirical Bayes corrections used by Chetty

et al. (2018) and many others in the applied literature. Intuitively, commonly-applied empir-

ical Bayes approaches correspond to a normal prior on unit-level causal effects conditional

on covariates. Bayesian arguments (discussed in Appendix E) imply that these methods

correct the winner’s curse when the normal prior matches the distribution of true effects,

but not in general otherwise. Turning to the original Chetty et al. (2018) data, our corrected

estimates imply lower mobility, and higher uncertainty, for selected tracts than conventional

approaches, but nonetheless strongly indicate gains from moving to selected tracts. Our

confidence intervals likewise suggest substantially higher uncertainty than empirical Bayes

credible sets, though we do not find a clear ordering between our bias-corrected point esti-

mates of economic mobility and the empirical Bayes point estimates of Chetty et al. (2018).
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The choice between conditional and unconditional inference methods is necessarily

context-specific, as it depends on the extent to which we care about validity conditional

on selecting a given target. We report results for both conditional and unconditional

approaches in each application, but view conditional inference as particularly natural for the

first application. In this setting the “winning” treatment is easily interpretable, raising the

question of what we can conclude conditional on identity of this treatment. In our second

application, by contrast, our primary goal is to assess the efficacy of targeting the top

third of census tracts in each commuting zone, with less focus on the precise collection of

tracts selected. We therefore view unconditional inference as more natural in this context.

It is important to emphasize that our goal is to evaluate the effectiveness of a rec-

ommended policy or treatment, taking the rule for selecting a recommendation as given,

rather than to improve the rule. Our procedures thus play a role similar to that of ex-post

policy evaluations, with the difference that we can produce estimates without waiting for

a policy to be implemented. Like ex-post evaluations, these estimates may be useful for a

variety of purposes, including understanding the true effectiveness of a selected policy and

forecasting the effects of future implementations. Our results are also useful in settings

where ex-post evaluation is possible, since comparison of our estimates with ex-post results

can shed light on whether differences between observed performance and conventional

ex-ante estimates can be explained solely by the winner’s curse.

Related Literature This paper is related to the literature on tests of superior predictive

performance (e.g. White (2000); Hansen (2005); Romano and Wolf (2005)). That literature

studies the problem of testing whether some strategy or policy beats a benchmark, while

we consider the complementary question of inference on the effectiveness of the estimated

“best” policy. Our conditional inference results combine naturally with the results of this

literature, allowing one to condition inference on e.g. rejecting the null hypothesis that

no policy outperforms a benchmark.

Our results build upon, and contribute to, the rapidly growing literature on selective

inference. Fithian et al. (2017) describe a general approach to constructing optimal condi-

tional confidence sets in a wide range of settings, while a rapidly growing literature including

e.g. Harris et al. (2016), Lee et al. (2016), Tian and Taylor (2018), and our own follow-up

work in Andrews et al. (2020b), works out the details of this approach in particular settings.

More specifically, this literature primarily focuses on inference after regressor selection in

the linear regression model using various model selection criteria, while Andrews et al.

(2020b) focuses on inference after estimating a break location in a break or threshold
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regression model. Like this literature, our analysis of conditional confidence intervals

examines the implications of the conditional approach in our setting. Our results are also

related to the growing literature on unconditional post-selection inference, including Berk

et al. (2013), Bachoc et al. (2020), and Kuchibhotla et al. (2020). This literature considers

analogs of our projection confidence intervals for inference following model selection (see

also Laber and Murphy, 2011). Recent work by Guo and He (2021) proposes tightening

projection confidence intervals in the context of a winner’s curse for selected subgroups

via a sequence of tuning parameters that drifts as the sample size grows.

Beyond the new setting considered, we make three main theoretical contributions

relative to the selective and post-selection inference literatures. First, when one only

requires unconditional validity, we introduce the class of hybrid inference and estimation

procedures. We find that hybrid procedures offer large gains in unconditional performance

relative both to conditional procedures and to existing unconditional alternatives.3 Two

of our own follow-up papers, Andrews et al. (2020b) and McCloskey (2020), adapt the

hybrid procedures we introduce here to different settings, relying on the theoretical results

established in this paper. Second, for settings where conditional inference is desired, we

observe that the same structure used in the literature to develop optimal conditional

confidence intervals also allows construction of optimal quantile unbiased estimators, using

results from Pfanzagl (1994) on optimal estimation in exponential families.4 Third, our

uniform asymptotic results are the first of their kind in the conditional inference literature.5

Finally, there is a distinct but complementary literature that studies inference on ranks

based on some measure of interest. For example, this literature allows one to form valid

confidence intervals for the identification of best performing unit, rather than for the

performance of the unit selected as best by the data. Conventional inference procedures

for these problems fail for similar reasons that give rise to a winner’s curse. Recent work

by Mogstad et al. (2020) overcomes this inference failure and studies, among other settings,

inference on ranks in neighborhood targeting, as in our second application.

In the next section, we begin by introducing the problem we consider and the techniques

3A related hybridization, combining conditional and unconditional inference, is used in Andrews et al.
(2019) to improve power for tests of parameters identified by moment inequalities.

4Eliasz (2004) previously used results from Pfanzagl (1994) to study quantile-unbiased estimation
in a different setting, targeting coefficients on highly persistent regressors.

5McCloskey (2020) uses our uniformity results to establish uniform asymptotic validity for hybrid
confidence intervals for inference after model selection, while Tibshirani et al. (2018) and Andrews et al.
(2020b) establish uniform asymptotic validity for conditional confidence intervals in different settings
from ours, but only under particular local sequences.
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we propose in the context of a stylized example. Section 3 introduces the normal model,

develops our conditional procedures, and briefly discusses sample splitting. Section 4

introduces projection confidence intervals and our hybrid procedures. Section 5 discusses

practical implementation in and translates our normal model results to uniform asymptotic

results. Finally, Sections 6 and 7 discuss applications to data from Karlan and List (2007)

and Bergman et al. (2020), respectively. The supplement to this paper contains proofs

of our theoretical results and additional theoretical, numerical and empirical results.

2 A Stylized Example

We begin by illustrating the problem we consider, along with the solutions we propose, in

a stylized example. Suppose we have data from a randomized trial of a binary treatment

(e.g. participation in a job training program), where individuals i∈{1,...,n} were randomly

assigned to treatment (Di=1) or control (Di=0), with n
2

individuals in each group. We

are interested in an outcome Yi (e.g. a dummy for employment in the next year), and

compute the treatment and control means,

(X∗n(1),X∗n(0))=

(
2

n

n∑
i=1

DiYi,
2

n

n∑
i=1

(1−Di)Yi

)
.

If trial particpants are a random sample from some population, then for Yi,1 and Yi,0 equal

to the potential outcomes for i under treatment and control, respectively, (X∗n(1),X∗n(0))

unbiasedly estimate the average potential outcomes (µ∗(1),µ∗(0))=(E[Yi,1],E[Yi,0]) in the

population.

For policymakers and researchers interested in maximizing the average outcome, it

is natural to focus on the treatment that performed best in the experiment. Formally,

let Θ={0,1} denote the set of policies (just control and treatment in this example) and

define θ̂n = argmaxθ∈ΘX
∗
n(θ) as the policy yielding the highest average outcome in the

experiment. While X∗n(θ) unbiasedly estimates µ∗(θ) for fixed policies θ, X∗n(θ̂n) system-

atically over-estimates µ∗(θ̂n) since we are more likely to select a given policy when the

experiment over-estimates its effectiveness. Likewise, confidence intervals for µ∗(θ̂n) that

ignore estimation of θ may cover µ∗(θ̂n) less often than we intend. Hence, if a policymaker

deploys the treatment θ̂n, or a researcher examines it in a follow-up experiment, the results

will be systematically disappointing relative to the original trial. This is a form of winner’s

curse: estimation error leads us to over-predict the benefits of our chosen policy and to

misstate our uncertainty about its effectiveness.
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To simplify the analysis and develop corrected inference procedures, we turn to

asymptotic approximations. For Xn =
√
nX∗n =

√
n(X∗n(0),X∗n(1)) and (µn(1),µn(0)) =

√
n(µ∗(1),µ∗(0)), provided the potential outcomes (Yi,0,Yi,1) have finite variance,(

Xn(0)−µn(0)

Xn(1)−µn(1)

)
⇒N

(
0,

(
Σ(0) 0

0 Σ(1)

))
, (1)

where ⇒ denotes convergence in distribution and the asymptotic variance Σ can be

consistently estimated while the scaled average outcomes µn cannot be. Motivated by (1),

let us abstract from approximation error and assume that we observe(
X(0)

X(1)

)
∼N

((
µ(0)

µ(1)

)
,

(
Σ(0) 0

0 Σ(1)

))

for Σ(0) and Σ(1) known, and that θ̂=argmaxθ∈ΘX(θ) with Θ={0,1}.6

As discussed above, X(θ̂) is biased upwards as an estimator of µ(θ̂). This bias arises

both conditional on θ̂ and unconditionally. To see this note that θ̂= 1 if X(1)>X(0),

where ties occur with probability zero. Conditional on θ̂=1 and X(0)=x(0), however,

X(1) follows a normal distribution truncated below at x(0). Since this holds for all x(0),

X(1) has positive median bias conditional on θ̂=1:7

Prµ

{
X(θ̂)≥µ(θ̂)|θ̂=1

}
>

1

2
for all µ.

Since the same argument holds for θ̂=0, θ̂ is also biased upwards unconditionally:

Prµ

{
X(θ̂)≥µ(θ̂)

}
>

1

2
for all µ.

Similarly, conventional t-statistic-based confidence intervals need not have correct coverage.

To illustrate these issues, Figure 1 plots the coverage of conventional confidence intervals,

as well as the median bias of conventional estimates, in an example with Σ(1)=Σ(0)=1.

For comparison we also consider cases with ten and fifty policies (e.g. additional treatments)

|Θ|=10 and |Θ|=50, where we again set Σ to be diagonal with Σ(θ)=1 for all θ and, for

6Finite-sample results in this normal model correspond to asymptotic results for cases where the
difference in outcomes E[Yi,1]−E[Yi,0] is of order 1√

n
, so the optimal policy θ∗ = argmaxθ∈Θµ

∗(θ) is

weakly identified. We defer an in-depth discussion of asymptotics to Section 5 and Appendix D.
7It also has positive mean bias, but we focus on median bias for consistency with our later results.
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ease of reporting, assume that all the policies other than the first (policy θ1) are equally

effective, with average outcome µ(θ−1). The first panel of Figure 1 shows that while the

conventional confidence interval has reasonable coverage when there are only two policies,

its coverage can fall substantially when |Θ|=10 or |Θ|=50. The second panel shows that

the median bias of the conventional estimator µ̂=X(θ̂), measured as the deviation of

the exceedance probability Prµ{X(θ̂)≥µ(θ̂)} from 1
2
, can be quite large. The third panel

shows that the same is true when we measure bias as the median of X(θ̂)−µ(θ̂). In all

cases we find that performance is worse when we consider a larger number of policies, as

is natural since a larger number of policies allows more scope for selection.

Our results correct these biases. Returning to the case with Θ={0,1} for simplicity, let

FTN(x(1);µ(1),x(0)) denote the truncated normal distribution function for X(1), truncated

below at x(0), when the true mean is µ(1). This function is strictly decreasing in µ(1),

and for µ̂α the solution to FTN(X(1);µ̂α,X(0))=1−α, Proposition 2 below shows that

Prµ

{
µ̂α≥µ(θ̂)|θ̂=1

}
=α for all µ.

Hence, µ̂α is α-quantile unbiased for µ(θ̂) conditional on θ̂=1, and the analogous statement

holds conditional on θ̂=0. Indeed, Proposition 2 shows that µ̂α is the optimal α-quantile

unbiased estimator conditional on θ̂.

Using this result, we can eliminate the biases discussed above. The estimator µ̂1/2 is me-

dian unbiased and the equal-tailed confidence interval CSET =
[
µ̂α/2,µ̂1−α/2

]
has conditional

coverage 1−α, where we say that a confidence interval CS has conditional coverage 1−α if

Pr
{
µ(θ̂)∈CS|θ̂= θ̃

}
≥1−α for θ̃∈Θ and all µ. (2)

By the law of iterated expectations, CSET also has unconditional coverage 1−α:

Prµ

{
µ(θ̂)∈CS

}
≥1−α for all µ. (3)

Unconditional coverage is easier to attain, so relaxing the coverage requirement from (2)

to (3) may allow shorter confidence intervals in some cases. Conditional and unconditional

coverage requirements address different questions, however, and which is more appropriate

depends on the problem at hand. For instance, if a researcher recommends the policy θ̂

to a policymaker, it may also be natural to report a confidence interval that is valid condi-

tional on the recommendation, which is precisely the conditional coverage requirement (2).
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Figure 1: Performance of conventional procedures in examples with 2, 10, and 50 policies.
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Conditional coverage ensures that if one considers repeated instances in which researchers

recommend a particular course of action (e.g. departure from the status quo), reported

confidence intervals will in fact cover the true effects a fraction 1−α of the time. On the

other hand, if we only want to ensure that our confidence intervals cover the true value

with probability at least 1−α on average across the distribution of recommendations, it

suffices to impose the unconditional coverage requirement (3).

We are unaware of alternatives in the literature that ensure conditional coverage (2).

For unconditional coverage (3), however, one can form an unconditional confidence interval

by projecting a simultaneous confidence set for µ. In particular, let cα denote the 1−α
quantile of maxj|ξj| for ξ=(ξ1,ξ2)

′∼N(0,I2) a two-dimensional standard normal random

vector. If we define CSP as

CSP =

[
X(θ̂)−cα

√
Σ(θ̂),X(θ̂)+cα

√
Σ(θ̂)

]
,

this set has correct unconditional coverage (3).

Figure 2 plots the (unconditional) median length of 95% confidence intervals CSET and

CSP , along with the conventional confidence interval, again in cases with |Θ|∈{2,10,50}.
We focus on median length, rather than mean length, because the results for Kivaranovic

and Leeb (2020) imply that CSET has infinite expected length. As Figure 2 illustrates,

the median length of CSET is shorter than the (nonrandom) length of CSP in all cases

when |µ(θ1)−µ(θ−1)| exceeds four, and converges to the length of the conventional interval

as |µ(θ1)−µ(θ−1)| grows larger. When |µ(θ1)−µ(θ−1)| is small, on the other hand, CSET

can be substantially wider than CSP . This reflects that in these cases, X(θ̂) is frequently

close to the next-best treatment. For a truncated normal distribution, an observation close

to the lower endpoint provides evidence of a small mean, but with little precision about

the exact value, leading to long confidence intervals.

These features become still more pronounced as we increase the number of policies con-

sidered, and are still more pronounced for higher quantiles of the length distribution. To illus-

trate, Figure 3 plots the 95th percentile of the distribution of length in the case with |Θ|=50

policies, while results for other quantiles and specifications are reported in Appendix F.

Figure 4 plots the median absolute error Medµ

(
|µ̂−µ(θ̂)|

)
for different estimators µ̂,

and shows that the median-unbiased estimator likewise exhibits larger median absolute

error than the conventional estimator X(θ̂) when |µ(θ1)−µ(θ−1)| is small. This feature is

again more pronounced as we increase the number of policies considered, or if we consider
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higher quantiles as in Appendix F.

Recall that µ̂1
2

and the endpoints of CSET are optimal quantile unbiased estimators.

So long as we impose median unbiasedness and correct conditional coverage, there is hence

little scope to improve conditional performance. If we instead focus on unconditional bias

and coverage, by contrast, improved performance is possible.

To improve performance, we consider hybrid inference, which combines the conditional

and unconditional approaches. Hybrid inference first computes a level β<α projection

interval CSβP , and then considers conditional inference given θ̂ and µ(θ̂)∈CSβP . In the

case with Θ={0,1}, for instance, if θ̂=1 and the true mean is µ(1) then the conditional

distribution ofX(1) given θ̂=1, X(0)=x(0), and µ(1)∈CSβP is aN(µ(1),Σ(1)) distribution

truncated to the interval[
max

{
x(0),µ(1)−cβ

√
Σ(1)

}
,µ(1)+cβ

√
Σ(1)

]
.

For the corresponding distribution function FH
TN(x(1);µ(1),x(0)), the hybrid estimator

µ̂Hα solves FH
TN(X(1);µ̂Hα ,X(0))=1−α. Arguments analogous to those in the conditional

case imply that µ̂Hα is α-quantile unbiased conditional on the (potentially false) event
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{
θ̂=1,µ(θ̂)∈CSβP

}
. Since Prµ

{
µ(θ̂)∈CSβP

}
≥ 1− β one can further show that the

unconditional quantile bias of µ̂Hα is bounded, in the sense that∣∣∣Prµ{µ̂Hα ≥µ(θ̂)
}
−α
∣∣∣≤β ·max{α,1−α}.

We again form level 1−α equal-tailed confidence intervals based on these estimates, where

to account for the dependence on the projection interval we adjust the quantile considered

and take CSHET =

[
µ̂Hα−β

2(1−β)
,µ̂H

1− α−β
2(1−β)

]
. See Section 4.2 for details on this adjustment. By

construction, hybrid intervals are never longer than the level 1−β projection interval CSβP .

Due to their dependence on the projection interval, hybrid intervals do not in general

have correct conditional coverage (2). By relaxing the conditional coverage requirement,

however, we obtain major improvements in unconditional performance, as illustrated in

Figure 2. In particular, we see that in the case with 50 policies, the hybrid confidence

intervals have shorter median length than the unconditional interval CSP for all parameter

values considered. The gains relative to conditional confidence intervals are large for

many parameter values, and are still more pronounced for higher quantiles of the length

distribution, as in Figure 3 and Appendix F. In Figure 4 we report results for the hybrid

estimator µ̂H1
2

, and again find substantial performance improvements.

The improved unconditional performance of the hybrid confidence intervals is achieved

by requiring only unconditional, rather than conditional, coverage. To illustrate, Figure

5 plots the conditional coverage given θ̂=θ1 in the case with two policies. As expected,

the conditional interval has correct conditional coverage, while coverage distortions appear

for the hybrid and projection intervals when µ(θ1)� µ(θ2). In this case θ̂ = θ2 with

high probability but the data will nonetheless sometimes realize θ̂=θ1. Conditional on

this event, X(θ1) will be far away from µ(θ1) with high probability, so projection and

hybrid confidence intervals under-cover. As µ(θ1)−µ(θ2) diverges to −∞, their conditional

coverage probabilities given θ̂=θ1 approach 0.

3 Conditional Inference

This section introduces our general setting, which extends the stylized example of the

previous section in several directions, and develops conditional inference procedures. We

then discuss sample splitting as an inefficient conditional inference method and briefly

discuss the construction of dominating procedures. Finally, we show that our conditional

procedures converge to conventional ones when the latter are valid.
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Figure 5: Coverage conditional on θ̂=θ1 in case with two policies.

3.1 Setting

Suppose we observe a collection of normal random vectors (X(θ),Y (θ))′ ∈R2 for θ∈Θ

where Θ is a finite set. For Θ =
{
θ1,...,θ|Θ|

}
, let X =

(
X(θ1),...,X

(
θ|Θ|
))′

and Y =(
Y (θ1),...,Y

(
θ|Θ|
))′
. Then (

X

Y

)
∼N(µ,Σ) (4)

for

E

[(
X(θ)

Y (θ)

)]
=µ(θ)=

(
µX(θ)

µY (θ)

)
,

Σ(θ,θ̃)=

(
ΣX(θ,θ̃) ΣXY (θ,θ̃)

ΣYX(θ,θ̃) ΣY (θ,θ̃)

)
=Cov

((
X(θ)

Y (θ)

)
,

(
X(θ̃)

Y (θ̃)

))
.

We assume that Σ is known, while µ is unknown and unrestricted unless noted otherwise.

For brevity of notation, we abbreviate Σ(θ,θ) to Σ(θ). We assume throughout that

ΣY (θ)>0 for all θ∈Θ, since the inference problem we study is trivial when ΣY (θ)=0. As

discussed in Section 5 below, this model arises naturally as an asymptotic approximation.

We are interested in inference on µY (θ̂), where θ̂ is determined based on X. We define
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θ̂ through the level maximization,8

θ̂=argmax
θ∈Θ

X(θ). (5)

In a follow-up paper, Andrews et al. (2020b), we develop results on inference when θ̂

instead maximizes ‖X(θ)‖ and X(θ) may be vector-valued.

We are interested in constructing estimates and confidence intervals for µY (θ̂) that are

valid either conditional on the value of θ̂ or unconditionally. In many cases, as in Section

2 above, we are interested in the mean of the same variable that drives selection, so X=Y

and µX =µY . In other settings, however, we may select on one variable but want to do

inference on the mean of another. Continuing with the example discussed in Section 2,

for instance, we might select θ̂ based on outcomes for all individuals, but want to conduct

inference on average outcomes for some subgroup defined using covariates. In this case, Y (θ)

corresponds to the estimated average outcome for the group of interest under treatment θ.

3.2 Conditional Inference

We first consider conditional inference, seeking estimates of µY (θ̂) which are quantile

unbiased conditional on θ̂:

Prµ

{
µ̂α≥µY (θ̂)|θ̂= θ̃

}
=α for all θ̃∈Θ and all µ. (6)

Since θ̂ is a function of X, we can re-write the conditioning event in terms of the

sample space of X as
{
X : θ̂= θ̃

}
=X (θ̃).9 Thus, for conditional inference we are interested

in the distribution of (X,Y ) conditional on X∈X (θ̃). Our results below imply that the

elements of Y other than Y (θ̃) do not help in constructing a quantile-unbiased estimate

or confidence interval for µY (θ̂) conditional on X∈X (θ̃). Hence, we limit attention to the

conditional distribution of (X,Y (θ̃)) given X∈X (θ̃).

Since (X,Y (θ̃)) is jointly normal unconditionally, it has a multivariate truncated normal

distribution conditional on X∈X (θ̃). Correlation between X and Y (θ̃) implies that the

conditional distribution of Y (θ̃) depends on both the parameter of interest µY (θ̂) and

µX. To eliminate dependence on the nuisance parameter µX, we condition on a sufficient

8For simplicity of notation we assume θ̂ is unique almost surely unless noted otherwise.
9If θ̂ is not unique we change the conditioning event from θ̂= θ̃ to θ̃∈argmaxX(θ).

17



statistic. Without truncation and for any fixed µY (θ̃), a minimal sufficient statistic for µX is

Zθ̃=X−
(

ΣXY (·,θ̃)/ΣY (θ̃)
)
Y (θ̃), (7)

where we use ΣXY (·,θ̃) to denote Cov(X,Y (θ̃)). Zθ̃ corresponds to the part of X that

is (unconditionally) orthogonal to Y (θ̃) which, since (X,Y (θ̃)) are jointly normal, means

that Zθ̃ and Y (θ̃) are independent. Truncation breaks this independence, but Zθ̃ remains

minimal sufficient for µX. The conditional distribution of Y (θ̂) given
{
θ̂= θ̃,Zθ̃=z

}
is

truncated normal:

Y (θ̂)|θ̂= θ̃,Zθ̃=z∼ξ|ξ∈Y(θ̃,z), (8)

where ξ∼N
(
µY (θ̃),ΣY (θ̃)

)
is normally distributed and

Y(θ̃,z)=
{
y :z+

(
ΣXY (·,θ̃)/ΣY (θ̃)

)
y∈X (θ̃)

}
(9)

is the set of values for Y (θ̃) such that the implied X falls in X (θ̃) given Zθ̃=z. Thus, con-

ditional on θ̂= θ̃, and Zθ̃=z, Y (θ̂) follows a one-dimensional truncated normal distribution

with truncation set Y(θ̃,z).

The following result, based on Lemma 5.1 of Lee et al. (2016), characterizes Y(θ̃,z).

Proposition 1

Let ΣXY (θ̃)=Cov(X(θ̃),Y (θ̃)). Define

L(θ̃,Zθ̃)= max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃(θ)−Zθ̃(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

,

U(θ̃,Zθ̃)= min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃(θ)−Zθ̃(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

,

and

V(θ̃,Zθ̃)= min
θ∈Θ:ΣXY (θ̃)=ΣXY (θ̃,θ)

−
(
Zθ̃(θ)−Zθ̃(θ̃)

)
.

If V(θ̃,z)≥0, then Y(θ̃,z)=
[
L(θ̃,z),U(θ̃,z)

]
. If V(θ̃,z)<0, then Y(θ̃,z)=∅.

Thus, Y(θ̃,z) is an interval bounded above and below by functions of z. While we must

have V(θ̃,z)≥0 for this interval to be non-empty, Prµ

{
V(θ̂,Zθ̂)<0

}
=0 for all µ so this
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constraint holds almost surely when we consider the value θ̂ observed in the data. Hence,

in applications we can safely ignore this constraint and calculate only L(θ̂,Zθ̂) and U(θ̂,Zθ̂).

Using this result, it is straightforward to construct quantile-unbiased estimators for

µY (θ̂). Let FTN(y;µY (θ̃),θ̃,z) denote the distribution function for the truncated normal

distribution (8). This function is strictly decreasing in µY (θ̃). Define µ̂α as the unique

solution to FTN(Y (θ̂);µ̂α,θ̃,Zθ̃)=1−α. Proposition 2 below shows that µ̂α is conditionally

α-quantile-unbiased in the sense of (6), so µ̂1
2

is median-unbiased while the equal-tailed

interval CSET =
[
µ̂α/2,µ̂1−α/2

]
has conditional coverage 1−α

Pr
{
µY (θ̂)∈CSET |θ̂= θ̃

}
≥1−α for θ̃∈Θ and all µ. (10)

Moreover results in Pfanzagl (1979) and Pfanzagl (1994) on optimal estimation for expo-

nential families imply that µ̂α is optimal in the class of quantile-unbiased estimators.

To establish optimality, we add the following assumption:

Assumption 1

If Σ =Cov((X′,Y ′)′) has full rank, then the parameter space for µ is R2|Θ|. Otherwise,

there exists some µ∗ such that the parameter space for µ is
{
µ∗+Σ

1
2v :v∈R2|Θ|

}
, where

Σ
1
2 is the symmetric square root of Σ.

This assumption requires that the parameter space for µ be sufficiently rich. When Σ is

degenerate (for example when X=Y , as in Section 2), this assumption further implies

that (X,Y ) have the same support for all values of µ. This rules out cases in which a pair

of parameter values µ1, µ2 can be perfectly distinguished based on the data. Under this

assumption, µ̂α is an optimal quantile-unbiased estimator.

Proposition 2

For α∈(0,1), µ̂α is conditionally α-quantile-unbiased in the sense of (6). If Assumption 1

holds, then µ̂α is the uniformly most concentrated α-quantile-unbiased estimator, in that for

any other conditionally α-quantile-unbiased estimator µ̂∗α and any loss function L
(
d,µY (θ̃)

)
that attains its minimum at d=µY (θ̃) and is quasiconvex in d for all µY (θ̃),

Eµ

[
L
(
µ̂α,µY (θ̃)

)
|θ̂= θ̃

]
≤Eµ

[
L
(
µ̂∗α,µY (θ̃)

)
|θ̂= θ̃

]
for all µ and all θ̃∈Θ.
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Proposition 2 shows that µ̂α is optimal in the strong sense that it has lower expected loss

than any other quantile-unbiased estimator for a large class of loss functions.

Other Selection Events We have discussed inference conditional on θ̂= θ̃, but the same

approach applies, and is optimal, for more general conditioning events. For instance, in the

context of Section 2 a researcher might deliver a recommendation to a policymaker only

when a statistical test indicates that the best-performing treatment outperforms some bench-

mark (see Tetenov, 2012). In this case, it is natural to also condition inference on the result

of this test. Analogously, one may wish to conduct inference on the performance of an esti-

mated best trading strategy or forecasting rule after finding a rejection when testing for supe-

rior predictive ability according to methods of e.g. White (2000), Hansen (2005) or Romano

and Wolf (2005). Appendix A discusses the conditional approach in this more general case

and derives the additional conditioning event in the context of the example just described.

Uniformly Most Accurate Unbiased Confidence Intervals In addition to equal-

tailed confidence intervals, classical results on testing in exponential families discussed in

Fithian et al. (2017) also permit the construction of uniformly most accurate unbiased

confidence intervals. A level 1−α confidence set is unbiased if its probability of covering

a false parameter value is bounded above by 1−α, and uniformly most accurate unbiased

confidence intervals minimize the probability of covering all incorrect parameter values

over the class of unbiased confidence sets. Details of how to construct these confidence

intervals are deferred to Appendix A for brevity.

3.3 Comparison to Sample Splitting

An alternative remedy for winner’s curse bias is to split the sample. If we have iid observa-

tions and select θ̂1 based on the first half of the data, conventional estimates and confidence

intervals for µY (θ̂1) that use only the second half of the data will be conditionally valid

given θ̂1. Hence, it is natural to ask how the analog of our conditioning approach applied

to inference on µY (θ̂1), conditional on the realization of θ̂1, compares to this conventional

sample splitting approach.

Asymptotically, even sample splits yield a pair of independent and identically distributed

normal draws (X1,Y 1) and (X2,Y 2), both of which follow (4), albeit with a different

scaling for (µ,Σ) than in the full-sample case.10 Sample splitting procedures calculate θ̂1 as

10Appendix C considers cases with general sample splits and describes the scaling for (µ,Σ). Intuitively,
the scope for improvement over conventional split-sample inference is increasing in the fraction of the
data used to construct X1.
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in (5), replacing X by X1. Inference on µY (θ̂1) is then conducted using Y 2. In particular,

the conventional 95% sample-splitting confidence interval for µY (θ̂1),[
Y 2(θ̂1)−1.96

√
ΣY (θ̂1),Y 2(θ̂1)+1.96

√
ΣY (θ̂1)

]
,

has correct (conditional) coverage, and Y 2(θ̂1) is median-unbiased for µY (θ̂1).

Conventional sample splitting resolves the winner’s curse, but comes at a cost. First,

θ̂1 is based on less data than in the full-sample case, which is unappealing since a policy

recommendation estimated with a smaller sample size leads to a lower expected welfare

(see, e.g., Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2018b)). Moreover, even after

conditioning on θ̂1, the full-sample average 1
2
(X1,Y 1)+ 1

2
(X2,Y 2) remains minimal sufficient

for µ. Hence, using only Y 2 for inference sacrifices information.

Fithian et al. (2017) formalize this point and show that conventional sample splitting

tests (and thus confidence intervals) are inefficient.11 Motivated by this result, in Appendix

C we derive optimal estimators and confidence intervals for µY (θ̂1) that are valid conditional

on θ̂1. These optimal split-sample procedures involve distributions that are difficult to

compute, however, so we also propose computationally straightforward alternatives. These

alternatives dominate conventional split-sample methods for inference on µY (θ̂1), but

are in turn dominated by the (intractable) optimal split-sample procedures. The split

sample methods we introduce in Appendix C are related to conditionally valid methods for

inference in adaptive clinical trial designs proposed in the biostatistics literature (e.g., Cohen

and Sackrowitz, 1989; Sampson and Sill, 2005). See Appendix C for details.

3.4 Behavior When Prµ

{
θ̂= θ̃

}
is Large

As discussed in Section 2, if we ignore selection and compute the conventional (or “naive”)

estimator µ̂N =Y (θ̂) and the conventional confidence interval

CSN =

[
Y (θ̂)−cα/2,N

√
ΣY (θ̂),Y (θ̂)+cα/2,N

√
ΣY (θ̂)

]
,

where cα,N is the 1−α-quantile of the standard normal distribution, µ̂N is biased and CSN

has incorrect coverage conditional on θ̂= θ̃. These biases are mild when Prµ

{
θ̂= θ̃

}
is close

to one, however, since in this case the conditional distribution is close to the unconditional

11Corollary 1 of Fithian et al. (2017) applied in our setting shows that for any sample splitting test
based on Y 2, there exists a test that uses the full data and has weakly higher power against all alternatives
and strictly higher power against some alternatives.
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one. Intuitively, Prµ

{
θ̂= θ̃

}
is close to one for some θ̃ when µX(θ) has a well-separated

maximum. Our procedures converge to conventional ones in this case.

Proposition 3

Consider any sequence of values µm such that Prµm

{
θ̂= θ̃

}
→1. Then under µm we have

CSET→pCSN and µ̂1
2
→pY (θ̃) both conditional on θ̂= θ̃ and unconditionally, where for

confidence intervals →p denotes convergence in probability of the endpoints.

This result provides an additional argument for using our procedures: they remain

valid when conventional procedures fail, but coincide with conventional procedures when

the latter are valid. On the other hand, as we saw in Section 2, there are cases where our

conditional procedures have poor unconditional performance.

4 Unconditional Inference

Rather than requiring validity conditional on θ̂, one might instead require coverage only

on average, yielding the unconditional coverage requirement

Pr
{
µY (θ̂)∈CS

}
≥1−α for all µ. (11)

All confidence intervals with correct conditional coverage in the sense of (10) also have

correct unconditional coverage provided θ̂ is unique with probability one.

Proposition 4

Suppose that θ̂ is unique with probability one for all µ. Then any confidence interval CS

with correct conditional coverage (10) also has correct unconditional coverage (11).

Uniqueness of θ̂ implies that the conditioning events X (θ̃) partition the support of X with

measure zero overlap. The result then follows from the law of iterated expectations.

A sufficient condition for almost sure uniqueness of θ̂ is that ΣX has full rank. A weaker

sufficient condition is given in the next lemma. Cox (2018) gives sufficient conditions for

uniqueness of a global optimum in a much wider class of problems.

Lemma 1

Suppose that for all θ, θ̃∈Θ such that θ 6= θ̃, X(θ) and X(θ̃) are not perfectly correlated.

Then θ̂ is unique with probability one for all µ.

While the conditional confidence intervals derived in the last section are unconditionally

valid, unconditional coverage is less demanding than conditional coverage. Hence, if we
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are only concerned with unconditional coverage, relaxing the coverage requirement may

allow us to obtain shorter confidence intervals in some settings.

This section explores the benefits of such a relaxation. We begin by introducing un-

conditional confidence intervals based on projections of simultaneous confidence bands for

µ. We then introduce hybrid estimators and confidence intervals that combine projection

intervals with conditioning arguments.

4.1 Projection Confidence Intervals

One approach to obtain an unconditional confidence interval for µY (θ̂) is to start with

a joint confidence interval for µ and project on the dimension corresponding to θ̂. This

approach was used by Romano and Wolf (2005) in the context of multiple testing, and by

Kitagawa and Tetenov (2018a) for inference on an estimated optimal policy. This approach

has also been used in a large and growing statistics literature on post-selection inference

including e.g. Berk et al. (2013), Bachoc et al. (2020) and Kuchibhotla et al. (2020).

To formally describe the projection approach, let cα denote the 1−α quantile of

maxθ|ξ(θ)|/
√

ΣY (θ) for ξ∼N(0,ΣY ). If we define

CSµ=
{
µY : |Y (θ)−µY (θ)|≤cα

√
ΣY (θ) for all θ∈Θ

}
,

then CSµ is a level 1−α confidence set for µY . If we then define

CSP =
{
µ̃Y (θ̂):∃µ∈CSµ such that µY (θ̂)=µ̃Y (θ̂)

}
=

[
Y (θ̂)−cα

√
ΣY (θ̂),Y (θ̂)+cα

√
ΣY (θ̂)

]
as the projection of CSµ on the parameter space for µY (θ̂), then since µY ∈CSµ implies

µY (θ̂)∈CSP , CSP satisfies the unconditional coverage requirement (11). As noted in

Section 2, however, CSP does not generally have correct conditional coverage.

The width of the confidence interval CSP depends on the variance ΣY (θ̂) but does not

otherwise depend on the data.12 To account for the randomness of θ̂, the critical value cα

is typically larger than the conventional two-sided normal critical value. Hence, CSP will

be conservative in cases where θ̂ takes a given value θ̃ with high probability. To improve

performance in such cases, we propose a hybrid inference approach.

12One could consider alternative projection intervals, for instance optimized to have shorter length at
some θ̂ values in exchange for greater length at others. See Freyberger and Rai (2018) and Frandsen (2020).
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4.2 Hybrid Inference

As shown in Section 2, the conditional and projection approaches each have good un-

conditional performance in some cases, but neither is fully satisfactory. Hybrid inference

combines the approaches to obtain good performance over a wide range of parameter values.

To construct hybrid estimators, we condition both on θ̂= θ̃ and on the event that

µY (θ̂) lies in the level 1−β projection confidence interval CSβP for 0≤β<α. Hence, the

conditioning event becomes

YH(θ̃,µY (θ̃),z)=Y(θ̃,z)∩
[
µY (θ̃)−cβ

√
ΣY (θ̃),µY (θ̃)+cβ

√
ΣY (θ̃)

]
.

Let FH
TN(y;µY (θ̃),θ̃,z) denote the conditional distribution function of Y (θ̃), and define

µ̂Hα to solve FH
TN(Y (θ̂);µ̂Hα ,θ̂,Zθ̃)=1−α. The hybrid estimator µ̂Hα is α-quantile unbiased

conditional on µ(θ̂)∈CSβP .

Proposition 5

For α∈(0,1), µ̂Hα is unique and µ̂Hα ∈CS
β
P . If θ̂ is unique almost surely for all µ, µ̂Hα is

α-quantile unbiased conditional on µY (θ̂)∈CSβP :

Prµ

{
µ̂Hα ≥µY (θ̂)|µY (θ̂)∈CSβP

}
=α for all µ.

Proposition 5 implies several notable properties for the hybrid estimator. First, since

Prµ

{
µY (θ̂)∈CSβP

}
≥1−β by construction, one can show that

∣∣∣Prµ{µ̂Hα ≥µY (θ̂)
}
−α
∣∣∣≤β ·max{α,1−α} for all µ.

This implies that the absolute median bias of µ̂H1
2

(measured as the deviation of the ex-

ceedance probability from 1/2) is bounded above by β/2.On the other hand, since µ̂H1
2

∈CSβP

we have
∣∣∣µ̂H1

2

−Y (θ̂)
∣∣∣≤cβ√ΣY (θ̃), so the difference between µ̂H1

2

and the conventional esti-

mator Y (θ̂) is bounded above by half the width of CSβP .As β varies, the hybrid estimator in-

terpolates between the median-unbiased estimator µ̂1
2

and the conventional estimator Y (θ̂).

As with the quantile-unbiased estimator µ̂α, we can form confidence intervals based

on hybrid estimators. In particular, the set [µ̂Hα/2,µ̂
H
1−α/2] has coverage 1−α conditional

on µY (θ̂) ∈ CSβP . This is not fully satisfactory, however, as Prµ{µY (θ̂) ∈ CSβP} < 1.

Hence, to ensure correct coverage, we define the level 1−α hybrid confidence interval
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as CSHET =

[
µ̂Hα−β

2(1−β)
,µ̂H

1− α−β
2(1−β)

]
. With this adjustment, hybrid confidence intervals have

coverage at least 1−α both conditional on µY (θ̂)∈CSβP and unconditionally.

Proposition 6

Provided θ̂ is unique with probability one for all µ, the hybrid confidence interval CSHET
has coverage 1−α

1−β conditional on µY (θ̂)∈CSβP :

Prµ

{
µY (θ̂)∈CSHET |µY (θ̂)∈CSβP

}
=

1−α
1−β

for all µ.

Moreover, the unconditional coverage is between 1−α and 1−α
1−β ≤1−α+β:

inf
µ
Prµ

{
µY (θ̂)∈CSHET

}
≥1−α, sup

µ
Prµ

{
µY (θ̂)∈CSHET

}
≤ 1−α

1−β
.

Hybrid confidence intervals strike a balance between the conditional and projection

approaches. The maximal length of hybrid confidence intervals is bounded above by

the length of CSβP . For small β, hybrid confidence intervals will be close to conditional

confidence intervals, and thus to conventional confidence intervals, when θ̂= θ̃ with high

probability. For β>0, however, hybrid confidence intervals do not fully converge to conven-

tional confidence intervals as Prµ

{
θ̂= θ̃

}
→1. Nevertheless, our simulations in Section 2

find similar performance for the hybrid and conditional approaches in well-separated cases.

While hybrid confidence intervals combine the conditional and projection approaches,

they can yield overall performance more appealing than either. In Section 2 we found

that hybrid confidence intervals had a shorter median length for many parameter values

than did either the conditional or projection approaches used in isolation. Our simulation

results below provide further evidence of outperformance in realistic settings.

Choice of β To use the hybrid approach we must select the coverage β of the initial

projection interval CSβP . Intuitively this choice trades off the length of CSβP , which bounds

the worst-case length of CSHET in the poorly-separated case, against the length of CSHET in

the well-separated case. For a given Σ we can precisely quantify this tradeoff, calculating

the length of CSβP and the length of CSHET in the well-separated case for each β and

selecting a point on the resulting frontier. This frontier is Σ-specific, however, so this

analysis does not deliver a general recommendation.

As an alternative, we note that the length of CSHET in the well-separated case is bounded

above by that of the level 1−α
1−β conventional confidence interval. Specifically, for the standard
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choice of α=5%, choosing β= α
10

=0.5% implies that the CSHET has half-length no more

than 2.0025 standard errors in the well-separated case. We view this as a small increase

relative to the half-length of the conventional 5% interval, 1.96 standard errors, and so

suggest this as a default choice, focusing on β= α
10

in our simulations and applications.13

Comparison to Bonferroni Adjustment It is worth contrasting our hybrid approach

with Bonferroni corrections as in e.g. Romano et al. (2014) and McCloskey (2017). A

simple Bonferroni approach for our setting intersects a level 1−β projection confidence

interval CSβP with a level 1−α+β conditional interval that conditions only on θ̂ = θ̃.

Bonferroni intervals differ from our hybrid approach in two respects. First, they use a

level 1−α+β conditional confidence interval, while the hybrid approach uses a level 1−α
1−β

conditional interval, where 1−α
1−β ≤1−α+β. Second, the conditional interval used by the

Bonferroni approach does not condition on µY (θ̃)∈CSβP , while that used by the hybrid

approach does. Consequently, one can show that hybrid confidence intervals exclude the

endpoints of CSβP almost surely, while the same is not true of Bonferroni intervals.

5 Feasible Inference and Large-Sample Results

Our results have so far assumed that (X,Y ) are jointly normal with known variance Σ.

While exact normality is rare in practice, researchers commonly use estimators that are

asymptotically normal with consistently estimable asymptotic variance. Our results for

the finite-sample normal model translate to asymptotic results in this case.

Specifically, suppose that for sample size n we construct a vector of statistics Xn, that

θ̂n=argmaxθ∈ΘXn(θ), and that we are interested in the mean of Yn(θ̂n). In the treatment

choice example discussed in Section 2, for instance, θ indexes treatments, Xn(θ) is
√
n

times the sample average outcome under treatment θ, and Yn(θ)=Xn(θ). We suppose

that (Xn,Yn) are jointly asymptotically normal once recentered by vectors (µX,n,µY,n),(
Xn−µX,n
Yn−µY,n

)
⇒N(0,Σ).

In the treatment choice example µX,n(θ) =µY,n(θ) =
√
nE[Yi,θ] is the average potential

outcome under treatment θ, scaled by
√
n. We further assume that we have a consistent

estimator Σ̂ for the asymptotic variance Σ. In the treatment choice example, for instance,

we can take Σ̂ to be the matrix with the sample variance of the outcome for each the

13Romano et al. (2014) and McCloskey (2017) likewise find this choice to perform well in two different
settings when using a Bonferroni correction
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treatment group along the diagonal and zeros elsewhere.

More broadly, (Xn,Yn) can be any vectors of asymptotically normal estimators, and we

can calculate Σ̂ as we would for inference on (µX,n,µY,n), including corrections for clustering,

serial correlation, and the like in the usual way.14 Feasible inference based on our approach

simply substitutes (Xn,Yn) and Σ̂ in place of (X,Y ) and Σ in all expressions. Appendix

D shows that this plug-in approach yields asymptotically valid inference on µY,n(θ̂n).

This result is trivial when the sequence of vectors µX,n has a well-separated maximizer

θ∗= argmaxθ∈ΘµX,n(θ) with µX,n(θ
∗)�maxθ∈Θ\θ∗µX,n(θ) for large n, since in this case

θ̂n=θ∗ with high probability, and the selection problem vanishes. In Section 2, for instance, if

we fix a data-generating process withE[Yi,1]>E[Yi,0] and take n→∞, then Pr{θ̂n=1}→1.

Based on this argument, it could be tempting to conclude that inference ignoring the

winner’s curse will be approximately valid so long as there is not an exact tie for the

treatment yielding the highest average outcome. In finite samples, however, near-ties yield

very similar behavior to exact ties. Moreover, no matter how large the sample size, we can

have near-ties sufficiently close that inference ignoring selection remains unreliable. Hence,

what matters for inference is neither whether there are exact ties, nor the sample size as

such (beyond the minimum needed to justify the normal approximation), but instead how

close the best-performing treatments are to each other relative to the degree of sampling

uncertainty. Depending on the data generating process, selection issues can thus remain

important no matter how large the sample. To obtain reliable large-sample approximations,

we thus seek uniform asymptotic results, which for sufficiently large samples guarantee

performance over a wide class of data generating processes. Appendix D establishes that

plug-in versions of our proposed procedures are uniformly asymptotically valid in this sense.

6 Application: Charitable Giving

Karlan and List (2007) partner with a political charity to conduct a field experiment

examining the effectiveness of matching incentives at increasing charitable giving. In

matched donations, a lead donor pledges to ‘match’ any donations made by other donors

up to some threshold, effectively lowering the price of political activism for other donors.

Karlan and List (2007) use a factorial design. Potential donors, who were previous

donors to the charity, were mailed a four page letter asking for a donation. The contents

of the letter were randomized, with one third of the sample assigned to a control group

14We have scaled (Xn,Yn) by
√
n for expositional purposes, but dropping this scaling yields inference

on the correspondingly scaled version of µY,n(θ̂n). Hence, one can use estimators and estimated variances
with the natural scale in a given setting.
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Index Treatment Description

0 0 Control group with no matched donations

Match ratio

1 1:1 An additional dollar up to the match limit
2 2:1 Two additional dollars up to the match limit
3 3:1 Three additional dollars up to the match limit

Match size

1 $25,000 Up to $25,000 is pledged
2 $50,000 Up to $50,000 is pledged
3 $100,000 Up to $100,000 is pledged
4 Unstated The pledged amount is not stated

Ask amount

1 Same The individual is asked to give as much as their largest past donation
2 25% more The individual is asked to give 25% more than their largest past

donation
3 50% more The individual is asked to give 50% more than their largest past

donation

Table 1: Treatment arms for Karlan and List (2007). Individuals were assigned to the control
group or to the treatment group, in the ratio 1:2. Treated individuals were randomly assigned
a match ratio, a match size and an ask amount with equal probability. There are 36 possible
combinations, plus the control group. The leftmost column specifies a reference index used
throughout this section for convenience.

that received a standard letter with no match. The remaining two thirds received a letter

with the line “now is the time to give!” and details for a match. Treated individuals were

randomly assigned with equal probability to one of 36 separate treatment arms. Treatment

arms are characterized by a match ratio, a match size, and an ask amount, for which

further details are given in Table 1. The outcome of interest is the average dollar amount

that individuals donated to the charity in the month following the solicitation.

In total, 50,083 individuals were contacted, of which 16,687 were randomly assigned to

the control group, while 33,396 were randomly assigned to one of the 36 treatment arms.

The (unconditional) average donation was $0.81 in the control group and $0.92 in the

treatment group. Conditional on giving, these figures were $45.54 and $44.35, respectively.

The discrepancy reflects the low response rate; only 1,034 of 50,083 individuals donated.
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Treatment Average donation Standard error 95% CI

(1,3,2) 1.52 0.35 [0.83,2.20]
(2,1,3) 1.51 0.46 [0.61,2.41]
(2,1,1) 1.42 0.39 [0.66,2.19]
(3,1,3) 1.40 0.36 [0.70,2.11]

Table 2: The average donations for the four best treatment arms according to the data,
n=50,083. Treatments are indexed by the indicators for (Match ratio, Match size, Ask amount)
defined in Table 1. The reported 95% confidence intervals are the conventional ones that do
not take selection into account.

Table 2 reports average revenue from the four best-performing treatment arms, along

with standard errors and conventional confidence intervals. Taken at face value, the

results for the best-performing arm suggest that a similarly-situated nonprofit considering

a campaign that promises a dollar-for-dollar match up to $100,000 in donations and asks

individuals to donate 25% more than their largest past donation could expect to raise

$1.52 per potential donor, on average, with a confidence interval of $0.83 to $2.20. This

estimate and confidence interval are clearly subject to winner’s curse bias, however: we are

picking the best-performing arm out of 37 in the experiment, which will bias our estimates

and confidence intervals upward.

Simulation Results To investigate the extent of winner’s curse bias and the finite-

sample performance of our corrections, we calibrate simulations to this application. We

simulate datasets by resampling observations with replacement from the Karlan and List

(2007) data (i.e. by drawing nonparametric bootstrap samples). In each simulated sample

we re-estimate the effectiveness of each treatment arm, pick the best-performing arm, and

study the performance of estimates and confidence intervals, treating the estimates for

the original Karlan and List (2007) data as the true values. The underlying data here

are non-normal and we re-estimate the variance in each simulation draw. Hence, these

results also speak to the finite-sample performance of the normal approximation. We

report results based on 10,000 simulation draws.

Since revenue does not account for the cost of the fund-raising campaign, it is im-

possible for the solicitation to raise a negative amount. We therefore set the parameter

space for µ(θ̂) to R+, and trim the point estimators and the confidence intervals at zero,

µ̂trim≡max{0,µ̂} and CStrim=[0,∞)∩CS. This trimming does not affect the coverage of

the confidence intervals, and also preserves the α-quantile unbiasedness of the estimators
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Winner
(1,3,2) (1,4,2) (1,4,3) (2,1,1) (2,1,3) (2,2,2) (2,3,3) (2,4,1) (2,4,2) (3,1,1) (3,1,3) (3,3,1)

16.0% 11.4% 1.3% 13.0% 18.9% 10.8% 1.3% 1.5% 2.8% 5.1% 10.0% 3.6%

Table 3: Frequency of simulation replications where each treatment is estimated to perform best
in simulations calibrated to Karlan and List (2007). Treatments are indexed by the indicators
for (Match ratio, Match size, Ask amount) defined in Table 1. 31 of the 37 treatments are best
in at least one replication; those that won in at least 1% of simulated samples are reported.

Estimate

Conventional Median unbiased Hybrid

Median bias 0.61 -0.18 -0.18
Probability bias 0.50 -0.07 -0.07
Median absolute error 0.61 0.65 0.64

Table 4: Performance measures for alternative estimators in simulations calibrated to Karlan
and List (2007). Probability bias is Pr{µ̂trim>µ(θ̂)}− 1

2 .

so long as the true value µ(θ̂) is greater than zero.

There is substantial variability in the “winning” arm: 31 of the 37 treatments won

in at least one simulation draw and 12 treatment arms won in at least 1% of simulated

samples. Table 3 lists these 12 treatments. The variability of the winning arm suggests

that there is scope for a winner’s curse in this setting.

Table 4 examines the performance of naive, median unbiased, and hybrid estimates,

reporting (unconditional) median bias, probability bias (Pr{µ̂trim>µ(θ̂)}− 1
2
), and median

absolute error. Trimming the estimators at zero does not affect the reported performance

measures. Naive estimates suffer from substantial bias in this setting: they have a median

bias of $0.61, and over-estimate the revenue generated by the selected arm 100% of the

time, up to rounding. The median unbiased and hybrid estimators substantially improve

both measures of bias, though given the finite-sample setting they do not eliminate it

completely and are both somewhat downward biased, though to a lesser degree.15 All three

estimators perform similarly in terms of median absolute error.

Tables 5 and 6 report results for confidence intervals. Specifically, we consider the naive,

15This is a particularly challenging setting for the normal approximation, as the outcomes distribution
is highly skewed due to the large number of zeros. In particular, there are on average only 20 nonzero
outcomes per non-control treatment (out of approximately 930 observations in each treatment group).
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projection, conditional, and hybrid confidence intervals with nominal coverage 95%. Table

5 reports unconditional coverage and median length, while Table 6 reports conditional

coverage probabilities given θ̂ values among the 12 treatments listed in Table 3. Naive con-

fidence intervals slightly undercover unconditionally, with coverage 92%. Their conditional

coverage varies depending on which treatment is the winner. If the winning treatment is

one of the six best-performing treatments, the conditional coverage is at least 95%, while

otherwise the naive confidence intervals under-cover with coverage probability as low as 65%.

Unconditional Median length
coverage Trimmed Untrimmed

Naive CS 0.92 1.88 1.88
CSP 1.00 3.08 3.08
CSET 0.97 2.69 5.91
CSHET 0.97 2.52 2.56

Table 5: Unconditional coverage probabilities of the confidence intervals in simulations
calibrated to Karlan and List (2007). Unconditional median lengths are reported for the trimmed
and untrimmed confidence intervals.

Treatment Average donation Conditional coverage
θ µ(θ) Naive CS CSP CSET CSHET

(1,3,2) 1.52 0.95 1 0.98 0.98
(2,1,3) 1.51 0.97 1 0.97 0.97
(2,1,1) 1.42 0.94 1 0.97 0.97
(3,1,3) 1.40 0.95 1 0.97 0.97
(2,2,2) 1.34 0.96 1 0.97 0.98
(1,4,2) 1.27 0.99 1 0.97 0.97
(3,3,1) 1.26 0.84 1 0.96 0.97
(3,1,1) 1.24 0.89 1 0.97 0.97
(2,4,2) 1.22 0.79 1 0.99 0.99
(2,3,3) 1.12 0.65 1 0.98 0.98
(2,4,1) 1.10 0.81 1 0.97 0.97
(1,4,3) 1.03 0.78 1 0.96 0.97

Table 6: Conditional coverage probabilities, Pr{µ(θ̂)∈CStrim|θ̂=θ}, of the confidence intervals
for each of the 12 treatments in Table 3. The treatments are sorted according to the average
donation.
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Treatment (1,3,2) Estimates Equal-tailed CI

Naive 1.52 [0.83,2.20]
Projection – [0.40,2.63]
Conditional – trimmed 0 [0, 1.42]

– untrimmed -7.49 [-47.66,1.42]
Hybrid 0.20 [0.19,1.47]

Table 7: Naive and bias-corrected estimates and confidence intervals for best-performing
treatment in Karlan and List (2007) data.

Projection confidence intervals over-cover unconditionally and conditionally for these treat-

ments, with coverage 100%. Conditional and hybrid confidence intervals slightly over-cover,

with unconditional and conditional coverage about 97%, and have unconditional median

(trimmed) length around 35% larger than naive intervals and around 20% shorter than

projection intervals. It is important to emphasize, however, that the conditional coverage

for projection and hybrid intervals is particular to the data generating process considered

here: as illustrated in Figure 5, these intervals do not ensure conditional coverage in general.

The median length of conditional intervals more than doubles if we leave their lower

bound untrimmed. In contrast, the median length of the hybrid confidence intervals is basi-

cally unaffected by trimming. This is because despite the similarity of their upper bounds,

the lower bound of the conditional confidence intervals tends to be negative and substantially

lower than the lower bound of the hybrid confidence intervals. In other words, if the parame-

ter space is unconstrained, the hybrid confidence intervals are substantially shorter than con-

ditional confidence intervals. The good performance of the hybrid approach in applications

with unconstrained parameter space is encouraging, and in line with the results in Section 2.

Empirical results Returning to the Karlan and List (2007) data, Table 7 reports

corrected estimates and confidence intervals for the best-performing treatment in the

experiment. We repeat the naive estimate and confidence interval for comparison. The

median unbiased estimate makes an aggressive downwards correction to the naive esti-

mate, suggesting negative revenue (-$7.49) from the winning arm if not trimmed. The

conditional confidence interval is tight, ranging from 0 to $1.42, if trimmed at zero, and

otherwise extremely wide, ranging from -$47.66 to $1.42. The hybrid estimate also shifts

the conventional estimate downwards, but much less so. Moreover, the hybrid confidence

interval is no wider than the naive interval, and excludes both zero and the naive estimate.
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These results suggest that future fundraising campaigns deploying the winning strategy

in the experiment are likely to raise some revenue, but substantially less than would be

expected based on the naive estimates.

Conditional inference seems potentially natural in this application. The data highlight

an interpretable combination of treatment parameters (1:1 match, $100,000 pledged, with

an ask 25% above an individual’s highest past donation) as best-performing, raising the

question of what we can conclude about this particular treatment, given that it was the

best in the experiment. This is precisely the question answered by the conditional approach.

By contrast, while the hybrid approach ensures correct coverage on average across different

“winning” treatments which could arise, it offers no guarantees given the particular winner

observed in the Karlan and List (2007) data.

7 Application: Neighborhood Effects

We next discuss simulation and empirical results based on Chetty et al. (2018) and Bergman

et al. (2020). Earlier work, including Chetty and Hendren (2016a) and Chetty and Hendren

(2016b) argues that the neighborhood in which a child grows up has a long-term causal

impact on income in adulthood, and, moreover, that these impacts are closely related to

the adult income of children who spend their entire childhood in a given neighborhood.

Motivated by these findings, Bergman et al. (2020) partnered with the public housing

authorities in Seattle and King County in Washington State in an experiment helping

housing voucher recipients move to a set of higher-opportunity target neighborhoods.

Bergman et al. (2020) choose target neighborhoods based on the Chetty et al. (2018) “Op-

portunity Atlas.” This atlas compiles census-tract level estimates of economic mobility for

communities across the United States. Bergman et al. (2020) define target neighborhoods

by selecting approximately the top third of tracts in Seattle and King County based on

estimated economic mobility.16 They then make “relatively minor” adjustments to the set

of target tracts based on other criteria (Bergman et al., 2020, Appendix A).

A central question in this setting is whether families moving to the target tracts will in

fact experience the positive outcomes predicted based on the Opportunity Atlas estimates

and the hypothesis of neighborhood effects. Once long-term outcomes for the experimental

sample are available, one can begin address this question by comparing outcomes for children

in treated families to the Opportunity Atlas estimates used to select the target tracts in

16They measure economic mobility in terms of the average household income rank in adulthood for
children growing up at the 25th percentile of the income distribution. See Chetty et al. (2018) for details.
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the first place. Such a comparison is complicated by the winner’s curse, however: the Atlas

estimates were already used to select the target tracts, so the naive estimate for the causal

effect of the selected tracts will be systematically biased upwards. It is therefore useful to

examine the extent of the winner’s curse, and the impact of our corrections, in this setting.

Motivated by related issues, Chetty et al. (2018) and Bergman et al. (2020) do not

focus on naive estimates, but instead adopt a shrinkage or empirical Bayes approach. Their

estimates correspond to Bayesian posterior means under a prior that takes tract-level

economic mobility to be normally distributed conditional on a vector of observable tract

characteristics, and then estimates mean and variance hyperparameters from the data. If

one takes this prior seriously and abstracts from estimation of the hyperparameters (for

instance because the number of tracts is large and we plug in consistent estimates), the

posterior median for average economic mobility over selected tracts will be median-unbiased

under the prior, and Bayesian credible sets will have correct coverage, again under the

prior. See Section E in the supplement for further discussion. The efficacy of Bayesian

approaches for correcting selection issues hinges crucially on correct specification of the

prior, however, whereas our results ensure correct coverage and controlled median bias for

all possible distributions of economic mobility across tracts. Throughout this section, we

therefore include empirical Bayes procedures in our analysis as a point of comparison.17

Simulation Results To examine the extent of winner’s curse bias and the performance

of different corrections, we calibrate simulations to the Opportunity Atlas data. For each of

the 50 largest commuting zones (CZs) in the United States we treat the (un-shrunk) tract-

level Opportunity Atlas estimates as the true values. We then simulate estimates by adding

normal noise with standard deviation equal to the Opportunity Atlas standard error.18

We select the top third of tracts in each commuting zone based on these simulated

estimates.19 To cast this into our setting, let T be the set of tracts in a given CZ and

17Armstrong et al. (2020) propose an approach to robustify empirical Bayes confidence intervals to
the choice of priors. Applied in the present setting, this approach would ensure correct coverage for
tract-level economic mobility on average across all tracts in a given commuting zone. This approach
does not focus on high-ranking tracts, however, and so does not, and is not intended to, address the
winner’s curse. Hence, we do not report results for this approach.

18We base our estimates in this setting on the public Opportunity Atlas estimates and standard errors
since we do not have access to the underlying microdata. We also do not have access to the correlation
structure of the estimate across tracts. Such correlations arise from individuals who move across tracts, and
there are few movers between most pairs of tracts, so we expect that these omitted correlations are small.

19We select the target tracts based on the un-shrunk estimates, rather than shrunk estimates as in
Bergman et al. (2020). We do this because we find that selecting based on un-shrunk estimates yields
slightly higher average quality for selected tracts than selecting on shrunk estimates, and because selection
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Θ the set of selections from T containing one third of tracts, Θ={θ⊂T : |θ|=b|T |/3c}.
For µ̂t the estimated effect of tract t, define X(θ) as the average estimate over tracts

in θ, X(θ) = 1
|θ|
∑

t∈θ µ̂t. Target tracts are selected as θ̂ = argmaxθ∈ΘX(θ), and the

naive estimate for the average effect over selected tracts is X(θ̂). Correspondingly, for

µt the neighborhood effect for tract t, let µX(θ) be the average neighborhood effect over

tracts in θ, µX(θ)= 1
|θ|
∑

t∈θµt. We are interested in the difference between the average

quality of selected tracts and the average over all tracts in the same commuting zone,

µY (θ̂)= 1

|θ̂|

∑
t∈θ̂µt−

1
|T |
∑

t∈T µt, and so define Y (θ)= 1
|θ|
∑

t∈θµ̂t−
1
|T |
∑

t∈T µ̂t.
20 We study

the performance of naive estimates and confidence intervals, empirical Bayes estimates

and credible sets, and our corrected estimates and confidence intervals.

Figure 6 reports results based on ten thousand simulation draws. Panel (a) plots the

average true upward mobility for selected tracts E
[

1

|θ̂|

∑
t∈θ̂µt

]
less the average over all

tracts in the same CZ 1
|T |
∑

t∈T µt, E
[
µY (θ̂)

]
, across the 50 CZs considered. Selected tracts

are better than average across all 50 CZs, though the precise degree of improvement varies.

Panel (b) shows median bias for the estimators we consider, where the quantity of interest

is again the difference between average upward mobility for selected tracts, less the average

over all tracts in the same CZ. As expected the naive estimator is biased upwards, while

the sign of the bias for empirical Bayes differs across CZs. The conditional estimator is

median unbiased up to simulation error, while the hybrid estimator is very close to median

unbiased. Panel (c) plots the median absolute estimation error across the four estimators.

The naive estimator has the largest median absolute estimation error in most CZs, while

the empirical Bayes typically has the smallest. The conditional and hybrid estimators are

in the middle, with quite similar median absolute estimation errors for this application.

Finally, panels (d) and (e) plot the coverage and median length of confidence intervals.

We see that the naive confidence interval severely under-covers, with coverage close to

zero in all 50 CZs. The coverage of empirical Bayes intervals differs widely across CZs,

based on shrunk estimates introduces nonlinearity (due to estimation of the hyperparameters) which
complicates conditional and hybrid inference.

20Under the neighborhood effects model, µY (θ̂) corresponds to the average effect of moving a household
from a randomly selected tract in the CZ to a randomly selected target tract. This need not correspond
to the average treatment effect from the experiment in Bergman et al. (2020), since treatment and control
households are not in general uniformly distributed across these sets of tracts. Indeed, some treated
households settle in non-target tracts, and some control households settle in target tracts. Given realized
location choices for treatment and control households, one could re-define µY (θ̂) accordingly. We do not
pursue this extension, however, as data on location choice under treatment only exists for the Seattle
CZ, where Bergman et al. (2020) conducted their experiment. A previous version of the paper applied an

incorrect scaling when calculating µY (θ̂). We thank Magne Mogstad and Larry Katz flagging scaling errors.
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ranging from less than 1% to over 90%.21 Conditional confidence intervals have coverage

equal to 95% up to simulation error in all CZs, while the hybrid intervals have coverage

very close to 95%, and below 96%, in all cases. Finally, projection intervals have coverage

equal to 100%, up to simulation error, in all CZs. Turning to median length, we see that

hybrid intervals are longer than empirical Bayes and naive confidence intervals, but are

considerably shorter than conditional and projection intervals in many cases.

Empirical Results Figure 7 plots results for the Opportunity Atlas data. As in the

simulations we select the top third of census tracts in each CZ based on the naive estimates

and then report naive, empirical Bayes, and hybrid estimates and intervals, as well as

projection intervals, for the average upward mobility across selected tracts, less the average

over the commuting zone. For visibility, we defer results for conditional intervals to Figure

8 of Appendix E. From these results, we see that both the empirical Bayes and hybrid

adjustments shift the naive estimates and intervals downward. There is not a clear pattern

to the shifts in the estimates: in some cases the empirical Bayes estimate is below the

hybrid, while in other cases the order is reversed. As expected given our simulation results,

the (coverage-maintaining) hybrid intervals are wider than the (under-covering) empirical

Bayes intervals, but considerably shorter than projection intervals. Hybrid and projection

intervals exclude zero in all CZs, suggesting that, under the hypothesis of neighborhood

effects, there is real scope for selecting better neighborhoods based on the Opportunity

Atlas, albeit less than the naive estimates suggest.22

The results for conditional procedures in Figure 8 of Appendix E are qualitatively similar,

but the width of the conditional intervals is extremely variable across CZs. Specifically,

while conditional intervals are quite similar to hybrid intervals in some CZs, they are much

21If one selects target tracts based on the empirical Bayes, rather than naive, estimates, this reduces
the bias of EB estimates, with the average median bias across the 50 CZs falling from approximately
-0.0023 to approximately -0.0001. Empirical Bayes credible sets continue to under-cover, however, with
average coverage rising from approximately 50% to approximately 59%.

22It is useful to compare our results with those of Mogstad et al. (2020), who study the problem of
inference on ranks and consider the Opportunity Atlas data for Seattle as an example. They show that
if one forms simultaneous confidence sets for individual tracts, one can say very little about which tracts
are best. Hence, we can say little about the effect of moving an individual from an arbitrary non-target
tract to arbitrary target tract, and can likewise say little about the average treatment effect of shifting
households from one group of tracts to the other if we allow arbitrary location choices within each group
of tracts. We consider a complementary exercise, inference on the average quality of selected sets of
tracts, corresponding to an average treatment effect under uniformly distributed location choices. For this
problem, we find strong evidence that selected tracts are, as a group, better than average. These exercises
answer different questions, and the more positive results obtained in our case reflect that it is statistically
easier to distinguish average mobility across groups of selected tracts than it is to rank individual tracts.
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Figure 6: Simulation results from calibration to Chetty et al. (2018) Opportunity Atlas. Panel
(a) shows the distribution of average improvement in economic mobility in selected tracts, relative
to within-CZ average, across 50 largest CZs. An effect size of 0.01 corresponds to predicted
household income rank in adulthood increasing by 1 percentile (for a child spending their entire
childhood in a given tract). Panel (b) shows the median bias of different estimators across the 50
CZs. Panel (c) plots the median absolute error across the same CZs. Panel (d) shows coverage
of confidence intervals across the 50 largest CZs, while panel (e) plots their median length.

longer in others.23 Conditional intervals lie above zero in 20 of the 50 commuting zones, but

include zero in the other 30. Hence, if we are satisfied with unconditional coverage we find

23Interestingly, the hybrid interval for Seattle, the site of Bergman et al. (2020)’s experiment, is very
short, and substantially shifted downwards relative to the naive and empirical Bayes intervals. This
reflects that fact that the “next best” tracts in this case are extremely close to some of the included
tracts. This leads to very strong downward correction by the conditional approach, and a hybrid interval
concentrated near the lower bound of the projection interval CSβP .
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strong evidence that selected tracts are better than average, while if we demand conditional

coverage results are more mixed, and depend on which commuting zone we consider.

Precision aside, unconditional inference seems potentially more natural than conditional

inference in this application. Within a given CZ, our primary interest is in the efficacy

of targeting the top third of tracts based on estimated economic mobility, rather than in

the precise combination of tracts selected. Hence, it is natural to focus on unconditional

approaches, which give guarantees on average across potential selections. Moreover, in this

application we consider multiple CZs, putting the focus even more squarely on average

results from targeting tracts in this way, rather than the particular selection in a given CZ.

8 Conclusion

This paper considers a form of the winner’s curse that arises when we select a target

parameter for inference based on optimization. We propose confidence intervals and

quantile unbiased estimators for the target parameter that are optimal conditional on its

selection. We hence recommend our conditional inference procedures when it is appropriate

to remove uncertainty about the choice of target parameters from inferential statements.

These conditionally valid procedures are also unconditionally valid, but we find that they

sometimes have unappealing (unconditional) performance relative to existing alternatives.

If one is satisfied with correct unconditional coverage and (in the case of estimation) a

small, controlled degree of bias, we propose hybrid procedures which combine conditioning

with projection confidence intervals.

Our results suggest a range of opportunities for future work. First, rather than con-

sidering inference on µY (θ̂), under suitable assumptions one could build on our results to

forecast Y (θ̂). Alternatively, while conditional and projection confidence intervals have

antecedents in the literature on inference after model selection, including in Berk et al.

(2013) and Fithian et al. (2017), there is no analog of our hybrid approach in this literature.

Our positive simulation results for the hybrid method suggest that this approach might

yield appealing performance in a range of post-selection-inference settings. Even if a fully

conditional approach is desired in the post-selection problem, as in Fithian et al. (2017),

one could consider the analog of our optimal median-unbiased estimates that condition on

the selected model. Finally, the problem of estimating the value of a dynamic treatment

rule (c.f. Chakraborty and Murphy, 2014; Han, 2020) is closely related to our setting, so

it seems likely that our results could prove useful there as well.
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Supplement to the paper

Inference on Winners

Isaiah Andrews Toru Kitagawa Adam McCloskey

April 9, 2021

This supplement contains proofs and additional results for the paper “Inference on

Winners.” Section A generalizes the conditional inference results discussed in the main text,

introducing additional conditioning variables and unbiased confidence intervals. Section B

proves our results for the finite-sample normal model. Section C constructs procedures that

dominate conventional sample splitting as discussed in Section 3.3 of the paper. Section

D proves the uniform asymptotic results discussed in the main text. Section E provides

additional results and discussion to complement the application in Section 7 of the main

text. Finally, Section F reports additional simulation results for the stylized example of

Section 2 of the paper.

A Conditional Inference

This section extends the conditional inference results developed in Section 3 of the main

text in two directions, first allowing dependence on additional conditioning variables, and

then introducing uniformly most accurate unbiased confidence intervals.

A.1 Additional Conditioning Events

Suppose that in addition to conditioning on {θ̂= θ̃}, we also want to condition on an

additional event {γ̂= γ̃}, for γ̂=γ(X) some function of X. We thus seek estimators that

are quantile-unbiased conditional on (θ̂,γ̂),

Prµ

{
µ̂α≥µY (θ̂)|θ̂= θ̃,γ̂= γ̃

}
=α for all θ̃∈Θ, γ̃∈Γ, and all µ, (12)

and confidence sets with correct conditional coverage

Prµ

{
µY (θ̂)∈CS|θ̂= θ̃,γ̂= γ̃

}
≥1−α for all θ̃∈Θ, γ̃∈Γ, and all µ.
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As in the main text, we re-write the conditioning event in terms of the sample space of

X as
{
X : θ̂= θ̃,γ̂= γ̃

}
=X (θ̃,γ̃), and study the conditional distribution of (X,Y (θ̃)) given

X∈X (θ̃,γ̃). For Zθ̃ as defined in (7), let

Y(θ̃,γ̃,z)=
{
y :z+

(
ΣXY (·,θ̃)/ΣY (θ̃)

)
y∈X (θ̃,γ̃)

}
.

Conditional on θ̂= θ̃, γ̂ = γ̃, and Zθ̃ = z, Y (θ̂) again follows a one-dimensional normal

distribution N(µY (θ̃),ΣY (θ̃)) truncated to Y(θ̃,γ̃,z).

To characterize Y(θ̃,γ̃,z), note that for forX (θ̃) as derived in the main text, we can write

X (θ̃,γ̃)=X (θ̃)∩Xγ(γ̃). Likewise, for Yγ(γ̃,z) defined analogously to (9), Y(θ̃,γ̃,z)=Y(θ̃,z)∩
Yγ(γ̃,z). The form of Xγ(γ̃) and Yγ(γ̃,z) depends on the conditioning variables γ̂ considered.

To construct quantile-unbiased estimators, let FTN(y;µY (θ̃),θ̃,γ̃,z) denote the distri-

bution function for a N(µY (θ̃,ΣY (θ̃))) distribution truncated to Y(θ̃,γ̃,z). This function

is strictly decreasing in µY (θ̃), so define µ̂α as the unique solution to

FTN(Y (θ̂);µ̂α,θ̃,γ̃,Zθ̃)=1−α. (13)

Proposition 7

Let µ̂α solve (13). µ̂α is conditionally α-quantile-unbiased in the sense of (12). If Assump-

tion 1 holds, then µ̂α is the uniformly most concentrated α-quantile-unbiased estimator in

that for any other conditionally α-quantile-unbiased estimator µ̂∗α and any loss function

L
(
d,µY (θ̃)

)
that attains its minimum at d=µY (θ̃) and is quasiconvex in d for all µY (θ̃),

Eµ

[
L
(
µ̂α,µY (θ̃)

)
|θ̂= θ̃,γ̂= γ̃

]
≤Eµ

[
L
(
µ̂∗α,µY (θ̃)

)
|θ̂= θ̃,γ̂= γ̃

]
for all µ and all θ̃∈Θ, γ̃∈Γ.

Proposition 7 shows that optimality of µ̂α extends to general conditioning variables γ̂.

Hence, µ̂1
2

is an optimal median-unbiased estimator, while CSET =[µ̂α
2
,µ̂1−1

2
] is an optimal

equal-tailed confidence interval.

A.1.1 Additional Conditioining Example: Outperforming a Benchmark

Here, we derive the truncation set Yγ (γ̃,z) corresponding to the additional selection

event discussed as an example in Section 3 of the main text. We would like to con-

dition on rejection of the null hypothesis that no treatment outperforms a benchmark,

H0 :maxθ∈ΘµX(θ)≤µX(0). For X(0) the observed outcome for the under the benchmark
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treatment, a non-studentized test of the null hypothesis rejects when the difference between

the empirical outcome at the best treatment and the benchmark exceeds a critical value

threshold: X(θ̂)−X(0)≥c for some c>0. In this case, γ̂=γ(X)=1
{
X(θ̂)−X(0)≥c

}
and

we wish to condition inference on rejection of H0 for which γ̂=1.24 In order to implement

our procedures in this context, we need a tractable expression for Yγ(1,z).
Note that we can write

{
X(θ̃)−X(0)≥c

}
=

{
Zθ̃(θ̃)−Zθ̃(0)+

ΣXY (θ̃)−ΣXY (θ̃,0)

ΣY (θ̃)
Y (θ̃)≥c

}
.

Rearranging, we see that

Yγ(1,Zθ̃)=



{
y :y≥ ΣY (θ̃)(c−Zθ̃(θ̃)+Zθ̃(0))

ΣXY (θ̃)−ΣXY (θ̃,0)

}
if ΣXY (θ̃)−ΣXY (θ̃,0)>0{

y :y≤ ΣY (θ̃)(c−Zθ̃(θ̃)+Zθ̃(0))
ΣXY (θ̃)−ΣXY (θ̃,0)

}
if ΣXY (θ̃)−ΣXY (θ̃,0)<0

R
if ΣXY (θ̃)−ΣXY (θ̃,0)=0

and Zθ̃(θ̃)−Zθ̃(0)≥c

∅
if ΣXY (θ̃)−ΣXY (θ̃,0)=0

and Zθ̃(θ̃)−Zθ̃(0)<c.

.

Thus, if for example ΣXY (θ̃)>ΣXY (θ̃,0), thenY(θ̃,1,z)=Y(θ̃,z)∩Yγ(1,z)=
[
L∗(θ̃,Zθ̃),U(θ̃,Zθ̃)

]
,

where U(θ̃,Zθ̃) is the upper bound defined in Proposition 1 while

L∗(θ̃,Zθ̃)=max

L(θ̃,Zθ̃),
ΣY (θ̃)

(
c−Zθ̃(θ̃)+Zθ̃(0)

)
ΣXY (θ̃)−ΣXY (θ̃,0)

,
for L(θ̃,Zθ̃) defined as in Proposition 1. Hence, when ΣXY (θ̃)−ΣXY (θ̃,0)>0, conditoning

on γ̂=1 simply modifies the lower bound L(θ̃,Zθ̃). Likewise, when ΣXY (θ̃)−ΣXY (θ̃,0)<0

or ΣXY (θ̃)−ΣXY (θ̃,0)=0, conditioning on γ̂=1 modifies U(θ̃,Zθ̃) and V(θ̃,Zθ̃), respectively.

As this example illustrates, it is straightforward to incorporate additional conditioning

variables γ̂ in the level maximization problems we study here provided one can characterize

the set Yγ(γ̃,z). While such characterizations are easy to obtain in many cases, they depend

on the conditioning variable considered and must be derived on a case-by-case basis.

24We could equally well consider studentized tests.
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A.2 Unbiased Confidence Intervals

Rather than considering equal-tailed intervals, we can alternatively consider unbiased

confidence intervals. Following Lehmann and Romano (2005), we say that a level 1−α
two-sided confidence interval CS is unbiased if its probability of covering any given false

parameter value is bounded above by 1−α. Likewise, a one sided lower (upper) confidence

interval is unbiased if its probability of covering a false parameter value above (below) the

true value is bounded above by 1−α. Using the duality between tests and confidence inter-

vals, a level 1−α confidence interval CS is unbiased if and only if φ(µY,0)=1{µY,0 /∈CS}
is an unbiased test for the corresponding family of hypotheses.25 The results of Lehmann

and Scheff́e (1955) applied in our setting imply that optimal unbiased tests conditional on{
θ̂= θ̃,γ̂= γ̃

}
are the same as optimal unbiased tests conditional on

{
θ̂= θ̃,γ̂= γ̃,Zθ̃=zθ̃

}
.

These optimal tests take a simple form.

Define a size α test of the two-sided hypothesis H0 :µY (θ̃)=µY,0 as

φTS,α(µY,0)=1
{
Y (θ̃) 6∈ [cl(Zθ̃),cu(Zθ̃)]

}
where cl(z), cu(z) solve

Pr{ζ∈ [cl(z),cu(z)]}=1−α, E[ζ1{ζ∈ [cl(z),cu(z)]}]=(1−α)E[ζ]

for ζ that follows a truncated normal distribution

ζ∼ξ|ξ∈Y(θ̃,γ̃,z), ξ∼N
(
µY,0,ΣY (θ̃)

)
.

Likewise, define a size α test of the one-sided hypothesis H0 :µY (θ̃)≥µY,0 as

φOS−,α(µY,0)=1
{
FTN(Y (θ̃);µY,0,θ̃,γ̃,z)≤α

}
and a test of H0 :µY (θ̃)≤µY,0 as

φOS+,α(µY,0)=1
{
FTN(Y (θ̃);µY,0,θ̃,γ̃,z)≥1−α

}
.

Proposition 8

25That is, H0 :µY (θ̃)=µY,0 for a two-sided confidence interval, H0 :µY (θ̃)≥µY,0 for a lower confidence

interval and H0 :µY (θ̃)≤µY,0 for an upper confidence interval.
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If Assumption 1 holds, φTS,α, φOS−,α, and φOS+,α are uniformly most powerful unbiased

size α tests of their respective null hypotheses conditional on θ̂= θ̃ and γ̂= γ̃.

To form uniformly most accurate unbiased confidence intervals we collect the values

not rejected by these tests. The two-sided uniformly most accurate unbiased confidence

interval is CSU = {µY,0 :φTS,α(µY,0)=0}. CSU is unbiased and has conditional coverage

1−α by construction. Likewise, we can form lower and upper one-sided uniformly most

accurate unbiased confidence intervals as CSU,−={µY,0 :φOS−,α(µY,0)=0}=(−∞,µ̂1−α],

and CSU,+ ={µY,0 :φOS+,α(µY,0)=0}=[µ̂α,∞), respectively. Hence, we can view CSET as

the intersection of level 1−α
2

uniformly most accurate unbiased upper and lower confidence

intervals. Unfortunately, no such simplification is generally available for CSU , though

Lemma 5.5.1 of Lehmann and Romano (2005) guarantees that this set is an interval.

A.3 Behavior When Prµ

{
θ̂= θ̃,γ̂= γ̃

}
is Large

In Proposition 3 of the main text, we showed that our median-unbiased estimators and

equal-tailed confidence intervals converge to conventional ones when Prµ

{
θ̂= θ̃

}
→1. The

same result holds for general conditioning events and unbiased confidence intervals.

Lemma 2

Consider any sequence of values µY,m and zθ̃,m such that PrµY,m

{
θ̂= θ̃,γ̂= γ̃|Zθ̃=zθ̃,m

}
→1.

Then under µY,m, conditional on
{
θ̂= θ̃,γ̂= γ̃,Zθ̃=zθ̃,m

}
we have CSU→pCSN , CSET→p

CSN , and µ̂1
2
→pY (θ̃).

Proposition 9

Consider any sequence of values µm such that Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→1. Then under µm,

we have CSU→pCSN , CSET→pCSN , and µ̂1
2
→pY (θ̃) both conditional on

{
θ̂= θ̃,γ̂= γ̃

}
and unconditionally.

B Proofs

We first prove the results stated in Section A, and then build on these to prove the results

for the finite-sample normal model discussed in the main text.

B.1 Proofs for Results in Section A

Proof of Proposition 7 For ease of reference, let us abbreviate (Y (θ̃),µY (θ̃),Zθ̃) by

(Ỹ , µ̃Y ,Z̃). Let Y (−θ̃) collect the elements of Y other than Y (θ̃) and define µY (−θ)
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analagously. Let

Y ∗=Y (−θ̃)−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
Ỹ

X

)
,

µ∗Y =µY (−θ̃)−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
µ̃Y

µX

)
,

and µ̃Z = µX −
(

ΣXY (·,θ̃)/ΣY (θ̃)
)
µY . Here we use A+ to denote the Moore-Penrose

pseudoinverse of a matrix A. Note that (Z̃,Ỹ ,Y ∗) is a one-to-one transformation of (X,Y ),

and thus that observing (Z̃,Ỹ ,Y ∗) is equivalent to observing (X,Y ). Likewise, (µ̃Z,µ̃Y ,µ
∗
Y )

is a one-to-one linear transformation of (µX,µY ), and if the set of possible values for the

latter contains an open set, that for the former does as well (relative to the appropriate

linear subspace).

Note, next, that since (Z̃,Ỹ ,Y ∗) is a linear transformation of (X,Y ), (Z̃,Ỹ ,Y ∗) is jointly

normal (with a potentially degenerate distribution). Note next that (Z̃,Ỹ ,Y ∗) are mutually

uncorrelated, and thus independent. That Z̃ and Ỹ are uncorrelated is straightforward

to verify. To show that Y ∗ is likewise uncorrelated with the other elements, note that we

can write Cov
(
Y ∗,(Ỹ ,X′)′

)
as

Cov

(
Y (−θ̃),

(
Ỹ

X

))
−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
.

For VΛV ′ an eigendecomposition of V ar
(

(Ỹ ,X′)′
)

(so V V ′=I), note that we can write

V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
=VDV ′

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

Λ and zeros everywhere else. For any column v of V corresponding to a zero entry of D,

v′V ar

((
Ỹ ,X′

)′)
v=0, so the Cauchy-Schwarz inequality implies that

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
v=0.
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Thus,

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
VDV ′=Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
V V ′=Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
,

so Y ∗ is uncorrelated with
(
Ỹ ,X′

)′
.

Using independence, the joint density of (Z̃,Ỹ ,Y ∗) absent truncation is given by

fN,Z̃(z̃;µ̃Z)fN,Ỹ (ỹ;µ̃Y )fN,Y ∗(ỹ
∗;µ∗Y )

for fN normal densities with respect to potentially degenerate base measures:

fN,Z̃(z̃;µ̃Z)=d̃et(2πΣZ̃)−
1
2exp

(
−1

2
(z̃−µ̃Z)′Σ+

Z̃
(z̃−µ̃Z)

)

fN,Ỹ (ỹ;µ̃Y )=(2πΣỸ )−
1
2exp

(
−(ỹ−µ̃Y )2

2ΣỸ

)

fN,Y ∗(y
∗;µ∗Y )=d̃et(2πΣY ∗)

−1
2exp

(
−1

2
(y∗−µ̃∗Y )′Σ+

Y ∗(y
∗−µ∗Y )

)
,

where d̃et(A) denotes the pseudodeterminant of a matrix A, ΣZ̃=V ar(Z̃), ΣỸ =ΣY (θ̃),

and ΣY ∗=V ar(Y ∗).

The event
{
X∈X (θ̃,γ̃)

}
depends only on (Z̃,Ỹ ) since it can be expressed as

{(
Z̃+

ΣXY (·,θ̃)
ΣY (θ̃)

Ỹ

)
∈X (θ̃,γ̃)

}
,

so conditional on this event Y ∗ remains independent of (Z̃,Ỹ ). In particular, we can write

the joint density conditional on
{
X∈X (θ̃,γ̃)

}
as

1
{(
z̃+ΣXY (·,θ̃)ΣY (θ̃)−1ỹ

)
∈X (θ̃,γ̃)

}
Prµ̃Z ,µ̃Y

{
X∈X (θ̃,γ̃)

} fN,Z̃(z̃;µ̃Z)fN,Ỹ (ỹ;µ̃Y )fN,Y ∗(ỹ
∗;µ∗Y ). (14)

The density (14) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-

ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-
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ately from Theorem 5.5.9 of Pfanzagl (1994). Part 2 of the proposition follows by using Theo-

rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). �

Proof of Proposition 8 In the proof of Proposition 7, we showed that the joint density of

(Z̃,Ỹ ,Y ∗) (defined in that proof) has the exponential family structure assumed in equation

4.10 of Lehmann and Romano (2005). Moreover, Assumption 1 implies that the parameter

space for (µX,µY ) is convex and is not contained in any proper linear subspace. Thus, the

parameter space for (µ̃Z,µ̃Y ,µ
∗
Y ) inherits the same property, and satisfies the conditions

of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. �

Proof of Lemma 2 Recall that conditional on Zθ̃=zθ̃, θ̂= θ̃ and γ̂= γ̃ if and only if

Y (θ̃)∈Y(θ̃,γ̃,zθ̃). Hence, the assumption of the lemma implies that

PrµY,m

{
Y (θ̃)∈Y(θ̃,γ̃,Zθ̃)|Zθ̃=zθ̃,m

}
→1.

Note, next, that both the conventional and conditional confidence intervals are equiv-

ariant under shifts, in the sense that the conditional confidence interval for µY (θ̃) based

on observing Y (θ̃) conditional on Y (θ̃) ∈ Y(θ̃, γ̃,Zθ̃) is equal to the conditional confi-

dence interval for µY (θ̃) based on observing Y (θ̃)−µ∗Y (θ̃) conditional on Y (θ̃)−µ∗Y (θ̃)∈
Y(θ̃,γ̃,Zθ̃)−µ∗Y (θ̃) for any constant µ∗Y (θ̃). Hence, rather than considering a sequence of

values µY,m, we can fix some µ∗Y and note that Prµ∗Y

{
Y (θ̃)∈Y∗m|Zθ̃=zθ̃,m

}
→1, where

Y∗m=Y(θ̃,γ̃,Zθ̃)−µY,m(θ̃)+µ∗Y (θ̃). Confidence intervals for µY,m(θ̃) in the original problem

are equal to those for µ∗Y (θ̃) in the new problem, shifted by µY,m(θ̃)−µ∗Y (θ̃). Hence, to prove

the result it suffices to prove the equivalence of conditional and conventional confidence

intervals in the problem with µY fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved be-

low. First, we must introduce the following notation. Let (cl,ET (µY,0,Y),cu,ET (µY,0,Y))

denote the critical values for an equal-tailed test of H0 : µY (θ̃) = µY,0 for Y (θ̃) ∼
N
(
µY (θ̃),ΣY (θ̃)

)
conditional on Y (θ̃) ∈ Y. That is, (cl,ET (µY,0,Y),cu,ET (µY,0,Y)) solve

FTN(cl,ET (µY,0,Y);µY,0,Y)= α
2

and FTN(cu,ET (µY,0,Y);µY,0,Y)=1−α
2
, where FTN(·;µY,0,Y)

is the distribution function for the normal distribution N
(
µY,0,ΣY (θ̃)

)
truncated to Y.

Similarly, let (cl,U(µY,0,Y),cu,U(µY,0,Y)) denote the critical values for the corresponding un-

biased test. That is, (cl,U(µY,0,Y),cu,U(µY,0,Y)) solve Pr{ζ∈ [cl,U(µY,0,Y),cu,U(µY,0,Y)]}=
1 − α and E [ζ1{ζ∈ [cl,U(µY,0,Y),cu,U(µY,0,Y)]}] = (1−α)E [ζ] for ζ ∼ ξ|ξ ∈ Y where

ξ∼N
(
µY,0,ΣY (θ̃)

)
.

52



Lemma 3

Suppose that we observe Y (θ̃) ∼ N
(
µY (θ̃),ΣY (θ̃)

)
conditional on Y (θ̃) falling in a

set Y. If we hold
(

ΣY (θ̃),µY,0

)
fixed and consider a sequence of sets Ym such that

Pr
{
Y (θ̃)∈Ym

}
→1, we have that for

φET (µY,0)=1
{
Y (θ̃) 6∈ [cl,ET (µY,0,Ym),cu,ET (µY,0,Ym)]

}
(15)

and

φU(µY,0)=1
{
Y (θ̃) 6∈ [cl,U(µY,0,Ym),cu,U(µY,0,Ym)]

}
, (16)

(cl,ET (µY,0,Ym),cu,ET (µY,0,Ym))→
(
µY,0−cα

2
,N

√
ΣY (θ̃),µY,0+cα

2
,N

√
ΣY (θ̃)

)
and

(cl,U(µY,0,Ym),cu,U(µY,0,Ym))→
(
µY,0−cα

2
,N

√
ΣY (θ̃),µY,0+cα

2
,N

√
ΣY (θ̃)

)
.

To complete the proof, first note that CSET and CSU are formed by inverting (families

of) equal-tailed and unbiased tests, respectively. Let CSm denote a generic conditional

confidence interval formed by inverting a family of tests

φm(µY,0)=1
{
Y (θ̃) 6∈ [cl(µY,0,Y∗m),cu(µY,0,Y∗m)]

}
.

Hence, we want to show that

CSm→p

[
Y (θ̃)−cα

2
,N ,Y (θ̃)+cα

2
,N

]
, (17)

as m→∞, for CSm formed by inverting either (15) or (16).

We note that CSm is a finite interval for all m, which holds trivially for the equal-tailed

confidence interval CSET , and holds for CU by Lemma 5.5.1 of Lehmann and Romano

(2005). For each value µY,0 our Lemma 3 implies that

φm(µY,0)→p1
{
Y
(
θ̃
)
/∈
[
µY,0−cα

2
,N ,µY,0+cα

2
,N

]}
for φm equal to either (15) or (16). This convergence in probability holds jointly for all

finite collections of values µY,0, however, which implies (17). The same argument works
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for the median unbiased estimator µ̂1
2
, which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. �

Proof of Proposition 9 We prove this result for the unconditional case, noting that

since Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→1, the result conditional on

{
θ̂= θ̃,γ̂= γ̃

}
follows immediately.

Note that Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→ 1 implies PrµY,m

{
θ̂= θ̃,γ̂= γ̃|Zθ̃=z

}
→p 1 for all z.

Hence, for g(µY ,z)=PrµY

{
θ̂= θ̃,γ̂= γ̃|Zθ̃=z

}
, we see that g(µY,m,z)→p1 for all z. Note,

next, that for d the Euclidian distance between the endpoints, if we define hε(µY ,z) =

PrµY {d(CSU ,CSN)>ε|Zθ̃=z}, Lemma 2 implies that for any sequence (µY,m,zm) such that

g(µY,m,zm)→1, hε(µY,m,zm)→0. Hence, if we define G(δ)={(µY ,z):g(µY ,z)>1−δ} and

H(ε)={(µY ,z):hε(µY ,z)<ε}, for all ε>0 there exists δ(ε)>0 such that G(δ(ε))⊆H(ε).

Hence, since our argument above implies that for all δ>0, Prµm{(µY,m,z)∈G(δ)}→1

for all z, we see that for all ε > 0, Prµm{(µY,m,z)∈H(ε)}→ 1 for all z as well, which

suffices to prove the desired claim for confidence intervals. The same argument likewise

implies the result for our median unbiased estimator. �

Proof of Lemma 3 Note that we can assume without loss of generality that µY,0 =0 and

ΣY (θ̃)=1 since we can define Y ∗(θ̃)=
(
Y (θ̃)−µY,0

)
/
√

ΣY (θ̃) and consider the problem

of testing that the mean of Y ∗(θ̃) is zero (transforming the set Ym accordingly). After

deriving critical values (c∗l ,c
∗
u) in this transformed problem, we can recover critical values

for our original problem as (cl,cu)=
√

ΣY (θ̃)(c∗l ,c
∗
u)+µY,0. Hence, for the remainder of the

proof we assume that µY,0 =0 and ΣY (θ̃)=1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects

if and only if Y (θ̃) 6∈ [cl,ET (Y),cu,ET (Y)], where we suppress the dependence of the critical

values on µY,0 =0 for simplicity, and (cl,ET (Y),cu,ET (Y)) solve FTN(cl,ET (Y),Y)= α
2

and

FTN (cu,ET (Y),Y) = 1− α
2
, for FTN(·,Y) the distribution function of a standard normal

random variable truncated to Y. Recall that we can write the density corresponding to

FTN(y,Y) as 1{y∈Y}
Pr{ξ∈Y}fN(y) where fN is the standard normal density and Pr{ξ∈Y} is the

probability that ξ∈Y for ξ∼N(0,1). Hence, we can write FTN(y,Y)=
∫ y
−∞1{ỹ∈Y}fN(ỹ)dỹ

Pr{ξ∈Y} .

Note next that for all y we can write FTN (y,Ym) =am(y)+FN (y), where FN is the

standard normal distribution function and am (y) =
∫ y
−∞1{ỹ∈Ym}fN(ỹ)dỹ

Pr{ξ∈Ym} −FN (y). Recall,

however, that Pr{ξ∈Ym}→1 and∣∣∣∣∫ y

−∞
1{ỹ∈Ym}fN(ỹ)dỹ−FN(y)

∣∣∣∣=∣∣∣∣∫ y

−∞
[1{ỹ∈Ym}−1]fN(ỹ)dỹ

∣∣∣∣
54



=

∫ y

−∞
1{ỹ 6∈Ym}fN(ỹ)dỹ≤Pr{ξ 6∈Ym}→0

for all y, so am(y)→0 for all y. Theorem 2.11 in van der Vaart (1998) then implies that

am(y)→0 uniformly in y as well.

Note next that FTN (cl,ET (Ym),Ym) = am (cl,ET (Ym)) + FN (cl,ET (Ym)) = α
2

implies

cl,ET (Ym)=F−1
N

(
α
2
−am(cl,ET (Ym))

)
, and thus that cl,ET (Ym)→F−1

N

(
α
2

)
. Using the same

argument, we can show that cu,ET (Ym)→F−1
N

(
1−α

2

)
, as desired.

Unbiased Test We next consider the unbiased test. Recall that critical values

cl,U (Y) , cu,U (Y) for the unbiased test solve Pr {ζ∈ [cl,U(Y),cu,U(Y)]} = 1 − α and

E[ζ1{ζ∈ [cl,U(Y),cu,U(Y)]}]=(1−α)E[ζ] for ζ∼ξ|ξ∈Y where ξ∼N(0,1).

Note that for ζm the truncated normal random variable corresponding to Ym, we can

write Pr{ζm∈ [cl,cu]}=am(cl,cu)+(FN(cu)−FN(cl)) with

am(cl,cu)=(FN(cl)−Pr{ζm≤cl})−(FN(cu)−Pr{ζm≤cu}).

As in the argument for equal-tailed tests above, we see that both FN(cu)−Pr{ζm≤cu}
and FN(cl)−Pr{ζm≤cl} converge to zero pointwise, and thus uniformly in cu and cl by

Theorem 2.11 in van der Vaart (1998). Hence, am(cl,cu)→0 uniformly in (cl,cu).

Note, next, that we can write E[ζm1{ζm∈ [cl,cu]}]=[ξ1{ξ∈ [cl,cu]}]+bm(cl,cu) for

bm(cl,cu)=E[ζm1{ζm∈ [cl,cu]}]−[ξ1{ξ∈ [cl,cu]}]=
∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1

)
yfN(y)dy.

Note, however, that
∫ cu
cl

(1{y∈Ym}−1)yfN(y)dy≤E[|ξ|1{ξ 6∈Ym}]. Hence, since∣∣∣∣∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1

)
yfN(y)dy

∣∣∣∣
≤
∣∣∣∣∫ cu

cl

(1{y∈Ym}−1)yfN(y)dy

∣∣∣∣+∣∣∣∣∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1{y∈Ym}
)
yfN(y)dy

∣∣∣∣
≤E[|ξ|1{ξ 6∈Ym}]+

∣∣∣∣( 1

Pr{ξ∈Ym}
−1

)∣∣∣∣∫ cu

cl

1{y∈Ym}|y|fN(y)dy

≤
√
P(ξ 6∈Ym)+

∣∣∣∣( 1

Pr{ξ∈Ym}
−1

)∣∣∣∣E[|ξ|]

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t

depend on (cl,cu), bm(cl,cu) converges to zero uniformly in (cl,cu).
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Next, let us define (cl,m,cu,m) as the solutions to Pr {ζm∈ [cl,cu]} = 1 − α and

E [ζm1{ζm∈ [cl,cu]}] = (1−α)E [ζm]. From our results above, we can re-write the prob-

lem solved by (cl,m,cu,m) as FN (cu)− FN (cl) = 1− α− am (cl,cu) , E [ξ1{ξ∈ [cl,cu]}] =

(1−α)E [ζm]−bm(cl,cu). Letting ām = supcl,cu |am(cl,cu)|, and b̄m = supcl,cu |bm(cl,cu)| we

thus see that (cl,m,cu,m) solves FN (cu)−FN (cl) = 1−α− a∗m and E [ξ1{ξ∈ [cl,cu]}] =

(1−α)E [ζm]−b∗m for some a∗m ∈ [−ām,ām], b∗m ∈
[
−b̄m,̄bm

]
. We will next show that for

any sequence of values (a∗m,b
∗
m) such that a∗m ∈ [−ām,ām] and b∗m ∈

[
−b̄m,̄bm

]
for all m,

the implied solutions cl,m(a∗m,b
∗
m), cu,m(a∗m,b

∗
m) converge to F−1

N

(
α
2

)
and F−1

N

(
1−α

2

)
. This

follows from the next lemma, which is proved below.

Lemma 4

Suppose that cl,m and cu,m solve Pr{ξ∈ [cl,cu]}=1−α+am and E[ξ1{ξ∈ [cl,cu]}]=dm for

am, dm→0. Then (cl,m,cu,m)→
(
−cα

2
,N ,cα

2
,N

)
.

Using this lemma, since E[ζm]→0 as m→∞ we see that for any sequence of values

(a∗m,b
∗
m)→ 0, (cl,m(a∗m,b

∗
m),cu,m(a∗m,b

∗
m))→

(
−cα

2
,N ,cα

2
,N

)
. However, since ām,b̄m→ 0 we

know that the values a∗m and b∗m corresponding to the true cl,m, cu,m must converge to

zero. Hence (cl,m,cu,m)→
(
−cα

2
,N ,cα

2
,N

)
as we wanted to show. �

Proof of Lemma 4 Note that the critical values solve

f(am,dm,c)=

(
FN(cu)−FN(cl)−(1−α)−am∫ cu

cl
yfN(y)dy−dm

)
=0.

We can simplify this expression, since ∂
∂y
fN (y) =−yfN (y), so

∫ cu
cl
yfN (y)dy= fN (cl)−

fN(cu).

We thus must solve the system of equations g(c)−vm=0, for

g(c)=

(
FN(cu)−FN(cl)

fN(cl)−fN(cu)

)
, vm=

(
am+(1−α)

dm

)
.

Note that for vm=(1−α,0)′ this system is solved by c=
(
−cα

2
,N ,cα

2
,N

)
. Further,

∂

∂c
g(c)=

(
−fN(cl) fN(cu)

−clfN(cl) cufN(cu)

)
,
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which evaluated at c=
(
−cα

2
,N ,cα

2
,N

)
is equal to(

−fN
(
cα

2
,N

)
fN
(
cα

2
,N

)
cα

2
,NfN

(
cα

2
,N

)
cα

2
,NfN

(
cα

2
,N

) )

and has full rank for all α∈(0,1). Thus, by the implicit function theorem there exists an

open neighborhood V of v∞=(1−α,0) such that g(c)−v=0 has a unique solution c(v)

for v∈V and c(v) is continuously differentiable. Hence, if we consider any sequence of

values vm→(1−α,0), we see that c(vm)→

(
−cα

2
,N

cα
2
,N

)
, again as we wanted to show. �

B.2 Proofs for Results in Main Text

Proof of Proposition 1 Let us assume without loss of generality that θ̃=θ1. Note that

the conditioning event {maxθ∈ΘX(θ)=X(θ1)} is equivalent to {MX≥0}, where

M≡


1 −1 0 0 ... 0

1 0 −1 0 ... 0
...

...
...

...
...

...

1 0 0 0 ... −1


is a (|Θ|−1)×|Θ|matrix and the inequality is taken element-wise. LetA=

[
− M 0(|Θ|−1)×|Θ|

]
,

where 0(|Θ|−1)×|Θ| denotes the (|Θ|−1)×|Θ| matrix of zeros. Let W =(X′,Y ′)′ and note

that we can re-write the event of interest as {W :AW≤0} and that we are interested

in inference on η′µ for η the 2|Θ|×1 vector with one in the (|Θ|+1)st entry and zeros

everywhere else. Define

Z̃∗
θ̃

=W−cY (θ̃),

for c=Cov(W,Y (θ̃))/ΣY (θ̃), noting that the definition of Zθ̃ in (7) corresponds to extracting

the elements of Z̃∗
θ̃

corresponding to X. By Lemma 5.1 of Lee et al. (2016),

{W :AW≤0}=
{
W :L(θ̃,Z̃∗

θ̃
)≤Y (θ̃)≤U(θ̃,Z̃∗

θ̃
),V(θ̃,Z̃∗

θ̃
)≥0

}
,

where for (v)j the jth element of a vector v,

L(θ̃,z)= max
j:(Ac)j<0

−(Az)j
(Ac)j
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U(θ̃,z)= min
j:(Ac)j>0

−(Az)j
(Ac)j

V(θ̃,z)= min
j:(Ac)j=0

−(Az)j.

Note, however, that (
AZ̃∗

θ̃

)
j
=Zθ̃(θj)−Zθ̃(θ1)

and

(Ac)j=−ΣXY (θ1,θ1)−ΣXY (θ1,θj)

ΣY (θ1)
.

Hence, we can re-write

−(AZ̃∗
θ̃
)j

(Ac)j
=

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

L(θ̃,Z̃∗
θ̃
)= max

j:ΣXY (θ1,θ1)>ΣXY (θ1,θj)

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

U(θ̃,Z̃∗
θ̃
)= min

j:ΣXY (θ1,θ1)<ΣXY (θ1,θj)

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

and

V(θ̃,Z̃∗
θ̃
)= min

j:ΣXY (θ1,θ1)=ΣXY (θ1,θj)
−(Zθ̃(θj)−Zθ̃(θ1)).

Note, however, that these are functions of Zθ̃, as expected. The result follows. �

Proof of Proposition 2 Follows as a special case of Proposition 7. �

Proof of Proposition 3 Follows as a special case of Proposition 9. �

Proof of Proposition 4 Provided θ̂ is unique with probability one, we can write

Prµ

{
µ(θ̂)∈CS

}
=
∑
θ̃∈Θ

Prµ

{
θ̂= θ̃

}
Prµ

{
µ(θ̃)∈CS|θ̂= θ̃

}
.

Since
∑

θ̃∈ΘPrµ

{
θ̂= θ̃

}
=1, the result of the proposition follows immediately. �

Proof of Lemma 1 The assumption of the lemma implies that X(θ̃)−X(θ) has a

non-degenerate normal distribution for all µ. Since Θ is finite, almost-sure uniqueness of

θ̂ follows immediately. �
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Proof of Proposition 5 We first establish uniqueness of µ̂Hα . To do so, it suffices to show

that FH
TN(Y (θ̃);µY (θ̃),θ̃,Zθ̃) is strictly decreasing in µY (θ̃). Note first that this holds for the

truncated normal assuming truncation that does not depend on µY (θ̃) by Lemma A.1 of Lee

et al. (2016). When we instead consider FH
TN(Y (θ̃);µY (θ̃),θ̃,Zθ̃), we impose truncation to

Y (θ̃)∈
[
µY (θ̃)−cβ

√
ΣY (θ̃),µY (θ̃)+cβ

√
ΣY (θ̃)

]
.

Since this interval shifts upwards as we increase µY (θ̃), FH
TN(Y (θ̂);µY (θ̃), θ̃,Zθ̃) is a-

fortiori decreasing in µY (θ̃). Uniqueness of µ̂Hα for α ∈ (0,1) follows. Note, next, that

FH
TN(Y (θ̃);µY (θ̃), θ̃,Zθ̃) ∈ {0,1} for µY (θ̃) 6∈ CSβP from which we immediately see that

µ̂Hα ∈CS
β
P .

Finally, note that for µY (θ̃) the true value, FH
TN(Y (θ̂);µY (θ̃),θ̃,Zθ̃)∼U[0,1] conditional

on
{
θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CSβP

}
. Since FH

TN(Y (θ̂);µY (θ̃),θ̃,Zθ̃) is decreasing in µY (θ̃),

Prµ

{
µ̂Hα ≥µY (θ̃)|θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CSβP

}
=Prµ

{
FH
TN(Y (θ̂);µY (θ̃),θ̃,γ̃,Zθ̃)≥1−α|θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CSβP

}
=α,

and thus µ̂Hα is α-quantile-unbiased conditional on
{
θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CSβP

}
. We can

drop the conditioning on Zθ̃ by the law of iterated expectations, and α-quantile unbiasedness

conditional on µY (θ̃)∈CSβP follows by the same argument as in the proof of Proposition 4.

Proof of Proposition 6 The first part of the proposition follows immediately from

Proposition 5. For the second part of the proposition, note that

Prµ

{
µY (θ̂)∈CSHET

}
=Prµ

{
µY (θ̂)∈CSβP

}
×

∑
θ̃∈Θ

Prµ

{
θ̂= θ̃|µY (θ̂)∈CSβP

}
Prµ

{
µY (θ̃)∈CSHET |θ̂= θ̃,µY (θ̃)∈CSβP

}

=Prµ

{
µY (θ̂)∈CSβP

}1−α
1−β

≥(1−β)
1−α
1−β

=1−α,

where the second equality follows from the first part of the proposition. The upper bound

follows by the same argument and the fact that Prµ

{
µY (θ̂)∈CSβP

}
≤1. �
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C Alternatives to Conventional Sample Splitting

In Section 3.3 of the main text, we discuss the relationship of our conditional approach

to conventional sample splitting methods and note that the results of Fithian et al. (2017)

imply that traditional sample splitting methods are dominated in our setting. For a given

sample split, we derive optimal split-sample confidence intervals and estimators as well

as easy-to-implement confidence intervals and estimators that dominate their conventional

split-sample counterparts in the asymptotic version of the split-sample problem.

The Split-Sample Limit Experiment Let τ denote the given fraction of the full

sample used to compute the estimated maximum and let (X1
n,Y

1
n ) and (X2

n,Y
2
n ) correspond

to the first and second portions of the data, with

(X1
n,Y

1
n )=τ−1/2(X[τ ·n],Y[τ ·n]),

(X2
n,Y

2
n )=(1−τ)−1

(
(Xn,Yn)−

√
τ(X[τ ·n]+1,Y[τ ·n]+1)

)
and [a] denoting the nearest integer to a∈R. Finally, let θ̂1

n=argmaxθ∈ΘX
1
n(θ) or θ̂1

n=

argmaxθ∈Θ‖X1
n(θ)‖, as in Andrews et al. (2020b), denote the estimated maximum from the

first part of the sample. In large samples, (X1
n,Y

1
n ), (X2

n,Y
2
n ) and θ̂1

n behave according to26

(
X1

Y 1

)
∼N(µ,Σ),

(
X2

Y 2

)
∼N

(
µ,c−1Σ

)
and

θ̂1 =argmaxθ∈ΘX
1(θ)

or

θ̂1 =argmaxθ∈Θ

∥∥X1(θ)
∥∥,

where c=(1−τ)/τ and (X1,Y 1) is independent of (X2,Y 2). This is the generalization of

the asymptotic problem discussed in Section 3.3 of the main text to arbitrary given sample

26The quantity Σ in the exposition of this section corresponds to the quantity Σ in the main text,
multiplied by τ−1.
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splits.27

Traditional sample splitting methods for inference on µY (θ̂1) are based entirely on

Y 2(θ̂1). Since Y 2 is independent of X1, and thus of θ̂1, this ensures the (conditional)

median-unbiasedness of conventional split-sample estimates Y 2(θ̂1) and the (conditional)

validity of conventional split-sample confidence intervals

CSSS=

[
Y 2(θ̂1)−

√
c−1ΣY (θ̂1)cα/2,N ,Y

2(θ̂1)+

√
c−1ΣY (θ̂1)cα/2,N

]
for µY (θ̂1) but does not make full use of the information in the data. To derive optimal

procedures in the sample splitting framework, we first derive a sufficient statistic for the

unknown parameter µ conditional on
{
θ̂1 = θ̃

}
and then apply classical exponential family

results as in Section 3 of the main text.

Optimal Estimators and Confidence Intervals The joint (unconditional) density
of (X1,Y 1,X2,Y 2) is proportional to

exp

−1

2

((
X1

Y 1

)
−µ

)′

Σ−1

((
X1

Y 1

)
−µ

)exp

−c
2

((
X2

Y 2

)
−µ

)′

Σ−1

((
X2

Y 2

)
−µ

).
The conditional density given

{
θ̂1 = θ̃

}
is thus propotional to

1
{
X1∈X 1

(
θ̃
)}

Prµ

{
X1∈X 1

(
θ̃
)}exp

−1

2

((
X1

Y 1

)
−µ

)′
Σ−1

((
X1

Y 1

)
−µ

)×

exp

−c
2

((
X2

Y 2

)
−µ

)′
Σ−1

((
X2

Y 2

)
−µ

)
with X 1(θ̃)={X1 : θ̂= θ̃}, which we can re-write as

g1

(
X1,Y 1

)
g2

(
X2,Y 2

)
h(µ)exp

(( X1

Y 1

)
+c

(
X2

Y 2

))′
Σ−1µ


27For simplicity of exposition, in this section we suppress the possibility of using additional conditioning

variables γ̂n=γ
(
X1
n

)
with asymptotic counterpart γ̂=γ

(
X1
)
.
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for

g1

(
X1,Y 1

)
=1
{
X1∈X 1

(
θ̃
)}

exp

−1

2

(
X1

Y 1

)′
Σ−1

(
X1

Y 1

),
g2

(
X2,Y 2

)
=exp

−c
2

(
X2

Y 2

)′
Σ−1

(
X2

Y 2

),
and

h(µ)=
1

Prµ

{
X1∈X 1

(
θ̃
)}exp

(
−1+c

2
µ′Σ−1µ

)
.

This exponential family structure shows that

(
X∗

Y ∗

)
=

((
X1

Y 1

)
+c

(
X2

Y 2

))
is

sufficient for µ. Hence, for any function of (X1,Y 1,X2,Y 2), there exists a (potentially

randomized) function of (X∗,Y ∗) with the same distribution for all µ. Thus, to study

questions of optimality it is without loss to limit attention to confidence intervals and

estimators that depend only on (X∗,Y ∗).

Now that we have derived a sufficient statistic (X∗,Y ∗) for µ, we turn to the question

of how to construct optimal estimators and confidence intervals for µY (θ̂1) conditional on{
θ̂1 = θ̃

}
. Note that the unconditional density of (X∗,Y ∗) is proportional to

exp

− 1

2+2c

((
X∗

Y ∗

)
−(1+c)µ

)′
Σ−1

((
X∗

Y ∗

)
−(1+c)µ

).
The density of (X∗,Y ∗) given

{
θ̂1 = θ̃

}
is thus proportional to

Pr
{
X1∈X 1

(
θ̃
)
|X∗,Y ∗

}
Prµ

{
X1∈X 1

(
θ̃
)} exp

− 1

2+2c

((
X∗

Y ∗

)
−(1+c)µ

)′
Σ−1

((
X∗

Y ∗

)
−(1+c)µ

),
where we have used sufficiency to drop dependence of the numerator on µ.

This joint distribution has the same exponential family structure used to derive the

optimal estimators and confidence intervals in the main text (see the proofs of Propositions

7 and 8). Hence, the same arguments deliver optimal procedures for the split-sample
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setting. Specifically, for

Z∗
θ̃

=

(
X∗

Y ∗

)
−

(
Cov

((
X∗

Y ∗

)
,Y ∗
(
θ̃
))

/ΣY ∗

(
θ̃
))

Y ∗
(
θ̃
)
,

where ΣY ∗ denotes the variance of Y ∗, we can re-write

exp

(((
X1

Y 1

)
+c

(
X2

Y 2

))
Σ−1µ

)
=exp

(
Y ∗
(
θ̃
)
µY ∗
(
θ̃
)
/ΣY ∗

(
θ̃
)

+Z∗
θ̃
Σ+
Z∗µZ∗

)
for ΣZ∗ the variance of Z∗, A+ the Moore-Penrose pseudoinverse of a matrix A, and

µZ∗=(1+c)µ−

(
Cov

((
X∗

Y ∗

)
,Y ∗
(
θ̃
))

/V ar
(
Y ∗
(
θ̃
)))

µY ∗
(
θ̃
)
.

This expression shows that when we are interested in inference on µY (θ̃) conditional on{
θ̂1 = θ̃

}
, µZ∗ is the nuisance parameter, and Z∗

θ̃
is minimal sufficient for this parameter

relative to observing (X1,Y 1,X2,Y 2).

If we let F ∗SS(Y ∗(θ̃);µY ∗(θ̃), θ̃, z
∗) denote the conditional distribution function of

Y ∗|Z∗=z∗,θ̂1 = θ̃, then the same arguments used to prove Proposition 7 show that the

optimal α quantile-unbiased estimator µ̂∗SS,α for µ(θ̂1) in the sample splitting problem solves

F ∗SS(Y ∗(θ̂1);(1+c)µ̂∗SS,α,θ̃,Z
∗
θ̃
)=1−α.

Likewise, the same arguments used to prove Proposition 8 show that the optimal two-sided

unbiased test conditional on
{
θ̂1 = θ̃

}
rejects H0 :µY (θ̃)=µY,0 when

Y ∗(θ̃) 6∈
[
cl
(
Z∗
θ̃

)
,cu
(
Z∗
θ̃

)]
,

where cl(z), cu(z) solve

Pr{ζ∈ [cl(z),cu(z)]}=1−α, E[ζ1{ζ∈ [cl(z),cu(z)]}]=(1−α)E[ζ]

with ζ distributed according to F ∗SS(·;(1+c)µY,0,θ̃,z). These optimal procedures condition

on Z∗
θ̃

rather than (X1,Y 1) and so, unlike conventional sample splitting, continue to treat

(X1,Y 1) as random for inference.
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Feasible Dominating Estimators and Confidence Intervals To implement the

optimal split-sample proecdures for µY (θ̂1), we need to evaluate (or at least be able to

draw from) the conditional distribution F ∗SS(·;(1+c)µY,0,θ̃,z). Unfortunately, however,

it is not computationally straightforward to do so since Y ∗|Z∗=z∗,θ̂1 = θ̃ is distributed

as a normal random variable truncated to a dependent random set. We thus introduce

side constraints to derive procedures that, although they are not fully optimal in the

unconstrained problem, are computationally straightforward to implement and dominate

conventional sample splitting procedures for inference on µY (θ̂1) conditional on the realized

value of θ̂1. These computationally feasible procedures are optimal within the class of

split-sample procedures that condition on {θ̂1 = θ̃} and the realizations of

Zi
θ̃
=Xi−

(
ΣXY

(
·,θ̃
)
/ΣY

(
θ̃
))
Y i
(
θ̃
)

for i= 1,2, where (Z1
θ̃
,Z2

θ̃
) is a sufficient statistic for the nuisance parameter µX. Since

Y 2(θ̂1)|{θ̂1 = θ̃,(Z1
θ̃
,Z2
θ̃
)=(z1,z1)}∼Y 2(θ̃), the conventional split-sample estimator Y 2(θ̂1)

and confidence interval CSSS fall within the class of split-sample conditional procedures

that condition on {θ̂1 = θ̃} and (Z1
θ̃
,Z2

θ̃
). These conventional procedures are therefore

dominated by the optimal procedures within this class, which we now describe.

Standard exponential family arguments show that (Z1
θ̃
,Z2
θ̃
) is sufficient for the nuisance

parameter µX and, conditional on {θ̂1 = θ̃} and (Z1
θ̃
,Z2
θ̃
), optimal estimation and inference

is based upon the conditional distribution of Y ∗(θ̃). Note that since Y 2(θ̃) is independent

of (Z1
θ̃
,Z2
θ̃
) and both θ̂1 and Y 2(θ̃) are independent of Z2

θ̃
,

Y ∗(θ̃)|{θ̂1 = θ̃,(Z1
θ̃
,Z2
θ̃
)=(z1,z2)}∼Y 1(θ̃)|{θ̂1 = θ̃,Z1

θ̃
=z1}+cY 2(θ̃).

Thus, the feasible dominating split-sample procedures rely upon the computation of the

distribution function of Y 1(θ̃)|{θ̂1 = θ̃,Z1
θ̃

=z1}+cY 2(θ̃). We now describe a fast method

for computing this object.

In analogy with full sample inference, let

Y1(θ̃,z1)=
{
y1 :z1+

(
ΣXY

(
·,θ̃
)
/ΣY

(
θ̃
))
y1∈X 1(θ̃)

}
so that conditional on {θ̂1 = θ̃} and Z1

θ̃
= z1, Y 1(θ̃) follows a one-dimensional trun-

cated normal distribution with truncation set Y1(θ̃,z1). Note that in both the level

and norm maximization contexts, Y1(θ̃,z1) can be expressed as a finite union of disjoint
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intervals: Y1(θ̃,z1)=
⋃K
k=1[`k(z

1),uk(z
1)], where the dependence of `k(z

1) and uk(z
1) for

k=1,...,K on θ̃ is suppressed for notational simplicity. Note that Y 1(θ̃)|{θ̂1 = θ̃,Z1
θ̃

=z1}
is distributed as ξ1|ξ1 ∈Y1(θ̃,z1), where ξ1∼N(µY (θ̃),ΣY (θ̃)). The density function of

Y 1(θ̃)|{θ̂1 = θ̃,Z1
θ̃

=z1} is thus

f1(y1)=

∑K
k=1fN

(
(y1−µY (θ̃))/

√
ΣY (θ̃)

)
1(`k(z

1)≤y1≤uk(z1))√
ΣY (θ̃)

∑K
k=1

(
FN

(
(uk(z1)−µY (θ̃))/

√
ΣY (θ̃)

)
−FN

(
(`k(z1)−µY (θ̃))/

√
ΣY (θ̃)

))

and cY 2(θ̃) has density function f2(y2)=c−1/2ΣY (θ̃)−1/2fN

(
(y2−cµ)/

√
cΣY (θ̃)

)
. There-

fore, since Y 1(θ̃)|{θ̂1 = θ̃,Z1
θ̃

= z1} and cY 2(θ̃) are independent, the density function of

Y ∗(θ̃)|{θ̂1 = θ̃,Z1
θ̃

=z1} is equal to

∑K
k=1

∫ uk(z1)

`k(z1)
fN

(
(t−µY (θ̃))/

√
ΣY (θ̃)

)
fN

(
(y∗−t−cµY (θ̃))/

√
cΣY (θ̃)

)
dt

√
cΣY (θ̃)

∑K
k=1

(
FN

(
(uk(z1)−µY (θ̃))/

√
ΣY (θ̃)

)
−FN

(
(`k(z1)−µY (θ̃))/

√
ΣY (θ̃)

))
with corresponding distribution function

FA
SS(y∗;µY (θ̃),θ̃,z1)

=

∑K
k=1

∫ uk(z1)

`k(z1)
fN

(
(t−µY (θ̃))/

√
ΣY (θ̃)

)
FN

(
(y∗−t−cµY (θ̃))/

√
cΣY (θ̃)

)
dt√

ΣY (θ̃)
∑K

k=1

(
FN

(
(uk(z1)−µY (θ̃))/

√
ΣY (θ̃)

)
−FN

(
(`k(z1)−µY (θ̃))/

√
ΣY (θ̃)

))

=

E

[
FN

(
(y∗−ξ1−cµY (θ̃))/

√
cΣY (θ̃)

)
1
(
ξ1∈

⋃K
k=1[`k(z

1),uk(z
1)]
)]

∑K
k=1

(
FN

(
(uk(z1)−µY (θ̃))/

√
ΣY (θ̃)

)
−FN

(
(`k(z1)−µY (θ̃))/

√
ΣY (θ̃)

)),
where the expectation is taken with respect to ξ1∼N(µY (θ̃),ΣY (θ̃)). This latter expression

for FA
SS(y∗;µY (θ̃),θ̃,z1) is very easy to compute by generating normal random variables in

standard software packages. This makes the computation of optimal estimators, tests and

confidence intervals within the class discussed here computationally straightforward.

Similarly to the optimal case above, the same arguments used to prove Proposition
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2 show that the optimal α quantile-unbiased estimator µ̂ASS,α for µY (θ̂1) in the sample

splitting problem that conditions on {θ̂1 = θ̃} and the realizations of Z1
θ̃

and Z2
θ̃

solves

FA
SS(Y ∗(θ̂1);µ̂ASS,α,θ̃,Z

1
θ̃
)=1−α.

Therefore, our (equal-tailed) alternative split-sample confidence interval for µY (θ̂1) is

CA
SS=[µ̂ASS,α/2,µ̂

A
SS,1−α/2]. Likewise, the same arguments used to prove Proposition 8 show

that the optimal two-sided unbiased test rejects H0 :µY (θ̃)=µY,0 when

Y ∗(θ̃) 6∈
[
cl
(
Z1
θ̃

)
,cu
(
Z1
θ̃

)]
,

where cl(z), cu(z) solve

Pr{ζ∈ [cl(z),cu(z)]}=1−α, E[ζ1{ζ∈ [cl(z),cu(z)]}]=(1−α)E[ζ]

with ζ distributed according to FA
SS(·;µY,0,θ̃,z). These dominating procedures condition

on the realization of Z1
θ̃

rather than (X1,Y 1), and so unlike conventional sample splitting

continue to treat (X1,Y 1) as random for inference.

As mentioned in Section 3, the split sample methods we introduce here are related to

conditionally valid methods in the biostatistics literature on inference in adaptive clinical

trial designs (e.g., Cohen and Sackrowitz, 1989 and Sampson and Sill, 2005). However,

these latter methods apply to a specific form for µY , assume independence across the

entries of X1 and condition on the entire ordering of the entries of X1, entailing a loss of

power relative to our split sample methods which condition only on θ̂1.

D Uniform Asymptotic Validity

This section establishes uniform asymptotic validity for plug-in versions of the procedures

discussed in the main text. One could use arguments along the same lines as those below

to derive results for additional conditioning variables γ̂n, but since such arguments would

be case-specific, we do not pursue such an extension here.

Feasible finite-sample estimators and confidence intervals are denoted as their coun-

terparts in Sections 3–4, with the addition of an n subscript. We suppose that the sample

of size n is drawn from some (unknown) distribution P ∈Pn. We first impose that (Xn,Yn)

are uniformly asymptotically normal under P ∈Pn, where the centering vectors (µX,n,µY,n)

and the limiting variance Σ may depend on P .
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Assumption 2

For the class of Lipschitz functions that are bounded in absolute value by one and have

Lipschitz constant bounded by one, BL1, there exist sequences of functions µX,n(P) and

µY,n(P) and a function Σ(P) such that for ξP∼N(0,Σ(P)),

lim
n→∞

sup
P∈Pn

sup
f∈BL1

∣∣∣∣∣EP
[
f

(
Xn−µX,n(P)

Yn−µY,n(P)

)]
−E[f(ξP )]

∣∣∣∣∣=0.

Uniform convergence in bounded Lipschitz metric is one formalization for uniform conver-

gence in distribution. When Xn and Yn are scaled sample averages based on independent

data, as in Section 2, Assumption 2 will follow from moment bounds, while for dependent

data it will follow from moment and dependence bounds.

We next assume that the asymptotic variance is uniformly consistently estimable.

Assumption 3

The estimator Σ̂n is uniformly consistent in the sense that for all ε>0

lim
n→∞

sup
P∈Pn

PrP

{∥∥∥Σ̂n−Σ(P)
∥∥∥>ε}=0.

Provided we use a variance estimator appropriate to the setting (e.g. the sample variance

for iid data, long-run variance estimators for time series, and so on) Assumption 3 will

follow from the same sorts of sufficient conditions as Assumption 2.

Finally, we restrict the asymptotic variance.

Assumption 4

There exists a finite λ̄>0 such that

1/λ̄≤ΣX(θ;P),ΣY (θ;P)≤ λ̄, for all θ∈Θ and all P ∈Pn,

1/λ̄≤ΣX(θ;P)−ΣX(θ,θ̃;P)2/ΣX(θ̃;P) for all θ,θ̃∈Θ with θ 6= θ̃ and all P ∈Pn.

The upper bounds on ΣX(θ;P) and ΣY (θ;P) ensure that the random variables ξP in

Assumption 2 are stochastically bounded, while the lower bounds ensure that each entry

(Xn,Yn) has a nonzero asymptotic variance. The second condition ensures that no two

elements of Xn are perfectly correlated asymptotically, and hence, by Lemma 1, guarantees

that θ̂n is unique with probability tending to one. Note that this condition is weaker than

a standard assumption bounding the eigenvalues of ΣX(P) away from zero.
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High-Dimensional Settings Our asymptotic analysis considers settings where |Θ|,
and hence the dimension of Xn and Yn, are fixed as n→∞. One might also be interested

in settings where |Θ| grows with n, but this will raise complications for both the normal

approximation and estimation of the asymptotic variance. Such an extension is interesting,

but beyond the scope of this paper.

Variance Estimation Practically, even for fixed |Θ| one might still worry about the

difficulty of estimating Σ in finite samples, since this matrix has |Θ|(|Θ|+1)/2 entries. For-

tunately, in many cases Σ has additional structure which renders variance estimation more

tractable than in the fully general case. Suppose, for instance, that we want to conduct in-

ference on the best-performing treatment from a randomized trial, as in Section 2 above and

Section 6 below. In this case, provided trial participants are drawn independently, elements

of Xn(θ) corresponding to distinct treatments are uncorrelated and Σ is diagonal. In other

cases, such as Section 7 below, |Θ| may be large, but the elements of Xn are formed by tak-

ing combinations of a much lower-dimensional set of random variables. In this case, ΣX can

be written as a known linear transformation of a much lower-dimensional variance matrix.

D.1 Uniform Asymptotic Validity

In the finite-sample normal model, we study both conditional and unconditional properties

of our methods. We would like to do the same in our asymptotic analysis, but may have

Pr
{
θ̂n= θ̃

}
→0 for some θ̃, in which case conditioning on θ̂n= θ̃ is problematic. To address

this, we multiply conditional statements by the probability of the conditioning event.

Asymptotic uniformity results for conditional inference procedures were established by

Tibshirani et al. (2018) and Andrews et al. (2020b) for settings where the target parameter

is chosen in other ways. Their results, however, limit attention to classes of data generating

processes with asymptotically bounded means (µX,n,µY,n). This rules out e.g. the conven-

tional pointwise asymptotic case that fixes P and takes n→∞. We do not require such

boundedness. Moreover, the results of Tibshirani et al. (2018) do not cover quantile-unbiased

estimation, and also do not cover hybrid procedures, which are new to the literature.28

Our proofs are based on subsequencing arguments as in D. Andrews et al. (2020a),

though due to the differences in our setting (our interest in conditional inference, and the

fact that our target is random from an unconditional perspective) we cannot directly apply

their results. We first establish the asymptotic validity of our quantile-unbiased estimators.

28In a follow-up paper, Andrews et al. (2020b), we apply the conditional and hybrid approaches

developed here to settings where θ̂=argmax‖X(θ)‖.
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Proposition 10

Under Assumptions 2-4, for µ̂α,n the α-quantile unbiased estimator,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)|θ̂n= θ̃
}
−α
∣∣∣PrP{θ̂n= θ̃

}
=0, (18)

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)}−α∣∣∣=0. (19)

This immediately implies asymptotic validity of equal-tailed confidence intervals.

Corollary 1

Under Assumptions 2-4, for CSET,n the level 1−α equal-tailed confidence interval

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSET,n|θ̂n= θ̃
}
−(1−α)

∣∣∣PrP{θ̂n= θ̃
}

=0,

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSET,n}−(1−α)
∣∣∣=0.

We can likewise establish uniform asymptotic validity of projection confidence intervals.

Proposition 11

Under Assumptions 2-4, for CSP,n the level 1−α projection confidence interval,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSP,n

}
≥1−α. (20)

To state results for hybrid estimators and confidence intervals, let CH
n

(
θ̃;P
)

=

1
{
θ̂n= θ̃,µY,n

(
θ̂n;P

)
∈CSβP,n

}
be an indicator for the hybrid conditioning event that

θ̂n is equal to θ̃ and the parameter of interest µY (θ̃) falls in the level β projection confidence

interval CSβP,n. We can establish quantile unbiasedness of hybrid estimators given this

event, along with bounded unconditional bias.

Proposition 12

Under Assumptions 2-4, for µ̂Hα,n the α-quantile unbiased hybrid estimator based on CSβP,n,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)|CH
n

(
θ̃;P
)

=1
}
−α
∣∣∣EP{CH

n

(
θ̃;P
)}

=0, (21)
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for all θ̃∈Θ, and

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)}−α∣∣∣≤max{α,1−α}β. (22)

Validity of hybrid estimators again implies validity of hybrid confidence intervals.

Corollary 2

Under Assumptions 2-4, for CSHET,n the level 1−α equal-tailed hybrid confidence interval

based on CSβP,n,

lim
n→∞

sup
P∈Pn

∣∣∣∣PrP{µY,n(θ̂n;P)∈CSHET,n|CH
n

(
θ̃;P
)

=1
}
−1−α

1−β

∣∣∣∣EP{CH
n

(
θ̃;P
)}

=0, (23)

for all θ̃∈Θ,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≥1−α, (24)

and

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≤ 1−α

1−β
≤1−α+β. (25)

Hence, our procedures are uniformly asymptotically valid, unlike conventional inference.29

D.2 Auxiliary Lemmas

This section collects lemmas that we will use to prove our uniformity results.

Lemma 5

Under Assumption 4, for any sequence of confidence intervals CSn, any sequence of sets

Cn(P) indexed by P , Cn(P)=1
{(
Xn,Yn,Σ̂n

)
∈Cn(P)

}
, and any constant α, to show that

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSn|Cn(P)=1
}
−α
∣∣∣PrP{Cn(P)=1}=0

it suffices to show that for all subsequences {ns}⊆{n}, {Pns}∈P∞=×∞n=1Pn with:

1. Σ(Pns)→Σ∗∈S for

S=
{

Σ:1/λ̄≤(ΣX(θ),ΣY (θ))≤ λ̄,1/λ̄≤ΣX(θ;P)−ΣX(θ,θ̃;P)2/ΣX(θ̃;P)
}
, (26)

29The bootstrap also fails to deliver uniform validity, as it implicitly tries to estimate the difference be-
tween the “winning” policy and the others, which cannot be done with sufficient precision. We are unaware
of results for subsampling, m-out-of-n bootstrap, or other resampling-based approaches for this setting.
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2. PrPns{Cns(Pns)=1}→p∗∈(0,1], and

3. µX,ns(Pns)−maxθµX,ns(θ;Pns)→µ∗X∈M∗
X for

M∗
X=

{
µX∈ [−∞,0]|Θ| :max

θ
µX(θ)=0

}
,

we have

lim
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSns|Cns(Pns)=1

}
=α. (27)

Lemma 6

For collections of sets Cn,1(P),...,Cn,J (P), and Cn,j (P) = 1
{(
Xn,Yn,Σ̂n

)
∈Cn,j(P)

}
, if

limn→∞supP∈PnPrP{Cn,j(P)=1,Cn,j′(P)=1}=0 for all j 6=j′ and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSn|Cn,j(P)=1
}
−(1−α)

∣∣∣PrP{Cn,j(P)=1}=0

for all j, then

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
≥(1−α)·liminf

n→∞
inf
P∈Pn

∑
j

PrP{Cn,j(P)=1},

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
≤1−α·liminf

n→∞
inf
P∈Pn

∑
j

PrP{Cn,j(P)=1}.

To state the next lemma, define

L
(
θ̃,Z,Σ

)
= max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY

(
θ̃
)(
Z(θ)−Z

(
θ̃
))

ΣXY

(
θ̃
)
−ΣXY

(
θ̃,θ
) (28)

U
(
θ̃,Z,Σ

)
= min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY

(
θ̃
)(
Z(θ)−Z

(
θ̃
))

ΣXY

(
θ̃
)
−ΣXY

(
θ̃,θ
) , (29)

where we define a maximum over the empty set as −∞ and a minimum over the empty

set as +∞. For (
X∗n

Y ∗n

)
=

(
Xn−maxθµX,n(θ;P)

Yn−µY,n(P)

)
,

we next show that using
(
X∗n,Y

∗
n ,Σ̂n

)
in our calculations yields the same bounds L and

U as using
(
Xn,Yn,Σ̂n

)
, up to additive shifts
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Lemma 7

For L
(
θ̃,Z,Σ

)
and U

(
θ̃,Z,Σ

)
as defined in (28) and (29), and

Zθ̃,n=Xn−
Σ̂XY,n

(
·,θ̃
)

Σ̂Y,n

(
θ̃
) Yn

(
θ̃
)
, Z∗

θ̃,n
=X∗n−

Σ̂XY,n

(
·,θ̃
)

Σ̂Y,n

(
θ̃
) Y ∗n

(
θ̃
)
,

we have

L
(
θ̃,Z∗

θ̃,n
,Σ̂n

)
=L
(
θ̃,Zθ̃,n,Σ̂n

)
−µY,n

(
θ̃;P
)
, U

(
θ̃,Z∗

θ̃,n
,Σ̂n

)
=U
(
θ̃,Zθ̃,n,Σ̂n

)
−µY,n

(
θ̃;P
)
.

For brevity, going forward we use the shorthand notation(
L
(
θ̃,Zθ̃,n,Σ̂n

)
,U
(
θ̃,Zθ̃,n,Σ̂n

)
,L
(
θ̃,Z∗

θ̃,n
,Σ̂n

)
,U
(
θ̃,Z∗

θ̃,n
,Σ̂n

))
=(Ln,Un,L∗n,U∗n).

Lemma 8

Under Assumptions 2 and 3, for any {ns} and {Pns} satisfying conditions (1)-(3) of Lemma

5 and any θ̃ with µ∗X

(
θ̃
)
>−∞,

(
Y ∗ns,L

∗
ns,U

∗
ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,L∗,U∗,Σ∗,θ̂

)
, where the

objects on the right hand side are calculated based on (Y ∗,X∗,Σ∗) for
(
X∗
′
,Y ∗

′)′∼N(µ∗,Σ∗)

with µ∗=(µ∗′X,0
′)′.

Lemma 9

For FN again the standard normal distribution function, the function

FTN(Y (θ);µ,ΣY (θ),L,U)=

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1(Y (θ)≥L) (30)

is continuous in (Y (θ),µ,ΣY (θ),L,U) on the set

{
(Y (θ),µ,ΣY (θ))∈R3,L∈R∪{−∞},U∈R∪{∞} :ΣY (θ)>0,L<Y (θ)<U

}
.

D.3 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSn|Cn(P)=1
}
−α
∣∣∣PrP{Cn(P)=1}=0
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it suffices to show that

liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}≥0 (31)

and

limsup
n→∞

sup
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}≤0. (32)

We prove that to show (31), it suffices to show that for all {ns}, {Pns} satisfying conditions

(1)-(3) of the lemma,

liminf
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSns|Cns(Pns)=1

}
≥α. (33)

An argument along the same lines implies that to prove (32) it suffices to show that

limsup
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSns|Cns(Pns)=1

}
≤α. (34)

Note, however, that (33) and (34) together are equivalent to (27).

Towards contradiction, suppose that (31) fails, so

liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}<−ε,

for some ε> 0 but that (33) holds for all sequences satisfying conditions (1)-(3) of the

lemma. Then there exists an increasing sequence of sample sizes nq and some sequence{
Pnq
}

with Pnq∈Pnq for all q such that

limsup
q→∞

(
PrPnq

{
µY,nq

(
θ̂nq ;Pnq

)
∈CSnq |Cnq

(
Pnq
)
=1
}
−α
)
PrPnq

{
Cnq
(
Pnq
)
=1
}
<−ε. (35)

We want to show that there exists a further subsequence {ns}⊆{nq} satisfying (1)-(3) in

the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (26) is compact (e.g. in the Frobenius norm),

and Assumption 4 implies that Σ
(
Pnq
)
∈S for all q, there exists a further subsequence

{nr}⊆{nq} such that

lim
r→∞

Σ(Pnr)→Σ∗

for some Σ∗∈S.
Note, next, that PrPnr {Cnr(Pnr)=1}∈ [0,1] for all r, and so converges along a sub-

sequence {nt}⊆{nr}. However, (35) implies that PrPnr{Cnr(Pnr)=1}≥ ε
α

for all r, and
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thus that PrPnt{Cnt(Pnt)=1}→p∗∈
[
ε
α
,1
]
.

Finally, let us define µ∗X,n(P)=µX,n(P)−maxθµX,n(θ;P), and note that µ∗X,n(P)≤0

by construction. Since µ∗X,n(P) is finite-dimensional and maxθµ
∗
X,n(P ;θ)=0, there exists

some θ∈Θ such that µ∗X,n(P ;θ) is equal to zero infinitely often. Let {nu}⊆{nt} extract

the corresponding sequence of sample sizes. The set [−∞,0]|Θ| is compact under the metric

d(µX,µ̃X)=‖FN(µX)−FN(µ̃X)‖ for FN(·) the standard normal cdf applied elementwise,

and ‖·‖ the Euclidean norm. Hence, there exists a further subsequence {ns}⊆{nu} along

which µ∗X,ns(Pns) converges to a limit in this metric. Note, however, that this means that

µ∗X,ns(Pns) converges to a limit µ∗∈M∗ in the usual metric.

Hence, we have shown that there exists a subsequence {ns}⊆{nq} that satisfies (1)-(3).

By supposition, (33) must hold along this subsequence. Thus,

liminf
n→∞

(
PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSns|Cns(Pns)=1

}
−α
)
PrP{Cns(Pns)=1}≥0,

which contradicts (35). Hence, we have established a contradiction and so proved that (33)

for all subsequences satisfying conditions (1)-(3) of the lemma implies (31). An argument

along the same lines shows that (34) along all subsequences satisfying conditions (1)-(3)

of the lemma implies (32). �

Proof of Lemma 6 Define Cn,J+1(P)=1{Cn,j(P)=0 for all j∈{1,...,J}}. Note that

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
=
∑J+1

j=1PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,j(P)=1

}
PrP{Cn,j(P)=1}+o(1)

where the o(1) term is negligible uniformly over P ∈Pn as n→∞. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
−(1−α)

=
∑J+1

j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}+o(1)

and

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
−(1−α)

=liminf
n→∞

inf
P∈Pn

J+1∑
j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}

=liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,J+1(P)=1

}
−(1−α)

)
PrP{Cn,J+1(P)=1}
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≥−(1−α)limsup
n→∞

sup
P∈Pn

PrP{Cn,J+1(P)=1}

=−(1−α)

(
1−liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}

)
which immediately implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
≥(1−α)liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}.

Likewise,

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
−(1−α)

=limsup
n→∞

sup
P∈Pn

J+1∑
j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}

=limsup
n→∞

sup
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CSn|Cn,J+1(P)=1

}
−(1−α)

)
PrP{Cn,J+1(P)=1}

≤α·limsup
n→∞

sup
P∈Pn

PrP{Cn,J+1(P)=1}=α

(
1−liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}

)
.

This immediately implies that

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSn

}
≤1−α·liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1},

as we wanted to show. �

Proof of Lemma 7 Note that

Z∗
θ̃,n

=Zθ̃,n−max
θ
µX,n(θ;P)+Σ̂XY,n

(
·,θ̃
)µY,n(θ̃;P)

Σ̂Y,n

(
θ̃
) ,

so

Z∗
θ̃,n

(θ)−Z∗
θ̃,n

(
θ̃
)

=Zθ̃,n(θ)−Zθ̃,n
(
θ̃
)

+
(

Σ̂XY,n

(
θ,θ̃
)
−Σ̂XY,n

(
θ̃
))µY,n(θ̃;P)

Σ̂Y,n

(
θ̃
) .
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The result follows immediately. �

Proof of Lemma 8 By Assumption 2(
Xns−µX,ns(Pns)
Yns−µY,ns(Pns)

)
→dN(0,Σ∗).

Hence, by Slutsky’s lemma(
X∗ns
Y ∗ns

)
=

(
Xns−maxθµX,ns(θ;Pns)

Yns−µY,ns(Pns)

)
→d

(
X∗

Y ∗

)
∼N(µ∗,Σ∗).

We begin by considering one θ∈Θ\
{
θ̃
}

at a time. Since Σ̂ns→pΣ∗ by Assumption

3, if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
6=0 then

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →d

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) ,

where the terms on the right hand side are based on (X∗,Y ∗,Σ∗). The limit is finite if

µ∗X(θ)>−∞, while otherwise µ∗X(θ)=−∞ and

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) =

−∞ if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
>0

+∞ if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
<0

.

If instead Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)

=0, then since
∣∣∣Σ∗X(θ̃,θ)

∣∣∣<√Σ∗X(θ̃)Σ∗X(θ),

Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
)

=X∗(θ)−X∗
(
θ̃
)

is normally distributed with non-zero variance. Hence, in this case∣∣∣∣∣∣
Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

∣∣∣∣∣∣→∞. (36)

Let us define

Θ∗
(
θ̃
)

=
{
θ∈Θ\θ̃ :Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
6=0
}
.
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The argument above implies that

max
θ∈Θ∗(θ̃):Σ̂XY,ns(θ̃)>Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

→dL∗= max
θ∈Θ:Σ∗XY (θ̃)>Σ∗XY (θ̃,θ)

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) , (37)

and

min
θ∈Θ∗(θ̃):Σ̂XY,ns(θ̃)<Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

→dU∗= min
θ∈Θ:Σ∗XY (θ̃)<Σ∗XY (θ̃,θ)

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) . (38)

Since

max
θ∈Θ:Σ̂XY,ns(θ̃)>Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) ≤Y ∗ns(θ̃)

≤ min
θ∈Θ:Σ̂XY,ns(θ̃)<Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

with probability one for all ns and Yns
d−→Y ∗, (36) implies

Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →−∞

when Σ∗XY

(
θ̃
)

=Σ∗XY

(
θ̃,θ
)

for all θ,θ̃∈Θ such that Σ̂XY,ns

(
θ̃
)
>Σ̂XY,ns

(
θ̃,θ
)

. Similarly,

Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →∞

when Σ∗XY

(
θ̃
)

= Σ∗XY

(
θ̃,θ
)

for all θ,θ̃ ∈Θ such that Σ̂XY,ns

(
θ̃
)
< Σ̂XY,ns

(
θ̃,θ
)

. Thus,
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the same convergence results as (37)–(38) continue to hold when we minimize and max-

imize over Θ rather than Θ∗(θ̃). Hence,
(
L∗ns,U

∗
ns

)
→d (L∗,U∗). Moreover, θ̂ns is almost

everywhere continuous in X∗ns, so
(
Y ∗ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,Σ∗,θ̂

)
by the continuous mapping

theorem, and this convergence holds jointly with that for
(
L∗ns,U

∗
ns

)
. Hence, we have

established the desired convergence. �

Proof of Lemma 9 Continuity for ΣY (θ)> 0,L<Y (θ)<U with all elements finite

is immediate from the functional form. Moreover, for fixed (Y (θ),µ,ΣY (θ)) ∈ R3 with

ΣY (θ)>0 and L<Y (θ)<U,

lim
U→∞

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1(Y (θ)≥L)=

FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
∞√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)

lim
L→−∞

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1(Y (θ)≥L)=

FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
and

lim
(L,U)→(−∞,∞)

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1(Y (θ)≥L)=

FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
FN

(
∞√
ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

).
Hence, we obtain the desired result. �

D.4 Proofs for Uniformity Results

Proof of Proposition 10 Note that

µ̂α,n≥µY,n
(
θ̂n;P

)
⇐⇒ µY,n

(
θ̂n;P

)
∈CSU,−,n

for CSU,−,n = (−∞,µ̂α,n]. Hence, by Lemma 5, to prove that (18) holds it suffices to

show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
{
θ̂n= θ̃

}
, we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CSU,−,ns|θ̂ns = θ̃

}
=α. (39)
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To this end, recall that for FTN(Y (θ);µ,ΣY (θ),L,U) as defined in (30), the estimator

µ̂α,n solves FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
=1−α. This cdf is

strictly decreasing in µ as argued in the proof of Proposition 5, and is increasing in Yn

(
θ̂
)

.

Hence, µ̂α,n≥µY,n
(
θ̂n;P

)
if and only if

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
≥1−α.

Note, next, that by Lemma 7 and the form of the function FTN ,

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
=FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

))
,

so µ̂α,n≥µY,n
(
θ̂n;P

)
if and only if

FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

))
≥1−α.

Lemma 8 shows that
(
Y ∗n

(
θ̂ns

)
,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns,θ̂ns

)
converges in distribution as s→∞,

so since FTN is continuous by Lemma 9 while argmaxθX
∗(θ) is almost surely unique and

continuous for X∗ as in Lemma 8, the continuous mapping theorem implies that(
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
,1
{
θ̂ns = θ̃

})
→d

(
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗

)
,1
{
θ̂= θ̃

})
.

Since we can write

PrPns

{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α|θ̂ns = θ̃

}

=
EPns

[
1
{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α

}
1
{
θ̂ns = θ̃

}]
EPns

[
1
{
θ̂ns = θ̃

}] ,

and by construction (see also Proposition 7 in the main text),

FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗,θ̂

)
|θ̂= θ̃∼U[0,1],
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and Pr
{
θ̂= θ̃

}
=p∗>0, we thus have that

PrPns

{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α|θ̂ns = θ̃

}
→Pr

{
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗

)
≥1−α|θ̂= θ̃

}
=α,

which verifies (39).

Since this argument holds for all θ̃∈Θ, and Assumptions 2 and 4 imply that for all

θ,θ̃∈Θ with θ 6= θ̃, limn→∞supP∈PnPrP

{
Xn(θ)=Xn

(
θ̃
)}

=0, Lemma 6 implies (19). �

Proof of Corollary 1 By construction, CSET,n=
[
µ̂α/2,n,µ̂1−α/2,n

]
, and µ̂1−α/2,n>µ̂α/2,n

for all α<1. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CSET,n|θ̂n= θ̃

}
=PrP

{
µY,n

(
θ̂n;P

)
≤µ̂1−α/2,n|θ̂n= θ̃

}
−PrP

{
µY,n

(
θ̂n;P

)
≤µ̂α/2,n|θ̂n= θ̃

}
,

so the result is immediate from Proposition 10 and Lemma 6. �

Proof of Proposition 11 By the same argument as in the proof of Lemma 5, to show

that (20) holds it suffices to show that for all {ns}, {Pns} satisfying conditions (1)-(3) of

Lemma 5, liminfn→∞PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSP,ns

}
≥1−α.

To this end, note that

µY,ns

(
θ̂ns;Pns

)
∈CSP,ns if and only if Y ∗ns

(
θ̂ns

)
∈
[
−cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

)
,cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

)]

for cα(ΣY ) the 1−α quantile of maxθ|ξ(θ)|/
√

ΣY (θ) where ξ∼N(0,ΣY ). Next, note that

cα(ΣY ) is continuous in Σ on S as defined in (26). Hence, for all θ, cα(ΣY )
√

ΣY (θ) is

continuous as well. Assumptions 2 and 3 imply that
(
Y ∗ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,Σ∗,θ̂

)
, which

by the continuous mapping theorem implies(
Y ∗ns

(
θ̂ns

)
,cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

))
→d

(
Y ∗
(
θ̂
)
,cα(Σ∗Y )

√
Σ∗Y

(
θ̂
))

.

Hence, since Pr

{∣∣∣Y ∗(θ̂)∣∣∣−cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)

=0

}
=0,

PrPns

{
µY,ns

(
θ̂ns

;Pns

)
∈CSP,ns

}
→Pr

{
Y ∗
(
θ̂
)
∈

[
−cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)
,cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)]}

(40)
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where the right hand side is at least 1−α by construction. �

Proof of Proposition 12 Note that µ̂Hα,n ≥ µY,n
(
θ̂n;P

)
if and only if µY,n

(
θ̂n;P

)
∈

CSHU,−,n for CSHU,−,n=(−∞,µ̂Hα,n]. Hence, by Lemma 5, to prove that (21) holds it suffices

to show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
{
θ̂n= θ̃,µY,n

(
θ̂n;Pn

)
∈CSβP,n

}
, we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CSHU,−,n|θ̂ns = θ̃,µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

}
=α.

Recall that for FTN(Y (θ);µ,ΣY (θ),L,U) defined as in (30), µ̂Hα,n solves

FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,LHn
(
µ,θ̂n

)
,UHn

(
µ,θ̂n

))
=1−α,

for

LHn
(
µ,θ̂n

)
=max

{
L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,µ−cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
,

UHn
(
µ,θ̂n

)
=min

{
U
(
θ̂n,Zθ̂n,n,Σ̂n

)
,µ+cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
.

The proof of Proposition 5 shows that FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,LHn
(
µ,θ̂n

)
,UHn

(
µ,θ̂n

))
is

strictly decreasing in µ, so for a given value µY,0,

µ̂Hα,n≥µY,0⇐⇒ FTN

(
Yn

(
θ̂n

)
;µY,0,Σ̂Y,n

(
θ̂n

)
,LHn
(
µY,0,θ̂n

)
,UHn

(
µY,0,θ̂n

))
≥1−α.

As in the proof of Proposition 10

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;Pn

)
,Σ̂Y,n

(
θ̂n

)
,LHn

(
µY,n

(
θ̂n;Pn

)
,θ̂n

)
,UHn

(
µY,n

(
θ̂n;Pn

)
,θ̂n

))
=FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,LH∗n

(
θ̂n

)
,UH∗n

(
θ̂n

))
,

where

LH∗n
(
θ̂n

)
=max

{
L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,−cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
,

UH∗n
(
θ̂n

)
=min

{
U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}

so µ̂Hα,n≥µY,n
(
θ̂n;P

)
if and only if FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,LH∗n

(
θ̂n

)
,UH∗n

(
θ̂n

))
≥1−α.

Lemma 8 implies that
(
Y ∗ns,Σ̂Y,ns,L

H∗
ns

(
θ̃
)
,UH∗ns

(
θ̃
)
,θ̂ns

)
→d

(
Y ∗,Σ∗Y ,LH∗

(
θ̃
)
,UH∗

(
θ̃
)
,θ̂
)
,

81



where LH∗
(
θ̃
)

and UH∗
(
θ̃
)

are equal to LH∗n
(
θ̃
)

and UH∗n
(
θ̃
)

after replacing (Xn,Yn,Σ̂n) with

(X,Y,Σ∗). Then by the continuous mapping theorem and (40),(
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂nS

)
,LH∗ns

(
θ̃
)
,UH∗ns

(
θ̃
))
,1
{
θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

})
→d

(
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,LH∗

(
θ̃
)
,UH∗

(
θ̃
))
,1

{
θ̂= θ̃,Y ∗

(
θ̂
)
∈
[
−cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)
,cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)]})

.

Hence, by the same argument as in the proof of Proposition 10,

lim
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CSHU,−,ns|θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

}
=α,

as we aimed to show.

To prove (22), note that for C̃S
H

U,+,n=(µ̂Hα,n,∞),

µ̂Hα,n≥µY,n
(
θ̂n;P

)
⇐⇒ µY,n

(
θ̂n;P

)
6∈C̃S

H

U,+,n

and thus that the argument above proves that

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P
)
∈C̃S

H

U,+,n|CHn
(
θ̃;P
)}
−(1−α)

∣∣∣PrP{CHn (θ̃;P)}=0

for CHn

(
θ̃;P
)

as in the statement of the proposition. Since

∑
θ̃∈Θ

PrP

{
θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

}
=PrP

{
µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

}
+o(1), (41)

and Proposition 11 shows that

liminf
s→∞

inf
P∈Pns

PrP

{
µY,ns

(
θ̂ns;Pns

)
∈CSβP,ns

}
≥1−β,

Lemma 6 together with (21) implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µ̂Hα,n<µY,n

(
θ̂n;P

)}
≥(1−α)(1−β)=(1−α)−β(1−α)

and

limsup
n→∞

sup
P∈Pn

PrP

{
µ̂Hα,n<µY,n

(
θ̂n;P

)}
≤1−α(1−β)=(1−α)+βα

from which the second result of the proposition follows immediately. �
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Proof of Corollary 2 Note that by construction CSHET,n =

[
µ̂Hα−β

2(1−β) ,n
,µ̂H

1− α−β
2(1−β) ,n

]
, where

µ̂Hα−β
2(1−β) ,n

<µ̂H
1− α−β

2(1−β) ,n
provided α−β

1−β <1. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n|CHn

(
θ̃,P
)}

=PrP

{
µY,n

(
θ̂n;P

)
≤µ̂H

1− α−β
2(1−β) ,n

|CHn
(
θ̃,P
)}
−PrP

{
µY,n

(
θ̂n;P

)
<µ̂Hα−β

2(1−β) ,n
|CHn

(
θ̃,P
)}
,

so Proposition 12 immediately implies (23).

Equation (41) in the proof of Proposition 12 together with Lemma 6 implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≥ 1−α

1−β
(1−β)=1−α

so (24) holds. We could likewise get an upper bound on coverage using Lemma 6, but obtain a

sharper bound by proving the result directly. Specifically, note that

µY,n

(
θ̂n;Pn

)
∈CSHET,n⇒µY,n

(
θ̂n;Pn

)
∈CSβP,n.

Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
=PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n|µ̂Y,n

(
θ̂n;Pn

)
∈CSβP,n

}
Pr
{
µY,n

(
θ̂n;Pn

)
∈CSβP,n

}
.

By the first part of the proposition, this implies that

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≤ 1−α

1−β
limsup
n→∞

sup
P∈Pn

Pr
{
µY,n

(
θ̂n;Pn

)
∈CSβP,n

}

≤ 1−α
1−β

,

so (25) holds as well. �

E Additional Results for Neighborhoods Application

E.1 Empirical Bayes and Winner’s Curse

Chetty et al. (2018) focus on what they term forecast-unbiased estimates, which correspond to

posterior means from a correlated random effects model which treats tract quality as normally

and homoskedastically distributed conditional on a set of observable tract characteristics, with a

mean that changes linearly in the tract characteristics. Specifically, for Wt the characteristics of
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tract t, and µt tract quality, these estimates correspond to posterior means under the prior π

that takes µt independent across tracts, with

µt|Wt∼N
(
W ′tβ,ω

2
)
. (42)

They then plug in estimates of ω and β.

If we take the model (42) seriously and abstract from estimation of ω and β (for instance

because the number of tracts is large and we plug in consistent estimates), Bayesian posterior

means solve the winner’s curse problem under the prior. Specifically, note that the posterior

mean for µt given the vector of estimates µ̂ is simply the mean given µ̂t, Eπ[µt|µ̂]=Eπ[µt|µ̂t].
The law of iterated expectations implies, however, that Eπ[µt|µ̂] is unbiased for µt conditional

on µ̂, so for any event E such that Prπ{µ̂∈E}>0,

Eπ[µt−Eπ[µt|µ̂t]|µ̂∈E]=0.

Likewise, since we model µ̂t as normally distributed conditional on µt, the posterior mean is also

the posterior median, so

Prπ{Eπ[µt|µ̂t]>µt|µ̂∈E}=
1

2
,

and Eπ[µt|µ̂t] is median-unbiased under the prior conditional on the event E. Note, however,

that selection of a particular set of target tracts can be written as an event E, so this argument

implies that Bayesian posterior means are immune to the winner’s curse under the prior. This

depends crucially on the prior, however, since if we calculate the outer probability with respect

to some other distribution of effect sizes π̃ 6=π, we typically have

Prπ̃{Eπ[µt|µ̂t]>µt|µ̂∈E} 6=
1

2
.

E.2 Additional Figure for Movers Application

Figure 8 plots naive, conditional, and projection intervals for the Opportunity Atlas application

described in the main text.

F Additional Simulation Results for Stylized Example

In the stylized example discussed in Section 2 of the main text, we focus on the median length

of confidence intervals and the median absolute error of estimators. In this section, we report

results for other quantiles, in particular that τ-th quantiles for τ∈{0.05,0.25,0.5,0.75,0.95}.
Figures 9 and 10 show the unconditional quantiles of the length of the 95% confidence

intervals CSU and CSET , for cases with |Θ|=2, 10, and 50 policies. In each case and for each
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Figure 8: Estimates and confidence intervals for average economic mobility for selected census
tracts based on Chetty et al. (2018) Opportunity Atlas, relative to the within-CZ average.
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τ ∈ {0.05,0.25,0.5,0.75,0.95}, the τ-th quantile is monotonically decreasing in µ(θ1)−µ(θ−1).

Noting the different scales of the y-axes, we see that the upper quantiles grow as the number

of policies increase, particularly for small µ(θ1)−µ(θ−1).

Figures 11 and 12 show the unconditional quantiles of the length of 95% hybrid confidence

intervals CSHU and CSHET with β=0.005. Compared with Figures 9 and 10, the upper quantiles

are much smaller, especially for small µ(θ1)−µ(θ−1). This substantial reduction in length directly

comes from the construction of the hybrid confidence intervals, which ensures that CSHU and

CSHET are contained in CSβP . For the case of |Θ|=50, even the 95% quantiles of the length of

CSHU and CSHET are shorter than the length of CSP uniformly over the range of µ(θ1)−µ(θ−1)

values we consider.

Figures 13, 14, and 15 examine the performance of point estimators for µ(θ̂). They plot the

unconditional quantiles of the absolute error of the conventional estimator, the median unbiased

estimator, and the hybrid estimator, respectively. In spite of the severe median bias shown in

Figure 1 in the main text, the distribution of the conventional estimator is relatively concentrated

compared to that of the median unbiased estimator. In particular, the upper quantiles of the

absolute errors of µ̂1/2 are very large for small µ(θ1)−µ(θ−1) (similar to the quantile plots of

the length of CSU and CSET shown in Figures 9 and 10).

At the cost of a small median bias, the hybrid estimator substantially reduces the absolute

errors (Figure 15). The 95% quantile of the absolute errors of the hybrid estimator is overall

similar to the 95% quantile of the absolute errors of the conventional estimator with a notable

exception of the case of 2 policies. In contrast, for |Θ| = 10 and 50, and for quantiles other than

95%, the hybrid estimator outperforms the conventional estimator over a wide range of values

for µ(θ1)−µ(θ−1). These numerical results show that the hybrid estimator successfully reduces

bias without greatly inflating the variability of the estimator.
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Figure 9: Quantiles of the length of 95% conditionally UMAU confidences sets CSU .
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Figure 10: Quantiles of the length of 95% conditionally equal-tailed confidences sets CSET .
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Figure 11: Quantiles of the length of 95% hybrid confidence intervals CSHU , with β=0.005.
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Figure 12: Quantiles of the length of 95% hybrid confidence intervals CSHET , with β=0.005.
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Figure 13: Quantiles of the absolute error of the conventional estimator (i.e. of |X(θ̂)−µ(θ̂)|).
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Figure 14: Quantiles of the absolute error of the conditionally optimal median unbiased
estimator (i.e. of |µ̂1/2−µ(θ̂)|).
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Figure 15: Quantiles of the absolute error of the hybrid estimator (i.e. of |µ̂H1/2−µ(θ̂)|) with
β=0.005.
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